National Library of Energy BETA

Sample records for gc4 nanotechnology gc5

  1. Nanotechnology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Engineering. A Advanced Functional Materials Nanotechnology Nature Nanotechnology Biosensors & Bioelectronics Small 2013 JCR Science Edition, ranked by total citations,...

  2. Nanotechnology

    Broader source: Energy.gov [DOE]

    The Department of Energy's Nanotechnology Safety provides a forum for the exchange of best practices, lessons learned, and guidance in the area of nanotechnology safety and health management.

  3. Nanotechnology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanotechnology Nanotechnology The Department of Energy's Nanotechnology Safety provides a forum for the exchange of best practices, lessons learned, and guidance in the area of nanotechnology safety and health management. POLICY AND RULEMAKING Nanotechnology Policy Nanotechnology Order OTHER FEDERAL SAFETY AND HEALTH POLICIES OF INTEREST Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns Associated with Engineered Nanomaterials. DHHS (NIOSH) Publication Number 2009-125

  4. Svaya Nanotechnologies | Open Energy Information

    Open Energy Info (EERE)

    Svaya Nanotechnologies Place: Sunnyvale, California Zip: 94085 Product: Stealth nanotechnology startup developing self-assembling, molecular-scale films useful in the PV...

  5. Contribution to Nanotechnology Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three institutions, including Los Alamos National Laboratory, has discovered a more efficient way of fusing charge-carrying electrical contacts to tiny "nanowires" of silicon to create the nanotechnology at the heart of potential future advances in modern electronics, sensing, and energy collection. Nanotech

  6. Center for Integrated Nanotechnologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS » MPA » MPA-CINT Center for Integrated Nanotechnologies Nanomaterials integration is one of many approaches we take in addressing a range of challenges, from human health to national defense. Contact Us CINT Co-Director Quanxi Jia Email Deputy Group Leader Kristin Omberg Email Group Office (505) 667-9243 First in-situ images of void collapse in explosives Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect explosives under shock

  7. Navillum Nanotechnologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navillum Nanotechnologies National Clean Energy Business Plan Competition Navillum Nanotechnologies University of Utah Navillum Nanotechnologies' innovative method for fabricating quantum dots and other types of semiconducting nanocrystals at commercial scale that can both save energy and produce renewable energy. Quantum dots emit light at specific colors when stimulated by light or applied electrical source. Semiconducting nanocrystals can make solar panels up to 45 percent more efficient,

  8. Navillum Nanotechnologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navillum Nanotechnologies National Clean Energy Business Plan Competition Navillum Nanotechnologies University of Utah Navillum Nanotechnologies' innovative method for fabricating quantum dots and other types of semiconducting nanocrystals at commercial scale that can both save energy and produce renewable energy. Quantum dots emit light at specific colors when stimulated by light or applied electrical source. Semiconducting nanocrystals can make solar panels up to 45 percent more efficient,

  9. Nanotechnology: Its Promise and Challenges

    SciTech Connect (OSTI)

    Vicki Colvin

    2009-05-14

    Vicki Colvin of Rice University talks about how nanotechnology-enabled systems, with dimensions on the scale of a billionth of a meter, offer great promise for solving difficult social problems and creating enormous possibilities.

  10. Approaches to Safe Nanotechnology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches to Safe Nanotechnology Approaches to Safe Nanotechnology Approaches to Safe Nanotechnology PDF icon CX rulemaking files More Documents & Publications Volume II, Environment, Safety, and Health Special Review of Work Practices for Nanoscale Material Activities at Department of Energy Laboratories, August 2008 Sustainable Nanomaterials Workshop Environment, Safety, and Health Special Review, Department of Energy Laboratories - August 2008

  11. Altair Nanotechnologies Inc | Open Energy Information

    Open Energy Info (EERE)

    of proprietary technology for making nanocrystalline materials. Applications include batteryfuel cell development. References: Altair Nanotechnologies Inc1 This article is a...

  12. Challenges and opportunities for structural DNA nanotechnology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenges and opportunities for structural DNA nanotechnology Authors: Pinheiro, A. V., Han, D., Shih, W. M., and Yan, H. Title: Challenges and opportunities for structural DNA...

  13. Nanotechnology and algae biofuels exhibits open July 26 at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is...

  14. Micro- & Nano-Technologies Enabling More Compact, Lightweight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems Micro- & Nano-Technologies Enabling More Compact,...

  15. Using Nanotechnology to Fight Friction and Wear | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Argonne scientists look to the tiny particles of nanotechnology to help tame the negative consequences of friction and wear and achieve the rarified state of "superlubricity." PDF icon Nano Sheet_using nanotechnology

  16. Control Banding and Nanotechnology Synergist

    SciTech Connect (OSTI)

    Zalk, D; Paik, S

    2009-12-15

    The average Industrial Hygienist (IH) loves a challenge, right? Okay, well here is one with more than a few twists. We start by going through the basics of a risk assessment. You have some chemical agents, a few workers, and the makings of your basic exposure characterization. However, you have no occupational exposure limit (OEL), essentially no toxicological basis, and no epidemiology. Now the real handicap is that you cannot use sampling pumps, cassettes, tubes, or any of the media in your toolbox, and the whole concept of mass-to-dose is out the window, even at high exposure levels. Of course, by the title, you knew we were talking about nanomaterials (NM). However, we wonder how many IHs know that this topic takes everything you know about your profession and turns it upside down. It takes the very foundations that you worked so hard in college and in the field to master and pulls it out from underneath you. It even takes the gold standard of our profession, the quantitative science of exposure assessment, and makes it look pretty darn rusty. Now with NM there is the potential to get some aspect of quantitative measurements, but the instruments are generally very expensive and getting an appropriate workplace personal exposure measurement can be very difficult if not impossible. The potential for workers getting exposures, however, is very real, as evidenced by a recent publication reporting worker exposures to polyacrylate nanoparticles in a Chinese factory (Song et al. 2009). With something this complex and challenging, how does a concept as simple as Control Banding (CB) save the day? Although many IHs have heard of CB, most of their knowledge comes from its application in the COSHH Essentials toolkit. While there is conflicting published research on COSHH Essentials and its value for risk assessments, almost all of the experts agree that it can be useful when no OELs are available (Zalk and Nelson 2008). It is this aspect of CB, its utility with uncertainty, that attracted international NM experts to recommend this qualitative risk assessment approach for NM. However, since their CB recommendation was only in theory, we took on the challenge of developing a working toolkit, the CB Nanotool (see Zalk et al. 2009 and Paik et al. 2008), as a means to perform a risk assessment and protect researchers at the Lawrence Livermore National Laboratory. While it's been acknowledged that engineered NM have potentially endless benefits for society, it became clear to us that the very properties that make nanotechnology so useful to industry could also make them dangerous to humans and the environment. Among the uncertainties and unknowns with NM are: the contribution of their physical structure to their toxicity, significant differences in their deposition and clearance in the lungs when compared to their parent material (PM), a lack of agreement on the appropriate indices for exposure to NM, and very little background information on exposure scenarios or populations at risk. Part of this lack of background information can be traced to the lack of risk assessments historically performed in the industry, with a recent survey indicating that 65% of companies working with NM are not doing any kind of NM-specific risk assessment as they focus on traditional PM methods for IH (Helland et al. 2009). The good news is that the amount of peer-reviewed publications that address environmental, health and safety aspects of NM has been increasing over the last few years; however, the percentage of these that address practical methods to reduce exposure and protect workers is orders of magnitude lower. Our intent in developing the CB Nanotool was to create a simplified approach that would protect workers while unraveling the mysteries of NM for experts and non-experts alike. Since such a large part of the toxicological effects of both the physical and chemical properties of NM were unknown, not to mention changing logarithmically as new NM research continues growing, we needed to account for this lack of information as part of the CB Nano

  17. Using Nanotechnology to Fight Friction and Wear | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Nanotechnology to Fight Friction and Wear Tiny diamonds wrapped in graphene help achieve "superlubricity," in which friction drops to near zero. Graphene "nanoscrolls" could...

  18. DOE Science Showcase - Nanotechnology | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Lives of Proteins, BNL Lab Breakthrough: Nanomaterials Discoveries Lead to Possible Cancer Treatment , ANL YouTube video In the OSTI Collections: Nanotechnology, William Watson, ...

  19. Nanotechnology: Small Materials Making a Big Impact | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanotechnology has already produced big breakthroughs in electronics and medicine, producing smaller, more powerful computers and improving cancer treatments and diagnostics. ...

  20. December 3, 2003: Bush signs Nanotechnology R&D Act | Department of Energy

    Energy Savers [EERE]

    3, 2003: Bush signs Nanotechnology R&D Act December 3, 2003: Bush signs Nanotechnology R&D Act December 3, 2003: Bush signs Nanotechnology R&D Act December 3, 2003 Secretary Abraham attends the signing of the 21st Century Nanotechnology Research and Development Act by President Bush. The act authorizes funding for nanotechnology research and development over four years and puts into law programs and activities supported by President Bush's National Nanotechnology Initiative. The act

  1. National Nanotechnology Initiative's Signature Initiative Sustainable Nanomanufacturing: Creating the Industries of the Future

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by National Nanotechnology Coordination Office held on June 26, 2012

  2. Nanoscience and Nanotechnology: From Energy Applications to Advanced Medical Therapies

    ScienceCinema (OSTI)

    Tijana Rajh

    2010-01-08

    Dr. Rajh will present a general talk on nanotechnology ? an overview of why nanotechnology is important and how it is useful in various fields. The specific focus will be on Solar energy conversion, environmental applications and advanced medical therapies. She has broad expertise in synthesis and characterization of nanomaterials that are used in nanotechnology including novel hybrid systems connecting semiconductors to biological molecules like DNA and antibodies. This technology could lead to new gene therapy procedures, cancer treatments and other medical applications. She will also discuss technologies made possible by organizing small semiconductor particles called quantum dots, materials that exhibit a rich variety of phenomena that are size and shape dependent. Development of these new materials that harnesses the unique properties of materials at the 1-100 nanometer scale resulted in the new field of nanotechnology that currently affects many applications in technological and medical fields.

  3. Micro- & Nano-Technologies Enabling More Compact, Lightweight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Power Generation & Cooling Systems | Department of Energy Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented PDF icon hendricks.pdf More Documents & Publications Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems Micro- & Nano-Technologies Enabling More Compact, Lightweight

  4. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  5. Nanotechnology Energizing Our Future | U.S. DOE Office of Science...

    Office of Science (SC) Website

    101 .ppt file (7.6MB) Paul Alivisatos, LBNL Nanotechnology for the Hydrogen Economy .ppt file (817KB) George Crabtree, ANL Nanotechnology for Solar Energy .ppt file (7.4MB) Prof. ...

  6. Potential impacts of nanotechnology on energy transmission applications and needs.

    SciTech Connect (OSTI)

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  7. Nanotechnology for the Forest Products Industry Vision and Technology Roadmap

    SciTech Connect (OSTI)

    Atalla, Rajai; Beecher, James; Caron, Robert; Catchmark, Jeffrey; Deng, Yulin; Glasser, Wolfgang; Gray, Derek; Haigler, Candace; Jones, Philip; Joyce, Margaret; Kohlman, Jane; Koukoulas, Alexander; Lancaster, Peter; Perine, Lori; Rodriguez, Augusto; Ragauskas, Arthur; Wegner, Theodore; Zhu, Junyong

    2005-03-01

    A roadmap for Nanotechnology in the Forest Products Industries has been developed under the umbrella of the Agenda 2020 program overseen by the CTO committee. It is expected that the use of new analytical techniques and methodologies will allow us to understand the complex nature of wood based materials and allow the dramatically enhanced use of the major strategic asset the US has in renewable, recyclable resources based on its well managed Forests.

  8. Center for Integrated Nanotechnologies (CINT) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Integrated Nanotechnologies (CINT) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  9. APPLICATIONS OF BIOTECHNOLOGY IN DEVELOPMENT OF BIOMATERIALS: NANOTECHNOLOGY AND BIOFILMS

    SciTech Connect (OSTI)

    Brigmon, R.; Berry, T.; Narayan, R.

    2010-11-29

    Biotechnology is the application of biological techniques to develop new tools and products for medicine and industry. Due to various properties including chemical stability, biocompatibility, and specific activity, e.g. antimicrobial properties, many new and novel materials are being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. Many of these materials are less than 100 nanometers in size. Nanotechnology is the engineering discipline encompassing designing, producing, testing, and using structures and devices less than 100 nanometers. One of the challenges associated with biomaterials is microbial contamination that can lead to infections. In recent work we have examined the functionalization of nanoporous biomaterials and antimicrobial activities of nanocrystalline diamond materials. In vitro testing has revealed little antimicrobial activity against Pseudomonas fluorescens bacteria and associated biofilm formation that enhances recalcitrance to antimicrobial agents including disinfectants and antibiotics. Laser scanning confocal microscopy studies further demonstrated properties and characteristics of the material with regard to biofilm formation.

  10. NREL Nano-Technology Solar Cell Achieves 18.2% Efficiency - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL NREL Nano-Technology Solar Cell Achieves 18.2% Efficiency Breakthrough should eliminate need for anti-reflection layer, cutting costs October 12, 2012 Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have produced solar cells using nanotechnology techniques at an efficiency - 18.2% -- that is competitive. The breakthrough should be a major step toward helping lower the cost of solar energy. NREL tailored a nanostructured surface while ensuring

  11. Developing nanotechnology for biofuel and plant science applications

    SciTech Connect (OSTI)

    Valenstein, Justin

    2012-06-20

    This dissertation presents the research on the development of mesoporous silica based nanotechnology for applications in biofuels and plant science. Mesoporous silica nanoparticles (MSNs) have been the subject of great interest in the last two decades due to their unique properties of high surface area, tunable pore size and particle morphology. The robust nature of the silica framework is easily functionalized to make the MSNs a promising option for selective separations. Also, the independent channels that form the pores of MSN have been exploited in the use of particles as platforms for molecular delivery. Pore size and organic functionality are varied to identify the ideal adsorbent material for free fatty acids (FFAs). The resulting material is able to sequester FFAs with a high degree of selectivity from a simulated solution and microalgal oil. The recyclability and industrial implications are also explored. A continuation of the previous material, further tuning of MSN pore size was investigated. Particles with a smaller diameter selectively sequester polyunsaturated free fatty acids (PUFAs) over monounsaturated FFAs and saturated FFAs. The experimental results were verified with molecular modeling. Mesoporous silica nanoparticle materials with a pore diameter of 10 nm (MSN-10) were decorated with small gold nanoparticles. The resulting materials were shown to deliver proteins and DNA into plant cells using the biolistic method.

  12. TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE

    SciTech Connect (OSTI)

    Louthan, M

    2007-07-17

    Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the properties of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.

  13. Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Museum Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is opening two new exhibits as part of the Laboratory's 70th Anniversary celebration. July 22, 2013 What if you could power your life using pond scum? Los Alamos researchers are working to make this a reality. What if you could power your life using pond scum? Los Alamos researchers are working to make this a

  14. Connecticut State University System Initiative for Nanotechnology-Related Equipment, Faculty Development and Curriculum Development

    SciTech Connect (OSTI)

    Broadbridge, Christine C.

    2013-03-28

    DOE grant used for partial fulfillment of necessary laboratory equipment for course enrichment and new graduate programs in nanotechnology at the four institutions of the Connecticut State University System (CSUS). Equipment in this initial phase included variable pressure scanning electron microscope with energy dispersive x-ray spectroscopy elemental analysis capability [at Southern Connecticut State University]; power x-ray diffractometer [at Central Connecticut State University]; a spectrophotometer and spectrofluorimeter [at Eastern Connecticut State University; and a Raman Spectrometer [at Western Connecticut State University]. DOE's funding was allocated for purchase and installation of this scientific equipment and instrumentation. Subsequently, DOE funding was allocated to fund the curriculum, faculty development and travel necessary to continue development and implementation of the System's Graduate Certificate in Nanotechnology (GCNT) program and the ConnSCU Nanotechnology Center (ConnSCU-NC) at Southern Connecticut State University. All of the established outcomes have been successfully achieved. The courses and structure of the GCNT program have been determined and the program will be completely implemented in the fall of 2013. The instrumentation has been purchased, installed and has been utilized at each campus for the implementation of the nanotechnology courses, CSUS GCNT and the ConnSCU-NC. Additional outcomes for this grant include curriculum development for non-majors as well as faculty and student research.

  15. SCIENCE ON SATURDAY- "Light and Nanotechnology- Engineering & So Much More"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab 2, 2013, 9:30am Science On Saturday MBG Auditorium SCIENCE ON SATURDAY- "Light and Nanotechnology- Engineering & So Much More" Professor Claire Gmachl Department of Electrical Engineering, Princeton University Presentation: File SOS02MAR2013_CGmachi.pptx Science on Saturday is a series of lectures given by scientists, mathematicians, and other professionals involved in cutting-edge research. Held on Saturday mornings throughout winter, the

  16. A Nanotechnology-Based, Self-Healing, Chromate-Free Conversion Coating For

    Office of Science (SC) Website

    Magnesium Alloys | U.S. DOE Office of Science (SC) A Nanotechnology-Based, Self-Healing, Chromate-Free Conversion Coating For Magnesium Alloys Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights Reporting Fraud Contact Information Small Business Innovation Research and Small Business

  17. Nanotechnology Energizing Our Future | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Presentations » Nanotechnology Energizing Our Future Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000

  18. Nanotechnology applications to desalination : a report for the joint water reuse & desalination task force.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Mayer, Tom; Cygan, Randall Timothy

    2011-01-01

    Nanomaterials and nanotechnology methods have been an integral part of international research over the past decade. Because many traditional water treatment technologies (e.g. membrane filtration, biofouling, scale inhibition, etc.) depend on nanoscale processes, it is reasonable to expect one outcome of nanotechnology research to be better, nano-engineered water treatment approaches. The most immediate, and possibly greatest, impact of nanotechnology on desalination methods will likely be the development of membranes engineered at the near-molecular level. Aquaporin proteins that channel water across cell membranes with very low energy inputs point to the potential for dramatically improved performance. Aquaporin-laced polymer membranes and aquaporin-mimicking carbon nanotubes and metal oxide membranes developed in the lab support this. A critical limitation to widespread use of nanoengineered desalination membranes will be their scalability to industrial fabrication processes. Subsequent, long-term improvements in nanoengineered membranes may result in self-healing membranes that ideally are (1) more resistant to biofouling, (2) have biocidal properties, and/or (3) selectively target trace contaminants.

  19. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    SciTech Connect (OSTI)

    Elcock, D.

    2010-09-17

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved, would reduce energy use and concomitant water consumption. These inefficiencies include air heater inefficiencies, boiler corrosion, low operating temperatures, fuel inefficiencies, and older components that are subject to strain and failure. A variety of nanotechnology applications that could potentially be used to reduce the amount of freshwater consumed - either directly or indirectly - by these areas and activities was identified. These applications include membranes that use nanotechnology or contain nanomaterials for improved water purification and carbon capture; nano-based coatings and lubricants to insulate and reduce heat loss, inhibit corrosion, and improve fuel efficiency; nano-based catalysts and enzymes that improve fuel efficiency and improve sulfur removal efficiency; nanomaterials that can withstand high temperatures; nanofluids that have better heat transfer characteristics than water; nanosensors that can help identify strain and impact damage, detect and monitor water quality parameters, and measure mercury in flue gas; and batteries and capacitors that use nanotechnology to enable utility-scale storage. Most of these potential applications are in the research stage, and few have been deployed at coal-fired power plants. Moving from research to deployment in today's economic environment will be facilitated with federal support. Additional support for research development and deployment (RD&D) for some subset of these applications could lead to reductions in water consumption and could provide lessons learned that could be applied to future efforts. To take advantage of this situation, it is recommended that NETL pursue funding for further research, development, or deployment for one or more of the potential applications identified in this report.

  20. In the OSTI Collections: Nanotechnology | OSTI, US Dept of Energy, Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Scientific and Technical Information Nanotechnology Consider how far it is from New York to Los Angeles. Now compare that distance to the length of the "l" in "Angeles". That's roughly how one meter compares to one nanometer. A nanometer-one billionth of a meter-is a very small distance almost any way you look at it. One nanometer is about six times the width of a carbon atom. Distances of tens of nanometers are barely significant in much present-day technology, in

  1. Nanotechnology and textiles engineered by carbon nanotubes for the realization of advanced personal protective equipments

    SciTech Connect (OSTI)

    Andretta, Antonio; Terranova, Maria Letizia; Lavecchia, Teresa; Gay, Stefano; Tamburri, Emanuela; Picano, Alfredo; Mascioletti, Alessandro; Stirpe, Daniele; Dugnani, Giovanni; Gatti, Davide; Laria, Giuseppe; Codenotti, Barbara; Maldini, Giorgio; Roth, Siegmar; Passeri, Daniele; Rossi, Marco

    2014-06-19

    Carbon nanotubes (CNT) and CNT-based active materials have been used to assemble the gas sensing unit of innovative platforms able to detect toxic atmospheres developing in confined workplaces. The main goal of the project was to realize a full-featured, operator-friendly safety detection and monitoring system based on multifunctional textiles nanotechnologies. The fabricated sensing platform consists of a multiple gas detector coupled with a specifically designed telecommunication infrastructure. The portable device, totally integrated in the workwear, offers several advantages over the conventional safety tools employed in industrial work activities.

  2. Scaling to Nanotechnology Limits with the PIMS Computer Architecture and a new Scaling Rule.

    SciTech Connect (OSTI)

    Debenedictis, Erik

    2015-02-01

    We describe a new approach to computing that moves towards the limits of nanotechnology using a newly formulated sc aling rule. This is in contrast to the current computer industry scali ng away from von Neumann's original computer at the rate of Moore's Law. We extend Moore's Law to 3D, which l eads generally to architectures that integrate logic and memory. To keep pow er dissipation cons tant through a 2D surface of the 3D structure requires using adiabatic principles. We call our newly proposed architecture Processor In Memory and Storage (PIMS). We propose a new computational model that integrates processing and memory into "tiles" that comprise logic, memory/storage, and communications functions. Since the programming model will be relatively stable as a system scales, programs repr esented by tiles could be executed in a PIMS system built with today's technology or could become the "schematic diagram" for implementation in an ultimate 3D nanotechnology of the future. We build a systems software approach that offers advantages over and above the technological and arch itectural advantages. Firs t, the algorithms may be more efficient in the conventional sens e of having fewer steps. Second, the algorithms may run with higher power efficiency per operation by being a better match for the adiabatic scaling ru le. The performance analysis based on demonstrated ideas in physical science suggests 80,000 x improvement in cost per operation for the (arguably) gene ral purpose function of emulating neurons in Deep Learning.

  3. Enhancing Graduate Student Communication to General Audiences through Blogging about Nanotechnology and Sustainability

    SciTech Connect (OSTI)

    Bishop, Lee M.; Tillman, Ayesha S.; Geiger, Franz M.; Haynes, Christy L.; Klaper, Rebecca D.; Murphy, Catherine; Orr, Galya; Pedersen, Joel A.; DeStefano, Lizanne; Hamers, Robert J.

    2014-10-14

    We have developed and assessed a multiauthor science blog on the topic of nanotechnology and sustainability as a tool to improve the written communication and public engagement skills of graduate students. Focus group studies revealed that after participation in the blog, student authors felt more confident and capable of communicating technical topics to general audiences. Students' research mentors viewed this as an important component of their students' education, as indicated by survey data. Important design aspects of this effort include participation of an editor as well as having flexible content and target-audience guidelines. We have explicitly outlined aspects of the effort we see as critical in order to enable others to replicate this model in related settings.

  4. Semiconductor Nanotechnology: Novel Materials and Devices for Electronics, Photonics, and Renewable Energy Applications

    SciTech Connect (OSTI)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag S; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-03-01

    Electronic and photonic information technology and renewable energy alternatives, such as solar energy, fuel cells and batteries, have now reached an advanced stage in their development. Cost-effective improvements to current technological approaches have made great progress, but certain challenges remain. As feature sizes of the latest generations of electronic devices are approaching atomic dimensions, circuit speeds are now being limited by interconnect bottlenecks. This has prompted innovations such as the introduction of new materials into microelectronics manufacturing at an unprecedented rate and alternative technologies to silicon CMOS architectures. Despite the environmental impact of conventional fossil fuel consumption, the low cost of these energy sources has been a long-standing economic barrier to the development of alternative and more efficient renewable energy sources, fuel cells and batteries. In the face of mounting environmental concerns, interest in such alternative energy sources has grown. It is now widely accepted that nanotechnology offers potential solutions for securing future progress in information and energy technologies. The Canadian Semiconductor Technology Conference (CSTC) forum was established 25 years ago in Ottawa as an important symbol of the intrinsic strength of the Canadian semiconductor research and development community, and the Canadian semiconductor industry as a whole. In 2007, the 13th CSTC was held in Montreal, moving for the first time outside the national capital region. The first three meetings in the series of Nano and Giga Challenges in Electronics and Photonics NGCM2002 in Moscow, NGCM2004 in Krakow, and NGC2007 in Phoenix were focused on interdisciplinary research from the fundamentals of materials science to the development of new system architectures. In 2009 NGC2009 and the 14th Canadian Semiconductor Technology Conference (CSTC2009) were held as a joint event, hosted by McMaster University (10 14 August, Hamilton, Ontario, Canada) and the scope was expanded to include renewable energy research and development. This special issue of Nanotechnology is devoted to a better understanding of the function and design of semiconductor devices that are relevant to information technology (both electronics and photonics based) and renewable energy applications. The papers contained in this special issue are selected from the NGC/CSTC2009 symposium. Among them is a report by Ray LaPierre from McMaster University and colleagues at the University of Waterloo in Canada on the ability to manipulate single spins in nanowire quantum bits. The paper also reports the development of a testbed of a few qubits for general quantum information processing tasks [1]. Lower cost and greater energy conversion efficiency compared with thin film devices have led to a high level of activity in nanowire research related to photovoltaic applications. This special issue also contains results from an impedance spectroscopy study of core shell GaAs nanowires to throw light on the transport and recombination mechanisms relevant to solar cell research [2]. Information technology research and renewable energy sources are research areas of enormous public interest. This special issue addresses both theoretical and experimental achievements and provides a stimulating outlook for technological developments in these highly topical fields of research. References [1] Caram J, Sandoval C, Tirado M, Comedi D, Czaban J, Thompson D A and LaPierre R R 2010 Electrical characteristics of core shell p-n GaAs nanowire structures with Te as the n-dopant Nanotechnology 21 134007 [2] Baugh J, Fung J S and LaPierre R R 2010 Building a spin quantum bit register using semiconductor nanowires Nanotechnology 21 134018

  5. Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology

    SciTech Connect (OSTI)

    Hoover, Mark D.; Myers, David S.; Cash, Leigh J.; Guilmette, Raymond A.; Kreyling, Wolfgang G.; Oberdörster, Günter; Smith, Rachel; Cassata, James R.; Boecker, Bruce B.; Grissom, Michael P.

    2015-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications. While the full report is in preparation, this article presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are already present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.

  6. Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoover, Mark D.; Myers, David S.; Cash, Leigh J.; Guilmette, Raymond A.; Kreyling, Wolfgang G.; Oberdörster, Günter; Smith, Rachel; Cassata, James R.; Boecker, Bruce B.; Grissom, Michael P.

    2015-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications. While the full report is in preparation, this article presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are alreadymore » present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.« less

  7. Where Are We Heading in Nanotechnology Environmental Health and Safety and Materials Characterization?

    SciTech Connect (OSTI)

    Nel, Andre; Parak, Wolfgang J.; Chan, Warren C.; Xia, Tian; Hersam, Mark C.; Brinker, C. J.; Zink, Jeffery I.; Pinkerton, Kent E.; Baer, Donald R.; Weiss, Paul S.

