National Library of Energy BETA

Sample records for gate life cycle

  1. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fertilizer used for Corn, Soybean, and Stover Production | Department of Energy Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a

  2. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Technical Report NREL/TP-510-37500 May 2005 Quantifying Cradle-to-Farm Gate Life-Cycle Impacts Associated with Fertilizer Used for Corn, Soybean, and Stover Production Susan E. Powers Quantifying Cradle-to-Farm Gate Life Cycle Impacts

  3. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  4. NREL: U.S. Life Cycle Inventory Database Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Life-Cycle Inventory Database Buildings Research Photo of a green field with an ocean in the background. U.S. Life Cycle Inventory Database NREL and its partners created the U.S. Life Cycle Inventory (LCI) Database to help life cycle assessment (LCA) practitioners answer questions about environmental impact. This database provides individual gate-to-gate, cradle-to-gate and cradle-to-grave accounting of the energy and material flows into and out of the environment that are associated with

  5. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  6. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  7. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-10-14

    (The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

  8. Program Evaluation: Program Life Cycle

    Broader source: Energy.gov [DOE]

    In general, different types of evaluation are carried out over different parts of a program's life cycle (e.g., Creating a program, Program is underway, or Closing out or end of program)....

  9. Photovoltaics: Life-cycle Analyses

    SciTech Connect (OSTI)

    Fthenakis V. M.; Kim, H.C.

    2009-10-02

    Life-cycle analysis is an invaluable tool for investigating the environmental profile of a product or technology from cradle to grave. Such life-cycle analyses of energy technologies are essential, especially as material and energy flows are often interwoven, and divergent emissions into the environment may occur at different life-cycle-stages. This approach is well exemplified by our description of material and energy flows in four commercial PV technologies, i.e., mono-crystalline silicon, multi-crystalline silicon, ribbon-silicon, and cadmium telluride. The same life-cycle approach is applied to the balance of system that supports flat, fixed PV modules during operation. We also discuss the life-cycle environmental metrics for a concentration PV system with a tracker and lenses to capture more sunlight per cell area than the flat, fixed system but requires large auxiliary components. Select life-cycle risk indicators for PV, i.e., fatalities, injures, and maximum consequences are evaluated in a comparative context with other electricity-generation pathways.

  10. Tropical Cloud Life Cycle and Overlap Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Cycle and Overlap Structure Vogelmann, Andrew Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory...

  11. Title: The Life-cycle

    Office of Scientific and Technical Information (OSTI)

    The Life-cycle of Operons Authors: Morgan N. Price, Adam P. Arkin, and Eric J. Alm Author affiliation: Lawrence Berkeley Lab, Berkeley CA, USA and the Virtual Institute for Microbial Stress and Survival. A.P.A. is also affiliated with the Howard Hughes Medical Institute and the UC Berkeley Dept. of Bioengineering. Corresponding author: Eric Alm, ejalm@lbl.gov, phone 510-486-6899, fax 510-486-6219, address Lawrence Berkeley National Lab, 1 Cyclotron Road, Mailstop 977-152, Berkeley, CA 94720

  12. A Review of Battery Life-Cycle Analysis. State of Knowledge and Critical Needs

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.

    2010-10-01

    This report examines battery life-cycle assessments with a focus on cradle-to-gate (CTG) energy and greenhouse gas (GHG) and criteria emissions. This includes battery manufacturing and as the production of materials that make up batteries. The report covers both what is known about battery life cycles, as well as what needs to be established for better environmental evaluations.

  13. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  14. Life Cycle Modeling of Propulsion Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Life Cycle Modeling of Propulsion Materials Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle ...

  15. Life Cycle Inventory Database | Department of Energy

    Energy Savers [EERE]

    Past Projects » Life Cycle Inventory Database Life Cycle Inventory Database The U.S. Life Cycle Inventory (LCI) Database serves as a central repository for information about the total energy and resource impacts of developing and using various commercial building materials, components, and assemblies. The database helps manufacturers, building designers, and developers select energy-efficient and environmentally friendly materials, products, and processes for their projects based on the

  16. Updating the LED Life Cycle Assessment

    Energy Savers [EERE]

    Part 2: LED Manufacturing and Performance 7 Goal of the New Study Review new literature on the life- cycle assessment of LED products. Determine if newer A-19 products...

  17. Techno-Economics & Life Cycle Assessment (Presentation)

    SciTech Connect (OSTI)

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  18. Life-Cycle Analysis of Geothermal Technologies

    Broader source: Energy.gov [DOE]

    The results and tools from this project will help GTP and stakeholders determine and communicate GT energy and GHG benefits and water impacts. The life-cycle analysis (LCA) approach is taken to address these effects.

  19. Prospective Life Cycle and Technology Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prospective Life Cycle and Technology Analysis Advanced Manufacturing Office Peer Review May 28, 2015 Diane J. Graziano E. Masanet R. Huang M.E. Riddle This presentation does not contain any proprietary, confidential, or otherwise restricted information. DOE-AMO Analysis Summary - ANL/NU * Quantifying, from a life-cycle perspective, the enabling effects of advanced manufacturing in achieving AMO's mission for energy savings across the economy * Assessing net energy, emissions, and economic

  20. NREL: Energy Analysis: Life Cycle Assessment Harmonization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Cycle Assessment Harmonization Life cycle assessment (LCA) harmonization helps lenders, utility executives, and lawmakers get the best, most precise information on greenhouse gas emissions from various sources of energy. LCA has been used to estimate and compare GHG emissions from utility-scale power systems for three decades, often with considerable variability in results. Harmonization provides more exact estimates of greenhouse-gas emissions for renewable and conventional electricity

  1. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle ... Analysis Activities at National Renewable Energy Laboratory Life Cycle Assessment of ...

  2. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM ...

  3. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products PDF icon ...

  4. Bioproduct Life Cycle Analysis with the GREET Model | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioeconomy Bioproduct Life Cycle Analysis with the GREETTM Model Jennifer B. Dunn, Biofuel Life Cycle Analysis Team Lead, Argonne National Laboratory PDF icon ...

  5. Nuclear Weapons Life Cycle | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Our Mission Maintaining the Stockpile Nuclear Weapons Life Cycle Nuclear Weapons Life Cycle Nuclear weapons are ...

  6. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  7. GREET Life-Cycle Analysis of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO Project Peer Review GREET Life-Cycle Analysis of Biofuels March 24, 2015 Analysis and Sustainability Michael Wang, Jennifer B. Dunn Argonne National Laboratory Key acronyms list AD Anaerobic digestion FR Forest residue AEO Annual Energy Outlook FTD Fischer Tropsch Diesel AEZ Agricultural Ecological Zone FN Fuel gas/natural gas AGE Air emissions, greenhouse gas emissions, energy consumption FY Fiscal year ALU Algal lipid upgrading GHG Greenhouse gas AHTL Algal hydrothermal liquefaction GREET

  8. Emissions Modeling: GREET Life Cycle Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Michael Wang, Amgad Elgowainy, Jeongwoo Han Argonne National Laboratory The 2014 DOE Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting Washington, DC June 18, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: van002 Project Overview  Start: Oct. 1993  End: not applicable (ongoing annual allocation  % complete: 70% (for FY14)  Indicators and

  9. GREET Development and Applications for Life-Cycle Analysis of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET Model Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle...

  10. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers [EERE]

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part I: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent, and LED ...

  11. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products This March 28, ...

  12. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Citation Details In-Document Search Title: Life-Cycle ...

  13. Bioproduct Life Cycle Analysis with the GREET Model

    Broader source: Energy.gov [DOE]

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproduct Life Cycle Analysis with the GREET Model Jennifer B. Dunn, Biofuel Life Cycle Analysis Team Lead, Argonne National Laboratory

  14. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Breakout Session 2D-Building Market ...

  15. U.S. Life Cycle Inventory Database Roadmap (Brochure)

    SciTech Connect (OSTI)

    Deru, M.

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  16. U.S. Life Cycle Inventory Database Roadmap

    SciTech Connect (OSTI)

    none,

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  17. Day4 Energy Certus Life Cycle JV | Open Energy Information

    Open Energy Info (EERE)

    Day4 Energy Certus Life Cycle JV Jump to: navigation, search Name: Day4 Energy & Certus Life Cycle JV Place: Italy Product: JV company will develop photovoltaic power projects in...

  18. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  19. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for ...

  20. Life Cycle Nitrogen Trifluoride Emissions from Photovoltaics

    SciTech Connect (OSTI)

    Fthenakis, V.

    2010-10-25

    Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF{sub 3}, a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the life-cycle emissions of NF{sub 3} in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF{sub 3} and of a manufacturer of PV end-use equipment. From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF{sub 3} at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF{sub 3} in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO{sub 2eq}/kWh, which can be displaced within the first 1-4 months of the PV system life.

  1. Life-cycle environmental analysis--A three dimensional view

    SciTech Connect (OSTI)

    Sutherlin, K.L.; Black, R.E. )

    1993-01-01

    Both the US Air Force and the US Army have recently increased their emphasis on life-cycles of weapons systems. Along with that emphasis, there has also been an increase in emphasis in life-cycle National Environmental Policy Act (NEPA) documentation. Conflicts and inefficiencies arise when a weapon system is fielded and prompts the need for a site-specific environmental analysis. In their research and experience, the authors found no real link between life-cycle environmental analysis and site-specific environmental analyses required at various points within the life-cycle of a weapon. This other look at the relation between life-cycle and site-specific environmental analyses has the potential to increase efficiency in NEPA compliance actions and save tax dollars in the process. The authors present a three-dimensional model that relates life-cycle analyses to site-specific analyses.

  2. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reforming | Department of Energy Hydrogen Production via Natural Gas Steam Reforming Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. PDF icon 27637.pdf More Documents & Publications Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone

  3. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States On May 29, 2014, the Department of Energy's (DOE) Office of Fossil Energy announced the availability for public review and comment the report Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States (LCA GHG Report).

  4. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon lm001_das_2010_o.pdf More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Life Cycle Modeling of Propulsion Materials

  5. Building Life Cycle Cost Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Life Cycle Cost Programs Building Life Cycle Cost Programs The National Institute of Standards and Technology (NIST) developed the Building Life Cycle Cost (BLCC) Programs to provide computational support for the analysis of capital investments in buildings. They include BLCC5, the Energy Escalation Rate Calculator, Handbook 135, and the Annual Supplement to Handbook 135. BLCC5 Program Register and download. BLCC 5.3-15 (for Windows or Mac OS X). BLCC version 5.3-15 contains the

  6. Federal Register Notice for Life Cycle Greenhouse Gas Perspective on

    Office of Environmental Management (EM)

    Exporting Liquefied Natural Gas from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Federal Register Notice for Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States The Office of Fossil Energy of the Department of Energy gives notice of the availability of the report Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States

  7. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Office of Environmental Management (EM)

    from the United States | Department of Energy Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States This analysis calculates the life cycle greenhouse gas (GHG) emissions for regional coal and imported natural gas power in Europe and Asia. The primary research questions are as follows: *How does exported liquefied natural gas (LNG) from the U.S. compare

  8. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Part 2: LED Manufacturing and Performance Scholand, Michael; Dillon, Heather E. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ENVIRONMENTAL IMPACTS; LIFE CYCLE;...

  9. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model AgencyCompany Organization: National Energy Technology...

  10. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Environmental Management (EM)

    Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model...

  11. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Open Energy Info (EERE)

    Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project Jump to: navigation, search Last modified on...

  12. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Lighting Products Part 2: LED Manufacturing and Performance Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting ...

  13. Life Cycle Assessment of Hydrogen Production via Natural Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental ...

  14. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm001_das_2011_o.pdf More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Multi-Material Joining: Challenges and Opportunities

  15. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Life Cycle GHG Perspective Report.pdf More Documents & Publications Cameron LNG LLC Final Order Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. ...

  16. FY 2007 Total System Life Cycle Cost, Pub 2008

    Broader source: Energy.gov [DOE]

    The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management’s (OCRWM) May 2007 total...

  17. Building Life-Cycle Cost (BLCC) Program | Open Energy Information

    Open Energy Info (EERE)

    useful for evaluating the costs and benefits of energy and water conservation and renewable energy projects. The life-cycle cost (LCC) of two or more alternative designs are...

  18. ARM - Field Campaign - Aerosol Life Cycle IOP at BNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAerosol Life Cycle IOP at BNL Campaign Links Images Wiki 2011 ASR STM Presentation: Sedlacek 2011 ASR STM Presentation: Springston 2010 ASR Fall Meeting: Sedlacek News,...

  19. Bioproduct Life Cycle Analysis with the GREETTM Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproduct Life Cycle Analysis with the GREET TM Model Jennifer B. Dunn Biofuel Life Cycle Analysis Team Lead Systems Assessment Group Argonne National Laboratory Biomass 2014 July 29 and 30, 2014 Selection of bioproducts based on a high-level market analysis 2 Algae Glycerol 1,3-Propanediol Propylene glycol Lipid extraction and hydrogenation Catalytic hydrogenolysis Fermentation Acrylic acid 1,4-Butanediol Clean sugars Isobutanol Polyethylene 3-Hydroxypropionic acid Succinic acid Sugars Corn

  20. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm001_das_2012_o.pdf More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM Materials Program Overview

  1. Life Cycle Management Solutions for the Electricity Industry

    Office of Environmental Management (EM)

    Kinectrics Inc. All rights reserved. Kinectrics - Proprietary and Confidential Page 1 life cycle management solutions GENERATING SUCCESS --- FOR 100 YEARS Tritium Separation at Cernavoda Nuclear - Romania A. Antoniazzi TFG May 5-7, 2015 Copyright © 2015 Kinectrics Inc. All rights reserved. Kinectrics - Proprietary and Confidential Page 2 life cycle management solutions Background - Cernavoda Nuclear * SNN-CNE has 2 operating CANDU 6 Heavy Water reactors (706 MWe) * U1 operational 1996,

  2. Beyond pollution prevention: Managing life-cycle costs

    SciTech Connect (OSTI)

    Cohan, D.; Gess, D. )

    1993-01-01

    Companies that purchases and use chemicals and materials in their everyday operation are finding that disposing of these products is becoming increasingly expensive. These disposal and liability costs have been the motivating factor behind recent efforts at pollution prevention. This paper suggests an alternative approach: considering the full life-cycle costs of chemicals and materials at the time purchase decisions are made. Life-cycle cost is the sum of all the costs that a product is expected to incur from the time of its purchase, during its use, until the disposal of any wastes or by-products and beyond as long as liabilities may remain. It represents the product's real cost to the company, and as such is a better basis for making cost-effective decisions. By using life-cycle costs to make decisions, companies can prevent uneconomical decisions on potentially hazardous materials and more effectively minimize overall costs. Life-cycle cost management can also help in the formulation of pollution prevention plans by identifying cost-effective waste-reduction alternatives. Although the concepts of life-cycle cost management are straightforward and intuitive, applying these concepts to real decisions may be challenging. This paper presents an overview of life-cycle cost management, discusses some of the challenges companies face applying this approach to real decisions, and provides solutions that meet these challenges.

  3. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary This ...

  4. A review of battery life-cycle analysis : state of knowledge and critical needs.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.; Energy Systems

    2010-12-22

    A literature review and evaluation has been conducted on cradle-to-gate life-cycle inventory studies of lead-acid, nickel-cadmium, nickel-metal hydride, sodium-sulfur, and lithium-ion battery technologies. Data were sought that represent the production of battery constituent materials and battery manufacture and assembly. Life-cycle production data for many battery materials are available and usable, though some need updating. For the remaining battery materials, lifecycle data either are nonexistent or, in some cases, in need of updating. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and material flows is missing. For all but the lithium-ion batteries, enough constituent material production energy data are available to approximate material production energies for the batteries, though improved input data for some materials are needed. Due to the potential benefit of battery recycling and a scarcity of associated data, there is a critical need for life-cycle data on battery material recycling. Either on a per kilogram or per watt-hour capacity basis, lead-acid batteries have the lowest production energy, carbon dioxide emissions, and criteria pollutant emissions. Some process-related emissions are also reviewed in this report.

  5. Commissioning tools for life-cycle building performance assurance

    SciTech Connect (OSTI)

    Piette, M.A.

    1996-05-01

    This paper discusses information systems for building life-cycle performance analysis and the use of computer-based commissioning tools within this context. There are many reasons why buildings do not perform in practice as well as intended at the design stage. One reason is the lack of commissioning. A second reason is that design intent is not well documented, and performance targets for building components and systems are not well specified. Thus, criteria for defining verification and functional tests is unclear. A third reason is that critical information is often lost throughout the building life-cycle, which causes problems such as misunderstanding of operational characteristics and sequences and reduced overall performance. The life-cycle building performance analysis tools project discussed in this paper are focused on chillers and cooling systems.

  6. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    SciTech Connect (OSTI)

    R. Sweeney

    2000-03-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  7. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    SciTech Connect (OSTI)

    R.E. Sweeney

    2001-02-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  8. Life Cycle Greenhouse Gas Emissions from Electricity Generation Fact Sheet

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  9. Life Cycle Modeling of Propulsion Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon pm034_das_2010_p.pdf More Documents & Publications Life Cycle Modeling of Propulsion Materials Materials for Advanced Turbocharger Designs CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components

  10. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect (OSTI)

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  11. U.S. Life Cycle Inventory Database Roadmap (Brochure) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy U.S. Life Cycle Inventory Database Roadmap (Brochure) U.S. Life Cycle Inventory Database Roadmap (Brochure) Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results. PDF icon 45153.pdf More Documents & Publications Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Vehicle

  12. Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Smith, K.; Markel, T.

    2009-06-01

    Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

  13. Process integrated modelling for steelmaking Life Cycle Inventory analysis

    SciTech Connect (OSTI)

    Iosif, Ana-Maria Hanrot, Francois Ablitzer, Denis

    2008-10-15

    During recent years, strict environmental regulations have been implemented by governments for the steelmaking industry in order to reduce their environmental impact. In the frame of the ULCOS project, we have developed a new methodological framework which combines the process integrated modelling approach with Life Cycle Assessment (LCA) method in order to carry out the Life Cycle Inventory of steelmaking. In the current paper, this new concept has been applied to the sinter plant which is the most polluting steelmaking process. It has been shown that this approach is a powerful tool to make the collection of data easier, to save time and to provide reliable information concerning the environmental diagnostic of the steelmaking processes.

  14. Life Cycle Assessment of Renewable Hydrogen Production via

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind/Electrolysis: Milestone Completion Report | Department of Energy Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report This report summarizes the results of a lifecycle assessment of a renewable hydrogen production process employing wind/electrolysis. PDF icon 35404.pdf More Documents & Publications Analysis Activities at National Renewable Energy

  15. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  16. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    SciTech Connect (OSTI)

    Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long; Spatari, Sabrina

    2014-11-01

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  17. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Handbook describes the annual...

  18. Life Cycle Cost (LCC) Handbook Final Version 9-30-14

    Broader source: Energy.gov [DOE]

    This handbook provides procedures, information, examples, and tools to develop consistent and defensible life-cycle cost estimates (LCCE) and perform appropriate life-cycle cost analyses (LCCA) for capital projects. LCC Handbook – Final, September 2014

  19. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, ...

  20. Guidance on Life-Cycle Cost Analysis Required by Executive Order...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Cost Analysis Required by Executive Order 13123 Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Guide describes the clarification of how agencies...

  1. Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy

    SciTech Connect (OSTI)

    Gagnon, L.

    2004-10-03

    This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

  2. Background and Reflections on the Life Cycle Assessment Harmonization Project

    Broader source: Energy.gov [DOE]

    Despite the ever-growing body of life cycle assessment literature on electricity generation technologies, inconsistent methods and assumptions hamper comparison across studies and pooling of published results. Synthesis of the body of previous research is necessary to generate robust results to assess and compare environmental performance of different energy technologies for the benefit of policy makers, managers, investors, and citizens. With funding from the U.S. Department of Energy, the National Renewable Energy Laboratory initiated the LCA Harmonization Project in an effort to rigorously leverage the numerous individual studies to develop collective insights.

  3. Battery energy storage systems life cycle costs case studies

    SciTech Connect (OSTI)

    Swaminathan, S.; Miller, N.F.; Sen, R.K.

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  4. End-of-life flows of multiple cycle consumer products

    SciTech Connect (OSTI)

    Tsiliyannis, C.A.

    2011-11-15

    Explicit expressions for the end-of-life flows (EOL) of single and multiple cycle products (MCPs) are presented, including deterministic and stochastic EOL exit. The expressions are given in terms of the physical parameters (maximum lifetime, T, annual cycling frequency, f, number of cycles, N, and early discard or usage loss). EOL flows are also obtained for hi-tech products, which are rapidly renewed and thus may not attain steady state (e.g. electronic products, passenger cars). A ten-step recursive procedure for obtaining the dynamic EOL flow evolution is proposed. Applications of the EOL expressions and the ten-step procedure are given for electric household appliances, industrial machinery, tyres, vehicles and buildings, both for deterministic and stochastic EOL exit, (normal, Weibull and uniform exit distributions). The effect of the physical parameters and the stochastic characteristics on the EOL flow is investigated in the examples: it is shown that the EOL flow profile is determined primarily by the early discard dynamics; it also depends strongly on longevity and cycling frequency: higher lifetime or early discard/loss imply lower dynamic and steady state EOL flows. The stochastic exit shapes the overall EOL dynamic profile: Under symmetric EOL exit distribution, as the variance of the distribution increases (uniform to normal to deterministic) the initial EOL flow rise becomes steeper but the steady state or maximum EOL flow level is lower. The steepest EOL flow profile, featuring the highest steady state or maximum level, as well, corresponds to skew, earlier shifted EOL exit (e.g. Weibull). Since the EOL flow of returned products consists the sink of the reuse/remanufacturing cycle (sink to recycle) the results may be used in closed loop product lifecycle management operations for scheduling and sizing reverse manufacturing and for planning recycle logistics. Decoupling and quantification of both the full age EOL and of the early discard flows is useful, the latter being the target of enacted legislation aiming at increasing reuse.

