National Library of Energy BETA

Sample records for gate imports wellhead

  1. Natural Gas Wellhead Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Production Imputed Wellhead Value Wellhead Price Marketed Production Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes ...

  2. Mudline subsea wellhead system

    SciTech Connect (OSTI)

    Milberger, L.J.; Thames, E.E.

    1993-08-31

    In a subsea wellhead system, an improved means is described for allowing the well to be drilled with a mudline suspension system and completed with a subsea pressure control system, comprising in combination: an outer wellhead housing for location on a subsea floor, having a lower end adapted to be secured to a conductor pipe extending into the well; conductor connector means for releasably securing a string of conductor riser to the outer wellhead housing to extend to the surface; a cement return port extending through the outer wellhead housing; an inner wellhead housing having a lower end adapted to be secured to a string of outer casing, the inner wellhead housing having a bore containing an internal landing shoulder; outer casing connector means for connecting the inner wellhead housing to outer casing riser and for lowering the outer casing riser and inner wellhead housing through the conductor riser with the inner wellhead housing landing in the outer wellhead housing; seal means for sealing the inner wellhead housing to the outer wellhead housing above the cement return port; a first casing hanger having an internal mudline latch profile; intermediate casing connector means; a second casing hanger having an external latch that latches into the internal mudline latch profile in the first casing hanger; inner casing connector means; and the conductor riser, outer casing riser, intermediate casing riser, and inner casing riser allowing the well to be drilled with a mudline suspension system and pressure control equipment at the surface, the inner casing connector means, intermediate casing connector means, outer casing connector means, and conductor connector means being subsequently releasable to remove the inner casing riser, intermediate casing riser, outer casing riser and conductor riser for subsea pressure control completion.

  3. Simplified subsea production wellhead

    SciTech Connect (OSTI)

    Lewis, H.R.

    1980-10-28

    A simplified subsea production wellhead which permits (1) pumpdown tool operations for routine well maintenance and (2) vertical entry to the wellbore for major workover operations. The wellhead can be lowered by the production pipeline to a wellhead site on the sea floor. The production wellhead includes a diverter spool for releasably attaching to a subsea well. Pumpdown tools can be used with the diverter spool. If vertical entry of the subsea well is required, the diverter spool can be released, raised and moved horizontally to one side of the subsea well, giving vertical entry. After workover operations, the diverter spool is again moved over the subsea well and reattached.

  4. Subsea wellhead seal assembly

    SciTech Connect (OSTI)

    Gullion, S.D.

    1988-07-26

    An annular subsea wellhead seal assembly is described for sealing against the walls in a subsea wellhead annulus above a landing seat at the lower end of the annulus comprising: an annular body having an outwardly and downwardly flaring outer skirt and an inwardly and downwardly flaring inner skirt extending from it slower surface, a landing ring having lower landing surface for landing on a landing seat at the lower end of the subsea wellhead annulus in which the assembly is to seal, and an upper flat reaction surface which is positioned immediately under and engagable with the lower ends of the skirts; and means connecting the body and the landing ring for relative movement toward each other; downward movement of the body with respect to the landing ring spreading the skirts outward and inward, respectively, into a substantially horizontal digging engagement set position with the walls of the annulus to be sealed.

  5. Natural Gas Wellhead Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price Marketed Production Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. NA NA NA NA NA NA 1973-2016

  6. Wellhead with non-ferromagnetic materials

    DOE Patents [OSTI]

    Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2009-05-19

    Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.

  7. West Virginia Natural Gas Wellhead Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) West Virginia Natural Gas Wellhead Price ... Referring Pages: Natural Gas Wellhead Price West Virginia Natural Gas Prices Natural Gas ...

  8. New York Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) New York Natural Gas Wellhead Price ... Referring Pages: Natural Gas Wellhead Price New York Natural Gas Prices Natural Gas ...

  9. New Mexico Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Wellhead Price ... Referring Pages: Natural Gas Wellhead Price New Mexico Natural Gas Prices Natural Gas ...

  10. North Dakota Natural Gas Wellhead Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Wellhead Price ... Referring Pages: Natural Gas Wellhead Price North Dakota Natural Gas Prices Natural Gas ...

  11. Natural Gas Wellhead Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  12. Virginia Quantity of Production Associated with Reported Wellhead...

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Virginia Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) ...