    2015-06-23

    Every chemist, material scientist, physicist, engineer, or commercial enterprise involved in the synthesis and/or production of engineered nanomaterials (ENM) or nano-enabled products aspires to develop safe materials. Nanotechnology environmental health and safety (nanoEHS) is a research discipline that involves the study of the possible adverse health and biological effects that nanomaterials may have on humans and environmental organisms and ecosystems. NanoEHS research has provided a body of experimental evidence indicating the possibility of hazardous outcomes as a result of the interactions of unique ENM physicochemical properties with similar scale processes occurring at a wide range of nano/bio interfaces, including at biomolecular, cellular, subcellular, organ, systemic, whole organism, or ecosystems levels. This projected hazard and risk potential warrants rigorous attention to safety assessment, safe use, safe implementation, benign design, regulatory oversight, governance, and public awareness to address the possibility and prevention of nanotoxicity, now or at any time in the future.1 Thus, we should understand the properties of the ENMs that are responsible for the toxicological response, so that we can re-engineer their physicochemical characteristics for risk prevention and safer ENM design.2 However, in spite of widespread use, no human toxicological disease or major environmental impact has been reported for ENMs. Thus, while Nanotoxicology is a thriving sub-discipline of Nano-EHS, the use of the root word toxicology may elicit a feeling that nanomaterials are inherently toxic despite the fact that toxicity has not been established in real-life use so far. As a community, we may want to rename this sub-discipline as Nanosafety, since the objective is to use toxicology information to guide the design of safer nanomaterials for use in medicine, biology, electronics, lighting systems, etc. At ACS Nano, we are interested in publishing articles and forward-looking Perspectives and Reviews that determine and establish ENM physicochemical properties, structure-activity relationships, catalytic effects at the nano/bio interface, mechanistic injury responses, in vitro to in vivo prediction making, safer-by design strategies, actionable screening and detection methods, hazard and risk ranking, fate and transport, ENM categorization, theory and modeling, societal implications, and regulatory/governance decisions.3 Context is important in the immediate and longer-range impact of this research, as we are interested in realistic nanoEHS exposure scenarios conducted with systematic variation of ENM physicochemical properties rather than investigations of a single or a limited number of materials in isolated in vitro studies that only address cytotoxicity at unrealistic doses. In order to make these data useful for researchers, government and regulatory agencies, and other interested parties, these studies, where possible, should include either appropriate positive and negative controls or benchmark materials to answer the important question, as compared to what? Dosimetry should be explained in terms of appropriate dose metrics relative to the type of materials, their mechanisms of injury, and exposure conditions, using in vitro to in vivo extrapolations where possible. Another important component of these studies includes appropriate physicochemical characterization of the nanomaterials.

  8. National Nanotechnology Initiative

    Office of Science (SC) Website

    economic and national security of the United States, promoting scientific and technological innovation, and ensuring environmental cleanup of the national nuclear weapons complex. ...

  9. Princeton Plasma Physics Lab - Nanotechnology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), Adam Cohen has been named Deputy Under Secretary for Science and Energy in Washington D.C....

  10. Nanotechnology | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on topics ranging from basic research to uses for plasma in microchip etching, nano- material manufacturing and other technologies. Read more about Worldwide conference on...

  11. Solar Cell Nanotechnology Final Technical Report

    SciTech Connect (OSTI)

    Das, Biswajit

    2014-05-07

    The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arrays of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the nanoporous alumina templates. In order to eliminate this problem, electrophoretic deposition was selected as the more appropriate technique, which involves the guided deposition of semiconductor nanoparticles in the presence of ultrasonic energy to form the crystalline nanowires. Extensive experimental research was carried out to optimize the process parameters for formation of crystalline nanowires. It was observed that the environmental bath temperature plays a critical role in determining the structural integrity of the nanowires and hence their lengths. Investigation was carried out for the formation of semitransparent ohmic contacts on the nanowires to facilitate photocurrent spectroscopy measurements as well as for solar cell implementation. Formation of such ohmic contacts was found to be challenging and a process involving mechanical and electrochemical polishing was developed to facilitate such contacts. The use of nanoporous alumina templates for the surface texturing of mono- and multi-crystalline solar cells was extensively investigated by electrochemical etching of the silicon through the pores of the nanoporous templates. The processes for template formation as well as etching were optimized and the alumina/silicon interface was investigated using capacitance-voltage characterization. The process developed was found to be viable for improving solar cell performance.

  12. Tools for Nanotechnology Education Development Program

    SciTech Connect (OSTI)

    Dorothy Moore

    2010-09-27

    The overall focus of this project was the development of reusable, cost-effective educational modules for use with the table top scanning electron microscope (TTSEM). The goal of this project's outreach component was to increase students' exposure to the science and technology of nanoscience.

  13. National Nanotechnology Initiative's Signature Initiative Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NIST, NSF, OSHA, USDAFS Goal: Establish manufacturing technologies for economical and sustainable integration of nanoscale building blocks into complex, large scale systems. ...

  14. Fundamental enabling issues in nanotechnology : (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    The predictive capabilities of simulation permit direct determination of fundamental ... Our combined experiment and simulation results reveal the necessary materials science to ...

  15. New Argonne centers connect business with energy storage, nanotechnology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research | Argonne National Laboratory Argonne's Tijana Rajh explains recently synthesized metal oxide nanoparticle samples with controlled amounts of structural defects to NDW Director Andreas Roelofs and fellow researcher Xiao-Min Lin. Also pictured are Argonne researchers Elena Rozhkova (left) and Elena Shevchenko. (Click on image to enlarge.) Argonne's Tijana Rajh explains recently synthesized metal oxide nanoparticle samples with controlled amounts of structural defects to NDW Director

  16. Micro- & Nano-Technologies Enabling More Compact, Lightweight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented PDF icon hendricks.pdf More Documents &...

  17. Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems

    Broader source: Energy.gov [DOE]

    Compares thermo-hydraulic performance and cost of micro-honeycombs to conventional heat exchange structures to highlight performance enhancement mechanisms

  18. Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems

    Broader source: Energy.gov [DOE]

    Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented

  19. CAMD Nanofabrication Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure :: News :: Related sites National Nanotechnology Initiative Nano Technology Industries Advanced Materials Research Institute Institute of Physics Max-Planck Institute for Kohlenforschung The institute of nanotechnology Nanotechnology Now Nanotechnology - Education Nanojournals Chancellor's Distinguished Lectureship Series

  20. Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Sites National Nanotechnology Initiative Nano Technology Industries Advanced Materials Research Institute Institute of Physics Max-Planck Institute for Kohlenforschung The institute of nanotechnology Nanotechnology Now Nanotechnology - Education Nanojournals Chancellor's Distinguished Lectureship Series Patent Analytics and Patent Searching

  1. Nanoscience Research for Energy Needs. Report of the National Nanotechnology Initiative Grand Challenge Workshop, March 16-18, 2004

    SciTech Connect (OSTI)

    Alivisatos, P.; Cummings, P.; De Yoreo, J.; Fichthorn, K.; Gates, B.; Hwang, R.; Lowndes, D.; Majumdar, A.; Makowski, L.; Michalske, T.; Misewich, J.; Murray, C.; Sibener, S.; Teague, C.; Williams, E.

    2004-03-18

    This document is the report of a workshop held under NSET auspices in March 2004 aimed at identifying and articulating the relationship of nanoscale science and technology to the Nation's energy future.

  2. Fabrics coated with lubricated nanostructures display robust...

    Office of Scientific and Technical Information (OSTI)

    GrantContract Number: AR0000326 Type: Accepted Manuscript Journal Name: Nanotechnology (Print) Additional Journal Information: Journal Name: Nanotechnology (Print); Journal ...

  3. Near infrared surfaceplasmonpolariton with hyperbolic metamaterials...

    Office of Scientific and Technical Information (OSTI)

    Nanotechnology User Conference held September 19-20, 2012 in Albuquerque, NM.; Related Information: Proposed for presentation at the Center for Integrated Nanotechnology User ...

  4. Sandia National Labs: PCNSC: Partnering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Integrated Nanotechnologies Designated Capabilities Sandia Partnerships Research Partnering Center for Integrated Nanotechnologies Designated Capabilities Sandia Partnerships Top of page

  5. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Learn More Navillum Nanotechnologies University of Utah Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When ...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (1) nanoscience and nanotechnology (1) nanoscience and nanotechnology solar (photovoltaic), solar (fuels), solid state lighting, bio-inspired, electrodes - solar, defects, ...

  7. Energy Citations Database (ECD) - Former Highlights

    Office of Scientific and Technical Information (OSTI)

    Archived Features Nanotechnology nanoclusterhand Photo Courtesy of LANL Nanotechnology has a vitally important role to play in addressing the nation's energy, climate change and...

  8. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    SciTech Connect (OSTI)

    Allain, Jean Paul

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  9. Arrowhead Research Corporation | Open Energy Information

    Open Energy Info (EERE)

    Research Corporation Place: Pasadena, California Zip: 91106 Product: Diversified nanotechnology company focusing on electronics, life sciences, and energy products. References:...

  10. Ni-Mn-Ga shape memory nanoactuation (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; BENDING; COMPARATIVE EVALUATIONS; CRYSTALS; ELECTRIC CONDUCTIVITY; ...

  11. Introduction to Microelectromechanical Systems (MEMS) failure...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; COMMERCIALIZATION; ELECTROMECHANICS; NANOSTRUCTURES; ...

  12. NE & EERE Working Together: 5 Facts About the New Energy Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Laboratories support chemical sciences, nanotechnology, water chemistry, advanced microscopy, control systems, high-temperature testing, thermal hydraulics, materials testing and ...

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Next Everything21 Electronic Full Text10 ... properties. (1) nanoscience and nanotechnology (1) nanostructures (1) ... Lithographically defined microporous carbon ...

  14. Synthesis of Non-blinking Semiconductor Quantum Dots Emitting...

    Office of Scientific and Technical Information (OSTI)

    37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ALIGNMENT; CADMIUM; EMISSION SPECTRA; FLUORESCENCE; QUANTUM DOTS; RECOMBINATION;...

  15. Nanomechanical switch for integration with CMOS logic. (Journal...

    Office of Scientific and Technical Information (OSTI)

    United States Language: English Subject: 42 ENGINEERING; 77 NANOSCIENCE AND NANOTECHNOLOGY; FABRICATION; PERFORMANCE; SWITCHES; TESTING; NANOSTRUCTURES; DESIGN Word Cloud...

  16. Chemical synthesis, characterizations and magnetic properties...

    Office of Scientific and Technical Information (OSTI)

    PHYSICAL AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; ALLOYS; BCC LATTICES; COERCIVE FORCE; CRYSTALS; LATTICE PARAMETERS; MAGNETIC...

  17. Flow Solution-Liquid-Solid Technique: Novel Approach for Synthesis...

    Office of Scientific and Technical Information (OSTI)

    LDRD Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; NANOSTRUCTURES; SEMICONDUCTOR MATERIALS; SYNTHESIS...

  18. Two dimensional electron transport in modulation-doped In{sub...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; ALUMINIUM ARSENIDES; ANTIMONIDES; COMPARATIVE EVALUATIONS; DOPED MATERIALS;...

  19. Nanoparticle modifications of photodefined nanostructures for...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; CARBON; ELECTRODES; FABRICATION; MODIFICATIONS; NANOSTRUCTURES; POLYMERS Word...

  20. Thermoelectric properties of nano-meso-micro ?-MnO? powders...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE thermoelectric properties; transition metal oxides;...

  1. Fabrication of two-dimensional Au at FePt core-shell nanoparticle...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; ATOMIC FORCE MICROSCOPY; DEPOSITION; ENCAPSULATION; FABRICATION; GOLD; GOLD...

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    solar (photovoltaic), solar (fuels), solid state lighting, bio-inspired, electrodes - ... Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos ...

  3. Alloy Engineering of Defect Properties in Semiconductors: Suppression...

    Office of Scientific and Technical Information (OSTI)

    Energy (EERE) Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY defects; semiconductors; electronic...

  4. April 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    according to conventional chemistry Growing Nanowires Nanotechnology to transform computers, solar cells, batteries, thermoelectric and biomedical devices, and much more...

  5. Sunnyside Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Technologies, Inc Place: Minneapolis, Minnesota Zip: 55413 Sector: Carbon, Hydro, Hydrogen Product: Technology firm developing advanced materials and nanotechnologies including...

  6. IDIQ BS Ex A (Rev. 3.1, 4/9/13) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 31 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) ......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ....... 3 GC-3 INDEPENDENT CONTRACTOR (Jun 2009) ............................................................................ 4 GC-4 SUBCONTRACT INTERPRETATION (Jun

  7. IDIQ BS Ex A (Rev. 3.2, 6/14/13) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 19 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) ......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ....... 3 GC-3 INDEPENDENT CONTRACTOR (Jun 2009) ............................................................................ 4 GC-4 SUBCONTRACT INTERPRETATION (Jun

  8. IDIQ BS Ex A (Rev. 3.4, 12/15/14) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 12/15/14) Exhibit A General Conditions Page 1 of 20 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) ......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ....... 3 GC-3 INDEPENDENT CONTRACTOR (Jun 2009) ............................................................................ 4 GC-4 SUBCONTRACT INTERPRETATION (Jun

  9. IDIQ BS Ex A (Rev. 3.5, 3/6/15) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 3/6/15) Exhibit A General Conditions Page 1 of 20 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) ......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ....... 3 GC-3 INDEPENDENT CONTRACTOR (Jun 2009) ............................................................................ 4 GC-4 SUBCONTRACT INTERPRETATION (Jun

  10. IDIQ BS Exhibit A General Conditions (Rev. 3.3, 9-27-13)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 9/27/13) Exhibit A General Conditions Page 1 of 19 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) ......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........ 3 GC-3 INDEPENDENT CONTRACTOR (Jun 2009) ............................................................................ 4 GC-4 SUBCONTRACT INTERPRETATION (Jun

  11. Genetics in the courts

    SciTech Connect (OSTI)

    Coyle, Heather; Drell, Dan

    2000-12-01

    Various: (1)TriState 2000 Genetics in the Courts (2) Growing impact of the new genetics on the courts (3)Human testing (4) Legal analysis - in re G.C. (5) Legal analysis - GM ''peanots'', and (6) Legal analysis for State vs Miller

  12. CI-ON Ex A (Rev. 0.1, 4/9/13) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 24 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-A1 COMMERCIAL ITEMS (Mar 2012)............................................................................................ 2 GC-1B DEFINITIONS (Mar 2012) ......................................................................................................... 4 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 4 GC-5 NOTICE TO

  13. CI-ON Ex A (Rev. 0.2, 6/14/13) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 12 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-A1 COMMERCIAL ITEMS (Mar 2012)............................................................................................ 2 GC-1B DEFINITIONS (Mar 2012) ......................................................................................................... 4 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 4 GC-5 NOTICE TO

  14. CI-ON Ex A (Rev. 0.4, 8/20/14) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 8/20/14) Exhibit A General Conditions Page 1 of 13 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-A1 COMMERCIAL ITEMS (Aug 2014) ........................................................................................... 2 GC-1B DEFINITIONS (Mar 2012) ......................................................................................................... 4 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 4 GC-5 NOTICE TO

  15. CI-ON Ex A (Rev. 0.5, 3/6/15) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 3/6/15) Exhibit A General Conditions Page 1 of 14 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-A1 COMMERCIAL ITEMS (Aug 2014) ........................................................................................... 2 GC-1B DEFINITIONS (Mar 2012) ......................................................................................................... 4 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 4 GC-5 NOTICE TO

  16. CI-ON Ex A (Rev. 0.7, 11/9/15) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 11/9/15) Exhibit A General Conditions Page 1 of 14 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-A1 COMMERCIAL ITEMS (May 2015) ....................................................................................... 2 GC-1B DEFINITIONS (Mar 2012) ..................................................................................................... 4 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ...................... 4 GC-5 NOTICE TO PROCEED (Jul

  17. CI-ON Exhibit A General Conditions (Rev 0.3, 9-27-13)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 9/27/13) Exhibit A General Conditions Page 1 of 12 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-A1 COMMERCIAL ITEMS (Mar 2012) ........................................................................................... 2 GC-1B DEFINITIONS (Mar 2012) ......................................................................................................... 4 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 4 GC-5 NOTICE TO

  18. NCIPO Ex A (Rev. 2.3, 8/20/13) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 8/20/13) Exhibit A General Conditions EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1B DEFINITIONS (Jan 2010) .......................................................................................................... 2 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 2 GC-5 NOTICE TO PROCEED (Jul 2011) ........................................................................................... 2 GC-6A ORDER OF PRECEDENCE (Jan

  19. NCIPO Ex A (Rev. 2.4, 8/20/14) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 8/20/14) Exhibit A General Conditions Page 1 of 12 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1B DEFINITIONS (Jan 2010) .......................................................................................................... 2 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 2 GC-5 NOTICE TO PROCEED (Jul 2011) ........................................................................................... 2 GC-6A ORDER OF

  20. NCIPO Ex A (Rev. 2.5, 9/26/14) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 9/26/14) Exhibit A General Conditions Page 1 of 13 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1B DEFINITIONS (Jan 2010) .......................................................................................................... 2 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 2 GC-5 NOTICE TO PROCEED (Jul 2011) ........................................................................................... 2 GC-6A ORDER OF

  1. NCIPO Ex A (Rev. 2.6, 3/6/15) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 3/6/15) Exhibit A General Conditions Page 1 of 14 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1B DEFINITIONS (Jan 2010) .......................................................................................................... 2 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 2 GC-5 NOTICE TO PROCEED (Jul 2011) ........................................................................................... 2 GC-6A ORDER OF

  2. NCIPO Ex A (Rev. 2.7, 3/26/15) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 3/26/15) Exhibit A General Conditions Page 1 of 16 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1B DEFINITIONS (Jan 2010) .......................................................................................................... 2 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ....................... 2 GC-5 NOTICE TO PROCEED (Jul 2011) ........................................................................................... 2 GC-6A ORDER OF

  3. NCIPO Ex A (Rev. 2.8, 11/9/15) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 11/9/15) Exhibit A General Conditions Page 1 of 16 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1B DEFINITIONS (Jan 2010) ..................................................................................................... 2 GC-2B CORRESPONDENCE AND SUBCONTRACT INTERPRETATION (Jan 2010) ...................... 2 GC-5 NOTICE TO PROCEED (Jul 2011) ....................................................................................... 2 GC-6A ORDER OF PRECEDENCE

  4. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum July 22, 2013 LOS ALAMOS, N.M., July 22, 2013-Los Alamos National Laboratory's Bradbury Science Museum is opening two new exhibits July 26 as part of the Laboratory's 70th Anniversary celebration. One is a nanotechnology exhibit featuring the Laboratory's Center for Integrated Nanotechnologies (CINT) and the other is an algae biofuel exhibit from the Laboratory and the New Mexico Consortium. An opening

  5. Manufacturing Innovation Topics Workshop: Engineered Nanomaterials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation Topics Workshop: Engineered Nanomaterials * Click to edit Master text styles - Second level * Third level - Fourth level » Fifth level Agenda * Focus Area Introduction: The State of Nanotechnology Today - Discussion of current applications, market sectors - Analysis of industry challenges and risks - Review of government Nano IMI planning activities to-date * Review of Nanotechnology Processes/Ecosystem * Economic Impact of Advancement of Nanotechnology * The Role of

  6. A review of high magnetic moment thin films for microscale and

    Office of Scientific and Technical Information (OSTI)

    nanotechnology applications (Journal Article) | DOE PAGES A review of high magnetic moment thin films for microscale and nanotechnology applications This content will become publicly available on February 17, 2017 « Prev Next » Title: A review of high magnetic moment thin films for microscale and nanotechnology applications Authors: Scheunert, G. [1] Search DOE PAGES for author "Scheunert, G." Search DOE PAGES for ORCID "0000000294068094" Search orcid.org for ORCID

  7. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Manipulating Matter on a Molecular Scale by Daphne Evans on Mon, Jul 9, 2012 Nano=one billionth Nanotechnology=the manipulation of matter on an atomic and molecular scale DOE scientists are working to identify immediate and future ways to utilize this precision science. Check out Nanoscience and Nanotechnology: From Energy Applications to Advanced Medical Therapies, a video discussion of why nanotechnology is important and how it is

  8. EERE Success Story-Argonne Creates Collaborative Centers to Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business with Energy Storage, Nanotechnology Research | Department of Energy Argonne Creates Collaborative Centers to Connect Business with Energy Storage, Nanotechnology Research EERE Success Story-Argonne Creates Collaborative Centers to Connect Business with Energy Storage, Nanotechnology Research November 19, 2015 - 11:53am Addthis Argonne’s Tijana Rajh explains recently synthesized metal oxide nanoparticle samples with controlled amounts of structural defects to NDW Director

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 6, 2015 Time: 2:15 pm Speaker: Lloyd Whitman, Assistant Director for Nanotechnology, White House Office of Science and Technology Policy (OSTP) Title: Twenty Five Hundred Years of Small Science: What's Next? Location: 67-3111 Chemla Room Abstract: From the ancient Greeks to the recent greats of the nanotechnology world, I will present a personal perspective on the history of the National Nanotechnology Initiative and some of the science and policy challenges for the future of

  10. NSS-8 Workshop Summary International Workshop on Nanoscale Spectroscopy and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology | Argonne National Laboratory NSS-8 Workshop Summary International Workshop on Nanoscale Spectroscopy and Nanotechnology August 1, 2014 Tweet EmailPrint Organized by Center for Nanoscale Materials and Advanced Photon Source The International Workshop on Nanoscale Spectroscopy and Nanotechnology 8 (NSS-8), organized by the Center for Nanoscale Materials (CNM) and Advanced Photon Source (APS), was held under sunny, summer skies from July 28-31, 2014, in the world-class Gleacher

  11. DOE Announces Selection of National Laboratory Center for Solid-State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology | Department of Energy Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology DOE Announces Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy

  12. Argonne Creates Collaborative Centers to Connect Business with Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage, Nanotechnology Research | Department of Energy Argonne Creates Collaborative Centers to Connect Business with Energy Storage, Nanotechnology Research Argonne Creates Collaborative Centers to Connect Business with Energy Storage, Nanotechnology Research November 19, 2015 - 11:53am Addthis Argonne’s Tijana Rajh explains recently synthesized metal oxide nanoparticle samples with controlled amounts of structural defects to NDW Director Andreas Roelofs and fellow researcher Xiao-Min

  13. Siluria Technologies | Open Energy Information

    Open Energy Info (EERE)

    California-based stealth-mode company engaged in development of biological nanotechnology-enabled products for clean energy products such as solar cells and light emitting...

  14. UNCLASSIFIED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Institute for Materials Prof. Gabriel Aeppli Head of the Synchrotron and Nanotechnology Department Paul Scherrer Institute, Switzerland Are all interesting oxides...

  15. QD Vision | Open Energy Information

    Open Energy Info (EERE)

    Name: QD Vision Place: Massachusetts Zip: MA 02472 Product: Massechusetts-based nanotechnology product company delivering display and lighting solutions to major industries....

  16. Energy harvester rolls to market production > Archived News Stories...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    single-charge batteries. A new concept becomes proven reality, as MicroGen's nanotechnology-based energy harvester - researched and developed by the company at the Cornell...

  17. Picosun | Open Energy Information

    Open Energy Info (EERE)

    We develop and manufacture Atomic Layer Deposition (ALD) reactors for micro- and nanotechnology applications. References: Picosun1 This article is a stub. You can help OpenEI...

  18. Enable IPC | Open Energy Information

    Open Energy Info (EERE)

    development with other companies. Its main focus is in advanced thin film and nanotechnology. Coordinates: 39.468791, -0.376913 Show Map Loading map......

  19. Bandgap Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc specializes in developing photovoltaic (PV) cells that combine silicon with nanotechnology to create high-efficiency cells at low cost 2. Bandgap Engineering Inc currently...

  20. Nanosys Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Nanosys Inc Place: Palo Alto, California Zip: CA 94304 Product: Nanotechnology company developing products based on a technology platform incorporating high...

  1. NanoEner Technologies | Open Energy Information

    Open Energy Info (EERE)

    Fort Lauderdale, Florida Product: Develops and markets nanomaterials and related nanotechnology processes that have applications in primary and rechargeable batteries, super...

  2. Nanomaterials Discovery Corporation NDC | Open Energy Information

    Open Energy Info (EERE)

    (NDC) Place: Laramie, Wyoming Zip: WY 82072 Sector: Carbon Product: NDC's nanotechnology development efforts are focused on fuel cell technologies, rechargeable battery...

  3. Nano Nouvelle Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Product: Nano-Nouvelle uses advanced materials technology, including nanotechnology, to develop technology in key large markets. Its particular focus is on...

  4. Operating Experience Level 3, Safe Practices for Working with...

    Energy Savers [EERE]

    This Operating Experience Level 3 makes the Department of Energy (DOE) nanotechnology community aware of a new publication as it relates to DOE's nanoscale safety...

  5. Nanergy Inc formerly ObjectSoft Corporation | Open Energy Information

    Open Energy Info (EERE)

    Sector: Carbon, Hydro, Hydrogen Product: A development-stage company working on nanotechnology products, particularly photovoltaic nanofilms and hydrogen storage using carbon...

  6. Microsoft Word - Scavenger Hunt 2014-June[1].doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How many small cubes make up a Soma Cube? parachute: What did it carry? Nanotechnology: How many nanometers long is your hand? Identification Photos: These are a few...

  7. Nanotecture Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: Southampton, United Kingdom Zip: SO16 7NS Product: A fast growing nanotechnology materials company spun out of the University of Southampton Coordinates:...

  8. Recovery Act Provides $9.6 Million for Transformational Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Here's a closer look at each of the projects and their potential impact: Dais Analytic Corporation (Odessa, FL) - Nanotechnology Membrane-Based Dehumidifier In warm and humid ...

  9. FY2011 Annual Report on DTRA Basic Research Project #BRCALL08...

    Office of Scientific and Technical Information (OSTI)

    Subject: 74 ATOMIC AND MOLECULAR PHYSICS; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 70 PLASMA PHYSICS AND FUSION Word Cloud More Like This Full Text preview image ...

  10. Phase-field Model for Stress-dependent Ginsburg-Landau Kinetics...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 42 ENGINEERING; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 25 ENERGY STORAGE Word Cloud More Like This Full Text preview image File size N...

  11. Stiff and Electrically Conductive Composites of Carbon Nanotube...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY...

  12. Probing nanoscale behavior of magnetic materials with soft x...

    Office of Scientific and Technical Information (OSTI)

    DE-AC02-05CH11231 Resource Type: Journal Article Resource Relation: Journal Name: Nanotechnology Reviews; Journal Volume: 1; Related Information: Journal Publication Date: 2191...

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (1) magnetism (1) magnetization (1) materials science (1) nanoscience and nanotechnology (1) nanostructures (1) oleic acid (1) particle size (1) particles (1) reducing...

  14. Engineering Multimetallic FePt-based nanowires for enhancing...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: Materials Science(36); Nanoscience & Nanotechnology(77) Energy Sciences; Inorganic and Physical Chemistry; Material Science...

  15. Biomolecular interactions and responses of human epithelial and...

    Office of Scientific and Technical Information (OSTI)

    of the potential social, ethical, health, and environmental issues connected to nanotechnology. The EHS concerns, however, continued to receive relatively little consideration...

  16. High-power Laser Interaction With Low-density C-Cu Foams (Journal...

    Office of Scientific and Technical Information (OSTI)

    Livermore, CA Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; 70 PLASMA PHYSICS AND FUSION; 42 ENGINEERING...

  17. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur...

    Office of Scientific and Technical Information (OSTI)

    (PNNL), Richland, WA (United States) Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 25 ENERGY STORAGE; 77 NANOSCIENCE AND NANOTECHNOLOGY...

  18. Examining Atomistic Defect/Boundary Interactions Induced by Light...

    Office of Scientific and Technical Information (OSTI)

    Publication: United States Language: English Subject: Engineering(42); Materials Science(36); Nanoscience & Nanotechnology(77) Word Cloud More Like This Full Text File size NAView...

  19. Nanoparticle conjugation enhances the immunomodulatory effects...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY Word Cloud More Like This Free Publicly Accessible Full Text Accepted Manuscript...

  20. Direct evaluation of ballistic phonon transport in a multi-walled...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; CARBON NANOTUBES; ION BEAMS; IRRADIATION; PHONONS Word Cloud More Like This Full...