  5. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  6. Life cycle assessment of bagasse waste management options

    SciTech Connect (OSTI)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-15

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  7. Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Life-Cycle Cost Analysis Required by Executive Order 13123 Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Guide describes the clarification of how agencies determine the life-cycle cost for investments required by Executive Order 13123. PDF icon lcc_guide_05.pdf More Documents & Publications Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Life Cycle Cost (LCC) Handbook Final Version 9-30-14 High Impact Technology

  8. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect (OSTI)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  9. Going with the flow: Life cycle costing for industrial pumpingsystems

    SciTech Connect (OSTI)

    Tutterow, Vestal; Hovstadius, Gunnar; McKane, Aimee

    2002-07-08

    Industries worldwide depend upon pumping systems for theirdaily operation. These systems account for nearly 20 percent of theworld's industrial electrical energy demand and range from 25-50 percentof the energy usage in certain industrial plant operations. Purchasedecisions for a pump and its related system components are typicallybased upon a low bid, rather than the cost to operate the system over itslifetime. Additionally, plant facilities personnel are typically focussedon maintaining existing pumping system reliability rather than optimizingthe systems for best energy efficiency. To ensure the lowest energy andmaintenance costs, equipment life, and other benefits, the systemcomponents must be carefully matched to each other, and remain sothroughout their working lives. Life Cycle Cost (LCC) analysis is a toolthat can help companies minimize costs and maximize energy efficiency formany types of systems, including pumping systems. Increasing industryawareness of the total cost of pumping system ownership through lifecycle cost analysis is a goal of the US Department of Energy (DOE). Thispaper will discuss what DOE and its industry partners are doing to createthis awareness. A guide book, Pump Life Cycle Costs: A Guide to LCCAnalysis for Pumping Systems, developed by the Hydraulic Institute (HI)and Europump (two pump manufacturer trade associations) with DOEinvolvement, will be overviewed. This guide book is the result of thediligent efforts of many members of both associations, and has beenreviewed by a group of industrial end-users. The HI/Europump Guideprovides detailed guidance on the design and maintenance of pumpingsystems to minimize the cost of ownership, as well as LCC analysis. DOE,Hydraulic Institute, and other organizations' efforts to promote LCCanalysis, such as pump manufacturers adopting LCC analysis as a marketingstrategy, will be highlighted and a relevant case studyprovided.

  10. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and In-Stream Hydrokinetic Power | Department of Energy Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Office presentation icon 16_life_revision_previsic_update.ppt More Documents & Publications 2014 Water Power Program

  11. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 | Department of Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Handbook describes the annual supplements to the NIST Handbook 135 and NBS Special Publication 709. PDF icon ashb15.pdf More Documents & Publications Guidance on Life-Cycle Cost Analysis Required by Executive Order 13123 Vehicle Technologies Office Merit Review 2015: Fuel-Neutral Studies of Particulate Matter

  12. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary | Department of Energy Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary This brochure is a management tool that can help companies minimize waste and maximize energy efficiency for pumping systems. PDF icon Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary (January 2001) More Documents & Publications Variable Speed

  13. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Office of Scientific and Technical Information (OSTI)

    Products, Part 3: LED Environmental Testing (Technical Report) | SciTech Connect Technical Report: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle

  14. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products, Part 3: LED Environmental Testing (Technical Report) | SciTech Connect Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and

  15. The Life-cycle of Operons (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The Life-cycle of Operons Citation Details In-Document Search Title: The Life-cycle of Operons Operons are a major feature of all prokaryotic genomes, buthow and why operon structures vary is not well understood. To elucidatethe life-cycle of operons, we compared gene order between Escherichiacoli K12 and its relatives and identified the recently formed anddestroyed operons in E. coli. This allowed us to determine how operonsform, how they become closely spaced, and how they die. Our

  16. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Energy Savers [EERE]

    Products | Department of Energy Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products This March 28, 2013 webcast reviewed DOE's recently completed three-part study of the life-cycle energy and environmental impacts of LED lighting products relative to incandescent and CFL alternatives. The reports for Parts 1 and 2 were published in February 2012 and June 2012, respectively,

  17. GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Questions | Department of Energy GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions November 23, 2015 - 2:57pm Addthis GREET Model Expanded to Better Address Biofuel Life-Cycle Analysis Research Questions The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model allows researchers and analysts to fully evaluate the energy and emission

  18. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. PDF icon

  19. Text Alternative Version: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products" webcast, held March 28, 2013.

  20. Life Cycle Cost (LCC) Handbook Final Version 9-30-14 | Department...

    Office of Environmental Management (EM)

    Final Version 9-30-14 This handbook provides procedures, information, examples, and tools to develop consistent and defensible life-cycle cost estimates (LCCE) and perform...

  1. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (2015) - Carbon efficiency 85% * Followed ISO 14040 and convened Critical Review Panel to ... following procedures established under ISO 14040 standards on Life Cycle Analyses * ...

  2. Developing A New High Capacity Anode With Long Cycle Life | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A New High Capacity Anode With Long Cycle Life Developing A New High Capacity Anode With Long Cycle Life 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es020_amine_2012_o.pdf More Documents & Publications Developing High Capacity, Long Life Anodes Developing High Capacity, Long Life Anodes FY 2011 Annual Progress Report for Energy Storage R&D

  3. Method and infrastructure for cycle-reproducible simulation on large scale digital circuits on a coordinated set of field-programmable gate arrays (FPGAs)

    DOE Patents [OSTI]

    Asaad, Sameh W; Bellofatto, Ralph E; Brezzo, Bernard; Haymes, Charles L; Kapur, Mohit; Parker, Benjamin D; Roewer, Thomas; Tierno, Jose A

    2014-01-28

    A plurality of target field programmable gate arrays are interconnected in accordance with a connection topology and map portions of a target system. A control module is coupled to the plurality of target field programmable gate arrays. A balanced clock distribution network is configured to distribute a reference clock signal, and a balanced reset distribution network is coupled to the control module and configured to distribute a reset signal to the plurality of target field programmable gate arrays. The control module and the balanced reset distribution network are cooperatively configured to initiate and control a simulation of the target system with the plurality of target field programmable gate arrays. A plurality of local clock control state machines reside in the target field programmable gate arrays. The local clock state machines are configured to generate a set of synchronized free-running and stoppable clocks to maintain cycle-accurate and cycle-reproducible execution of the simulation of the target system. A method is also provided.

  4. Applying Human Factors during the SIS Life Cycle

    SciTech Connect (OSTI)

    Avery, K.

    2010-05-05

    Safety Instrumented Systems (SIS) are widely used in U.S. Department of Energy's (DOE) nonreactor nuclear facilities for safety-critical applications. Although use of the SIS technology and computer-based digital controls, can improve performance and safety, it potentially introduces additional complexities, such as failure modes that are not readily detectable. Either automated actions or manual (operator) actions may be required to complete the safety instrumented function to place the process in a safe state or mitigate a hazard in response to an alarm or indication. DOE will issue a new standard, Application of Safety Instrumented Systems Used at DOE Nonreactor Nuclear Facilities, to provide guidance for the design, procurement, installation, testing, maintenance, operation, and quality assurance of SIS used in safety significant functions at DOE nonreactor nuclear facilities. The DOE standard focuses on utilizing the process industry consensus standard, American National Standards Institute/ International Society of Automation (ANSI/ISA) 84.00.01, Functional Safety: Safety Instrumented Systems for the Process Industry Sector, to support reliable SIS design throughout the DOE complex. SIS design must take into account human-machine interfaces and their limitations and follow good human factors engineering (HFE) practices. HFE encompasses many diverse areas (e.g., information display, user-system interaction, alarm management, operator response, control room design, and system maintainability), which affect all aspects of system development and modification. This paper presents how the HFE processes and principles apply throughout the SIS life cycle to support the design and use of SIS at DOE nonreactor nuclear facilities.

  5. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

  6. Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; O'Donoughue, P.; Whitaker, M.

    2012-12-01

    This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

  7. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  8. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  9. ARM - Field Campaign - Aerosol Life Cycle: UV-APS and Nano-SMPS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAerosol Life Cycle: UV-APS and Nano-SMPS ARM Data Discovery Browse Data Related Campaigns Aerosol Life Cycle IOP at BNL 2011.06.01, Sedlacek, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Life Cycle: UV-APS and Nano-SMPS 2011.06.10 - 2011.06.25 Lead Scientist : Gannet Hallar For data sets, see below. Abstract Current estimates indicate that new particle formation globally account for a majority of Cloud

  10. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PUMP LIFE CYCLE COSTS: PUMP LIFE CYCLE COSTS: A GUIDE TO LCC ANALYSIS FOR PUMPING SYSTEMS EXECUTIVE SUMMARY T O F E N E R G Y DE P A R T M EN U E N I T E D S T A T S O F A E R IC A M A GUIDE TO LCC ANALYSIS FOR PUMPING SYSTEMS Office of Industrial Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy Hydraulic Institute Europump uropump Introduction Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems is the result of a collaboration between the Hydraulic

  11. The Life-cycle of Operons (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The Life-cycle of Operons Citation Details In-Document Search Title: The Life-cycle of Operons Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our

  12. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang, Senior Scientist, Energy Systems, Argonne National Laboratory

  13. DOE Brochure Highlights Ethanol Life-Cycle Results Obtained with GREET

    SciTech Connect (OSTI)

    2009-01-18

    The U.S. Department of Energy (DOE) recently published a brochure highlighting the efficacy of Argonne National Laboratory's GREET model in evaluating the complete energy life cycle for ethanol.

  14. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  15. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  16. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Broader source: Energy.gov (indexed) [DOE]

    Power Systems | Department of Energy A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. PDF icon lifecycle_analysis_of_geothermal_systems_draft.pdf More Documents & Publications Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Water Use in the

  17. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Fuels in the Transportation Sector | Department of Energy A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: ConocoPhillips and Nexant Corporatin PDF icon 2004_deer_abbott.pdf More Documents & Publications Shell Gas to Liquids in

  18. Improving the Cycling Life of Aluminum and Germanium Thin Films for use as

    Office of Scientific and Technical Information (OSTI)

    Anodic Materials in Li-Ion Batteries. (Technical Report) | SciTech Connect Technical Report: Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries. Citation Details In-Document Search Title: Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries. Abstract not provided. Authors: Hudak, Nicholas ; Huber, Dale L. ; Gulley, Gerald Publication Date: 2014-09-01 OSTI Identifier:

  19. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Office of Scientific and Technical Information (OSTI)

    Products Part 2: LED Manufacturing and Performance (Technical Report) | SciTech Connect Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two

  20. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Office of Scientific and Technical Information (OSTI)

    Products, Part 3: LED Environmental Testing (Technical Report) | SciTech Connect Technical Report: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's

  1. Tribal Renewable Energy Webinar: The Life Cycle of Tribal Clean Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Life Cycle of Tribal Clean Energy Tribal Renewable Energy Webinar: The Life Cycle of Tribal Clean Energy June 29, 2016 11:00AM to 12:30PM MDT According to DOE's National Renewable Energy Laboratory, most of the hundreds of lifecycle assessments published on electricity generation technologies over the last 30 years only assemble lifecycle inventories, quantifying the emissions to the environment or the use of resources rather than reporting effects on environmental

  2. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products Part 2: LED Manufacturing and Performance (Technical Report) | SciTech Connect Technical Report: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Citation Details In-Document Search Title: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to

  3. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Warner, E. S.; Heath, G. A.

    2012-04-01

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  4. Copper-tin Electrodes Improve Capacity and Cycle Life for Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Copper-tin Electrodes Improve Capacity and Cycle Life for Lithium Batteries Argonne National Laboratory Contact ANL About This Technology TEM and XRD of a Copper-Tin Material Used in Li Batteries (left), and cycling performance (right)<br /> TEM and XRD of a Copper-Tin Material Used in Li Batteries (left), and cycling performance (right) Technology

  5. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehicle during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicle’s total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.

  6. Maximizing the life cycle of plastics. Final report

    SciTech Connect (OSTI)

    Hawkins, W. L.

    1980-02-01

    The Plastics Research Institute has conducted a coordinated research program designed to extend the useful life of plastics. Since feedstock for practically all synthetic plastics is derived from fossil fuel, every effort should be made to obtain the maximum useful life from these materials. Eventually, plastic scrap may be used as a fuel supplement, but this disposal route should be followed only after the scrap is no longer reusable in its polymeric form. The extent to which plastic scrap will be recovered and reused will be affected by the economic situation as well as the available supply of fossil fuel. The Institute's program was conducted at five major universities. Dedicated faculty members were assembled into a research team and met frequently with members of the Institute's Board of Trustees to review progress of the program. The research was conducted by graduate students in partial fulfillment of degree requirements. Summaries are presented of the following research projects: Improved Stabilization; Separation of Mixed Plastic Scrap; Compatibilizing Agents for Mixed Plastic Scrap; Controlled Degradation of Plastic Scrap; and Determination of Compatibility.

  7. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  8. Life Cycle Greenhouse Gas Emissions of Thin-film Photovoltaic Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  9. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  10. Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  11. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  12. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  13. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    SciTech Connect (OSTI)

    Stadel, Alexander; Gursel, Petek; Masanet, Eric

    2012-01-18

    Structural materials in commercial buildings in the United States account for a significant fraction of national energy use, resource consumption, and greenhouse gas (GHG) emissions. Robust decisions for balancing and minimizing these various environmental effects require that structural materials selections follow a life-cycle, systems modeling approach. This report provides a concise overview of the development and use of a new life-cycle assessment (LCA) model for structural materials in U.S. commercial buildings-the Berkeley Lab Building Materials Pathways (B-PATH) model. B-PATH aims to enhance environmental decision-making in the commercial building LCA, design, and planning communities through the following key features: (1) Modeling of discrete technology options in the production, transportation, construction, and end of life processes associated U.S. structural building materials; (2) Modeling of energy supply options for electricity provision and directly combusted fuels across the building life cycle; (3) Comprehensiveness of relevant building mass and energy flows and environmental indicators; (4) Ability to estimate modeling uncertainties through easy creation of different life-cycle technology and energy supply pathways for structural materials; and (5) Encapsulation of the above features in a transparent public use model. The report summarizes literature review findings, methods development, model use, and recommendations for future work in the area of LCA for commercial buildings.

  14. Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

    2011-11-01

    Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVs under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.

  15. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus

    SciTech Connect (OSTI)

    Sheehan, John; Camobreco, Vince; Duffield, James; Graboski, Michael; Graboski, Michael; Shapouri, Housein

    1998-05-01

    This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and biodiesel. An LCI is a comprehensive quantification of all the energy and environmental flows associated with a product from “cradle to grave.” It provides information on raw materials extracted from the environment; energy resources consumed; air, water, and solid waste emissions generated.

  16. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that makes great strides in clarifying inconsistent and conflicting GHG emission estimates in the published literature while providing more precise estimates of GHG emissions from utility-scale CSP systems.

  17. Design and life-cycle considerations for unconventional-reservoir wells

    SciTech Connect (OSTI)

    Miskimins, J.L.

    2009-05-15

    This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studies for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.

  18. Product Life-Cycle Management: The future of product and packaging design

    SciTech Connect (OSTI)

    Jung, L.B. )

    1993-01-01

    Product Life-Cycle Management (PLCM) is the control of environmental impacts associated with all the life phases of a product, from design through manufacture, packaging and disposal. PLCM dictates that products be manufactured using less harmful chemicals and fewer resources. Product packaging must be minimal and made of renewable and recyclable resources. Both the product and the package must contain recycled material. Packaging and products must also be collected for recycle at the end of their intended use, requiring infrastructure to collect, transport and process these materials. European legislation now requires the return and recycle of packaging materials by the end of 1993. Requirements are also being imposed on manufacturers of automobile related products; automotive batteries, tires and even automobiles themselves must now be accepted back and recycled. Increasing public concerns and awareness of environmental impacts plus the decreasing availability of natural resources will continue to push product life-cycle legislation forward.

  19. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  20. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect (OSTI)

    Das, Sujit

    2014-01-01

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  1. Lithium / Sulfur Cells with Long Cycle Life and High Specific Energy -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Lithium / Sulfur Cells with Long Cycle Life and High Specific Energy Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Song, M-K., Zhang, Y., Cairns, E.J., "A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance," NanoLetters, November 12, 2013 (web). (437 KB) Technology Marketing Summary A team of Berkeley Lab battery researchers led by Elton Cairns has

  2. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    SciTech Connect (OSTI)

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims in updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.

  3. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang Systems Assessment Section Energy Systems Division Argonne National Laboratory Biomass 2014 Washington, D.C., July 30, 2014 2 The GREET TM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) Model  DOE has been sponsoring GREET development and applications since 1995 - Vehicle Technology Office (VTO) - Bioenergy Technology Office (BETO) - Fuel-Cell Technology Office (FCTO) - Energy Policy and

  4. GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems Michael Wang, Amgad Elgowainy, Jeongwoo Han, Hao Cai Argonne National Laboratory The 2013 DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting Arlington, VA May 16, 2013 Project ID: van002 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project Overview  Start: Oct. 1993  End: not applicable (ongoing annual allocation  % complete:

  5. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect (OSTI)

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  6. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect (OSTI)

    Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

    2013-12-15

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  7. Performance metrics and life-cycle information management for building performance assurance

    SciTech Connect (OSTI)

    Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

    1998-06-01

    Commercial buildings account for over $85 billion per year in energy costs, which is far more energy than technically necessary. One of the primary reasons buildings do not perform as well as intended is that critical information is lost, through ineffective documentation and communication, leading to building systems that are often improperly installed and operated. A life-cycle perspective on the management of building information provides a framework for improving commercial building energy performance. This paper describes a project to develop strategies and techniques to provide decision-makers with information needed to assure the desired building performance across the complete life cycle of a building project. A key element in this effort is the development of explicit performance metrics that quantitatively represent performance objectives of interest to various building stakeholders. The paper begins with a discussion of key problems identified in current building industry practice, and ongoing work to address these problems. The paper then focuses on the concept of performance metrics and their use in improving building performance during design, commissioning, and on-going operations. The design of a Building Life-cycle Information System (BLISS) is presented. BLISS is intended to provide an information infrastructure capable of integrating a variety of building information technologies that support performance assurance. The use of performance metrics in case study building projects is explored to illustrate current best practice. The application of integrated information technology for improving current practice is discussed.

  8. Using life-cycle cost management to cut costs and reduce waste

    SciTech Connect (OSTI)

    Gess, D.; Cohan, D.; McLearn, M.

    1995-12-01

    Increasing competition is forcing electric utility companies to reduce costs and improve efficiency. At the same time, increasing costs for waste disposal and emissions control and growing environmental regulatory pressure are providing powerful incentives for firms in virtually every industry to investigate opportunities to reduce or even eliminate the adverse environmental impacts associated with their operations. companies are also striving toward environmental stewardship to realize the potential benefits to the firms`s public image, employees, an shareholders. Motivated by these cost and environmental concerns, the Electric Power Research Institute (EPRI), Decision Focus Inc. (DFI), and a consortium of electric utility companies have developed techniques and tools to help electric utility companies to make purchase and operating decisions based on their full life-cycle costs, which explicitly include environmental, health, and safety costs. The process, called Life-Cycle Cost Management (LCCM), helps utilities to efficiently assemble the appropriate life-cycle information and bring it to bear on their business decisions. To date, several utilities have used LCCM to evaluate a range of product substitution and process improvement decisions and to implement cost-savings actions. This paper summarizes some of these applications.

  9. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

  10. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  11. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

  12. USA National Phenology Network: Plant and Animal Life-Cycle Data Related to Climate Change

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Phenology refers to recurring plant and animal life cycle stages, such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. It is also the study of these recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate. Phenology affects nearly all aspects of the environment, including the abundance and diversity of organisms, their interactions with one another, their functions in food webs, and their seasonable behavior, and global-scale cycles of water, carbon, and other chemical elements. Phenology records can help us understand plant and animal responses to climate change; it is a key indicator. The USA-NPN brings together citizen scientists, government agencies, non-profit groups, educators, and students of all ages to monitor the impacts of climate change on plants and animals in the United States. The network harnesses the power of people and the Internet to collect and share information, providing researchers with far more data than they could collect alone.[Extracts copied from the USA-NPN home page and from http://www.usanpn.org/about].

  13. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impactsmore » on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.« less

  14. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  15. Vehicle Technologies Office Merit Review 2015: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Penn State at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy, long cycle life...

  16. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  17. Life-cycle cost and impacts: alternatives for managing KE basin sludge

    SciTech Connect (OSTI)

    Alderman, C.J.

    1997-06-27

    This document presents the results of a life-cycle cost and impacts evaluation of alternatives for managing sludge that will be removed from the K Basins. The two basins are located in the 100-K Area of the Hanford Site. This evaluation was conducted by Fluor Daniel Hanford, Inc. (FDH) and its subcontractors to support decisions regarding the ultimate disposition of the sludge. The long-range plan for the Hanford Site calls for spent nuclear fuel (SNF), sludge, debris, and water to be removed from the K East (KE) and K West (KW) Basins. This activity will be conducted as a removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The scope of the CERCLA action will be limited to removing the SNF, sludge, debris, and water from the basins and transferring them to authorized facilities for interim storage and/or treatment and disposal. The scope includes treating the sludge and water in the 100-K Area prior to the transfer. Alternatives for the removal action are evaluated in a CERCLA engineering evaluation/cost analysis (EE/CA) and include different methods for managing sludge from the KE Basins. The scope of the removal action does not include storing, treating, or disposing of the sludge once it is transferred to the receiving facility and the EE/CA does not evaluate those downstream activities. This life-cycle evaluation goes beyond the EE/CA and considers the full life-cycle costs and impacts of dispositioning sludge.

  18. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  19. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  20. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  1. Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain

    SciTech Connect (OSTI)

    Radhi, Hassan; Sharples, Stephen

    2013-01-15

    On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO{sub 2} emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO{sub 2} emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO{sub 2} emissions from three contributors, namely, chemical reactions during production processes (Pco{sub 2}), embodied energy (Eco{sub 2}) and operational energy (OPco{sub 2}). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80-90%). However, embodied CO{sub 2} emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70-90% of the total CO{sub 2} emissions of facade construction, mainly due to their physical characteristics. The highest Pco{sub 2} emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO{sub 2} emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO{sub 2} emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO{sub 2} emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO{sub 2} emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters. - Highlights: Black-Right-Pointing-Pointer Life cycle carbon assessment of facade parameters. Black-Right-Pointing-Pointer Greatest environmental impact occurs during the operational phase. Black-Right-Pointing-Pointer Masonry blocks are responsible for 70-90% of the total CO2 emissions of facade construction. Black-Right-Pointing-Pointer Window contribution of CO2 emissions depends on the number and size of windows. Black-Right-Pointing-Pointer Without insulation, AAC walls offer more savings in CO2 emissions.