  13. Utah Quantity of Production Associated with Reported Wellhead...

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Utah Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade ...

  14. New York Quantity of Production Associated with Reported Wellhead...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) New ... Quantity of Natural Gas Production Associated with Reported Wellhead Value New York ...

  15. New Mexico Quantity of Production Associated with Reported Wellhead...

    Gasoline and Diesel Fuel Update (EIA)

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) New ... Quantity of Natural Gas Production Associated with Reported Wellhead Value New Mexico ...

  16. Imputed Wellhead Value of Natural Gas Marketed Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Thousand Dollars) Data Series: Quantity of Production Imputed Wellhead Value Wellhead Price Marketed Production Period: Annual Download Series History Download Series History...

  17. U.S. Quantity of Production Associated with Reported Wellhead...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) U.S. Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade...

  18. Nevada Natural Gas Wellhead (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Nevada Natural Gas Wellhead Value and Marketed Production

  19. Seal integrity and connector clamping force at the subsea wellhead

    SciTech Connect (OSTI)

    Owens, J.H.

    1983-05-01

    The importance of the relative stiffness of the hydraulic connector and the wellhead hub for subsea wellhead connections is demonstrated using existing design principles for bolted flanges and clamps. Connector stiffness is determined experimentally for one design, and a method utilizing finite element analysis is demonstrated for another. A 3-D finite element model is used to determine wellhead seal radial loading after hub separation has occurred on one side of the hub interface, as it might under a severe moment. The results suggest that the normal load between hub seal pocket and seal OD reduces markedly as the gap increases, and more of the internal pressure loading on the seal is resisted by hoop stresses in the seal itself. However, even at a gap of 0.090 inches, the loading on the seal appears to be uniform around the seal pocket. At a hub separation 0.090 to 0.120 inches, all OD normal load is lost on a portion of the seal near the separation.

  20. ,"Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Wellhead Price (Dollars per ... 7:03:09 AM" "Back to Contents","Data 1: Kansas Natural Gas Wellhead Price (Dollars per ...

  1. ,"Nevada Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Natural Gas Wellhead Price (Dollars per ... 1:10:15 AM" "Back to Contents","Data 1: Nevada Natural Gas Wellhead Price (Dollars per ...

  2. ,"Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Wellhead Price (Dollars per ... 7:03:13 AM" "Back to Contents","Data 1: Texas Natural Gas Wellhead Price (Dollars per ...

  3. ,"New York Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Wellhead Price (Dollars ... 8:33:11 AM" "Back to Contents","Data 1: New York Natural Gas Wellhead Price (Dollars ...

  4. ,"New Mexico Natural Gas Wellhead Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Wellhead Price (Dollars ... 8:33:11 AM" "Back to Contents","Data 1: New Mexico Natural Gas Wellhead Price (Dollars ...

  5. ,"North Dakota Natural Gas Wellhead Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Wellhead Price (Dollars ... 9:04:04 AM" "Back to Contents","Data 1: North Dakota Natural Gas Wellhead Price (Dollars ...

  6. Independent load support in an 18 3/4-in. , 15,000-psi subsea wellhead

    SciTech Connect (OSTI)

    Cowan, W.S.

    1993-03-01

    Previous-generation subsea wellhead equipment was conceived as an extension of well-known surface wellhead equipment. Contemporary performance criteria for subsea wellhead equipment require new technology from the designer/manufacturer. This paper describes the role of a single design concept, independent load support, in addressing these criteria and illustrates the resulting configuration of a severe-service subsea wellhead system.

  7. Standardized wellheads proven economical for subsea operations

    SciTech Connect (OSTI)

    Moreira, C.C.; Silva Paulo, C.A. )

    1994-05-02

    A standardization program for subsea wellheads and completion equipment has made development of Brazil's offshore fields more economical and efficient. The resulting operational flexibility associated with the use of field-proven equipment and procedures saves rig time and can reduce production loss during workovers. Additionally, investments can be rationalized economically by installing part of the completion equipment at the end of the drilling job and then delaying purchase and installation of the christmas tree and the flow lines until installation of the production platform. Savings are also realized from the reduction in the number of spare parts and tools. Moreover, the savings related to improved operations exceed considerably those from equipment acquisition and storage. Thus, the greatest benefit is the operational flexibility. The paper discusses initial standards, the subsea programs, philosophy, implementation, diver-assisted trees, diverless trees, and economics.