  1. EGS Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth....

  2. Fabrication of flexible, aligned carbon nanotube/polymer composite...

    Office of Scientific and Technical Information (OSTI)

    (LLNL), Livermore, CA Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 37 INORGANIC...

  3. Geothermal Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth....

  4. FY2011 Annual Report on DTRA Basic Research Project #BRCALL08...

    Office of Scientific and Technical Information (OSTI)

    Subject: 74 ATOMIC AND MOLECULAR PHYSICS; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 70 PLASMA PHYSICS AND FUSION Word Cloud More Like This Full Text preview image...

  5. Examining Atomistic Defect/Boundary Interactions Induced by Light...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: Engineering(42); Materials Science(36); Nanoscience & Nanotechnology(77) Word Cloud More Like This Full Text File size NAView Full Text View Full Text...

  6. Giant Magneto-Resistance in Epitaxial (La0.7Sr0.3MnO3)0.5: (ZnO...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY Word Cloud More Like This Full Text preview image File size NAView Full Text View...

  7. Fabrication and Characterization of Suspended Carbon Nanotube...

    Office of Scientific and Technical Information (OSTI)

    Type: Journal Article Resource Relation: Journal Name: International Journal of Nanotechnology, vol. 5, no. 45, April 1, 2008, pp. 488-496; Journal Volume: 5; Journal Issue: 4...

  8. Scientists Pass Solid Particles Through Rock in DOE-Sponsored...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth....

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    adsorption on graphene (1) metal nanoclusters (1) metal-graphene interaction (1) nanoscience and nanotechnology graphene (1) thermal stability (1) Filter by Author Appy, David...

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    physical and analytical chemistry (7) lithium ions (6) electric batteries (5) nanoscience and nanotechnology (5) performance (5) stability (5) electrolytes (4) electron...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (1) excitation (1) fabrication (1) fluorescence (1) hydrogen (1) nanoparticles (1) nanoscience and nanotechnology (1) nitrogen (1) phonons (1) photons (1) Filter by Author...

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (1) layers (1) nanoscience and nanotechnology (1) nanostructures (1) organic solar cells (1) pvp (1) thin films (1) tin oxides (1) visible radiation (1) work functions (1) ...

  13. New strain states and radical property tuning of metal oxides...

    Office of Scientific and Technical Information (OSTI)

    Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Publication Date: 2015-06-01 OSTI Identifier: 1179645 Type: Published ...

  14. Interviews and Videos

    Broader source: Energy.gov [DOE]

    Advances in nanotechnology research & development hold potential for characterization of fracture systems in enhanced geothermal systems. DOE-sponsored research at Stanford University under the...

  15. Evident Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Troy, New York Zip: 12180 Product: Focused on nanotechnology manufacturing and application in the field of biotechnology, computing, telecommunications, and...

  16. Nanoscience at Work: Creating Energy from Sunlight (LBNL Science...

    Office of Scientific and Technical Information (OSTI)

    Science Dept; Oakland High School Science Dept Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; ELECTRICITY; NANOSTRUCTURES;...

  17. January 2013 Most Viewed Documents for Environmental Sciences...

    Office of Scientific and Technical Information (OSTI)

    Center for Biologic Nanotechnology; Shafagati, A.; Johnson, J.H. Jr. Howard Univ., Washington, DC (United States). Dept. of Civil Engineering; Goddard, W.A. III California ...

  18. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Utah Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When used in liquid crystal...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    physical and analytical chemistry (1) membranes (1) nanoscience and nanotechnology (1) ... sample preconcentration under slant E-field using high-aspect-ratio nanoporous membranes. ...

  20. A Nanocrystal Sensor for Luminescence Detection of Cellular Forces...

    Office of Scientific and Technical Information (OSTI)

    States Language: English Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; 47 OTHER INSTRUMENTATION tetrapod stress gauge, luminescent nanocrystals, cellular forces Word Cloud More...

  1. Nanoparticle modifications of photodefined nanostructures for...

    Office of Scientific and Technical Information (OSTI)

    Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY; CARBON; ELECTRODES; FABRICATION; MODIFICATIONS; NANOSTRUCTURES; POLYMERS Word Cloud More Like This Full Text preview image File size N...

  2. Nanogram Corporation | Open Energy Information

    Open Energy Info (EERE)

    Bay Area Sector: Solar Product: Develops nanotechnology solutions for solar and battery applications Website: www.nanogram.com Coordinates: 37.428293, -121.900152 Show...

  3. Contrasting Behavior of GaP(001) and InP(001) at the Interface...

    Office of Scientific and Technical Information (OSTI)

    CONVERSION; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 08 HYDROGEN; 14 SOLAR ENERGY; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 75 CONDENSED...

  4. Removing Arsenic from Drinking Water

    SciTech Connect (OSTI)

    2011-01-01

    See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

  5. Graphene Energy | Open Energy Information

    Open Energy Info (EERE)

    Texas Sector: Carbon Product: Graphene develops nano-technology based ultracapacitors for energy storage using a unique form of carbon, called graphene, for electrode material....

  6. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these...

  7. Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY solar (photovoltaic), solar (fuels), solid state lighting, bio-inspired, electrodes - solar, defects, charge transport, materials and ...

  8. Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate...

    Office of Scientific and Technical Information (OSTI)

    Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY solar (photovoltaic); solar (fuels); solid state lighting; bio-inspired; electrodes - solar; defects; charge transport; materials and ...

  9. Near-Unity Quantum Yields of Biexciton Emission from CdSe=CdS...

    Office of Scientific and Technical Information (OSTI)

    Subject: 77 NANOSCIENCE AND NANOTECHNOLOGY solar (photovoltaic), solar (fuels), solid state lighting, bio-inspired, electrodes - solar, defects, charge transport, materials and ...

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... maintenance (2) materials science (2) nanoscience and nanotechnology (2) nonlinear problems (2) proteins (2) rubidium compounds (2) telomeres (2) thin films (2) yeasts (2) ...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    and superfluidity (17) materials science (17) spin (15) electrons (11) ... nanotechnology (6) polarization (6) thin films (6) magnetic fields (5) physics (5) ...

  12. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scale structures is of increasing interest in many applications ranging from biotechnology to nanotechnology. Lithography and the processes associated with it are the...

  13. National Renewable Energy Laboratory (NREL) 2007 Research Review

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    This 24-page document focuses on NREL's technology transfer activities for solar cells, hydrogen production, biofuels, nanotechnology, lithium batteries, grid integration, and building technologies.

  14. UltraDots Inc formely UltraPhotonics | Open Energy Information

    Open Energy Info (EERE)

    ) Place: Fremont, California Zip: CA 94539 Product: Nanotechnology company developing "quantum dot" technology for a range of energy, communications and medical applications....

  15. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Probes for Dirac Materials Quantum and Dirac Materials Workshop March 8-11, 2015, Santa Fe, NM, USA Center for Integrated Nanotechnologies Materials Physics and...

  16. GEMZ Corp | Open Energy Information

    Open Energy Info (EERE)

    Name: GEMZ Corp Place: Spring Valley, New York Zip: 10977 Sector: Carbon, Hydro, Hydrogen Product: Holding company for International Nanotechnology Corp, which is developing...

  17. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Report Chen L Q Tang M Heo T W Wood B C MATERIALS SCIENCE NANOSCIENCE AND NANOTECHNOLOGY ENERGY STORAGE Abstract not provided Lawrence Livermore National Laboratory LLNL Livermore...

  18. Mesoscale Modeling Framework Design: Subcontract Report Chen...

    Office of Scientific and Technical Information (OSTI)

    Tang, M; Heo, T W; Wood, B C 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 25 ENERGY STORAGE Abstract not provided Lawrence Livermore National Laboratory (LLNL),...

  19. Ener1 Inc | Open Energy Information

    Open Energy Info (EERE)

    and market technologies and products that enable renewable energy to become a viable alternative to fossil fuels, including lithium batteries, fuel cells and nanotechnologies...

  20. Semiconductor-nanocrystal/conjugated polymer thin films (Patent...

    Office of Scientific and Technical Information (OSTI)

    CA (United States) Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY...

  1. Research Conduct Policies | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory...

  2. Richard E. Smalley, Buckminsterfullerene (the Buckyball), and...

    Office of Scientific and Technical Information (OSTI)

    (the Buckyball), and Nanotubes Resources with Additional Information Richard E. Smalley Courtesy Carbon Nanotechnology Laboratory at Rice University and Prof. Richard...

  3. Removing Arsenic from Drinking Water

    ScienceCinema (OSTI)

    None

    2013-05-28

    See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

  4. EA-1457: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Center for Integrated Nanotechnologies at Sandia National Laboratories/New Mexico, Sandia Site Office, Kirtland Air Force Base, Albuquerque, New Mexico

  5. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Neutron Compton Scattering as a Probe of Hydrogen Bonded and other Systems Reiter George CONDENSED MATTER PHYSICS SUPERCONDUCTIVITY AND SUPERFLUIDITY NANOSCIENCE AND NANOTECHNOLOGY...

  6. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the leader of Softmatter Nanotechnology and Advanced Spectroscopy team in the Chemistry Division of LANL. Victor completed his undergraduate and graduate degrees in Russia...

  7. Office of Science Salutes its New AAAS Fellows

    Office of Science (SC) Website

    contributions to the fields of nanoscience and nanotechnology, with particular emphasis on semiconductor-assisted photocatalysis, solar energy conversion and energy storage." ...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (5) nanoscience and nanotechnology (4) direct energy conversion (3) hydrogen (3) solar energy (3) absorptivity (1) accuracy (1) energy planning, policy and economy (1) ...

  9. How Dynein Binds to Microtubules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motor proteins are excellent examples of "nanotechnology" in Nature. These fascinating protein molecules convert the chemical energy stored in adenosine triphosphate (ATP)...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific user facility located at PNNL, to investigate climate, air pollution, human health, bioterrorism, and nanotechnologies. DOE's Basic Energy Science Program and EMSL...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (3) substrates (3) synthesis (3) vapors (3) fabrication (2) gas chromatography (2) gold (2) miniaturization (2) nanoscience and nanotechnology (2) platinum (2) sensors (2) ...

  12. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antenna Theme 2: Biohybrid Antenna Theme 3: Bioinspired Antenna Gabriel Montano, Ed Gonzales (Center for Integrated Nanotechnologies, Los Alamos National Laboratory) Cvetelin...

  13. Nanomaterials ES&H | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ... Additional information is available on the Industrial HygieneOccupational Safety Special Interest Group (IHOS) Special Interest Group (SIG) nanotechnology web pages External link ...

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    but also necessary support for rapid commercialization of nanotechnology. The translation of bench science into commercial reality requires the partnership of academic,...

  15. Hybrid metasurface for ultra-broadband terahertz modulation ...

    Office of Scientific and Technical Information (OSTI)

    for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA School of Electrical and Electronic Engineering, The University of...

  16. Sunnyvale, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sierra Solar Power Inc Silicon Valley Biodiesel Inc Solexant Corp Summit Microelectronics Inc Svaya Nanotechnologies Symyx Technologies References US Census Bureau...

  17. Press Pass - Press Release - LHC First Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for other sciences such as medicine, climate studies, bioinformatics, nanotechnology, geography and education. A question and answer period with the CERN Director General, Robert...

  18. Argonne Creates Collaborative Centers to Connect Business with...

    Broader source: Energy.gov (indexed) [DOE]

    Also pictured are Argonne researchers Elena Rozhkova (left) and Elena Shevchenko. Energy storage and nanotechnology have the potential to transform the way we look at clean energy. ...

  19. Engineering MulticomponentNanocatalystsfor Oxygen Reduction ...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: Oppenheimer Fellowship Country of Publication: United States Language: English Subject: Energy Storage(25); Materials Science(36); Nanoscience & Nanotechnology(77) ...

  20. ZAP Advanced Battery Technologies JV | Open Energy Information

    Open Energy Info (EERE)

    battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology....

  1. Layout 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chancellor's Distinguished Lectureship Series Nanotechnology: Thinking Small or Small Thinking? Chad Mirkin Northwestern University Director of Institute for Nanotechnology Distinguished Professor of Chemistry Tuesday, September 20, 2005 2:00 p.m. Rotunda Auditorium Energy, Coast & Environment Building A reception will follow the lecture. www.research.lsu.edu/cdls.html

  2. Chief Scientist, Los Alamos National Laboratory - Center for Integrated

    National Nuclear Security Administration (NNSA)

    Nanotechnologies | National Nuclear Security Administration Chief Scientist, Los Alamos National Laboratory - Center for Integrated Nanotechnologies | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations

  3. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Nano Self-Assembly Print Wednesday, 24 February 2010 00:00 If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of...

  4. Catelectric Corp | Open Energy Information

    Open Energy Info (EERE)

    the type and number of catalytic sites in a fuel cell or other system, through nanotechnology. References: Catelectric Corp1 This article is a stub. You can help OpenEI by...

  5. Template Directed Formation of Nanoparticle Decorated Multi-Walled...

    Office of Scientific and Technical Information (OSTI)

    Report Number(s): LLNL-JRNL-479912 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article Resource Relation: Journal Name: Nanotechnology, vol. 22, no. 43, October ...

  6. CX-004226: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Center for Integrated Nanotechnologies Installation and Operation of X-Ray Diffractometer InstrumentCX(s) Applied: Date: 04/06/2010Location(s): New MexicoOffice(s): Sandia Site Office

  7. Vehicle Technologies Office Merit Review 2015: Low Cost, High Capacity Non-Intercalation Chemistry Automotive Cells

    Broader source: Energy.gov [DOE]

    Presentation given by Sila Nanotechnologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low cost, high capacity...

  8. Scientists Pass Solid Particles Through Rock in DOE-Sponsored Research at Stanford University

    Broader source: Energy.gov [DOE]

    DOE-sponsored research at Stanford University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth.

  9. Template Directed Formation of Nanoparticle Decorated Multi-Walled...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article Resource Relation: Journal Name: Nanotechnology, vol. 22, no. 43, October 3, 2011, pp. 435603-1 to -6...

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Text1 Citations0 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject nanoscience and nanotechnology (1) Filter by Author Dakovski, Georgi SLAC (1) Dani, Keshav M...

  11. CX-006875: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Center for Integrated Nanotechnologies Integration Laboratories: PH3 OperationsCX(s) Applied: B3.6Date: 08/16/2011Location(s): Albuquerque, New MexicoOffice(s): NNSA-Headquarters

  12. CX-002666: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Plasma Based Nanotechnology Research and Development LaboratoryCX(s) Applied: B3.6Date: 06/03/2010Location(s): New JerseyOffice(s): Princeton Site Office, Science

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter Results Filter by Subject materials science (3) energy storage (1) nanoscience and nanotechnology (1) Filter by Author Chen, L Q (3) Heo, T W (3) Tang, M (1) Wood, B C (1) ...

  14. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    Sandia

    2009-09-01

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  15. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema (OSTI)

    None

    2010-01-08

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  16. SolRayo LLC | Open Energy Information

    Open Energy Info (EERE)

    high-tech start-up company that focuses on new nanotechnology-based materials for energy storage applications. References: SolRayo LLC1 This article is a stub. You can...

  17. Nanophotonics at Sandia National Laboratories.

    SciTech Connect (OSTI)

    McCormick, Frederick Bossert

    2008-10-01

    Sandia National Laboratories is leveraging the extensive CMOS, MEMS, compound semiconductor, and nanotechnology fabrication and test resources at Sandia National Laboratories to explore new science and technology in photonic crystals, plasmonics, metamaterials, and silicon photonics.

  18. #LabChat: The Science of the Very Small | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LabChat: The Science of the Very Small LabChat: The Science of the Very Small April 15, 2014 - 5:30pm Q&A Have questions about the exciting field of nanotechnology? Submit your...

  19. EFRC News & Events

    Office of Science (SC) Website

    nanotechnology, EFRC researchers fashion a new kind of transparent electrode for flat-panel displays. This work, featured in the Office of Sciences

  20. Jared Sagoff | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jared Sagoff Jared Sagoff is a public information officer who covers physical science research, including physics, chemistry, materials science and nanotechnology. Contact him at (630) 252-5549 or media@anl.gov.

  1. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Research and Development of Non Spectroscopic MEMS Based Sensor Arrays for Targeted Gas Detection Loui A McCall S K Zumstein J M ENGINEERING NANOSCIENCE AND NANOTECHNOLOGY Abstract...

  2. Seminar Series | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Videos Seminar Series Date Title December 16, 2015 11:00 am Bldg. 440, A105-106 "Quantum Optics of Carbon Nanotubes", Xuedan Ma,Center for Integrated Nanotechnologies Los Alamos...

  3. CX-004223: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Center for Integrated Nanotechnologies Gateway - Installation and Operation of Computer Workstation Cluster, Los Alamos National LaboratoryCX(s) Applied: B1.3Date: 05/19/2010Location(s): New MexicoOffice(s): Sandia Site Office

  4. Quadrennial Technology Review Glossary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... at the nanoscale. nanotechnology The manipulation of matter on an atomic, molecular, and ... a given field of study, e.g. genome (the genetic material of an organism), proteome (the ...

  5. Duo at Santa Fe's Monte del Sol Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th New Mexico Supercomputing Challenge April 21, 2015 Using nanotechnology robots to kill cancer cells LOS...

  6. Lloyd Whitman | Department of Energy

    Energy Savers [EERE]

    Lloyd Whitman About Us Lloyd Whitman - Assistant Director for Nanotechnology and Advanced Materials at the White House Office of Science and Technology Policy Most Recent Accelerating Materials Development for a Clean Energy Future February 24

  7. Two new exhibits open at the Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two new exhibits open at the Bradbury Science Museum Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Two new exhibits open at the Bradbury Science Museum Nanotechnology and algae biofuels August 1, 2013 Two new exhibits recently opened at the Lab's Bradbury Science Museum on algae biofuels and nanotechnology Two new exhibits recently opened at the Lab's Bradbury Science Museum on algae biofuels

  8. Nanoscale Material Properties | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology Drives New Levels of Performance Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Nanotechnology Drives New Levels of Performance GE scientists are discovering new material properties at the nanoscale that drive new performance levels in jet engines, gas and steam turbines, electronic devices and disease

  9. CAMD Nanofabrication Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research :: Publications :: Infrastructure :: Links :: Nanofabrication Facility in News Nano 50TM Awards: The Nano 50TM Awards, presented by Nanotech Briefs magazine, recognize the top 50 technologies, products and innovators that have significantly impacted, or are expected to impact, the state of the art in nanotechnology. "The winners of the Nano 50 awards are the best of the best - the innovative people and technologies that will continue to move nanotechnology to key mainstream

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White House Nanotechnology Report Highlights Foundry Research On October 10, the President's Council of Advisors on Science and Technology (PCAST) released their Report to the President and Congress on the Fifth Assessment of the National Nanotechnology Initiative (NNI). The report recommends that the Federal Government accelerate its activities aimed at facilitating the commercialization of the past decade's worth of Federally sponsored research, thereby enabling the Nation to reap the benefits

  11. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWS ARCHIVE < News and Highlights Research Performed by Foundry Industrial Users Honored by Nanotechnology Journal User work on printable photonics was selected as a Highlight of the Year by Nanotechnology in the area of "patterning and nano fabrication". [MORE] Outsmarting Thermodynamics in Self-assembly of Nanostructures Foundry user - and Materials Sciences Division Director - reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials. [MORE]

  12. Advanced Polymer Processing Facility

    SciTech Connect (OSTI)

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  13. Audit Report: IG-0788 | Department of Energy

    Energy Savers [EERE]

    8 Audit Report: IG-0788 February 28, 2008 Nanoscale Materials Safety at the Department's Laboratories The National Nanotechnology Initiative was established as a multi-agency research and development program in 200 1. As a part of the Initiative, the Department of Energy (Energy) is in the process of constructing Nanoscale Science Research Centers at six national laboratories. In addition to funding the construction and operation of these facilities, the Department funds nanotechnology projects

  14. Lasting Gifts From Carbon Connections | Department of Energy

    Office of Environmental Management (EM)

    Lasting Gifts From Carbon Connections Lasting Gifts From Carbon Connections December 21, 2012 - 3:15pm Addthis Graphene has properties that could possibly open up the next generation on nanotechnology. | Photo courtesy of Oak Ridge National Lab Graphene has properties that could possibly open up the next generation on nanotechnology. | Photo courtesy of Oak Ridge National Lab Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee) What is graphene? Graphene is a substance

  15. Women @ Energy: Simona E. Hunyadi Murph | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simona E. Hunyadi Murph Women @ Energy: Simona E. Hunyadi Murph September 22, 2015 - 1:12pm Addthis Simona E. Hunyadi Murph is a principal scientist at Savannah River National Laboratory. She attended the University of South Carolina, studying chemistry/nanotechnology, Georgia Regents University (Augusta State University), and Babes-Bolyai University in Romania, studying chemistry/electrochemistry and physics with an education minor. She holds a Ph.D in chemistry/nanotechnology. Simona E.

  16. EFf!!$L, . United States Government Department of Energy

    Office of Legacy Management (LM)

    DCX F 1325.6 EFf!!$L, . United States Government Department of Energy m e m o randum DATE: JAN I( Ksg REPLY TO AnN OF: EM-42 (A. W illiams, 903-8 149) SJRJECT: The Former Atomic Energy Commission and the Manhattan Engineer District Sites in Dayton, Ohio TO: W . Dennison. GC-5 1 I a m attaching two copies of the Authority Review prepared by my staff for two sites in Dayton, Ohio, which were used by the former Atomic Energy Commission and the former Manhattan Engineer District. W h e n the

  17. Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes

    SciTech Connect (OSTI)

    Matheu, Roc; Francs, Laia; Chernev, Petko; Ertem, Mehmed Z.; Batista, Victor; Haumann, Michael; Sala, Xavier; Llobet, Antoni

    2015-05-07

    Electrochemical reduction of the dizaonium complex, [RuII(bda)(NO)(NN2)2]3+, 23+ (NN22+ is 4-(pyridin-4-yl) benzenediazonium and bda2 is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid material has a lower catalytic performance than its counterpart in homogeneous phase and progressively decomposes to form RuO2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO2, is a very fast and rugged heterogeneous water oxidation catalyst with TOFis of 300 s1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.

  18. Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Matheu, Roc; Francàs, Laia; Chernev, Petko; Ertem, Mehmed Z.; Batista, Victor; Haumann, Michael; Sala, Xavier; Llobet, Antoni

    2015-05-07

    Electrochemical reduction of the dizaonium complex, [RuII(bda)(NO)(N–N2)2]3+, 23+ (N–N22+ is 4-(pyridin-4-yl) benzenediazonium and bda2– is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid material has a lower catalytic performance than its counterpartmore » in homogeneous phase and progressively decomposes to form RuO2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO2, is a very fast and rugged heterogeneous water oxidation catalyst with TOFis of 300 s–1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.« less

  19. Ask a scientist: Nanotech in our lives | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spring 2014 issue of Argonne Now, the laboratory science magazine. Ask a scientist: Nanotech in our lives June 1, 2014 Tweet EmailPrint Is there nanotechnology already in my consumer products? Carrado Gregar: I just saw a report that named 1,628 products using nanotechnology...so I'd say yes, definitely! When you say nanotech, a lot of people are thinking of tiny machines or robots. There is a long way to go before that becomes reality. But simpler nanomaterials are very much in common use.

  20. Enhancing Condensers for Geothermal Systems: the Effect of High Contact Angles on Dropwise Condensation Heat Transfer

    SciTech Connect (OSTI)

    Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.

    2009-10-06

    Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Ghosh, Yagnaseni" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything8 Electronic Full Text4 Citations4 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject materials science (2) nanoscience and nanotechnology (2) nanoscience and nanotechnology solar (photovoltaic), solar

  2. Alliance for NanoHealth (ANH) Training Program for the development of future generations of interdisciplinary scientists and collaborative research focused upon the advancement of nanomedicine

    SciTech Connect (OSTI)

    Gorenstein, David

    2013-12-23

    This program • Offered summer internship training for three undergraduate students in alliance with MD Anderson Step-Up program. • Awarded 2-year fellowships to two graduate students for collaborative, interdisciplinary research in specific areas of nanotechnology. •Successfully provided three post-doctoral fellowships in the advancement of nanotechnology research. Some fellows have advanced to careers in academia and industry. • Attracted several prominent leaders of innovation in the field of nanomedicine to engage research discussion and foster potential collaborative opportunities through the prestigious ANH Distinguished Investigator Awards.

  3. CX-002262: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dewatering Wells for Center for Integrated Nanotechnologies (Building 518) AtriumsCX(s) Applied: B2.5, B3.1Date: 03/08/2010Location(s): New MexicoOffice(s): NNSA-Headquarters, Sandia Site Office

  4. CX-009192

    Broader source: Energy.gov [DOE]

    (0674-1542) Sila Nanotechnologies Inc. - Doubling the Energy Density of Lithium-Ion Batteries for Transportation CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): Georgia Offices(s): Advanced Research Projects Agency-Energy

  5. Sam Bader | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sam Bader Chief Scientist, Emeritus Ph.D., University of California, Berkeley Argonne Distinguished Fellow Application of nanotechnology to create novel permanent magnets (spring magnets); exploration of laterally confined nanomagnets; development of magnetic electronics; bio-inspired self-assembly of magnetic nanostructures; magnetic surfaces, films, wedges and superlattices, including hybrid structures, such as novel ferromagnetic-superconducting multilayers; giant magnetoresistance and

  6. Sandia Energy - Lincoln Lauhon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, Nature Nanotechnology 3, 168 (2008)....

  7. User Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facility Center for Nanoscale Materials Center for Nanoscale Materials More Electron Microscopy Center More The Nanoscience and Technology Division hosts the following user facility: The Center for Nanoscale Materials (CNM) at Argonne National Laboratory is a premier user facility providing world-class expertise, instrumentation and infrastructure for interdisciplinary nanoscience and nanotechnology research.

  8. Sandia National Laboratories: Explore Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explore Sandia Potential Partners Sandia has worked with a wide variety of Sponsors, including large companies and small businesses based in New Mexico. Projects involve a broad range of technologies including materials and materials processing, advanced manufacturing and precision engineering, microelectronics and photonics, advanced computing and information technologies, modeling and simulation, nanotechnologies, vulnerability analysis, robotics and intelligent systems, failure analysis and

  9. Harry Weerts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harry Weerts, Associate Laboratory Director, Physical Sciences and Engineering Harry Weerts Associate Laboratory Director - Physical Sciences and Engineering Harry Weerts is the Associate Laboratory Director for Physical Sciences and Engineering. He oversees Argonne's interdisciplinary research programs in physics, chemistry, material science and nanotechnology. Weerts was formerly Director of Argonne's High Energy Physics division, and prior to that, a collider physicist at Fermilab, where he

  10. DOE Energy Innovation Hubs

    Office of Science (SC) Website

    Research » DOE Energy Innovation Hubs Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact

  11. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Designing New Materials with Nanostructures as Building Blocks Vincent Meunier and Sefa Dag, CNMS Jose Manuel Romo Herrera, Mauricio Terrones and Humberto Terrones, Instituto Potosino de Investigacion Cientifica y Tecnologica, San Luis Potosi, Mexico Novel and robust networks, tailored from nanostructures as building blocks, are the foundations for constructing nano- and microdevices. However, assembling nanostructures into ordered micronetworks remains a significant challenge in nanotechnology.

  13. Archives of BES CRAs April 2003 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    03 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S.

  14. Archives of BES CRAs April 2010 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    10 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S.

