National Library of Energy BETA

Sample records for gc4 nanotechnology gc5

  1. Nanotechnology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Engineering. A Advanced Functional Materials Nanotechnology Nature Nanotechnology Biosensors & Bioelectronics Small 2013 JCR Science Edition, ranked by total citations,...

  2. Nanotechnology

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy's Nanotechnology Safety provides a forum for the exchange of best practices, lessons learned, and guidance in the area of nanotechnology safety and health management.

  3. Nanotechnology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanotechnology Nanotechnology The Department of Energy's Nanotechnology Safety provides a forum for the exchange of best practices, lessons learned, and guidance in the area of ...

  4. Navillum Nanotechnologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navillum Nanotechnologies National Clean Energy Business Plan Competition Navillum Nanotechnologies University of Utah Navillum Nanotechnologies' innovative method for fabricating ...

  5. Navillum Nanotechnologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navillum Nanotechnologies University of Utah Navillum Nanotechnologies' innovative method for fabricating quantum dots and other types of semiconducting nanocrystals at commercial ...

  6. Svaya Nanotechnologies | Open Energy Information

    Open Energy Info (EERE)

    Svaya Nanotechnologies Place: Sunnyvale, California Zip: 94085 Product: Stealth nanotechnology startup developing self-assembling, molecular-scale films useful in the PV...

  7. National Nanotechnology Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nanotechnology Initiative (NNI) Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Nanomaterials ES&H Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC)

  8. Contribution to Nanotechnology Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three institutions, including Los Alamos National Laboratory, has discovered a more efficient way of fusing charge-carrying electrical contacts to tiny "nanowires" of silicon to create the nanotechnology at the heart of potential future advances in modern electronics, sensing, and energy collection. Nanotech

  9. Approaches to Safe Nanotechnology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches to Safe Nanotechnology Approaches to Safe Nanotechnology Approaches to Safe Nanotechnology PDF icon CX rulemaking files More Documents & Publications Volume II, ...

  10. Center for Integrated Nanotechnologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS » MPA » MPA-CINT Center for Integrated Nanotechnologies Nanomaterials integration is one of many approaches we take in addressing a range of challenges, from human health to national defense. Contact Us CINT Co-Director Quanxi Jia Email Deputy Group Leader (acting) Alex Lacerda Email Group Office (505) 667-9243 First in-situ images of void collapse in explosives Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect explosives under shock

  11. Nanotechnology: Its Promise and Challenges

    SciTech Connect (OSTI)

    Vicki Colvin

    2009-05-14

    Vicki Colvin of Rice University talks about how nanotechnology-enabled systems, with dimensions on the scale of a billionth of a meter, offer great promise for solving difficult social problems and creating enormous possibilities.

  12. Nanotechnology | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology Subscribe to RSS - Nanotechnology Nanomaterials, which are measured in billionths of a meter, are prized for their use in everything from golf clubs and swimwear to microchips, paints and pharmaceutical products, thanks to their singular properties. These include exceptional strength and flexibility and high electrical conductivity. Carbon nanotubes, for example, are tens of thousands of times thinner than a human hair, yet are stronger than steel on an ounce-per-ounce basis. PPPL

  13. National Needs Drivers for Nanotechnology

    SciTech Connect (OSTI)

    Yonas, G.; Picraux, S.T.

    2000-10-09

    Societal needs related to demographics, resources, and human behavior will drive technological advances over the next 20 years. Nanotechnology is anticipated to be an important enabler of these advances, and thus maybe anticipated to have significant influence on new systems approaches to solving societal problems as well as on extending current science and technology-based applications. To examine the potential implications of nanotechnology a societal needs-driven approach is taken. Thus the methodology is to present the definition of the problem, and then examine system concepts, technology issues, and promising future directions. We approach the problem definition from a national and global security perspective and identify three key areas involving the condition of the planet, the human condition, and global security. In anticipating societal issues in the context of revolutionary technologies, such as maybe enabled by nanoscience, the importance of working on the entire life cycle of any technological solution is stressed.

  14. Altair Nanotechnologies Inc | Open Energy Information

    Open Energy Info (EERE)

    of proprietary technology for making nanocrystalline materials. Applications include batteryfuel cell development. References: Altair Nanotechnologies Inc1 This article is a...

  15. SCIENCE ON SATURDAY- "Light and Nanotechnology- Engineering ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2013, 9:30am Science On Saturday MBG Auditorium SCIENCE ON SATURDAY- "Light and Nanotechnology- Engineering & So Much More" Professor Claire Gmachl Department of Electrical...

  16. Nanotechnology and algae biofuels exhibits open July 26 at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is ...

  17. DOE Science Showcase - Nanotechnology | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Nanotechnology Nanotechnology has a vitally important role to play ... to spotlight needs and target resources in this critical area of science and technology. ...

  18. Micro- & Nano-Technologies Enabling More Compact, Lightweight...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems Micro- & Nano-Technologies Enabling ...

  19. Nanotechnology: Small Materials Making a Big Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanotechnology: Small Materials Making a Big Impact Nanotechnology: Small Materials Making a Big Impact December 14, 2010 - 12:35pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs This past Thursday, Secretary Chu delivered remarks to the Nanotechnology Innovation Summit in National Harbor, Maryland on how breakthroughs in nanotechnology are poised to transform the energy landscape. According to the National Nanotechnology Initiative,

  20. In the OSTI Collections: Nanotechnology | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    In the OSTI Collections: Nanotechnology Consider how far it is from New York to Los ... But these tiny distances are becoming significant in the new field of nanotechnology --the ...

  1. Control Banding and Nanotechnology Synergist

    SciTech Connect (OSTI)

    Zalk, D; Paik, S

    2009-12-15

    uncertainty, that attracted international NM experts to recommend this qualitative risk assessment approach for NM. However, since their CB recommendation was only in theory, we took on the challenge of developing a working toolkit, the CB Nanotool (see Zalk et al. 2009 and Paik et al. 2008), as a means to perform a risk assessment and protect researchers at the Lawrence Livermore National Laboratory. While it's been acknowledged that engineered NM have potentially endless benefits for society, it became clear to us that the very properties that make nanotechnology so useful to industry could also make them dangerous to humans and the environment. Among the uncertainties and unknowns with NM are: the contribution of their physical structure to their toxicity, significant differences in their deposition and clearance in the lungs when compared to their parent material (PM), a lack of agreement on the appropriate indices for exposure to NM, and very little background information on exposure scenarios or populations at risk. Part of this lack of background information can be traced to the lack of risk assessments historically performed in the industry, with a recent survey indicating that 65% of companies working with NM are not doing any kind of NM-specific risk assessment as they focus on traditional PM methods for IH (Helland et al. 2009). The good news is that the amount of peer-reviewed publications that address environmental, health and safety aspects of NM has been increasing over the last few years; however, the percentage of these that address practical methods to reduce exposure and protect workers is orders of magnitude lower. Our intent in developing the CB Nanotool was to create a simplified approach that would protect workers while unraveling the mysteries of NM for experts and non-experts alike. Since such a large part of the toxicological effects of both the physical and chemical properties of NM were unknown, not to mention changing logarithmically as new NM

  2. Using Nanotechnology to Fight Friction and Wear | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Nanotechnology to Fight Friction and Wear Tiny diamonds wrapped in graphene help achieve "superlubricity," in which friction drops to near zero. Graphene "nanoscrolls" could...

  3. December 3, 2003: Bush signs Nanotechnology R&D Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3, 2003: Bush signs Nanotechnology R&D Act December 3, 2003: Bush signs Nanotechnology R&D Act December 3, 2003: Bush signs Nanotechnology R&D Act December 3, 2003 Secretary Abraham attends the signing of the 21st Century Nanotechnology Research and Development Act by President Bush. The act authorizes funding for nanotechnology research and development over four years and puts into law programs and activities supported by President Bush's National Nanotechnology Initiative. The act

  4. National Nanotechnology Initiative's Signature Initiative Sustainable Nanomanufacturing: Creating the Industries of the Future

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by National Nanotechnology Coordination Office held on June 26, 2012

  5. Nanoscience and Nanotechnology: From Energy Applications to Advanced Medical Therapies

    ScienceCinema (OSTI)

    Tijana Rajh

    2010-01-08

    Dr. Rajh will present a general talk on nanotechnology ? an overview of why nanotechnology is important and how it is useful in various fields. The specific focus will be on Solar energy conversion, environmental applications and advanced medical therapies. She has broad expertise in synthesis and characterization of nanomaterials that are used in nanotechnology including novel hybrid systems connecting semiconductors to biological molecules like DNA and antibodies. This technology could lead to new gene therapy procedures, cancer treatments and other medical applications. She will also discuss technologies made possible by organizing small semiconductor particles called quantum dots, materials that exhibit a rich variety of phenomena that are size and shape dependent. Development of these new materials that harnesses the unique properties of materials at the 1-100 nanometer scale resulted in the new field of nanotechnology that currently affects many applications in technological and medical fields.

  6. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  7. Center for Integrated Nanotechnologies 2011 Annual Report

    SciTech Connect (OSTI)

    Sanders, Antonya

    2012-06-21

    We are pleased to share with you this 2011 edition of the Annual Report from the Center for Integrated Nanotechnologies (CINT) and the growing excitement we feel around cementing our brand as a leader in integration nanoscience. This can be seen most readily in the momentum we have achieved in our signature Integration Focus Activities (IFAs). These efforts unite our scientists across our four scientific Thrust areas with our users to concentrate research on larger-scale nanoscience integration challenges for specific classes of nanomaterials, systems, and phenomena. All three of our current IFAs (p. 10) now have a full head of steam, and nearly 30% of our current user projects map in some meaningful way to one of these IFAs. As part of our redoubled effort to increase our industrial user base, we are also looking to leverage these IFAs to build a stronger link to and spur recruitment within our industrial user community. We believe that the IFAs are a natural community-building tool with an intrinsic value proposition for industry; an R&D pipeline that can lead to more mature, more commercially well-positioned technologies. Finally, as nanoscience and nanotechnology are maturing, we as a research community are beginning to see our efforts extend in many exciting new directions. Our focus on nanoscience integration positions us very well to capitalize on new opportunities including the emerging Mesoscale Initiative within the DOE Office of Science. Many aspects of mesoscale science are embodied in the integration of nanoscale building blocks. We are equally proud of our continuing strong performance in support of our user program. We have fully transitioned to our new user proposal database providing enhanced convenience and flexibility for proposal submission and review. In our two regular proposal calls this year we received a total of 225 proposals, an increase of 10% over our 2010 performance. Our official count on number of users for the period remains at

  8. Nanotechnology Energizing Our Future | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Energy Needs: The Big Picture .ppt file (15.7MB) Patricia Dehmer, DOE Nanotechnology 101 .ppt file (7.6MB) Paul Alivisatos, LBNL Nanotechnology for the Hydrogen Economy .ppt file ...

  9. Potential impacts of nanotechnology on energy transmission applications and needs.

    SciTech Connect (OSTI)

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  10. Nanotechnology for the Forest Products Industry Vision and Technology Roadmap

    SciTech Connect (OSTI)

    Atalla, Rajai; Beecher, James; Caron, Robert; Catchmark, Jeffrey; Deng, Yulin; Glasser, Wolfgang; Gray, Derek; Haigler, Candace; Jones, Philip; Joyce, Margaret; Kohlman, Jane; Koukoulas, Alexander; Lancaster, Peter; Perine, Lori; Rodriguez, Augusto; Ragauskas, Arthur; Wegner, Theodore; Zhu, Junyong

    2005-03-01

    A roadmap for Nanotechnology in the Forest Products Industries has been developed under the umbrella of the Agenda 2020 program overseen by the CTO committee. It is expected that the use of new analytical techniques and methodologies will allow us to understand the complex nature of wood based materials and allow the dramatically enhanced use of the major strategic asset the US has in renewable, recyclable resources based on its well managed Forests.

  11. DOE Science Showcase - Nanotechnology | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Nanotechnology Nanotechnology has a vitally important role to play in addressing the nation's energy, climate change and national security challenges. DOE maintains a strong commitment to the initiative, which has served as an effective and valuable way to spotlight needs and target resources in this critical area of science and technology. Courtesy of Los Alamos National Laboratory Courtesy of Los Alamos National Laboratory Nanotechnology Research

  12. Center for Integrated Nanotechnologies (CINT) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Integrated Nanotechnologies (CINT) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  13. APPLICATIONS OF BIOTECHNOLOGY IN DEVELOPMENT OF BIOMATERIALS: NANOTECHNOLOGY AND BIOFILMS

    SciTech Connect (OSTI)

    Brigmon, R.; Berry, T.; Narayan, R.

    2010-11-29

    Biotechnology is the application of biological techniques to develop new tools and products for medicine and industry. Due to various properties including chemical stability, biocompatibility, and specific activity, e.g. antimicrobial properties, many new and novel materials are being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. Many of these materials are less than 100 nanometers in size. Nanotechnology is the engineering discipline encompassing designing, producing, testing, and using structures and devices less than 100 nanometers. One of the challenges associated with biomaterials is microbial contamination that can lead to infections. In recent work we have examined the functionalization of nanoporous biomaterials and antimicrobial activities of nanocrystalline diamond materials. In vitro testing has revealed little antimicrobial activity against Pseudomonas fluorescens bacteria and associated biofilm formation that enhances recalcitrance to antimicrobial agents including disinfectants and antibiotics. Laser scanning confocal microscopy studies further demonstrated properties and characteristics of the material with regard to biofilm formation.

  14. Argonne Creates Collaborative Centers to Connect Business with Energy Storage, Nanotechnology Research

    Broader source: Energy.gov [DOE]

    Energy storage and nanotechnology have the potential to transform the way we look at clean energy. Advances in energy storage research will revolutionize the way the world generates and stores...

  15. NREL Nano-Technology Solar Cell Achieves 18.2% Efficiency - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Nano-Technology Solar Cell Achieves 18.2% Efficiency Breakthrough should eliminate need for anti-reflection layer, cutting costs October 12, 2012 Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have produced solar cells using nanotechnology techniques at an efficiency - 18.2% -- that is competitive. The breakthrough should be a major step toward helping lower the cost of solar energy. NREL tailored a nanostructured surface while ensuring that

  16. TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE

    SciTech Connect (OSTI)

    Louthan, M

    2007-07-17

    Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the properties of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.

  17. Developing nanotechnology for biofuel and plant science applications

    SciTech Connect (OSTI)

    Valenstein, Justin

    2012-06-20

    This dissertation presents the research on the development of mesoporous silica based nanotechnology for applications in biofuels and plant science. Mesoporous silica nanoparticles (MSNs) have been the subject of great interest in the last two decades due to their unique properties of high surface area, tunable pore size and particle morphology. The robust nature of the silica framework is easily functionalized to make the MSNs a promising option for selective separations. Also, the independent channels that form the pores of MSN have been exploited in the use of particles as platforms for molecular delivery. Pore size and organic functionality are varied to identify the ideal adsorbent material for free fatty acids (FFAs). The resulting material is able to sequester FFAs with a high degree of selectivity from a simulated solution and microalgal oil. The recyclability and industrial implications are also explored. A continuation of the previous material, further tuning of MSN pore size was investigated. Particles with a smaller diameter selectively sequester polyunsaturated free fatty acids (PUFAs) over monounsaturated FFAs and saturated FFAs. The experimental results were verified with molecular modeling. Mesoporous silica nanoparticle materials with a pore diameter of 10 nm (MSN-10) were decorated with small gold nanoparticles. The resulting materials were shown to deliver proteins and DNA into plant cells using the biolistic method.

  18. Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Museum Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is opening two new exhibits as part of the Laboratory's 70th Anniversary celebration. July 22, 2013 What if you could power your life using pond scum? Los Alamos researchers are working to make this a reality. What if you could power your life using pond scum? Los Alamos researchers are working to make this a

  19. Connecticut State University System Initiative for Nanotechnology-Related Equipment, Faculty Development and Curriculum Development

    SciTech Connect (OSTI)

    Broadbridge, Christine C.

    2013-03-28

    DOE grant used for partial fulfillment of necessary laboratory equipment for course enrichment and new graduate programs in nanotechnology at the four institutions of the Connecticut State University System (CSUS). Equipment in this initial phase included variable pressure scanning electron microscope with energy dispersive x-ray spectroscopy elemental analysis capability [at Southern Connecticut State University]; power x-ray diffractometer [at Central Connecticut State University]; a spectrophotometer and spectrofluorimeter [at Eastern Connecticut State University; and a Raman Spectrometer [at Western Connecticut State University]. DOE's funding was allocated for purchase and installation of this scientific equipment and instrumentation. Subsequently, DOE funding was allocated to fund the curriculum, faculty development and travel necessary to continue development and implementation of the System's Graduate Certificate in Nanotechnology (GCNT) program and the ConnSCU Nanotechnology Center (ConnSCU-NC) at Southern Connecticut State University. All of the established outcomes have been successfully achieved. The courses and structure of the GCNT program have been determined and the program will be completely implemented in the fall of 2013. The instrumentation has been purchased, installed and has been utilized at each campus for the implementation of the nanotechnology courses, CSUS GCNT and the ConnSCU-NC. Additional outcomes for this grant include curriculum development for non-majors as well as faculty and student research.

  20. Nanotechnology Energizing Our Future | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Presentations » Nanotechnology Energizing Our Future Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000

  1. Nanotechnology applications to desalination : a report for the joint water reuse & desalination task force.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Mayer, Tom; Cygan, Randall Timothy

    2011-01-01

    Nanomaterials and nanotechnology methods have been an integral part of international research over the past decade. Because many traditional water treatment technologies (e.g. membrane filtration, biofouling, scale inhibition, etc.) depend on nanoscale processes, it is reasonable to expect one outcome of nanotechnology research to be better, nano-engineered water treatment approaches. The most immediate, and possibly greatest, impact of nanotechnology on desalination methods will likely be the development of membranes engineered at the near-molecular level. Aquaporin proteins that channel water across cell membranes with very low energy inputs point to the potential for dramatically improved performance. Aquaporin-laced polymer membranes and aquaporin-mimicking carbon nanotubes and metal oxide membranes developed in the lab support this. A critical limitation to widespread use of nanoengineered desalination membranes will be their scalability to industrial fabrication processes. Subsequent, long-term improvements in nanoengineered membranes may result in self-healing membranes that ideally are (1) more resistant to biofouling, (2) have biocidal properties, and/or (3) selectively target trace contaminants.

  2. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    SciTech Connect (OSTI)

    Elcock, D.

    2010-09-17

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved

  3. Nanotechnology and textiles engineered by carbon nanotubes for the realization of advanced personal protective equipments

    SciTech Connect (OSTI)

    Andretta, Antonio; Terranova, Maria Letizia; Lavecchia, Teresa; Gay, Stefano; Tamburri, Emanuela; Picano, Alfredo; Mascioletti, Alessandro; Stirpe, Daniele; Dugnani, Giovanni; Gatti, Davide; Laria, Giuseppe; Codenotti, Barbara; Maldini, Giorgio; Roth, Siegmar; Passeri, Daniele; Rossi, Marco

    2014-06-19

    Carbon nanotubes (CNT) and CNT-based active materials have been used to assemble the gas sensing unit of innovative platforms able to detect toxic atmospheres developing in confined workplaces. The main goal of the project was to realize a full-featured, operator-friendly safety detection and monitoring system based on multifunctional textiles nanotechnologies. The fabricated sensing platform consists of a multiple gas detector coupled with a specifically designed telecommunication infrastructure. The portable device, totally integrated in the workwear, offers several advantages over the conventional safety tools employed in industrial work activities.

  4. In the OSTI Collections: Nanotechnology | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Nanotechnology Consider how far it is from New York to Los Angeles. Now compare that distance to the length of the "l" in "Angeles". That's roughly how one meter compares to one nanometer. A nanometer-one billionth of a meter-is a very small distance almost any way you look at it. One nanometer is about six times the width of a carbon atom. Distances of tens of nanometers are barely significant in much present-day technology, in which

  5. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hosoya, Hitomi; Dobroff, Andrey S.; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; et al

    2016-02-02

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared,more » thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. We conclude that these results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.« less

  6. Scaling to Nanotechnology Limits with the PIMS Computer Architecture and a new Scaling Rule.

    SciTech Connect (OSTI)

    Debenedictis, Erik

    2015-02-01

    We describe a new approach to computing that moves towards the limits of nanotechnology using a newly formulated sc aling rule. This is in contrast to the current computer industry scali ng away from von Neumann's original computer at the rate of Moore's Law. We extend Moore's Law to 3D, which l eads generally to architectures that integrate logic and memory. To keep pow er dissipation cons tant through a 2D surface of the 3D structure requires using adiabatic principles. We call our newly proposed architecture Processor In Memory and Storage (PIMS). We propose a new computational model that integrates processing and memory into "tiles" that comprise logic, memory/storage, and communications functions. Since the programming model will be relatively stable as a system scales, programs repr esented by tiles could be executed in a PIMS system built with today's technology or could become the "schematic diagram" for implementation in an ultimate 3D nanotechnology of the future. We build a systems software approach that offers advantages over and above the technological and arch itectural advantages. Firs t, the algorithms may be more efficient in the conventional sens e of having fewer steps. Second, the algorithms may run with higher power efficiency per operation by being a better match for the adiabatic scaling ru le. The performance analysis based on demonstrated ideas in physical science suggests 80,000 x improvement in cost per operation for the (arguably) gene ral purpose function of emulating neurons in Deep Learning.