  8. Montana Quantity of Production Associated with Reported Wellhead...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's ...

  9. Hybrid Rotor Compression for Multiphase and Liquids-Rich Wellhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    but also allows for compression of wet gas, or gas that contains liquid content. At many natural gas wellheads, liquids-typically heavier hydrocarbons and water-are present in the...

  10. Nevada Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Wellhead Price Nevada Natural Gas Prices Natural Gas Wellhead Price

  11. Wellhead monitors automate Lake Maracaibo gas lift

    SciTech Connect (OSTI)

    Adjunta, J.C. ); Majek, A. )

    1994-11-28

    High-performance personal computer (PC) and intelligent remote terminal unit (IRTU) technology have optimized the remote control of gas lift injection and surveillance of over 1,000 offshore production wells at Lake Maracaibo in Venezuela. In its 3-year program, Maraven expects a 27,000 b/d increase in oil production by reducing deferred production and optimizing gas lift injection by as much as 20%. In addition, real time data on well performance will enhance production management as well as allocation of operational and maintenance resources. The remote control system consists of a solar-powered wellhead monitor (WHM) installed on each well platform. At each flow gathering station within a 2-mile range of a family of wells, a host terminal unit polls and stores the well data with low power, 250-mw radios. From a remote location, 60 miles onshore, an operator interface polls the host units for real time data with 5-watt radios operating in the 900-megahertz band. The paper describes the design, optimization, telemetry management, and selection of a single vendor for this system. The economic impact of this system to Maraven is also discussed.

  12. Indiana Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Indiana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 135 394 367 365 217 412 416 1990's 399 232 174 192 107 249 360 526 615 855 2000's 899 1,064 1,309 1,464 3,401 3,135 2,921 3,606 4,701 4,927 2010's 6,802 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  13. Maryland Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Maryland Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 60 39 20 44 29 34 1990's 22 29 33 28 26 22 0 118 63 18 2000's 34 32 22 48 34 46 NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Missouri Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Missouri Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4 4 4 4 4 4 1990's 7 19 27 14 8 16 25 5 0 2000's 0 0 0 0 0 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  15. Arizona Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Arizona Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 26 10 0 0 0 0 1,360 1990's 2,125 1,225 730 548 691 500 405 401 411 439 2000's 332 266 243 426 306 211 588 634 503 695 2010's 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. Illinois Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Illinois Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,030 1,530 1,324 1,887 1,371 1,338 1,477 1990's 677 466 346 250 333 0 0 0 0 0 2000's 0 0 NA 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Imputed Wellhead Value of Natural Gas Marketed Production

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Dollars) Data Series: Quantity of Production Imputed Wellhead Value Wellhead Price Marketed Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 2013 View History U.S. 1989-2006 Alabama 2,489,704 1,020,599 994,688 0 0 0 1989-2013 Alaska 2,944,546 1,163,554 1,185,249 0 0 0 1989-2013 Arizona 3,710 2,269 753 0 0 0 1989-2013 Arkansas 3,891,921

  18. Using geographic information systems in the delineation of wellhead protection areas

    SciTech Connect (OSTI)

    Shafer, J.M. . Earth Sciences and Resources Inst.); Horton, C.A. . Dept. of Civil Engineering)

    1994-03-01

    The 1986 amendments to the Safe Drinking Water Act established the nationwide wellhead protection program to be administered by the US Environmental Protection Agency. Although individual states have the responsibility to implement wellhead protection, the US EPA provides technical guidance, and approves each wellhead protection plan prepared by the states. A major aspect of wellhead protection strategies is the delineation of wellhead protection areas. These are zones around municipal water supply wells that receive special land use considerations intended to minimize the threat of contamination of the wells. The US EPA has recommended several technical approaches to delineating wellhead protection areas, ranging in sophistication from simple concentric circles around wells to irregular areas determined from groundwater flow and transport analyses. Regardless of the wellhead protection area delineation technique, the resulting area surrounding the municipal well must be accurately mapped. A geographic information system (GIS) approach to mapping the results of wellhead protection area delineation is demonstrated. Using hypothetical groundwater flow regimes, each EPA recommended approach to wellhead protection area delineation is presented in a GIS format. A visual comparison of delineation techniques in terms of area and configuration of the resulting wellhead protection areas is made. Finally, the advantages of using a GIS for representing wellhead protection areas is provided.