  15. Archives of BES CRAs February 2002 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    February 2002 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy

  16. Archives of BES CRAs May 2006 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    May 2006 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences

  17. Archives of BES CRAs October 2004 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    October 2004 Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy

  18. Center for Functional Nanomaterials (CFN) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Functional Nanomaterials (CFN) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES

  19. Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nanophase Materials Sciences (CNMS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  20. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nanoscale Materials (CNM) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  1. Center for Nanoscale Materials Fact Sheet | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheet The Center for Nanoscale Materials at Argonne National Laboratory is a premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. Academic, industrial, and international researchers can access the center through its user program for both nonproprietary and proprietary research. PDF icon cnm_fact_sheet

  2. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Design Works Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides services to strengthen its impact. With expertise in nanomaterials, computing, chemistry, materials, and energy systems, along with its world-class facilities, Argonne is a perfect match for companies looking to make a big impact with tiny materials. PDF icon Argonne_Nano_Design_Works

  3. IUPAC_handout

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developments in Synthesis Prof. Craig Hawker, University of California Santa Barbara Modern Methods of Characterization Dr. Kathryn Beers, National Institute of Standards and Technology Surfaces and Interfaces Prof. Thomas Russell, University of Massachusetts Amherst Macromolecules and Nanotechnology Prof. Paula Hammond, Massachusetts Institute of Technology Macromolecules in Biotechnology and Medicine Prof. Buddy Ratner, University of Washington Complex Macromolecular Systems Prof. Timothy

  4. Crystalline bipyridinium radical complexes and uses thereof

    DOE Patents [OSTI]

    Fahrenbach, Albert C.; Barnes, Jonathan C.; Li, Hao; Stoddart, J. Fraser; Basuray, Ashish Neil; Sampath, Srinivasan

    2015-09-01

    Described herein are methods of generating 4,4'-bipyridinium radical cations (BIPY.sup..cndot.+), and methods for utilizing the radical-radical interactions between two or more BIPY.sup..cndot.+ radical cations that ensue for the creation of novel materials for applications in nanotechnology. Synthetic methodologies, crystallographic engineering techniques, methods of physical characterization, and end uses are described.

  5. Technical Standards Newsletter - March 2005 | Department of Energy

    Energy Savers [EERE]

    March 2005 Technical Standards Newsletter - March 2005 The Standards Forum and Standards Actions - March 2005 Inside this issue: TSP Manager's Notes............................................ 1 Nanotechnology Standards Panel holds First Meeting................................................ 3 ASME is lead in standards consortium that will open office in China next year....................................................... 4 Development and Maintenance of DOE's Radiation Protection

  6. NETL: The Science of the Very Fast and the Very Small

    ScienceCinema (OSTI)

    None

    2014-06-02

    From innovations in nanotechnology to discoveries that increase our understanding of energy resources around us, NETL and the National Labs are leading the way in studying the science of the very fast and very small. In fields ranging from medicine to materials, our researchers are making advancements that have practical applications in everyday life.

  7. UNCLASSIFIED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Institute for Materials Prof. Gabriel Aeppli Head of the Synchrotron and Nanotechnology Department Paul Scherrer Institute, Switzerland Are all interesting oxides inhomogeneous? Wednesday, August 19, 2015 3:00 to 4:00pm IMS/MPA Conference Room (TA-03, Building. 32, Room 134) Abstract: Defects are responsible for the interesting and useful properties of conventional semiconductors, and we show here that defects and inhomogeneities play a similarly important role for transition metal oxides.

  8. Neal Lane: Confessions of a President's Science Advisor

    ScienceCinema (OSTI)

    Neal Lane

    2010-09-01

    Former science advisor to president Bill Clinton Neal Lane briefly reviews the history of the job of Science Advisor to the President and give some examples of issues he had to deal with when he was in that position, including climate change, stem cell research, the human genome, nanotechnology and research funding. He will also give his opinions about the present and future state of science in the U.S.

  9. Solid-immersion fluorescence microscopy with increased emission and super resolution

    SciTech Connect (OSTI)

    Liau, Z. L.; Porter, J. M.; Liau, A. A.; Chen, J. J.; Salmon, W. C.; Sheu, S. S.

    2015-01-07

    We investigate solid-immersion fluorescence microscopy suitable for super-resolution nanotechnology and biological imaging, and have observed limit of resolution as small as 15?nm with microspheres, mitochondria, and chromatin fibers. We have further observed that fluorescence efficiency increases with excitation power density, implicating appreciable stimulated emission and increased resolution. We discuss potential advantages of the solid-immersion microscopy, including combined use with previously established super-resolution techniques for reaching deeper beyond the conventional diffraction limit.

  10. Sandia National Labs: PCNSC: Departments: Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor & Optical Sciences Energy Sciences > CINT User Program > CINT Science Small Science Cluster Business Office News Partnering Research Neal Shinn Neal D. Shinn Sr. Manager Lupita Serna Lupita Serna Admin. Asst. Resources P. J. Feibelman Departments Energy Sciences The Energy Sciences Department oversees the operations of the following departments providing oversight in the areas of: Basic Energy Sciences/Materials Science Center for Integrated Nanotechnology (CINT), a

  11. Sandia National Labs: PCNSC: Research: Compound Semiconductor Science and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Compound Semiconductor Science and Technology Thrust The Physical, Chemical, and Nano Sciences Center's vision for Compound Semiconductors is to develop the science of compound semiconductors that will enable us to invent integrated nano-technologies for the microsystems of the future. We will achieve this by advancing the frontiers of semiconductor research in areas such as quantum phenomena, defect physics, materials and device modeling, heteroepitaxy, and by discovering new

  12. Sandia National Labs: PCNSC: Research: Nanosciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanosciences Throughout the scientific community, including Sandia National Laboratories (SNL), researchers say building things atom-by-atom or molecule-by-molecule will revolutionize the production of virtually every human-made object. Exciting prospects-but they also point out that the promise of nanotechnology can only be realized if we learn to understand the special rules that control behavior at this small scale and develop the skill needed to integrate these concepts into practical

  13. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boron-structured Nano-proportional Counters for Neutron Detection Scientists at the Savannah River National Laboratory (SRNL) have explored the use of nanotechnology to improve the design of gas-filled proportional counters (PC). The new nano-detector design will require a much lower operating voltage, a smaller power supply, enhanced portability, increased sensitivity to radiation, and improved detection efficiency. Background SRNL has investigated an alternative to conventionally constructed

  14. Argonne National Laboratory Scientists Invent Breakthrough Technique in

    Broader source: Energy.gov (indexed) [DOE]

    Nanotechnology | Department of Energy Gold and carbon nanoparticles strung together using a breakthrough new technique for materials design known as "optically directed assembly" | Courtesy of Argonne National Laboratory Gold and carbon nanoparticles strung together using a breakthrough new technique for materials design known as "optically directed assembly" | Courtesy of Argonne National Laboratory Elizabeth Meckes Elizabeth Meckes Director of User Experience &

  15. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    yields 'The Right Glasses' for observing mystery behavior in electrons December 13, 2007 Images provide clues to Mott transition in semi- and superconductors EMBARGOED until 2 p.m. EST on December 13, 2007 LOS ALAMOS, New Mexico, December 13, 2007-In collaboration with the Center for Integrated Nanotechnologies at Los Alamos, an international team of researchers has, for the first time, viewed on a nanoscale the formation of mysterious metallic puddles that facilitate the transition of an

  16. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale engineering boosts performance of quantum dot light emitting diodes October 25, 2013 Making the light at the end of the tunnel more efficient LOS ALAMOS, N.M., Oct. 25, 2013-Dramatic advances in the field of quantum dot light emitting diodes (QD-LEDs) could come from recent work by the Nanotechnology and Advanced Spectroscopy team at Los Alamos National Laboratory. Quantum dots are nano-sized semiconductor particles whose emission color can be tuned by simply changing their dimensions.

  17. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  18. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  19. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  20. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  1. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  2. Quantum Dot Materials Can Reduce Heat, Boost Electrical Output - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Quantum Dot Materials Can Reduce Heat, Boost Electrical Output May 23, 2005 Golden, Colo. - Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have shown that nanotechnology may greatly increase the amount of electricity produced by solar cells. In a paper published in a May issue of the American Chemical Society's Nano Letters journal, an NREL team found that tiny "nanocrystals," also known as "quantum dots,"

  3. PPPL Experts | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL Experts Fusion. Energy. Plasma. Physics. Tokamaks. Stellarators. Radioactivity. Nanotechnology. Astrophysics. Computational simulations. Vacuum technology. Materials Science. Electronics. STEM education. These are some of the areas of expertise of staff at the Princeton Plasma Physics Laboratory. PPPL is devoted to creating new knowledge about the physics of plasmas - ultra-hot, charged gases - and to developing practical solutions for the creation of fusion energy. In addition, results of

  4. PPPL receives $4.3 million to increase understanding of the role that

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plasma plays in synthesizing nanoparticles | Princeton Plasma Physics Lab PPPL receives $4.3 million to increase understanding of the role that plasma plays in synthesizing nanoparticles By John Greenwald June 9, 2014 Tweet Widget Google Plus One Share on Facebook Physicist Yevgeny Raitses, the principal investigator for research into the role of plasma in synthesizing nanoparticles, in PPPL's nanotechnology laboratory. (Photo by Elle Starkman/PPPL Office of Communications) Physicist Yevgeny

  5. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Probes for Dirac Materials Quantum and Dirac Materials Workshop March 8-11, 2015, Santa Fe, NM, USA Center for Integrated Nanotechnologies Materials Physics and Applications Division Los Alamos National Laboratory Dmitry Yarotski LANL Staff: Rohit Prasankumar, Antoinette Taylor, Abul Azad, Steve Gilbertson, George Rodriguez, Tomasz Durakiewicz, Aditya Mohite, Andrew Dattelbaum, Quanxi Jia, Stuart Trugman, Jian-xin Zhu LANL Postdocs: Rolando Valdes Aguilar, Yaomin Dai, Keshav Dani, John

  6. Princeton Plasma Lab funded to explore nanoparticles with plasma |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Princeton Plasma Lab funded to explore nanoparticles with plasma By John Greenwald June 10, 2014 Tweet Widget Google Plus One Share on Facebook Physicist Yevgeny Raitses, the principal investigator for research into the role of plasma in synthesizing nanoparticles, in PPPL's nanotechnology laboratory. (Photo by Elle Starkman/PPPL Office of Communications) Physicist Yevgeny Raitses, the principal investigator for research into the role of plasma in synthesizing

  7. ORISE: Postdoc Research Experiences - Jay Gaillard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jay Gaillard Scientist explores capabilities of nanotechnology for supercapacitors Jay Gaillard Postdoctoral scientist Jay Gaillard investigates ways to improve energy storage and power delivery using supercapacitors as part of the Savannah River National Laboratory Postdoctoral Research Associate Program. Pictured above, he holds a pure double-walled carbon nanotube paper-called buckypaper-used as a flexible, high surface area material for storing charge in the supercapacitors. Dr. Jay Gaillard

  8. Advanced Carbon Aerogels for Energy Applications - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Advanced Carbon Aerogels for Energy Applications Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary Nanomaterials that are emerging out of cutting edge nanotechnology research are a key component for an energy revolution. Carbon-based nanomaterials are ushering in the "new carbon age" with carbon nanotubes, nanoporous carbons, and graphene nanosheets that will

  9. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab,

  10. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab,

  11. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab,

  12. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding New Crystal Structures Lift Fog around Protein Folding Print Wednesday, 25 July 2012 00:00 Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOFs Take to Water Supramolecular chemistry, aka chemistry beyond the molecule, in which molecules and molecular complexes are held together by non-covalent bonds, is just beginning to come into its own with the emergence of nanotechnology. Metal-organic frameworks (MOFs) are commanding much of the attention because of their appetite for greenhouse gases, but a new player has joined the field - supramolecular organic frameworks (SOFs). Users at the Molecular Foundry have unveiled the first

  14. 10 CFR Ch. III (1-1-11 Edition) Pt. 851, App. B

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 10 CFR Ch. III (1-1-11 Edition) Pt. 851, App. B must meet the applicable electrical safety codes and standards referenced in § 851.23. 11. NANOTECHNOLOGY SAFETY-RESERVED The Department has chosen to reserve this section since policy and procedures for nano- technology safety are currently being devel- oped. Once these policies and procedures have been approved, the rule will be amended to include them through a rulemaking con- sistent with the Administrative Procedure Act. 12. WORKPLACE

  15. How to Bring Solar Energy to Seven Billion People (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Wadia, Cyrus

    2011-04-28

    By exploiting the powers of nanotechnology and taking advantage of non-toxic, Earth-abundant materials, Berkeley Lab's Cyrus Wadia has fabricated new solar cell devices that have the potential to be several orders of magnitude less expensive than conventional solar cells. And by mastering the chemistry of these materials-and the economics of solar energy-he envisions bringing electricity to the 1.2 billion people now living without it.

  16. Secretary of Energy Announces $5 Million for Solid State Lighting Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy $5 Million for Solid State Lighting Research Secretary of Energy Announces $5 Million for Solid State Lighting Research October 5, 2006 - 9:08am Addthis ALBUQUERQUE, NM - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the selection of seven projects, valued at nearly $5 million, for Solid State Lighting (SSL) research in nanotechnology. SSL has the potential to more than double the efficiency of general lighting systems, reducing overall

  17. High Strength Nano-Structured Steel - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Return to Search High Strength Nano-Structured Steel Idaho National Laboratory Success Story Details Partner Location Agreement Type Publication Date Nanosteel, Inc. Providence, Rhode Island License Work for Others (WFO) June 4, 2013 Video Bulk Materials Nanotechnology Summary The NanoSteel Company Complex modern challenges are driving new industrial market demands for metal alloys with properties and performance capabilities outside the known boundaries of

  18. X-ray diffraction characterization of suspended structures forMEMS applications

    SciTech Connect (OSTI)

    Goudeau, P.; Tamura, N.; Lavelle, B.; Rigo, S.; Masri, T.; Bosseboeuf, A.; Sarnet, T.; Petit, J.-A.; Desmarres, J.-M.

    2005-09-15

    Mechanical stress control is becoming one of the major challenges for the future of micro and nanotechnologies. Micro scanning X-ray diffraction is one of the promising techniques that allows stress characterization in such complex structures at sub micron scales. Two types of MEMS structure have been studied: a bilayer cantilever composed of a gold film deposited on poly-silicon and a boron doped silicon bridge. X-ray diffraction results are discussed in view of numerical simulation experiments.

  19. Vanderbilt University | OSTI, US Dept of Energy, Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information Vanderbilt University Spotlights Home DOE Applauds Vanderbilt Science and Technical Programs Vanderbilt Professors of Interest Vanderbilt engineers play key role in new DOE energy frontier research center Presidential Early Career Award for Scientists and Engineers (PECASE) Exceptional Students Dynamo-powered Otoscope delights doctors Graduate Students meet with Nobel Laureates VU Cast Lectures Promise of nanotechnology Science education in the 21st century Research

  20. Paula T. Hammond | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paula T. Hammond About Us Paula T. Hammond - David H. Koch Professor in Engineering and Head of the Department of Chemical Engineering, MIT Paula T. Hammond Paula T. Hammond is the Head of the Department of Chemical Engineering and David H. Koch Chair Professor in Engineering at the Massachusetts Institute of Technology (MIT). She is a member of MIT's Koch Institute for Integrative Cancer Research, the MIT Energy Initiative, and a founding member of the MIT Institute for Soldier Nanotechnology.

  1. Analytical Modeling and Simulation of Thermoelectric Devices | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Modeling and Simulation of Thermoelectric Devices Analytical Modeling and Simulation of Thermoelectric Devices A high-level strategy for semi-empirical modeling and numerical simulation tools using top-down/bottom-up approaches to define TE design operating conditions and optimization. PDF icon chase.pdf More Documents & Publications High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies Micro- & Nano-Technologies Enabling More Compact,

  2. UNCLASSIFIED Institute for Materials Science Distinguished Lecture Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gabriel Aeppli Head of the Synchrotron and Nanotechnology Department Paul Scherrer Institute, Switzerland Accelerator-based Light Sources for the Future Wednesday, August 12, 2015 2:00 to 3:00pm MSL Auditorium (TA-03, Bldg. 1698, Room A103) Abstract: We review current and future accelerator-based light sources and their applications to science, medicine and engineering. Particular attention is given to competing technologies such as electron microscopies. Bio: Gabriel Aeppli is professor of

  3. New Crystal Structures Lift Fog around Protein Folding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab,

  4. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research The activities in the Nanoscience and Technology Division focus on research that addresses grand challenges in nanoscience and nanotechnology and advances the division's user mission. Further, we are exploring ways to tailor and control this behavior, in particular by fabricating hybrid nanomaterials in which we harness different functionalities to create complex nanoarchitectures. Our visualization efforts encompass a number of techniques including transmission electron microscopy

  5. old.new.factsheets.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CINT Center for Integrated Nanotechnologies CINT CINT is a Department of Energy/Offce of Science Nanoscale Science Research Center operating as a national user facility devoted to establishing the scientifc principles that govern the design, performance, and integration of nanoscale materials. Through its Core Facility in Albuquerque and Gateway to Los Alamos Facility, CINT provides access to tools and expertise to explore the continuum from scientifc discovery to the integration of

  6. Energy Landscapes: From Protein Folding to Molecular Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    36th Annual Conference Energy Landscapes: From Protein Folding to Molecular Assembly WHEN: May 09, 2016 8:00 AM - May 12, 2016 5:00 PM WHERE: Hilton Santa Fe Historic Plaza Santa Fe, NM CONTACT: Angel Garcia (505) 665-3883 CATEGORY: Community Science TYPE: Conference INTERNAL: Calendar Login Event Description Nanoscale molecular assembly is very common in biology and in nanotechnology. Simple examples of self-assembly are the folding of proteins from a disorder polymer, the assembly of lipid

  7. For Industrial Users | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Center for Nanoscale Materials (CNM) has specific interest in growing the industrial user program and encourages researchers in industry to consider the capabilities and expertise we have to offer. As a CNM user, you have easy access to sophisticated scientific instrumentation geared toward nanoscience and nanotechnology. Moreover, our widely recognized staff researchers offer support in designing your experiments, using the equipment, and analyzing your data. Access to the CNM is through

  8. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Advanced Solar Photophysics: Overview of Research Thrusts Victor Klimov Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, February 8, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Center for Advanced Solar Photophysics (CASP) is part of the recent DOE initiative in Energy Frontier Research Centers (EFRCs) launched in August of 2009. The goal of CASP is to explore and

  9. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Photovoltaics and Photocatalysis Milan Sykora Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, March 29, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Over the past several years, the search for more efficient solutions to solar energy conversion has intensified, in large part driven by concerns over the impact of fossil energy sources on global climate. In my presentation

  10. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocrystal Quantum Dots: Electronic Structures and Relaxation Pathways Victor Klimov Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, February 8, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Semiconductor nanocrystals are nanometer-size crystalline particles that contain approximately 100 to 10,000 atoms. Using chemical syntheses they can be fabricated with almost atomic

  11. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Chemistry of Colloidal Nanocrystal Quantum Dots Jeffrey Pietryga Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, February 22, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Colloidal nanocrystal quantum dots (NQDs) are a unique class of materials that are under widespread investigation for applications ranging from bio-labeling to solid-state lighting and photovoltaics.

  12. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Under Hydrostatic Pressure Richard Schaller Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, February 22, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Hydrostatic pressure provides a convenient means of controllably manipulating many material properties such unit cell size, crystal structure, and energy gap. In this presentation, I will review the experimental aspects of

  13. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Spectroscopy of Individual Nanocrystal Quantum Dots Han Htoon Softmatter Nanotechnology and Advanced Spectroscopy, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, March 22, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Optical spectroscopy has been an indispensable tool in probing fundamental photophysics of nanoscale materials. Conventional optical spectroscopy approaches that usually require sampling hundreds to thousands of individual

  14. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Auger Recombination and Nanocrystal Lasing Victor Klimov Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, March 29, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract Using semiconductor nanocrystals (NCs), one can produce extremely strong spatial confinement of electronic wave functions not accessible with other types of nanostructures. One consequence of this effect is a

  15. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carrier Multiplication: Experimental Aspects and Practical Implications Victor Klimov Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA Monday, March 29, 10am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract The efficient conversion of photon energy into electrical charges is a central goal of much research in physics, chemistry, and biology, especially in areas such as photovoltaics,

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Ferroelectricity in Crystalline g Glycine Alejandro Heredia,1 Vincent Meunier,2 Igor K. Bdikin,1 José Gracio,3 Nina Balke,4 Stephen Jesse,4 Alexander Tselev,4 Pratul Agarwal,4 Bobby G. Sumpter,4 Sergei V. Kalinin4, and Andrei L. Kholkin1 1-Department of Ceramics and Glass Engineering & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal 2-Physics, Astronomy and Applied Physics Department, Rensselaer Polytechnic Institute, Troy,NY 12180 3-Nanotechnology Research Div., Centre

  17. Revolutionizing the Touch Screen | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Revolutionizing the Touch Screen? Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 05.29.13 Revolutionizing the Touch Screen? Print Text Size: A A A Subscribe FeedbackShare Page Using nanotechnology, EFRC researchers fashion a new kind of transparent electrode for flat-panel displays. This work, featured in the Office of Science's Stories of Discovery &

  18. Antonya Sanders-Promoting nanoscience integration through outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antonya Sanders Antonya Sanders-Promoting nanoscience integration through outreach Bringing together university faculty, students, researchers and other Laboratory scientists to explore nanoscale science. March 17, 2014 Antonya Sanders Sanders' focus on serving others began early on: she lived in England and traveled the world to find ways to help others, including aiding Bosnian refugees. Sanders leads communication and outreach for the Lab's Center for Integrated Nanotechnologies (CINT), a

  19. Biographical sketch - Hao Yan | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Hao Yan BIOGRAPHICAL SKETCH -HAO YAN a. Professional Preparation Shandong University Chemistry B. S. 1993 New York University Chemistry M.S. 1998 New York University Chemistry Ph. D. 2001 b. Area of Specialization:Structural DNA nanotechnology, Molecular Self-assembly c. Appointments Member, Center for Bio-Inspired Solar Fuel Production, Arizona State University, 2009-present; Professor, Arizona State University, 2008 - present; Assistant Professor, Arizona State University, 2004

  20. Brochures | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brochures Subscribe to RSS - Brochures The United States Department of Energy's Princeton Plasma Physics Laboratory works with collaborators across the globe to develop fusion as an energy source for the world, and conducts research along the broad frontier of plasma science and technology. Printed materials are free, accessible, and downloadable from this website. Image: Brochures PPPL Experts Fusion. Energy. Plasma. Physics. Tokamaks. Stellarators. Radioactivity. Nanotechnology. Astrophysics.

  1. About Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links DOE Nanoscale Science Research Center DOE NSRC Community Portal About the CNM The Center for Nanoscale Materials (CNM) at Argonne National Laboratory is a premier user facility providing expertise, instrumentation, and infrastructure for interdisciplinary nanoscience and nanotechnology research. Academic, industrial, and international researchers can access the center through its user program for both nonproprietary and proprietary research. The center's goal is to perform basic

  2. Stories of Discovery & Innovation: Trapping the Light Fantastic| U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Trapping the Light Fantastic Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 07.07.11 Stories of Discovery & Innovation: Trapping the Light Fantastic Print Text Size: A A A Subscribe FeedbackShare Page New solar cell design uses advanced optics and nanotechnology to maximize performance and minimize cost. Discovery moves from lab

  3. nano-energy | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nanotechnology: Energizing our Future Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence

  4. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities

  5. Revolutionizing the Touch Screen? | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Revolutionizing the Touch Screen? News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.29.13 Revolutionizing the Touch Screen? Using nanotechnology, EFRC researchers fashion a new kind of transparent electrode

  6. Trapping the Light Fantastic | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Trapping the Light Fantastic News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 07.07.11 Trapping the Light Fantastic New solar cell design uses advanced optics and nanotechnology to maximize performance and

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Paul Alivisatos Principal Investigator Paul Alivisatos Paul Alivisatos, Director of Lawrence Berkeley National Laboratory; Samsung Distinguished Professor of Nanoscience and Nanotechnology and Professor of Chemistry and Materials Science & Engineering Lawrence Berkeley National Laboratory Dr. Paul Alivisatos is Director of the Lawrence Berkeley National Laboratory (Berkeley Lab) and is the University of California (UC) Berkeley's Samsung Distinguished Professor of

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Paul Braun RG-4 Leader Paul V. Braun Paul V. Braun, Ivan Racheff Professor of Materials Science and Engineering University of Illinois at Urbana-Champaign Professor Paul V. Braun is the Ivan Racheff Professor of Materials Science and Engineering, and an affiliate of the Frederick Seitz Materials Research Laboratory, the Beckman Institute forAdvanced Science and Technology, the Department of Chemistry, the Micro and Nanotechnology Laboratory and the Mechanical Science and

  9. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  10. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  11. How to Bring Solar Energy to Seven Billion People (LBNL Science at the Theater)

    SciTech Connect (OSTI)

    Wadia, Cyrus

    2009-04-06

    By exploiting the powers of nanotechnology and taking advantage of non-toxic, Earth-abundant materials, Berkeley Lab's Cyrus Wadia has fabricated new solar cell devices that have the potential to be several orders of magnitude less expensive than conventional solar cells. And by mastering the chemistry of these materials-and the economics of solar energy-he envisions bringing electricity to the 1.2 billion people now living without it.