  7. Enhancing Graduate Student Communication to General Audiences through Blogging about Nanotechnology and Sustainability

    SciTech Connect (OSTI)

    Bishop, Lee M.; Tillman, Ayesha S.; Geiger, Franz M.; Haynes, Christy L.; Klaper, Rebecca D.; Murphy, Catherine; Orr, Galya; Pedersen, Joel A.; DeStefano, Lizanne; Hamers, Robert J.

    2014-10-14

    We have developed and assessed a multiauthor science blog on the topic of nanotechnology and sustainability as a tool to improve the written communication and public engagement skills of graduate students. Focus group studies revealed that after participation in the blog, student authors felt more confident and capable of communicating technical topics to general audiences. Students' research mentors viewed this as an important component of their students' education, as indicated by survey data. Important design aspects of this effort include participation of an editor as well as having flexible content and target-audience guidelines. We have explicitly outlined aspects of the effort we see as critical in order to enable others to replicate this model in related settings.

  8. Semiconductor Nanotechnology: Novel Materials and Devices for Electronics, Photonics, and Renewable Energy Applications

    SciTech Connect (OSTI)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag S; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-03-01

    Electronic and photonic information technology and renewable energy alternatives, such as solar energy, fuel cells and batteries, have now reached an advanced stage in their development. Cost-effective improvements to current technological approaches have made great progress, but certain challenges remain. As feature sizes of the latest generations of electronic devices are approaching atomic dimensions, circuit speeds are now being limited by interconnect bottlenecks. This has prompted innovations such as the introduction of new materials into microelectronics manufacturing at an unprecedented rate and alternative technologies to silicon CMOS architectures. Despite the environmental impact of conventional fossil fuel consumption, the low cost of these energy sources has been a long-standing economic barrier to the development of alternative and more efficient renewable energy sources, fuel cells and batteries. In the face of mounting environmental concerns, interest in such alternative energy sources has grown. It is now widely accepted that nanotechnology offers potential solutions for securing future progress in information and energy technologies. The Canadian Semiconductor Technology Conference (CSTC) forum was established 25 years ago in Ottawa as an important symbol of the intrinsic strength of the Canadian semiconductor research and development community, and the Canadian semiconductor industry as a whole. In 2007, the 13th CSTC was held in Montreal, moving for the first time outside the national capital region. The first three meetings in the series of Nano and Giga Challenges in Electronics and Photonics NGCM2002 in Moscow, NGCM2004 in Krakow, and NGC2007 in Phoenix were focused on interdisciplinary research from the fundamentals of materials science to the development of new system architectures. In 2009 NGC2009 and the 14th Canadian Semiconductor Technology Conference (CSTC2009) were held as a joint event, hosted by McMaster University (10 14 August

  9. Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology

    SciTech Connect (OSTI)

    Hoover, Mark D.; Myers, David S.; Cash, Leigh J.; Guilmette, Raymond A.; Kreyling, Wolfgang G.; Oberdörster, Günter; Smith, Rachel; Cassata, James R.; Boecker, Bruce B.; Grissom, Michael P.

    2015-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications. While the full report is in preparation, this article presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are already present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.

  10. Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoover, Mark D.; Myers, David S.; Cash, Leigh J.; Guilmette, Raymond A.; Kreyling, Wolfgang G.; Oberdörster, Günter; Smith, Rachel; Cassata, James R.; Boecker, Bruce B.; Grissom, Michael P.

    2015-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications. While the full report is in preparation, this article presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are alreadymore » present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.« less

  11. Micro- & Nano-Technology: A Critical Design Key in Advanced Thermoelectric Cooling Systems

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Karri, Naveen K.

    2009-07-01

    Advanced, thermoelectric cooling technologies now are receiving more research attention to provide cooling in advanced vehicles and residential systems to assist in increasing overall system energy efficiency and reduce greenhouse gas impacts from leakage by current R-134a systems. This work explores the systems-related impacts, barriers, and challenges of using micro-technology solutions integrated with advances in nano-scale thermoelectric materials in advanced TE cooling systems. Integrated system-level analyses that simultaneously account for thermal energy transport into / dissipation out of the TE device, environmental effects, temperature-dependent TE and thermo-physical properties, thermal losses, and thermal and electrical contact resistances are presented to establish accurate optimum system designs using both BixSb2-xTe3 / Bi2Te3 TE systems and Bi2Te3 TE systems. This work established the design trends and identified optimum design regimes and metrics for these types of systems that will minimize system mass, volume and cost to maximize their commercialization potential in vehicular and residential applications. The relationships between important design metrics, like coefficient of performance, specific cooling capacity and cooling heat flux requirements, upper limits, and critical differences in these metrics in BixSb2-xTe3 / Bi2Te3 TE systems and Bi2Te3 TE systems are explored and quantified. Finally, the work discusses the critical role that micro-technologies and nano-technologies can play in enabling miniature TE cooling systems in advanced vehicle and residential applications and gives some key relevant examples.

  12. Where Are We Heading in Nanotechnology Environmental Health and Safety and Materials Characterization?

    SciTech Connect (OSTI)

    Nel, Andre; Parak, Wolfgang J.; Chan, Warren C.; Xia, Tian; Hersam, Mark C.; Brinker, C. J.; Zink, Jeffery I.; Pinkerton, Kent E.; Baer, Donald R.; Weiss, Paul S.

    2015-06-23

    Every chemist, material scientist, physicist, engineer, or commercial enterprise involved in the synthesis and/or production of engineered nanomaterials (ENM) or nano-enabled products aspires to develop safe materials. Nanotechnology environmental health and safety (nanoEHS) is a research discipline that involves the study of the possible adverse health and biological effects that nanomaterials may have on humans and environmental organisms and ecosystems. NanoEHS research has provided a body of experimental evidence indicating the possibility of hazardous outcomes as a result of the interactions of unique ENM physicochemical properties with similar scale processes occurring at a wide range of nano/bio interfaces, including at biomolecular, cellular, subcellular, organ, systemic, whole organism, or ecosystems levels. This projected hazard and risk potential warrants rigorous attention to safety assessment, safe use, safe implementation, benign design, regulatory oversight, governance, and public awareness to address the possibility and prevention of nanotoxicity, now or at any time in the future.1 Thus, we should understand the properties of the ENMs that are responsible for the toxicological response, so that we can re-engineer their physicochemical characteristics for risk prevention and safer ENM design.2 However, in spite of widespread use, no human toxicological disease or major environmental impact has been reported for ENMs. Thus, while “Nanotoxicology” is a thriving sub-discipline of Nano-EHS, the use of the “root” word toxicology may elicit a feeling that nanomaterials are inherently toxic despite the fact that toxicity has not been established in real-life use so far. As a community, we may want to rename this sub-discipline as “Nanosafety,” since the objective is to use toxicology information to guide the design of safer nanomaterials for use in medicine, biology, electronics, lighting systems, etc. At ACS Nano, we are interested in

  13. Approaches to Safe Nanotechnology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... How- ever, since this approach relies primarily on static or area sampling, some ... Environ Health Perspect 114(1):51-58. Fuchs NA 1964. The mechanics of aerosols. Ox- ...

  14. Princeton Plasma Physics Lab - Nanotechnology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), Adam Cohen has been named Deputy Under Secretary for Science and Energy in Washington D.C....

  15. Fundamental enabling issues in nanotechnology : (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Stresses generated during thin film growth strongly influence component lifetime and performance; stress has also been proposed as a mechanism for stabilizing supported nanoscale ...

  16. Fundamental enabling issues in nanotechnology : (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Yet the intrinsic connections between the evolving morphology of supported nanostructures and stress generation are still a matter of debate. This report presents results from a ...

  17. Challenges and opportunities for structural DNA nanotechnology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In particular, we highlight the potential use of DNA nanostructures in molecular and cellular biophysics, as biomimetic systems, in energy transfer and photonics, and in ...

  18. National Nanotechnology Initiative's Signature Initiative Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NSF NIH OMB OSTP DHS NRC FDA CPSC ITC USPTO NIOSH DOCBIS USDAFS DOEd DOL DOD DOE NASA ... Agencies involved: DOD, DOE, EPA, ICDNI, NASA, NIH, NIOSH, NIST, NSF, OSHA, USDAFS ...

  19. Solar Cell Nanotechnology Final Technical Report

    SciTech Connect (OSTI)

    Das, Biswajit

    2014-05-07

    The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arrays of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the nanoporous alumina templates. In order to eliminate this problem, electrophoretic deposition was selected as the more appropriate technique, which involves the guided deposition of semiconductor nanoparticles in the presence of ultrasonic energy to form the crystalline nanowires. Extensive experimental research was carried out to optimize the process parameters for formation of crystalline nanowires. It was observed that the environmental bath temperature plays a critical role in determining the structural integrity of the nanowires and hence their lengths. Investigation was carried out for the formation of semitransparent ohmic contacts on the nanowires to facilitate photocurrent spectroscopy measurements as well as for solar cell implementation. Formation of such ohmic contacts was found to be challenging and a process involving mechanical and electrochemical polishing was developed to facilitate such contacts. The use of nanoporous alumina templates for the surface texturing of mono- and multi-crystalline solar cells was extensively investigated by electrochemical etching of the silicon through the pores of the nanoporous templates. The processes for template formation as well as etching were optimized and the alumina/silicon interface was investigated using capacitance-voltage characterization. The process developed was found to be viable for improving solar cell performance.

  20. Tools for Nanotechnology Education Development Program

    SciTech Connect (OSTI)

    Dorothy Moore

    2010-09-27

    The overall focus of this project was the development of reusable, cost-effective educational modules for use with the table top scanning electron microscope (TTSEM). The goal of this project's outreach component was to increase students' exposure to the science and technology of nanoscience.

  1. Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology

    Broader source: Energy.gov [DOE]

    For many years, scientists have searched for ways to assemble nanoparticles (millions of times smaller than the tip of a pencil) into larger structures of any shape and design. Argonne's team created an assembled, continuous filament of carbon and gold nanoparticles that followed the path of the laser as if it was a magic wand.

  2. DOE Science Showcase - Nanotechnology | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    to spotlight needs and target resources in this critical area of science and technology. ... DOepatents ScienceCinema Energy Citations Database Science.gov WorldWideScience.org ...

  3. Micro- & Nano-Technologies Enabling More Compact, Lightweight...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented hendricks.pdf ...

  4. In the OSTI Collections: Nanotechnology | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    ... catalysis; theory, modeling and simulation; electronic materials; nanoscale photonics; soft and biological materials; imaging and spectroscopy; and nanoscale integration. ...

  5. Formation of a memristor matrix based on titanium oxide and investigation by probe-nanotechnology methods

    SciTech Connect (OSTI)

    Avilov, V. I.; Ageev, O. A.; Kolomiitsev, A. S.; Konoplev, B. G. Smirnov, V. A.; Tsukanova, O. G.

    2014-12-15

    The results of investigation of a memristor-matrix model on the basis of titanium-oxide nanoscale structures (ONSs) fabricated by methods of focused ion beams and atomic-force microscopy (AFM) are presented. The effect of the intensity of interaction between the AFM probe and the sample surface on the memristor effect in the titanium ONS is shown. The memristor effect in the titanium ONS is investigated by an AFM in the mode of spreading-resistance map. The possibility of the recording and erasure of information in the submicron cells is shown on the basis of using the memristor effect in the titanium ONS, which is most promising for developing the technological processes of the formation of resistive operation memory cells.

  6. Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors

    SciTech Connect (OSTI)

    Popa-Simil, L.

    2012-07-01

    A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

  7. Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Compares thermo-hydraulic performance and cost of micro-honeycombs to conventional heat exchange structures to highlight performance enhancement mechanisms

  8. Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems

    Broader source: Energy.gov [DOE]

    Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented

  9. A Nanotechnology-Based, Self-Healing, Chromate-Free Conversion...

    Office of Science (SC) Website

    ... The DOE SBIR funded R&D enabled NEI to advance the PT-60 technology readiness level from 3 (laboratory proof of concept) to 6 (prototype demonstration in a relevant environment) in ...

  10. CAMD Nanofabrication Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure :: News :: Related sites National Nanotechnology Initiative Nano Technology Industries Advanced Materials Research Institute Institute of Physics Max-Planck Institute for Kohlenforschung The institute of nanotechnology Nanotechnology Now Nanotechnology - Education Nanojournals Chancellor's Distinguished Lectureship Series

  11. Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Sites National Nanotechnology Initiative Nano Technology Industries Advanced Materials Research Institute Institute of Physics Max-Planck Institute for Kohlenforschung The institute of nanotechnology Nanotechnology Now Nanotechnology - Education Nanojournals Chancellor's Distinguished Lectureship Series Patent Analytics and Patent Searching

  12. Thickness-dependent charge transport in few-layer MoS 2 field...

    Office of Scientific and Technical Information (OSTI)

    Type: Publisher's Accepted Manuscript Journal Name: Nanotechnology (Print) Additional Journal Information: Journal Name: Nanotechnology (Print); Journal Volume: 27; Journal Issue: ...

  13. Analytical Estimations for Thermal Crosstalk Retention and Scaling...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: Nanotechnology; Related Information: Proposed for publication in Nanotechnology. Research Org: Sandia National ...

  14. Layout 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chancellor's Distinguished Lectureship Series Nanotechnology: Thinking Small or Small Thinking? Chad Mirkin Northwestern University Director of Institute for Nanotechnology...

  15. Nanoscience Research for Energy Needs. Report of the National Nanotechnology Initiative Grand Challenge Workshop, March 16-18, 2004

    SciTech Connect (OSTI)

    Alivisatos, P.; Cummings, P.; De Yoreo, J.; Fichthorn, K.; Gates, B.; Hwang, R.; Lowndes, D.; Majumdar, A.; Makowski, L.; Michalske, T.; Misewich, J.; Murray, C.; Sibener, S.; Teague, C.; Williams, E.

    2004-03-18

    This document is the report of a workshop held under NSET auspices in March 2004 aimed at identifying and articulating the relationship of nanoscale science and technology to the Nation's energy future.

  16. Sandia National Labs: PCNSC: Partnering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Integrated Nanotechnologies Designated Capabilities Sandia Partnerships Research Partnering Center for Integrated Nanotechnologies Designated Capabilities Sandia Partnerships Top of page

  17. Nanomaterial Laboratory Safety, Boise State University | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A nanomaterial, as defined by The ASTM Committee on Nanotechnology, is a particle ... Safety Implementation Plan, Ames Laboratory Approaches to Safe Nanotechnology

  18. Two new exhibits open at the Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels August 1, 2013 Two new exhibits recently opened at the Lab's Bradbury Science Museum on algae biofuels and nanotechnology Two new exhibits ...

  19. Emergence of ferroelectricity in antiferroelectric nanostructures...

    Office of Scientific and Technical Information (OSTI)

    GrantContract Number: SC0005245 Type: Publisher's Accepted Manuscript Journal Name: Nanotechnology (Print) Additional Journal Information: Journal Name: Nanotechnology (Print); ...

  20. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn More Navillum Nanotechnologies University of Utah Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When ...

  1. NuMat Technologies, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn More Navillum Nanotechnologies University of Utah Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When ...

  2. Mesdi Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Learn More Navillum Nanotechnologies University of Utah Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When ...

  3. Extremely durable biofouling-resistant metallic surfaces based...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE physical sciences; materials science; nanotechnology Word Cloud More Like This Free Publicly ...

  4. Fabrics coated with lubricated nanostructures display robust...

    Office of Scientific and Technical Information (OSTI)

    GrantContract Number: AR0000326 Type: Accepted Manuscript Journal Name: Nanotechnology (Print) Additional Journal Information: Journal Name: Nanotechnology (Print); Journal ...

  5. New Argonne centers connect business with energy storage, nanotechnolo...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Argonne centers connect business with energy storage, nanotechnology research By Greg ... Nanotechnology has already transformed the electronics industry and is bringing a new set ...

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Performed by Foundry Industrial Users Honored by Nanotechnology Journal User work on printable photonics was selected as a Highlight of the Year by Nanotechnology in the ...

  7. Near infrared surfaceplasmonpolariton with hyperbolic metamaterials...

    Office of Scientific and Technical Information (OSTI)

    Nanotechnology User Conference held September 19-20, 2012 in Albuquerque, NM.; Related Information: Proposed for presentation at the Center for Integrated Nanotechnology User ...

  8. High Current Rectification on Graphene-Boron Nitride Nanotube...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: Nature Nanotechnology; Related Information: Proposed for publication in Nature Nanotechnology. Research Org: Sandia ...

  9. Biographical sketch - Hao Yan | Center for Bio-Inspired Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Society Meeting, San Francisco, CA, 2010. Co-Organizer, DNA Nanotechnology Workshop, Beijing, China, 2009. Co-Organizer, International Workshop on DNA-based nanotechnology: ...

  10. Energy Citations Database (ECD) - Former Highlights

    Office of Scientific and Technical Information (OSTI)

    Archived Features Nanotechnology nanoclusterhand Photo Courtesy of LANL Nanotechnology has a vitally important role to play in addressing the nation's energy, climate change and...

  11. DOE Announces Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce the selection of the National Laboratory Center for Solid-State Lighting...

  12. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    SciTech Connect (OSTI)

    Allain, Jean Paul

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  13. CX-010707: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials, biological and ecological systems, energy science, manufacturing, nanotechnology, national security, neutron sciences, chemical sciences, and nuclear physics ...

  14. Center for Nanoscale Materials Fact Sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. Academic, industrial, and international researchers can access the center...

  15. Bandgap Engineering of InP QDs Through Shell Thickness and Composition...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; COATINGS; INDIUM PHOSPHIDES; ...

  16. OSTI, US Dept of Energy Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    ... scientific challenges in the fields of engineering, physics, chemistry, genomics, biochemistry, biofuels, nanotechnology, biotechnology, medical diagnostics, and homeland security. ...

  17. Enhancement of thermoelectric performance in InAs nanotubes by...

    Office of Scientific and Technical Information (OSTI)

    International Atomic Energy Agency (IAEA) Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; GREEN FUNCTION; INDIUM ...

  18. Process-Dependent Properties in Colloidally Synthesized "Giant...

    Office of Scientific and Technical Information (OSTI)

    by protracted successive ionic layer adsorption and reaction (SILAR) leads to ... 77 NANOSCIENCE AND NANOTECHNOLOGY; ADSORPTION; DECAY; EXCITONS; FLUORESCENCE; ...

  19. Nanomechanical switch for integration with CMOS logic. (Journal...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 42 ENGINEERING; 77 NANOSCIENCE AND NANOTECHNOLOGY; FABRICATION; PERFORMANCE; SWITCHES; TESTING; NANOSTRUCTURES; ...

  20. Probing electronic transport of individual nanostructures with...

    Office of Scientific and Technical Information (OSTI)

    nanostructures, including silicide atomic wires, carbon nanotubes, and copper nanowires. ... Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; ACCURACY; CARBON; CONTAMINATION; COPPER; ...

  1. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    Communications Nanoone billionth Nanotechnologythe manipulation of matter on an ... Check out Nanoscience and Nanotechnology: From Energy Applications to Advanced Medical ...

  2. Bandgap Engineering of InP QDs Through Shell Thickness and Composition...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; COATINGS; INDIUM PHOSPHIDES; MICROSCOPY; OXIDATION; ...

  3. "Giant" nanocrystal quantum dots for light-emission applications...

    Office of Scientific and Technical Information (OSTI)

    Subject: Energy Sciences; Material Science; Applied Life Science(60); Energy Conservation, Consumption, & Utilization(32); Materials Science(36); Nanoscience & Nanotechnology(77) ...

  4. Synthesis of Non-blinking Semiconductor Quantum Dots Emitting...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ALIGNMENT; CADMIUM; EMISSION SPECTRA; FLUORESCENCE; ...

  5. Chemical synthesis, characterizations and magnetic properties...

    Office of Scientific and Technical Information (OSTI)

    PHYSICAL AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; ALLOYS; BCC LATTICES; COERCIVE FORCE; CRYSTALS; LATTICE PARAMETERS; MAGNETIC...

  6. Two dimensional electron transport in modulation-doped In{sub...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; ALUMINIUM ARSENIDES; ANTIMONIDES; COMPARATIVE EVALUATIONS; DOPED MATERIALS;...

  7. Controlled synthesis and gas sensing properties of In{sub 2}O...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: Materials Research Bulletin; ... ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... structure (1) nanoscience and nanotechnology solar (photovoltaic), solar (thermal), phonons, thermal conductivity, thermoelectric, electrodes - solar, defects, charge transport, ...

  9. Ultra-rapid sample preconcentration under slant E-field using...

    Office of Scientific and Technical Information (OSTI)

    United States Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; MEMBRANES; PORE STRUCTURE; NANOSTRUCTURES; ...

  10. Analytical Modeling and Simulation of Thermoelectric Devices...

    Broader source: Energy.gov (indexed) [DOE]

    and Technologies Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems Automotive Thermoelectric Generators and HVAC

  11. Sunnyside Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Technologies, Inc Place: Minneapolis, Minnesota Zip: 55413 Sector: Carbon, Hydro, Hydrogen Product: Technology firm developing advanced materials and nanotechnologies including...

  12. Plasmonic Figures of Merit in a Doped Graphene Sheet | MIT-Harvard...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in peer-reviewed international journals including Science, Nature Materials, Nature Nanotechnology, Nature Photonics, Nature Communications, and Physical Review Letters

  13. Introduction to Microelectromechanical Systems (MEMS) failure...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; COMMERCIALIZATION; ELECTROMECHANICS; NANOSTRUCTURES; ...