  19. Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.29 0.13 1970's 0.24 0.23 0.22 0.24 0.30 0.33 0.34 0.40 1980's 3.75 3.50 3.75 3.75 3.75 3.50 1990's 1.57 1.32 1.56 1.57 1.49 1.70 1.56 1.70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016

  20. Kentucky Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Kentucky Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,720 61,518 73,126 80,195 70,125 44,725 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,868 76,770 2000's 81,545 81,723 88,259 87,609 94,259 92,795 95,320 95,437 114,116 NA 2010's 135,355

  1. Michigan Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Michigan Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138,910 144,537 131,855 127,287 146,996 146,145 155,988 1990's 106,193 189,497 190,637 199,746 216,268 238,203 245,740 305,950 278,076 277,364 2000's 296,556 275,036 274,476 236,987 259,681 261,112 NA NA 153,130

  2. Mississippi Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Mississippi Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 211,116 206,871 178,426 197,217 195,299 196,912 148,167 1990's 149,012 126,637 129,340 131,450 105,646 95,349 88,805 98,075 88,723 83,232 2000's 70,965 76,986 112,979 133,901 145,692 52,923 60,531 73,460 96,641

  3. Wyoming Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Wyoming Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 395,656 447,615 416,565 352,858 407,863 471,095 623,915 1990's 690,356 711,799 765,254 63,667 14,283 12,449 27,821 719,933 1,004,020 1,079,375 2000's 1,240,038 1,359,868 1,533,724 1,561,322 1,724,725 1,729,760

  4. Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.30 0.30 0.30 1970's 0.31 0.31 0.32 0.33 0.51 0.51 1.14 1.26 1.31 1.68 1980's 2.85 2.15 3.69 3.30 3.00 3.02 2.45 2.08 2.08 2.19 1990's 2.30 1.88 1.85 2.29 2.15 1.72 2000's NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Nebraska Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Nebraska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,091 2,300 1,944 1,403 1,261 910 878 1990's 793 785 1,177 1,375 2,098 1,538 1,332 1,194 1,285 1,049 2000's 879 883 892 1,168 1,172 1,172 NA 1,555 3,082 2,908 2010's 2,231 - = No Data Reported; -- = Not Applicable;

  6. Ohio Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Ohio Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 149,096 184,651 180,458 180,287 164,960 166,690 159,730 1990's 154,619 146,189 143,381 135,939 130,855 125,085 119,251 116,246 108,542 102,505 2000's 98,551 97,272 103,158 120,081 119,847 83,523 86,315 88,095 84,858

  7. Oklahoma Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Oklahoma Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,730,061 1,985,869 1,936,341 1,917,493 2,004,797 2,106,632 2,185,204 1990's 2,186,153 2,119,161 1,937,224 2,005,971 1,879,257 1,765,788 1,751,487 1,452,233 1,644,531 1,577,961 2000's 1,612,890 1,477,058 1,456,375

  8. Oregon Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Oregon Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 2,790 4,080 4,600 3,800 4,000 2,500 1990's 2,815 2,741 2,580 4,003 3,221 1,923 1,439 1,173 1,067 1,291 2000's 1,214 1,069 837 688 467 433 NA 390 751 751 2010's 1,376 - = No Data Reported; -- = Not Applicable; NA =

  9. Pennsylvania Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Pennsylvania Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 118,372 166,342 150,234 159,889 163,318 167,089 191,774 1990's 177,609 152,500 138,675 189,443 187,113 177,139 0 0 0 0 2000's 0 0 0 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA =

  10. Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.16 1970's 0.30 0.32 0.34 0.54 0.97 0.98 1.09 1.39 1.57 1980's 1.73 2.71 2.46 2.33 2.57 2.43 1.20 1.68 1.53 2.05 1990's 2.25 2.46 2.51 2.17 1.28 1.24 2000's NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  11. Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.13 0.14 1970's 0.16 0.18 0.28 0.35 0.40 0.70 0.99 1.20 1.29 1.86 1980's 1.90 2.47 2.62 2.84 2.78 2.77 2.57 2.24 2.19 2.15 1990's 2.11 2.17 2.15 2.30 2.40 2000's NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Alaska Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alaska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alaska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 211,569 211,579 222,637 304,841 271,120 228,284 192,760 1990's 191,798 200,557 206,259 224,786 201,891 227,797 193,278 191,017 192,982 186,727 2000's 189,896 197,735 200,871 199,616 413,667 502,887 494,323