  2. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-04-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  3. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems ANL/ESD/10-5 Energy Systems Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Offce of Scientifc and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728

  4. Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NISTIR 85-3273-30 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Annual Supplement to NIST Handbook 135 Priya D. Lavappa Joshua D. Kneifel This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.85-3273-30 U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Prepared for United States Department of Energy Federal Energy Management Program April 2005 NISTIR 85-3273-30 Energy Price Indices

  5. Microsoft Word - HABAdv#223_Life Cycle&TPA Modifications.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Subject: Life Cycle Cost & Schedule Report of the Proposed Consent Decree & TPA Modifications Adopted: November 6, 2009 Page 1 November 6, 2009 Dave Brockman, Manager U.S. Department of Energy, Richland Operations P.O. Box 550 (A7-50) Richland, WA 99352 Shirley Olinger, Manager U.S. Department of Energy, Office of River Protection P.O. Box 450 (H6-60) Richland, WA 99352 Polly Zehm, Director Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600 Michelle Pirzadeh,

  6. Waste-To-Energy Techno-Economic Analysis and Life-Cycle Analysis Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste-To-Energy Techno-Economic Analysis and Life-Cycle Analysis March 24, 2015 Conversion Ling Tao†, Jeongwoo Han* †National Renewable Energy Laboratory *Argonne National Laboratory DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review 2 | Bioenergy Technologies Office Goal Statement * Conduct the techno-economic analysis (TEA) and life-cycle analysis (LCA) of Waste-To-Energy (WTE) pathways to evaluate their economic viability and environmental sustainability - Strategic

  7. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMMARY The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

  8. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  9. Life-cycle cost analysis 200-West Weather Enclosure: Multi-function Waste Tank Facility

    SciTech Connect (OSTI)

    Umphrey, M.R.

    1995-01-16

    The Multi-Function Waste Tank Facility (MWTF)will provide environmentally safe and acceptable storage capacity for handling wastes resulting from the remediation of existing single-shell and double-shell tanks on the Hanford Site. The MWTF will construct two tank farm facilities at two separate locations. A four-tank complex will be constructed in the 200-East Area of the Hanford Site; a two-tank complex will be constructed in the 200-West Area. This report documents the results of a life-cycle cost analysis performed by ICF Kaiser Hanford Company (ICF KH) for the Weather Enclosure proposed to be constructed over the 200-West tanks. Currently, all tank farm operations on the Hanford Site are conducted in an open environment, with weather often affecting tank farm maintenance activities. The Weather Enclosure is being proposed to allow year-round tank farm operation and maintenance activities unconstrained by weather conditions. Elimination of weather-related delays at the MWTF and associated facilities will reduce operational costs. The life-cycle cost analysis contained in this report analyzes potential cost savings based on historical weather information, operational and maintenance costs, construction cost estimates, and other various assumptions.

  10. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  11. Gate Access

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gate Access Gate Access Print When you first arrive at the ALS, gate clearance will have been arranged for you by the User Office. Berkeley Lab employees and visiting researchers (participating guests) may arrange for gate clearance for their visitors through the Lab's Site Access Office . Please notify the Site Office by submitting a Visitor Pass Request before 3:00 p.m. on the day before the expected visit. Include the name(s) of any visitors, the time you expect them, and your name and

  12. Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2009-03-01

    With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

  13. Integrating a life-cycle assessment with NEPA: Does it make sense?

    SciTech Connect (OSTI)

    ECCLESTON, C.H.

    1998-09-03

    The National Environmental Policy Act (NEPA) of 1969 provides the basic national charter for protection of the environment in the US. Today NEPA has provided an environmental policy model which has been emulated by nations around the world. Recently, questions have been raised regarding the appropriateness and under what conditions it makes sense to combine the preparation of a NEPA analysis with the International Organization for Stnadardization (ISO) - 14000 Standards for Life-Cycle Assessment (LCA). This paper advantages a decision making tool consisting of six discrete criteria which can be employed by a user in reaching a decision regarding the integration of NEPA analysis and LCA. Properly applied, this tool should reduce the risk that a LCA may be inappropriately prepared and integrated with a NEPA analysis.

  14. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    SciTech Connect (OSTI)

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M.

    2012-02-08

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  15. MARVEL: A PC-based interactive software package for life-cycle evaluations of hybrid/electric vehicles

    SciTech Connect (OSTI)

    Marr, W.W.; He, J.

    1995-07-01

    As a life-cycle analysis tool, MARVEL has been developed for the evaluation of hybrid/electric vehicle systems. It can identify the optimal combination of battery and heat engine characteristics for different vehicle types and performance requirements, on the basis of either life-cycle cost or fuel efficiency. Battery models that allow trade-offs between specific power and specific energy, between cycle life and depth of discharge, between peak power and depth of discharge, and between other parameters, are included in the software. A parallel hybrid configuration, using an internal combustion engine and a battery as the power sources, can be simulated with a user-specified energy management strategy. The PC-based software package can also be used for cost or fuel efficiency comparisons among conventional, electric, and hybrid vehicles.

  16. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  17. Gate Access

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gate Access Print When you first arrive at the ALS, gate clearance will have been arranged for you by the User Office. Berkeley Lab employees and visiting researchers (participating guests) may arrange for gate clearance for their visitors through the Lab's Site Access Office . Please notify the Site Office by submitting a Visitor Pass Request before 3:00 p.m. on the day before the expected visit. Include the name(s) of any visitors, the time you expect them, and your name and contact

  18. U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada.  The 2007 total system life...

  19. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  20. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaiñ€™i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  1. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a methodmore » for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.« less

  2. Life Cycle Assessment of Switchgrass Cellulosic Ethanol Production in the Wisconsin and Michigan Agricultural Contexts

    SciTech Connect (OSTI)

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.; Cronin, Keith R.; Meier, Paul J.; Runge, Troy M.; Zhang, Xuesong

    2015-04-25

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combined with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.

  3. A Tool for Life Cycle Climate Performance (LCCP) Based Design of Residential Air Source Heat Pumps

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    A tool for the design of air source heat pumps (ASHP) based on their life cycle climate performance (LCCP) analysis is presented. The LCCP model includes direct and indirect emissions of the ASHP. The annual energy consumption of the ASHP is determined based on AHRI Standard 210/240. The tool can be used as an evaluation tool when the user inputs the required performance data based on the ASHP type selected. In addition, this tool has system design capability where the user inputs the design parameters of the different components of the heat pump and the tool runs the system simulation software to calculate the performance data. Additional features available in the tool include the capability to perform parametric analysis and sensitivity study on the system. The tool has 14 refrigerants, and 47 cities built-in with the option for the user to add more refrigerants, based on NIST REFPROP, and cities, using TMY-3 database. The underlying LCCP calculation framework is open source and can be easily customized for various applications. The tool can be used with any system simulation software, load calculation tool, and weather and emissions data type.

  4. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing

    SciTech Connect (OSTI)

    Hsu, D. D.

    2011-03-01

    In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

  5. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  6. Life cycle assessment of four municipal solid waste management scenarios in China

    SciTech Connect (OSTI)

    Hong Jinglan; Li Xiangzhi; Zhaojie Cui

    2010-11-15

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.

  7. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  8. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    SciTech Connect (OSTI)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.

  9. A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants

    SciTech Connect (OSTI)

    Rodriguez-Garcia, G.; Moreira, M.T.

    2012-11-15

    The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

  10. Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece

    SciTech Connect (OSTI)

    Abeliotis, Konstadinos; Kalogeropoulos, Alexandros; Lasaridi, Katia

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We model the operation of an MBT plant in Greece based on LCA. Black-Right-Pointing-Pointer We compare four different MBT operating scenarios (among them and with landfilling). Black-Right-Pointing-Pointer Even the current operation of the MBT plant is preferable to landfilling. Black-Right-Pointing-Pointer Utilization of the MBT compost and metals generates the most environmental gains. Black-Right-Pointing-Pointer Thermal exploitation of RDF improves further the environmental performance of the plant. - Abstract: The aim of this paper is the application of Life Cycle Assessment to the operation of the MBT facility of Ano Liossia in the region of Attica in Greece. The region of Attica is home to almost half the population of Greece and the management of its waste is a major issue. In order to explicitly analyze the operation of the MBT plant, five scenarios were generated. Actual operation data of the MBT plant for the year 2008 were provided by the region of Attica and the LCA modeling was performed via the SimaPro 5.1 software while impact assessment was performed utilizing the Eco-indicator'99 method. The results of our analysis indicate that even the current operation of the MBT plant is preferable to landfilling. Among the scenarios of MBT operation, the one with complete utilization of the MBT outputs, i.e. compost, RDF, ferrous and non-ferrous metals, is the one that generates the most environmental gains. Our analysis indicates that the exploitation of RDF via incineration is the key factor towards improving the environmental performance of the MBT plant. Our findings provide a quantitative understanding of the MBT plant. Interpretation of results showed that proper operation of the modern waste management systems can lead to substantial reduction of environmental impacts and savings of resources.

  11. A life-cycle model approach to multimedia waste reduction measuring performance for environmental cleanup projects

    SciTech Connect (OSTI)

    Phifer, B.E. Jr.; George, S.M.

    1993-07-01

    The Martin Marietta Energy Systems, Inc. (Energy Systems), Environmental Restoration (ER) Program adopted a Pollution Prevention Program in March 1991. The program`s mission is to minimize waste and prevent pollution in remedial investigations (RIs), feasibility studies, decontamination and decommissioning, and surveillance and maintenance site program activities. Mission success will result in volume and/or toxicity reduction of generated waste. The ER Program waste generation rates are projected to steadily increase through the year 2005 for all waste categories. Standard production units utilized to measure waste minimization apply to production/manufacturing facilities. Since ER inherited contaminated waste from previous production processes, no historical production data can be applied. Therefore, a more accurate measure for pollution prevention was identified as a need for the ER Program. The Energy Systems ER Program adopted a life-cycle model approach and implemented the concept of numerically scoring their waste generators to measure the effectiveness of pollution prevention/waste minimization programs and elected to develop a numerical scoring system (NSS) to accomplish these measurements. The prototype NSS, a computerized, user-friendly information management database system, was designed to be utilized in each phase of the ER Program. The NSS was designed to measure a generator`s success in incorporating pollution prevention in their work plans and reducing investigation-derived waste (IDW) during RIs. Energy Systems is producing a fully developed NSS and actually scoring the generators of IDW at six ER Program sites. Once RI waste generators are scored utilizing the NSS, the numerical scores are distributed into six performance categories: training, self-assessment, field implementation, documentation, technology transfer, and planning.

  12. What Can Meta-Analyses Tell Us About the Reliability of Life Cycle Assessment for Decision Support?

    Broader source: Energy.gov [DOE]

    The body of life cycle assessment (LCA) literature is vast and has grown over the last decade at a dauntingly rapid rate. Many LCAs have been published on the same or very similar technologies or products, in some cases leading to hundreds of publications. One result is the impression among decision makers that LCAs are inconclusive, owing to perceived and real variability in published estimates of life cycle impacts. Despite the extensive available literature and policy need for more conclusive assessments, only modest attempts have been made to synthesize previous research. A significant challenge to doing so are differences in characteristics of the considered technologies and inconsistencies in methodological choices (e.g., system boundaries, coproduct allocation, and impact assessment methods) among the studies that hamper easy comparisons and related decision support.

  13. Stage Gate Management Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stage Gate Management in the Biomass Program February 2005 Revision 2 2 TABLE OF CONTENTS OVERVIEW............................................................................................................................. 4 STAGE GATE MANAGEMENT .................................................................................................... 4 STAGE GATE PROCESS AND LONG RANGE STRATEGIC PROGRAM PLANNING ........................ 5 GATE REVIEWS

  14. A Framework for Evaluating R&D Impacts and Supply Chain Dynamics Early in a Product Life Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework for Evaluating R&D Impacts and Supply Chain Dynamics Early in a Product Life Cycle Looking inside the black box of innovation June 2014 Prepared by Gretchen Jordan, 360 Innovation LLC; Jonathan Mote, George Washington University; Rosalie Ruegg, TIA Consulting Inc.; Thomas Choi, Arizona State University; Angela Becker-Dippmann, Pacifc Northwest National Laboratory i Acknowledgements This report was prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable

  15. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  16. Levelized life-cycle costs for four residue-collection systems and four gas-production systems

    SciTech Connect (OSTI)

    Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

    1983-01-01

    Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

  17. A low cost, high energy density and long cycle life potassium-sulfur battery for grid-scale energy storage

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.; Liu, Jun

    2015-08-15

    Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operate at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.

  18. Li-Ion polymer cells thermal property changes as a function of cycle-life

    SciTech Connect (OSTI)

    Maleki, Hossein; Wang, Hsin; Porter, Wallace D; Hallmark, Jerry

    2014-01-01

    The impact of elevated temperature chargeedischarge cycling on thermal conductivity (K-value) of Lithium Ion Polymer (LIP) cells of various chemistries from three different manufacturers was investigated. These included high voltage (Graphite/LiCoO2:3.0e4.35 V), wide voltage (Si:C/LiCoO2:2.7e4.35 V) and conventional (Graphite/LiCoO2:3.0e4.2 V) chemistries. Investigation results show limited variability within the in-plane and through-plane K-values for the fresh cells with graphite-based anodes from all three suppliers. After 500 cycles at 45 C, in-plane and through-plane K-values of the high voltage cells reduced less vs. those for the wide voltage cells. Such results suggest that high temperature cycling could have a greater impact on thermal properties of Si:C cells than on the LIP cells with graphite (Gr) anode cells we tested. This difference is due to the excess swelling of Si:C-anode based cells vs. Gr-anode cells during cycling, especially at elevated temperatures. Thermal modeling is used to evaluate the impact of K-value changes, due to cycles at 45 C, on the cells internal heat propagation under internal short circuit condition that leads to localized meltdown of the separator.

  19. High rate, long cycle life battery electrode materials with an open framework structure

    DOE Patents [OSTI]

    Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro

    2015-02-10

    A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.

  20. Specification and implementation of IFC based performance metrics to support building life cycle assessment of hybrid energy systems

    SciTech Connect (OSTI)

    Morrissey, Elmer; O'Donnell, James; Keane, Marcus; Bazjanac, Vladimir

    2004-03-29

    Minimizing building life cycle energy consumption is becoming of paramount importance. Performance metrics tracking offers a clear and concise manner of relating design intent in a quantitative form. A methodology is discussed for storage and utilization of these performance metrics through an Industry Foundation Classes (IFC) instantiated Building Information Model (BIM). The paper focuses on storage of three sets of performance data from three distinct sources. An example of a performance metrics programming hierarchy is displayed for a heat pump and a solar array. Utilizing the sets of performance data, two discrete performance effectiveness ratios may be computed, thus offering an accurate method of quantitatively assessing building performance.

  1. Life Cycle Assessment of the Energy Independence and Security Act of 2007: Ethanol - Global Warming Potential and Environmental Emissions

    SciTech Connect (OSTI)

    Heath, G. A.; Hsu, D. D.; Inman, D.; Aden, A.; Mann, M. K.

    2009-07-01

    The objective of this study is to use life cycle assessment (LCA) to evaluate the global warming potential (GWP), water use, and net energy value (NEV) associated with the EISA-mandated 16 bgy cellulosic biofuels target, which is assumed in this study to be met by cellulosic-based ethanol, and the EISA-mandated 15 bgy conventional corn ethanol target. Specifically, this study compares, on a per-kilometer-driven basis, the GWP, water use, and NEV for the year 2022 for several biomass feedstocks.

  2. Draft Final Phase II Report: Review of Life Cycle and Technology Applications of the Office of Environmental Managements Tank

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A1-1 APPENDIX 1 Charge Summary Issue Suggested Activities Expected Output/ Work Product Notes Charge 1 Modeling for Life-Cycle Analysis This task entails reviewing the modeling approaches for determining tank waste remediation life-cycle costs at both SRS and Hanford. This includes evaluating assumptions in system plans for completing tank waste missions at Hanford and SRS, as well as the rigor of the models for identifying activities and costs through the end of each site's program.

  3. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    SciTech Connect (OSTI)

    Fricke, Brian A; Abdelaziz, Omar; Vineyard, Edward Allan

    2013-01-01

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

  4. Life-cycle assessment of municipal solid waste management alternatives with consideration of uncertainty: SIWMS development and application

    SciTech Connect (OSTI)

    El Hanandeh, Ali; El-Zein, Abbas

    2010-05-15

    This paper describes the development and application of the Stochastic Integrated Waste Management Simulator (SIWMS) model. SIWMS provides a detailed view of the environmental impacts and associated costs of municipal solid waste (MSW) management alternatives under conditions of uncertainty. The model follows a life-cycle inventory approach extended with compensatory systems to provide more equitable bases for comparing different alternatives. Economic performance is measured by the net present value. The model is verified against four publicly available models under deterministic conditions and then used to study the impact of uncertainty on Sydney's MSW management 'best practices'. Uncertainty has a significant effect on all impact categories. The greatest effect is observed in the global warming category where a reversal of impact direction is predicted. The reliability of the system is most sensitive to uncertainties in the waste processing and disposal. The results highlight the importance of incorporating uncertainty at all stages to better understand the behaviour of the MSW system.

  5. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  6. Proposed paper: Linking NDE to component life-cycle decisions for fossil power plants

    SciTech Connect (OSTI)

    Tilley, R.

    1996-12-31

    In the changing US utility industry, competition for customers is placing ever increasing pressure to reduce operating and maintenance costs for generating facilities. A key challenge in this cost-cutting process is to obtain such reductions without compromising plant safety or reliability. To meet such a challenge will require a much tighter coupling of component inspection activities with decisions on component life. Past utility practices for fossil units have focused on performing periodic inspections and then reacting to any findings from such inspections. In the current environment, the process needs to provide a close integration of NDE activities with the component damage models to ensure an optimal program of where to inspect, how to inspect, and when to inspect. This paper will review current state-of-activities and provide recommendations on achieving such an integrated process. An example case will be developed for a typical, fossil plant, high temperature header. Visualization software is becoming an everyday tool in NDE. However, it has never been so difficult to find a package that fulfills the needs of a research laboratory. Issues such as price, availability for a given platform, learning curves make the choice even harder. This paper describes our experience at Lawrence Livermore National Laboratory with various visualization packages. We will show how the problems encountered with large data sets led us to use popular scripting languages such as Tcl/Tk or Perl. By coupling these languages with standard toolkits as XLib and OpenGL, powerful, flexible, user-friendly and machine-independent tools can be designed rapidly. We will describe X-ray CT industrial and biomedical applications that made use of this approach, and show how their requirements were taken into account.

  7. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect (OSTI)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.

  8. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  9. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  10. Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy

    SciTech Connect (OSTI)

    Cherubini, Francesco Bargigli, Silvia; Ulgiati, Sergio

    2008-12-15

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.

  11. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    SciTech Connect (OSTI)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  12. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    SciTech Connect (OSTI)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  13. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  14. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozonemore » (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.« less

  15. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26

    The order addresses stewardship of physical assets as valuable national resources in a cost-effective manner to meet the DOE mission using industry standards, a graded approach, and performance objective.

  16. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-07-09

    Cancels the following only after meeting implementation conditions: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B, DOE 4320.2A; DOE 4330.4B; DOE 4330.5, DOE 4540.1, DOE 4700.1, DOE 4700.3, DOE 4700.4, DOE 5700.2D, DOE 6430.1A. Canceled by DOE O 430.1A.

  17. Gated strip proportional detector

    DOE Patents [OSTI]

    Morris, Christopher L. (Los Alamos, NM); Idzorek, George C. (Los Alamos, NM); Atencio, Leroy G. (Espanola, NM)

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  18. Gated strip proportional detector

    DOE Patents [OSTI]

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  19. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    SciTech Connect (OSTI)

    Beylot, Antoine Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from ?58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of ?58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  20. Range gated imaging experiments using gated intensifiers

    SciTech Connect (OSTI)

    McDonald, T.E. Jr.; Yates, G.J.; Cverna, F.H.; Gallegos, R.A.; Jaramillo, S.A.; Numkena, D.M.; Payton, J.; Pena-Abeyta, C.R.

    1999-03-01

    A variety of range gated imaging experiments using high-speed gated/shuttered proximity focused microchannel plate image intensifiers (MCPII) are reported. Range gated imaging experiments were conducted in water for detection of submerged mines in controlled turbidity tank test and in sea water for the Naval Coastal Sea Command/US Marine Corps. Field experiments have been conducted consisting of kilometer range imaging of resolution targets and military vehicles in atmosphere at Eglin Air Force Base for the US Air Force, and similar imaging experiments, but in smoke environment, at Redstone Arsenal for the US Army Aviation and Missile Command (AMCOM). Wavelength of the illuminating laser was 532 nm with pulse width ranging from 6 to 12 ns and comparable gate widths. These tests have shown depth resolution in the tens of centimeters range from time phasing reflected LADAR images with MCPII shutter opening.

  1. Comparative life-cycle energy payback analysis of multi-junction a-SiGe and nanocrystalline/a-Si modules

    SciTech Connect (OSTI)

    Fthenakis, V.; Kim, H.

    2010-07-15

    Despite the publicity of nanotechnologies in high tech industries including the photovoltaic sector, their life-cycle energy use and related environmental impacts are understood only to a limited degree as their production is mostly immature. We investigated the life-cycle energy implications of amorphous silicon (a-Si) PV designs using a nanocrystalline silicon (nc-Si) bottom layer in the context of a comparative, prospective life-cycle analysis framework. Three R and D options using nc-Si bottom layer were evaluated and compared to the current triple-junction a-Si design, i.e., a-Si/a-SiGe/a-SiGe. The life-cycle energy demand to deposit nc-Si was estimated from parametric analyses of film thickness, deposition rate, precursor gas usage, and power for generating gas plasma. We found that extended deposition time and increased gas usages associated to the relatively high thickness of nc-Si lead to a larger primary energy demand for the nc-Si bottom layer designs, than the current triple-junction a-Si. Assuming an 8% conversion efficiency, the energy payback time of those R and D designs will be 0.7-0.9 years, close to that of currently commercial triple-junction a-Si design, 0.8 years. Future scenario analyses show that if nc-Si film is deposited at a higher rate (i.e., 2-3 nm/s), and at the same time the conversion efficiency reaches 10%, the energy-payback time could drop by 30%.

  2. Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.

    2012-10-01

    Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimating the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.