  12. Iran Thomas Auditorium, 8600

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 8, 2010 11:00am Iran Thomas Auditorium, 8600 Growth and interface properties of oxide heterostructures Guus Rijnders MESA+ Institute for Nanotechnology University of Twente, Enschede, the Netherlands CNMS D D I I S S C C O O V V E E R R Y Y SEMINAR SERIES Abstract: Complex oxides have attracted great interest since they exhibit a rich spectrum of physical properties such as ferromagnetism, antiferromagnetism, colossal magnetoresistance, ferroelectricity, dielectricity, and

  13. Core Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Advanced Photon Source is one of the brightest sources of X-rays in the Western Hemisphere. Photons are accelerated to over 99% of the speed of light around its ring, which is the size of a baseball stadium. Click to enlarge. The Center for Nanoscale Materials at Argonne is a premier user facility, providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. To view a larger version of the image, click on it. Core Capabilities Argonne's

  14. DNA Nanostructures as Models for Evaluating the Role of Enthalpy and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Entropy in Polyvalent Binding Nanostructures as Models for Evaluating the Role of Enthalpy and Entropy in Polyvalent Binding Authors: Nangreave, J., Yan, H., and Liu, Y. Title: DNA Nanostructures as Models for Evaluating the Role of Enthalpy and Entropy in Polyvalent Binding Source: Journal of the American Chemical Society Year: 2011 Volume: 133 Pages: 4490-4497 ABSTRACT: DNA nanotechnology allows the design and construction of nanoscale objects that have finely tuned dimensions,

  15. DNA Origami: A History and Current Perspective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Origami: A History and Current Perspective Authors: Nangreave, J., Han, D., Liu, Y., and Yan, H. Title: DNA Origami: A History and Current Perspective Source: Current Opinion in Chemical Biology Year: 2010 Volume: 14 Pages: 608-615 ABSTRACT: Researchers have been using DNA for the rational design and construction of nanoscale objects for nearly 30 years. Recently, [`]scaffolded DNA origami' has emerged as one of the most promising assembly techniques in DNA nanotechnology with a broad range of

  16. DNA origami with Complex Curvatures in 3D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Complex Curvatures in 3D 15 Apr 2011 Center researchers have developed a new DNA origami design strategy for engineering complex, arbitrarily shaped 3D DNA nanostructures that have substantial intrinsic curvatures. This strategy has been presented in a paper by Professors Hao Yan, Yan Liu and coworkers that was featured on the cover of Science for April 15, 2011. Use of DNA as a structural material is in the basis of the DNA nanotechnology searching for ways to assemble nanoscale structures

  17. Call for Proposals | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call for Proposals Next Deadline: March 4, 2016 The Center for Nanoscale Materials (CNM) at Argonne National Laboratory solicits proposals for user-initiated nanoscience research three times per year (nominally in March, July, and November). The CNM nanoscience and nanotechnology research program provides users with access to a broad range of capabilities for design, synthesis, characterization, and theory & modeling in order to significantly advance the understanding of nanoscale phenomena

  18. Career Opportunities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Career Opportunities Career Opportunities Argonne's Center for Nanoscale Materials advances the basic science behind nanotechnology and spurs the development of products based on nanomaterials. Employment Opportunities Argonne National Laboratory occasionally seeks talented, enthusiastic scientists, and engineers in all CNM technical areas to participate in its scientific program and serve its collaborative user-engaging mission. Visit Argonne's careers web site and select the "NST"

  19. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Amit Misra IMage of Nathan Mar Contact Information Los Alamos National Laboratory Materials Physics and Applications Division Center for Integrated Nanotechnologies Phone: (505) 667-9860 amisra@lanl.gov Bio Education Ph.D. (Sep'1994), Materials Science and Engineering, University of Michigan, Ann Arbor M.S. (May 1991), Materials Science and Engineering, University of Michigan, Ann Arbor B.S. (May 1989), Metallurgical Engineering, Institute of Technology-BHU, India Research

  20. Nanoscience and Technology | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NST Division Addressing grand challenges in nanoscience and nanotechnology More The Nanoscience and Technology (NST) Division at Argonne National Laboratory hosts a user facility, the Center for Nanoscale Materials, in addition to performing programmatic science activities. NST research ranges from fundamental to use-inspired nanoscience with connections to industry and the Argonne applied science divisions. The division seeks to bring together scientists and engineers from national

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2015 Time: 11:00 am Speaker: Gang-Yu Liu, UC Davis Title: Engineered Nanostructures for Regulation and Investigation of Cellular Signaling Processes Location: 67-3111 Chemla Room Bio: Professor Liu's overall research objective focuses on the development of nanotechnology and potential applications to bioanalytical chemistry. One important aspect of the research is the design and engineering of nanostructures which position bioreceptors and chemical reaction sites on surfaces with high

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 2016 Time: 11:00 am Speaker: Igal Brener, Center for Integrated Nanotechnologies (CINT), Sandia-Los Alamos National Laboratories Title: Active Dielectric and Metallic Metasurfaces: Strong Coupling, Tuning and Nonlinearities Location: 67-3111 Chemla Room Abstract: Metasurfaces (2D arrays of metamaterial resonators) can be designed to exhibit strong electromagnetic resonances that can couple efficiently to emitters and a variety of excitations in semiconductors and their heterostructures. For

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foundry Student Intern Profiled by the Department of Homeland Security (DHS) Studying nanotechnology may not sound like the typical "how I spent my summer" story, but for Robert Accolla, he enthusiastically recalls his summer studying the electrostatic properties of peptoid nanosheets at the Molecular Foundry with Ron Zuckermann in the Biological Nanostructures Facility. A junior from Virginia Tech, majoring in biological systems engineering, Accolla researched peptoid nanosheets as

  4. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  5. Jia named Materials Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jia named Materials Research Society Fellow March 6, 2014 Quanxi Jia of the Center for Integrated Nanotechnologies (MPA-CINT) is a 2014 Fellow of the Materials Research Society (MRS). The MRS Fellow program recognizes outstanding members whose sustained and distinguished contributions to the advancement of materials research are internationally recognized. The number of new fellows selected annually is capped at 0.2 percent of the current total MRS membership. Achievements The MRS recognized Jia

  6. Nano-Composite Arsenic Sorbent - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Nano-Composite Arsenic Sorbent N-CAS: A low cost, highly effective arsenic removal technology Idaho National Laboratory Contact INL About This Technology Publications: PDF Document Publication Nano-Composite Arsenic Sorbent (N-CAS) Fact Sheet (1,859 KB) Technology Marketing Summary INL nanotechnology researchers have engineered a revolutionary and affordable material called

  7. Nanomaterials Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Hygiene Nanomaterials Information Quick Read Working Safely With Nanomaterials (OSHA Fact Sheet FS-3634) Ames Lab Information Plan 10200.035 Unbound Engineered Nanomaterials Safety Implementation Plan Form 10200.187 Unbound Engineered Nanomaterials Hazard Assessment (Fillable Form) Nanotechnology Awareness Training through ISU EHS References DOE Order 456.1 Admin Chg. 1, The Safe Handling of Unbound Engineered Nanoparticles Department of Energy Nanoscale Science Research Centers

  8. Nanoparticle toxicity testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoparticle toxicity testing 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues » submit Nanoparticle toxicity testing Assessing the potential health hazards of nanotechnology March 25, 2013 Robot In the search for more accurate and efficient techniques to evaluate the health hazards of nanoparticles, Los Alamos researchers are developing artificial human tissues and organs to replace animal test subjects. A new approach to toxicity testing under

  9. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  10. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the

  11. Layout 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E C H N I C A L TA L K < < < < < < Anisotropic Nanostructures: Synthetic Challenges, Assembly, and Biomedical Applications Chad Mirkin Northwestern University Director of Institute for Nanotechnology Distinguished Professor of Chemistry Technical Talk Tuesday, September 20, 2005 10:00 a.m. - 11:30 a.m. Rotunda Auditorium Energy, Coast & Environment Building www.research.lsu.edu/cdls.html A novel approach that uses ambient fluorescent light to convert small sil- ver

  12. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  13. Igor Kaganovich | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Igor Kaganovich Research Physicist, Plasma Physics Laboratory. Dr. Kaganovich is a principal research physicist at Princeton Plasma Physics Laboratory. His professional interests include: beam-plasma interaction, high energy density plasmas, nanotechnology, atomic physics, and physics of partially ionized plasmas. He is involved in research in many areas of plasma physics with applications to nuclear fusion (heavy ion fusion), gas discharge modeling, and plasma processing. Dr. Kaganovich serves

  14. Nanoscience at Work: Creating Energy from Sunlight (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Alivisatos, Paul

    2011-04-28

    Paul Alivisatos, co-leader of Berkeley Lab's Helios Project, is the Associate Director for Physical Sciences and director of the Materials Sciences Division at Berkeley Lab. In the Helios Project, Alivisatos will use nanotechnology in the efficient capture of sunlight and its conversion to electricity to drive economical fuel production processes. He is an authority on artificial nanostructure synthesis and inventor of the quantum dot technology.

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    International Laboratory of Materials Science and Nanotechnology" Name Name ORCID Search Authors Type: All Book/Monograph Conference/Event Journal Article Miscellaneous Patent Program Document Software Manual Technical Report Thesis/Dissertation Subject: Identifier Numbers: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States)

  16. Shell-Based Simulation of Filamentary Resistive Memory. (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: Shell-Based Simulation of Filamentary Resistive Memory. Citation Details In-Document Search Title: Shell-Based Simulation of Filamentary Resistive Memory. Abstract not provided. Authors: Lohn, Andrew ; Mickel, Patrick R. ; Marinella, Matthew Publication Date: 2014-06-01 OSTI Identifier: 1183002 Report Number(s): SAND2014-15228J 534144 DOE Contract Number: AC04-94AL85000 Resource Type: Journal Article Resource Relation: Journal Name: Nanotechnology Research

  17. May Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May May 2016 Events May 2016 event highlights May 9 Mon 8:00 AM Energy Landscapes: From Protein Folding to Molecular Assembly Hilton Santa Fe Historic Plaza - Santa Fe, NM Nanoscale molecular assembly is very common in biology and in nanotechnology. May 16 Mon 8:00 AM Data Science and Optimal Learning for Material Discovery and Design Hilton Santa Fe Accelerating materials discovery has been an emerging theme in several Office of Science and other government reports and proposal calls

  18. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  19. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  20. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  1. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  2. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  3. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Mechanical Behavior of Indium Nanostructures Print Wednesday, 26 May 2010 00:00 Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale

  4. Bagdad Plant Raymond J. Polinski 585 Silicon Drive General Manager

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bagdad Plant Raymond J. Polinski 585 Silicon Drive General Manager Leechburg, PA 15656 Grain-Oriented Electrical Steel e-mail: Raymond.Polinski@ATImetals.com E. Below are Allegheny Technologies Incorporated's comments on certain issues in which the DOE sought comment. 17. DOE seeks comment on nanotechnology composites and their potential for use in distribution transformers. Soft magnetic and amorphous particles with excellent magnetic properties can be and are currently produced, but the

  5. Microsoft PowerPoint - Liang_JACS-2013.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (~175 words) By nanostructuring the previously reported lithium ion conductor Li3PS4, we demonstrated that lithium- ion conductivity at room temperature could be improved roughly 1000 times over the natural material. We applied two nanotechnology-based approaches: nanoscale porosity to increase surface area; and stabilization of a high-temperature phase at room temperature using nanoscale grain sizes. The first approach is useful to increase ion conduction along surfaces. The second approach is

  6. 03-08-2010 NNSA-B-10-0131

    National Nuclear Security Administration (NNSA)

    3-08-2010 NNSA-B-10-0131 Sandia National Laboratories/New Mexico (SNL/NM) proposes to install dewatering wells in the north and south atriums of SNL/NM Building 518, Center for Integrated Nanotechnologies (CINT), on Eubank Boulevard, SE. ✖ Sandia Site Office Dewatering Wells for CINT (Bldg. 518) Atriums Bldg 518-Atriums LACY,SUSAN DOYLENE 03/08

  7. The Tactical and Strategic Implementation of Sustainable Nanomaterials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office Sustainable Nanomaterials Workshop Washington, DC Sean Ireland Verso Paper Corp. & Chairman, TAPPI Nanotechnology Division July 26, 2012 The Tactical and Strategic Implementation of Sustainable Nanomaterials Verso Paper Corp  Verso is one of North America's Leading Manufacturers of Coated Papers  Four paper mills with 1.8 Million tons of paper capacity  $1.72 billion in Net Sales for 2011  Market Leader in our two end-user segments (Magazines and

  8. Accelerating Materials Development for a Clean Energy Future | Department

    Energy Savers [EERE]

    of Energy Materials Development for a Clean Energy Future Accelerating Materials Development for a Clean Energy Future February 24, 2016 - 2:30pm Addthis Accelerating Materials Development for a Clean Energy Future Reuben Sarkar Reuben Sarkar Deputy Assistant Secretary for Transportation Megan Brewster Senior Policy Advisor for Advanced Manufacturing at the White House Office of Science and Technology Policy Lloyd Whitman Assistant Director for Nanotechnology and Advanced Materials at the

  9. Nanoscale Advances in Catalysis and Energy Applications

    SciTech Connect (OSTI)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  10. July 24, 2009, Governance of EmergingTechnologies by Dr. M.C. Roco

    Office of Environmental Management (EM)

    Governance of Emerging Technologies M.C. Roco National Science Foundation and National Nanotechnology Initiative Governance and Regulation July 24, 2009, Washington, D.C. / Core Governance Process: Long-term view, transforming, inclusive, horizontal vertical, priority in education, addressing societal dimensions, risk governance Main Actors: R&D Organizations (Academe, industry, gov.) Implementation Network (Regulators, business, NGOs, media, public) Social Climate (Perceived authority of

  11. Illinois: EERE-Sponsored Clean Energy Competition Launches 2012 Winner's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Success, Company Doubles in Size | Department of Energy Winner's Success, Company Doubles in Size Illinois: EERE-Sponsored Clean Energy Competition Launches 2012 Winner's Success, Company Doubles in Size August 21, 2013 - 10:15am Addthis NuMat Technologies, the winner of the 2012 National Clean Energy Business Plan Competition, has been making enormous progress toward building the company. NuMat Technologies is a nanotechnology company developing metal organic frameworks that have several

  12. Nanomaterial Laboratory Safety, Boise State University | Department of

    Office of Environmental Management (EM)

    Energy Nanomaterial Laboratory Safety, Boise State University Nanomaterial Laboratory Safety, Boise State University A nanomaterial, as defined by The ASTM Committee on Nanotechnology, is a particle withlengths in 2 or 3 dimensions between 1 to 100 nm that mayor may not have a size related intensive property. Nanomaterials are of increasing interest due to their unique properties compared to the same material on the micro and macroscopic scales and their potential associated applications

  13. Nanoscale Materials Safety at the Department's Laboratories

    Office of Environmental Management (EM)

    U.S. Department of Energy Office of Inspector General Office of Audit Services Audit Report Nanoscale Materials Safety at the Department's Laboratories DOE/IG-0788 February 2008 Department of Energy Washington, DC 2 0 5 8 5 February 28, 2008 MEMORANDUM FOR FROM: Inspector General SUBJECT: IhTFORMATION: Audit Report on "Nanoscale Materials Safety at the Department's Laboratories" BACKGROUND The National Nanotechnology Initiative was established as a multi-agency research and

  14. Self-assembled lipid bilayer materials

    DOE Patents [OSTI]

    Sasaki, Darryl Y.; Waggoner, Tina A.; Last, Julie A.

    2005-11-08

    The present invention is a self-assembling material comprised of stacks of lipid bilayers formed in a columnar structure, where the assembly process is mediated and regulated by chemical recognition events. The material, through the chemical recognition interactions, has a self-regulating system that corrects the radial size of the assembly creating a uniform diameter throughout most of the structure. The materials form and are stable in aqueous solution. These materials are useful as structural elements for the architecture of materials and components in nanotechnology, efficient light harvesting systems for optical sensing, chemical processing centers, and drug delivery vehicles.

  15. Structural Studies of Al:ZnO Powders and Thin Films | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Structural Studies of Al:ZnO Powders and Thin Films Monday, June 18, 2012 - 2:00pm SSRL Main Conference Room 137-322 Dr. Bridget Ingham, Associate Investigator, MacDiarmid Institute for Advanced Materials & Nanotechnology Al-doped ZnO (Al:ZnO) is a promising transparent conducting oxide. We have used complementary synchrotron and laboratory techniques to study the incorporation of Al within the ZnO lattice, and measure its effect on the crystallinity of thin films

  16. A review of research in the field of nanorobotics.

    SciTech Connect (OSTI)

    Sierra, Dannelle P.; Weir, Nathan A.; Jones, James Frank

    2005-10-01

    This report highlights the findings of an extensive review of the literature in the area of nanorobotics. The main goal of this midyear LDRD effort is to survey and identify accomplishments and advancements that have been made in this relatively new and emerging field. As a result, it may be determined what routes in the area of nanorobotics are scientifically plausible and technically useful so that the Intelligent Systems and Robotics Center can position itself to play a role in the future development of nanotechnology.

  17. Method for nano-pumping using carbon nanotubes

    DOE Patents [OSTI]

    Insepov, Zeke (Darien, IL); Hassanein, Ahmed (Bolingbrook, IL)

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  18. Theory and modeling in nanoscience: Report of the May 10-11, 2002Workshop

    SciTech Connect (OSTI)

    McCurdy, C. William; Stechel, Ellen; Cummings, Peter; Hendrickson, Bruce; Keyes, David

    2002-06-28

    On May 10 and 11, 2002, a workshop entitled ''Theory and Modeling in Nanoscience'' was held in San Francisco, California, sponsored by the offices of Basic Energy Science and Advanced Scientific Computing Research of the Department of Energy. The Basic Energy Sciences Advisory Committee and the Advanced Scientific Computing Advisory Committee convened the workshop to identify challenges and opportunities for theory, modeling, and simulation in nanoscience and nanotechnology, and additionally to investigate the growing and promising role of applied mathematics and computer science in meeting those challenges. This report is the result of those contributions and the discussions at the workshop.

  19. CNM Scientific Contact sheet 3_16.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Materials Quantum & Energy Materials Major Tools Scientific Contacts § UHV SPM (AFM/STM) (Omicron Nanotechnology) § 4-probe SEM (Omicron UHV Nanoprobe) § VT-AFM (Omicron XA), LT-STM § Scanning probe microscope, AFM (Veeco) § Complex Oxide MBE (DCA R450D Custom) § Kurt Lesker electron beam evaporator and sputtering, deposition § Magnetometry (QD PPMS & MPMS) § Solar simulator, QEMS (Oriel) § TGA/DSC § Luminescence/UV-vis-NIR § X-ray

  20. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly A New Route to Nano Self-Assembly Print Wednesday, 24 February 2010 00:00 If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance toward this goal has been achieved by researchers who have found a simple and yet powerfully robust way to induce nanoparticles to assemble themselves into complex arrays. By adding specific types of small molecules to mixtures of nanoparticles and

  1. 2015 Seminars Archive | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Seminars Archive Date Title December 16, 2015 11:00 am Bldg. 440, A105-106 "Quantum Optics of Carbon Nanotubes," Xuedan Ma,Center for Integrated Nanotechnologies Los Alamos National Laboratory and Sandia National Laboratories. Hosted by Gary Wiederrecht Because of their photoluminescence (PL) emission that spans over the 1.3 - 1.5 μm telecom spectral regime, individual semiconducting single-walled carbon nanotubes (SWCNTs) have been considered as ideal candidates for single photon

  2. #LabChat: The Science of the Very Small | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Science of the Very Small #LabChat: The Science of the Very Small April 15, 2014 - 5:30pm Q&A Have questions about the exciting field of nanotechnology? Submit your questions here and our experts will answer them this Thursday at noon ET on Twitter! Ask Us Addthis #LabChat: The Science of the Very Small Ben Dotson Ben Dotson Former Project Coordinator for Digital Reform, Office of Public Affairs This month on Energy.gov, we're highlighting the science of the very fast and very small.

  3. Photo-ionization and residual electron effects in guided streamers

    SciTech Connect (OSTI)

    Wu, S.; Lu, X. Liu, D.; Yang, Y.; Pan, Y.; Ostrikov, K.

    2014-10-15

    Complementary experiments and numerical modeling reveal the important role of photo-ionization in the guided streamer propagation in helium-air gas mixtures. It is shown that the minimum electron concentration ?10{sup 8?}cm{sup ?3} is required for the regular, repeated propagation of the plasma bullets, while the streamers propagate in the stochastic mode below this threshold. The stochastic-to-regular mode transition is related to the higher background electron density in front of the propagating streamers. These findings help improving control of guided streamer propagation in applications from health care to nanotechnology and improve understanding of generic pre-breakdown phenomena.

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Awschalom, David" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything7 Electronic Full Text4 Citations3 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject spin (4) diamonds (3) crystals (2) doped materials (2) electron gas (2) nanoscience and nanotechnology (2) nitrogen

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Dani, Keshav M" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything2 Electronic Full Text2 Citations0 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject communications (1) computers (1) modulation (1) nanoscience and nanotechnology (1) performance (1) processing (1)

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Grady, Nathaniel" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything6 Electronic Full Text5 Citations1 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject materials science(36) (3) materials science (2) nanoscience & nanotechnology(77) material science (2) bio-inspired

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Guo, Shaojun" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything8 Electronic Full Text6 Citations2 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject material science (4) materials science(36) (4) inorganic and physical chemistry (3) nanoscience & nanotechnology(77)

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 3 Search for: All records Creators/Authors contains: "Hollingsworth, Jennifer A" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Select page number Go to page: 1 of 3 1 » Next » Everything26 Electronic Full Text19 Citations7 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject materials science (7) nanoscience and nanotechnology (6) quantum

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 3 Search for: All records Creators/Authors contains: "Htoon, Han" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Select page number Go to page: 1 of 3 1 » Next » Everything21 Electronic Full Text11 Citations10 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject materials science (5) nanoscience and nanotechnology (4) quantum dots (4)

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Mohite, Aditya D" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything7 Electronic Full Text6 Citations1 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject materials science (3) nanoscience and nanotechnology (2) catalysts (1) chemical vapor deposition (1) condensed matter

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Reiter, George" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything3 Electronic Full Text1 Citations2 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject condensed matter physics, superconductivity and superfluidity (2) nanoscience and nanotechnology (2) carbon (1)

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Sheiko, S" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything4 Electronic Full Text0 Citations4 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject crystal-phase transformations (1) drawing (1) fibers (1) materials science (1) microscopy (1) nanoscience and nanotechnology

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 7 Search for: All records Creators/Authors contains: "Talin, Albert Alec" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Select page number Go to page: 1 of 7 1 » Next » Everything68 Electronic Full Text14 Citations54 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject materials science (18) nanoscience and nanotechnology (9) nanotubes

  14. A room temperature electron cyclotron resonance ion source for the DC-110 cyclotron

    SciTech Connect (OSTI)

    Efremov, A. Bogomolov, S.; Lebedev, A.; Loginov, V.; Yazvitsky, N.

    2014-02-15

    The project of the DC-110 cyclotron facility to provide applied research in the nanotechnologies (track pore membranes, surface modification of materials, etc.) has been designed by the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (Dubna). The facility includes the isochronous cyclotron DC-110 for accelerating the intensive Ar, Kr, Xe ion beams with 2.5 MeV/nucleon fixed energy. The cyclotron is equipped with system of axial injection and ECR ion source DECRIS-5, operating at the frequency of 18 GHz. This article reviews the design and construction of DECRIS-5 ion source along with some initial commissioning results.

  15. FLNR SHE Factory Sergey Dmitriev FLNR JINR FLNR's BASIC DIRECTIONS of RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FLNR SHE Factory Sergey Dmitriev FLNR JINR FLNR's BASIC DIRECTIONS of RESEARCH according to the Seven-Year Plan 2010 - 2016 1. Heavy and superheavy nuclei: Ø synthesis and study of properties of superheavy elements; Ø chemistry of new elements; Ø fusion-fission and multi-nucleon transfer reactions; Ø nuclear- , mass-, & laser-spectrometry of SH nuclei. 3. Radiation effects and physical groundwork of nanotechnology. 2. Light exotic nuclei: Ø properties and structure of

  16. Nanoscience Research Internships in Illinois

    SciTech Connect (OSTI)

    Kronshage, Alisa

    2013-08-31

    NanoBusiness Talent Project Summary Report The NanoBusiness Alliance created the NanoBusiness Talent Program to ensure the future vitality of domestic scientists and entrepreneurs by engaging advanced high school students in cutting-edge nanotechnology development. This program commenced on September 1, 2008 and ran through August 31, 2010 with a very successful group of students. Several of these students went on to Stanford, Harvard and Yale, as well as many other prestigious Universities. We were able to procure the cooperation of several companies over the entire run of the program to voluntarily intern students at their companies and show them the possibilities that exist for their future. Companies ranged from NanoInk and Nanosphere to QuesTek and NanoIntegris all located in northern Illinois. During the 9-week internships, students worked at nanotechnology companies studying different ways in which nanotechnology is used for both commercial and consumer use. The students were both excited and invigorated at the prospect of being able to work with professional scientists in fields that previously may have just been a dream or an unreachable goal. All the students worked closely with mentors from each company to learn different aspects of procedures and scientific projects that they then used to present to faculty, parents, mentors and directors of the program at the end of each years program. The presentations were extremely well received and professionally created. We were able to see how much the students learned and absorbed through the course of their internships. During the last year of the program, we reached out to both North Carolina and Colorado high school students and received an extraordinary amount of applications. There were also numerous companies that were not only willing but excited at the prospect to engage highly intelligent high school students and to encourage them into the nanotechnology scientific field. Again, this program increase was highly received and the students were thoroughly engaged. Our program ended August 31, 2010 with our last class of students and their final presentations. From the pilot year to the end presentations, we received hundreds of applications from students excited for the opportunity to work in a scientific field. With our goal of inspiring the newest generation of potential scientists and mathematician, we not only found ourselves overwhelmingly impressed but encouraged that the greatest minds of the future will come from this next generation and many more generations.

  17. DNA origami: A quantum leap for self assembly of complex structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DNA origami: A quantum leap for self assembly of complex structures Authors: Tørring, T., Voigt, N.V., Nangreave, J., Yan, H., and Gothelf, K.V. Title: DNA origami: A quantum leap for self assembly of complex structures Source: Chem. Soc. Rev. Year: 2011 Volume: 40 Pages: 5636 - 5646 ABSTRACT: The spatially controlled positioning of functional materials by self-assembly is one of the fundamental visions of nanotechnology. Major steps towards this goal have been achieved using DNA as a

  18. Semiconductor Nanocrystals for Biological Imaging

    SciTech Connect (OSTI)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  19. Duo at Santa Fe's Monte del Sol Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th New Mexico Supercomputing Challenge April 21, 2015 Using nanotechnology robots to kill cancer cells LOS ALAMOS, N.M., April 21, 2015-Meghan Hill and Katelynn James of Santa Fe's Monte del Sol Charter Sol took the top prize in the 25 th New Mexico Supercomputing Challenge Tuesday at Los Alamos National Laboratory for their research project, "Using Concentrated Heat Systems to Shock the P53 Protein to Direct Cancer into

  20. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights CNMS RESEARCH HIGHLIGHTS Title Authors Journal Publication Date In-situ Fabrication of Ultrathin Metallic Nanowires from Semiconducting Monolayers J. Lin, O. Cretu, W. Zhou, K. Suenaga, D. Prasai, K. I. Bolotin, N. Thanh Cuong, M. Otani, S. Okada, A. R. Lupini, J-C. Idrobo, D. Caudel, A. Burger, N.l J. Ghimire, J. Yan, D. G. Mandrus, S. J. Pennycook, S. T. Pantelides Nature Nanotechnology DOI: 10.1038/nnano.201481 September 2014 PDF In-situ Fabrication of Ultrathin Metallic

  1. Toxicology and cellular effect of manufactured nanomaterials

    DOE Patents [OSTI]

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Wei, Jinquan" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything4 Electronic Full Text0 Citations4 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject carbon nanotubes (3) nanoscience and nanotechnology (3) bound state (2) dissociation (2) electrons (2) rubidium compounds

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 2 of 3 Search for: All records Creators/Authors contains: "Hollingsworth, Jennifer A" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Select page number Go to page: 2 of 3 2 » Next » Everything26 Electronic Full Text19 Citations7 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject materials science (7) nanoscience and nanotechnology (6) quantum

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 2 of 3 Search for: All records Creators/Authors contains: "Htoon, Han" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Select page number Go to page: 2 of 3 2 » Next » Everything21 Electronic Full Text11 Citations10 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject materials science (5) nanoscience and nanotechnology (4) quantum dots (4)

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 2 of 7 Search for: All records Creators/Authors contains: "Talin, Albert Alec" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Select page number Go to page: 2 of 7 2 » Next » Everything68 Electronic Full Text14 Citations54 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject materials science (18) nanoscience and nanotechnology (9) nanotubes

  6. MICROFLUIDIC MODULES FOR ISOLATION OF RECOMBINANT CYTOKINE FROM BACTERIAL LYSATES

    SciTech Connect (OSTI)

    Millet, Larry J; Retterer, Scott T; Doktycz, Mitchel John

    2014-01-01

    The portability and personalization of health-care diagnostics and treatments benefits from advancements and applications of micro and nanotechnology. Modularization and miniaturization of standardized biochemical processes and tests facilitates the advancement and customization of analyte detection and diagnosis on-chip. The goal of our work here is to develop modular platforms for on-chip biochemical processing of synthesized biologics for a range of on-demand applications. Our report focuses on the initial development, characterization and application of microfluidic size exclusion/gel filtration and ion exchange protein concentration modules for cytokine isolation from spiked cell extracts.

  7. An overviewFunctional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    SciTech Connect (OSTI)

    Liu, Hua Kun

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: Nanomaterials play important role for lithium rechargeable batteries. Nanostructured materials increase the capacitance of supercapacitors. Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

  8. Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts

    SciTech Connect (OSTI)

    Brar, Satinder K.; Verma, Mausam; Tyagi, R.D.; Surampalli, R.Y.

    2010-03-15

    Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles - consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.

  9. Joint Institute for Nanoscience Annual Report 2004

    SciTech Connect (OSTI)

    Baer, Donald R.; Campbell, Charles

    2005-02-01

    Due to the inherently interdisciplinary nature of nanoscience and nanotechnology, research in this arena is often significantly enhanced through creative cooperative activities. The Joint Institute for Nanoscience (JIN) is a venture of the University of Washington (UW) and Pacific Northwest National Laboratory (PNNL) to encourage and enhance high impact and high quality nanoscience and nanotechnology research that leverages the strengths and capabilities of both institutions, and to facilitate education in these areas. This report summarizes JIN award activities that took place during fiscal year 2004 and provides a historical list of JIN awardees, their resulting publications, and JIN-related meetings. Major portions of the JIN efforts and resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by PNNL staff scientists and UW professors. JIN fellowships are awarded on the basis of applications that include research proposals. They have been very successful in expanding collaborations between PNNL and UW, which have led to many excellent joint publications and presentations and enhanced the competitiveness of both institutions for external grant funding. JIN-based interactions are playing a significant role in creating new research directions and reshaping existing research programs at both the UW and PNNL. The JIN also co-sponsors workshops on Nanoscale Science and Technology, four of which have been held in Seattle and one in Richland. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant, Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology, has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of Alaska. The JIN agreement recognizes that cooperation beyond UW and PNNL is highly valuable. Starting in early 2003, efforts were initiated to form a regional communication link called the Northwest Nanoscience and Nanotechnology Network (N4). In concept, N4 is a tool to encourage communication and help identify regional resources and nanoscience and technology activities.