  13. Arkansas Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Arkansas Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 78,097 75,575 86,552 68,206 42,688 102,046 42,226 1990's 99,456 83,864 85,177 122,596 24,326 180,117 76,671 71,449 61,012 54,382 2000's 55,057 16,901 161,871 166,329 183,299 190,533 193,491 269,886 446,551 680,613

  14. California Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) California Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 282,639 343,079 361,739 329,366 346,720 327,399 283,509 1990's 275,738 211,841 195,515 76,381 199,649 263 37,823 219,216 264,810 382,715 2000's 323,864 328,778 309,399 293,691 276,520 274,817 278,933 268,016

  15. Colorado Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Colorado Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 139,820 143,552 126,037 163,684 164,557 191,544 216,737 1990's 242,997 271,159 314,105 388,016 441,343 511,513 559,473 637,375 696,321 705,477 2000's 735,332 800,712 819,205 989,678 1,058,383 1,106,993 1,170,819

  16. Florida Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Florida Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 25,630 18,897 13,162 3,004 1,893 1,883 1,437 1990's 1,443 2,096 3,849 2,612 4,940 3,545 0 0 0 0 2000's 0 0 NA 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  17. Tennessee Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Tennessee Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 5,144 - = No Data Reported; --

  18. Texas Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Texas Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,227,995 6,630,246 6,367,936 6,465,964 6,414,021 6,386,544 6,276,968 1990's 6,476,032 6,066,256 5,893,069 5,769,437 5,834,671 5,592,323 4,684,140 4,716,304 4,777,945 5,719,128 2000's 5,869,901 5,159,233 5,166,315

  19. Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.00 1980's 2.40 2.60 3.33 3.33 2.78 2.40 2.00 1.45 1.60 1.40 1990's 1.39 1.42 1.29 1.70 2.06 0.93 2.26 2.19 2.38 2.52 2000's 2.69 3.66 3.97 4.48 3.89 4.25 NA 5.27 5.33 4.00 2010's 4.92 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.28 0.28 0.28 1970's 0.28 0.27 0.30 0.42 0.44 0.67 0.68 0.80 0.86 1.33 1980's 2.13 2.33 2.80 3.00 3.25 3.16 2.50 2.25 2.15 2.40 1990's 2.35 2.20 1.95 2.71 2.76 2.84 2000's NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.19 0.20 0.20 0.22 0.31 0.42 0.46 0.70 0.84 1.11 1980's 1.61 2.07 2.60 2.67 2.73 2.66 2.21 1.78 1.81 1.82 1990's 1.83 1.73 1.73 2.14 2.08 1.58 2.33 2.36 2.02 2.22 2000's 3.68 3.99 3.20 5.64 5.96 8.72 6.93 7.02 8.73 3.82 2010's 4.23 - = No Data Reported; -- = Not

  2. Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.26 0.25 1970's 0.25 0.24 0.21 0.23 0.24 0.27 0.32 0.39 0.61 1.04 1980's 0.46 0.48 0.78 0.55 0.55 0.59 0.65 0.55 0.93 0.85 1990's 1.14 1.55 1.91 2.44 1.37 1.42 2.23 2.60 2.73 2000's 3.75 4.15 5.98 4.50 6.25 7.43 NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not

  3. Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.25 0.26 1970's 0.27 0.26 0.31 0.39 0.50 0.63 0.89 1.01 1.20 1.74 1980's 2.35 2.86 3.19 3.58 3.76 3.60 3.60 3.24 3.18 3.16 1990's 3.00 2.79 2.71 2.38 1.96 1.67 2.21 2.19 1.77 1.77 2000's 2.44 3.47 2.16 4.01 3.85 5.30 NA NA 5.63 3.92 2010's 3.79 - = No Data Reported; -- = Not Applicable; NA