  3. David Gates home page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gates home page http://www.pppl.gov/%7Edgates/Site/Dr._David_A._Gates.html (1 of 4) [8/30/2012 9:47:58 AM] ● David Gates home page Dr. David A. Gates Princeton Plasma Physics Laboratory Welcome to my website: I am a plasma physicist at the Princeton Plasma Physics Laboratory. I work on the National Spherical Torus Experiment. My current areas of research are: Plasma shape control Collisional energy transport Ion power balance High frequency AlfvĂ©n waves Fast ion energy transfer Neoclassical

  4. Optical NAND gate

    DOE Patents [OSTI]

    Skogen, Erik J.; Raring, James; Tauke-Pedretti, Anna

    2011-08-09

    An optical NAND gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator and a photodetector. One pair of the optical waveguide devices is electrically connected in parallel to operate as an optical AND gate; and the other pair of the optical waveguide devices is connected in series to operate as an optical NOT gate (i.e. an optical inverter). The optical NAND gate utilizes two digital optical inputs and a continuous light input to provide a NAND function output. The optical NAND gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  5. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    SciTech Connect (OSTI)

    Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.; Mueller, Steffen; Kwon, Ho-young; Han, Jeongwoo; Wander, Michelle M.; Wang, Michael

    2015-09-01

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and no tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant. In a scenario with conventional tillage and a 30% stover removal rate, life-cycle GHG emissions for a combined gallon of corn grain and stover ethanol without cover crop adoption or manure application are 49 g CO2eq MJ-1, in comparison with 91 g CO2eq MJ-1 for petroleum gasoline. Adopting a cover crop or applying manure reduces the former ethanol life-cycle GHG emissions by 8% and 10%, respectively. We considered two different life cycle analysis approaches to develop estimates of life-cycle GHG emissions for corn stover ethanol, marginal analysis and energy allocation. In the same scenario, this fuel has GHG emissions of 12 – 20 g CO2eq MJ-1 (for manure and cover crop application, respectively) and 45 – 48 g CO2eq MJ-1 with the marginal approach and the energy allocation approach, respectively.

  6. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect (OSTI)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-02-12

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  7. Optical NOR gate

    DOE Patents [OSTI]

    Skogen, Erik J.; Tauke-Pedretti, Anna

    2011-09-06

    An optical NOR gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical NOR gate utilizes two digital optical inputs and a continuous light input to provide a NOR function digital optical output. The optical NOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  8. Optical XOR gate

    DOE Patents [OSTI]

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  9. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.

  10. Advanced insulated gate bipolar transistor gate drive

    DOE Patents [OSTI]

    Short, James Evans (Monongahela, PA); West, Shawn Michael (West Mifflin, PA); Fabean, Robert J. (Donora, PA)

    2009-08-04

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  11. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  12. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    SciTech Connect (OSTI)

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.; Izaurralde, Roberto C.; Kim, Seungdo; Dale, Bruce E.

    2013-07-23

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) model estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.

  13. LIFE CYCLE COST HANDBOOK Guidance for Life Cycle Cost Estimation...

    Broader source: Energy.gov (indexed) [DOE]

    the comparison of alternatives within an LCCA. Variations in the utility requirements and consumption rates of various alternatives, as well as sources of those utilities (e.g.,...

  14. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect (OSTI)

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  15. Life cycle assessment as an analytical tool in strategic environmental assessment. Lessons learned from a case study on municipal energy planning in Sweden

    SciTech Connect (OSTI)

    Bjoerklund, Anna

    2012-01-15

    Life cycle assessment (LCA) is explored as an analytical tool in strategic environmental assessment (SEA), illustrated by case where a previously developed SEA process was applied to municipal energy planning in Sweden. The process integrated decision-making tools for scenario planning, public participation and environmental assessment. This article describes the use of LCA for environmental assessment in this context, with focus on methodology and practical experiences. While LCA provides a systematic framework for the environmental assessment and a wider systems perspective than what is required in SEA, LCA cannot address all aspects of environmental impact required, and therefore needs to be complemented by other tools. The integration of LCA with tools for public participation and scenario planning posed certain methodological challenges, but provided an innovative approach to designing the scope of the environmental assessment and defining and assessing alternatives. - Research highlights: Black-Right-Pointing-Pointer LCA was explored as analytical tool in an SEA process of municipal energy planning. Black-Right-Pointing-Pointer The process also integrated LCA with scenario planning and public participation. Black-Right-Pointing-Pointer Benefits of using LCA were a systematic framework and wider systems perspective. Black-Right-Pointing-Pointer Integration of tools required some methodological challenges to be solved. Black-Right-Pointing-Pointer This proved an innovative approach to define alternatives and scope of assessment.

  16. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  17. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  18. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal where needed) to transport LLW from generator sites to NTS.

  19. Penn State DOE GATE Program

    SciTech Connect (OSTI)

    Anstrom, Joel

    2012-08-31

    The Graduate Automotive Technology Education (GATE) Program at The Pennsylvania State University (Penn State) was established in October 1998 pursuant to an award from the U.S. Department of Energy (U.S. DOE). The focus area of the Penn State GATE Program is advanced energy storage systems for electric and hybrid vehicles.

  20. Battery Life Predictive Model

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The Software consists of a model used to predict battery capacity fade and resistance growth for arbitrary cycling and temperature profiles. It allows the user to extrapolate from experimental data to predict actual life cycle.

  1. Experimental and life cycle assessment analysis of gas emission from mechanically–biologically pretreated waste in a landfill with energy recovery

    SciTech Connect (OSTI)

    Di Maria, Francesco Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.

  2. Gate Solar | Open Energy Information

    Open Energy Info (EERE)

    Spain Sector: Solar Product: JV set up for the promotion, exploitation and sale of photovoltaic solar power plants. References: Gate Solar1 This article is a stub. You can help...

  3. Stage-Gate Innovation Management Guidelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stage-Gate Innovation Management Guidelines Managing risk through structured project decision-making February 2007 Version 1.3 Table of Contents Overview of ITP Stage-Gate Innovation Management........................................................ 1 Background............................................................................................................................................. 1 Process

  4. Graduate Automotive Technology Education (GATE) Initiative Awards |

    Office of Environmental Management (EM)

    Department of Energy Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards September 8, 2011 - 11:46am Addthis Graduate Automotive Technology Education (GATE) Initiative Awards DOE's Graduate Automotive Technology Education (GATE) initiative will award $6.4 million over the course of five years to support seven Centers of Excellence at American colleges, universities, and university-affiliated research

  5. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; Yu, Xiqian; Bak, Seong -Min; Fu, Zheng -Wen

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi)1/4O2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g–1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffraction and absorption characterizationmore » revealed reversible phase transformations and electronic structural changes during the Na+ deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.« less

  6. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries

    SciTech Connect (OSTI)

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; Yu, Xiqian; Bak, Seong -Min; Fu, Zheng -Wen

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi)1/4O2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g–1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffraction and absorption characterization revealed reversible phase transformations and electronic structural changes during the Na+ deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.

  7. PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Procurement Cycle System (PCS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) PDF icon PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle System (PCS) More Documents & Publications PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety

  8. SU-E-J-126: Respiratory Gating Quality Assurance: A Simple Method to Achieve Millisecond Temporal Resolution

    SciTech Connect (OSTI)

    McCabe, B; Wiersma, R

    2014-06-01

    Purpose: Low temporal latency between a gating on/off signal and a linac beam on/off during respiratory gating is critical for patient safety. Although, a measurement of temporal lag is recommended by AAPM Task Group 142 for commissioning and annual quality assurance, there currently exists no published method. Here we describe a simple, inexpensive, and reliable method to precisely measure gating lag at millisecond resolutions. Methods: A Varian Real-time Position Management™ (RPM) gating simulator with rotating disk was modified with a resistive flex sensor (Spectra Symbol) attached to the gating box platform. A photon diode was placed at machine isocenter. Output signals of the flex sensor and diode were monitored with a multichannel oscilloscope (Tektronix™ DPO3014). Qualitative inspection of the gating window/beam on synchronicity were made by setting the linac to beam on/off at end-expiration, and the oscilloscope's temporal window to 100 ms to visually examine if the on/off timing was within the recommended 100-ms tolerance. Quantitative measurements were made by saving the signal traces and analyzing in MatLab™. The on and off of the beam signal were located and compared to the expected gating window (e.g. 40% to 60%). Four gating cycles were measured and compared. Results: On a Varian TrueBeam™ STx linac with RPM gating software, the average difference in synchronicity at beam on and off for four cycles was 14 ms (3 to 30 ms) and 11 ms (2 to 32 ms), respectively. For a Varian Clinac™ 21EX the average difference at beam on and off was 127 ms (122 to 133 ms) and 46 ms (42 to 49 ms), respectively. The uncertainty in the synchrony difference was estimated at ±6 ms. Conclusion: This new gating QA method is easy to implement and allows for fast qualitative inspection and quantitative measurements for commissioning and TG-142 annual QA measurements.

  9. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    SciTech Connect (OSTI)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  10. Retaining latch for a water pit gate

    DOE Patents [OSTI]

    Beale, Arden R. (Idaho Falls, ID)

    1997-01-01

    A retaining latch for use in a hazardous materials storage or handling facility to adjustably retain a water pit gate in a gate frame. A retaining latch is provided comprising a latch plate which is rotatably mounted to each end of the top of the gate and a recessed opening, formed in the gate frame, for engaging an edge of the latch plate. The latch plate is circular in profile with one side cut away or flat, such that the latch plate is D-shaped. The remaining circular edge of the latch plate comprises steps of successively reduced thickness. The stepped edge of the latch plate fits inside a recessed opening formed in the gate frame. As the latch plate is rotated, alternate steps of the latch plate are engaged by the recessed opening. When the latch plate is rotated such that the flat portion of the latch plate faces the recessed opening in the gate frame, there is no connection between the opening and the latch plate and the gate is unlatched from the gate frame.

  11. Retaining latch for a water pit gate

    DOE Patents [OSTI]

    Beale, A.R.

    1997-11-18

    A retaining latch is described for use in a hazardous materials storage or handling facility to adjustably retain a water pit gate in a gate frame. A retaining latch is provided comprising a latch plate which is rotatably mounted to each end of the top of the gate and a recessed opening, formed in the gate frame, for engaging an edge of the latch plate. The latch plate is circular in profile with one side cut away or flat, such that the latch plate is D-shaped. The remaining circular edge of the latch plate comprises steps of successively reduced thickness. The stepped edge of the latch plate fits inside a recessed opening formed in the gate frame. As the latch plate is rotated, alternate steps of the latch plate are engaged by the recessed opening. When the latch plate is rotated such that the flat portion of the latch plate faces the recessed opening in the gate frame, there is no connection between the opening and the latch plate and the gate is unlatched from the gate frame. 4 figs.

  12. Gating of Permanent Molds for ALuminum Casting

    SciTech Connect (OSTI)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  13. AgraGate Carbon Credits Corporation | Open Energy Information

    Open Energy Info (EERE)

    AgraGate Carbon Credits Corporation Jump to: navigation, search Name: AgraGate Carbon Credits Corporation Place: Des Moines, Iowa Zip: 50266 Product: Offset aggregators that work...

  14. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and...

  15. Unbalanced edge modes and topological phase transition in gated...

    Office of Scientific and Technical Information (OSTI)

    Unbalanced edge modes and topological phase transition in gated trilayer graphene Prev Next Title: Unbalanced edge modes and topological phase transition in gated trilayer...

  16. Cycles in fossil diversity

    SciTech Connect (OSTI)

    Rohde, Robert A.; Muller, Richard A.

    2004-10-20

    It is well-known that the diversity of life appears to fluctuate during the course the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 Ma). Using Sepkoski's compendium of the first and last stratigraphic appearances of 36380 marine genera, we report a strong 62 {+-} 3 Myr cycle, which is particularly strong in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance, we also consider contributing environmental factors and possible causes.

  17. SU-E-J-45: Design and Study of An In-House Respiratory Gating Phantom Platform for Gated Radiotherapy

    SciTech Connect (OSTI)

    Senthilkumar, S

    2014-06-01

    Purpose: The main purpose of this work was to develop an in-house low cost respiratory motion phantom platform for testing the accuracy of the gated radiotherapy system and analyze the dosimetric difference during gated radiotherapy. Methods: An in-house respiratory motion platform(RMP) was designed and constructed for testing the targeting accuracy of respiratory tracking system. The RMP consist of acrylic Chest Wall Platform, 2 DC motors, 4 IR sensors, speed controller circuit, 2 LED and 2 moving rods inside the RMP. The velocity of the movement can be varied from 0 to 30 cycles per minute. The platform mounted to a base using precision linear bearings. The base and platform are made of clear, 15mm thick polycarbonate plastic and the linear ball bearings are oriented to restrict the platform to a movement of approximately 50mm up and down with very little friction. Results: The targeting accuracy of the respiratory tracking system was evaluated using phantom with and without respiratory movement with varied amplitude. We have found the 5% dose difference to the PTV during the movement in comparison with stable PTV. The RMP can perform sinusoidal motion in 1D with fixed peak to peak motion of 5 to 50mm and cycle interval from 2 to 6 seconds. The RMP was designed to be able to simulate the gross anatomical anterior posterior motion attributable to respiration-induced motion of the thoracic region. Conclusion: The unique RMP simulates breathing providing the means to create a comprehensive program for commissioning, training, quality assurance and dose verification of gated radiotherapy treatments. Create the anterior/posterior movement of a target over a 5 to 50 mm distance to replicate tumor movement. The targeting error of the respiratory tracking system is less than 1.0 mm which shows suitable for clinical treatment with highly performance.

  18. Locking apparatus for gate valves

    DOE Patents [OSTI]

    Fabyan, Joseph (Livermore, CA); Williams, Carl W. (Manteca, CA)

    1988-01-01

    A locking apparatus for fluid operated valves having a piston connected to the valve actuator which moves in response to applied pressure within a cylinder housing having a cylinder head, a catch block is secured to the piston, and the cylinder head incorporates a catch pin. Pressure applied to the cylinder to open the valve moves the piston adjacent to the cylinder head where the catch pin automatically engages the catch block preventing futher movement of the piston or premature closure of the valve. Application of pressure to the cylinder to close the valve, retracts the catch pin, allowing the valve to close. Included are one or more selector valves, for selecting pressure application to other apparatus depending on the gate valve position, open or closed, protecting such apparatus from damage due to premature closing caused by pressure loss or operational error.

  19. UGE Scheduler Cycle Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UGE Scheduler Cycle Time UGE Scheduler Cycle Time Genepool Cycle Time Genepool Daily Genepool Weekly Phoebe Cycle Time Phoebe Daily Phoebe Weekly What is the Scheduler Cycle? The...

  20. Prospective Life Cycle and Technology Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle lightweighting, wide band gap materials, additive manufacturing, natural gas to ... to be > 30% CAGR through 2020 * Aircraft industry case study - key early adopter ...

  1. Life cycle assessment and biomass carbon accounting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feedstocks and the climate implications of bioenergy Steven Hamburg Environmental Defense Fund Slides adapted from Reid Miner NCASI On the landscape, the single-plot looks like this 75 Harvested and burned for energy In year zero, the plot is harvested and the wood is burned for energy 1.1 Year 1 After regeneration begins, the growing biomass sequesters small amounts of CO2 annually 2.1 Year 2 2.8 Year 3 ??? Year X, until next harvest ÎŁ = . Over time, if carbon stocks are returned to

  2. Gates, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Gates is a city in Linn County and Marion County, Oregon. It falls under Oregon's 4th congressional district and Oregon's 5th...

  3. Digital gate pulse generator for cycloconverter control

    DOE Patents [OSTI]

    Klein, Frederick F. (Monroeville, PA); Mutone, Gioacchino A. (Pleasant Hills, PA)

    1989-01-01

    The present invention provides a digital gate pulse generator which controls the output of a cycloconverter used for electrical power conversion applications by determining the timing and delivery of the firing pulses to the switching devices in the cycloconverter. Previous gate pulse generators have been built with largely analog or discrete digital circuitry which require many precision components and periodic adjustment. The gate pulse generator of the present invention utilizes digital techniques and a predetermined series of values to develop the necessary timing signals for firing the switching device. Each timing signal is compared with a reference signal to determine the exact firing time. The present invention is significantly more compact than previous gate pulse generators, responds quickly to changes in the output demand and requires only one precision component and no adjustments.

  4. Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4

    Office of Scientific and Technical Information (OSTI)

    as revealed by X-ray crystallography (Journal Article) | SciTech Connect Journal Article: Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by X-ray crystallography Citation Details In-Document Search Title: Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by X-ray crystallography Authors: Gonzalez-Gutierrez, Giovanni ; Cuello, Luis G. ; Nair, Satish K. ; Grosman, Claudio [1] ; TTU) [2] + Show Author Affiliations UIUC (

  5. GaTe semiconductor for radiation detection

    DOE Patents [OSTI]

    Payne, Stephen A.; Burger, Arnold; Mandal, Krishna C.

    2009-06-23

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  6. Gate fidelity fluctuations and quantum process invariants

    SciTech Connect (OSTI)

    Magesan, Easwar; Emerson, Joseph [Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Blume-Kohout, Robin [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2011-07-15

    We characterize the quantum gate fidelity in a state-independent manner by giving an explicit expression for its variance. The method we provide can be extended to calculate all higher order moments of the gate fidelity. Using these results, we obtain a simple expression for the variance of a single-qubit system and deduce the asymptotic behavior for large-dimensional quantum systems. Applications of these results to quantum chaos and randomized benchmarking are discussed.

  7. Optical gating of perylene bisimide fluorescence using

    Office of Scientific and Technical Information (OSTI)

    dithienylcyclopentene photochromic switches (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Optical gating of perylene bisimide fluorescence using dithienylcyclopentene photochromic switches Citation Details In-Document Search Title: Optical gating of perylene bisimide fluorescence using dithienylcyclopentene photochromic switches The emission of millions of fluorescence photons from a chromophore is controlled by the absorption of a few tens of photons in

  8. David A Gates | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Gates Principal Research Physicist, Stellerator Physics Lead, Advanced Projects Division, Science Focus Group Leader for Macroscopic Stability David Gates is a principal research physicist for the advanced projects division of PPPL, and the stellarator physics leader at the Laboratory. In the latter capacity he leads collaborative efforts with the Wendelstein 7-X and Large Helical Device stellarator projects in Germany and Japan, respectively. Interests Stellarators Tokamaks Contact

  9. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  10. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  11. Sliding-gate valve for use with abrasive materials

    DOE Patents [OSTI]

    Ayers, Jr., William J. (Morgantown, WV); Carter, Charles R. (Fairmont, WV); Griffith, Richard A. (Morgantown, WV); Loomis, Richard B. (Bruceton Mills, WV); Notestein, John E. (Morgantown, WV)

    1985-01-01

    The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

  12. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W. Henry (Danville, CA)

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  13. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W.H.

    1999-03-09

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector. 5 figs.

  14. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is ... Now, for the first time, a group of researchers has obtained real-time oxidation results ...

  15. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 range (1-2...

  16. Chi-Nu "Gate Review" (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Chi-Nu "Gate Review" Citation Details In-Document Search Title: Chi-Nu "Gate Review" You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This...

  17. Chi-Nu "Gate Review" (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Chi-Nu "Gate Review" Citation Details In-Document Search Title: Chi-Nu "Gate Review" Authors: White, Morgan C. 1 ; Haight, Robert C. 1 ; Perdue, Brent A. 1 ; Wu,...

  18. Fuel Cycle Research and Development Advanced Fuels Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    near-term accident tolerant LWR fuel technology n Perform research and development of long-term transmutation options 2 ATF AFC Fuel Development Life Cycle Irradiation ...

  19. GATE Center of Excellence in Sustainable Vehicle Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sustainable Vehicle Systems GATE Center of Excellence in Sustainable Vehicle Systems 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ti024_haque_2012_p.pdf More Documents & Publications GATE Center of Excellence in Sustainable Vehicle Systems Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence in Sustainable Vehicle Systems Vehicle Technologies Office Merit Review 2014: DOE GATE

  20. GATE: Energy Efficient Vehicles for Sustainable Mobility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy GATE: Energy Efficient Vehicles for Sustainable Mobility GATE: Energy Efficient Vehicles for Sustainable Mobility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ti022_rizzoni_2012_p.pdf More Documents & Publications GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle Technologies

  1. Stage Gate Review Guide for the Biomass Program

    Broader source: Energy.gov [DOE]

    Stage Gate Management in the Biomass Program (now the Bioenergy Technologies Office), a document from February 2005.

  2. Life Insurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Insurance Life Insurance A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505) 667-1806 Email Life Insurance The Lab offers a variety of life insurance options through The Hartford to help you protect your loved ones. Life insurance provides financial assistance to help cover the rising costs of final expenses and any outstanding debts you leave behind. Resources Rates » Provider

  3. Extremely scaled high-k/In?.??Ga?.??As gate stacks with low leakage and low interface trap densities

    SciTech Connect (OSTI)

    Chobpattana, Varistha; Mikheev, Evgeny; Zhang, Jack Y.; Mates, Thomas E.; Stemmer, Susanne

    2014-09-28

    Highly scaled gate dielectric stacks with low leakage and low interface trap densities are required for complementary metal-oxide-semiconductor technology with III-V semiconductor channels. Here, we show that a novel pre-deposition technique, consisting of alternating cycles of nitrogen plasma and tetrakis(dimethylamino)titanium, allows for HfO? and ZrO? gate stacks with extremely high accumulation capacitance densities of more than 5 ?F/cm? at 1 MHz, low leakage current, low frequency dispersion, and low midgap interface trap densities (10čČcm?ČeV?črange). Using x-ray photoelectron spectroscopy, we show that the interface contains TiO? and small quantities of In?O?, but no detectable Ga- or As-oxides, or As-As bonding. The results allow for insights into the microscopic mechanisms that control leakage and frequency dispersion in high-k/III-V gate stacks.

  4. Designing robust unitary gates: Application to concatenated composite pulses

    SciTech Connect (OSTI)

    Ichikawa, Tsubasa; Bando, Masamitsu; Kondo, Yasushi; Nakahara, Mikio

    2011-12-15

    We propose a simple formalism to design unitary gates robust against given systematic errors. This formalism generalizes our previous observation [Y. Kondo and M. Bando, J. Phys. Soc. Jpn. 80, 054002 (2011)] that vanishing dynamical phase in some composite gates is essential to suppress pulse-length errors. By employing our formalism, we derive a composite unitary gate which can be seen as a concatenation of two known composite unitary operations. The obtained unitary gate has high fidelity over a wider range of error strengths compared to existing composite gates.