  14. Engineering Multimetallic FePt-based nanowires for enhancing...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: Inorganic, Organic, Physical, & Analytical Chemistry(37); Materials Science(36); Nanoscience & Nanotechnology(77) ...

  15. Graphene-Au Nanoparticles Composite-Based Electrochemical Aptamer...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: Inorganic, Organic, Physical, & Analytical Chemistry(37); Nanoscience & Nanotechnology(77) Analytical Chemistry; ...

  16. Scanning Photocurrent Microscopy of Si and Ge nanowires (Conference...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; CATALYSTS; DIFFUSION LENGTH; MICROSCOPY; PHOTOCURRENTS; ...

  17. Nanoparticle modifications of photodefined nanostructures for...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; CARBON; ELECTRODES; FABRICATION; MODIFICATIONS; NANOSTRUCTURES; POLYMERS Word ...

  18. Ni-Mn-Ga shape memory nanoactuation (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; BENDING; COMPARATIVE EVALUATIONS; CRYSTALS; ELECTRIC CONDUCTIVITY; ...

  19. Giant Magneto-Resistance in Epitaxial (La0.7Sr0.3MnO3)0.5: (ZnO...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; CAI suggestions; ZINC OXIDES; MAGNETORESISTANCE; EPITAXY; NANOCOMPOSITES; ...

  20. Defect-reduction mechanism for improving radiative efficiency...

    Office of Scientific and Technical Information (OSTI)

    Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CAPACITANCE; ...

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Idaho National Laboratory Specific Manufacturing Plant Idaho National Laboratory, Idaho ... (1) nanoparticles (1) nanoscience and nanotechnology (1) nanostructures (1) photoelectron ...

  2. Arrowhead Research Corporation | Open Energy Information

    Open Energy Info (EERE)

    Research Corporation Place: Pasadena, California Zip: 91106 Product: Diversified nanotechnology company focusing on electronics, life sciences, and energy products. References:...

  3. Layout 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications Chad Mirkin Northwestern University Director of Institute for Nanotechnology Distinguished Professor of Chemistry Technical Talk Tuesday, September 20, 2005...

  4. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum July 22, 2013 LOS ALAMOS, N.M., July 22, 2013-Los Alamos National Laboratory's Bradbury Science Museum is opening two new exhibits July 26 as part of the Laboratory's 70th Anniversary celebration. One is a nanotechnology exhibit featuring the Laboratory's Center for Integrated Nanotechnologies (CINT) and the other is an algae biofuel exhibit from the Laboratory and the New Mexico Consortium. An opening

  5. Negotiable Technology Licensing | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Navillum Nanotechnologies National Clean Energy Business Plan Competition Navillum Nanotechnologies University of Utah Navillum Nanotechnologies' innovative method for fabricating quantum dots and other types of semiconducting nanocrystals at commercial scale that can both save energy and produce renewable energy. Quantum dots emit light at specific colors when stimulated by light or applied electrical source. Semiconducting nanocrystals can make solar panels up to 45 percent more efficient,

  6. NSS-8 Workshop Summary International Workshop on Nanoscale Spectroscopy and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology | Argonne National Laboratory NSS-8 Workshop Summary International Workshop on Nanoscale Spectroscopy and Nanotechnology August 1, 2014 Tweet EmailPrint Organized by Center for Nanoscale Materials and Advanced Photon Source The International Workshop on Nanoscale Spectroscopy and Nanotechnology 8 (NSS-8), organized by the Center for Nanoscale Materials (CNM) and Advanced Photon Source (APS), was held under sunny, summer skies from July 28-31, 2014, in the world-class Gleacher

  7. EERE Success Story-Argonne Creates Collaborative Centers to Connect

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business with Energy Storage, Nanotechnology Research | Department of Energy Argonne Creates Collaborative Centers to Connect Business with Energy Storage, Nanotechnology Research EERE Success Story-Argonne Creates Collaborative Centers to Connect Business with Energy Storage, Nanotechnology Research November 19, 2015 - 11:53am Addthis Argonne’s Tijana Rajh explains recently synthesized metal oxide nanoparticle samples with controlled amounts of structural defects to NDW Director

  8. IDIQ BS Ex A (Rev. 3.1, 4/9/13) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 31 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) ......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ....... 3 GC-3 INDEPENDENT CONTRACTOR (Jun 2009) ............................................................................ 4 GC-4 SUBCONTRACT INTERPRETATION (Jun

  9. IDIQ BS Ex A (Rev. 3.2, 6/14/13) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 19 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) ......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ....... 3 GC-3 INDEPENDENT CONTRACTOR (Jun 2009) ............................................................................ 4 GC-4 SUBCONTRACT INTERPRETATION (Jun

  10. IDIQ BS Ex A (Rev. 3.4, 12/15/14) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 12/15/14) Exhibit A General Conditions Page 1 of 20 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) ......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ....... 3 GC-3 INDEPENDENT CONTRACTOR (Jun 2009) ............................................................................ 4 GC-4 SUBCONTRACT INTERPRETATION (Jun

  11. IDIQ BS Ex A (Rev. 3.5, 3/6/15) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 3/6/15) Exhibit A General Conditions Page 1 of 20 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) ......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ....... 3 GC-3 INDEPENDENT CONTRACTOR (Jun 2009) ............................................................................ 4 GC-4 SUBCONTRACT INTERPRETATION (Jun

  12. IDIQ BS Exhibit A General Conditions (Rev. 3.3, 9-27-13)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 9/27/13) Exhibit A General Conditions Page 1 of 19 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) ......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........ 3 GC-3 INDEPENDENT CONTRACTOR (Jun 2009) ............................................................................ 4 GC-4 SUBCONTRACT INTERPRETATION (Jun

  13. Genetics in the courts

    SciTech Connect (OSTI)

    Coyle, Heather; Drell, Dan

    2000-12-01

    Various: (1)TriState 2000 Genetics in the Courts (2) Growing impact of the new genetics on the courts (3)Human testing (4) Legal analysis - in re G.C. (5) Legal analysis - GM ''peanots'', and (6) Legal analysis for State vs Miller

  14. CI-ON Ex A (Rev. 0.1, 4/9/13) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 24 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-A1 COMMERCIAL ITEMS (Mar 2012)............................................................................................ 2 GC-1B DEFINITIONS (Mar 2012) ......................................................................................................... 4 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 4 GC-5 NOTICE TO

  15. CI-ON Ex A (Rev. 0.2, 6/14/13) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 12 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-A1 COMMERCIAL ITEMS (Mar 2012)............................................................................................ 2 GC-1B DEFINITIONS (Mar 2012) ......................................................................................................... 4 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 4 GC-5 NOTICE TO

  16. CI-ON Ex A (Rev. 0.4, 8/20/14) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 8/20/14) Exhibit A General Conditions Page 1 of 13 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-A1 COMMERCIAL ITEMS (Aug 2014) ........................................................................................... 2 GC-1B DEFINITIONS (Mar 2012) ......................................................................................................... 4 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 4 GC-5 NOTICE TO

  17. CI-ON Ex A (Rev. 0.5, 3/6/15) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 3/6/15) Exhibit A General Conditions Page 1 of 14 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-A1 COMMERCIAL ITEMS (Aug 2014) ........................................................................................... 2 GC-1B DEFINITIONS (Mar 2012) ......................................................................................................... 4 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 4 GC-5 NOTICE TO

  18. CI-ON Ex A (Rev. 0.7, 11/9/15) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 11/9/15) Exhibit A General Conditions Page 1 of 14 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-A1 COMMERCIAL ITEMS (May 2015) ....................................................................................... 2 GC-1B DEFINITIONS (Mar 2012) ..................................................................................................... 4 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ...................... 4 GC-5 NOTICE TO PROCEED (Jul

  19. CI-ON Exhibit A General Conditions (Rev 0.3, 9-27-13)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 9/27/13) Exhibit A General Conditions Page 1 of 12 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-A1 COMMERCIAL ITEMS (Mar 2012) ........................................................................................... 2 GC-1B DEFINITIONS (Mar 2012) ......................................................................................................... 4 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 4 GC-5 NOTICE TO

  20. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scale structures is of increasing interest in many applications ranging from biotechnology to nanotechnology. Lithography and the processes associated with it are the...

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (1) nanoscience and nanotechnology (1) nonlinear problems (1) parallel algorithms. (1) ... iterative methods for solving linear systems of equations and least squares systems. ...

  2. FY 2008 Progress Report for Lightweighting Materials - Cover...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Research and Development (AMD604)...... 6-13 D. Nanotechnology-Based Self-Healing Coating System to Enable Use of Magnesium Alloys in Automotives ...

  3. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Report Chen L Q Tang M Heo T W Wood B C MATERIALS SCIENCE NANOSCIENCE AND NANOTECHNOLOGY ENERGY STORAGE Abstract not provided Lawrence Livermore National Laboratory LLNL Livermore...

  4. Mesoscale Modeling Framework Design: Subcontract Report Chen...

    Office of Scientific and Technical Information (OSTI)

    Tang, M; Heo, T W; Wood, B C 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 25 ENERGY STORAGE Abstract not provided Lawrence Livermore National Laboratory (LLNL),...

  5. ZAP Advanced Battery Technologies JV | Open Energy Information

    Open Energy Info (EERE)

    battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology....

  6. Ener1 Inc | Open Energy Information

    Open Energy Info (EERE)

    and market technologies and products that enable renewable energy to become a viable alternative to fossil fuels, including lithium batteries, fuel cells and nanotechnologies...

  7. EA-1457: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Center for Integrated Nanotechnologies at Sandia National Laboratories/New Mexico, Sandia Site Office, Kirtland Air Force Base, Albuquerque, New Mexico

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Everything4 Electronic Full Text1 Citations3 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject nanoscale materials (1) nanoscience and nanotechnology electronic ...

  9. Nanogram Corporation | Open Energy Information

    Open Energy Info (EERE)

    Bay Area Sector: Solar Product: Develops nanotechnology solutions for solar and battery applications Website: www.nanogram.com Coordinates: 37.428293, -121.900152 Show...

  10. Evident Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Troy, New York Zip: 12180 Product: Focused on nanotechnology manufacturing and application in the field of biotechnology, computing, telecommunications, and...

  11. National Renewable Energy Laboratory (NREL) 2007 Research Review

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    This 24-page document focuses on NREL's technology transfer activities for solar cells, hydrogen production, biofuels, nanotechnology, lithium batteries, grid integration, and building technologies.

  12. UltraDots Inc formely UltraPhotonics | Open Energy Information

    Open Energy Info (EERE)

    ) Place: Fremont, California Zip: CA 94539 Product: Nanotechnology company developing "quantum dot" technology for a range of energy, communications and medical applications....

  13. 4312 | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information 2 Travel through DOE databases; find emerging nanotechnology devices Public Image File(s): 5218967216_e0c14065c7_b

  14. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum ... how nanoparticles work, while "Algae to Biofuels: Squeezing Power from Pond Scum," gives ...

  15. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Neutron Compton Scattering as a Probe of Hydrogen Bonded and other Systems Reiter George CONDENSED MATTER PHYSICS SUPERCONDUCTIVITY AND SUPERFLUIDITY NANOSCIENCE AND NANOTECHNOLOGY...

  16. Plasma ion sources and ion beam technology inmicrofabrications...

    Office of Scientific and Technical Information (OSTI)

    In the meanwhile, nanotechnology has also deeply involved in material science research and ... microscope (SEM) system has been developed for direct doping or surface modification. ...

  17. Evidence and implications of direct charge excitation as the...

    Office of Scientific and Technical Information (OSTI)

    GrantContract Number: FG02-05ER15686 Type: Accepted Manuscript Journal Name: ... AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY chemical sciences; catalysis; ...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Search Authors Type: All BookMonograph ConferenceEvent Journal Article ... (1) materials science(36) (1) nanoscience & nanotechnology(77) (1) nanoscience and ...

  19. Evidence and implications of direct charge excitation as the...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 7; Journal ID: ISSN 2041-1723 ... AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY chemical sciences; catalysis; ...

  20. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics, National Academy of Science of Ukraine, Kiev, Ukraine 8 Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE,...

  1. Press Pass - Press Release - LHC First Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for other sciences such as medicine, climate studies, bioinformatics, nanotechnology, geography and education. A question and answer period with the CERN Director General, Robert...

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (6) nanoscience and nanotechnology (4) direct energy conversion (3) hydrogen (3) solar energy (3) absorptivity (1) accuracy (1) energy planning, policy and economy (1) ...

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    and analytical chemistry (3) magnetic fields (3) nanoscience and nanotechnology (3) solar energy (3) x-ray diffraction (3) anodization (2) barium oxides (2) coatings (2) condensed ...

  4. Textured metastable VO{sub 2} (B) thin films on SrTiO{sub 3}...

    Office of Scientific and Technical Information (OSTI)

    Los Alamos, New Mexico 87545 (United States) Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) ...

  5. Biomolecular interactions and responses of human epithelial and...

    Office of Scientific and Technical Information (OSTI)

    of inhaled nanoparticles to cross the blood-brain barrier; Kwon et al., 2008, J. Occup. ... AND NANOTECHNOLOGY; ASPECT RATIO; BLOOD-BRAIN BARRIER; CELL MEMBRANES; CHEMISTRY; ...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... energy storage (5) nanoscience and nanotechnology (4) direct energy conversion (3) hydrogen (3) solar energy (3) absorptivity (1) accuracy (1) energy planning, policy and ...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (4) adsorption (3) anions (3) aqueous solutions (3) defects (3) evaporation (3) hydrogen (3) ions (3) kinetics (3) lithium (3) nanoscience and nanotechnology (3) Filter by ...

  8. Evaluation Project 4492

    National Nuclear Security Administration (NNSA)

    ... Tool in the Center for Integrated Nanotechnologies (CINT). Installation and hydrogen-gas operation of the Atomic-Precision Fabrication Tool, to be located in the CINT ...

  9. Graphene Energy | Open Energy Information

    Open Energy Info (EERE)

    Texas Sector: Carbon Product: Graphene develops nano-technology based ultracapacitors for energy storage using a unique form of carbon, called graphene, for electrode material....

  10. A Nanocrystal Sensor for Luminescence Detection of Cellular Forces...

    Office of Scientific and Technical Information (OSTI)

    States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; 47 OTHER INSTRUMENTATION tetrapod stress gauge, luminescent nanocrystals, cellular forces Word Cloud More...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (2) density functional method (2) inorganic, organic, physical and analytical chemistry (2) magnetization (2) molecules (2) nanoscience and nanotechnology (2) resistivity ...

  12. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Design Works Share Speakers Andreas Roelofs Topic Programs Materials science Nanoscience Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides ...

  13. Semiconductor-nanocrystal/conjugated polymer thin films (Patent...

    Office of Scientific and Technical Information (OSTI)

    CA (United States) Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY...

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (12) nanoscience and nanotechnology (8) copper (6) scanning tunneling microscopy (6) ... and preferred molecular orientation of copper phthalocyanine (CuPc) molecules on ...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (12) nanoscience and nanotechnology (8) copper (6) scanning tunneling microscopy (6) ... are fabricated on silicide atomic wires, carbon nanotubes, and copper nanowires. ...

  16. Recovery Act Provides $9.6 Million for Transformational Energy...

    Office of Environmental Management (EM)

    Here's a closer look at each of the projects and their potential impact: Dais Analytic Corporation (Odessa, FL) - Nanotechnology Membrane-Based Dehumidifier In warm and humid ...

  17. Stiff and Electrically Conductive Composites of Carbon Nanotube...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 37 INORGANIC, ORGANIC, PHYSICAL AND ...

  18. Locality and rapidity of the ultra-large elastic deformation...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY composites; metals and alloys; nanowires; structural properties Word Cloud More ...

  19. Fabrication of flexible, aligned carbon nanotube/polymer composite...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 37 INORGANIC, ORGANIC, PHYSICAL AND ...

  20. Methods of synthesizing thermoelectric materials (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Cambridge, MA (United States) Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

  1. Transparency and damage tolerance of patternable omniphobic lubricated...

    Office of Scientific and Technical Information (OSTI)

    ... Language: English Subject: 36 MATERIALS SCIENCE physical sciences; materials science; nanotechnology Word Cloud More Like This Free Publicly Accessible Full Text Accepted ...

  2. Phase-field Model for Stress-dependent Ginsburg-Landau Kinetics...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 42 ENGINEERING; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 25 ENERGY STORAGE Word Cloud More Like This Full Text preview image File size N...

  3. FY2011 Annual Report on DTRA Basic Research Project #BRCALL08...

    Office of Scientific and Technical Information (OSTI)

    Subject: 74 ATOMIC AND MOLECULAR PHYSICS; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 70 PLASMA PHYSICS AND FUSION Word Cloud More Like This Full Text preview image ...

  4. Disproportionation of Ag+ by pressure-and heat-induced Xe insertion...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; 75 CONDENSED MATTER PHYSICS

  5. Stress/Strain Response of Irradiated Metallic Materials via Spherical...

    Office of Scientific and Technical Information (OSTI)

    Alamos National Laboratory (LANL) Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: Materials Science(36); Nanoscience & Nanotechnology(77)

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (1) magnetism (1) magnetization (1) materials science (1) nanoscience and nanotechnology (1) nanostructures (1) oleic acid (1) particle size (1) particles (1) reducing...

  7. Direct evaluation of ballistic phonon transport in a multi-walled...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; CARBON NANOTUBES; ION BEAMS; IRRADIATION; PHONONS Word Cloud More Like This Full...

  8. EGS Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth....

  9. Geothermal Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth....

  10. Scientists Pass Solid Particles Through Rock in DOE-Sponsored...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth....

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    adsorption on graphene (1) metal nanoclusters (1) metal-graphene interaction (1) nanoscience and nanotechnology graphene (1) thermal stability (1) Filter by Author Appy, David...

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    physical and analytical chemistry (7) lithium ions (6) electric batteries (5) nanoscience and nanotechnology (5) performance (5) stability (5) electrolytes (4) electron...

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (1) excitation (1) fabrication (1) fluorescence (1) hydrogen (1) nanoparticles (1) nanoscience and nanotechnology (1) nitrogen (1) phonons (1) photons (1) Filter by Author...

  14. Scalable Methods for Electronic Excitations and Optical Responses...

    Office of Scientific and Technical Information (OSTI)

    of new methods and computer codes that would allow realistic modeling of nanosystems. ... AND NANOTECHNOLOGY; ALGORITHMS; ATOMS; COMPUTER CODES; DIMENSIONS; ELECTRONS; EXCITED ...

  15. Removing Arsenic from Drinking Water

    SciTech Connect (OSTI)

    2011-01-01

    See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter Results Filter by Subject condensed matter physics, superconductivity and superfluidity (2) electron gas (1) heterojunctions (1) nanoscience and nanotechnology quantum wells ...

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    miscellaneousmathematics, computing, and information science (2) nanoscience and nanotechnology (2) quantum computers (2) quantum dots (2) f noise (1) atomic and molecular ...

  18. OSHA's Final Rule on Occupational Exposure to Respirable Crystalline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MB) More Documents & Publications Construction Safety Advisory Committee, Meeting Minutes - May 11, 2000 Federal Register Notice, CBDPP Final Rule Approaches to Safe Nanotechnology

  19. 4312 | OSTI, US Dept of Energy Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    2 Travel through DOE databases; find emerging nanotechnology devices Public Image File(s): 5218967216e0c14065c7b

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter Results Filter by Subject materials science (9) electrons (8) silicon (7) nanoscience and nanotechnology (6) physics of elementary particles and fields (6) quantum wires (6) ...

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter Results Filter by Subject materials science (8) electrons (7) silicon (7) nanoscience and nanotechnology (6) physics of elementary particles and fields (6) quantum wires (6) ...

  2. Condensed Matter and Magnet Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nondestructive pulsed magnets up to 100 tesla Thermoacoustics and fluid dynamics ... Nanotechnologies play 2:54 World's first 100 Tesla non-destructive magnetic field NSF BES

  3. Berkeley Lab Technology Spawns Successful Start-up Companies...

    Office of Environmental Management (EM)

    a building's energy consumption by 25 percent by saving on heating and cooling costs. ... Alphabet plans to use the new thermoelectric material, created through nanotechnology, for ...

  4. 2nd Thermoelectrics Applications Workshop 2011 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Micro- and Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation and Cooling Systems Terry Hendricks PNNL, Corvallis, OR Proactive Design of n-Type ...

  5. Removing Arsenic from Drinking Water

    ScienceCinema (OSTI)

    None

    2013-05-28

    See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

  6. Sandia signs MOU with New Mexico Museum of Natural History and...

    National Nuclear Security Administration (NNSA)

    and speakers that will help extend the education of the community in the fields of space and space exploration, energy and alternative energy, water, and micro- and nanotechnology. ...

  7. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these...

  8. Sunnyvale, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sierra Solar Power Inc Silicon Valley Biodiesel Inc Solexant Corp Summit Microelectronics Inc Svaya Nanotechnologies Symyx Technologies References US Census Bureau...

  9. Biomass to Liquid Fuels and Electrical Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Pd Nanoparticles," Nanotechnology, 23, 29404. 34 Presentations * Adhikari, S., C. Brodbeck, S. Taylor. 2012. Biomass gasification for heat and power applications. ...

  10. GEMZ Corp | Open Energy Information

    Open Energy Info (EERE)

    Name: GEMZ Corp Place: Spring Valley, New York Zip: 10977 Sector: Carbon, Hydro, Hydrogen Product: Holding company for International Nanotechnology Corp, which is developing...