  10. Nanofabrication with the Scanning Tunneling Microscope

    SciTech Connect (OSTI)

    Shedd, G.M.; Russell, P.E.

    1988-12-01

    The Precision Engineering Center has recently begun a research program into applications of STM to Nanotechnology. Few tools permit humans to control events and processes at the manometer level, and of those, the STM is the most well-suited to the task. A versatile new ultra-high-vacuum (UHV) STM is being built to study the use of STM for the manipulation of nanometer-scale particles. Part of the STM`s usefulness will be due to its being positioned directly beneath the focused ion beam (FIB). The interface of the STM with the FIB will allow the STM to take advantage of the FIB for long-range imaging and as a particle source; the FIB can in turn use the STM for in situ, high-resolution imaging of micromachined features.

  11. Exploring new energy alternatives.

    SciTech Connect (OSTI)

    LePoire, D.J.

    2011-09-01

    What is most likely to satisfy our energy needs in the future - wind farms and photovoltaic arrays, or something yet to be invented? Options for the world's energy future may include surprises, thanks to innovative research under way around the world. The article focuses on the energy sources alternatives in the U.S. It explores innovations for energy sources such as wind farms, solar thermal concentrators, solar cells, and geothermal energy production. It states that the attainment of energy efficiency through conversation or improved technology allows to extract more applied energy. It points out that techniques are being explored to expand the possible fuel materials to includes other types of uranium and thorium. Furthermore, it discusses the capability of nanotechnology in offering a tool which could help create designs that convert energy more efficiently.

  12. Point defect weakened thermal contraction in monolayer graphene

    SciTech Connect (OSTI)

    Zha, Xian-Hu; Zhang, Rui-Qin; Lin, Zijing

    2014-08-14

    We investigate the thermal expansion behaviors of monolayer graphene and three configurations of graphene with point defects, namely the replacement of one carbon atom with a boron or nitrogen atom, or of two neighboring carbon atoms by boron-nitrogen atoms, based on calculations using first-principles density functional theory. It is found that the thermal contraction of monolayer graphene is significantly decreased by point defects. Moreover, the corresponding temperature for negative linear thermal expansion coefficient with the maximum absolute value is reduced. The cause is determined to be point defects that enhance the mechanical strength of graphene and then reduce the amplitude and phonon frequency of the out-of-plane acoustic vibration mode. Such defect weakening of graphene thermal contraction will be useful in nanotechnology to diminish the mismatching or strain between the graphene and its substrate.

  13. Characterization of few-layered graphene grown by carbon implantation

    SciTech Connect (OSTI)

    Lee, Kin Kiong; McCallum, Jeffrey C.; Jamieson, David N.

    2014-02-21

    Graphene is considered to be a very promising material for applications in nanotechnology. The properties of graphene are strongly dependent on defects that occur during growth and processing. These defects can be either detrimental or beneficial to device performance depending on defect type, location and device application. Here we present experimental results on formation of few-layered graphene by carbon ion implantation into nickel films and characteristics of graphene devices formed by graphene transfer and lithographic patterning. Micro-Raman spectroscopy was used to determine the number of graphene layers formed and identify defects arising from the device processing. The graphene films were cleaned by annealing in vacuum. Transport properties of cleaned graphene films were investigated by fabrication of back-gated field-effect transistors, which exhibited high hole and electron mobility of 1935 and 1905 cm2/Vs, respectively.

  14. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    SciTech Connect (OSTI)

    Munaweera, Imalka; Balkus, Kenneth J. Jr. E-mail: Anthony.DiPasqua@unthsc.edu; Koneru, Bhuvaneswari; Shi, Yi; Di Pasqua, Anthony J. E-mail: Anthony.DiPasqua@unthsc.edu

    2014-11-01

    Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, {sup 1}H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  15. Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310

    SciTech Connect (OSTI)

    Zhang, M.

    2013-04-01

    Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

  16. On-the-fly scans for X-ray ptychography

    SciTech Connect (OSTI)

    Pelz, Philipp M.; Guizar-Sicairos, Manuel; Johnson, Ian; Holler, Mirko; Menzel, Andreas; Thibault, Pierre

    2014-12-22

    With the increasing importance of nanotechnology, the need for reliable real-time imaging of mesoscopic objects with nanometer resolution is rising. For X-ray ptychography, a scanning microscopy technique that provides nanometric resolution on extended fields of view, and the settling time of the scanning system is one of the bottlenecks for fast imaging. Here, we demonstrate that ptychographic on-the-fly scans, i.e., collecting diffraction patterns while the sample is scanned with constant velocity, can be modelled as a state mixture of the probing radiation and allow for reliable image recovery. Characteristics of the probe modes are discussed for various scan parameters, and the application to significantly reducing the scanning time is considered.

  17. Applications of free electron lasers and synchrotrons in industry and research

    SciTech Connect (OSTI)

    Barletta, William A. [Dept. of Physics, Massachusetts Institute of Technology Cambridge MA (United States)

    2013-04-19

    Synchrotron radiation sources have had a profound effect on both science and technology from their beginnings decades ago as parasitic operations on accelerators for high energy physics. Now the general area of photon science has opened up new experimental techniques which have become the mainstay tools of materials science, surface physics, protein crystallography, and nanotechnology. With the promise of ultra-bright beams from the latest generation of storage rings and free electron lasers with full coherence, the tools of photon science promise to open a new area of mesoscale science and technology as well as prove to be a disruptive wildcard in the search for sustainable energy technologies. This review will survey a range of applications and explore in greater depth the potential applications to EUV lithography and to technologies for solar energy.

  18. Nanomanipulation and nanofabrication with multi-probe STM: From individual atoms to nanowires

    SciTech Connect (OSTI)

    Qin, Shengyong; Kim, Tae Hwan; Wang, Zhouhang; Li, An-Ping

    2012-01-01

    The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.

  19. Probing the Unique Size-Dependent Properties of Small Au Clusters, Au Alloy Clusters, and CO Chemisorbed Au Clusters in the Gas Phase

    SciTech Connect (OSTI)

    Zhai, Hua-jin; Li, Xi; Wang, Lai S.

    2007-04-01

    When materials are reduced in size to the nanometer scale, their physical and chemical properties undergo major changes and become size-dependent, forming the foundation for nanoscience and nanotechnology. Gold nanoparticles and small gold clusters have been the focus of intensive research activities lately. The modern goldrush is largely motivated by the recent discoveries that (i) nanogold shows unexpected catalytic properties for a wide spectrum of chemical reactions [1], (ii) nanogold enables selective binding to biomolecules such as DNA and thus can serve as biosensors [2], (iii) gold has important potential applications in nanoelectronics [3,4], and (iv) gold clusters and gold-containing compounds possess unique chemical properties [5]. All these golden discoveries have made gold a surprising and rewarding subject of investigation in nanoscience and cluster science. Indeed, some of our oldest notions regarding gold, such as its inertness, are being changed dramatically by the recent findings in nanogold.

  20. Parametric effects in nanobeams and AFM

    SciTech Connect (OSTI)

    Claeyssen, J. C. R.; Tonetto, L.; Carvalho, J. B.; Copetti, R. D.

    2014-12-10

    Vibration dynamics of forced cantilever beams that are used in nanotechnology such as atomic force microscope modeling and carbon nanotubes is considered in terms of a fundamental response within a matrix framework. The modeling equations are written as a matrix differential equation subject to tip-sample general boundary conditions. At the junctions, where there are discontinuities due to different material or beam thickness, compatibility conditions are prescribed. Forced responses are given by convolution of the input load with the time domain Green matrix function. The corresponding matrix transfer function and modes of a multispan cantilever beam are determined in terms of solution basis of the same shape generated by a fundamental solution. Simulations were performed for a three stepped beam with a piezoelectric patch subject to pulse forcing terms and with surface effects.

  1. Standardizng Data

    SciTech Connect (OSTI)

    Baker, Nathan A.; Klemm, Juli; Harper, Stacey; Gaheen, Sharon; Heiskanen, Mervi; Rocca-Serra, Philippe; Sansone, Susanna A.

    2013-02-05

    To enable the rational design of nanomaterials for improved efficacy and safety, it is critical to understand and exploit the physicochemical properties that drive biological behavior (Morris, 2010). Data mining and computer simulation are essential for deriving information about nanomaterial behavior; however, the datasets needed to support such studies are sparse and stored across a variety of repositories and resources. Schrurs and Lison (2012) have expressed the need for more coherence and structure in the conduct of nanotechnology research. Additionally, the lack of common reporting standards and non-uniformity of information reported have proven to be significant barriers to such data sharing and re-use. The Nanotechnology Working Group (Nano WG), of the US National Institutes of Health National Cancer Informatics Program, has been focused on addressing these barriers. The Nano WG - which includes representatives from over 20 organizations including government agencies, academia, industry, standards organizations, and alliances -has developed ISA-TAB-Nano (Thomas et al, 2013), a general framework for representing and integrating diverse types of data related to the description and characterization of nanomaterials. Recognizing that nanoparticle characterization studies have many of the same challenges as omics-based assays, the Nano WG joined the ISA Commons (Sansone et al., 2012) to leverage lessons learned in omics data sharing. The ISA Commons community brings together 50 collaborators at over 30 scientific organizations around the globe, including regulatory and industrial participants in an increasingly diverse set of life science domains. At the core of the ISA Commons is the ISA metadata tracking framework which forms the basis for the ISA-TAB-Nano extension. The extension of the ISA framework to nanotechnology domain illustrates the power of a synergistic approach that seeks the interoperability of data across multiple research disciplines. To increase adoption, especially in the commercial arena from vendors and manufactures, the ISA-Tab-Nano data-sharing specification has also been submitted for consideration as a standard to the American Society for Testing and Materials (ASTM). Delivering a community-driven specification is only the first phase of the process. To be useful and used, ISA-TAB-Nano must be implemented by tools and databases to assist researchers in reporting their data accordingly, shielding them from unnecessary complexity. Our next step is to extend the open source ISA Software Suite to provide user-oriented tools for the collection, curation, and storage of data compliant with the ISA-TAB-Nano specification. Future work will also focus on the application of the ISA-TAB-Nano format to support emerging standards on minimal information about nanomaterials in biological research (Ostraat et al, 2012; MinChar). ISA-TAB-Nano development is a community-driven effort and we welcome new contributions, collaborations and domain expertise. We invite researchers, software developers, vendors, and other stakeholders to work with us to implement the ISA-Tab-Nano format in their existing systems and research. Likewise, we welcome engagement of regulators, funding agencies, editors, and other policy makers to discuss how this standard can be used to facilitate the sharing and reuse of nanotechnology data across a wide range of disciplines. More information about the ISA-TAB-Nano project can be found online at https://wiki.nci.nih.gov/display/ICR/ISA-TAB-Nano.

  2. Self-assembling multimeric nucleic acid constructs

    DOE Patents [OSTI]

    Cantor, Charles R. (Boston, MA); Niemeyer, Christof M. (Bremen, DE); Smith, Cassandra L. (Boston, MA); Sano, Takeshi (Boston, MA); Hnatowich, Donald J. (Brookline, MA); Rusckowski, Mary (Southborough, MA)

    1999-10-12

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  3. Self-assembling multimeric nucleic acid constructs

    DOE Patents [OSTI]

    Cantor, Charles R. (Boston, MA); Niemeyer, Christof M. (Bremen, DE); Smith, Cassandra L. (Boston, MA); Sano, Takeshi (Boston, MA); Hnatowich, Donald J. (Brookline, MA); Rusckowski, Mary (Southborough, MA)

    1996-01-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  4. Therapeutic potential of nanoceria in regenerative medicine

    SciTech Connect (OSTI)

    Das, Soumen; Chigurupati, Srinivasulu; Dowding, Janet; Munusamy, Prabhakaran; Baer, Donald R.; McGinnis, James F.; Mattson, Mark P.; Self, William; Seal, Sudipta

    2014-11-01

    Tissue engineering and regenerative medicine aim to achieve functional restoration of tissue or cells damaged through disease, aging or trauma. Advancement of tissue engineering requires innovation in the field of 3D scaffolding, and functionalization with bioactive molecules. Nanotechnology offers advanced materials with patterned nano-morphologies for cell growth and different molecular substrates which can support cell survival and functions. Cerium oxide nanoparticles (nanoceria) can control intracellular as well as extracellular reactive oxygen and nitrogen species. Recent findings suggest that nanoceria can enhance long-term cell survival, enable cell migration and proliferation, and promote stem cell differentiation. Moreover, the self-regenerative property of nanoceria permits a small dose to remain catalytically active for extended time. This review summarizes the possibilities and applications of nanoceria in the field of tissue engineering and regenerative medicine.

  5. Realizing a supercapacitor in an electrical circuit

    SciTech Connect (OSTI)

    Fukuhara, Mikio Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2014-11-17

    Capacitors are commonly used in electronic resonance circuits; however, capacitors have not been used for storing large amounts of electrical energy in electrical circuits. Here, we report a superior RC circuit which serves as an electrical storage system characterized by quick charging and long-term discharging of electricity. The improved energy storage characteristics in this mixed electric circuit (R{sub 1}?+?R{sub 2}C{sub 1}) with small resistor R{sub 1}, large resistor R{sub 2}, and large capacitor C{sub 1} are derived from the damming effect by large R{sub 2} in simple parallel R{sub 2}C{sub 1} circuit. However, no research work has been carried out previously on the use of capacitors as electrical energy storage devices in circuits. Combined with nanotechnology, we hope that our finding will play a remarkable role in a variety of applications such as hybrid electric vehicles and backup power supplies.

  6. Self-assembling multimeric nucleic acid constructs

    DOE Patents [OSTI]

    Cantor, C.R.; Niemeyer, C.M.; Smith, C.L.; Sano, Takeshi; Hnatowich, D.J.; Rusckowski, M.

    1996-10-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products. 5 figs.

  7. L A S O W

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A S O W a re h o u s e M e tr o p o li s C e n te r N S S B S h o p s C M R N IS C P ar k in g P ar k in g P h y s ic s O to w i W el ln es s C en te r J. R. Oppenheimer Study Center (Cochiti and Jemez Rooms) Center for Integrated Nanotechnologies CINT Materials Science Laboratory MSL Auditorium MSL Courtyard Research Park Room 203 A / B 38 6 6 E A S T J E M E Z R O A D ( T R U C K R O U T E ) D IA M O N D D R IV E E N I W E T O K R O A D W E S T J E M E Z R O A D Los Alamos Canyon Bridge to Los

  8. Pulsed Plasma with Synchronous Boundary Voltage for Rapid Atomic Layer Etching

    SciTech Connect (OSTI)

    Economou, Demetre J.; Donnelly, Vincent M.

    2014-05-13

    Atomic Layer ETching (ALET) of a solid with monolayer precision is a critical requirement for advancing nanoscience and nanotechnology. Current plasma etching techniques do not have the level of control or damage-free nature that is needed for patterning delicate sub-20 nm structures. In addition, conventional ALET, based on pulsed gases with long reactant adsorption and purging steps, is very slow. In this work, novel pulsed plasma methods with synchronous substrate and/or “boundary electrode” bias were developed for highly selective, rapid ALET. Pulsed plasma and tailored bias voltage waveforms provided controlled ion energy and narrow energy spread, which are critical for highly selective and damage-free etching. The broad goal of the project was to investigate the plasma science and engineering that will lead to rapid ALET with monolayer precision. A combined experimental-simulation study was employed to achieve this goal.

  9. Cooper Pairs in Insulators?!

    ScienceCinema (OSTI)

    James Valles

    2010-01-08

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  10. Impact of artificial lateral quantum confinement on exciton-spin relaxation in a two-dimensional GaAs electronic system

    SciTech Connect (OSTI)

    Kiba, Takayuki Murayama, Akihiro; Tanaka, Toru; Tamura, Yosuke; Higo, Akio; Thomas, Cedric; Samukawa, Seiji

    2014-10-15

    We demonstrate the effect of artificial lateral quantum confinement on exciton-spin relaxation in a GaAs electronic system. GaAs nanodisks (NDs) were fabricated from a quantum well (QW) by top-down nanotechnology using neutral-beam etching aided by protein-engineered bio-nano-templates. The exciton-spin relaxation time was 1.4 ns due to ND formation, significantly extended compared to 0.44 ns for the original QW, which is attributed to weakening of the hole-state mixing in addition to freezing of the carrier momentum. The temperature dependence of the spin-relaxation time depends on the ND thickness, reflecting the degree of quantum confinement.

  11. Design of quantum dot lattices in amorphous matrices by ion beam irradiation

    SciTech Connect (OSTI)

    Buljan, M.; Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Jaksic, M.; Salamon, K.; Drazic, G.; Bernstorff, S.; Holy, V.

    2011-10-15

    We report on the highly controllable self-assembly of semiconductor quantum dots and metallic nanoparticles in a solid amorphous matrix, induced by ion beam irradiation of an amorphous multilayer. We demonstrate experimentally and theoretically a possibility to tune the basic structural properties of the quantum dots in a wide range. Furthermore, the sizes, distances, and arrangement type of the quantum dots follow simple equations dependent on the irradiation and the multilayer properties. We present a Monte Carlo model for the simulation and prediction of the structural properties of the materials formed by this method. The presented results enable engineering and simple production of functional materials or simple devices interesting for applications in nanotechnology.

  12. DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection

    DOE Patents [OSTI]

    Lee, James W.; Thundat, Thomas G.

    2005-06-14

    An apparatus and method for performing nucleic acid (DNA and/or RNA) sequencing on a single molecule. The genetic sequence information is obtained by probing through a DNA or RNA molecule base by base at nanometer scale as though looking through a strip of movie film. This DNA sequencing nanotechnology has the theoretical capability of performing DNA sequencing at a maximal rate of about 1,000,000 bases per second. This enhanced performance is made possible by a series of innovations including: novel applications of a fine-tuned nanometer gap for passage of a single DNA or RNA molecule; thin layer microfluidics for sample loading and delivery; and programmable electric fields for precise control of DNA or RNA movement. Detection methods include nanoelectrode-gated tunneling current measurements, dielectric molecular characterization, and atomic force microscopy/electrostatic force microscopy (AFM/EFM) probing for nanoscale reading of the nucleic acid sequences.

  13. The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar

    SciTech Connect (OSTI)

    Krauss, Todd D.

    2014-11-25

    The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.

  14. Joint Institute for Nanoscience Annual Report 2003

    SciTech Connect (OSTI)

    Baer, Donald R.; Campbell, Charles

    2004-02-01

    The Joint Institute for Nanoscience (JIN) is a cooperative venture of the University of Washington and Pacific Northwest National Laboratory to encourage and enhance high-impact and high-quality nanoscience and nanotechnology of all types. This first annual report for the JIN summarizes activities beginning in 2001 and ending at the close of fiscal year 2003 and therefore represents somewhat less than two years of activities. Major portions of the JIN resources are dedicated to funding graduate students and postdoctoral research associates to perform research in collaborations jointly directed by Pacific Northwest National Laboratory (PNNL) staff scientists and University of Washington (UW) professors. These fellowships were awarded on the basis of applications that included research proposals. JIN co-sponsors an annual Nanoscale Science and Technology Workshop held in Seattle. In addition to involving PNNL staff in various UW nanoscience courses and seminars, a National Science Foundation grant Development of UW-PNL Collaborative Curriculums in Nano-Science and Technology has allowed the development of three intensive short courses that are taught by UW faculty, PNNL staff, and faculty from other institutions, including Washington State University, the University of Idaho, Stanford University, and the University of Alaska. The initial JIN agreement recognized that expansion of cooperation beyond UW and PNNL would be highly valuable. Starting in early 2003, efforts were initiated to form a regional communication link called the Northwest Nanoscience and Nanotechnology Network (N?). In concept, N? is a tool to encourage communication and help identify regional resources and nanoscience and technology activities.

  15. A review on nanomechanical resonators and their applications in sensors and molecular transportation

    SciTech Connect (OSTI)

    Arash, Behrouz; Rabczuk, Timon; Jiang, Jin-Wu

    2015-06-15

    Nanotechnology has opened a new area in science and engineering, leading to the development of novel nano-electromechanical systems such as nanoresonators with ultra-high resonant frequencies. The ultra-high-frequency resonators facilitate wide-ranging applications such as ultra-high sensitive sensing, molecular transportation, molecular separation, high-frequency signal processing, and biological imaging. This paper reviews recent studies on dynamic characteristics of nanoresonators. A variety of theoretical approaches, i.e., continuum modeling, molecular simulations, and multiscale methods, in modeling of nanoresonators are reviewed. The potential application of nanoresonators in design of sensor devices and molecular transportation systems is introduced. The essence of nanoresonator sensors for detection of atoms and molecules with vibration and wave propagation analyses is outlined. The sensitivity of the resonator sensors and their feasibility in detecting different atoms and molecules are particularly discussed. Furthermore, the applicability of molecular transportation using the propagation of mechanical waves in nanoresonators is presented. An extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed. The article aims to provide an up-to-date review on the mechanical properties and applications of nanoresonators, and inspire additional potential of the resonators.

  16. Photovoltaics R&D: At the Tipping Point

    SciTech Connect (OSTI)

    Kazmerski, L. L.

    2005-01-01

    '' . . . with robust investments in research and market development, the picture changes dramatically.'' Thus, the realigned U.S. Photovoltaic Industry Roadmap highlights R&D as critical to the tipping point that will make solar photovoltaics (PV) significant in the U.S. energy portfolio--part of a well-designed plan that would bring ''2034 expectations'' to reality by 2020. Technology improvement and introduction depend on key, focused, and pertinent research contributions that range from the most fundamental through the applied. In this paper, we underscore the successes and relevance of our current systems-driven PV R&D programs, which are built on integrated capabilities. These capabilities span atomic-level characterization, nanotechnology, new materials design, interface and device engineering, theoretical guidance and modeling, processing, measurements and analysis, and process integration. This presentation identifies and provides examples of critical research tipping points needed to foster now and near technologies (primarily crystalline silicon and thin films) and to introduce coming generations of solar PV that provide options to push us to the next performance levels (devices with ultra-high efficiencies and with ultra-low cost). The serious importance of science and creativity to U.S. PV technology ownership--and the increased focus to accelerate the time from laboratory discovery to industry adoption--are emphasized at this ''tipping point'' for solar PV.

  17. Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Qian; Cho, Hoduk; Manthiram, Karthish; Yoshida, Mark; Ye, Xingchen; Alivisatos, A. Paul

    2015-03-23

    We demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories. We show the power ofmore » this approach to reveal unanticipated features of nanocrystal–nanocrystal interactions by examining the anisotropic interaction potential between charged rod-shaped Au nanocrystals (Au nanorods); these Au nanorods assemble, in a tip-to-tip fashion in the liquid phase, in contrast to the well-known side-by-side arrangements commonly observed for drying-mediated assembly. These observations can be explained by a long-range and highly anisotropic electrostatic repulsion that leads to the tip-selective attachment. As a result, Au nanorods stay unassembled at a lower ionic strength, as the electrostatic repulsion is even longer-ranged. Our study not only provides a mechanistic understanding of the process by which metallic nanocrystals assemble but also demonstrates a method that can potentially quantify and elucidate a broad range of nanoscale interactions relevant to nanotechnology and biophysics.« less

  18. An Optimized Nanoparticle Separator Enabled by Electron Beam Induced Deposition

    SciTech Connect (OSTI)

    Fowlkes, Jason Davidson [ORNL; Doktycz, Mitchel John [ORNL; Rack, P. D. [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Size based separations technologies will inevitably benefit from advances in nanotechnology. Direct write nanofabrication provides a useful mechanism to deposit/etch nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition (EBID) was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam interaction region (BIR). Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub 50nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects), (2) preserved the fidelity of spacing between nanopillars (which maximizes the size based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.

  19. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    SciTech Connect (OSTI)

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA ; Kagan, Valerian E.

    2012-06-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ? CNT induced non-random oxidative stress associated with apoptosis. ? Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ? Biodegradation of CNT by cells of innate immune system. ? Omics-based biomarkers of CNT exposures.

  20. Development of a System for Rapid Detection of Contaminants in Water Supplies Using Magnetic Resonance and Nanoparticles

    SciTech Connect (OSTI)

    Lowery, Thomas J; Neely, Lori; Chepin, James; Wellman, Parris; Toso, Ken; Murray, Paul; Audeh, Mark; Demas, Vasiliki; Palazzolo, Robert; Min, Michael; Phung, Nu; Blanco, Matt; Raphel, Jordan; O'Neil, Troy

    2010-09-14

    To keep the water supply safe and to ensure a swift and accurate response to a water supply contamination event, rapid and robust methods for microbial testing are necessary. Current technologies are complex, lengthy and costly and there is a need for rapid, reliable, and precise approaches that can readily address this fundamental security and safety issue. T2 Biosystems is focused on providing solutions to this problem by making breakthroughs in nanotechnology and biosensor techniques that address the current technical restrictions facing rapid, molecular analysis in complex samples. In order to apply the T2 Biosystems nucleic acid detection procedure to the analysis of nucleic acid targets in unprocessed water samples, Bacillus thuringeinsis was selected as a model organism and local river water was selected as the sample matrix. The initial assay reagent formulation was conceived with a manual magnetic resonance reader, was optimized using a high throughput system, and transferred back to the MR reader for potential field use. The final assay employing the designed and manufactured instruments was capable of detecting 10 CFU/mL of B. thuringiensis directly within the environmental water sample within 90 minutes. Further, discrimination of two closely related species of Bacilli was accomplished using the methods of this project; greater than 3-fold discrimination between B. cereus and B. thuringiensis at a concentrations spanning 10 CFU/mL to 10{sup 5} CFU/mL was observed.

  1. SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS

    SciTech Connect (OSTI)

    Murph, S.

    2012-09-12

    While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

  2. Near-Edge X-Ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect (OSTI)

    Willey, T.M.; Fabbri, J.D.; Lee, J.R.I.; Schreiner, P.R.; Fokin, A.A.; Tkachenko, B.A.; Fokina, N.A.; Dahl, J.E.P.; Carlson, R.M.K.; Vance, A.L.; Yang, W.; Terminello, L.J.; Buuren, T.van; Melosh, N.A.

    2009-05-26

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 and 0.16 {+-} 0.04 eV, respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different degrees of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond nanoparticles.