  5. SU-E-J-59: Effective Adaptive DMLC Gated Radiotherapy with OAR Sparing

    SciTech Connect (OSTI)

    Chen, Y; Wu, H; Zhou, Z; Sandison, MinGeorge

    2014-06-01

    Purpose: Patient respiratory motion degrades the effectiveness of cancer radiation treatment. Advanced respiratory gating delivers radiation dose accurately yet with elongated treatment time. The goal of this research is to propose a novel adaptive dMLC dynamic gating with high delivery efficiency and precision. Methods: The dose delivery of dMLC is aided by simultaneous tracking of tumor and organ at risk (OAR). The leaf opening/closing will follow the motion trajectory of the tumor while sparing the OAR. The treatment beam turns on only when there is no overlapping between OAR and tumor in BEV. A variety of evaluation metrics were considered and calculated, including duty cycle, beam toggling rate, and direct irradiation avoidance to OAR, under various combinations of different tumor margins and the distance between the centers of the tumor and OAR in BEV (expressed as dx). Results: Retrospective simulation was performed to investigate the feasibility and superiority of this technique using four groups of synchronized tumor and OAR motion data. The simulation results indicate that the tumor and OAR motion patterns and their relative positions are the dominant influential factors. The duty cycle can be greater than 96.71% yet can be as low as 6.69% depending different motion groups. This proposed technique provides good OAR protection, especially for such cases with low duty cycle for which as high as 77.71% maximal direct irradiation to OAR can be spared. Increasing dx improves the duty cycle (treatment efficiency) and provides better OAR volume sparing, whereas, that of the tumor margins has the opposite influence. Conclusion: This real-time adaptive dMLC gated radiation treatment with synchronous tumor and OAR tracking has inherent accurate dose delivery to tumor with reduced treatment time. In addition, the OAR protection capability make it an outstanding potential treatment strategy for mobile tumors.

  6. Attosecond x-ray source generation from two-color polarized gating plasmonic field enhancement

    SciTech Connect (OSTI)

    Feng, Liqiang [College of Science, Liaoning University of Technology, Jinzhou 121000 (China) [College of Science, Liaoning University of Technology, Jinzhou 121000 (China); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Yuan, Minghu [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)] [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Chu, Tianshu [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China) [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)

    2013-12-15

    The plasmonic field enhancement from the vicinity of metallic nanostructures as well as the polarization gating technique has been utilized to the generation of the high order harmonic and the single attosecond x-ray source. Through numerical solution of the time-dependent Schrödinger equation, for moderate the inhomogeneity and the polarized angle of the two fields, we find that not only the harmonic plateau has been extended and enhanced but also the single short quantum path has been selected to contribute to the harmonic. As a result, a series of 50 as pulses around the extreme ultraviolet and the x-ray regions have been obtained. Furthermore, by investigating the other parameters effects on the harmonic emission, we find that this two-color polarized gating plasmonic field enhancement scheme can also be achieved by the multi-cycle pulses, which is much better for experimental realization.

  7. Method for voltage-gated protein fractionation

    DOE Patents [OSTI]

    Hatch, Anson; Singh, Anup K.

    2012-04-24

    We report unique findings on the voltage dependence of protein exclusion from the pores of nanoporous polymer exclusion membranes. The pores are small enough that proteins are excluded from passage with low applied electric fields, but increasing the field enables proteins to pass through. The requisite field necessary for a change in exclusion is protein-specific with a correlation to protein size. The field-dependence of exclusion is important to consider for preconcentration applications. The ability to selectively gate proteins at exclusion membranes is also a promising means for manipulating and characterizing proteins. We show that field-gated exclusion can be used to selectively remove proteins from a mixture, or to selectively trap protein at one exclusion membrane in a series.

  8. Gated monochromatic x-ray imager

    SciTech Connect (OSTI)

    Oertel, J.A.; Archuleta, T.; Clark, L.

    1995-09-01

    We have recently developed a gated monochromatic x-ray imaging diagnostic for the national Inertial-Confinement Fusion (ICF) program. This new imaging system will be one of the primary diagnostics to be utilized on University of Rochester`s Omega laser fusion facility. The new diagnostic is based upon a Kirkpatrick-Baez (KB) microscope dispersed by diffraction crystals, as first described by Marshall and Su. The dispersed images are gated by four individual proximity focused microchannel plates and recorded on film. Spectral coverage is tunable up to 8 keV, spectral resolution has been measured at 20 eV, temporal resolution is 80 ps, and spatial resolution is better than 10 {mu}m.

  9. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, Larry; Hopkins, Harvey S.

    1998-12-10

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse.

  10. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, L.; Hopkins, H.S.

    1998-12-01

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse. {copyright} {ital 1998 American Institute of Physics.}

  11. Cluster computing software for GATE simulations

    SciTech Connect (OSTI)

    Beenhouwer, Jan de; Staelens, Steven; Kruecker, Dirk; Ferrer, Ludovic; D'Asseler, Yves; Lemahieu, Ignace; Rannou, Fernando R.

    2007-06-15

    Geometry and tracking (GEANT4) is a Monte Carlo package designed for high energy physics experiments. It is used as the basis layer for Monte Carlo simulations of nuclear medicine acquisition systems in GEANT4 Application for Tomographic Emission (GATE). GATE allows the user to realistically model experiments using accurate physics models and time synchronization for detector movement through a script language contained in a macro file. The downside of this high accuracy is long computation time. This paper describes a platform independent computing approach for running GATE simulations on a cluster of computers in order to reduce the overall simulation time. Our software automatically creates fully resolved, nonparametrized macros accompanied with an on-the-fly generated cluster specific submit file used to launch the simulations. The scalability of GATE simulations on a cluster is investigated for two imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT). Due to a higher sensitivity, PET simulations are characterized by relatively high data output rates that create rather large output files. SPECT simulations, on the other hand, have lower data output rates but require a long collimator setup time. Both of these characteristics hamper scalability as a function of the number of CPUs. The scalability of PET simulations is improved here by the development of a fast output merger. The scalability of SPECT simulations is improved by greatly reducing the collimator setup time. Accordingly, these two new developments result in higher scalability for both PET and SPECT simulations and reduce the computation time to more practical values.

  12. Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect (OSTI)

    San Martin, Robert L.

    1989-01-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide.

  13. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect (OSTI)

    San Martin, Robert L.

    1989-04-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

  14. UGE Scheduler Cycle Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UGE Scheduler Cycle Time UGE Scheduler Cycle Time Genepool Cycle Time Genepool Daily Genepool Weekly Phoebe Cycle Time Phoebe Daily Phoebe Weekly What is the Scheduler Cycle? The Univa Grid Engine Scheduler cycle performs a number of important tasks, including: Prioritizing Jobs Reserving Resources for jobs requesting more resources (slots / memory) Dispatching jobs or tasks to the compute nodes Evaluating job dependencies The "cycle time" is the length of time it takes the scheduler

  15. Cycle accurate and cycle reproducible memory for an FPGA based hardware accelerator

    DOE Patents [OSTI]

    Asaad, Sameh W.; Kapur, Mohit

    2016-03-15

    A method, system and computer program product are disclosed for using a Field Programmable Gate Array (FPGA) to simulate operations of a device under test (DUT). The DUT includes a device memory having a number of input ports, and the FPGA is associated with a target memory having a second number of input ports, the second number being less than the first number. In one embodiment, a given set of inputs is applied to the device memory at a frequency Fd and in a defined cycle of time, and the given set of inputs is applied to the target memory at a frequency Ft. Ft is greater than Fd and cycle accuracy is maintained between the device memory and the target memory. In an embodiment, a cycle accurate model of the DUT memory is created by separating the DUT memory interface protocol from the target memory storage array.

  16. GATE Center of Excellence in Lightweight Materials and Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Lightweight Materials and Manufacturing Technologies GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ti026_vaidya_2012_p.pdf More Documents & Publications GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications GATE Center of Excellence in Lightweight Materials

  17. Vehicle Technologies Office Merit Review 2015: Gate Driver Optimization for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WBG Applications | Department of Energy Gate Driver Optimization for WBG Applications Vehicle Technologies Office Merit Review 2015: Gate Driver Optimization for WBG Applications Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about gate driver optimization for WBG applications. PDF icon edt068_ericson_2015_o.pdf More Documents & Publications High Temperature,

  18. Penn State DOE Graduate Automotive Technology Education (Gate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education...

  19. PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Alcohol Testing System (Assistant)) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol ...

  20. Liquid-based gating mechanism with tunable multiphase selectivity...

    Office of Scientific and Technical Information (OSTI)

    selectivity and antifouling behaviour Prev Next Title: Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour You are accessing a ...

  1. Liquid-based gating mechanism with tunable multiphase selectivity...

    Office of Scientific and Technical Information (OSTI)

    selectivity and antifouling behaviour Prev Next Title: Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour Living organisms make ...

  2. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. PDF icon ape03marlino.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module ...

  3. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon ape003tolbert2010p.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Wide Bandgap Materials Smart ...

  4. GATE Center of Excellence in Lightweight Materials and Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit...

  5. GATE Global Alternative Energy Holding AG | Open Energy Information

    Open Energy Info (EERE)

    Energy Holding AG Place: Wrzburg, Bavaria, Germany Zip: 97080 Product: Germany-based biodiesel producer. References: GATE Global Alternative Energy Holding AG1 This article...

  6. Vehicle Technologies Office Merit Review 2015: Gate Driver Optimizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gate Driver Optimization for WBG Applications Vehicle Technologies Office Merit Review ... Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells ...

  7. Gates County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Gates County, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.4202077, -76.6874701 Show Map Loading map......

  8. Stage Gate Review Guide for the Industrial Technologies Program

    Broader source: Energy.gov [DOE]

    Stage-Gate Innovation Management Guidelines: Managing Risk Through Structured Project Decision-Making, February 2007. From the Industrial Technologies Program (now the Advanced Manufacturing Office).

  9. PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational...

    Energy Savers [EERE]

    PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah...

  10. Speed control system for an access gate

    DOE Patents [OSTI]

    Bzorgi, Fariborz M.

    2012-03-20

    An access control apparatus for an access gate. The access gate typically has a rotator that is configured to rotate around a rotator axis at a first variable speed in a forward direction. The access control apparatus may include a transmission that typically has an input element that is operatively connected to the rotator. The input element is generally configured to rotate at an input speed that is proportional to the first variable speed. The transmission typically also has an output element that has an output speed that is higher than the input speed. The input element and the output element may rotate around a common transmission axis. A retardation mechanism may be employed. The retardation mechanism is typically configured to rotate around a retardation mechanism axis. Generally the retardation mechanism is operatively connected to the output element of the transmission and is configured to retard motion of the access gate in the forward direction when the first variable speed is above a control-limit speed. In many embodiments the transmission axis and the retardation mechanism axis are substantially co-axial. Some embodiments include a freewheel/catch mechanism that has an input connection that is operatively connected to the rotator. The input connection may be configured to engage an output connection when the rotator is rotated at the first variable speed in a forward direction and configured for substantially unrestricted rotation when the rotator is rotated in a reverse direction opposite the forward direction. The input element of the transmission is typically operatively connected to the output connection of the freewheel/catch mechanism.

  11. Developing High Capacity, Long Life Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Anodes Developing High Capacity, Long Life Anodes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es020_amine_2011_p.pdf More Documents & Publications Developing A New High Capacity Anode With Long Cycle Life Developing High Capacity, Long Life Anodes Development of High Capacity Anode for Li-ion Batteries

  12. Modeling gated neutron images of THD capsules

    SciTech Connect (OSTI)

    Wilson, Douglas Carl; Grim, Gary P; Tregillis, Ian L; Wilke, Mark D; Morgan, George L; Loomis, Eric N; Wilde, Carl H; Oertel, John A; Fatherley, Valerie E; Clark, David D; Schmitt, Mark J; Merrill, Frank E; Wang, Tai - Sen F; Danly, Christopher R; Batha, Steven H; Patel, M; Sepke, S; Hatarik, R; Fittinghoff, D; Bower, D; Marinak, M; Munro, D; Moran, M; Hilko, R; Frank, M; Buckles, R

    2010-01-01

    Time gating a neutron detector 28m from a NIF implosion can produce images at different energies. The brighter image near 14 MeV reflects the size and symmetry of the capsule 'hot spot'. Scattered neutrons, {approx}9.5-13 MeV, reflect the size and symmetry of colder, denser fuel, but with only {approx}1-7% of the neutrons. The gated detector records both the scattered neutron image, and, to a good approximation, an attenuated copy of the primary image left by scintillator decay. By modeling the imaging system the energy band for the scattered neutron image (10-12 MeV) can be chosen, trading off the decayed primary image and the decrease of scattered image brightness with energy. Modeling light decay from EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A leads to a preference from BCF99-55 for the first NIF detector, but DPAC 30 and Liquid A would be preferred if incorporated into a system. Measurement of the delayed light from the NIF scintillator using implosions at the Omega laser shows BCF99-55 to be a good choice for down-scattered imaging at 28m.

  13. 2013 Planning Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K 2015 Planning Cycle 2014 Planning Cycle 2013 Planning...

  14. 2014 Planning Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K 2015 Planning Cycle 2014 Planning Cycle 2013 Planning...

  15. 2015 Planning Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K 2015 Planning Cycle 2014 Planning Cycle 2013 Planning...

  16. University of Illinois at Urbana-Champaigns GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines The University of Tennessee's GATE Center for Hybrid Systems DOE ...

  17. Gate Hours & Services | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gate Hours & Services Sand Hill Road Main Gate Open 24 hours a day, 7 days a week 650-926-2551 Alert URA or User Check-In Coordinator Jackie Kerlegan before traveling to SLAC. SLAC has proximity card readers at the entrances from Sand Hill Road and Alpine Road as well as at Security Gate 17 and Sector 30. If you do not have an ID badge with proximity access issued by Security after October 2014, stop first at the SLAC Security Office Building 235 during office hours which are 7 am-12 noon

  18. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Looking at Transistor Gate Oxide Formation in Real Time Print Wednesday, 25 June 2008 00:00 The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under

  19. Evaluation of delivered monitor unit accuracy of gated step-and-shoot IMRT using a two-dimensional detector array

    SciTech Connect (OSTI)

    Cheong, Kwang-Ho; Kang, Sei-Kwon; Lee, MeYeon; Kim, Su SSan; Park, SoAh; Hwang, Tae-Jin; Kim, Kyoung Ju; Oh, Do Hoon; Bae, Hoonsik; Suh, Tae-Suk

    2010-03-15

    Purpose: To overcome the problem of organ motion in intensity-modulated radiation therapy (IMRT), gated IMRT is often used for the treatment of lung cancer. In this study, the authors investigated the accuracy of the delivered monitor units (MUs) from each segment during gated IMRT using a two-dimensional detector array for user-specific verification purpose. Methods: The authors planned a 6 MV photon, seven-port step-and-shoot lung IMRT delivery. The respiration signals for gated IMRT delivery were obtained from the one-dimensional moving phantom using the real-time position management (RPM) system (Varian Medical Systems, Palo Alto, CA). The beams were delivered using a Clinac iX (Varian Medical Systems, Palo Alto, CA) with the Millennium 120 MLC. The MatriXX (IBA Dosimetry GmbH, Germany) was validated through consistency and reproducibility tests as well as comparison with measurements from a Farmer-type ion chamber. The authors delivered beams with varying dose rates and duty cycles and analyzed the MatriXX data to evaluate MU delivery accuracy. Results: There was quite good agreement between the planned segment MUs and the MUs computed from the MatriXX within {+-}2% error. The beam-on times computed from the MatriXX data were almost identical for all cases, and they matched well with the RPM beam-on and beam-off signals. A slight difference was observed between them, but it was less than 40 ms. The gated IMRT delivery demonstrated an MU delivery accuracy that was equivalent to ungated IMRT, and the delivered MUs with a gating signal agreed with the planned MUs within {+-}0.5 MU regardless of dose rate and duty cycle. Conclusions: The authors can conclude that gated IMRT is able to deliver an accurate dose to a patient during a procedure. The authors believe that the methodology and results can be transferred to other vendors' devices, particularly those that do not provide MLC log data for a verification purpose.

  20. Voltage-Gated Hydrophobic Nanopores (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Voltage-Gated Hydrophobic Nanopores Citation Details In-Document Search ... DOE Contract Number: DE-AC05-00OR22725 Resource Type: Journal Article Resource Relation: ...

  1. Bill Gates visit to Idaho validates innovation role for national

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laboratories FOR IMMEDIATE RELEASE Oct. 24, 2013 NEWS MEDIA CONTACTS: Amy Lientz, 208-520-7718, amy.lientz@inl.gov Teri Ehresman, 208-526-7785, teri.ehresman@inl.gov Bill Gates visit to Idaho validates innovation role for national laboratories IDAHO FALLS - Privately funded research utilizing government owned facilities validates the important role national laboratories have in advancing innovation. Bill Gates, American business magnate and chair of the nuclear reactor startup company

  2. Isolated Photosystem I Reaction Centers on a Functionalized Gated High

    Office of Scientific and Technical Information (OSTI)

    Electron Mobility Transistor (Journal Article) | SciTech Connect Isolated Photosystem I Reaction Centers on a Functionalized Gated High Electron Mobility Transistor Citation Details In-Document Search Title: Isolated Photosystem I Reaction Centers on a Functionalized Gated High Electron Mobility Transistor In oxygenic plants, photons are captured with high quantum efficiency by two specialized reaction centers (RC) called Photosystem I (PS I) and Photosystem II (PS II). The captured photon

  3. Liquid-based gating mechanism with tunable multiphase selectivity and

    Office of Scientific and Technical Information (OSTI)

    antifouling behaviour (Journal Article) | DOE PAGES Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour « Prev Next » Title: Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. In addition, the ability of such pores to coordinate

  4. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ti_01_anstrom.pdf More Documents & Publications IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS Vehicle Technologies Office Merit Review 2015: Penn State DOE Graduate

  5. Penn State DOE Graduate Automotive Technology Education (Gate) Program for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Vehicle, High-Power Energy Storage Systems | Department of Energy Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ti006_anstrom_2011_o.pdf More Documents & Publications

  6. Thermosensitive gating effect and selective gas adsorption in a porous

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coordination nanocage | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Thermosensitive gating effect and selective gas adsorption in a porous coordination nanocage Previous Next List Dan Zhao , Daqiang Yuan , Rajamani Krishna , Jasper M. van Baten and Hong-Cai Zhou, Chem. Commun., 2010,46, 7352-7354 DOI: 10.1039/C0CC02771E Graphical abstract: Thermosensitive gating effect and selective gas adsorption in a porous coordination nanocage Abstract: A porous

  7. Gated integrator with signal baseline subtraction

    DOE Patents [OSTI]

    Wang, X.

    1996-12-17

    An ultrafast, high precision gated integrator includes an opamp having differential inputs. A signal to be integrated is applied to one of the differential inputs through a first input network, and a signal indicative of the DC offset component of the signal to be integrated is applied to the other of the differential inputs through a second input network. A pair of electronic switches in the first and second input networks define an integrating period when they are closed. The first and second input networks are substantially symmetrically constructed of matched components so that error components introduced by the electronic switches appear symmetrically in both input circuits and, hence, are nullified by the common mode rejection of the integrating opamp. The signal indicative of the DC offset component is provided by a sample and hold circuit actuated as the integrating period begins. The symmetrical configuration of the integrating circuit improves accuracy and speed by balancing out common mode errors, by permitting the use of high speed switching elements and high speed opamps and by permitting the use of a small integrating time constant. The sample and hold circuit substantially eliminates the error caused by the input signal baseline offset during a single integrating window. 5 figs.

  8. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-09-08

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling. 25 figs.

  9. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-09-08

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna (10), so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive (24) and transmit cavities (22) by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling.

  10. Gated integrator with signal baseline subtraction

    DOE Patents [OSTI]

    Wang, Xucheng (Lisle, IL)

    1996-01-01

    An ultrafast, high precision gated integrator includes an opamp having differential inputs. A signal to be integrated is applied to one of the differential inputs through a first input network, and a signal indicative of the DC offset component of the signal to be integrated is applied to the other of the differential inputs through a second input network. A pair of electronic switches in the first and second input networks define an integrating period when they are closed. The first and second input networks are substantially symmetrically constructed of matched components so that error components introduced by the electronic switches appear symmetrically in both input circuits and, hence, are nullified by the common mode rejection of the integrating opamp. The signal indicative of the DC offset component is provided by a sample and hold circuit actuated as the integrating period begins. The symmetrical configuration of the integrating circuit improves accuracy and speed by balancing out common mode errors, by permitting the use of high speed switching elements and high speed opamps and by permitting the use of a small integrating time constant. The sample and hold circuit substantially eliminates the error caused by the input signal baseline offset during a single integrating window.

  11. ARM - The Hydrologic Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrologic Cycle Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans The Hydrologic Cycle The hydrologic cycle is the cycle through which water passes from sea to land and from land to sea. Water vapor enters the air through the evaporation of water. Water vapor in the air eventually condenses

  12. Rapidly reconfigurable all-optical universal logic gate

    DOE Patents [OSTI]

    Goddard, Lynford L. (Hayward, CA); Bond, Tiziana C. (Livermore, CA); Kallman, Jeffrey S. (Pleasanton, CA)

    2010-09-07

    A new reconfigurable cascadable all-optical on-chip device is presented. The gate operates by combining the Vernier effect with a novel effect, the gain-index lever, to help shift the dominant lasing mode from a mode where the laser light is output at one facet to a mode where it is output at the other facet. Since the laser remains above threshold, the speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal optical modulation speed of the laser, which can be on the order of up to about tens of GHz. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog optical or electrical signal at the gate selection port. Other all-optical functionality includes wavelength conversion, signal duplication, threshold switching, analog to digital conversion, digital to analog conversion, signal routing, and environment sensing. Since each gate can perform different operations, the functionality of such a cascaded circuit grows exponentially.

  13. NYC Taxi Drive Cycle Development and Simulation Study | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy NYC Taxi Drive Cycle Development and Simulation Study NYC Taxi Drive Cycle Development and Simulation Study 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss073_jones_2012_o.pdf More Documents & Publications Dynamometer Testing of USPS EV Conversions Vehicle Technologies Office Merit Review 2014: Dynamic Feasibility Study Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus

  14. Top-gate organic depletion and inversion transistors with doped channel and injection contact

    SciTech Connect (OSTI)

    Liu, Xuhai; Kasemann, Daniel Leo, Karl

    2015-03-09

    Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.