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the nation's investment in nanotechnology through the NNI. The first, found on page 10, describes the work of Molecular Foundry scientists who developed electrochromic...

  12. Nano, photonic research gets boost from new 3-D visualization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nanotechnology, particularly nanofilms, photonics and micro- and nano-electronics. ... Total External Reflection", published online this month in the journal Nature Photonics. ...

  13. Hybrid metasurface for ultra-broadband terahertz modulation ...

    Office of Scientific and Technical Information (OSTI)

    for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA School of Electrical and Electronic Engineering, The University of...

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (1) electrodes (1) fabrication (1) materials science (1) nanocomposites (1) nanoparticles (1) nanoscience and nanotechnology (1) nanostructures (1) nickel hydroxides (1) ...

  15. Argonne Creates Collaborative Centers to Connect Business with...

    Broader source: Energy.gov (indexed) [DOE]

    Also pictured are Argonne researchers Elena Rozhkova (left) and Elena Shevchenko. Energy storage and nanotechnology have the potential to transform the way we look at clean energy. ...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    and nanotechnology (6) physics of elementary particles ... Manipulating single electrons in semiconductor devices for ... Silicon nanoelectronics for solid-state quantum computing. ...

  17. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Utah Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When used in liquid crystal...

  18. Interviews and Videos

    Broader source: Energy.gov [DOE]

    Advances in nanotechnology research & development hold potential for characterization of fracture systems in enhanced geothermal systems. DOE-sponsored research at Stanford University under the...

  19. Engineering Multimetallic FePt-based nanowires for enhancing...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: Materials Science(36); Nanoscience & Nanotechnology(77) Energy Sciences; Inorganic and Physical Chemistry; Material ...

  20. Engineering MulticomponentNanocatalystsfor Oxygen Reduction ...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: Energy Storage(25); Materials Science(36); Nanoscience & Nanotechnology(77) Energy Sciences; Inorganic and Physical ...

  1. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    (SNL), Albuquerque, NM, and Livermore, CA (United States)) Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Everything12 Electronic Full Text8 Citations4 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject nanoscience and nanotechnology (2) basic biological sciences (1) ...

  3. Time-resolved carrier distributions in graphene (Conference)...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: DOE Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY Word Cloud More Like This Full Text File size NAView Full ...

  4. Manipulation of Electromagnetic Fields with Plasmonic Nanostructures...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: Materials Science(36); Nanoscience & Nanotechnology(77) Material Science Word Cloud More Like This Full Text File ...

  5. Examining Atomistic Defect/Boundary Interactions Induced by Light...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: Engineering(42); Materials Science(36); Nanoscience & Nanotechnology(77) Word Cloud More Like This Full Text File ...

  6. Giant Nanocrystal Quantum Dots as Stable and Efficient Down-Conversion...

    Office of Scientific and Technical Information (OSTI)

    Subject: Inorganic and Physical Chemistry; Material Science; Materials Science(36); Nanoscience & Nanotechnology(77) Word Cloud More Like This Full Text File size NAView Full Text ...

  7. Engineering Nanocrystals for Energy Conversion and Storage, and...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: Materials Science(36); Nanoscience & Nanotechnology(77) Analytical Chemistry; Material Science Word Cloud More Like ...

  8. Shell-Based Simulation of Filamentary Resistive Memory. (Journal...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC04-94AL85000 Resource Type: Journal Article Resource Relation: Journal Name: Nanotechnology Research Org: Sandia National Laboratories (SNL-NM), Albuquerque, ...

  9. Sub-wavelength antenna enhanced bilayer graphene tunable photodetector...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 36 MATERIALS SCIENCE; 47 OTHER INSTRUMENTATION; 77 NANOSCIENCE AND NANOTECHNOLOGY Word Cloud More Like This Full Text View Full Text View Full Text Have ...

  10. Research and Development of Non-Spectroscopic MEMS-Based Sensor...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 42 ENGINEERING; 77 NANOSCIENCE AND NANOTECHNOLOGY Word Cloud More Like This Full Text preview image File size N...

  11. Quantum-size-controlled photoelectrochemical etching of semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY Word Cloud More Like This Full Text View Full Text View ...

  12. Enhancement and Suppression of Photocurrent in Si Photodiodes...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: Materials Science(36); Nanoscience & Nanotechnology(77) Material Science Word Cloud More Like This Full Text File ...

  13. Transport in interacting 1D double quantum wires

    Office of Scientific and Technical Information (OSTI)

    Transport in interacting 1D double-- quantum wires Michael Lilly Center for Integrated Nanotechnologies Sandia National Laboratories Collaborators Dominique Laroche, Guillaume ...

  14. EERE Success Story-Argonne Creates Collaborative Centers to Connect...

    Energy Savers [EERE]

    Argonne Creates Collaborative Centers to Connect Business with Energy Storage, Nanotechnology ... The national laboratory system has a long history of breakthrough science that has ...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Filter Results Filter by Subject materials science (10) condensed matter physics, ... (6) nanoscience and nanotechnology (4) direct energy conversion (3) hydrogen (3) solar ...

  16. Nanoscience at Work: Creating Energy from Sunlight (LBNL Science...

    Office of Scientific and Technical Information (OSTI)

    Science Dept; Oakland High School Science Dept Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; ELECTRICITY; NANOSTRUCTURES;...

  17. Therapeutic potential of nanoceria in regenerative medicine ...

    Office of Scientific and Technical Information (OSTI)

    Advancement of tissue engineering requires innovation in the field of 3D scaffolding, and functionalization with bioactive molecules. Nanotechnology offers advanced materials with ...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... and chemistry by design (1) nanoscience and nanotechnology solar (photovoltaic) (1) optics (1) radiations (1) solar (fuels) (1) solid state lighting (1) synthesis (novel ...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... nitrides (1) ligases (1) lysine (1) mitosis (1) nanoscience and nanotechnology (1) ... The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in ...

  20. Examining Atomistic Defect/Boundary Interactions Induced by Light...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: Engineering(42); Materials Science(36); Nanoscience & Nanotechnology(77) Word Cloud More ...

  1. Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Advanced Materials Laboratory Center for Integrated Nanotechnologies Combustion Research Facility Computational Science Research Institute Joint BioEnergy Institute About EC News ...

  2. Richard E. Smalley, Buckminsterfullerene (the Buckyball), and...

    Office of Scientific and Technical Information (OSTI)

    (the Buckyball), and Nanotubes Resources with Additional Information Richard E. Smalley Courtesy Carbon Nanotechnology Laboratory at Rice University and Prof. Richard...

  3. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When used in liquid crystal displays (LCD), quantum dots ...

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Filter Results Filter by Subject condensed matter physics, superconductivity and superfluidity (2) electron gas (1) heterojunctions (1) nanoscience and nanotechnology quantum wells ...

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    nanoscience and nanotechnology (2) quantum computers (2) quantum dots (2) f noise (1) atomic and molecular physics amplifiers (1) capacitance (1) charge density (1) charge ...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Filter Results Filter by Subject materials science (9) electrons (8) silicon (7) nanoscience and nanotechnology (6) physics of elementary particles and fields (6) quantum wires (6) ...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    International Laboratory of Materials Science and Nanotechnology" Name Name ORCID Search ... States) Argonne National Laboratory-Advanced Photon Source, Argonne, IL (United ...

  8. Nanomaterials ES&H | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ... Additional information is available on the Industrial HygieneOccupational Safety Special Interest Group (IHOS) Special Interest Group (SIG) nanotechnology web pages External link ...

  9. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the leader of Softmatter Nanotechnology and Advanced Spectroscopy team in the Chemistry Division of LANL. Victor completed his undergraduate and graduate degrees in Russia...

  10. Siluria Technologies | Open Energy Information

    Open Energy Info (EERE)

    California-based stealth-mode company engaged in development of biological nanotechnology-enabled products for clean energy products such as solar cells and light emitting...

  11. Igor Kaganovich | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interests include: beam-plasma interaction, high energy density plasmas, nanotechnology, atomic physics, and physics of partially ionized plasmas. He is involved in...

  12. UNCLASSIFIED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Institute for Materials Prof. Gabriel Aeppli Head of the Synchrotron and Nanotechnology Department Paul Scherrer Institute, Switzerland Are all interesting oxides...

  13. Jared Sagoff | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    public information officer who covers physical science research, including physics, chemistry, materials science and nanotechnology. Contact him at (630) 252-5549 or media@anl.gov....

  14. QD Vision | Open Energy Information

    Open Energy Info (EERE)

    Name: QD Vision Place: Massachusetts Zip: MA 02472 Product: Massechusetts-based nanotechnology product company delivering display and lighting solutions to major industries....

  15. Energy harvester rolls to market production > Archived News Stories...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    single-charge batteries. A new concept becomes proven reality, as MicroGen's nanotechnology-based energy harvester - researched and developed by the company at the Cornell...

  16. Picosun | Open Energy Information

    Open Energy Info (EERE)

    We develop and manufacture Atomic Layer Deposition (ALD) reactors for micro- and nanotechnology applications. References: Picosun1 This article is a stub. You can help OpenEI...

  17. Enable IPC | Open Energy Information

    Open Energy Info (EERE)

    development with other companies. Its main focus is in advanced thin film and nanotechnology. Coordinates: 39.468791, -0.376913 Show Map Loading map......

  18. Bandgap Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc specializes in developing photovoltaic (PV) cells that combine silicon with nanotechnology to create high-efficiency cells at low cost 2. Bandgap Engineering Inc currently...

  19. Nanosys Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Nanosys Inc Place: Palo Alto, California Zip: CA 94304 Product: Nanotechnology company developing products based on a technology platform incorporating high...

  20. User Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a premier user facility providing world-class expertise, instrumentation and infrastructure for interdisciplinary nanoscience and nanotechnology research....

  1. Nanoscience and Technology | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NST Division Addressing grand challenges in nanoscience and nanotechnology More The Nanoscience and Technology (NST) Division at Argonne National Laboratory hosts a user facility,...

  2. NanoEner Technologies | Open Energy Information

    Open Energy Info (EERE)

    Fort Lauderdale, Florida Product: Develops and markets nanomaterials and related nanotechnology processes that have applications in primary and rechargeable batteries, super...

  3. Nanomaterials Discovery Corporation NDC | Open Energy Information

    Open Energy Info (EERE)

    (NDC) Place: Laramie, Wyoming Zip: WY 82072 Sector: Carbon Product: NDC's nanotechnology development efforts are focused on fuel cell technologies, rechargeable battery...

  4. Nano Nouvelle Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Product: Nano-Nouvelle uses advanced materials technology, including nanotechnology, to develop technology in key large markets. Its particular focus is on...

  5. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Division focus on research that addresses grand challenges in nanoscience and nanotechnology and advances the division's user mission. Further, we are exploring ways to tailor...

  6. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Under Hydrostatic Pressure Richard Schaller Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545,...

  7. Operating Experience Level 3, Safe Practices for Working with...

    Energy Savers [EERE]

    This Operating Experience Level 3 makes the Department of Energy (DOE) nanotechnology community aware of a new publication as it relates to DOE's nanoscale safety...

  8. Charles A Gentile | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Gentile Engineering and Scientific Staff, Plasma Physics Laboratory. Contact Information Phone: 609-243-2139 Email: cgentile@pppl.gov Learn More Nanotechnology Plasma physics...

  9. Nanergy Inc formerly ObjectSoft Corporation | Open Energy Information

    Open Energy Info (EERE)

    Sector: Carbon, Hydro, Hydrogen Product: A development-stage company working on nanotechnology products, particularly photovoltaic nanofilms and hydrogen storage using carbon...

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism to depositetch...

  11. Microsoft Word - Scavenger Hunt 2014-June[1].doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How many small cubes make up a Soma Cube? parachute: What did it carry? Nanotechnology: How many nanometers long is your hand? Identification Photos: These are a few...

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 6, 2015 Time: 2:15 pm Speaker: Lloyd Whitman, Assistant Director for Nanotechnology, White House Office of Science and Technology Policy (OSTP) Title: Twenty Five Hundred...

  13. Nanoscience | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    entirely new characteristics, such as changes in conductivity or reactivity. Nanotechnology can make materials stronger, faster, slipperier, or more durable. Discoveries in...

  14. Nanotecture Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: Southampton, United Kingdom Zip: SO16 7NS Product: A fast growing nanotechnology materials company spun out of the University of Southampton Coordinates:...

  15. Career Opportunities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's Center for Nanoscale Materials advances the basic science behind nanotechnology and spurs the development of products based on nanomaterials. Employment...

  16. Nanoparticle toxicity testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    submit Nanoparticle toxicity testing Assessing the potential health hazards of nanotechnology March 25, 2013 Robot In the search for more accurate and efficient techniques to...

  17. Chief Scientist, Los Alamos National Laboratory - Center for Integrated

    National Nuclear Security Administration (NNSA)

    Nanotechnologies | National Nuclear Security Administration | (NNSA) Chief Scientist, Los Alamos National Laboratory - Center for Integrated Nanotechnologies Samuel "Tom" Picraux Samuel Picraux November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow

  18. News Media | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    National Nanotechnology Initiative (NNI) Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Nanomaterials ES&H Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC)

  19. Xuedan Ma | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xuedan Ma Assistant Scientist Education Ph.D. University of Hamburg Postdoc experience Center for Integrated Nanotechnologies, Sandia National Laboratories, 2015-2016 Center for Integrated Nanotechnologies, Los Alamos National Laboratories, 2012-2015 Research Summary Quantum optics of semiconductor nanomaterials Temperature dependent single molecule/particle optical spectroscopy and imaging Plasmonic and dielectric metamaterials; nanophotonics and nano-optics Biological imaging and sensing;

  20. Chien-Yuan (Kevin) Lin | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnologies | National Nuclear Security Administration | (NNSA) Chief Scientist, Los Alamos National Laboratory - Center for Integrated Nanotechnologies Samuel "Tom" Picraux Samuel Picraux November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow

  1. Nanophotonics at Sandia National Laboratories.

    SciTech Connect (OSTI)

    McCormick, Frederick Bossert

    2008-10-01

    Sandia National Laboratories is leveraging the extensive CMOS, MEMS, compound semiconductor, and nanotechnology fabrication and test resources at Sandia National Laboratories to explore new science and technology in photonic crystals, plasmonics, metamaterials, and silicon photonics.

  2. CX-004226: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Center for Integrated Nanotechnologies Installation and Operation of X-Ray Diffractometer InstrumentCX(s) Applied: Date: 04/06/2010Location(s): New MexicoOffice(s): Sandia Site Office

  3. Solar Energy Technologies Program Office of Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... (Direct Current Surface Barrier Discharge) developed by a group at the R&D Center for Low-Cost Plasma and Nanotechnology Surface Modifications (CEPLANT) in the Czech Republic. ...

  4. Responses for Public Release

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Based on the ongoing discussions with NSF, we expect the Center to be awarded. The proposed projects for this brand new Center include: 1. Nanotechnology for Novel HVT Materials ...

  5. CX-006875: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Center for Integrated Nanotechnologies Integration Laboratories: PH3 OperationsCX(s) Applied: B3.6Date: 08/16/2011Location(s): Albuquerque, New MexicoOffice(s): NNSA-Headquarters

  6. Vehicle Technologies Office Merit Review 2015: Low Cost, High Capacity Non-Intercalation Chemistry Automotive Cells

    Broader source: Energy.gov [DOE]

    Presentation given by Sila Nanotechnologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low cost, high capacity...

  7. Lloyd Whitman | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lloyd Whitman About Us Lloyd Whitman - Assistant Director for Nanotechnology and Advanced Materials at the White House Office of Science and Technology Policy Most Recent Accelerating Materials Development for a Clean Energy Future February 24

  8. 10 CFR Ch. III (1-1-11 Edition) Pt. 851, App. B

    Broader source: Energy.gov (indexed) [DOE]

    2 10 CFR Ch. III (1-1-11 Edition) Pt. 851, App. B must meet the applicable electrical safety codes and standards referenced in 851.23. 11. NANOTECHNOLOGY SAFETY-RESERVED The ...

  9. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    None

    2010-01-08

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Filter Results Filter by Subject nanoscience and nanotechnology self-assembly (1) p3ht (1) photovoltaic (1) solar cells (1) solar energy nanoscale materials (1) Filter by Author ...

  11. CX-002666: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Plasma Based Nanotechnology Research and Development LaboratoryCX(s) Applied: B3.6Date: 06/03/2010Location(s): New JerseyOffice(s): Princeton Site Office, Science

  12. EFRC News & Events

    Office of Science (SC) Website

    nanotechnology, EFRC researchers fashion a new kind of transparent electrode for flat-panel displays. This work, featured in the Office of Sciences

  13. SolRayo LLC | Open Energy Information

    Open Energy Info (EERE)

    high-tech start-up company that focuses on new nanotechnology-based materials for energy storage applications. References: SolRayo LLC1 This article is a stub. You can...

  14. #LabChat: The Science of the Very Small | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LabChat: The Science of the Very Small LabChat: The Science of the Very Small April 15, 2014 - 5:30pm Q&A Have questions about the exciting field of nanotechnology? Submit your...

  15. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be ... available nanoparticles over multiple length scales, ranging from the nano to the macro. ...

  16. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Works Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides ... looking to make a big impact with tiny materials. PDF icon ArgonneNanoDesignWorks

  17. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    Sandia

    2009-09-01

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  18. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly A New Route to Nano Self-Assembly Print Wednesday, 24 February 2010 00:00 If the promise of nanotechnology is to be fulfilled, nanoparticles will ...

  19. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Burger, N.l J. Ghimire, J. Yan, D. G. Mandrus, S. J. Pennycook, S. T. Pantelides Nature Nanotechnology DOI: 10.1038nnano.201481 September 2014 PDF In-situ Fabrication of...

  20. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Research and Development of Non Spectroscopic MEMS Based Sensor Arrays for Targeted Gas Detection Loui A McCall S K Zumstein J M ENGINEERING NANOSCIENCE AND NANOTECHNOLOGY Abstract...

  1. Template Directed Formation of Nanoparticle Decorated Multi-Walled...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article Resource Relation: Journal Name: Nanotechnology, vol. 22, no. 43, October 3, 2011, pp. 435603-1 to -6 Research ...

  2. CX-004223: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Center for Integrated Nanotechnologies Gateway - Installation and Operation of Computer Workstation Cluster, Los Alamos National LaboratoryCX(s) Applied: B1.3Date: 05/19/2010Location(s): New MexicoOffice(s): Sandia Site Office

  3. Microsoft PowerPoint - Keynote presentation - Whitman.pptx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... President Obama at Boise State, January 21, 2015 news.boisestate.edu So, where is the NNI today? Major R&D Thrusts in Nanotechnology Post-CMOS Electronics Photonics Energy ...

  4. Scientists Pass Solid Particles Through Rock in DOE-Sponsored Research at Stanford University

    Broader source: Energy.gov [DOE]

    DOE-sponsored research at Stanford University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth.

  5. A phase transition glides into view (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: DE-AC05-00OR22725 Resource Type: Journal Article Resource Relation: Journal Name: Nature Nanotechnology; Journal Volume: 9; Journal Issue: 5 Research Org: Oak ...

  6. Challenges in Bio-Inspired Membranes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J. Xu, D. A. Lavan, Nature Nanotechnology 2008, 3, 666. PNNL's Na ion battery Jun Liu's ... K. Schmidt-Rohr, Q. Chen, Nature Materials 2008, 7, 75. The cross contamination causes ...

  7. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward...

  8. Estimated Energy Savings and Financial Impacts of Nanomaterials by Design on Selected Applications in the Chemical Industry

    SciTech Connect (OSTI)

    Thayer, Gary R.; Roach, J. Fred; Dauelsberg, Lori

    2006-03-01

    This study provides a preliminary analysis of the potential impact that nanotechnology could have on energy efficiency, economic competitiveness, waste reduction, and productivity, in the chemical and related industries.

  9. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important...

  10. Catelectric Corp | Open Energy Information

    Open Energy Info (EERE)

    the type and number of catalytic sites in a fuel cell or other system, through nanotechnology. References: Catelectric Corp1 This article is a stub. You can help OpenEI by...

  11. Iran Thomas Auditorium, 8600

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interface properties of oxide heterostructures Guus Rijnders MESA+ Institute for Nanotechnology University of Twente, Enschede, the Netherlands CNMS D D I I S S C C O O V V E E R...

  12. Advanced Polymer Processing Facility

    SciTech Connect (OSTI)

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  13. Final Report

    SciTech Connect (OSTI)

    Marchant, Gary E.

    2013-04-23

    This is the final report of a two year project entitled "Governing Nanotechnology Risks and Benefits in the Transition to Regulation: Innovative Public and Private Approaches." This project examined the role of new governance or "soft law" mechanisms such as codes of conduct, voluntary programs and partnership agreements to manage the risks of emerging technologies such as nanotechnology. A series of published or in publication papers and book chapters are attached.