  3. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect (OSTI)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  4. Recent advances in small-scale mechanical property measurement by nanoindentation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pharr, George Mathews

    2015-08-25

    Since its initial development in the early 1980’s [1], nanoindentation has matured into one of the premier testing techniques for measuring mechanical properties at the micrometer and sub-micrometer scales and has emerged as a critical tool that has helped to shape the nanotechnology revolution. At the heart of the technique are testing systems with simple but precise force actuators and displacement measuring devices that record the force–displacement record as a diamond indenter, usually the form of a pyramid or a sphere, is pressed into and withdrawn from a small region in the surface of a material of interest. The nano-scalemore » force–displacement data, which can be obtained with a spatial resolution as small as a few nanometers, contains a wealth of information about the local mechanical properties [2], [3] and [4]. This enables the mechanical characterization of very thin films, like those used in the semiconductor, magnetic storage, and hard coatings industries, as well as very small precipitates, particles and second phases, many of which may not exist in bulk form and cannot be characterized by traditional mechanical testing methods. Here, computer automation of nanoindentation testing systems now routinely provides for complete two-dimensional mapping of properties over regions stretching from sub-micron to millimeters in scale.« less

  5. Mechanical characterization of thin TiO{sub 2} films by means of microelectromechanical systems-based cantilevers

    SciTech Connect (OSTI)

    Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L. [FBK-CMM: Fondazione Bruno Kessler-Center for Materials and MicroSystems, via Sommarive 18, Trento 38123 (Italy)

    2010-01-15

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO{sub 2}) deposited by sputtering from a TiO{sub 2} target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO{sub 2} films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

  6. Laterally Mobile, Functionalized Self-Assembled Monolayers at the Fluorous?Aqueous Interface in a Plug-Based Microfluidic System: Characterization and Testing with Membrane Protein Crystallization

    SciTech Connect (OSTI)

    Kreutz, Jason E.; Li, Liang; Roach, L. Spencer; Hatakeyama, Takuji; Ismagilov, Rustem F.; (UC)

    2009-11-04

    This paper describes a method to generate functionalizable, mobile self-assembled monolayers (SAMs) in plug-based microfluidics. Control of interfaces is advancing studies of biological interfaces, heterogeneous reactions, and nanotechnology. SAMs have been useful for such studies, but they are not laterally mobile. Lipid-based methods, though mobile, are not easily amenable to setting up the hundreds of experiments necessary for crystallization screening. Here we demonstrate a method, complementary to current SAM and lipid methods, for rapidly generating mobile, functionalized SAMs. This method relies on plugs, droplets surrounded by a fluorous carrier fluid, to rapidly explore chemical space. Specifically, we implemented his-tag binding chemistry to design a new fluorinated amphiphile, RfNTA, using an improved one-step synthesis of RfOEG under Mitsunobu conditions. RfNTA introduces specific binding of protein at the fluorous-aqueous interface, which concentrates and orients proteins at the interface, even in the presence of other surfactants. We then applied this approach to the crystallization of a his-tagged membrane protein, Reaction Center from Rhodobacter sphaeroides, performed 2400 crystallization trials, and showed that this approach can increase the range of crystal-producing conditions, the success rate at a given condition, the rate of nucleation, and the quality of the crystal formed.

  7. Formation of nanotwin networks during high-temperature crystallization of amorphous germanium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sandoval, Luis; Reina, Celia; Marian, Jaime

    2015-11-26

    Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the <111> crystallographic orientation, we find a degenerate atomic rearrangement process, withmore » two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of <111> semiconductor crystals, where growth is restrained to one dimension. Lastly, we calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation.« less

  8. Nanostructures for enzyme stabilization

    SciTech Connect (OSTI)

    Kim, Jungbae; Grate, Jay W.; Wang, Ping

    2006-02-02

    The last decade has witnessed notable breakthroughs in nanotechnology with development of various nanostructured materials such as mesoporous materials and nanoparticles. These nanostructures have been used as a host for enzyme immobilization via various approaches, such as enzyme adsorption, covalent attachment, enzyme encapsulation, and sophisticated combinations of methods. This review discusses the stabilization mechanisms behind these diverse approaches; such as confinement, pore size and volume, charge interaction, hydrophobic interaction, and multipoint attachment. In addition, we will introduce recent rigorous approaches to improve the enzyme stability in these nanostructures or develop new nanostructures for the enzyme stabilization. Especially, we will introduce our recent invention of a nanostructure, called single enzyme nanoparticles (SENs). In the form of SENs, each enzyme molecule is surrounded with a nanometer scale network, resulting in stabilization of enzyme activity without any serious limitation for the substrate transfer from solution to the active site. SENs can be further immobilized into mesoporous silica with a large surface area, providing a hierarchical approach for stable, immobilized enzyme systems for various applications, such as bioconversion, bioremediation, and biosensors.

  9. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    SciTech Connect (OSTI)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized by quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.

  10. Open-air direct current plasma jet: Scaling up, uniformity, and cellular control

    SciTech Connect (OSTI)

    Wu, S.; Wang, Z.; Huang, Q.; Lu, X.; Ostrikov, K.

    2012-10-15

    Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasma glow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasma glow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.

  11. RF/microwave properties of nanotubes and nanowires : LDRD Project 105876 final report.

    SciTech Connect (OSTI)

    Scrymgeour, David; Lee, Mark; Hsu, Julia W. P.; Highstrete, Clark

    2009-09-01

    LDRD Project 105876 was a research project whose primary goal was to discover the currently unknown science underlying the basic linear and nonlinear electrodynamic response of nanotubes and nanowires in a manner that will support future efforts aimed at converting forefront nanoscience into innovative new high-frequency nanodevices. The project involved experimental and theoretical efforts to discover and understand high frequency (MHz through tens of GHz) electrodynamic response properties of nanomaterials, emphasizing nanowires of silicon, zinc oxide, and carbon nanotubes. While there is much research on DC electrical properties of nanowires, electrodynamic characteristics still represent a major new frontier in nanotechnology. We generated world-leading insight into how the low dimensionality of these nanomaterials yields sometimes desirable and sometimes problematic high-frequency properties that are outside standard model electron dynamics. In the cases of silicon nanowires and carbon nanotubes, evidence of strong disorder or glass-like charge dynamics was measured, indicating that these materials still suffer from serious inhomogeneities that limit there high frequency performance. Zinc oxide nanowires were found to obey conventional Drude dynamics. In all cases, a significant practical problem involving large impedance mismatch between the high intrinsic impedance of all nanowires and nanotubes and high-frequency test equipment had to be overcome.

  12. Big Thinking: The Power of Nanoscience (LBNL Science at the Theater)

    SciTech Connect (OSTI)

    Milliron, Delia; Sanili, Babak; Weber-Bargioni, Alex; Xu, Ting

    2011-06-06

    Science at the Theater, June 6th, 2011: Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Alex Weber-Bargioni: How can we see things at the nanoscale? Alex is pioneering new methods that provide unprecedented insight into nanoscale materials and molecular interactions. The goal is to create rules for building nanoscale materials. Babak Sanii: Nature is an expert at making nanoscale devices such as proteins. Babak is developing ways to see these biological widgets, which could help scientists develop synthetic devices that mimic the best that nature has to offer. Ting Xu: How are we going to make nanoscale devices? A future in which materials and devices are able to assemble themselves may not be that far down the road. Ting is finding ways to induce a wide range of nanoscopic building blocks to assemble into complex structures. Delia Milliron: The dividends of nanoscience could reshape the way we live, from smart windows and solar cells to artificial photosynthesis and improved medical diagnosis. Delia is at the forefront of converting fundamental research into nanotechnology. Moderated by Jim DeYoreo, interim director of the Molecular Foundry, a facility located at Berkeley Lab where scientists from around the world address the myriad challenges in nanoscience.

  13. Indium Growth and Island Height Control on Si Submonolayer Phases

    SciTech Connect (OSTI)

    Chen, Jizhou

    2009-05-09

    Nanotechnology refers any technique that involves about object with nanoscale (10{sup -9} m) or even smaller. It has become more and more important in recently years and has changed our world dramatically. Most of modern electronic devices today should thanks to the miniaturizing driven by development of nanotechnology. Recent years, more and more governments are investing huge amount of money in research related to nanotechnology. There are two major reasons that nanostructure is so fascinate. The first one is the miniaturizing. It is obvious that if we can make products smaller without losing the features, we can save the cost and increase the performance dramatically. For an example, the first computer in the world, ENIAC, which occupied several rooms, is less powerful than the cheapest calculator today. Today's chips with sizes of less than half an inch contain millions of basic units. All these should thank to the development of nanotechnology. The other reason is that when we come to nanoscale, there are many new effects due to the quantum effect which can't be found in large systems. For an example, quantum dots (QDs) are systems which sizes are below 1{micro}m(10{sup -6}m) and restricted in three dimensions. There are many interesting quantum effects in QDs, including discrete energy levels, and interdot coupling. Due to these properties and their small sizes, QDs have varies potential applications such as quantum computing, probe, light emitting device, solar cells, and laser. To meet the requirement of the nanoelectrical applications, the QDs must be grown highly uniformly because their property is highly dependent on their sizes. The major methods to grow uniform QDs include epitaxial, and lithograph. Lithography is a process to make patterns on a thin film by selectively removing certain parts of the film. Using this method, people have good control over size, location and spacing of QDs. For an example, the Extreme ultraviolet lithography (EUVL) have a wave length of 13.4nm so it can curve on the surface of an sample to make structure as small as the order of 10nm. however, lithograph usually causes permanent damages to the surface and in many cases the QDs are damaged during the lithograph and therefore result in high percentage of defects. Quantum size effect has attracted more and more interests in surface science due to many of its effects. One of its effects is the height preference in film growing and the resulting possibility of uniformly sized self-assemble nanostructure. The experiment of Pb islands on In 4x1 phase shows that both the height and the width can be controlled by proper growth conditions, which expands the growth dimensions from 1 to 2. This discover leads us to study the In/Pb interface. In Ch.3, we found that the Pb islands growing on In 4x1-Si(111) surface which have uniform height due to QSE and uniform width due to the constriction of In 4x1 lattice have unexpected stability. These islands are stable in even RT, unlike usual nanostructures on Pb/Si surface which are stable only at low temperature. Since similar structures are usually grown at low temperature, this discovery makes the grown structures closer to technological applications. It also shows the unusual of In/Pb interface. Then we studied the In islands grown on Pb-{alpha}-{radical}3x{radical}3-Si(111) phase in Ch.4. These islands have fcc structure in the first few layers, and then convert to bct structure. The In fcc islands have sharp height preference due to QSE like Pb islands. However, the preferred height is different (7 layer for Pb on Si 7x7 and 4 layer for Pb on In 4x1), due to the difference of interface. The In islands structure prefers to be bct than fcc with coverage increase. It is quantitatively supported by first-principle calculation. Unexpectedly, the In islands grown on various of In interfaces didn't show QSE effects and phase transition from fcc and bct structures as on the Pb-{alpha} interface (Ch.6). In g(s) curve there is no clear oscillations in the g(s) curve as the In on Pb-{alpha} phase. This

  14. Nanoimaging to Prevent and Treat Alzheimers and Parkinsons Diseases. Scientific/Technical report

    SciTech Connect (OSTI)

    Yuri L. Lyubchenko, PhD, DSc

    2012-12-20

    This project will develop innovative approaches to characterization of the very early stages of protein aggregation that eventually can be translated to the development of early diagnostic tools and efficient treatments for Alzheimers, Parkinsons and Huntingtons diseases. Funding will be used to acquire nanoimaging technology for nanoscale imaging, manipulation and analysis of biomedical materials to develop treatments that will repair disabled proteins and cure diseases that result from protein malfunction, specifically Alzheimers and Parkinsons diseases. Expected outcomes include tests for early diagnosis and therapeutic treatments for these devastating neurological diseases. To elucidate the mechanisms of protein misfolding, we will establish an extensive program of experimental studies using a broad arsenal of advanced nanoscale and traditional techniques that will be integrated with molecular-scale modeling of protein misfolding and the nucleation of aggregate structures. To identify intracellular machinery or/and multicomponent complexes critically involved in protein misfolding, we will characterize interactions between targeted proteins and specific intracellular components or metabolites that impact on protein conformational pathways leading to protein misfolding accompanied by formation of toxic aggregated morphologies. To design innovative nanotechnology tools for the control of intracellular protein misfolding and aggregation processes, we will develop a predictive molecular scale model for intracellular protein misfolding and the formation of toxic aggregates. Verified through experimental studies, the objective is to establish an enabling foundation for the engineering of novel molecular diagnostics and therapeutics for various cellular pathologies.

  15. Communication: A density functional investigation of structure-property evolution in the tetrakis hexahedral C{sub 4}Al{sub 14} nanocluster

    SciTech Connect (OSTI)

    Irving, Benjamin J. E-mail: irvinben@fel.cvut.cz; Naumkin, Fedor Y.

    2014-10-07

    Nanoclusters are prime objects of study in modern nanotechnology and offer a variety of applications promoted by their properties tunable by size, shape, and composition. DFT calculations are employed to analyze structure, stability, and selected electronic properties of a core-shell C{sub 4}Al{sub 14} species. With insertion of the carbon core, the original low-symmetry aluminum cluster is predicted to undergo a considerable reshaping and acquire a striking D{sub 4h} tetrakis-hexahedral geometry, with proportions controlled by a near-degenerate spin state or charge. The system also becomes more stable to dissociation. Surprisingly, other properties such as ionisation energy and electron affinity do not change significantly, although still exhibit some interesting features including opposite variations for vertical and adiabatic values. The stability and property evolutions are analyzed in terms of contributions from reshaping of the shell and its further interaction with the core. The system thus has potential applications as a symmetric building unit and a molecular device for nano-electronics/spintronics.

  16. Shape transformation of bimetallic Au–Pd core–shell nanocubes to multilayered Au–Pd–Au core–shell hexagonal platelets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhattarai, Nabraj; Prozorov, Tanya

    2015-11-05

    Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusualmore » intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.« less

  17. Ultrafast nanolaser device for detecting cancer in a single live cell.

    SciTech Connect (OSTI)

    Gourley, Paul Lee; McDonald, Anthony Eugene

    2007-11-01

    Emerging BioMicroNanotechnologies have the potential to provide accurate, realtime, high throughput screening of live tumor cells without invasive chemical reagents when coupled with ultrafast laser methods. These optically based methods are critical to advancing early detection, diagnosis, and treatment of disease. The first year goals of this project are to develop a laser-based imaging system integrated with an in- vitro, live-cell, micro-culture to study mammalian cells under controlled conditions. In the second year, the system will be used to elucidate the morphology and distribution of mitochondria in the normal cell respiration state and in the disease state for normal and disease states of the cell. In this work we designed and built an in-vitro, live-cell culture microsystem to study mammalian cells under controlled conditions of pH, temp, CO2, Ox, humidity, on engineered material surfaces. We demonstrated viability of cell culture in the microsystem by showing that cells retain healthy growth rates, exhibit normal morphology, and grow to confluence without blebbing or other adverse influences of the material surfaces. We also demonstrated the feasibility of integrating the culture microsystem with laser-imaging and performed nanolaser flow spectrocytometry to carry out analysis of the cells isolated mitochondria.

  18. Formation of nanotwin networks during high-temperature crystallization of amorphous germanium

    SciTech Connect (OSTI)

    Sandoval, Luis; Reina, Celia; Marian, Jaime

    2015-11-26

    Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the <111> crystallographic orientation, we find a degenerate atomic rearrangement process, with two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of <111> semiconductor crystals, where growth is restrained to one dimension. Lastly, we calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation.

  19. TH-E-BRD-01: Innovation in (gold) Nanoparticle-Enhanced Therapy

    SciTech Connect (OSTI)

    Krishnan, S; Chithrani, B; Berbeco, R

    2014-06-15

    Radiation therapy relies on the concept of delivering high dose to tumor volumes whilst simultaneously aiming to minimize irradiation of healthy tissue. Gold and other metallic nanoparticles (GNPs) have the potential to greatly enhance dose depositions in their close proximity. While it was originally thought that this effect would only be significant for kV photon beams, it has been shown that GNPs also enhance dose and increase cell killing and survival fraction for MV photons as well as protons. GNPs have been shown to be preferentially taken up in tumors, depending on the GNP properties either internalized in the tumor cells or clustering in the tumor vasculature. Therefore GNPs offer an intriguing additional option to target the tumor while sparing healthy tissue. While a growing amount of research shows GNP induced enhancement factors in the order of 1.5 and higher, GNPs have not yet entered into clinical routine. In this symposium we will have three presentations discussing the current status of GNP based research, the potential to include GNPs in radiation therapy and the limitations and problems to use GNPs in the clinic. Physical and biological underpinnings of radiosensitization with gold nano particles An evolving body of recent literature alludes to the potential to sensitize tumors to radiation therapy using metallic nanoparticles. In preclinical studies, the techniques that hold promise for eventual clinical deployment are nanoparticle-assisted radiation dose enhancement and hyperthermic radiosensitization. To understand the underlying nanoparticle-radiation interactions, computational techniques offer an explanation for and predict the biophysical consequences at a nano-/meso-scopic scale. Nonetheless, there are persisting gaps in knowledge relating to the molecular mechanism of action of these radiosensitization approaches some of these issues will be addressed. Since the literature relating to the diverse disciplines involved in these efforts spans across multiple specialties (clinical radiation oncology, radiation physics, radiation biology, nanotechnology, material science, biomedical engineering, pharmacology, chemistry, and tumor biology) and numerous specialty journals, there is no single compilation of extant research in this arena or forum for merging analogous concepts and paradigms. This symposium will provide such a venue my presentation will start with familiarizing the audience with the potential applications of metallic nanoparticles in radiation therapy using specific illustrative examples and begin to explore ways to understand the underlying mechanisms of the effects observed. Biological effects of Gold nanoparticles in radiation therapy Gold nanoparticles (GNP) have been investigated as platforms to carry drugs or radio-sensitizing agents to tumors due to the biocompatibility of gold and relative ease of conjugation with therapeutic and targeting moieties. Recently, there has been interest in exploiting the physical properties of gold, specifically the high atomic number, to enhance radiation therapy. When irradiated, gold atoms will produce low energy electrons, depositing energy within a short distance. The ratio of dose deposited in the presence of the GNP to the dose deposited in the absence of GNP is referred to as the dose enhancement factor (DEF). This factor has been shown to depend on the concentration of GNP and the energy of the incident photons. The physics of this process, preliminary in vitro and in vivo experiments and future directions for this nascent field are described in this presentation. Gold Nanoparticles for improved therapeutic outcome in radiation therapy The application of nanoparticles (NPs) for improved therapeutics is at the forefront of cancer nanotechnology. Among other NP systems, gold nanoparticles (GNPs) are extensively used due to its impressive ability to act as both an anticancer drug carrier in chemotherapy and as a dose enhancer in radiotherapy. Cellular uptake of GNPs was dependent on their size. Among GNPs of diameter between 1474 nm,

  20. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    SciTech Connect (OSTI)

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O'Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving 2 billion gallons of cellulosic ethanol by 2013. Louisiana is well positioned to become a national contributor in cellulosic ethanol, with an excellent growing season, a strong pulp/paper industry, and one of the nation's first cellulosic ethanol demonstration plants. Dr. Palmer in Chemical Engineering at Louisiana Tech University is collaborating with Drs. Lvov and Snow in Chemistry and Dr. Hegab in Mechanical Engineering to capitalize on these advantages by applying nanotechnology to improve the cellulosic ethanol processes. In many of these processes, expensive enzymes are used to convert the cellulose to sugars. The nanotechnology processes developed at Louisiana Tech University can immobilize these enzymes and therefore significantly reduce the overall costs of the process. Estimates of savings range from approximately $32 million at each cellulosic ethanol plant, to $7.5 billion total if the 16 billion gallons of cellulosic ethanol is achieved. This process has the advantage of being easy to apply in a large-scale commercial environment and can immobilize a wide variety or mixture of enzymes for production. Two primary objectives with any immobilization technique are to demonstrate reusability and catalytic activity (both reuse of the immobilized enzyme and reuse of the polymer substrate). The scale-up of the layering-by-layering process has been a focus this past year as some interesting challenges in the surface chemistry have become evident. Catalytic activity of cellulase is highly dependent upon how the feed material is pretreated to enhance digestion. Therefore, efforts this year have been performed this year to characterize our process on a few of the more prevalent pretreatment methods.

  1. Cheyney University Curriculum and Infrastructure Enhamcement in STEM

    SciTech Connect (OSTI)

    Eva, Sakkar Ara

    2014-09-30

    Cheyney University is the oldest historically Black educational institution in America. Initially established as a normal school emphasizing the matriculation of educators, Cheyney has become a comprehensive university, one of 14 state universities comprising the Pennsylvania State System of Higher Education (PASSHE). Cheyney University graduates still become teachers, but they also enter such fields as journalism, medicine, science, mathematics, law, communication and government. Cheyney University is a small state owned HBCU with very limited resource. At present the university has about a thousand students with 15% in STEM. The CUCIES II grant made significant contribution in saving the computer science program from being a discontinued program in the university. The grant enabled the university to hire a temporary faculty to teach in and update the computer science program. The program is enhanced with three tracks; cyber security, human computer interaction and general. The updated and enhanced computer science program will prepare professionals in the area of computer science with the knowledge, skills, and professional ethic needed for the current market. The new curriculum was developed for a professional profile that would focus on the technologies and techniques currently used in the industry. With faculty on board, the university worked with the department to bring back the computer science program from moratorium. Once in the path of being discontinued and loosing students, the program is now growing. Currently the student number has increased from 12 to 30. University is currently in the process of hiring a tenure track faculty in the computer science program. Another product of the grant is the proposal for introductory course in nanotechnology. The course is intended to generate interest in the nanotechnology field. The Natural and Applied Science department that houses all of the STEM programs in Cheyney University, is currently working to bring back environmental science program from moratorium. The university has been working to improve minority participation in STEM and made significant stride in terms of progressing students toward graduate programs and into professoriate track. This success is due to faculty mentors who work closely with students to guiding them through the application processes for research internship and graduate programs; it is also due to the university forming collaborative agreements with research intensive institutions, federal and state agencies and industry. The grant assisted in recruiting and retaining students in STEM by offering tuition scholarship, research scholarship and travel awards. Faculty professional development was supported by the grant by funding travel to conferences, meetings and webinar. As many HBCU Cheyney University is also trying to do more with less. As the STEM programs are inherently expensive, these are the ones that suffer more when resources are scarce. One of the goals of Cheyney University strategic plan is to strengthen STEM programs that is coherent with the critical skill need of Department of Energy. All of the Cheyney University STEM programs are now located in the new science building funded by Pennsylvania state.

  2. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    SciTech Connect (OSTI)

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in Tuscany, provides an avenue for scientists from different disciplines to interact and brainstorm and promotes cross-disciplinary collaborations directed toward compelling biological problems.

  3. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    SciTech Connect (OSTI)

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J.

    2014-09-14

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  4. RADON PROGENY AS AN EXPERIMENTAL TOOL FOR DOSIMETRY OF NANOAEROSOLS

    SciTech Connect (OSTI)

    Ruzer, Lev; Ruzer, Lev S.; Apte, Michael G.

    2008-02-25

    The study of aerosol exposure and dosimetry measurements and related quantitation of health effects are important to the understanding of the consequences of air pollution, and are discussed widely in the scientific literature. During the last 10 years the need to correlate aerosol exposure and biological effects has become especially important due to rapid development of a new, revolutionary industry ?-- nanotechnology. Nanoproduct commerce is predicted to top $1 trillion by 2015. Quantitative assessment of aerosol particle behavior in air and in lung deposition, and dosimetry in different parts of the lung, particularly for nanoaerosols, remains poor despite several decades of study. Direct measurements on humans are still needed in order to validate the hollow cast, animal studies, and lung deposition modeling. We discuss here the use of nanoscale radon decay products as an experimental tool in the study of local deposition and lung dosimetry for nanoaerosols. The issue of the safe use of radon progeny in such measurements is discussed based on a comparison of measured exposure in 3 settings: general population, miners, and in a human experiment conducted at the Paul Scherer Institute (PSI) in Switzerland. One of the properties of radon progeny is that they consist partly of 1 nm radioactive particles called unattached activity; having extremely small size and high diffusion coefficients, these particles can be potentially useful as radioactive tracers in the study of nanometer-sized aerosols. We present a theoretical and experimental study of the correlation between the unattached activity and aerosol particle surface area, together with a description of its calibration and method for measurement of the unattached fraction.

  5. NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER

    SciTech Connect (OSTI)

    DeMille, David; LeHur, Karyn

    2013-11-27

    Rapid progress in nanotechnology and naofabrication techniques has ushered in a new era of quantum transport experiments. This has in turn heightened the interest in theoretical understanding of nonequilibrium dynamics of strongly correlated quantum systems. This project has advanced the frontiers of understanding in this area along several fronts. For example, we showed that under certain conditions, quantum impurities out of equilibrium can be reformulated in terms of an effective equilibrium theory; this makes it possible to use the gamut of tools available for quantum systems in equilibrium. On a different front, we demonstrated that the elastic power of a transmitted microwave photon in circuit QED systems can exhibit a many-body Kondo resonance. We also showed that under many circumstances, bipartite fluctuations of particle number provide an effective tool for studying many-body physicsparticularly the entanglement properties of a many-body system. This implies that it should be possible to measure many-body entanglement in relatively simple and tractable quantum systems. In addition, we studied charge relaxation in quantum RC circuits with a large number of conducting channels, and elucidated its relation to Kondo models in various regimes. We also extended our earlier work on the dynamics of driven and dissipative quantum spin-boson impurity systems, deriving a new formalism that makes it possible to compute the full spin density matrix and spin-spin correlation functions beyond the weak coupling limit. Finally, we provided a comprehensive analysis of the nonequilibrium transport near a quantum phase transition in the case of a spinless dissipative resonant-level model. This project supported the research of two Ph.D. students and two postdoctoral researchers, whose training will allow them to further advance the field in coming years.

  6. Two dimensional point of use fuel cell : a final LDRD project report.

    SciTech Connect (OSTI)

    Zavadil, Kevin Robert; Hickner, Michael A.; Gross, Matthew L.

    2011-03-01

    The Proliferation Assessment (program area - Things Thin) within the Defense Systems and Assessment Investment Area desires high energy density and long-lived power sources with moderate currents (mA) that can be used as building blocks in platforms for the continuous monitoring of chemical, biological, and radiological agents. Fuel cells can be an optimum choice for a power source because of the high energy densities that are possible with liquid fuels. Additionally, power generation and fuel storage can be decoupled in a fuel cell for independent control of energy and power density for customized, application-driven power solutions. Direct methanol fuel cells (DMFC) are explored as a possible concept to develop into ultrathin or two-dimensional power sources. New developments in nanotechnology, advanced fabrication techniques, and materials science are exploited to create a planar DMFC that could be co-located with electronics in a chip format. Carbon nanotubes and pyrolyzed polymers are used as building block electrodes - porous, mechanically compliant current collectors. Directed assembly methods including surface functionalization and layer-by-layer deposition with polyelectrolytes are used to pattern, build, and add functionality to these electrodes. These same techniques are used to incorporate nanoscale selective electrocatalyst into the carbon electrodes to provide a high density of active electron transfer sites for the methanol oxidation and oxygen reduction reactions. The resulting electrodes are characterized in terms of their physical properties, electrocatalytic function, and selectivity to better understand how processing impacts their performance attributes. The basic function of a membrane electrode assembly is demonstrated for several prototype devices.

  7. Development of Integrated Microanalysis of Nanomaterials (06-ERI-001)

    SciTech Connect (OSTI)

    Bradley, J P

    2009-10-07

    Comets--small extraterrestrial bodies of ice, dust, and small rocky particles--are considered the oldest, most primitive bodies in the solar system. They were thought to be composed of preserved interstellar particles from 4.6 billion years ago, when the Sun and the planets began to form from a primordial disk of dust and gas. The nonvolatile mineral components of comets are probably natural nanomaterials that include preserved interstellar dust as well as the first solids condensed in the solar system. Thus, comet samples may be considered as forensic 'time capsules' from the presolar molecular cloud and the earliest stages of solar system formation. Cometary material was captured in 2004, when the National Aeronautics and Space Administration's Stardust spacecraft flew through the coma of comet Wild as it neared the orbit of Mars. As Stardust approached the 4.5-kilometer-diameter comet, the spacecraft briefly extended a collector filled with lightweight aerogel glass foam to capture thousands of tiny particles. On January 15, 2006, the spacecraft ejected its sample return capsule onto the Utah desert southwest of Salt Lake City. Researchers at LLNL supported by this LDRD were part of a collaborative team investigating the mineralogical, chemical, and isotopic compositions of natural cometary nanomaterials from the Stardust mission using the unique array of analytical facilities at Livermore. The studies have provided provide new insight into cosmically primitive materials that will enable a better understanding of the earliest stages of disk accretion around stars. The skills and analysis techniques developed for the characterization of these natural nanomaterials are synergistic with several Livermore programmatic needs in the emerging fields of nanomaterials, nanotechnology and forensics. The Stardust samples are also ideal training materials for a new generation of young scientists using state-of-the-art analytical instruments at the Laboratory.