  15. Innovative secondary support systems for gate roads

    SciTech Connect (OSTI)

    Barczak, T.; Molinda, G.M.; Zelanko, J.C.

    1996-12-31

    With the development of the shield support, the primary requirement for successful ground control in longwall mining is to provide stable gate road and bleeder entries. Wood cribbing has been the dominant form of secondary and supplemental support. However, the cost and limited availability of timber, along with the poor performance of softwood crib supports, has forced western U.S. mines to explore the utilization of support systems other than conventional wood cribbing. The recent success of cable bolts has engendered much interest from western operators. Eastern U.S. coal operators are also now experimenting with various intrinsic and freestanding alternative support systems that provide effective ground control while reducing material handling costs and injuries. These innovative freestanding support systems include (1) {open_quotes}The Can{close_quotes} support by Burrell Mining Products International, Inc., (2) Hercules and Link-N-Lock wood cribs and Propsetter supports by Strata Products (USA) Inc., (3) Variable Yielding Crib and Power Crib supports by Mountainland Support Systems, (4) the Confined Core Crib developed by Southern Utah Fuels Corporation; and (5) the MEGA prop by MBK Hydraulik. This paper assesses design considerations and compares the performance and application of these alternative secondary support systems. Support performance in the form of load-displacement behavior is compared to conventional wood cribbing. Much of the data was developed through full-scale tests conducted by the U.S. Bureau of Mines (USBM) at the Strategic Structures Testing Laboratory in the unique Mine Roof Simulator load frame at the Pittsburgh Research Center. A summary of current mine experience with these innovative supports is also documented.

  16. Deterministic and cascadable conditional phase gate for photonic qubits

    SciTech Connect (OSTI)

    Chudzicki, Christopher; Chuang, Isaac; Shapiro, Jeffrey H.

    2014-12-04

    Previous analyses of conditional ?{sub NL}-phase gates for photonic qubits that treat crossphase modulation (XPM) in a causal, multimode, quantum field setting suggest that a large (?? rad) nonlinear phase shift is always accompanied by fidelity-degrading noise [J. H. Shapiro, Phys. Rev. A 73, 062305 (2006); J. Gea-Banacloche, Phys. Rev. A 81, 043823 (2010)]. Using an atomic V-system to model an XPM medium, we present a conditional phase gate that, for sufficiently small nonzero ?{sub NL}, has high fidelity. The gate is made cascadable by using a special measurement, principal mode projection, to exploit the quantum Zeno effect and preclude the accumulation of fidelity-degrading departures from the principal-mode Hilbert space when both control and target photons illuminate the gate. The nonlinearity of the V-system we study is too weak for this particular implementation to be practical. Nevertheless, the idea of cascading through principal mode projection is of potential use to overcome fidelity degrading noise for a wide variety of nonlinear optical primitive gates.

  17. Water Cycle Pilot Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Water Cycle Pilot Study To learn more about Earth's water cycle, the U.S. Department of Energy (DOE) has established a multi-laboratory science team representing five DOE national laboratories: Argonne, Brookhaven, Lawrence Berkeley, Los Alamos, and Oak Ridge. The science team will conduct a three- year Water Cycle Pilot Study within the ARM SGP CART site, primarily in the Walnut River Watershed east of Wichita, Kansas. The host facility in the Walnut River Watershed is the Atmospheric

  18. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosecurity, and Health Environmental Microbiology Soil metagenomics and carbon cycling Soil metagenomics and carbon cycling Establishing a foundational understanding...

  19. Life Cycle Management Solutions for the Electricity Industry

    Office of Environmental Management (EM)

    ... - Heater integral part of the ITC design - Reason: Easier heat transfer for T 2 ... and subsequent trapping of water on molecular sieves - Reason: experience at TLK - ...

  20. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers [EERE]

    Disassembled and chemically tested product samples to determine whether potentially toxic elements are present in concentrations that exceed regulatory thresholds for hazardous...

  1. Federal Register Notice for Life Cycle Greenhouse Gas Perspective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG Federal Register Notice on Proposed Procedures for LNG Export Decisions Cameron LNG LLC Final Order

  2. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers [EERE]

    performing similar work in-house. Following is a discussion of known uncertainties stemming from procedural design or implementation. Mercury in CFLs 5.3.1 Consistent with the...

  3. Life cycle inventory of biodiesel and petroleum diesel for use...

    Office of Scientific and Technical Information (OSTI)

    Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial ...

  4. Life Cycle Analysis and Energy Conservation Standards for State Buildings

    Broader source: Energy.gov [DOE]

    In January 2007, Ohio enacted HB 251 and Governor Ted Strickland issued Executive Order 2007-02S. Both initiatives amend state policy pertaining to energy efficiency in state buildings. H.B. 251...

  5. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use...

    Office of Scientific and Technical Information (OSTI)

    ...162 Figure 73: Ranking of Electricity Requirements for Our Process Design Model and for Current Comparable Technology...

  6. Improving the Cycling Life of Aluminum and Germanium Thin Films...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  7. Life Cycle Assessment of Coal-fired Power Production

    Office of Scientific and Technical Information (OSTI)

    of carbon dioxide, they are not insignificant. According to the Intergovernmental Panel on Climate Change (IPCC), the global warming potential (GWP) of methane and nitrous...

  8. Building Life Cycle Cost Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ratio, adjusted internal rate of return, and years to payback. BLCC is programmed in Java with an XML file format. The user's guide is part of the BLCC Help system. If you are...

  9. Estimation and Analysis of Life Cycle Costs of Baseline EGS

    Broader source: Energy.gov [DOE]

    Project objective: To create the National Geothermal Data System (NGDS) comprised of a core and distributed network of databases and data sites that will comprise a federated system for acquisition, management, maintenance, and dissemination of geothermal and related data.

  10. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reductions in GHG, criteria pollutants and acidification gases and * Development of LCA framework based on ISO standards and LCA technical reports such as 14040, 14044, and...

  11. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J. LED; light-emitting diode; CFL; incandescent; halogen; lamp; bulb; TCLP; STLC; TTLC; WET; hazardous waste; electronic...

  12. Building Life Cycle Cost Programs File Saving Troubleshooting

    Broader source: Energy.gov [DOE]

    Some users have experienced difficulties saving BLCC projects. The primary issue causing the issue is that the user is not an “Administrator,” and lacks the “permission” to save to that location....

  13. Estimation and Analysis of Life Cycle Costs of Baseline Enhanced...

    Open Energy Info (EERE)

    Identification of component-wise cost reduction targets for parity with coal and natural gas - Assessment of market economics for potential new entrants - Forecasts of technology...

  14. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. PDF icon...

  15. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... such data can be considered qualitative to semi-quantitative in part because of likely ... This factor was noted previously by Bryan (1974). Inter- study variation in MPR ...

  16. Americium/Curium Disposition Life Cycle Planning Study

    SciTech Connect (OSTI)

    Jackson, W.N.; Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

    1998-04-30

    At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

  17. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  18. Improving the Cycling Life of Aluminum and Germanium Thin Films...

    Office of Scientific and Technical Information (OSTI)

    Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for pages...

  19. Life Cycle Greenhouse Gas Emissions: Natural Gas and Power Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Laboratory Electricity Generation Forecast: 25% Growth in Next 20 Years EIA, AEO 2015: Reference Case 37% Coal ... a clearinghouse of information on technologies, ...

  20. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Office of Scientific and Technical Information (OSTI)

    assessment (LCA) process and methodology, provided a literature review of more ... DOE Contract Number: AC05-76RL01830 Resource Type: Technical Report Research Org: Pacific ...

  1. Life Cycle Assessment of Coal-fired Power Production

    Office of Scientific and Technical Information (OSTI)

    case. It was found that the transportation distance has a significant effect on the oil consumption, a few of the systems emissions, and the energy consumption, whereas the...

  2. Building Life Cycle Cost Programs Software Installation Troubleshootin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system to load the software. If you are unable to run the installer, make sure that java 1.7 or greater is installed. The installer will not run with older versions of java....

  3. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NRELFS-5600-48437 * Revised December 2010 Hydrogen electrical energy storage and dispatch scenario Electricity Hydrogen Storage Electrolyzer Fuel Cell Electricity Hydrogen Storage ...

  4. Life-Cycle Assessment of Energy and Environmental Impacts of...

    Energy Savers [EERE]

    category of hazardous waste to landfill, which is driven by the upstream energy and environment impacts from the manufacturing of the aluminum from raw materials. Although...

  5. Ligand-gated Diffusion Across the Bacterial Outer Membrane

    SciTech Connect (OSTI)

    B Lepore; M Indic; H Pham; E Hearn; D Patel; B van den Berg

    2011-12-31

    Ligand-gated channels, in which a substrate transport pathway is formed as a result of the binding of a small-molecule chemical messenger, constitute a diverse class of membrane proteins with important functions in prokaryotic and eukaryotic organisms. Despite their widespread nature, no ligand-gated channels have yet been found within the outer membrane (OM) of Gram-negative bacteria. Here we show, using in vivo transport assays, intrinsic tryptophan fluorescence and X-ray crystallography, that high-affinity (submicromolar) substrate binding to the OM long-chain fatty acid transporter FadL from Escherichia coli causes conformational changes in the N terminus that open up a channel for substrate diffusion. The OM long-chain fatty acid transporter FadL from E. coli is a unique paradigm for OM diffusion-driven transport, in which ligand gating within a {beta}-barrel membrane protein is a prerequisite for channel formation.

  6. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  7. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  8. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  9. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  10. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  11. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  12. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  13. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  14. Ultrafast terahertz gating of the polarization and giant nonlinear optical

    Office of Scientific and Technical Information (OSTI)

    response in BiFeO3 thin films (Journal Article) | SciTech Connect Journal Article: Ultrafast terahertz gating of the polarization and giant nonlinear optical response in BiFeO3 thin films Citation Details In-Document Search Title: Ultrafast terahertz gating of the polarization and giant nonlinear optical response in BiFeO3 thin films In this article, terahertz pulses are applied as an all-optical bias to ferroelectric thin-film BiFeO3 while monitoring the time-dependent ferroelectric

  15. Cycle chemistry related issues in fossil power plants

    SciTech Connect (OSTI)

    James, K.L.; Chhatre, R.M.

    1994-12-31

    Maximizing the availability and useful life of a fossil power plant can be achieved by the reduction of corrosion. Poorly defined chemistry limits and inadequate response to cycle chemistry excursions have cost the utility industry billions of dollars in lost revenue and repair/replacement costs of damage equipment. The Cycle Chemistry related corrosion problems can be minimized by maintaining feed water, boiler water, and steam purity. Pacific Gas and Electric Company`s approach to reduce cycle chemistry related damage, as well as their participation in the Electric Power Research Institute`s Cycle Chemistry Improvement Program demonstration are reviewed in this paper.

  16. FEMP Offers New eTraining Core Course on Fundamentals of Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    metrics and tools for energy-efficient and sustainable buildings and implementing life cycle costing methods and procedures. He is also responsible for the software tool ...

  17. Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors

    SciTech Connect (OSTI)

    Wang, Yang; Chen, Xiaolong; Ye, Weiguang; Wu, Zefei; Han, Yu; Han, Tianyi; He, Yuheng; Cai, Yuan; Wang, Ning

    2014-12-15

    High-quality BN-Graphene-BN nanoribbon capacitors with double side-gates of graphene have been experimentally realized. The double side-gates can effectively modulate the electronic properties of graphene nanoribbon capacitors. By applying anti-symmetric side-gate voltages, we observed significant upward shifting and flattening of the V-shaped capacitance curve near the charge neutrality point. Symmetric side-gate voltages, however, only resulted in tilted upward shifting along the opposite direction of applied gate voltages. These modulation effects followed the behavior of graphene nanoribbons predicted theoretically for metallic side-gate modulation. The negative quantum capacitance phenomenon predicted by numerical simulations for graphene nanoribbons modulated by graphene side-gates was not observed, possibly due to the weakened interactions between the graphene nanoribbon and side-gate electrodes caused by the Ga{sup +} beam etching process.

  18. Fast Out of the Gate: How Developing Asian Countries can Prepare...

    Open Energy Info (EERE)

    (Redirected from Fast Out of the Gate: How Developing Asian Countries can Prepare to Access International Green Growth Financing)...

  19. Technical Feasibility Assessment of LED Roadway Lighting on the Golden Gate Bridge

    SciTech Connect (OSTI)

    Tuenge, J. R.

    2012-09-01

    GATEWAY program report on the technical feasibility of LED roadway lighting on the Golden Gate Bridge in San Francisco, CA.

  20. High Temperature, High Voltage Fully Integrated Gate Driver Circuit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape003_tolbert_2010_p.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Wide Bandgap Materials Smart Integrated Power Module

  1. High Temperature, High Voltage Fully Integrated Gate Driver Circuit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_03_marlino.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module Wide Bandgap Materials

  2. Temperature-controlled molecular depolarization gates in nuclear magnetic resonance

    SciTech Connect (OSTI)

    Schroder, Leif; Schroder, Leif; Chavez, Lana; Meldrum, Tyler; Smith, Monica; Lowery, Thomas J.; E. Wemmer, David; Pines, Alexander

    2008-02-27

    Down the drain: Cryptophane cages in combination with selective radiofrequency spin labeling can be used as molecular 'transpletor' units for transferring depletion of spin polarization from a hyperpolarized 'source' spin ensemble to a 'drain' ensemble. The flow of nuclei through the gate is adjustable by the ambient temperature, thereby enabling controlled consumption of hyperpolarization.

  3. Gating of high-mobility InAs metamorphic heterostructures

    SciTech Connect (OSTI)

    Shabani, J.; McFadden, A. P.; Shojaei, B.; Palmstrűm, C. J.

    2014-12-29

    We investigate the performance of gate-defined devices fabricated on high mobility InAs metamorphic heterostructures. We find that heterostructures capped with In{sub 0.75}Ga{sub 0.25}As often show signs of parallel conduction due to proximity of their surface Fermi level to the conduction band minimum. Here, we introduce a technique that can be used to estimate the density of this surface charge that involves cool-downs from room temperature under gate bias. We have been able to remove the parallel conduction under high positive bias, but achieving full depletion has proven difficult. We find that by using In{sub 0.75}Al{sub 0.25}As as the barrier without an In{sub 0.75}Ga{sub 0.25}As capping, a drastic reduction in parallel conduction can be achieved. Our studies show that this does not change the transport properties of the quantum well significantly. We achieved full depletion in InAlAs capped heterostructures with non-hysteretic gating response suitable for fabrication of gate-defined mesoscopic devices.

  4. Duty Cycle Software Model

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    The Software consists of code which is capable of processing a large volume of data to create a “duty cycle” which is representative of how equipment will function under certain conditions.

  5. 10 MWe power cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MWe power cycle - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  6. ARM - Carbon Cycle Balance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Cycle Balance Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Carbon Cycle Balance The net result of this recycling is that our atmosphere now gains a total of 5 gigatonnes (1 gigatonne = 1x1012 kilograms) of carbon annually. Nearly all of this ends up in gases that are greenhouse

  7. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to NEAC Fuel Cycle Subcommittee Meeting of April 23, 2013 Washington D.C. June 13, 2013 Burton Richter (Chair), Margaret Chu, Darleane Hoffman, Raymond Juzaitis, Sekazi K Mtingwa, Ronald P Omberg, Joy L Rempe, Dominique Warin 2 I Introduction and Summary The Fuel Cycle Subcommittee of NEAC met in Washington on April 23, 2013. The meeting focused on issues relating to the NE advanced reactor program (sections II, III, and IV), and on storage and transportation issues (section V) related to

  8. Fuel Cycle Subcommittee

    Office of Environmental Management (EM)

    April 29, 2015 Washington, DC June 26, 2015 Al Sattelberger (Chair), Carol Burns, Margaret Chu, Raymond Juzaitis, Chris Kouts, Sekazi Mtingwa, Ronald Omberg, Joy Rempe, Dominique Warin 2 I. Introduction The agenda for the April 29, 2015 Fuel Cycle Subcommittee meeting is given below. The meeting provided members an overview of various research efforts funded by the DOE Office of Nuclear Energy's Fuel Cycle Technologies (FCT) program and related research that is coordinated with the FCT program.

  9. Fuel Cycle Subcommittee

    Office of Environmental Management (EM)

    October 22, 2015 Washington, DC December 7, 2015 Al Sattelberger (Chair), Carol Burns, Margaret Chu, Raymond Juzaitis, Chris Kouts, Sekazi Mtingwa, Ronald Omberg, Joy Rempe, Dominique Warin 2 I. Introduction The agenda for the October 22, 2015 Fuel Cycle Subcommittee meeting is given below. The meeting provided members an overview of several research efforts funded by the DOE Office of Nuclear Energy's Fuel Cycle Technologies (FCT) program and related research that is coordinated with the FCT

  10. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao (Yorktown, VA)

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  11. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao (Yorktown, VA)

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  12. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  13. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, Gregory W. (Santa Fe, NM); Kotsubo, Vincent Y. (La Canada, CA)

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  14. Quantum gate using qubit states separated by terahertz

    SciTech Connect (OSTI)

    Toyoda, Kenji; Urabe, Shinji [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); JST-CREST, 4-1-8 Honmachi, Kawaguchi, Saitama 331-0012 (Japan); Haze, Shinsuke [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Yamazaki, Rekishu [JST-CREST, 4-1-8 Honmachi, Kawaguchi, Saitama 331-0012 (Japan)

    2010-03-15

    A two-qubit quantum gate is realized using electronically excited states in a single ion with an energy separation on the order of a terahertz times the Planck constant as a qubit. Two phase-locked lasers are used to excite a stimulated Raman transition between two metastable states D{sub 3/2} and D{sub 5/2} separated by 1.82 THz in a single trapped {sup 40}Ca{sup +} ion to construct a qubit, which is used as the target bit for the Cirac-Zoller two-qubit controlled NOT gate. Quantum dynamics conditioned on a motional qubit is clearly observed as a fringe reversal in Ramsey interferometry.

  15. A Compact Reactor Gate Discharge Monitor for Spent Fuel.

    SciTech Connect (OSTI)

    Franco, J. B.; Menlove, Howard O.; Eccleston, G. W.; Miller, M. C.

    2005-01-01

    This paper presents a new design for a reactor gate discharge monitor that has evolved from the baseline discharge monitors used at the Fugen and Tokai-1 reactors in Japan. The main design innovation is the ability to determine direction-of-motion of spent fuel using a single sensor module, as opposed to the two modules used in both baseline design systems. Use of a single module reduces the final system complexity and weight significantly without compromising functionality. The reactor gate discharge monitor uses standard International Atomic Energy Agency (IAEA) hardware and software components. The requirements to determine direction-of-motion from a single module precipitated several development efforts described herein in both the MiniGRAND data acquisition hardware and in the uninterruptible power supply source.

  16. Terrestrial Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terrestrial Carbon Cycle "Only about half of the CO2 released into the atmosphere by human activities currently resides in the atmosphere, the rest absorbed on land and in the oceans. The period over which the carbon will be sequestered is unclear, and the efficiency of future sinks is unknown." US Carbon Cycle Research Plan "We" desire to be able to predict the future spatial and temporal distribution of sources and sinks of atmospheric CO2 and their interaction (forcing and

  17. Amorphorized tantalum-nickel binary films for metal gate applications

    SciTech Connect (OSTI)

    Ouyang, Jiaomin; Wongpiya, Ranida; Clemens, Bruce M.; Deal, Michael D.; Nishi, Yoshio

    2015-04-13

    Amorphous metal gates have the potential to eliminate the work function variation due to grain orientation for poly-crystalline metal gate materials, which is a leading contributor to threshold voltage variation for small transistors. Structural and electrical properties of TaNi alloys using co-sputtering with different compositions and multilayer structures with different thicknesses are investigated in this work. It is found that TaNi films are amorphous for a wide range of compositions as deposited, and the films stay amorphous after annealing at 400?°C in RTA for 1?min and up to at least 700?°C depending on the composition. The amorphous films eventually crystallize into Ni, Ta, and TaNi{sub 3} phases at high enough temperature. For multilayer Ta/Ni structures, samples with individual layer thickness of 0.12?nm and 1.2?nm are amorphous as deposited due to intermixing during deposition, and stay amorphous until annealed at 500?°C. The resistivity of the films as-deposited are around 200 ??·cm. The work function of the alloy is fixed at close to the Ta work function of 4.6?eV for a wide range of compositions. This is attributed to the segregation of Ta at the metal-oxide interface, which is confirmed by XPS depth profile. Overall, the excellent thermal stability and low resistivity makes this alloy system a promising candidate for eliminating work function variation for gate last applications, as compared to crystalline Ta or TiN gates.

  18. Gate valve and motor-operator research findings

    SciTech Connect (OSTI)

    Steele, R. Jr.; DeWall, K.G.; Watkins, J.C.; Russell, M.J.; Bramwell, D.

    1995-09-01

    This report provides an update on the valve research being sponsored by the US Nuclear Regulatory Commission (NRC) and conducted at the Idaho National Engineering Laboratory (INEL). The research addresses the need to provide assurance that motor-operated valves can perform their intended safety function, usually to open or close against specified (design basis) flow and pressure loads. This report describes several important developments: Two methods for estimating or bounding the design basis stem factor (in rising-stem valves), using data from tests less severe than design basis tests; a new correlation for evaluating the opening responses of gate valves and for predicting opening requirements; an extrapolation method that uses the results of a best effort flow test to estimate the design basis closing requirements of a gate valve that exhibits atypical responses (peak force occurs before flow isolation); and the extension of the original INEL closing correlation to include low- flow and low-pressure loads. The report also includes a general approach, presented in step-by-step format, for determining operating margins for rising-stem valves (gate valves and globe valves) as well as quarter-turn valves (ball valves and butterfly valves).

  19. D-Cycle - 4-Differential -Stroke Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D-Cycle - 4-Differential -Stroke Cycle D-Cycle - 4-Differential -Stroke Cycle The D-Cycle offers the opportunity to use less fuel and gain more power while being able to be retrofit to an OEM and aftermarket engines PDF icon deer09_conti.pdf More Documents & Publications Improving Diesel Engine Sweet-spot Efficiency and Adapting it to Improve Duty-cycle MPG - plus Increasing Propulsion and Reducing Cost Two-Stroke Engines: New Frontier in Engine Efficiency Building America Technology

  20. Battery Electrode Materials with High Cycle Lifetimes

    SciTech Connect (OSTI)

    Prof. Brent Fultz

    2001-06-29

    In an effort to understand the capacity fade of nickel-metal hydride (Ni-MH) batteries, we performed a systematic study of the effects of solute additions on the cycle life of metal hydride electrodes. We also performed a series of measurements on hydrogen absorption capacities of novel carbon and graphite-based materials including graphite nanofibers and single-walled carbon nanotubes. Towards the end of this project we turned our attention to work on Li-ion cells with a focus on anode materials.