  14. CAMD Nanofabrication Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research :: Publications :: Infrastructure :: Links :: Nanofabrication Facility in News Nano 50TM Awards: The Nano 50TM Awards, presented by Nanotech Briefs magazine, recognize the top 50 technologies, products and innovators that have significantly impacted, or are expected to impact, the state of the art in nanotechnology. "The winners of the Nano 50 awards are the best of the best - the innovative people and technologies that will continue to move nanotechnology to key mainstream

  15. Women @ Energy: Simona E. Hunyadi Murph | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simona E. Hunyadi Murph Women @ Energy: Simona E. Hunyadi Murph September 22, 2015 - 1:12pm Addthis Simona E. Hunyadi Murph is a principal scientist at Savannah River National Laboratory. She attended the University of South Carolina, studying chemistry/nanotechnology, Georgia Regents University (Augusta State University), and Babes-Bolyai University in Romania, studying chemistry/electrochemistry and physics with an education minor. She holds a Ph.D in chemistry/nanotechnology. Simona E.

  16. OSTIblog Articles in the fermilab Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information fermilab Topic Manipulating Matter on a Molecular Scale by Daphne Evans 09 Jul, 2012 in Science Communications 4321 nano_argonne.jpg Manipulating Matter on a Molecular Scale Read more about 4321 Nano=one billionth Nanotechnology=the manipulation of matter on an atomic and molecular scale DOE scientists are working to identify immediate and future ways to utilize this precision science. Check out Nanoscience and Nanotechnology: From Energy Applications to

  17. OSTIblog Articles in the nanoscience Topic | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information nanoscience Topic Manipulating Matter on a Molecular Scale by Daphne Evans 09 Jul, 2012 in Science Communications 4321 nano_argonne.jpg Manipulating Matter on a Molecular Scale Read more about 4321 Nano=one billionth Nanotechnology=the manipulation of matter on an atomic and molecular scale DOE scientists are working to identify immediate and future ways to utilize this precision science. Check out Nanoscience and Nanotechnology: From Energy

  18. Lasting Gifts From Carbon Connections | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lasting Gifts From Carbon Connections Lasting Gifts From Carbon Connections December 21, 2012 - 3:15pm Addthis Graphene has properties that could possibly open up the next generation on nanotechnology. | Photo courtesy of Oak Ridge National Lab Graphene has properties that could possibly open up the next generation on nanotechnology. | Photo courtesy of Oak Ridge National Lab Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee) What is graphene? Graphene is a substance

  19. OSTI, US Dept of Energy Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Manipulating Matter on a Molecular Scale by Daphne Evans on Mon, July 09, 2012 4321 nano_argonne.jpg Manipulating Matter on a Molecular Scale Read more about 4321 Nano=one billionth Nanotechnology=the manipulation of matter on an atomic and molecular scale DOE scientists are working to identify immediate and future ways to utilize this precision science. Check out Nanoscience and Nanotechnology: From Energy Applications to Advanced

  20. OSTI, US Dept of Energy Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Travel through DOE databases; find emerging nanotechnology devices by Kathy Chambers on Mon, July 16, 2012 4312 5218967216_e0c14065c7_b.jpg Travel through DOE databases; find emerging nanotechnology devices Read more about 4312 In the world of nanomanufacturing, new materials, devices, components and products are emerging at a breathtaking rate. Next-generation nanocoatings are being developed to enhance wear resistance of industrial

  1. EFf!!$L, . United States Government Department of Energy

    Office of Legacy Management (LM)

    DCX F 1325.6 EFf!!$L, . United States Government Department of Energy m e m o randum DATE: JAN I( Ksg REPLY TO AnN OF: EM-42 (A. W illiams, 903-8 149) SJRJECT: The Former Atomic Energy Commission and the Manhattan Engineer District Sites in Dayton, Ohio TO: W . Dennison. GC-5 1 I a m attaching two copies of the Authority Review prepared by my staff for two sites in Dayton, Ohio, which were used by the former Atomic Energy Commission and the former Manhattan Engineer District. W h e n the

  2. Recent progress on preparation and properties of nanocomposites from recycled polymers: A review

    SciTech Connect (OSTI)

    Zare, Yasser

    2013-03-15

    Highlights: ► The article determines the current status of nanotechnology in polymer recycling. ► The addition of nanofillers to waste polymers, composites and blends is discussed. ► The future challenges in polymer recycling using nanoparticles are explained. - Abstract: Currently, the growing consumption of polymer products creates the large quantities of waste materials resulting in public concern in the environment and people life. Nanotechnology is assumed the important technology in the current century. Recently, many researchers have tried to develop this new science for polymer recycling. In this article, the application of different nanofillers in the recycled polymers such as PET, PP, HDPE, PVC, etc. and the attributed composites and blends is studied. The morphological, mechanical, rheological and thermal properties of prepared nanocomposites as well as the future challenges are extensively discussed. The present article determines the current status of nanotechnology in the polymer recycling which guide the future studies in this attractive field.

  3. Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes

    SciTech Connect (OSTI)

    Matheu, Roc; Francs, Laia; Chernev, Petko; Ertem, Mehmed Z.; Batista, Victor; Haumann, Michael; Sala, Xavier; Llobet, Antoni

    2015-05-07

    Electrochemical reduction of the dizaonium complex, [RuII(bda)(NO)(NN2)2]3+, 23+ (NN22+ is 4-(pyridin-4-yl) benzenediazonium and bda2 is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid material has a lower catalytic performance than its counterpart in homogeneous phase and progressively decomposes to form RuO2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO2, is a very fast and rugged heterogeneous water oxidation catalyst with TOFis of 300 s1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.

  4. Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Matheu, Roc; Francàs, Laia; Chernev, Petko; Ertem, Mehmed Z.; Batista, Victor; Haumann, Michael; Sala, Xavier; Llobet, Antoni

    2015-05-07

    Electrochemical reduction of the dizaonium complex, [RuII(bda)(NO)(N–N2)2]3+, 23+ (N–N22+ is 4-(pyridin-4-yl) benzenediazonium and bda2– is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid material has a lower catalytic performance than its counterpartmore » in homogeneous phase and progressively decomposes to form RuO2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO2, is a very fast and rugged heterogeneous water oxidation catalyst with TOFis of 300 s–1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.« less

  5. Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes

    SciTech Connect (OSTI)

    Matheu, Roc; Francàs, Laia; Chernev, Petko; Ertem, Mehmed Z.; Batista, Victor; Haumann, Michael; Sala, Xavier; Llobet, Antoni

    2015-05-07

    Electrochemical reduction of the dizaonium complex, [RuII(bda)(NO)(N–N2)2]3+, 23+ (N–N22+ is 4-(pyridin-4-yl) benzenediazonium and bda2– is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid material has a lower catalytic performance than its counterpart in homogeneous phase and progressively decomposes to form RuO2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO2, is a very fast and rugged heterogeneous water oxidation catalyst with TOFis of 300 s–1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.

  6. Enhancing Condensers for Geothermal Systems: the Effect of High Contact Angles on Dropwise Condensation Heat Transfer

    SciTech Connect (OSTI)

    Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.

    2009-10-06

    Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.

  7. Sam Bader | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sam Bader Chief Scientist, Emeritus Ph.D., University of California, Berkeley Argonne Distinguished Fellow Application of nanotechnology to create novel permanent magnets (spring magnets); exploration of laterally confined nanomagnets; development of magnetic electronics; bio-inspired self-assembly of magnetic nanostructures; magnetic surfaces, films, wedges and superlattices, including hybrid structures, such as novel ferromagnetic-superconducting multilayers; giant magnetoresistance and

  8. Center for Functional Nanomaterials (CFN) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Functional Nanomaterials (CFN) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES

  9. Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nanophase Materials Sciences (CNMS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  10. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nanoscale Materials (CNM) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  11. The Molecular Foundry (TMF) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    The Molecular Foundry (TMF) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  12. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / Office of Science / Nanoscale Science Research Centers Center for Nanoscale Materials / Argonne National Laboratory * Center for Functional Nanomaterials / Brookhaven National Laboratory The Molecular Foundry / Lawrence Berkeley National Laboratory * Center for Nanophase Materials Sciences / Oak Ridge National Laboratory Center for Integrated Nanotechnologies / Sandia National Laboratories and Los Alamos National Laboratory * Nanophotonics & Optical Nanomaterials - Synthesis, excitation

  13. Sandia Energy - Lincoln Lauhon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, Nature Nanotechnology 3, 168 (2008)....

  14. NETL: The Science of the Very Fast and the Very Small

    ScienceCinema (OSTI)

    None

    2014-06-02

    From innovations in nanotechnology to discoveries that increase our understanding of energy resources around us, NETL and the National Labs are leading the way in studying the science of the very fast and very small. In fields ranging from medicine to materials, our researchers are making advancements that have practical applications in everyday life.

  15. Suspending DNA origami between four gold nanodots

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morales, Piero; Wang, Liqian; Krissanaprasit, Abhichart; Dalmastri, Claudia; Caruso, Mario N.; De Stefano, Mattia; Mosiello, Lucia; Rapone, Bruno; Rinaldi, Antonio; Vespucci, Stefano; et al

    2015-01-01

    Here, connecting DNA nanostructures to metallic nanostructures at specific positions is a relatively rarely addressed issue in nanotechnology.[1-5] It is of high importance for application of the origami structures as breadboards for molecular electronics and nanosensing arrays since the metallic nanostructures may potentially serve as electrodes.

  16. CX-002262: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dewatering Wells for Center for Integrated Nanotechnologies (Building 518) AtriumsCX(s) Applied: B2.5, B3.1Date: 03/08/2010Location(s): New MexicoOffice(s): NNSA-Headquarters, Sandia Site Office

  17. Expert Topics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AC power Carbon-free Climate change Education Emergency planning Engineering Fusion energy Fusion reactor design Fusion roadmapping ITER Inertial confinement fusion International collaborations Laser diagnostics Lithium Magnetic reconnection NSTX-U Nanotechnology Nuclear energy Nuclear safety Particle beam dynamics Plasma astrophysics Plasma diagnostics Plasma physics Power system design Power systems Quality assurance STEM Science literacy Stellarators Surface science Sustainability Tokamaks

  18. CAMD Nanofabrication Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications :: Infrastructure :: News :: Links :: MAGNETIC NANOMATERIALS FOR CANCER DIAGNOSIS At Louisiana State University, the Pennington Biomedical Research Center (PBRC) and Nanofabrication Group of the Center for Advanced Microstructures and Devices (CAMD) are developing novel nanotechnologies for cancer diagnosis. In a conjoint effort cancer specialists of PBRC, lead by Dr. Carola Leuschner, and nanomaterials researchers at CAMD, lead by Dr. Challa Kumar, developed magnetite based

  19. Sandia National Laboratories: Explore Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explore Sandia Potential Partners Sandia has worked with a wide variety of Sponsors, including large companies and small businesses based in New Mexico. Projects involve a broad range of technologies including materials and materials processing, advanced manufacturing and precision engineering, microelectronics and photonics, advanced computing and information technologies, modeling and simulation, nanotechnologies, vulnerability analysis, robotics and intelligent systems, failure analysis and

  20. Sandia National Laboratories: Potential Sponsors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Sponsors Potential Partners Sandia has worked with a wide variety of Sponsors, including large companies and small businesses based in New Mexico. Projects involve a broad range of technologies including materials and materials processing, advanced manufacturing and precision engineering, microelectronics and photonics, advanced computing and information technologies, modeling and simulation, nanotechnologies, vulnerability analysis, robotics and intelligent systems, failure analysis

  1. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities Center for Integrated Nanotechnologies (CINT) CINT Ion Beam Laboratory Ion Beam Laboratory MESA High Performance Computing Processing and Environmental Technology Laboratory Processing and Environmental

  2. Silicon Photonics for Low- Energy Optical Communications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photonics for Low- Energy Optical Communications To support the needs of next generation of optical communications, researchers have developed a Sandia Silicon Photonics platform that leverages the semiconductor and nanotechnology capabilities of Sandia's Microsystems and Engineering Sciences Applications (MESA) complex to reduce the power dissipation of interconnects within digital systems. Improving Interconnection Performance As integrated circuit chips now incorporate over a billion

  3. Harry Weerts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harry Weerts, Associate Laboratory Director, Physical Sciences and Engineering Harry Weerts Associate Laboratory Director - Physical Sciences and Engineering Harry Weerts is the Associate Laboratory Director for Physical Sciences and Engineering. He oversees Argonne's interdisciplinary research programs in physics, chemistry, material science and nanotechnology. Weerts was formerly Director of Argonne's High Energy Physics division, and prior to that, a collider physicist at Fermilab, where he

  4. Technical Standards Newsletter - March 2005 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2005 Technical Standards Newsletter - March 2005 The Standards Forum and Standards Actions - March 2005 Inside this issue: TSP Manager's Notes............................................ 1 Nanotechnology Standards Panel holds First Meeting................................................ 3 ASME is lead in standards consortium that will open office in China next year....................................................... 4 Development and Maintenance of DOE's Radiation Protection

  5. Technical Standards Newsletter - March 2008 | Department of Energy

    Office of Environmental Management (EM)

    5 Technical Standards Newsletter - March 2005 The Standards Forum and Standards Actions - March 2005 Inside this issue: TSP Manager's Notes............................................ 1 Nanotechnology Standards Panel holds First Meeting................................................ 3 ASME is lead in standards consortium that will open office in China next year....................................................... 4 Development and Maintenance of DOE's Radiation Protection

  6. Archives of BES CRAs April 2003 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    03 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S.

  7. Archives of BES CRAs April 2010 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S.

  8. Archives of BES CRAs February 2002 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2002 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy

  9. Archives of BES CRAs June 2008 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2008 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences

  10. Archives of BES CRAs May 2006 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2006 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences

  11. Archives of BES CRAs October 2004 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2004 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy

  12. Research Conduct Policies | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Conduct Policies Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic

  13. CX-009192

    Broader source: Energy.gov [DOE]

    (0674-1542) Sila Nanotechnologies Inc. - Doubling the Energy Density of Lithium-Ion Batteries for Transportation CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): Georgia Offices(s): Advanced Research Projects Agency-Energy

  14. Impact of Clean Diesel Technology on Climate Change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Diesel Technology on Climate Change Impact of Clean Diesel Technology on Climate Change 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Brookhaven National Laboratory 2004_deer_mcgraw.pdf (601.29 KB) More Documents & Publications Nanoparticle Emissions from Internal Combustion Engines Microsoft PowerPoint - 4. ORNL- deer.ppt [Read-Only] Approaches to Safe Nanotechnology

  15. Crystalline bipyridinium radical complexes and uses thereof

    DOE Patents [OSTI]

    Fahrenbach, Albert C.; Barnes, Jonathan C.; Li, Hao; Stoddart, J. Fraser; Basuray, Ashish Neil; Sampath, Srinivasan

    2015-09-01

    Described herein are methods of generating 4,4'-bipyridinium radical cations (BIPY.sup..cndot.+), and methods for utilizing the radical-radical interactions between two or more BIPY.sup..cndot.+ radical cations that ensue for the creation of novel materials for applications in nanotechnology. Synthetic methodologies, crystallographic engineering techniques, methods of physical characterization, and end uses are described.

  16. High-voltage field effect transistors with wide-bandgap β-Ga{sub 2}O{sub 3} nanomembranes

    SciTech Connect (OSTI)

    Hwang, Wan Sik E-mail: djena@nd.edu; Verma, Amit; Protasenko, Vladimir; Rouvimov, Sergei; Xing, Huili; Seabaugh, Alan; Jena, Debdeep E-mail: djena@nd.edu; Peelaers, Hartwin; Van de Walle, Chris; Haensch, Wilfried; Galazka, Zbigniew; Albrecht, Martin; Fornari, Roberto

    2014-05-19

    Nanoscale semiconductor materials have been extensively investigated as the channel materials of transistors for energy-efficient low-power logic switches to enable scaling to smaller dimensions. On the opposite end of transistor applications is power electronics for which transistors capable of switching very high voltages are necessary. Miniaturization of energy-efficient power switches can enable the integration with various electronic systems and lead to substantial boosts in energy efficiency. Nanotechnology is yet to have an impact in this arena. In this work, it is demonstrated that nanomembranes of the wide-bandgap semiconductor gallium oxide can be used as channels of transistors capable of switching high voltages, and at the same time can be integrated on any platform. The findings mark a step towards using lessons learnt in nanomaterials and nanotechnology to address a challenge that yet remains untouched by the field.

  17. Sandia National Labs: PCNSC: Research: Compound Semiconductor Science and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Compound Semiconductor Science and Technology Thrust The Physical, Chemical, and Nano Sciences Center's vision for Compound Semiconductors is to develop the science of compound semiconductors that will enable us to invent integrated nano-technologies for the microsystems of the future. We will achieve this by advancing the frontiers of semiconductor research in areas such as quantum phenomena, defect physics, materials and device modeling, heteroepitaxy, and by discovering new

  18. Sandia National Labs: PCNSC: Research: Nanosciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanosciences Throughout the scientific community, including Sandia National Laboratories (SNL), researchers say building things atom-by-atom or molecule-by-molecule will revolutionize the production of virtually every human-made object. Exciting prospects-but they also point out that the promise of nanotechnology can only be realized if we learn to understand the special rules that control behavior at this small scale and develop the skill needed to integrate these concepts into practical

  19. Scattering Society of America

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Majewski named Fellow of the Neutron Scattering Society of America May 9, 2016 The Neutron Scattering Society of America (NSSA) has honored Jaroslaw (Jarek) Majewski of the Center for Integrated Nanotechnologies (MPA-CINT) with the title of Fellow. The Society recognized Majewski for "contributions to our understanding of weakly organized two-dimensional systems, including surfactant molecules found in biological systems. Majewski's achievements Majewski received a doctorate in Materials

  20. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab,

  1. Fellows' Prize for Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Fellows' Prize for Research Demonstrating outstanding research in science or engineering. Fellows' Prize for Research Recipients Citations used where available 2015 Hou-tong Chen, of the Laboratory's Center for Integrated Nanotechnologies (CINT), is a recognized authority and international leader in defining, shaping and leading the field of metamaterials, which is supported by his many seminal discoveries published in influential journals including Nature, Science, Nature Photonics,

  2. For Industrial Users | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Center for Nanoscale Materials (CNM) has specific interest in growing the industrial user program and encourages researchers in industry to consider the capabilities and expertise we have to offer. As a CNM user, you have easy access to sophisticated scientific instrumentation geared toward nanoscience and nanotechnology. Moreover, our widely recognized staff researchers offer support in designing your experiments, using the equipment, and analyzing your data. Access to the CNM is through

  3. Nanoscale Advances in Catalysis and Energy Applications

    SciTech Connect (OSTI)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  4. Top Student Team Wins $180,000 Toward Clean Energy Start Up | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Student Team Wins $180,000 Toward Clean Energy Start Up Top Student Team Wins $180,000 Toward Clean Energy Start Up June 15, 2012 - 2:57pm Addthis Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs The winners were: Grand prize: NuMat Technologies from Northwestern University Second place: SolidEnergy Systems from Massachusetts Institute of Technology People's Choice: Navillum Nanotechnologies from University of Utah NuMat Technologies beat

  5. Revolutionizing the Touch Screen? | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Revolutionizing the Touch Screen? News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.29.13 Revolutionizing the Touch Screen? Using nanotechnology, EFRC researchers fashion a new kind of transparent electrode

  6. Trapping the Light Fantastic | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Trapping the Light Fantastic News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 07.07.11 Trapping the Light Fantastic New solar cell design uses advanced optics and nanotechnology to maximize performance and

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 2016 Time: 11:00 am Speaker: Igal Brener, Center for Integrated Nanotechnologies (CINT), Sandia-Los Alamos National Laboratories Title: Active Dielectric and Metallic Metasurfaces: Strong Coupling, Tuning and Nonlinearities Location: 67-3111 Chemla Room Abstract: Metasurfaces (2D arrays of metamaterial resonators) can be designed to exhibit strong electromagnetic resonances that can couple efficiently to emitters and a variety of excitations in semiconductors and their heterostructures. For

  8. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center» Lujan Center» Matter-Radiation Interactions in

  9. Watching the Nanoparticles Go Round and Round | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Watching the Nanoparticles Go Round and Round Until now, watching the detailed spinning motion of nano-objects within living cells has been impossible. Combining an existing technique, known as Differential Interference Contrast (DIC) Microscopy, with nanotechnology, researchers can now see how nanoparticles spin when they move across the interiors of living cells. Nano-sized rods made of gold are non-toxic to living cells and they scatter light differently depending on their orientation. DIC

  10. William A. Goddard III - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    william a. goddard iii Principal Investigator Email: wag@wag.caltech.edu Dr. Goddard is a pioneer in developing methods for quantum mechanics (QM), force fields, molecular dynamics (MD), and Monte Carlo predictions on chemical and materials systems and is actively involved in applying these methods to ceramics, semiconductors, superconductors, thermoelectrics, metal alloys, polymers, proteins, nuclei acids, Pharma ligands, nanotechnology, and energetic materials. He uses QM methods to determine

  11. PPPL Experts | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL Experts Fusion. Energy. Plasma. Physics. Tokamaks. Stellarators. Radioactivity. Nanotechnology. Astrophysics. Computational simulations. Vacuum technology. Materials Science. Electronics. STEM education. These are some of the areas of expertise of staff at the Princeton Plasma Physics Laboratory. PPPL is devoted to creating new knowledge about the physics of plasmas - ultra-hot, charged gases - and to developing practical solutions for the creation of fusion energy. In addition, results of

  12. PPPL receives $4.3 million to increase understanding of the role that

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plasma plays in synthesizing nanoparticles | Princeton Plasma Physics Lab PPPL receives $4.3 million to increase understanding of the role that plasma plays in synthesizing nanoparticles By John Greenwald June 9, 2014 Tweet Widget Google Plus One Share on Facebook Physicist Yevgeny Raitses, the principal investigator for research into the role of plasma in synthesizing nanoparticles, in PPPL's nanotechnology laboratory. (Photo by Elle Starkman/PPPL Office of Communications) Physicist Yevgeny

  13. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  14. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  15. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  16. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  17. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  18. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Mechanical Behavior of Indium Nanostructures Print Wednesday, 26 May 2010 00:00 Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale

  19. Antonya Sanders-Promoting nanoscience integration through outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antonya Sanders Antonya Sanders-Promoting nanoscience integration through outreach Bringing together university faculty, students, researchers and other Laboratory scientists to explore nanoscale science. March 17, 2014 Antonya Sanders Sanders' focus on serving others began early on: she lived in England and traveled the world to find ways to help others, including aiding Bosnian refugees. Sanders leads communication and outreach for the Lab's Center for Integrated Nanotechnologies (CINT), a

  20. How to Bring Solar Energy to Seven Billion People (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Wadia, Cyrus

    2011-04-28

    By exploiting the powers of nanotechnology and taking advantage of non-toxic, Earth-abundant materials, Berkeley Lab's Cyrus Wadia has fabricated new solar cell devices that have the potential to be several orders of magnitude less expensive than conventional solar cells. And by mastering the chemistry of these materials-and the economics of solar energy-he envisions bringing electricity to the 1.2 billion people now living without it.