  8. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  9. Molecular Self-Assembly

    SciTech Connect (OSTI)

    CURRO, JOHN G.; MCCOY, JOHN DWANE; FRISCHKNECHT, AMALIE L.; YU, KUI

    2001-11-01

    This report is divided into two parts: a study of the glass transition in confined geometries, and formation mechanisms of block copolymer mesophases by solvent evaporation-induced self-assembly. The effect of geometrical confinement on the glass transition of polymers is a very important consideration for applications of polymers in nanotechnology applications. We hypothesize that the shift of the glass transition temperature of polymers in confined geometries can be attributed to the inhomogeneous density profile of the liquid. Accordingly, we assume that the glass temperature in the inhomogeneous state can be approximated by the Tg of a corresponding homogeneous, bulk polymer, but at a density equal to the average density of the inhomogeneous system. Simple models based on this hypothesis give results that are in remarkable agreement with experimental measurements of the glass transition of confined liquids. Evaporation-induced self-assembly (EISA) of block copolymers is a versatile process for producing novel, nanostructured materials and is the focus of much of the experimental work at Sandia in the Brinker group. In the EISA process, as the solvent preferentially evaporates from a cast film, two possible scenarios can occur: microphase separation or micellization of the block copolymers in solution. In the present investigation, we established the conditions that dictate which scenario takes place. Our approach makes use of scaling arguments to determine whether the overlap concentration c* occurs before or after the critical micelle concentration (CMC). These theoretical arguments are used to interpret recent experimental results of Yu and collaborators on EISA experiments on Silica/PS-PEO systems.

  10. Molecular Electronic Level Alignment at Weakly Coupled Organic Film/Metal Interfaces

    SciTech Connect (OSTI)

    Zhao, Jin; Feng, Min; Dougherty, Daniel B.; Sun, Hao; Petek, Hrvoje

    2014-10-28

    Electronic level alignment at interfaces of molecular materials with inorganic semiconductors and metals controls many interfacial phenomena. How the intrinsic properties of the interacting systems define the electronic structure of their interface remains one of the most important problems in molecular electronics and nanotechnology that can be solved through a combination of surface science experimental techniques and theoretical modeling. In this article, we address this fundamental problem through experimental and computational studies of molecular electronic level alignment of thin films of C6F6 on noble metal surfaces. The unoccupied electronic structure of C6F6 is characterized with single molecule resolution using low-temperature scanning tunneling microscopy-based constant-current distance-voltage spectroscopy. The experiments are performed on several noble metal surfaces with different work functions and distinct surface-normal projected band structures. In parallel, the electronic structures of the quantum wells (QWs) formed by the lowest unoccupied molecular orbital state of the C6F6 monolayer and multilayer films and their alignment with respect to the vacuum level of the metallic substrates are calculated by solving the Schrdinger equation for a semiempirical one-dimensional (1D) potential of the combined system using input from density functional theory. Our analysis shows that the level alignment for C6F6 molecules bound through weak van der Waals interactions to noble metal surfaces is primarily defined by the image potential of metal, the electron affinity of the molecule, and the molecule surface distance. We expect the same factors to determine the interfacial electronic structure for a broad range of molecule/metal interfaces.

  11. Directed Self-Assembly of Nanodispersions

    SciTech Connect (OSTI)

    Furst, Eric M

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the directed self-assembly of anisotropic nanoparticles and their unique physical properties.

  12. Numerical Stochastic Homogenization Method and Multiscale Stochastic Finite Element Method - A Paradigm for Multiscale Computation of Stochastic PDEs

    SciTech Connect (OSTI)

    X. Frank Xu

    2010-03-30

    Multiscale modeling of stochastic systems, or uncertainty quantization of multiscale modeling is becoming an emerging research frontier, with rapidly growing engineering applications in nanotechnology, biotechnology, advanced materials, and geo-systems, etc. While tremendous efforts have been devoted to either stochastic methods or multiscale methods, little combined work had been done on integration of multiscale and stochastic methods, and there was no method formally available to tackle multiscale problems involving uncertainties. By developing an innovative Multiscale Stochastic Finite Element Method (MSFEM), this research has made a ground-breaking contribution to the emerging field of Multiscale Stochastic Modeling (MSM) (Fig 1). The theory of MSFEM basically decomposes a boundary value problem of random microstructure into a slow scale deterministic problem and a fast scale stochastic one. The slow scale problem corresponds to common engineering modeling practices where fine-scale microstructure is approximated by certain effective constitutive constants, which can be solved by using standard numerical solvers. The fast scale problem evaluates fluctuations of local quantities due to random microstructure, which is important for scale-coupling systems and particularly those involving failure mechanisms. The Green-function-based fast-scale solver developed in this research overcomes the curse-of-dimensionality commonly met in conventional approaches, by proposing a random field-based orthogonal expansion approach. The MSFEM formulated in this project paves the way to deliver the first computational tool/software on uncertainty quantification of multiscale systems. The applications of MSFEM on engineering problems will directly enhance our modeling capability on materials science (composite materials, nanostructures), geophysics (porous media, earthquake), biological systems (biological tissues, bones, protein folding). Continuous development of MSFEM will further contribute to the establishment of Multiscale Stochastic Modeling strategy, and thereby potentially to bring paradigm-shifting changes to simulation and modeling of complex systems cutting across multidisciplinary fields.

  13. Biodistribution and toxicological study of PEGylated single-wall carbon nanotubes in the zebrafish (Danio rerio) nervous system

    SciTech Connect (OSTI)

    Weber, Gisele E.B.; Dal Bosco, Lidiane; Gonçalves, Carla O.F.; Santos, Adelina P.; Fantini, Cristiano; Furtado, Clascídia A.; Parfitt, Gustavo M.; Peixoto, Carolina; Romano, Luis Alberto; and others

    2014-11-01

    Nanotechnology has been proven to be increasingly compatible with pharmacological and biomedical applications. Therefore, we evaluated the biological interactions of single-wall carbon nanotubes functionalized with polyethylene glycol (SWNT-PEG). For this purpose, we analyzed biochemical, histological, behavioral and biodistribution parameters to understand how this material behaves in vitro and in vivo using the fish Danio rerio (zebrafish) as a biological model. The in vitro results for fish brain homogenates indicated that SWNT-PEG had an effect on lipid peroxidation and GSH (reduced glutathione) content. However, after intraperitoneal exposure, SWNT-PEG proved to be less biocompatible and formed aggregates, suggesting that the PEG used for the nanoparticle functionalization was of an inappropriate size for maintaining product stability in a biological environment. This problem with functionalization may have contributed to the low or practically absent biodistribution of SWNT-PEG in zebrafish tissues, as verified by Raman spectroscopy. There was an accumulation of material in the abdominal cavity that led to inflammation and behavioral disturbances, as evaluated by a histological analysis and an open field test, respectively. These results provide evidence of a lack of biocompatibility of SWNTs modified with short chain PEGs, which leads to the accumulation of the material, tissue damage and behavioral alterations in the tested subjects. - Highlights: • In vitro brain exposure diminished lipid peroxidation. • In vitro brain exposure depletes the GSH content. • SWNT-PEG was not biocompatible and formed aggregates after the exposure. • Practically absent biodistribution of SWNT-PEG was observed by Raman spectroscopy. • SWNT-PEG exposure lead to tissue damage and inflammatory responses.

  14. Comparative life-cycle energy payback analysis of multi-junction a-SiGe and nanocrystalline/a-Si modules

    SciTech Connect (OSTI)

    Fthenakis, V.; Kim, H.

    2010-07-15

    Despite the publicity of nanotechnologies in high tech industries including the photovoltaic sector, their life-cycle energy use and related environmental impacts are understood only to a limited degree as their production is mostly immature. We investigated the life-cycle energy implications of amorphous silicon (a-Si) PV designs using a nanocrystalline silicon (nc-Si) bottom layer in the context of a comparative, prospective life-cycle analysis framework. Three R and D options using nc-Si bottom layer were evaluated and compared to the current triple-junction a-Si design, i.e., a-Si/a-SiGe/a-SiGe. The life-cycle energy demand to deposit nc-Si was estimated from parametric analyses of film thickness, deposition rate, precursor gas usage, and power for generating gas plasma. We found that extended deposition time and increased gas usages associated to the relatively high thickness of nc-Si lead to a larger primary energy demand for the nc-Si bottom layer designs, than the current triple-junction a-Si. Assuming an 8% conversion efficiency, the energy payback time of those R and D designs will be 0.7-0.9 years, close to that of currently commercial triple-junction a-Si design, 0.8 years. Future scenario analyses show that if nc-Si film is deposited at a higher rate (i.e., 2-3 nm/s), and at the same time the conversion efficiency reaches 10%, the energy-payback time could drop by 30%.

  15. Advanced Resources for Catalysis Science; Recommendations for a National Catalysis Research Institute

    SciTech Connect (OSTI)

    Peden, Charles HF.; Ray, Douglas

    2005-10-05

    Catalysis is one of the most valuable contributors to our economy and historically an area where the United States has enjoyed, but is now losing, international leadership. While other countries are stepping up their work in this area, support for advanced catalysis research and development in the U.S. has diminished. Yet, more than ever, innovative and improved catalyst technologies are imperative for new energy production processes to ease our dependence on imported resources, for new energy-efficient and environmentally benign chemical production processes, and for new emission reduction technologies to minimize the environmental impact of an active and growing economy. Addressing growing concerns about the future direction of U.S. catalysis science, experts from the catalysis community met at a workshop to determine and recommend advanced resources needed to address the grand challenges for catalysis research and development. The workshop's primary conclusion: To recapture our position as the leader in catalysis innovation and practice, and promote crucial breakthroughs, the U.S. must establish one or more well-funded and well-equipped National Catalysis Research Institutes competitively selected, centered in the national laboratories and, by charter, networked to other national laboratories, universities, and industry. The Institute(s) will be the center of a national collaboratory that gives catalysis researchers access to the most advanced techniques available in the scientific enterprise. The importance of catalysis to our energy, economic, and environmental security cannot be overemphasized. Catalysis is a vital part of our core industrial infrastructure, as it is integral to chemical processing and petroleum refining, and is critical to proposed advances needed to secure a sustainable energy future. Advances in catalysis could reduce our need for foreign oil by making better use of domestic carbon resources, for example, allowing cost-effective and zero emission conversion of coal into transportation fuels. No matter what energy sources are being considered (oil, natural gas, coal, biomass, solar, or nuclear based), a clean, sustainable energy future will involve catalysis to improve energy efficiency and storage and use options, and to mitigate environmental impacts. Recent revolutionary advances in nanotechnology and high-performance computing are enabling the breakthroughs in catalysis science and technology essential for a secure energy future. Thus, the time is right for substantially increased investments in catalysis science and technology.

  16. Advanced Nanomaterials for High-Efficiency Solar Cells

    SciTech Connect (OSTI)

    Chen, Junhong

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these nanomaterials in solar cells (both as photoanodes and counter electrodes), gas sensors, and energy storage devices. This research is potentially transformative since the availability of affordable hybrid nanostructures and their fundamental properties will enable various innovative applications of the multifunctional hybrid nanostructures and thus will accelerate new discoveries and inventions in nanoscience and nanotechnology.

  17. Policy implications of technologies for cognitive enhancement

    SciTech Connect (OSTI)

    Sarewitz, Daniel R. (Arizona State University, Tempe, AZ); Karas, Thomas H.

    2007-02-01

    The Advanced Concepts Group at Sandia National Laboratory and the Consortium for Science, Policy and Outcomes at Arizona State University convened a workshop in May 2006 to explore the potential policy implications of technologies that might enhance human cognitive abilities. The group's deliberations sought to identify core values and concerns raised by the prospect of cognitive enhancement. The workshop focused on the policy implications of various prospective cognitive enhancements and on the technologies/nanotechnology, biotechnology, information technology, and cognitive science--that enable them. The prospect of rapidly emerging technological capabilities to enhance human cognition makes urgent a daunting array of questions, tensions, ambitions, and concerns. The workshop elicited dilemmas and concerns in ten overlapping areas: science and democracy; equity and justice; freedom and control; intergenerational issues; ethics and competition; individual and community rights; speed and deliberations; ethical uncertainty; humanness; and sociocultural risk. We identified four different perspectives to encompass the diverse issues related to emergence of cognitive enhancement technologies: (1) Laissez-faire--emphasizes freedom of individuals to seek and employ enhancement technologies based on their own judgment; (2) Managed technological optimism--believes that while these technologies promise great benefits, such benefits cannot emerge without an active government role; (3) Managed technological skepticism--views that the quality of life arises more out of society's institutions than its technologies; and (4) Human Essentialism--starts with the notion of a human essence (whether God-given or evolutionary in origin) that should not be modified. While the perspectives differ significantly about both human nature and the role of government, each encompasses a belief in the value of transparency and reliable information that can allow public discussion and decisions about cognitive enhancement. The practical question is how to foster productive discussions in a society whose attention is notably fragmented and priorities notably diverse. The question of what to talk about remains central, as each of the four perspectives is concerned about different things. Perhaps the key issue for initial clarification as a condition for productive democratic discussion has to do with the intended goals of cognitive enhancement, and the mechanisms for allowing productive deliberation about these goals.

  18. Growth of metal and semiconductor nanostructures using localized photocatalysts

    SciTech Connect (OSTI)

    Shelnutt, John A; Wang, Zhongchun; Medforth, Craig J

    2006-03-08

    Our overall goal has been to understand and develop a light-driven approach to the controlled growth of novel metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures when exposed to visible light, providing metal nucleation and growth centers. The photocatalyst molecules are pre-positioned at the nanoscale to control the location of the deposition of metal and therefore the morphology of the nanostructures that are grown. Self-assembly, chemical confinement, and molecular templating are some of the methods we are using for nanoscale positioning of the photocatalyst molecules. When exposed to light, each photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition near the photocatalyst and ultimately the synthesis of new metallic nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies at Sandia National Laboratories and the University of Georgia. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled nanosynthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. Our specific goals for the past three years have been to understand the role of photocatalysis in the synthesis of dendritic metal (Pt, Pd, Au) nanostructures grown from aqueous surfactant solutions under ambient conditions and the synthesis of photocatalytic porphyrin nanostructures (e.g., nanotubes) as templates for fabrication of photo-active metal-composite nanodevices. The proposed nanoscience concentrates on two thematic research areas: (1) the creation of metal and semiconductor nanostructures and nanomaterials for realizing novel catalytic phenomena and quantum control, (2) understanding photocatalytic metal deposition processes at the nanoscale especially on photocatalytic porphyrin nanostructures such as nanotubes, and (3) the development and use of multi-scale, multi-phenomena theory and simulation for ionic self-assembly and catalytic processes.

  19. Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials

    SciTech Connect (OSTI)

    Howe, James M.

    2013-05-09

    In this program, we developed new theoretical and experimental insights into understanding the relationships among fundamental universality and scaling phenomena, the solid-state physical and mechanical properties of materials, and the volume plasmon energy as measured by electron energy-loss spectroscopy (EELS). Particular achievements in these areas are summarized as follows: (i) Using a previously proposed physical model based on the universal binding-energy relation (UBER), we established close phenomenological connections regarding the influence of the valence electrons in materials on the longitudinal plasma oscillations (plasmons) and various solid-state properties such as the optical constants (including absorption and dispersion), elastic constants, cohesive energy, etc. (ii) We found that carbon materials, e.g., diamond, graphite, diamond-like carbons, hydrogenated and amorphous carbon films, exhibit strong correlations in density vs. Ep (or maximum of the volume plasmon peak) and density vs. hardness, both from available experimental data and ab initio DFT calculations. This allowed us to derive a three-dimensional relationship between hardness and the plasmon energy, that can be used to determine experimentally both hardness and density of carbon materials based on measurements of the plasmon peak position. (iii) As major experimental accomplishments, we demonstrated the possibility of in-situ monitoring of changes in the physical properties of materials with conditions, e.g., temperature, and we also applied a new plasmon ratio-imaging technique to map multiple physical properties of materials, such as the elastic moduli, cohesive energy and bonding electron density, with a sub-nanometer lateral resolution. This presents new capability for understanding material behavior. (iv) Lastly, we demonstrated a new physical phenomenon - electron-beam trapping, or ?¢????electron tweezers?¢??? - of a solid metal nanoparticle inside a liquid metal. This phenomenon is analogous to that of optical trapping of solid microparticles in solution known as "optical tweezers", which is currently being used to manipulate molecules and inorganic materials in a variety of nanotechnology applications.

  20. Development of Novel Sorbents for Uranium Extraction from Seawater

    SciTech Connect (OSTI)

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOEs efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

  1. Synthesis and Characterization of Smart Block Copolymers for Biomineralization and Biomedical Applications

    SciTech Connect (OSTI)

    Mathumai Kanapathipillai

    2008-08-18

    Self-assembly is a powerful tool in forming structures with nanoscale dimensions. Self-assembly of macromolecules provides an efficient and rapid pathway for the formation of structures from the nanometer to micrometer range that are difficult, if not impossible to obtain by conventional lithographic techniques [1]. Depending on the morphologies obtained (size, shape, periodicity, etc.) these self-assembled systems have already been applied or shown to be useful for a number of applications in nanotechnology [2], biomineralization [3, 4], drug delivery [5, 6] and gene therapy [7]. In this respect, amphiphilic block copolymers that self-organize in solution have been found to be very versatile [1]. In recent years, polymer-micellar systems have been designed that are adaptable to their environment and able to respond in a controlled manner to external stimuli. In short, synthesis of 'nanoscale objects' that exhibit 'stimulus-responsive' properties is a topic gathering momentum, because their behavior is reminiscent of that exhibited by proteins [8]. By integrating environmentally sensitive homopolymers into amphiphilic block copolymers, smart block copolymers with self assembled supramolecular structures that exhibit stimuli or environmentally responsive properties can be obtained [1]. Several synthetic polymers are known to have environmentally responsive properties. Changes in the physical, chemical or biochemical environment of these polymers results in modulation of the solubility or chain conformation of the polymer [9]. There are many common schemes of engineering stimuli responsive properties into materials [8, 9]. Polymers exhibiting lower critical solution temperature (LCST) are soluble in solvent below a specific temperature and phase separate from solvent above that temperature while polymers exhibiting upper critical solution temperatures (UCST) phase separate below a certain temperature. The solubility of polymers with ionizable moieties depends on the pH of the solution. Polymers with polyzwitterions, anions and cations have been shown to exhibit pH responsive self assembly. Other stimuli responsive polymers include glucose sensitive polymers, calcium ion-sensitive polymers and so on. Progress in living radical polymerization (LRP) methods [10] has made it possible for the facile synthesis of these block copolymer systems with controlled molecular weights and well defined architectures. The overall theme of this work is to develop novel smart block copolymers for biomineralization and biomedical applications. Synthesis and characterization of self-assembling thermoreversible ionic block copolymers as templates in biomimetic nanocomposite synthesis using a bottom-up approach is a novel contribution in this respect. Further, we have extended these families of copolymers to include block copolymer-peptide conjugates to enhance biological specificity. Future directions on this work will focus on enhancing the polymer templating properties for biomineralization by expanding the family of block copolymers with organic polypeptides and biological polypeptide scaffolds as well as a detailed understanding of the polymer-inorganic nanocomposites at the molecular level using small angle scattering analysis. Glucose responsive polymer hydrogels for drug delivery, polymer-ligand conjugates for non-viral therapy and thermoresponsive injectable photocrosslinkable hydrogels for posttraumatic arthritis cartilage healing are other applications of these novel copolymers synthesized in our work.

  2. QER- Comment of Ali Mansoori

    Broader source: Energy.gov [DOE]

    Dear Martha, I wonder if this Public Meeting will be broadcast on any internet website? I am quite interested to watch and hear the happenings in it since I will be away from Chicago on August 8, 2014. For your information my group at UIC have been very active on various aspects of energy and nanotechnology. Best, Ali Dr. G.Ali Mansoori, PhD Professor of Chemical and Bio Engineering & Physics University of Illinois at Chicago, Chicago, IL 60607-7052 USA A Review of Non-Renewable Energy Options in Illinois Int. J. Oil, Gas and Coal Technology, Vol.6, No.3, pp.288-347, 2013. Fouling in Petroleum & Natural Gas Industries ---------- Forwarded message ---------- From: Peter Nelson Date: Thu, Jul 31, 2014 at 6:02 PM Subject: Fwd: Quadrennial Energy Review Public Meeting at UIC 8/8 To: FYI, I just received notice of this. It is a public meeting so anyone is welcome to attend. Two cabinet and members and the mayor ... impressive! Pete Begin forwarded message: From: "Gutierrez, Martha" Date: July 31, 2014 5:57:42 PM CDT To: "Allen-Meares, Paula", "Holly, Sharlene" Cc: "Redding, Michael", "Pagano, Michael", "Bills-Windt, Caryn", "Schlickman, Stephen", "Gutierrez, Martha", "Pyatt, Jonathan S (UIUC)", "Soto Plutz, Teresita", "Donovan, Mark", "Nelson, Peter", "Dutta, Mitra" Subject: Quadrennial Energy Review Public Meeting at UIC 8/8 Dear Paula, The U.S. Secretary of Energy Ernest Moniz and U.S. Secretary of Transportation Anthony Foxx; Chicago Mayor Rahm Emanuel and other members of Congress and/or agency heads (names TBA) will be at UIC Student Center East, Illinois B Room on Friday, August 8th at 8:30 am to conduct a public meeting on the Quadrennial Energy review (QER). The Quadrennial Energy Review (QER) is a year-long review of the nation's infrastructure for energy transmission, distribution and storage. They are holding public meetings around the country to get input from stakeholders. The QER report will contain policy recommendations for improving our energy infrastructure. The Department of Energy has requested your participation in delivering welcoming remarks, faculty to serve as panelist's and for UIC community to be invited to the meeting. We have provided recommendations and are awaiting their confirmation of our list by tomorrow morning. Once we receive confirmation, we can extend invitations and promote meeting to the campus community. Please visit website for additional background information. https://www.federalregister.gov/articles/2014/07/14/2014-16396/quadrenni... We hope to be in touch tomorrow with final details. Thank you, Marty Gutierrez Senior Director Office of Public and Government Affairs University of Illinois at Chicago Peter C. Nelson, Ph.D. Dean of Engineering University of Illinois at Chicago www.engr.uic.edu -- Dr. G.Ali Mansoori, PhD Professor of Chemical and Bio Engineering & Physics DEPARTMENT OF BIOENGINEERING University of Illinois at Chicago Room 218 Science and Engineering Offices 851 S. Morgan St. (M/C 063), Chicago, IL 60607-7052

  3. Mirror monochromator

    SciTech Connect (OSTI)

    Mankos, Marian; Shadman, Khashayar

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOIs MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90 and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam energy of 80-120 keV). Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key monochromator components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded into a model describing the key electron-optical parameters of the complete monochromator. The simulations reveal that the mirror monochromator can reduce the energy spread of a Schottky electron source, an established electron emitter used widely in EMs, to 10 meV for practical beam current values and that further reduction of the energy spread down to 3 meV is possible for low current applications with a Cold Field Emitter (an electron source with 10x the brightness of a Schottky source). MirrorChroms can be designed and built to attach to different types of TEMs and SEMs, thus making them suitable for enhancing the study of the structure, composition, and bonding states of new materials at the nanoscale to advance material science research in the field of nanotechnology as well as biomedical research.

  4. Quantitative multiplex detection of biomarkers on a waveguide-based biosensor using quantum dots

    SciTech Connect (OSTI)

    Xie, Hongzhi; Mukundan, Harshini; Martinez, Jennifer S; Swanson, Basil I; Anderson, Aaron S; Grace, Kevin

    2009-01-01

    The quantitative, simultaneous detection of multiple biomarkers with high sensitivity and specificity is critical for biomedical diagnostics, drug discovery and biomarker characterization [Wilson 2006, Tok 2006, Straub 2005, Joos 2002, Jani 2000]. Detection systems relying on optical signal transduction are, in general, advantageous because they are fast, portable, inexpensive, sensitive, and have the potential for multiplex detection of analytes of interest. However, conventional immunoassays for the detection of biomarkers, such as the Enzyme Linked Immunosorbant Assays (ELISAs) are semi-quantitative, time consuming and insensitive. ELISA assays are also limited by high non-specific binding, especially when used with complex biological samples such as serum and urine (REF). Organic fluorophores that are commonly used in such applications lack photostability and possess a narrow Stoke's shift that makes simultaneous detection of multiple fluorophores with a single excitation source difficult, thereby restricting their use in multiplex assays. The above limitations with traditional assay platforms have resulted in the increased use of nanotechnology-based tools and techniques in the fields of medical imaging [ref], targeted drug delivery [Caruthers 2007, Liu 2007], and sensing [ref]. One such area of increasing interest is the use of semiconductor quantum dots (QDs) for biomedical research and diagnostics [Gao and Cui 2004, Voura 2004, Michalet 2005, Chan 2002, Jaiswal 2004, Gao 2005, Medintz 2005, So 2006 2006, Wu 2003]. Compared to organic dyes, QDs provide several advantages for use in immunoassay platforms, including broad absorption bands with high extinction coefficients, narrow and symmetric emission bands with high quantum yields, high photostablility, and a large Stokes shift [Michalet 2005, Gu 2002]. These features prompted the use of QDs as probes in biodetection [Michalet 2005, Medintz 2005]. For example, Jaiswal et al. reported long term multiple color imaging of live cells using QD-bioconjugates [Jaiswal 2003]. Gao [Gao 2004] and So [So 2006] have used QDs as probes for in-vivo cancer targeting and imaging. Medintz et al. reported self-assembled QD-based biosensors for detection of analytes based on energy transfer [Medintz 2003]. Others have developed an approach for multiplex optical encoding of biomolecules using QDs [Han 2001]. Immunoassays have also benefited from the advantages of QDs. Recently, dihydrolipoic acid (DHLA) capped-QDs have been attached to antibodies and used as fluorescence reporters in plate-based multiplex immunoassays [Goodman 2004]. However, DHLA-QDs are associated with low quantum efficiency and are unstable at neutral pH. These problems limit the application of this technology to the sensitive detection of biomolecules, especially in complex biological samples. Thus, the development of a rapid, sensitive, quantitative, and specific multiplex platform for the detection of biomarkers in difficult samples remains an elusive target. The goal stated above has applications in many fields including medical diagnostics, biological research, and threat reduction. The current decade alone has seen the development of a need to rapidly and accurately detect potential biological warfare agents. For example, current methods for the detection of anthrax are grossly inadequate for a variety of reasons including long incubation time (5 days from time of exposure to onset of symptoms) and non-specific ('flu-like') symptoms. When five employees of the United State Senate were exposed to B. anthracis in the mail (2001), only one patient had a confirmed diagnosis before death. Since then, sandwich immunoassays using both colorimetric and fluorescence detectors have been developed for key components of the anthrax lethal toxin, namely protective antigen (PA), lethal factor (LF), and the edema factor [Mourez 2001]. While these platforms were successful in assays against anthrax toxins, the sensitivity was poor. Furthermore, no single platform exists for the simultaneous and quantitative detection of mul

  5. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    SciTech Connect (OSTI)

    Zbib, Hussein M; Bahr, David F

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they dont permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these tri-layer composites. CINT formed nanolaminate composites were tested in tension, with bulge testing, using nanoindentation, and using micro-compression testing to demonstrate that the tri-layer films were indeed tougher and hardened more during deformation (they got stronger as we deformed them) than equivalent bi-layers. The seven graduate students, 4 post-docs and research faculty, and the two faculty co-PIs were able to create a collaborated computational prediction and experimental validation team to demonstrate the benefits of this class of materials to the community. The computational work crossed from atomistic to bulk simulations, and the experiments coupled form nm-scale to the mm scale; closely matching the simulations. The simulations provided viable mechanisms that explained the observed results, and new experimental results were used to push the boundaries of the simulation tools. Over the life of the 7 years of this program we proved that tri-layer nanolaminate metallic composite systems exceeded the mechanical performance of bi-layer systems if the right materials were chosen, and that the mechanism responsible for this was tied to the cross slip of dislocations. With 30 journal publications resulting from this work we have broadly disseminated this family of results to the scientific community.