  1. Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Contolini, Robert J. (Lake Oswego, OR)

    2001-01-01

    A process for fabricating a nanofilament field emission device in which a via in a dielectric layer is self-aligned to gate metal via structure located on top of the dielectric layer. By the use of a hard mask layer located on top of the gate metal layer, inert to the etch chemistry for the gate metal layer, and in which a via is formed by the pattern from etched nuclear tracks in a trackable material, a via is formed by the hard mask will eliminate any erosion of the gate metal layer during the dielectric via etch. Also, the hard mask layer will protect the gate metal layer while the gate structure is etched back from the edge of the dielectric via, if such is desired. This method provides more tolerance for the electroplating of a nanofilament in the dielectric via and sharpening of the nanofilament.

  2. Stirling cycle engine

    DOE Patents [OSTI]

    Lundholm, Gunnar (Lund, SE)

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  3. Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Dale, Deborah J.

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  4. Nuclear Fuel Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Forest Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest Carbon Cycle Terrestrial carbon stocks above- and belowground (in humus and litter layers, woody debris, and mineral soil) are not only sensitive to physical environmental controls (e.g., temperature, precipitation, soil moisture) but also to land use history/management, disturbance, "quality" of carbon input (a reflection of plant carbon allocation and species controls), and the microbial community. The relative importance of these controls on soil carbon storage and flux can

  6. PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) | Department of Energy MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System

  7. Sandia Energy - ECIS and i-GATE: Innovation Hub Connects Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support system to accelerate the commercialization of innovative technologies related to green transportation and clean energy. There are now eight i-GATE clients developing fuel...

  8. Day Two of 2012 ARPA-E Summit Will Feature Bill Gates, Secretary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Bart Gordon, K&L Gates, Partner; Former Representative from Tennessee Stefan Heck, McKinsey & Co., Director, Leader of Global Cleantech Practice Carrie Houtman, The Dow Chemical...

  9. Bill Gates and Deputy Secretary Poneman Discuss the Energy Technology Landscape

    Broader source: Energy.gov [DOE]

    Bill Gates and Deputy Secretary of Energy Daniel Poneman discuss the future of energy technology during the twenty-second Plenary Meeting of the Nuclear Suppliers Group.

  10. Postdoctoral Research Awards Annual Research Meeting: David Lampert...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Postdoctoral Research Awards Annual Meeting Posters 2015 Peer Review Presentations-Sustainability and Strategic Analysis Quantifying Cradle-to-Farm Gate Life Cycle Impacts ...

  11. Nonadiabatic molecular orientation by polarization-gated ultrashort laser pulses

    SciTech Connect (OSTI)

    Chen Cheng; Wu Jian; Zeng Heping [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2010-09-15

    We show that the nonadiabatic orientation of diatomic polar molecules can be controlled by polarization-gated ultrashort laser pulses. By finely adjusting the time interval between two circularly polarized pulses of different wavelengths but the same helicity, the orientation direction of the molecules can be twirled. A cloverlike potential is created by using two circularly polarized laser pulses of different wavelengths and opposite helicity, leading to multidirectional molecular orientation along the potential wells, which can be well revealed by a high-order statistics metric of <>.

  12. Stirling cycle machine

    SciTech Connect (OSTI)

    Burnett, S.C.; Purcell, J.R.; Creedon, W.P.; Joshi, C.H.

    1990-06-05

    This patent describes an improvement in a Stirling cycle machine including first and second variable-volume, compression-expansion chambers containing a gas a regenerator interconnecting the chambers and for conducting the gas therebetween, and eccentric drive means for driving the first and second chambers. It comprises: the eccentric drive means comprising a pair of rotatably mounted shafts, at least one pair of eccentric disks fixed on the shafts in phase with each other, and means for causing the shafts and thereby the eccentric disks to rotate in opposite directions.

  13. Wetland (peat) Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wetland (peat) Carbon Cycle Methane (CH4) is an important greenhouse gas, twenty times more potent than CO2, but atmospheric concentrations of CH4 under future climate change are uncertain. This is in part because many climate-sensitive ecosystems release both CH4 and carbon dioxide (CO2) and it is unknown how these systems will partition future releases of carbon to the atmosphere. Ecosystem observations of CH4 emissions lack mechanistic links to the processes that govern CH4 efflux: microbial

  14. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioscience: Bioenergy, Biosecurity, and Health » Environmental Microbiology » Soil metagenomics and carbon cycling Soil metagenomics and carbon cycling Establishing a foundational understanding of the microbial and ecosystem factors that control carbon cycling to improve climate modeling and carbon management. Get Expertise Principle Investigator Cheryl Kuske Bioscience Division 505 665 4800 Email Get Expertise John Dunbar Bioscience Division Email Get Expertise Chris Yeager Bioscience

  15. Workshop on gate valve pressure locking and thermal binding

    SciTech Connect (OSTI)

    Brown, E.J.

    1995-07-01

    The purpose of the Workshop on Gate Valve Pressure Locking and Thermal Binding was to discuss pressure locking and thermal binding issues that could lead to inoperable gate valves in both boiling water and pressurized water reactors. The goal was to foster exchange of information to develop the technical bases to understand the phenomena, identify the components that are susceptible, discuss actual events, discuss the safety significance, and illustrate known corrective actions that can prevent or limit the occurrence of pressure locking or thermal binding. The presentations were structured to cover U.S. Nuclear Regulatory Commission staff evaluation of operating experience and planned regulatory activity; industry discussions of specific events, including foreign experience, and efforts to determine causes and alleviate the affects; and valve vendor experience and recommended corrective action. The discussions indicated that identifying valves susceptible to pressure locking and thermal binding was a complex process involving knowledge of components, systems, and plant operations. The corrective action options are varied and straightforward.

  16. Gated frequency-resolved optical imaging with an optical parametric amplifier

    DOE Patents [OSTI]

    Cameron, S.M.; Bliss, D.E.; Kimmel, M.W.; Neal, D.R.

    1999-08-10

    A system for detecting objects in a turbid media utilizes an optical parametric amplifier as an amplifying gate for received light from the media. An optical gating pulse from a second parametric amplifier permits the system to respond to and amplify only ballistic photons from the object in the media. 13 figs.

  17. Gated frequency-resolved optical imaging with an optical parametric amplifier

    DOE Patents [OSTI]

    Cameron, Stewart M.; Bliss, David E.; Kimmel, Mark W.; Neal, Daniel R.

    1999-01-01

    A system for detecting objects in a turbid media utilizes an optical parametric amplifier as an amplifying gate for received light from the media. An optical gating pulse from a second parametric amplifier permits the system to respond to and amplify only ballistic photons from the object in the media.

  18. Coherent molecular transistor: Control through variation of the gate wave function

    SciTech Connect (OSTI)

    Ernzerhof, Matthias

    2014-03-21

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  19. LIFE Target Fabrication Research Plan Sept 2008

    SciTech Connect (OSTI)

    Miles, R; Biener, J; Kucheyev, S; Montesanti, R; Satcher, J; Spadaccini, C; Rose, K; Wang, M; Hamza, A; Alexander, N; Brown, L; Hund, J; Petzoldt, R; Sweet, W; Goodin, D

    2008-11-10

    The target-system for the baseline LIFE fast-ignition target was analyzed to establish a preliminary estimate for the costs and complexities involved in demonstrating the technologies needed to build a prototype LIFE plant. The baseline fast-ignition target upon which this analysis was developed is shown in Figure 1.0-1 below. The LIFE target-system incorporates requirements for low-cost, high throughput manufacture, high-speed, high accuracy injection of the target into the chamber, production of sufficient energy from implosion and recovery and recycle of the imploded target material residue. None of these functions has been demonstrated to date. Existing target fabrication techniques which lead to current 'hot spot' target costs of {approx}$100,000 per target and at a production rate of 2/day are unacceptable for the LIFE program. Fabrication techniques normally used for low-cost, low accuracy consumer products such as toys must be adapted to the high-accuracy LIFE target. This will be challenge. A research program resulting is the demonstration of the target-cycle technologies needed for a prototype LIFE reactor is expected to cost {approx}$51M over the course of 5 years. The effort will result in targets which will cost an estimated $0.23/target at a rep-rate of 20 Hz or about 1.73M targets/day.

  20. A proposal for the realization of universal quantum gates via superconducting qubits inside a cavity

    SciTech Connect (OSTI)

    Obada, A.-S.F.; Hessian, H.A.; Mohamed, A.-B.A.; Community College, Salman Bin Abdulaziz University, Al-Aflaj ; Homid, Ali H.

    2013-07-15

    A family of quantum logic gates is proposed via superconducting (SC) qubits coupled to a SC-cavity. The Hamiltonian for SC-charge qubits inside a single mode cavity is considered. Three- and two-qubit operations are generated by applying a classical magnetic field with the flux. Therefore, a number of quantum logic gates are realized. Numerical simulations and calculation of the fidelity are used to prove the success of these operations for these gates. -- Highlights: •A family of quantum logic gates is proposed via SC-qubits coupled to a cavity. •Three- and two-qubit operations are generated via a classical field with the flux. •Numerical simulations and calculation of the fidelity are used to prove the success of these operations for these gates.

  1. Open cycle thermoacoustics

    SciTech Connect (OSTI)

    Reid, Robert Stowers

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  2. Stirling cycle rotary engine

    SciTech Connect (OSTI)

    Chandler, J.A.

    1988-06-28

    A Stirling cycle rotary engine for producing mechanical energy from heat generated by a heat source external to the engine, the engine including: an engine housing having an interior toroidal cavity with a central housing axis for receiving a working gas, the engine housing further having a cool as inlet port, a compressed gas outlet port, a heated compressed gas inlet port, and a hot exhaust gas outlet port at least three rotors each fixedly mounted to a respective rotor shaft and independently rotatable within the toroidal cavity about the central axis; each of the rotors including a pair of rotor blocks spaced radially on diametrically opposing sides of the respective rotor shaft, each rotor block having a radially fixed curva-linear outer surface for sealed rotational engagement with the engine housing.

  3. Fuel Cycle Technologies | Department of Energy

    Office of Environmental Management (EM)

    Initiatives Fuel Cycle Technologies Fuel Cycle Technologies Fuel Cycle Technologies Preparing for Tomorrow's Energy Demands Powerful imperatives drive the continued need for...

  4. Gas-controlled dynamic vacuum insulation with gas gate

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  5. Gas-controlled dynamic vacuum insulation with gas gate

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  6. Life Extension Program

    National Nuclear Security Administration (NNSA)

    en NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range http:nnsa.energy.govmediaroompressreleases...

  7. Life Extension Programs

    National Nuclear Security Administration (NNSA)

    B61-12 Life Extension Program Milestone: First Full-System Mechanical Environment Test Completed Successfully http:nnsa.energy.govmediaroompressreleasesb61lep

  8. Advanced regenerative absorption refrigeration cycles

    DOE Patents [OSTI]

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  9. Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  10. Minimize Boiler Short Cycling Losses

    Broader source: Energy.gov [DOE]

    This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  11. Watts Bar Operating Cycles Simulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coming in our next issue of Tech Notes: Fuel Performance Predictions with VERA Watts Bar Operating Cycles Simulated to Present Among the most important accomplishments during CASL...

  12. Organic rankine cycle fluid

    DOE Patents [OSTI]

    Brasz, Joost J.; Jonsson, Ulf J.

    2006-09-05

    A method of operating an organic rankine cycle system wherein a liquid refrigerant is circulated to an evaporator where heat is introduced to the refrigerant to convert it to vapor. The vapor is then passed through a turbine, with the resulting cooled vapor then passing through a condenser for condensing the vapor to a liquid. The refrigerant is one of CF.sub.3CF.sub.2C(O)CF(CF.sub.3).sub.2, (CF.sub.3).sub.2 CFC(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.2C(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.3C(O)CF(CG.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.5C(O)CF.sub.3, CF.sub.3CF.sub.2C(O)CF.sub.2CF.sub.2CF.sub.3, CF.sub.3C(O)CF(CF.sub.3).sub.2.

  13. The Photosynthetic Cycle

    DOE R&D Accomplishments [OSTI]

    Calvin, Melvin

    1955-03-21

    A cyclic sequence of transformations, including the carboxylation of RuDP (ribulose diphosphate) and its re-formation, has been deduced as the route for the creation of reduced carbon compounds in photosynthetic organisms. With the demonstration of RuDP as substrate for the carboxylation in a cell-free system, each of the reactions has now been carried out independently in vitro. Further purification of this last enzyme system has confirmed the deduction that the carboxylation of RuDP leads directly to the two molecules of PGA (phosphoglyceric acid) involving an internal dismutation and suggesting the name "carboxydismutase" for the enzyme. As a consequence of this knowledge of each of the steps in the photosynthetic CO{sub 2} reduction cycle, it is possible to define the reagent requirements to maintain it. The net requirement for the reduction of one molecule of CO{sub 2} is four equivalents of [H]and three molecules of ATP (adenine triphosphate). These must ultimately be supplied by the photochemical reaction. Some possible ways in which this may be accomplished are discussed.

  14. SU-D-BRE-02: Development and Commissioning of A Gated Spot Scanning Proton Beam Therapy System with Real-Time Tumor-Tracking

    SciTech Connect (OSTI)

    Umegaki, K; Matsuura, T.; Takao, S.; Nihongi, H.; Yamada, T.; Miyamoto, N.; Shimizu, S.; Shirato, H.; Matsuda, K.; Nakamura, F.; Umezawa, M.; Hiramoto, K.

    2014-06-01

    Purpose: A novel Proton Beam Therapy system has been developed by integrating Real-Time Tumor-Tracking (RTRT) and discrete spot scanning techniques. The system dedicated for spot scanning delivers significant advantages for both clinical and economical points of view. The system has the ability to control dose distribution with spot scanning beams and to gate the beams from the synchrotron to irradiate moving tumors only when the actual positions of them are within the planned position. Methods: The newly designed system consists of a synchrotron, beam transport systems, a compact and rotating gantry system with robotic couch and two orthogonal sets of X-ray fluoroscopes. The fully compact design of the system has been realized by reducing the maximum energy of the beam to 220MeV, corresponding to 30g/cm2 range and the number of circulating protons per synchrotron operation cycle, due to higher beam utilization efficiency in spot scanning. To improve the irradiation efficiency in the integration of RTRT and spot scanning, a new control system has been developed to enable multiple gated irradiation per operation cycle according to the gating signals. After the completion of the equipment installation, beam tests and commissioning has been successfully performed. Results: The basic performances and beam characteristics through the synchrotron accelerator to iso-center have been confirmed and the performance test of the irradiation nozzle and whole system has been appropriately completed. CBCT image has been checked and sufficient quality was obtained. RTRT system has been demonstrated and realized accurate dose distributions for moving targets. Conclusion: The gated spot scanning Proton Beam Therapy system with Real-Time Tumor-Tracking has been developed, successfully installed and tested. The new system enables us to deliver higher dose to the moving target tumors while sparing surrounding normal tissues and to realize the compact design of the system and facility by maximizing the efficiency of proton beam utilization. This research is granted by the Japan Society for the Promotion of Science(JSPS) through the “Funding Program for World-Leading Innovative R and D on Science and Technology(FIRST Program)”, initiated by the Council for Science and Technology Policy(CSTP)

  15. Organic field-effect transistor nonvolatile memories utilizing sputtered C nanoparticles as nano-floating-gate

    SciTech Connect (OSTI)

    Liu, Jie; Liu, Chang-Hai; She, Xiao-Jian; Sun, Qi-Jun; Gao, Xu; Wang, Sui-Dong

    2014-10-20

    High-performance organic field-effect transistor nonvolatile memories have been achieved using sputtered C nanoparticles as the nano-floating-gate. The sputtered C nano-floating-gate is prepared with low-cost material and simple process, forming uniform and discrete charge trapping sites covered by a smooth and complete polystyrene layer. The devices show large memory window, excellent retention capability, and programming/reading/erasing/reading endurance. The sputtered C nano-floating-gate can effectively trap both holes and electrons, and it is demonstrated to be suitable for not only p-type but also n-type organic field-effect transistor nonvolatile memories.

  16. VIDEO: Bill Gates and Secretary Chu Chat on the Future of Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bill Gates and Secretary Chu Chat on the Future of Energy VIDEO: Bill Gates and Secretary Chu Chat on the Future of Energy March 5, 2012 - 1:24pm Addthis Secretary Chu sits down with Microsoft Founder and Chairman Bill Gates at the 2012 ARPA-E Energy Innovation Summit. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Last week, attendees at the 2012 ARPA-E Energy Innovation Summit heard from a variety of leaders from across the

  17. Design of a spin-wave majority gate employing mode selection

    SciTech Connect (OSTI)

    Klingler, S. Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V.

    2014-10-13

    The design of a microstructured, fully functional spin-wave majority gate is presented and studied using micromagnetic simulations. This all-magnon logic gate consists of three-input waveguides, a spin-wave combiner, and an output waveguide. In order to ensure the functionality of the device, the output waveguide is designed to perform spin-wave mode selection. We demonstrate that the gate evaluates the majority of the input signals coded into the spin-wave phase. Moreover, the all-magnon data processing device is used to perform logic AND-, OR-, NAND-, and NOR- operations.

  18. The significance of Li-ion batteries in electric vehicle life...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction Title The significance of Li-ion batteries in...

  19. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-07-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  20. Thermal and Mechanical Design Aspects of the LIFE Engine

    SciTech Connect (OSTI)

    Abbott, R P; Gerhard, M A; Latkowski, J F; Kramer, K J; Morris, K R; Peterson, P F; Seifried, J E

    2008-10-25

    The Laser Inertial confinement fusion - Fission Energy (LIFE) engine encompasses the components of a LIFE power plant responsible for converting the thermal energy of fusion and fission reactions into electricity. The design and integration of these components must satisfy a challenging set of requirements driven by nuclear, thermal, geometric, structural, and materials considerations. This paper details a self-consistent configuration for the LIFE engine along with the methods and technologies selected to meet these stringent requirements. Included is discussion of plant layout, coolant flow dynamics, fuel temperatures, expected structural stresses, power cycle efficiencies, and first wall survival threats. Further research and to understand and resolve outstanding issues is also outlined.

  1. Fuel Cycle Research and Development Advanced Fuels Campaign

    Office of Environmental Management (EM)

    Advanced Fuels Campaign In-reactor Instrumentation Overview Heather J. MacLean Chichester, PhD Irradiation Testing Technical Lead Advanced Fuels Campaign 28 October 2015 Advanced Sensors and Instrumentation 2015 NE I&C Review Webinar INL/MIS-15-37102 FCRD Advanced Fuels Campaign nïź Develop near-term accident tolerant LWR fuel technology nïź Perform research and development of long-term transmutation options 2 ATF AFC Fuel Development Life Cycle Irradiation Testing Performance Assessment

  2. Battery Life Data Analysis

    Energy Science and Technology Software Center (OSTI)

    2008-07-01

    The FreedomCar Partnership has established life goals for batteries. Among them is a 15 year calendar life. The software and the underlying methodology attempt to predict cell and battery life using, at most, two years of test data. The software uses statistical models based on data from accelerated aging experiments to estimate cell life. The life model reflects the average cell performance under a given set of stress conditions with time. No specific form ofmore » the life model is assumed. The software will fit the model to experimental data. An error model, reflecting the cell-to-cell variability and measurement errors, is included in the software. Monte Carlo simulations, based on the developed models, are used to assess Lack-of-fit and develop uncertainty limis for the average cell life. The software has three operating modes: fit only, fit and simulation and simulation only. The user is given these options by means of means and alert boxes.« less

  3. Self-powered Gating and Other Improvements for Screening-engineered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Self-powered Gating and Other Improvements for Screening-engineered Field-effect Photovoltaics Field-effect P-N Junctions for Low Cost, High Efficiency Solar Cells and...

  4. Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy

    SciTech Connect (OSTI)

    Castello, Marco; Diaspro, Alberto; Vicidomini, Giuseppe

    2014-12-08

    Time-gated detection, namely, only collecting the fluorescence photons after a time-delay from the excitation events, reduces complexity, cost, and illumination intensity of a stimulated emission depletion (STED) microscope. In the gated continuous-wave- (CW-) STED implementation, the spatial resolution improves with increased time-delay, but the signal-to-noise ratio (SNR) reduces. Thus, in sub-optimal conditions, such as a low photon-budget regime, the SNR reduction can cancel-out the expected gain in resolution. Here, we propose a method which does not discard photons, but instead collects all the photons in different time-gates and recombines them through a multi-image deconvolution. Our results, obtained on simulated and experimental data, show that the SNR of the restored image improves relative to the gated image, thereby improving the effective resolution.

  5. Vehicle Technologies Office Merit Review 2014: DOE GATE Center of Excellence in Sustainable Vehicle Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Clemson University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DOE GATE Center of...

  6. Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence in Sustainable Vehicle Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Clemson University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE center of excellence...

  7. Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient Vehicles for Sustainable Mobility

    Broader source: Energy.gov [DOE]

    Presentation given by Ohio State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE: energy efficient...

  8. Vehicle Technologies Office Merit Review 2015: GATE: Energy Efficient Vehicles for Sustainable Mobility

    Broader source: Energy.gov [DOE]

    Presentation given by The Ohio State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE: energy...