  1. EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Integrated Nanotechnologies (CINT) (9) admin 2016-04-18T20:58:24+00:00 Popular Downloads Solar Energy Grid Integration Systems: Final Report of the Florida Solar Energy Center Team (11367 downloads) Modeling System Losses in PVsyst (9344 downloads) Numerical Manufacturing And Design Tool (NuMAD v2.0) for Wind Turbine Blades: User's Guide (7613 downloads) Solar Energy Grid Integration Systems (SEGIS) Proactive Intelligent Advances for Photovoltaic Systems (6675 downloads) Improved Test

  2. EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Nanotechnologies admin 2016-04-18T20:58:24+00:00 Popular Downloads Solar Energy Grid Integration Systems: Final Report of the Florida Solar Energy Center Team (11367 downloads) Modeling System Losses in PVsyst (9344 downloads) Numerical Manufacturing And Design Tool (NuMAD v2.0) for Wind Turbine Blades: User's Guide (7613 downloads) Solar Energy Grid Integration Systems (SEGIS) Proactive Intelligent Advances for Photovoltaic Systems (6675 downloads) Improved Test Method to Verify the

  3. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  4. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  5. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  6. Secretary of Energy Announces $5 Million for Solid State Lighting Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy $5 Million for Solid State Lighting Research Secretary of Energy Announces $5 Million for Solid State Lighting Research October 5, 2006 - 9:08am Addthis ALBUQUERQUE, NM - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the selection of seven projects, valued at nearly $5 million, for Solid State Lighting (SSL) research in nanotechnology. SSL has the potential to more than double the efficiency of general lighting systems, reducing overall

  7. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boron-structured Nano-proportional Counters for Neutron Detection Scientists at the Savannah River National Laboratory (SRNL) have explored the use of nanotechnology to improve the design of gas-filled proportional counters (PC). The new nano-detector design will require a much lower operating voltage, a smaller power supply, enhanced portability, increased sensitivity to radiation, and improved detection efficiency. Background SRNL has investigated an alternative to conventionally constructed

  8. Neal Lane: Confessions of a President's Science Advisor

    ScienceCinema (OSTI)

    Neal Lane

    2010-09-01

    Former science advisor to president Bill Clinton Neal Lane briefly reviews the history of the job of Science Advisor to the President and give some examples of issues he had to deal with when he was in that position, including climate change, stem cell research, the human genome, nanotechnology and research funding. He will also give his opinions about the present and future state of science in the U.S.

  9. Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets

    Office of Scientific and Technical Information (OSTI)

    by field cooling (Journal Article) | SciTech Connect Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling Citation Details In-Document Search Title: Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same

  10. Vanderbilt University | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information Vanderbilt University Spotlights Home DOE Applauds Vanderbilt University Science and Technical Programs Vanderbilt Professors of Interest Vanderbilt engineers play key role in new DOE energy frontier research center Presidential Early Career Award for Scientists and Engineers (PECASE) Exceptional Students Dynamo-powered Otoscope delights doctors Graduate Students meet with Nobel Laureates VU Cast Lectures Promise of nanotechnology Science education in the 21st century

  11. Top-5 Achievements at the Princeton Plasma Physics Laboratory in 2015 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Student Team Wins $180,000 Toward Clean Energy Start Up Top Student Team Wins $180,000 Toward Clean Energy Start Up June 15, 2012 - 2:57pm Addthis Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs The winners were: Grand prize: NuMat Technologies from Northwestern University Second place: SolidEnergy Systems from Massachusetts Institute of Technology People's Choice: Navillum Nanotechnologies from University of Utah NuMat Technologies beat

  12. UNCLASSIFIED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Institute for Materials Prof. Gabriel Aeppli Head of the Synchrotron and Nanotechnology Department Paul Scherrer Institute, Switzerland Are all interesting oxides inhomogeneous? Wednesday, August 19, 2015 3:00 to 4:00pm IMS/MPA Conference Room (TA-03, Building. 32, Room 134) Abstract: Defects are responsible for the interesting and useful properties of conventional semiconductors, and we show here that defects and inhomogeneities play a similarly important role for transition metal oxides.

  13. UNCLASSIFIED Institute for Materials Science Distinguished Lecture Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gabriel Aeppli Head of the Synchrotron and Nanotechnology Department Paul Scherrer Institute, Switzerland Accelerator-based Light Sources for the Future Wednesday, August 12, 2015 2:00 to 3:00pm MSL Auditorium (TA-03, Bldg. 1698, Room A103) Abstract: We review current and future accelerator-based light sources and their applications to science, medicine and engineering. Particular attention is given to competing technologies such as electron microscopies. Bio: Gabriel Aeppli is professor of

  14. Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy Office of Inspector General Office of Audit Services Audit Report Nanoscale Materials Safety at the Department's Laboratories DOE/IG-0788 February 2008 Department of Energy Washington, DC 2 0 5 8 5 February 28, 2008 MEMORANDUM FOR FROM: Inspector General SUBJECT: IhTFORMATION: Audit Report on "Nanoscale Materials Safety at the Department's Laboratories" BACKGROUND The National Nanotechnology Initiative was established as a multi-agency research and

  15. EERE Success Story-Illinois: EERE-Sponsored Clean Energy Competition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches 2012 Winner's Success, Company Doubles in Size | Department of Energy Winner's Success, Company Doubles in Size EERE Success Story-Illinois: EERE-Sponsored Clean Energy Competition Launches 2012 Winner's Success, Company Doubles in Size August 21, 2013 - 10:15am Addthis NuMat Technologies, the winner of the 2012 National Clean Energy Business Plan Competition, has been making enormous progress toward building the company. NuMat Technologies is a nanotechnology company developing

  16. X-ray diffraction characterization of suspended structures forMEMS applications

    SciTech Connect (OSTI)

    Goudeau, P.; Tamura, N.; Lavelle, B.; Rigo, S.; Masri, T.; Bosseboeuf, A.; Sarnet, T.; Petit, J.-A.; Desmarres, J.-M.

    2005-09-15

    Mechanical stress control is becoming one of the major challenges for the future of micro and nanotechnologies. Micro scanning X-ray diffraction is one of the promising techniques that allows stress characterization in such complex structures at sub micron scales. Two types of MEMS structure have been studied: a bilayer cantilever composed of a gold film deposited on poly-silicon and a boron doped silicon bridge. X-ray diffraction results are discussed in view of numerical simulation experiments.

  17. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    yields 'The Right Glasses' for observing mystery behavior in electrons December 13, 2007 Images provide clues to Mott transition in semi- and superconductors EMBARGOED until 2 p.m. EST on December 13, 2007 LOS ALAMOS, New Mexico, December 13, 2007-In collaboration with the Center for Integrated Nanotechnologies at Los Alamos, an international team of researchers has, for the first time, viewed on a nanoscale the formation of mysterious metallic puddles that facilitate the transition of an

  18. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approaches to renewable energy storage focus of Frontiers in Science talk August 21, 2008 Use it, lose it, save it LOS ALAMOS, New Mexico, August 21, 2008-The science of renewable energy storage and how nanotechnology can benefit that science is the subject of Los Alamos National Laboratory's next Frontiers in Science Lecture beginning August 26 in Los Alamos. Albert Migliori of the Laboratory's National High Magnetic Field Lab will give the series of public talks, titled, "Use It, Lose It,

  19. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale engineering boosts performance of quantum dot light emitting diodes October 25, 2013 Making the light at the end of the tunnel more efficient LOS ALAMOS, N.M., Oct. 25, 2013-Dramatic advances in the field of quantum dot light emitting diodes (QD-LEDs) could come from recent work by the Nanotechnology and Advanced Spectroscopy team at Los Alamos National Laboratory. Quantum dots are nano-sized semiconductor particles whose emission color can be tuned by simply changing their dimensions.

  20. 10th Anniversary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Foundry Director Jeff Neaton Paul Alivisatos, former Director of Berkeley Lab and founding Director of the Molecular Foundry Brian Schowengerdt, co-founder of Magic Leap, an industry user of the Molecular Foundry Mike Witherell, Director of Berkeley Lab Representative Mike Honda (D-CA), co-author of the Nanotechnology Research and Development Act Molecular Foundry Facility Directors, Andy Minor and David Prendergast Session 1 Speaker's Panel, Alex Zettl, Jeff Grossman and Jim DeYoreo

  1. Interconnecting gold islands with DNA origami

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interconnecting gold islands with DNA origami Authors: Ding, B., Wu, H., Xu, W., Zhao, Z., Liu, Y., Yu, H., and Yan, H. Title: Interconnecting gold islands with DNA origami Source: Nano Lett. Year: 2010 Volume: 10 Pages: 5065-5069 ABSTRACT: Scaffolded DNA origami has recently emerged as a versatile, programmable method to fold DNA into arbitrarily shaped nanostructures that are spatially addressable, with sub-10-nm resolution. Toward functional DNA nanotechnology, one of the key challenges is to

  2. Kumar and Leuschner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Nanomaterials for Cancer Diagnosis At Louisiana State University, the Pennington Biomedical Research Center (PBRC) and the nanofabrication group of the Center for Advanced Microstructures and Devices (CAMD) are developing novel nanotechnologies for cancer diagnosis. In a joint effort, cancer specialists of PBRC, led by Dr. Carola Leuschner, and nanomaterials researchers at CAMD, led by Dr. Challa Kumar, developed magnetite-based nanoparticles with functionalized surfaces to target

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Paul Alivisatos Principal Investigator Paul Alivisatos Paul Alivisatos, Director of Lawrence Berkeley National Laboratory; Samsung Distinguished Professor of Nanoscience and Nanotechnology and Professor of Chemistry and Materials Science & Engineering Lawrence Berkeley National Laboratory Dr. Paul Alivisatos is Director of the Lawrence Berkeley National Laboratory (Berkeley Lab) and is the University of California (UC) Berkeley's Samsung Distinguished Professor of

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Paul Braun RG-4 Leader Paul V. Braun Paul V. Braun, Ivan Racheff Professor of Materials Science and Engineering University of Illinois at Urbana-Champaign Professor Paul V. Braun is the Ivan Racheff Professor of Materials Science and Engineering, and an affiliate of the Frederick Seitz Materials Research Laboratory, the Beckman Institute forAdvanced Science and Technology, the Department of Chemistry, the Micro and Nanotechnology Laboratory and the Mechanical Science and

  5. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jennifer Hollingsworth Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, May 10th, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Nanoscale semiconductor materials exhibit unique properties useful for energy-harvesting applications that contrast them with their respective bulk-phase counterparts, such as size-tunable band-gap energies for tuning the energy-onset of absorption, a concentration of the density of

  6. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Advanced Solar Photophysics: Overview of Research Thrusts Victor Klimov Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, February 8, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Center for Advanced Solar Photophysics (CASP) is part of the recent DOE initiative in Energy Frontier Research Centers (EFRCs) launched in August of 2009. The goal of CASP is to explore and

  7. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Photovoltaics and Photocatalysis Milan Sykora Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, March 29, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Over the past several years, the search for more efficient solutions to solar energy conversion has intensified, in large part driven by concerns over the impact of fossil energy sources on global climate. In my presentation

  8. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocrystal Quantum Dots: Electronic Structures and Relaxation Pathways Victor Klimov Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, February 8, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Semiconductor nanocrystals are nanometer-size crystalline particles that contain approximately 100 to 10,000 atoms. Using chemical syntheses they can be fabricated with almost atomic

  9. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Chemistry of Colloidal Nanocrystal Quantum Dots Jeffrey Pietryga Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, February 22, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Colloidal nanocrystal quantum dots (NQDs) are a unique class of materials that are under widespread investigation for applications ranging from bio-labeling to solid-state lighting and photovoltaics.

  10. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Spectroscopy of Individual Nanocrystal Quantum Dots Han Htoon Softmatter Nanotechnology and Advanced Spectroscopy, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, March 22, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Optical spectroscopy has been an indispensable tool in probing fundamental photophysics of nanoscale materials. Conventional optical spectroscopy approaches that usually require sampling hundreds to thousands of individual

  11. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Auger Recombination and Nanocrystal Lasing Victor Klimov Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, March 29, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Using semiconductor nanocrystals (NCs), one can produce extremely strong spatial confinement of electronic wave functions not accessible with other types of nanostructures. One consequence of this effect is a

  12. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carrier Multiplication: Experimental Aspects and Practical Implications Victor Klimov Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, March 29, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract The efficient conversion of photon energy into electrical charges is a central goal of much research in physics, chemistry, and biology, especially in areas such as photovoltaics,

  13. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. www.anl.gov CENTER FOR NANOSCALE MATERIALS A premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Center for Nanoscale Materials (CNM) is a premier user facility operating as one of the five centers built across the nation as part of the U.S. Department of Energy's (DOE's) Nanoscale Science Research Center program under

  14. Self Assembly for Nanostructured Electronic Devices at the Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional Nanomaterials | MIT-Harvard Center for Excitonics Self Assembly for Nanostructured Electronic Devices at the Center for Functional Nanomaterials November 3, 2009 at 3pm/36-428 Charles Black Center for Functional Nanomaterials, Brookhaven National Laboratory Black_Chuck_D0331112 abstract: The Center for Functional Nanomaterials (CFN) at Brookhaven National Laboratory is a science-based user facility devoted to nanotechnology research addressing challenges in energy security. Five

  15. Los Alamos shares Nano 50 award for directed assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano 50 award for directed assembly Los Alamos shares Nano 50 award for directed assembly Nano 50 Awards recognize "the top 50 technologies, products, and innovators that have significantly impacted, or will impact, the development of nanotechnology." September 3, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  16. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  17. High Strength Nano-Structured Steel - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Return to Search High Strength Nano-Structured Steel Idaho National Laboratory Success Story Details Partner Location Agreement Type Publication Date Nanosteel, Inc. Providence, Rhode Island License Work for Others (WFO) June 4, 2013 Video Bulk Materials Nanotechnology Summary The NanoSteel Company Complex modern challenges are driving new industrial market demands for metal alloys with properties and performance capabilities outside the known boundaries of

  18. 10 CFR Ch. III (1-1-11 Edition) Pt. 851, App. B

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 10 CFR Ch. III (1-1-11 Edition) Pt. 851, App. B must meet the applicable electrical safety codes and standards referenced in § 851.23. 11. NANOTECHNOLOGY SAFETY-RESERVED The Department has chosen to reserve this section since policy and procedures for nano- technology safety are currently being devel- oped. Once these policies and procedures have been approved, the rule will be amended to include them through a rulemaking con- sistent with the Administrative Procedure Act. 12. WORKPLACE

  19. nano-energy | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology: Energizing our Future Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence

  20. old.new.factsheets.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CINT Center for Integrated Nanotechnologies CINT CINT is a Department of Energy/Offce of Science Nanoscale Science Research Center operating as a national user facility devoted to establishing the scientifc principles that govern the design, performance, and integration of nanoscale materials. Through its Core Facility in Albuquerque and Gateway to Los Alamos Facility, CINT provides access to tools and expertise to explore the continuum from scientifc discovery to the integration of

  1. Jason Hick

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jared Sagoff About Us Jared Sagoff - Argonne National Laboratory Jared Sagoff is a public information officer at Argonne National Laboratory. He covers physical science research, including physics, chemistry, materials science and nanotechnology. Most Recent A New Leaf: Scientists Turn Carbon Dioxide Back Into Fuel August 18

    Oracle OpenWorld 2011: Digital Archiving and Preservation in Government Departments and Agencies Jason Hick jhick@lbl.gov NERSC LBNL

  2. Jia named Materials Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jia named Materials Research Society Fellow March 6, 2014 Quanxi Jia of the Center for Integrated Nanotechnologies (MPA-CINT) is a 2014 Fellow of the Materials Research Society (MRS). The MRS Fellow program recognizes outstanding members whose sustained and distinguished contributions to the advancement of materials research are internationally recognized. The number of new fellows selected annually is capped at 0.2 percent of the current total MRS membership. Achievements The MRS recognized Jia

  3. Potential opportunities for nano materials to help enable enhanced nuclear fuel performance

    SciTech Connect (OSTI)

    McClellan, Kenneth J.

    2012-06-06

    This presentation is an overview of the technical challenges for development of nuclear fuels with enhanced performance and accident tolerance. Key specific aspects of improved fuel performance are noted. Examples of existing nanonuclear projects and concepts are presented and areas of potential focus are suggested. The audience for this presentation includes representatives from: DOE-NE, other national laboratories, industry and academia. This audience is a mixture of nanotechnology experts and nuclear energy researchers and managers.

  4. Thomas P. D'Agostino | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Kalil - Deputy Director for Policy for the White House Office of Science and Technology Policy and Senior Advisor for Science, Technology and Innovation for the National Economic Council kalil_0.jpg From 2001 to 2008, Kalil was Special Assistant to the Chancellor for Science and Technology at UC Berkeley. He was responsible for developing major new multi-disciplinary research and education initiatives at the intersection of information technology, nanotechnology, microsystems, and biology. He

  5. How to Bring Solar Energy to Seven Billion People (LBNL Science at the Theater)

    SciTech Connect (OSTI)

    Wadia, Cyrus

    2009-04-06

    By exploiting the powers of nanotechnology and taking advantage of non-toxic, Earth-abundant materials, Berkeley Lab's Cyrus Wadia has fabricated new solar cell devices that have the potential to be several orders of magnitude less expensive than conventional solar cells. And by mastering the chemistry of these materials-and the economics of solar energy-he envisions bringing electricity to the 1.2 billion people now living without it.

  6. Nanoscience at Work: Creating Energy from Sunlight (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Alivisatos, Paul

    2011-04-28

    Paul Alivisatos, co-leader of Berkeley Lab's Helios Project, is the Associate Director for Physical Sciences and director of the Materials Sciences Division at Berkeley Lab. In the Helios Project, Alivisatos will use nanotechnology in the efficient capture of sunlight and its conversion to electricity to drive economical fuel production processes. He is an authority on artificial nanostructure synthesis and inventor of the quantum dot technology.

  7. Accelerating Materials Development for a Clean Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Materials Development for a Clean Energy Future Accelerating Materials Development for a Clean Energy Future February 24, 2016 - 2:30pm Addthis Accelerating Materials Development for a Clean Energy Future Reuben Sarkar Reuben Sarkar Deputy Assistant Secretary for Transportation Megan Brewster Senior Policy Advisor for Advanced Manufacturing at the White House Office of Science and Technology Policy Lloyd Whitman Assistant Director for Nanotechnology and Advanced Materials at the

  8. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  9. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab,

  10. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab,

  11. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab,

  12. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding New Crystal Structures Lift Fog around Protein Folding Print Wednesday, 25 July 2012 00:00 Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2015 Time: 11:00 am Speaker: Gang-Yu Liu, UC Davis Title: Engineered Nanostructures for Regulation and Investigation of Cellular Signaling Processes Location: 67-3111 Chemla Room Bio: Professor Liu's overall research objective focuses on the development of nanotechnology and potential applications to bioanalytical chemistry. One important aspect of the research is the design and engineering of nanostructures which position bioreceptors and chemical reaction sites on surfaces with high

  14. Stories of Discovery & Innovation: Trapping the Light Fantastic| U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Trapping the Light Fantastic Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 07.07.11 Stories of Discovery & Innovation: Trapping the Light Fantastic Print Text Size: A A A Subscribe FeedbackShare Page New solar cell design uses advanced optics and nanotechnology to maximize performance and minimize cost. Discovery moves from lab

  15. Surface-Modified Copper Current Collector for Lithium Ion Battery Anode -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Copper Current Collector for Lithium Ion Battery Anode Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary A team of Berkeley Lab researchers led by Gao Liu has developed an innovative approach to improve the adhesion of anode laminate to copper current collectors in lithium ion batteries. This nanotechnology directly addresses delamination of graphite anode material from the collectors, a common result of cyclical

  16. DNA Gridiron Nanostructures Based on Four-Arm Junctions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DNA Gridiron Nanostructures Based on Four-Arm Junctions Authors: Han, D., Pal, S., Yang, Y., Jiang, S., Nangreave, J., Liu, Y., and Yan, H. Title: DNA Gridiron Nanostructures Based on Four-Arm Junctions Source: Science Year: 2013 Volume: 339 Pages: 1412-1415 ABSTRACT: Engineering wireframe architectures and scaffolds of increasing complexity is one of the important challenges in nanotechnology. We present a design strategy to create gridiron-like DNA structures. A series of four-arm junctions

  17. Solution-Processed Solar Cells using Colloidal Quantum Dots | MIT-Harvard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Excitonics Solution-Processed Solar Cells using Colloidal Quantum Dots September 27, 2012 at 3pm/36-428 Ted Sargent Department of Electrical and Computer Engineering - Canada Research Chair in Nanotechnology, University of Toronto, Canada sargent001_000 Abstract: Solution-processed photovoltaics offer a cost-effective path to harvesting the abundant resource that is solar energy. The organic and polymer semiconductors at the heart of these devices generally absorb visible light;

  18. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Probes for Dirac Materials Quantum and Dirac Materials Workshop March 8-11, 2015, Santa Fe, NM, USA Center for Integrated Nanotechnologies Materials Physics and Applications Division Los Alamos National Laboratory Dmitry Yarotski LANL Staff: Rohit Prasankumar, Antoinette Taylor, Abul Azad, Steve Gilbertson, George Rodriguez, Tomasz Durakiewicz, Aditya Mohite, Andrew Dattelbaum, Quanxi Jia, Stuart Trugman, Jian-xin Zhu LANL Postdocs: Rolando Valdes Aguilar, Yaomin Dai, Keshav Dani, John

  19. Princeton Plasma Lab funded to explore nanoparticles with plasma |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Princeton Plasma Lab funded to explore nanoparticles with plasma By John Greenwald June 10, 2014 Tweet Widget Google Plus One Share on Facebook Physicist Yevgeny Raitses, the principal investigator for research into the role of plasma in synthesizing nanoparticles, in PPPL's nanotechnology laboratory. (Photo by Elle Starkman/PPPL Office of Communications) Physicist Yevgeny Raitses, the principal investigator for research into the role of plasma in synthesizing

  20. Piezoelectric Dust Levitator | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Piezoelectric Dust Levitator Nanotechnology is a revolutionary field of study, with a wide array of applications, including electronics, security, and medicine. Volumetric synthesis methods present a viable path for inexpensive synthesis of large quantities of nanomaterials. To further research nanomaterials in air, we constructed a device which uses a piezoelectric disk to levitate small, dust particles. We used this device to levitate several types of small particles, including salt, silica,

  1. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    method for nanopatterning light-harvesting LHCII complexes Theme 1: Native Antenna Theme 2: Biohybrid Antenna Theme 3: Bioinspired Antenna Gabriel Montano, Ed Gonzales (Center for Integrated Nanotechnologies, Los Alamos National Laboratory) Cvetelin Vasilev, Lin Wang, Matt Johnson, Ashley Cadby, Neil Hunter (University of Sheffield, UK) Master template on Si wafer made by e-beam lithography at CINT. Lines 60-90 nm wide. 620 640 660 680 700 720 740 50 100 150 200 250 300 Wavelength 87 nm

  2. July 24, 2009, Governance of EmergingTechnologies by Dr. M.C. Roco

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Governance of Emerging Technologies M.C. Roco National Science Foundation and National Nanotechnology Initiative Governance and Regulation July 24, 2009, Washington, D.C. / Core Governance Process: Long-term view, transforming, inclusive, horizontal vertical, priority in education, addressing societal dimensions, risk governance Main Actors: R&D Organizations (Academe, industry, gov.) Implementation Network (Regulators, business, NGOs, media, public) Social Climate (Perceived authority of

  3. Solid-immersion fluorescence microscopy with increased emission and super resolution

    SciTech Connect (OSTI)

    Liau, Z. L.; Porter, J. M.; Liau, A. A.; Chen, J. J.; Salmon, W. C.; Sheu, S. S.

    2015-01-07

    We investigate solid-immersion fluorescence microscopy suitable for super-resolution nanotechnology and biological imaging, and have observed limit of resolution as small as 15?nm with microspheres, mitochondria, and chromatin fibers. We have further observed that fluorescence efficiency increases with excitation power density, implicating appreciable stimulated emission and increased resolution. We discuss potential advantages of the solid-immersion microscopy, including combined use with previously established super-resolution techniques for reaching deeper beyond the conventional diffraction limit.

  4. Engineered Nanomaterials, Sexy New Technology and Potential Hazards

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-05-04

    Engineered nanomaterials enhance exciting new applications that can greatly benefit society in areas of cancer treatments, solar energy, energy storage, and water purification. While nanotechnology shows incredible promise in these and other areas by exploiting nanomaterials unique properties, these same properties can potentially cause adverse health effects to workers who may be exposed during work. Dispersed nanoparticles in air can cause adverse health effects to animals not merely due to their chemical properties but due to their size, structure, shape, surface chemistry, solubility, carcinogenicity, reproductive toxicity, mutagenicity, dermal toxicity, and parent material toxicity. Nanoparticles have a greater likelihood of lung deposition and blood absorption than larger particles due to their size. Nanomaterials can also pose physical hazards due to their unusually high reactivity, which makes them useful as catalysts, but has the potential to cause fires and explosions. Characterization of the hazards (and potential for exposures) associated with nanomaterial development and incorporation in other products is an essential step in the development of nanotechnologies. Developing controls for these hazards are equally important. Engineered controls should be integrated into nanomaterial manufacturing process design according to 10CFR851, DOE Policy 456.1, and DOE Notice 456.1 as safety-related hardware or administrative controls for worker safety. Nanomaterial hazards in a nuclear facility must also meet control requirements per DOE standards 3009, 1189, and 1186. Integration of safe designs into manufacturing processes for new applications concurrent with the developing technology is essential for worker safety. This paper presents a discussion of nanotechnology, nanomaterial properties/hazards and controls.

  5. Toxicology and cellular effect of manufactured nanomaterials

    DOE Patents [OSTI]

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  6. May Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May May 2016 Events May 2016 event highlights May 9 Mon 8:00 AM Energy Landscapes: From Protein Folding to Molecular Assembly Hilton Santa Fe Historic Plaza - Santa Fe, NM Nanoscale molecular assembly is very common in biology and in nanotechnology. May 14 Sat 11:00 AM From biofuels to predicting the flu Bradbury Science Museum - 1350 Central Ave, Los Alamos, NM 87544, USA Scientist in the Spotlight: A chance to chat with scientists about their work May 16 Mon 8:00 AM Data Science and Optimal

  7. Duo at Santa Fe's Monte del Sol Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th New Mexico Supercomputing Challenge April 21, 2015 Using nanotechnology robots to kill cancer cells LOS ALAMOS, N.M., April 21, 2015-Meghan Hill and Katelynn James of Santa Fe's Monte del Sol Charter Sol took the top prize in the 25 th New Mexico Supercomputing Challenge Tuesday at Los Alamos National Laboratory for their research project, "Using Concentrated Heat Systems to Shock the P53 Protein to Direct Cancer into

  8. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly A New Route to Nano Self-Assembly Print Wednesday, 24 February 2010 00:00 If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and

  9. Method for nano-pumping using carbon nanotubes

    DOE Patents [OSTI]

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  10. Theory and modeling in nanoscience: Report of the May 10-11, 2002Workshop

    SciTech Connect (OSTI)

    McCurdy, C. William; Stechel, Ellen; Cummings, Peter; Hendrickson, Bruce; Keyes, David

    2002-06-28

    On May 10 and 11, 2002, a workshop entitled ''Theory and Modeling in Nanoscience'' was held in San Francisco, California, sponsored by the offices of Basic Energy Science and Advanced Scientific Computing Research of the Department of Energy. The Basic Energy Sciences Advisory Committee and the Advanced Scientific Computing Advisory Committee convened the workshop to identify challenges and opportunities for theory, modeling, and simulation in nanoscience and nanotechnology, and additionally to investigate the growing and promising role of applied mathematics and computer science in meeting those challenges. This report is the result of those contributions and the discussions at the workshop.

  11. Untitled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nan Li MPA-CINT: Materials Physics & ApplicaCons Division - Center for Integrated Nanotechnologies Los Alamos NaConal Laboratory Achieving High Mechanical Deformability in Piezoelectric AlN Nanocomposites Monday, May 9, 2016 2:00 to 3:00pm MSL Auditorium (TA-03 - Bldg 1698 - Room A103) Abstract: Piezoelectric ceramic films (such as AlN) have a wide range of applica;ons in microelectronics. Under electric fields or mechanical strains, these materials can achieve energy conversion between

  12. Self-assembled lipid bilayer materials

    DOE Patents [OSTI]

    Sasaki, Darryl Y.; Waggoner, Tina A.; Last, Julie A.

    2005-11-08

    The present invention is a self-assembling material comprised of stacks of lipid bilayers formed in a columnar structure, where the assembly process is mediated and regulated by chemical recognition events. The material, through the chemical recognition interactions, has a self-regulating system that corrects the radial size of the assembly creating a uniform diameter throughout most of the structure. The materials form and are stable in aqueous solution. These materials are useful as structural elements for the architecture of materials and components in nanotechnology, efficient light harvesting systems for optical sensing, chemical processing centers, and drug delivery vehicles.

  13. Photo-ionization and residual electron effects in guided streamers

    SciTech Connect (OSTI)

    Wu, S.; Lu, X. Liu, D.; Yang, Y.; Pan, Y.; Ostrikov, K.

    2014-10-15

    Complementary experiments and numerical modeling reveal the important role of photo-ionization in the guided streamer propagation in helium-air gas mixtures. It is shown that the minimum electron concentration ?10{sup 8?}cm{sup ?3} is required for the regular, repeated propagation of the plasma bullets, while the streamers propagate in the stochastic mode below this threshold. The stochastic-to-regular mode transition is related to the higher background electron density in front of the propagating streamers. These findings help improving control of guided streamer propagation in applications from health care to nanotechnology and improve understanding of generic pre-breakdown phenomena.

  14. FLNR SHE Factory Sergey Dmitriev FLNR JINR FLNR's BASIC DIRECTIONS of RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FLNR SHE Factory Sergey Dmitriev FLNR JINR FLNR's BASIC DIRECTIONS of RESEARCH according to the Seven-Year Plan 2010 - 2016 1. Heavy and superheavy nuclei: Ø synthesis and study of properties of superheavy elements; Ø chemistry of new elements; Ø fusion-fission and multi-nucleon transfer reactions; Ø nuclear- , mass-, & laser-spectrometry of SH nuclei. 3. Radiation effects and physical groundwork of nanotechnology. 2. Light exotic nuclei: Ø properties and structure of

  15. CNM Scientific Contact sheet 8_16.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Materials Quantum & Energy Materials Major Tools Scientific Contacts § UHV SPM (AFM/STM) (Omicron Nanotechnology) § 4-probe SEM (Omicron UHV Nanoprobe) § VT-AFM (Omicron XA), LT-STM § Scanning probe microscope, AFM (Veeco) § Complex Oxide MBE (DCA R450D Custom) § Kurt Lesker electron beam evaporator and sputtering, deposition § Magnetometry (QD PPMS & MPMS) § Solar simulator, QEMS (Oriel) § TGA/DSC § Luminescence/UV-vis-NIR § X-ray diffractometer (Bruker D2 &

  16. MICROFLUIDIC MODULES FOR ISOLATION OF RECOMBINANT CYTOKINE FROM BACTERIAL LYSATES

    SciTech Connect (OSTI)

    Retterer, Scott T; Doktycz, Mitchel John

    2014-01-01

    The portability and personalization of health-care diagnostics and treatments benefits from advancements and applications of micro and nanotechnology. Modularization and miniaturization of standardized biochemical processes and tests facilitates the advancement and customization of analyte detection and diagnosis on-chip. The goal of our work here is to develop modular platforms for on-chip biochemical processing of synthesized biologics for a range of on-demand applications. Our report focuses on the initial development, characterization and application of microfluidic size exclusion/gel filtration and ion exchange protein concentration modules for cytokine isolation from spiked cell extracts.

  17. Semiconductor Nanocrystals for Biological Imaging

    SciTech Connect (OSTI)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Time: 11:00 am Speaker: Peng Yin, Harvard Medical School Title: Nanoscale Construction and Imaging with DNA Location: 67-3111 Chemla Room Abstract: I'll discuss how to use DNA to construct and visualize nanoscale structures. I'll first give an overview of my lab's work in DNA nanotechnology. We have invented a general framework to program DNA/RNA strands to self-assemble into structures with user-specified geometry or dynamics. By interfacing these nanostructures with other functional

  19. Nanoscience Research Internships in Illinois

    SciTech Connect (OSTI)

    Kronshage, Alisa

    2013-08-31

    NanoBusiness Talent Project Summary Report The NanoBusiness Alliance created the NanoBusiness Talent Program to ensure the future vitality of domestic scientists and entrepreneurs by engaging advanced high school students in cutting-edge nanotechnology development. This program commenced on September 1, 2008 and ran through August 31, 2010 with a very successful group of students. Several of these students went on to Stanford, Harvard and Yale, as well as many other prestigious Universities. We were able to procure the cooperation of several companies over the entire run of the program to voluntarily intern students at their companies and show them the possibilities that exist for their future. Companies ranged from NanoInk and Nanosphere to QuesTek and NanoIntegris all located in northern Illinois. During the 9-week internships, students worked at nanotechnology companies studying different ways in which nanotechnology is used for both commercial and consumer use. The students were both excited and invigorated at the prospect of being able to work with professional scientists in fields that previously may have just been a dream or an unreachable goal. All the students worked closely with mentors from each company to learn different aspects of procedures and scientific projects that they then used to present to faculty, parents, mentors and directors of the program at the end of each years program. The presentations were extremely well received and professionally created. We were able to see how much the students learned and absorbed through the course of their internships. During the last year of the program, we reached out to both North Carolina and Colorado high school students and received an extraordinary amount of applications. There were also numerous companies that were not only willing but excited at the prospect to engage highly intelligent high school students and to encourage them into the nanotechnology scientific field. Again, this program increase

  20. Structural Studies of Al:ZnO Powders and Thin Films | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Structural Studies of Al:ZnO Powders and Thin Films Monday, June 18, 2012 - 2:00pm SSRL Main Conference Room 137-322 Dr. Bridget Ingham, Associate Investigator, MacDiarmid Institute for Advanced Materials & Nanotechnology Al-doped ZnO (Al:ZnO) is a promising transparent conducting oxide. We have used complementary synchrotron and laboratory techniques to study the incorporation of Al within the ZnO lattice, and measure its effect on the crystallinity of thin films

  1. Alliance for NanoHealth (ANH) Training Program for the development of future generations of interdisciplinary scientists and collaborative research focused upon the advancement of nanomedicine

    SciTech Connect (OSTI)

    Gorenstein, David

    2013-12-23

    The objectives of this program are to promote the mission of the Department of Energy (DOE) Science, Technology, Engineering, Math (STEM) Program by recruiting students to science and engineering disciplines with the intent of mentoring and supporting the next generation of scientists; to foster interdisciplinary and collaborative research under the sponsorship of ANH for the discovery and design of nano-based materials and devices with novel structures, functions, and properties; and to prepare a diverse work force of scientists, engineers, and clinicians by utilizing the unique intellectual and physical resources to develop novel nanotechnology paradigms for clinical application.

  2. A room temperature electron cyclotron resonance ion source for the DC-110 cyclotron

    SciTech Connect (OSTI)

    Efremov, A. Bogomolov, S.; Lebedev, A.; Loginov, V.; Yazvitsky, N.

    2014-02-15

    The project of the DC-110 cyclotron facility to provide applied research in the nanotechnologies (track pore membranes, surface modification of materials, etc.) has been designed by the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (Dubna). The facility includes the isochronous cyclotron DC-110 for accelerating the intensive Ar, Kr, Xe ion beams with 2.5 MeV/nucleon fixed energy. The cyclotron is equipped with system of axial injection and ECR ion source DECRIS-5, operating at the frequency of 18 GHz. This article reviews the design and construction of DECRIS-5 ion source along with some initial commissioning results.

  3. A review of research in the field of nanorobotics.

    SciTech Connect (OSTI)

    Sierra, Dannelle P.; Weir, Nathan A.; Jones, James Frank

    2005-10-01

    This report highlights the findings of an extensive review of the literature in the area of nanorobotics. The main goal of this midyear LDRD effort is to survey and identify accomplishments and advancements that have been made in this relatively new and emerging field. As a result, it may be determined what routes in the area of nanorobotics are scientifically plausible and technically useful so that the Intelligent Systems and Robotics Center can position itself to play a role in the future development of nanotechnology.

  4. 2015 Seminars Archive | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Seminars Archive Date Title December 16, 2015 11:00 am Bldg. 440, A105-106 "Quantum Optics of Carbon Nanotubes," Xuedan Ma,Center for Integrated Nanotechnologies Los Alamos National Laboratory and Sandia National Laboratories. Hosted by Gary Wiederrecht Because of their photoluminescence (PL) emission that spans over the 1.3 - 1.5 μm telecom spectral regime, individual semiconducting single-walled carbon nanotubes (SWCNTs) have been considered as ideal candidates for single photon

  5. An overviewFunctional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    SciTech Connect (OSTI)

    Liu, Hua Kun

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: Nanomaterials play important role for lithium rechargeable batteries. Nanostructured materials increase the capacitance of supercapacitors. Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

  6. Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts

    SciTech Connect (OSTI)

    Brar, Satinder K.; Verma, Mausam; Tyagi, R.D.; Surampalli, R.Y.

    2010-03-15

    Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles - consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.

  7. Joint Institute for Nanoscience Annual Report 2004

    SciTech Connect (OSTI)

    Baer, Donald R.; Campbell, Charles

    2005-02-01

    Due to the inherently interdisciplinary nature of nanoscience and nanotechnology, research in this arena is often significantly enhanced through creative cooperative activities. The Joint Institute for Nanoscience (JIN) is a venture of the University of Washington (UW) and Pacific Northwest National Laboratory (PNNL) to encourage and enhance high impact and high quality nanoscience and nanotechnology research that leverages the strengths and capabilities of both institutions, and to facilitate education in these areas. This report summarizes JIN award activities that took place during fiscal year 2004 and provides a historical list of JIN awardees, their resulting publications, and JIN-related meetings. Major portions of the JIN efforts and resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by PNNL staff scientists and UW professors. JIN fellowships are awarded on the basis of applications that include research proposals. They have been very successful in expanding collaborations between PNNL and UW, which have led to many excellent joint publications and presentations and enhanced the competitiveness of both institutions for external grant funding. JIN-based interactions are playing a significant role in creating new research directions and reshaping existing research programs at both the UW and PNNL. The JIN also co-sponsors workshops on Nanoscale Science and Technology, four of which have been held in Seattle and one in Richland. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant, Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology, has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of

  8. In situ remediation technologies for mercury-contaminated soil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Feng; Gao, Jie; Pierce, Eric; Strong, P. J.; Wang, Hailong; Liang, Liyuan

    2015-04-09

    A pollutant that poses significant risks to humans and the environment is mercury from anthropogenic activities. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. Our paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic,more » and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. We also discussed two emerging technologies, phytoremediation and nanotechnology, in this review.« less

  9. In situ remediation technologies for mercury-contaminated soil

    SciTech Connect (OSTI)

    He, Feng; Gao, Jie; Pierce, Eric; Strong, P. J.; Wang, Hailong; Liang, Liyuan

    2015-04-09

    A pollutant that poses significant risks to humans and the environment is mercury from anthropogenic activities. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. Our paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic, and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. We also discussed two emerging technologies, phytoremediation and nanotechnology, in this review.

  10. In situ X-ray nanotomography of metal surfaces during electropolishing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nave, Maryana I.; Allen, Jason P.; Karen Chen-Wiegart, Yu-chen; Wang, Jun; Kalidindi, Surya R.; Kornev, Konstantin G.

    2015-10-15

    A low voltage electropolishing of metal wires is attractive for nanotechnology because it provides centimeter long and micrometer thick probes with the tip radius of tens of nanometers. Using X-ray nanotomography we studied morphological transformations of the surface of tungsten wires in a specially designed electrochemical cell where the wire is vertically submersed into the KOH electrolyte. We show that stability and uniformity of the probe span is supported by a porous shell growing at the surface of tungsten oxide and shielding the wire surface from flowing electrolyte. We discovered that the kinetics of shell growth at the triple line,more » where meniscus meets the wire, is very different from that of the bulk of electrolyte. Many metals follow similar electrochemical transformations hence the discovered morphological transformations of metal surfaces are expected to play significant role in many natural and technological applications.« less

  11. Nanofabrication with the Scanning Tunneling Microscope

    SciTech Connect (OSTI)

    Shedd, G.M.; Russell, P.E.

    1988-12-01

    The Precision Engineering Center has recently begun a research program into applications of STM to Nanotechnology. Few tools permit humans to control events and processes at the manometer level, and of those, the STM is the most well-suited to the task. A versatile new ultra-high-vacuum (UHV) STM is being built to study the use of STM for the manipulation of nanometer-scale particles. Part of the STM`s usefulness will be due to its being positioned directly beneath the focused ion beam (FIB). The interface of the STM with the FIB will allow the STM to take advantage of the FIB for long-range imaging and as a particle source; the FIB can in turn use the STM for in situ, high-resolution imaging of micromachined features.

  12. Parametric effects in nanobeams and AFM

    SciTech Connect (OSTI)

    Claeyssen, J. C. R.; Tonetto, L.; Carvalho, J. B.; Copetti, R. D.