  9. Vehicle Technologies Office Merit Review 2015: GATE Center for Electric Drive Transportation

    Broader source: Energy.gov [DOE]

    Presentation given by Regents University of Michigan at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  10. Technical Feasibility Assessment of LED Roadway Lighting on the Golden Gate Bridge

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2012-09-01

    Subsequent to preliminary investigations by the Golden Gate Bridge Highway & Transportation District (GGB), in coordination with Pacific Gas & Electric (PG&E), the GATEWAY Demonstration program was asked to evaluate the technical feasibility of replacing existing roadway lighting on the bridge with products utilizing LED technology. GGB and PG&E also indicated interest in induction (i.e., electrodeless fluorescent) technology, since both light source types feature rated lifetimes significantly exceeding those of the existing high-pressure sodium (HPS) and low-pressure sodium (LPS) products. The goal of the study was to identify any solutions which would reduce energy use and maintenance without compromising the quantity or quality of existing illumination. Products used for roadway lighting on the historic bridge must be installed within the existing amber-lensed shoebox-style luminaire housings. It was determined that induction technology does not appear to represent a viable alternative for the roadway luminaires in this application; any energy savings would be attributable to a reduction in light levels. Although no suitable LED retrofit kits were identified for installation within existing luminaire housings, several complete LED luminaires were found to offer energy savings of 6-18%, suggesting custom LED retrofit kits could be developed to match or exceed the performance of the existing shoeboxes. Luminaires utilizing ceramic metal halide (CMH) were also evaluated, and some were found to offer 28% energy savings, but these products might actually increase maintenance due to the shorter rated lamp life. Plasma technology was evaluated, as well, but no suitable products were identified. Analysis provided in this report was completed in May 2012. Although LED technologies are expected to become increasingly viable over time, and product mock-ups may reveal near-term solutions, some options not currently considered by GGB may ultimately merit evaluation. For example, it would be preferable in terms of performance to simply replace existing luminaires (some of which may already be nearing end of life) with fully-integrated LED or CMH luminaires rather than replacing internal components. Among other benefits, this would allow reputable manufacturers to offer standard warranties for their products. Similarly, the amber lenses might be reformulated such that they do not render white light sources in a greenish cast, thereby allowing the use of off-the-shelf LED or CMH products. Last, it should be noted that the existing amber-lensed shoeboxes bear no daytime resemblance to the LPS luminaires originally used to light the roadway.

  11. Gate-tunable exchange coupling between cobalt clusters on graphene (Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Article) | DOE PAGES Gate-tunable exchange coupling between cobalt clusters on graphene Title: Gate-tunable exchange coupling between cobalt clusters on graphene Authors: Chen, Hua ; Niu, Qian ; Zhang, Zhenyu ; MacDonald, Allan H. Publication Date: 2013-04-10 OSTI Identifier: 1104471 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 87; Journal Issue: 14; Journal ID: ISSN 1098-0121 Publisher: American Physical Society

  12. Gate-tunable exchange coupling between cobalt clusters on graphene (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES DOE PAGES Search Results Publisher's Accepted Manuscript: Gate-tunable exchange coupling between cobalt clusters on graphene Title: Gate-tunable exchange coupling between cobalt clusters on graphene Authors: Chen, Hua ; Niu, Qian ; Zhang, Zhenyu ; MacDonald, Allan H. Publication Date: 2013-04-10 OSTI Identifier: 1104471 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 87; Journal Issue: 14; Journal ID:

  13. Traffic within the Cytochrome b[subscript 6]f Lipoprotein Complex: Gating

    Office of Scientific and Technical Information (OSTI)

    of the Quinone Portal (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Traffic within the Cytochrome b[subscript 6]f Lipoprotein Complex: Gating of the Quinone Portal Citation Details In-Document Search Title: Traffic within the Cytochrome b[subscript 6]f Lipoprotein Complex: Gating of the Quinone Portal Authors: Hasan, S. Saif ; Proctor, Elizabeth A. ; Yamashita, Eiki ; Dokholyan, Nikolay V. ; Cramer, William A. [1] ; Purdue) [2] ; Osaka) [2] + Show Author

  14. Vehicle Technologies Office Merit Review 2014: Penn State DOE Graduate GATE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program for In-Vehicle, High-Power Energy Storage Systems | Department of Energy Penn State DOE Graduate GATE Program for In-Vehicle, High-Power Energy Storage Systems Vehicle Technologies Office Merit Review 2014: Penn State DOE Graduate GATE Program for In-Vehicle, High-Power Energy Storage Systems Presentation given by Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Penn State

  15. Life Extension Programs

    National Nuclear Security Administration (NNSA)

    in the U.S. and abroad.

    B61-12 Life Extension Program Undergoes First Full-Scale Wind Tunnel Test http:www.nnsa.energy.govmediaroompressreleaseswindtunnel

  16. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect (OSTI)

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  17. Theory of signal and noise in double-gated nanoscale electronic pH sensors

    SciTech Connect (OSTI)

    Go, Jonghyun; Nair, Pradeep R.; Alam, Muhammad A.

    2012-08-01

    The maximum sensitivity of classical nanowire (NW)-based pH sensors is defined by the Nernst limit of 59 mV/pH. For typical noise levels in ultra-small single-gated nanowire sensors, the signal-to-noise ratio is often not sufficient to resolve pH changes necessary for a broad range of applications. Recently, a new class of double-gated devices was demonstrated to offer apparent 'super-Nernstian' response (>59 mV/pH) by amplifying the original pH signal through innovative biasing schemes. However, the pH-sensitivity of these nanoscale devices as a function of biasing configurations, number of electrodes, and signal-to-noise ratio (SNR) remains poorly understood. Even the basic question such as 'Do double-gated sensors actually resolve smaller changes in pH compared to conventional single-gated sensors in the presence of various sources of noise?' remains unanswered. In this article, we provide a comprehensive numerical and analytical theory of signal and noise of double-gated pH sensors to conclude that, while the theoretical lower limit of pH-resolution does not improve for double-gated sensors, this new class of sensors does improve the (instrument-limited) pH resolution.

  18. Long life lithium batteries with stabilized electrodes

    DOE Patents [OSTI]

    Amine, Khalil (Downers Grove, IL); Liu, Jun (Naperville, IL); Vissers, Donald R. (Naperville, IL); Lu, Wenquan (Darien, IL)

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  19. Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) (Conference...

    Office of Scientific and Technical Information (OSTI)

    Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) Citation Details In-Document Search Title: Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) Paul Alivisatos, LBNL Director...

  20. Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wu, H

    2011-08-18

    Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

  1. Carbon Cycle Engineering | Open Energy Information

    Open Energy Info (EERE)

    Cycle Engineering Jump to: navigation, search Name: Carbon Cycle Engineering Address: 13725 Dutch Creek Road Place: Athens, Ohio Zip: 45701 Sector: Biofuels, Biomass, Efficiency,...

  2. New Cycle Capital LLC | Open Energy Information

    Open Energy Info (EERE)

    Cycle Capital LLC Jump to: navigation, search Name: New Cycle Capital, LLC. Place: San Francisco, California Zip: 94103 Product: San Francisco-based venture capitalist firm...

  3. Fuel Cycle Research and Development Presentation Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion to provide options ...

  4. Wire like link for cycle reproducible and cycle accurate hardware accelerator

    DOE Patents [OSTI]

    Asaad, Sameh; Kapur, Mohit; Parker, Benjamin D

    2015-04-07

    First and second field programmable gate arrays are provided which implement first and second blocks of a circuit design to be simulated. The field programmable gate arrays are operated at a first clock frequency and a wire like link is provided to send a plurality of signals between them. The wire like link includes a serializer, on the first field programmable gate array, to serialize the plurality of signals; a deserializer on the second field programmable gate array, to deserialize the plurality of signals; and a connection between the serializer and the deserializer. The serializer and the deserializer are operated at a second clock frequency, greater than the first clock frequency, and the second clock frequency is selected such that latency of transmission and reception of the plurality of signals is less than the period corresponding to the first clock frequency.

  5. Work/Life Balance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workplace » Work/Life Balance /careers/_assets/images/careers-icon.jpg Work/Life Balance Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. What our employees say: Health & Wellness "The Lab pays 80 percent of my family's medical premiums with Blue Cross Blue Shield of New Mexico." Retirement & Savings "With the Lab matching my

  6. Cycling-Induced Changes in the Entropy Profiles of Lithium Cobalt Oxide Electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hudak, N. S.; Davis, L. E.; Nagasubramanian, G.

    2014-12-09

    Entropy profiles of lithium cobalt oxide (LiCoO2) electrodes were measured at various stages in the cycle life to examine performance degradation and cycling-induced changes, or lack thereof, in thermodynamics. LiCoO2 electrodes were cycled at C/2 rate in half-cells (vs. lithium anodes) up to 20 cycles or C/5 rate in full cells (vs. MCMB anodes) up to 500 cycles. The electrodes were then subjected to entropy measurements (?E/?T, where E is open-circuit potential and T is temperature) in half-cells at regular intervals over the approximate range 0.5 ? x ? 1 in LixCoO2. Despite significant losses in capacity upon cycling, neithermore »cycling rate resulted in any change to the overall shape of the entropy profile relative to an uncycled electrode, indicating retention of the basic LiCoO2 structure, lithium insertion mechanism, and thermodynamics. This confirms that cycling-induced performance degradation in LiCoO2 electrodes is primarily caused by kinetic barriers that increase with cycling. In the case of electrodes cycled at C/5, there was a subtle, quantitative, and gradual change in the entropy profile in the narrow potential range of the hexagonal-to-monoclinic phase transition. The observed change is indicative of a decrease in the intralayer lithium ordering that occurs at these potentials, and it demonstrates that a cyclinginduced structural disorder accompanies the kinetic degradation mechanisms.« less

  7. The Use of Water Vapor as a Refrigerant: Impact of Cycle Modifications on Commercial Viability

    SciTech Connect (OSTI)

    Brandon F. Lachner, Jr.; Gregory F. Nellis; Douglas T. Reindl

    2004-08-30

    This project investigated the economic viability of using water as the refrigerant in a 1000-ton chiller application. The most attractive water cycle configuration was found to be a flash-intercooled, two-stage cycle using centrifugal compressors and direct contact heat exchangers. Component level models were developed that could be used to predict the size and performance of the compressors and heat exchangers in this cycle as well as in a baseline, R-134a refrigeration cycle consistent with chillers in use today. A survey of several chiller manufacturers provided information that was used to validate and refine these component models. The component models were integrated into cycle models that were subsequently used to investigate the life-cycle costs of both an R-134a and water refrigeration cycle. It was found that the first cost associated with the water as a refrigerant cycle greatly exceeded the savings in operating costs associated with its somewhat higher COP. Therefore, the water refrigeration cycle is not an economically attractive option to today's R-134a refrigeration system. There are a number of other issues, most notably the requirements associated with purging non-condensable gases that accumulate in a direct contact heat exchanger, which will further reduce the economic viability of the water cycle.

  8. Charge noise analysis of metal oxide semiconductor dual-gate Si/SiGe quantum point contacts

    SciTech Connect (OSTI)

    Kamioka, J.; Oda, S.; Kodera, T.; Takeda, K.; Obata, T.; Tarucha, S.

    2014-05-28

    The frequency dependence of conductance noise through a gate-defined quantum point contact fabricated on a Si/SiGe modulation doped wafer is characterized. The 1/f{sup 2} noise, which is characteristic of random telegraph noise, is reduced by application of a negative bias on the global top gate to reduce the local gate voltage. Direct leakage from the large global gate voltage also causes random telegraph noise, and therefore, there is a suitable point to operate quantum dot measurement.

  9. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  10. Life With Energy

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will describe ways in which technology affects the environment, both negatively and positively, and identify different forms of energy and their advantages/disadvantages. They will also determine the benefits as well as the environmental harms of using energy to improve our quality of life.

  11. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    SciTech Connect (OSTI)

    Erickson, Paul

    2012-05-31

    This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davisñ€™s existing GATE centers have become the campusñ€™s research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

  12. Water gate array for current flow or tidal movement pneumatic harnessing system

    DOE Patents [OSTI]

    Gorlov, Alexander M.

    1991-01-01

    The invention, which provides a system for harnessing power from current flow or tidal movement in a body of water, comprises first and second hydro-pneumatic chambers each having ingress and egress below the water surface near the river or ocean floor and water gates operative to open or seal the ports to the passage of water. In an exemplary embodiment, the gates are sychronized by shafts so that the ingress ports of each chamber are connected to the egress ports of each other chamber. Thus, one set of gates is closed, while the other is open, thereby allowing water to flow into one chamber and build air pressure therein and allowing water to flow out of the other chamber and create a partial vacuum therein. A pipe connects the chambers, and an air turbine harnesses the air movement within the pipe. When water levels are equilibrated, the open set of gates is closed by a counterweight, and the other set is allowed to open by natural force of the water differential. The water gates may be comprised of a plurality of louvers which are ganged for simultaneous opening and closing. The system is designed to operate with air turbines or other pneumatic devices. Its design minimizes construction cost and environmental impact, yet provides a clean renewable energy source.

  13. SNMR pulse sequence phase cycling

    DOE Patents [OSTI]

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  14. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  15. Simple ocean carbon cycle models

    SciTech Connect (OSTI)

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  16. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    SciTech Connect (OSTI)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  17. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    SciTech Connect (OSTI)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  18. Fuel-Cycle Energy and Emissions Analysis with the GREET Model | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fuel-Cycle Energy and Emissions Analysis with the GREET Model Fuel-Cycle Energy and Emissions Analysis with the GREET Model 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ftp_02_wang.pdf More Documents & Publications GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American

  19. GAX absorption cycle design process

    SciTech Connect (OSTI)

    Priedeman, D.K.; Christensen, R.N.

    1999-07-01

    This paper presents an absorption system design process that relies on computer simulations that are validated by experimental findings. An ammonia-water absorption heat pump cycle at 3 refrigeration tons (RT) and chillers at 3.3 RT and 5 RT (10.5 kW, 11.6 kW, and 17.6 kW) were initially modeled and then built and tested. The experimental results were used to calibrate both the cycle simulation and the component simulations, yielding computer design routines that could accurately predict component and cycle performance. Each system was a generator-absorber heat exchange (GAX) cycle, and all were sized for residential and light commercial use, where very little absorption equipment is currently used. The specific findings of the 5 RT (17.6 kW) chiller are presented. Modeling incorporated a heat loss from the gas-fired generator and pressure drops in both the evaporator and absorber. Simulation results and experimental findings agreed closely and validated the modeling method and simulation software.

  20. Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate

    DOE Patents [OSTI]

    Sappey, Andrew D. (Golden, CO)

    1998-04-14

    Optical imaging through turbid media is demonstrated using a degenerate four-wave mixing correlation time gate. An apparatus and method for detecting ballistic and/or snake light while rejecting unwanted diffusive light for imaging structures within highly scattering media are described. Degenerate four-wave mixing (DFWM) of a doubled YAG laser in rhodamine 590 is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore has lost memory of the structures within the scattering medium. Images have been obtained of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye, which demonstrates the utility of DFWM for imaging through turbid media. Use of DFWM as an ultrafast time gate for the detection of ballistic and/or snake light in optical mammography is discussed.

  1. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    SciTech Connect (OSTI)

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. In addition, the ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems1-10.But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries6,11–17, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable.Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state.Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping.These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  2. PIA - Savannah River Nuclear Solution (SRNS) Procurement Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (HRMS) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)

  3. Fuel Cycle Research and Development Program

    Office of Environmental Management (EM)

    Development Program Presentation to Office of Environmental Management Tank Waste Corporate Board James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission Changes from the Former Advanced Fuel Cycle Initiative The Science-Based Approach Key Collaborators Budget History Program Elements Summary July 29, 2009 Fuel Cycle Research and Development DM 195665 3 Fuel Cycle

  4. A spin-wave logic gate based on a width-modulated dynamic magnonic crystal

    SciTech Connect (OSTI)

    Nikitin, Andrey A.; Ustinov, Alexey B.; Semenov, Alexander A.; Kalinikos, Boris A.; Chumak, Andrii V.; Serga, Alexander A.; Vasyuchka, Vitaliy I.; Hillebrands, Burkard; Lähderanta, Erkki

    2015-03-09

    An electric current controlled spin-wave logic gate based on a width-modulated dynamic magnonic crystal is realized. The device utilizes a spin-wave waveguide fabricated from a single-crystal Yttrium Iron Garnet film and two conducting wires attached to the film surface. Application of electric currents to the wires provides a means for dynamic control of the effective geometry of waveguide and results in a suppression of the magnonic band gap. The performance of the magnonic crystal as an AND logic gate is demonstrated.

  5. ARPA-E Announces 2012 Energy Innovation Summit Featuring Bill Gates, Fred

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smith and Lee Scott | Department of Energy 2012 Energy Innovation Summit Featuring Bill Gates, Fred Smith and Lee Scott ARPA-E Announces 2012 Energy Innovation Summit Featuring Bill Gates, Fred Smith and Lee Scott September 9, 2011 - 9:25am Addthis New York, NY - The U.S. Department of Energy's Advanced Research Projects Agency - Energy (ARPA-E) Director, Arun Majumdar, announced yesterday that the Agency will hold its third annual ARPA-E Energy Innovation Summit from February 27 - 29, 2012

  6. Charging dynamics of a floating gate transistor with site-controlled quantum dots

    SciTech Connect (OSTI)

    Maier, P. Hartmann, F.; Emmerling, M.; Schneider, C.; Höfling, S.; Kamp, M.; Worschech, L.

    2014-08-04

    A quantum dot memory based on a GaAs/AlGaAs quantum wire with site-controlled InAs quantum dots was realized by means of molecular beam epitaxy and etching techniques. By sampling of different gate voltage sweeps for the determination of charging and discharging thresholds, it was found that discharging takes place at short time scales of ?s, whereas several seconds of waiting times within a distinct negative gate voltage range were needed to charge the quantum dots. Such quantum dot structures have thus the potential to implement logic functions comprising charge and time dependent ingredients such as counting of signals or learning rules.

  7. University of Illinois at Urbana-Champaigns GATE Center for Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Bio-Fuel Combustion Engines | Department of Energy Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ti_05_lee.pdf More Documents & Publications University of Illinois at Urbana-Champaign's

  8. Day Two of 2012 ARPA-E Summit Will Feature Bill Gates, Secretary Chu and

    Office of Environmental Management (EM)

    America's Top Energy Thought Leaders | Department of Energy Two of 2012 ARPA-E Summit Will Feature Bill Gates, Secretary Chu and America's Top Energy Thought Leaders Day Two of 2012 ARPA-E Summit Will Feature Bill Gates, Secretary Chu and America's Top Energy Thought Leaders February 28, 2012 - 7:02am Addthis Washington D.C. - This week, the Advanced Research Projects Agency - Energy (ARPA-E) is hosting its third annual Energy Innovation Summit, which is designed to unite key players from

  9. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect (OSTI)

    Ottinger, K.; Maldonado, G.I.

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  10. Fuel-cycle assessment of selected bioethanol production.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel, farming consumes most of the fossil fuel in the life cycle of corn stover-based ethanol.

  11. LIFE IC | Open Energy Information

    Open Energy Info (EERE)

    Zip: S60 5WG Product: LIFE-IC is a UK national resource centre for the development of all new energy technology innovations. References: LIFE-IC1 This article is a stub. You can...

  12. Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Options Catalog - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  13. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  14. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  15. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  16. Structural and electrical characterization of CoTiN metal gates

    SciTech Connect (OSTI)

    Wongpiya, Ranida; Ouyang, Jiaomin; Chung, Chia-Jung; Duong, Duc T.; Clemens, Bruce; Deal, Michael; Nishi, Yoshio

    2015-02-21

    As the gate size continues to decrease in nanoscale transistors, having metal gates with amorphous or near amorphous structures can potentially reduce grain-induced work function variation. Furthermore, amorphous materials are known to have superior diffusion barrier properties, which can help prevent work function change due to the diffusion of metals in contact with the gate. In this work we show that with the addition of cobalt, thin films of polycrystalline TiN become more amorphous with a smaller grain size. Co{sub x}(TiN){sub 1-x} films, where x?=?60–80%, appear to consist of nanocrystals embedded in an amorphous matrix, and are thermally stable with no significant crystallization up to an annealing temperature of at least 600?°C. Reducing the nitrogen gas flow ratio during sputter deposition from 9% to 2.5% further decreases the films' crystallinity, which is apparent by more sparse and even smaller nanocrystals. In addition to being partially amorphous, these CoTiN films also exhibit good thermal stability, low resistivity, low roughness, and have the potential for atomic layer deposition compatibility. Even though these materials are not completely amorphous, their small crystal size and amorphous matrix can potentially reduce work function variation and improve their diffusion barrier property. These properties make CoTiN a good candidate as a gate material for future nanoelectronic devices and technology.

  17. Performance of a 512 x 512 Gated CMOS Imager with a 250 ps Exposure Time

    SciTech Connect (OSTI)

    Teruya, A T; Moody, J D; Hsing, W W; Brown, C G; Griffin, M; Mead, A S

    2012-10-01

    We describe the performance of a 512x512 gated CMOS read out integrated circuit (ROIC) with a 250 ps exposure time. A low-skew, H-tree trigger distribution system is used to locally generate individual pixel gates in each 8x8 neighborhood of the ROIC. The temporal width of the gate is voltage controlled and user selectable via a precision potentiometer. The gating implementation was first validated in optical tests of a 64x64 pixel prototype ROIC developed as a proof-of-concept during the early phases of the development program. The layout of the H-Tree addresses each quadrant of the ROIC independently and admits operation of the ROIC in two modes. If “common mode” triggering is used, the camera provides a single 512x512 image. If independent triggers are used, the camera can provide up to four 256x256 images with a frame separation set by the trigger intervals. The ROIC design includes small (sub-pixel) optical photodiode structures to allow test and characterization of the ROIC using optical sources prior to bump bonding. Reported test results were obtained using short pulse, second harmonic Ti:Sapphire laser systems operating at ?~ 400 nm at sub-ps pulse widths.

  18. Multiqubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Witzel, Wayne M.; Montaño, InÚs; Muller, Richard P.; Carroll, Malcolm S.

    2015-08-19

    In this study, we present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009)], we require a robust operating point (sweet spot) in control space where the qubits interactmore » with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. This system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Putting this all together, we present a robust universal gate set for quantum computation.« less

  19. Multi-qubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Witzel, Wayne; Montano, Ines; Muller, Richard P.; Carroll, Malcolm S.

    2015-08-19

    In this paper, we present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009)], we require a robust operating point (sweet spot) in control space where the qubits interactmore » with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. Furthermore, this system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Thus, putting this all together, we present a robust universal gate set for quantum computation.« less

  20. Method and system for measuring gate valve clearances and seating force

    DOE Patents [OSTI]

    Casada, D.A.; Haynes, H.D.; Moyers, J.C.; Stewart, B.K.

    1996-01-30

    Valve clearances and seating force, as well as other valve operational parameters, are determined by measuring valve stem rotation during opening and closing operations of a translatable gate valve. The magnitude of the stem rotation, and the relative difference between the stem rotation on opening and closing provides valuable data on the valve internals in a non-intrusive manner. 8 figs.