    2014-12-10

    Vibration dynamics of forced cantilever beams that are used in nanotechnology such as atomic force microscope modeling and carbon nanotubes is considered in terms of a fundamental response within a matrix framework. The modeling equations are written as a matrix differential equation subject to tip-sample general boundary conditions. At the junctions, where there are discontinuities due to different material or beam thickness, compatibility conditions are prescribed. Forced responses are given by convolution of the input load with the time domain Green matrix function. The corresponding matrix transfer function and modes of a multispan cantilever beam are determined in terms of solution basis of the same shape generated by a fundamental solution. Simulations were performed for a three stepped beam with a piezoelectric patch subject to pulse forcing terms and with surface effects.

  13. An electrostatic nanogenerator based on ZnO/ZnS core/shell electrets with stabilized quasi-permanent charge

    SciTech Connect (OSTI)

    Wang, Chao; Cai, Liang; Feng, Yajuan; Chen, Lin; Yan, Wensheng E-mail: zhsun@ustc.edu.cn; Liu, Qinghua; Yao, Tao; Hu, Fengchun; Pan, Zhiyun; Sun, Zhihu E-mail: zhsun@ustc.edu.cn; Wei, Shiqiang

    2014-06-16

    ZnO-based nanogenerators with excellent performance and convenient functionalization are particularly desirable for self-powered technology, which is however difficult to achieve simultaneously in traditional piezoelectric ZnO nanogenerators. Here, we report a design of electrostatic ZnO nanogenerator by virtue of a type-II ZnO/ZnS core/shell nanostructure electrets, which can turn acoustic waves into electric power with an energy conversion efficiency of 2.2%. The ZnO/ZnS core/shell electrets are charged by ultraviolet irradiation with a long-term stability of the electrostatic charges under ambient condition. The electronic and atomic structure evolution in the charged ZnO/ZnS core/shell electrets are also discussed by detailed experimental and theoretical investigations. This design opens up an alternative path for fabricating robust ZnO-based nanogenerator for future nanotechnology application.

  14. DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection

    DOE Patents [OSTI]

    Lee, James W.; Thundat, Thomas G.

    2005-06-14

    An apparatus and method for performing nucleic acid (DNA and/or RNA) sequencing on a single molecule. The genetic sequence information is obtained by probing through a DNA or RNA molecule base by base at nanometer scale as though looking through a strip of movie film. This DNA sequencing nanotechnology has the theoretical capability of performing DNA sequencing at a maximal rate of about 1,000,000 bases per second. This enhanced performance is made possible by a series of innovations including: novel applications of a fine-tuned nanometer gap for passage of a single DNA or RNA molecule; thin layer microfluidics for sample loading and delivery; and programmable electric fields for precise control of DNA or RNA movement. Detection methods include nanoelectrode-gated tunneling current measurements, dielectric molecular characterization, and atomic force microscopy/electrostatic force microscopy (AFM/EFM) probing for nanoscale reading of the nucleic acid sequences.

  15. Exploring new energy alternatives.

    SciTech Connect (OSTI)

    LePoire, D.J.

    2011-09-01

    What is most likely to satisfy our energy needs in the future - wind farms and photovoltaic arrays, or something yet to be invented? Options for the world's energy future may include surprises, thanks to innovative research under way around the world. The article focuses on the energy sources alternatives in the U.S. It explores innovations for energy sources such as wind farms, solar thermal concentrators, solar cells, and geothermal energy production. It states that the attainment of energy efficiency through conversation or improved technology allows to extract more applied energy. It points out that techniques are being explored to expand the possible fuel materials to includes other types of uranium and thorium. Furthermore, it discusses the capability of nanotechnology in offering a tool which could help create designs that convert energy more efficiently.

  16. Applications of free electron lasers and synchrotrons in industry and research

    SciTech Connect (OSTI)

    Barletta, William A. [Dept. of Physics, Massachusetts Institute of Technology Cambridge MA (United States)

    2013-04-19

    Synchrotron radiation sources have had a profound effect on both science and technology from their beginnings decades ago as parasitic operations on accelerators for high energy physics. Now the general area of photon science has opened up new experimental techniques which have become the mainstay tools of materials science, surface physics, protein crystallography, and nanotechnology. With the promise of ultra-bright beams from the latest generation of storage rings and free electron lasers with full coherence, the tools of photon science promise to open a new area of mesoscale science and technology as well as prove to be a disruptive wildcard in the search for sustainable energy technologies. This review will survey a range of applications and explore in greater depth the potential applications to EUV lithography and to technologies for solar energy.

  17. Probing the Unique Size-Dependent Properties of Small Au Clusters, Au Alloy Clusters, and CO Chemisorbed Au Clusters in the Gas Phase

    SciTech Connect (OSTI)

    Zhai, Hua-jin; Li, Xi; Wang, Lai S.

    2007-04-01

    When materials are reduced in size to the nanometer scale, their physical and chemical properties undergo major changes and become size-dependent, forming the foundation for nanoscience and nanotechnology. Gold nanoparticles and small gold clusters have been the focus of intensive research activities lately. The modern goldrush is largely motivated by the recent discoveries that (i) nanogold shows unexpected catalytic properties for a wide spectrum of chemical reactions [1], (ii) nanogold enables selective binding to biomolecules such as DNA and thus can serve as biosensors [2], (iii) gold has important potential applications in nanoelectronics [3,4], and (iv) gold clusters and gold-containing compounds possess unique chemical properties [5]. All these golden discoveries have made gold a surprising and rewarding subject of investigation in nanoscience and cluster science. Indeed, some of our oldest notions regarding gold, such as its inertness, are being changed dramatically by the recent findings in nanogold.

  18. Self-assembling multimeric nucleic acid constructs

    DOE Patents [OSTI]

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1999-10-12

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  19. Self-assembling multimeric nucleic acid constructs

    DOE Patents [OSTI]

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1996-01-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  20. The GSAM software: A global search algorithm of minima exploration for the investigation of low lying isomers of clusters

    SciTech Connect (OSTI)

    Marchal, Rémi; Carbonnière, Philippe; Pouchan, Claude

    2015-01-22

    The study of atomic clusters has become an increasingly active area of research in the recent years because of the fundamental interest in studying a completely new area that can bridge the gap between atomic and solid state physics. Due to their specific properties, such compounds are of great interest in the field of nanotechnology [1,2]. Here, we would present our GSAM algorithm based on a DFT exploration of the PES to find the low lying isomers of such compounds. This algorithm includes the generation of an intial set of structure from which the most relevant are selected. Moreover, an optimization process, called raking optimization, able to discard step by step all the non physically reasonnable configurations have been implemented to reduce the computational cost of this algorithm. Structural properties of Ga{sub n}Asm clusters will be presented as an illustration of the method.

  1. Impact of artificial lateral quantum confinement on exciton-spin relaxation in a two-dimensional GaAs electronic system

    SciTech Connect (OSTI)

    Kiba, Takayuki Murayama, Akihiro; Tanaka, Toru; Tamura, Yosuke; Higo, Akio; Thomas, Cedric; Samukawa, Seiji

    2014-10-15

    We demonstrate the effect of artificial lateral quantum confinement on exciton-spin relaxation in a GaAs electronic system. GaAs nanodisks (NDs) were fabricated from a quantum well (QW) by top-down nanotechnology using neutral-beam etching aided by protein-engineered bio-nano-templates. The exciton-spin relaxation time was 1.4 ns due to ND formation, significantly extended compared to 0.44 ns for the original QW, which is attributed to weakening of the hole-state mixing in addition to freezing of the carrier momentum. The temperature dependence of the spin-relaxation time depends on the ND thickness, reflecting the degree of quantum confinement.

  2. Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310

    SciTech Connect (OSTI)

    Zhang, M.

    2013-04-01

    Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

  3. On-the-fly scans for X-ray ptychography

    SciTech Connect (OSTI)

    Pelz, Philipp M.; Guizar-Sicairos, Manuel; Johnson, Ian; Holler, Mirko; Menzel, Andreas; Thibault, Pierre

    2014-12-22

    With the increasing importance of nanotechnology, the need for reliable real-time imaging of mesoscopic objects with nanometer resolution is rising. For X-ray ptychography, a scanning microscopy technique that provides nanometric resolution on extended fields of view, and the settling time of the scanning system is one of the bottlenecks for fast imaging. Here, we demonstrate that ptychographic on-the-fly scans, i.e., collecting diffraction patterns while the sample is scanned with constant velocity, can be modelled as a state mixture of the probing radiation and allow for reliable image recovery. Characteristics of the probe modes are discussed for various scan parameters, and the application to significantly reducing the scanning time is considered.

  4. Design of quantum dot lattices in amorphous matrices by ion beam irradiation

    SciTech Connect (OSTI)

    Buljan, M.; Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Jaksic, M.; Salamon, K.; Drazic, G.; Bernstorff, S.; Holy, V.

    2011-10-15

    We report on the highly controllable self-assembly of semiconductor quantum dots and metallic nanoparticles in a solid amorphous matrix, induced by ion beam irradiation of an amorphous multilayer. We demonstrate experimentally and theoretically a possibility to tune the basic structural properties of the quantum dots in a wide range. Furthermore, the sizes, distances, and arrangement type of the quantum dots follow simple equations dependent on the irradiation and the multilayer properties. We present a Monte Carlo model for the simulation and prediction of the structural properties of the materials formed by this method. The presented results enable engineering and simple production of functional materials or simple devices interesting for applications in nanotechnology.

  5. Pulsed Plasma with Synchronous Boundary Voltage for Rapid Atomic Layer Etching

    SciTech Connect (OSTI)

    Economou, Demetre J.; Donnelly, Vincent M.

    2014-05-13

    Atomic Layer ETching (ALET) of a solid with monolayer precision is a critical requirement for advancing nanoscience and nanotechnology. Current plasma etching techniques do not have the level of control or damage-free nature that is needed for patterning delicate sub-20 nm structures. In addition, conventional ALET, based on pulsed gases with long reactant adsorption and purging steps, is very slow. In this work, novel pulsed plasma methods with synchronous substrate and/or “boundary electrode” bias were developed for highly selective, rapid ALET. Pulsed plasma and tailored bias voltage waveforms provided controlled ion energy and narrow energy spread, which are critical for highly selective and damage-free etching. The broad goal of the project was to investigate the plasma science and engineering that will lead to rapid ALET with monolayer precision. A combined experimental-simulation study was employed to achieve this goal.

  6. Antimicrobial nanomaterials derived from natural products—A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Ji; Vermerris, Wilfred

    2016-03-30

    Modern medicine has relied heavily on the availability of effective antibiotics to manage infections and enable invasive surgery. With the emergence of antibiotic-resistant bacteria, novel approaches are necessary to prevent the formation of biofilms on sensitive surfaces such as medical implants. Advances in nanotechnology have resulted in novel materials and the ability to create novel surface topographies. This review article provides an overview of advances in the fabrication of antimicrobial nanomaterials that are derived from biological polymers or that rely on the incorporation of natural compounds with antimicrobial activity in nanofibers made from synthetic materials. Furthermore, the availability of thesemore » novel materials will contribute to ensuring that the current level of medical care can be maintained as more bacteria are expected to develop resistance against existing antibiotics.« less

  7. Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses

    SciTech Connect (OSTI)

    Korol'kov, V P; Ionin, Andrei A; Kudryashov, Sergei I; Seleznev, L V; Sinitsyn, D V; Samsonov, R V; Maslii, A I; Medvedev, A Zh; Gol'denberg, B G

    2011-04-30

    This work examines the effect of high-power femtosecond laser pulses on Ni/Cu bilayer foils produced by electrodeposition. We consider nanostructures formed at different laser beam parameters and under different ambient conditions. The surface nanostructures obtained in air and water have mostly the form of quasi-periodic ripples with a characteristic period of 400 - 450 and 370 - 390 nm, respectively, at a laser wavelength of 744 nm, whereas the nanostructures produced in ethanol and benzine have the form of spikes, typically spaced 400 - 700 nm apart. Femtosecond laser nanostructuring of metals is for the first time proposed, and experimentally tested, as a viable approach to producing anti-reflective coatings on the surface of polymer replicas. (laser nanotechnologies)

  8. L A S O W

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A S O W a re h o u s e M e tr o p o li s C e n te r N S S B S h o p s C M R N IS C P ar k in g P ar k in g P h y s ic s O to w i W el ln es s C en te r J. R. Oppenheimer Study Center (Cochiti and Jemez Rooms) Center for Integrated Nanotechnologies CINT Materials Science Laboratory MSL Auditorium MSL Courtyard Research Park Room 203 A / B 38 6 6 E A S T J E M E Z R O A D ( T R U C K R O U T E ) D IA M O N D D R IV E E N I W E T O K R O A D W E S T J E M E Z R O A D Los Alamos Canyon Bridge to Los

  9. Self-assembling multimeric nucleic acid constructs

    DOE Patents [OSTI]

    Cantor, C.R.; Niemeyer, C.M.; Smith, C.L.; Sano, Takeshi; Hnatowich, D.J.; Rusckowski, M.

    1996-10-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products. 5 figs.

  10. Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric subsrates.

    SciTech Connect (OSTI)

    Jiang, H.; Sun, Y.; Rogers, J. A.; Huang, Y.; Arizona State Univ.; Univ. of Illinois; Northwestern Univ.

    2008-04-01

    The precisely controlled buckling of stiff thin films (e.g., Si or GaAs nano ribbons) on the patterned surface of elastomeric substrate (e.g., poly(dimethylsiloxane) (PDMS)) with periodic inactivated and activated regions was designed by Sun et al. [Sun, Y., Choi, W.M., Jiang, H., Huang, Y.Y., Rogers, J.A., 2006. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nature Nanotechnology 1, 201-207] for important applications of stretchable electronics. We have developed a post-buckling model based on the energy method for the precisely controlled buckling to study the system stretchability. The results agree with Sun et al.'s (2006) experiments without any parameter fitting, and the system can reach 120% stretchability.

  11. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    SciTech Connect (OSTI)

    Munaweera, Imalka; Balkus, Kenneth J. Jr. E-mail: Anthony.DiPasqua@unthsc.edu; Koneru, Bhuvaneswari; Shi, Yi; Di Pasqua, Anthony J. E-mail: Anthony.DiPasqua@unthsc.edu

    2014-11-01

    Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, {sup 1}H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  12. Therapeutic potential of nanoceria in regenerative medicine

    SciTech Connect (OSTI)

    Das, Soumen; Chigurupati, Srinivasulu; Dowding, Janet; Munusamy, Prabhakaran; Baer, Donald R.; McGinnis, James F.; Mattson, Mark P.; Self, William; Seal, Sudipta

    2014-11-01

    Tissue engineering and regenerative medicine aim to achieve functional restoration of tissue or cells damaged through disease, aging or trauma. Advancement of tissue engineering requires innovation in the field of 3D scaffolding, and functionalization with bioactive molecules. Nanotechnology offers advanced materials with patterned nano-morphologies for cell growth and different molecular substrates which can support cell survival and functions. Cerium oxide nanoparticles (nanoceria) can control intracellular as well as extracellular reactive oxygen and nitrogen species. Recent findings suggest that nanoceria can enhance long-term cell survival, enable cell migration and proliferation, and promote stem cell differentiation. Moreover, the self-regenerative property of nanoceria permits a small dose to remain catalytically active for extended time. This review summarizes the possibilities and applications of nanoceria in the field of tissue engineering and regenerative medicine.

  13. Nanomanipulation and nanofabrication with multi-probe STM: From individual atoms to nanowires

    SciTech Connect (OSTI)

    Qin, Shengyong; Kim, Tae Hwan; Wang, Zhouhang; Li, An-Ping

    2012-01-01

    The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.

  14. Point defect weakened thermal contraction in monolayer graphene

    SciTech Connect (OSTI)

    Zha, Xian-Hu; Zhang, Rui-Qin; Lin, Zijing

    2014-08-14

    We investigate the thermal expansion behaviors of monolayer graphene and three configurations of graphene with point defects, namely the replacement of one carbon atom with a boron or nitrogen atom, or of two neighboring carbon atoms by boron-nitrogen atoms, based on calculations using first-principles density functional theory. It is found that the thermal contraction of monolayer graphene is significantly decreased by point defects. Moreover, the corresponding temperature for negative linear thermal expansion coefficient with the maximum absolute value is reduced. The cause is determined to be point defects that enhance the mechanical strength of graphene and then reduce the amplitude and phonon frequency of the out-of-plane acoustic vibration mode. Such defect weakening of graphene thermal contraction will be useful in nanotechnology to diminish the mismatching or strain between the graphene and its substrate.

  15. Characterization of few-layered graphene grown by carbon implantation

    SciTech Connect (OSTI)

    Lee, Kin Kiong; McCallum, Jeffrey C.; Jamieson, David N.

    2014-02-21

    Graphene is considered to be a very promising material for applications in nanotechnology. The properties of graphene are strongly dependent on defects that occur during growth and processing. These defects can be either detrimental or beneficial to device performance depending on defect type, location and device application. Here we present experimental results on formation of few-layered graphene by carbon ion implantation into nickel films and characteristics of graphene devices formed by graphene transfer and lithographic patterning. Micro-Raman spectroscopy was used to determine the number of graphene layers formed and identify defects arising from the device processing. The graphene films were cleaned by annealing in vacuum. Transport properties of cleaned graphene films were investigated by fabrication of back-gated field-effect transistors, which exhibited high hole and electron mobility of 1935 and 1905 cm2/Vs, respectively.

  16. Realizing a supercapacitor in an electrical circuit

    SciTech Connect (OSTI)

    Fukuhara, Mikio Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2014-11-17

    Capacitors are commonly used in electronic resonance circuits; however, capacitors have not been used for storing large amounts of electrical energy in electrical circuits. Here, we report a superior RC circuit which serves as an electrical storage system characterized by quick charging and long-term discharging of electricity. The improved energy storage characteristics in this mixed electric circuit (R{sub 1}?+?R{sub 2}C{sub 1}) with small resistor R{sub 1}, large resistor R{sub 2}, and large capacitor C{sub 1} are derived from the damming effect by large R{sub 2} in simple parallel R{sub 2}C{sub 1} circuit. However, no research work has been carried out previously on the use of capacitors as electrical energy storage devices in circuits. Combined with nanotechnology, we hope that our finding will play a remarkable role in a variety of applications such as hybrid electric vehicles and backup power supplies.

  17. Cooper Pairs in Insulators?!

    ScienceCinema (OSTI)

    James Valles

    2010-01-08

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  18. Standardizng Data

    SciTech Connect (OSTI)

    Baker, Nathan A.; Klemm, Juli; Harper, Stacey; Gaheen, Sharon; Heiskanen, Mervi; Rocca-Serra, Philippe; Sansone, Susanna A.

    2013-02-05

    To enable the rational design of nanomaterials for improved efficacy and safety, it is critical to understand and exploit the physicochemical properties that drive biological behavior (Morris, 2010). Data mining and computer simulation are essential for deriving information about nanomaterial behavior; however, the datasets needed to support such studies are sparse and stored across a variety of repositories and resources. Schrurs and Lison (2012) have expressed the need for more coherence and structure in the conduct of nanotechnology research. Additionally, the lack of common reporting standards and non-uniformity of information reported have proven to be significant barriers to such data sharing and re-use. The Nanotechnology Working Group (Nano WG), of the US National Institutes of Health National Cancer Informatics Program, has been focused on addressing these barriers. The Nano WG - which includes representatives from over 20 organizations including government agencies, academia, industry, standards organizations, and alliances -has developed ISA-TAB-Nano (Thomas et al, 2013), a general framework for representing and integrating diverse types of data related to the description and characterization of nanomaterials. Recognizing that nanoparticle characterization studies have many of the same challenges as omics-based assays, the Nano WG joined the ISA Commons (Sansone et al., 2012) to leverage lessons learned in omics data sharing. The ISA Commons community brings together 50 collaborators at over 30 scientific organizations around the globe, including regulatory and industrial participants in an increasingly diverse set of life science domains. At the core of the ISA Commons is the ISA metadata tracking framework which forms the basis for the ISA-TAB-Nano extension. The extension of the ISA framework to nanotechnology domain illustrates the power of a synergistic approach that seeks the interoperability of data across multiple research disciplines. To

  19. The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar

    SciTech Connect (OSTI)

    Krauss, Todd D.

    2014-11-25

    The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.

  20. Joint Institute for Nanoscience Annual Report 2003

    SciTech Connect (OSTI)

    Baer, Donald R.; Campbell, Charles

    2004-02-01

    The Joint Institute for Nanoscience (JIN) is a cooperative venture of the University of Washington and Pacific Northwest National Laboratory to encourage and enhance high-impact and high-quality nanoscience and nanotechnology of all types. This first annual report for the JIN summarizes activities beginning in 2001 and ending at the close of fiscal year 2003 and therefore represents somewhat less than two years of activities. Major portions of the JIN resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by Pacific Northwest National Laboratory (PNNL) staff scientists and University of Washington (UW) professors. These fellowships were awarded on the basis of applications that included research proposals. JIN co-sponsors an annual Nanoscale Science and Technology Workshop held in Seattle. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of Alaska. The initial JIN agreement recognized that expansion of cooperation beyond UW and PNNL would be highly valuable. Starting in early 2003, efforts were initiated to form a regional communication link called the Northwest Nanoscience and Nanotechnology Network (N₄). In concept, N₄ is a tool to encourage communication and help identify regional resources and nanoscience and technology activities.