  4. Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.18 1970's 0.18 0.21 0.27 0.23 0.29 0.50 0.71 0.73 1.15 1.60 1980's 2.32 3.21 3.91 3.78 3.47 3.17 2.13 1.94 1.86 1.97 1990's 1.76 1.66 1.64 1.73 1.49 1.24 1.66 1.73 1.42 1.63 2000's 3.30 3.93 3.06 5.13 5.83 8.54 6.84 6.70 8.80 3.73 2010's 4.17 - = No Data Reported; -- = Not

  5. Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.08 0.09 0.10 1970's 0.10 0.12 0.12 0.24 0.25 0.43 0.45 0.72 0.85 1.21 1980's 1.45 1.91 2.15 2.41 2.46 2.39 2.05 1.80 1.70 1.55 1990's 1.79 1.66 1.62 1.55 1.46 1.36 1.41 1.59 1.53 1.68 2000's 2.84 3.12 2.39 3.73 4.51 6.57 5.53 5.72 7.50 3.16 2010's 3.64 - = No Data Reported; -- = Not Applicable;

  6. Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.18 0.17 1970's 0.17 0.18 0.18 0.18 0.34 0.54 0.51 0.65 0.68 0.85 1980's 0.83 1.45 1.99 2.93 2.24 3.01 2.82 2.42 2.66 2.23 1990's 2.26 2.06 1.78 1.81 1.60 1.19 1.43 1.53 1.30 1.36 2000's 2.26 2.16 1.52 3.17 3.22 4.29 NA 4.86 6.22 2.97 2010's 3.98 - = No Data Reported; -- = Not Applicable;

  7. Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.16 0.15 1970's 0.15 0.17 0.17 0.19 0.41 0.48 0.50 0.61 0.64 0.72 1980's 1.12 1.10 3.06 3.40 4.08 3.52 2.90 1.88 2.39 1.58 1990's 1.70 1.54 1.63 1.77 1.54 1.15 1.39 1.86 1.73 1.93 2000's 3.28 3.52 1.99 4.11 5.24 7.16 5.49 NA 6.15 3.38 2010's 4.23 - = No Data Reported; -- = Not Applicable; NA =

  8. Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.15 0.15 0.16 0.18 0.25 0.34 0.41 0.64 0.79 1.13 1980's 1.92 2.77 3.22 3.18 3.32 3.01 2.52 1.76 1.53 1.24 1990's 1.16 1.06 1.13 1.99 2.05 1.78 2.57 2.42 1.78 1.97 2000's 3.34 3.49 2.70 4.13 4.96 6.86 5.85 4.65 6.86 3.40 2010's 4.30 - = No Data Reported; -- = Not Applicable;

  9. Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.13 1970's 0.14 0.15 0.35 0.38 0.74 0.87 0.99 1.47 1.50 2.04 1980's 3.19 4.77 3.44 4.28 3.73 3.71 2.89 2.97 2.65 2.72 1990's 2.75 2.33 2.29 2.46 2.17 1.82 2.62 2.67 2.21 2.32 2000's 3.99 4.23 3.48 5.93 6.66 9.28 7.57 7.44 9.65 4.32 2010's 4.46 - = No Data Reported; -- = Not Applicable;

  10. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  11. Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.25 0.25 1970's 0.25 0.24 0.15 0.15 0.17 0.30 0.39 0.40 0.52 0.52 1980's 0.73 0.62 0.63 0.73 0.73 0.74 0.50 0.94 1.27 1.36 1990's 1.38 1.48 1.41 1.42 1.27 1.64 1.61 1.82 1.32 1.37 2000's 1.76 1.99 2.13 2.41 3.42 4.75 5.79 5.63 7.39 2.93 2010's 3.17 - = No Data Reported; -- = Not Applicable;

  12. Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.18 1970's 0.17 0.18 0.18 0.18 0.20 0.28 0.28 0.33 0.37 0.41 1980's 2.59 3.08 2.90 1.80 1990's 1.20 1.50 1.85 1.30 1.40 1.20 1.65 2.40 1.88 2.08 2000's 3.50 4.12 2.60 4.33 5.12 6.86 5.70 5.98 7.09 3.19 2010's 4.11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  13. Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.16 1970's 0.16 0.17 0.17 0.18 0.26 0.35 0.53 0.58 0.75 0.96 1980's 0.70 1.81 2.13 2.29 2.54 2.55 2.51 2.29 1.94 2.41 1990's 2.06 1.92 2.15 2.81 2.65 3.02 3.82 4.03 3.92 4.10 2000's 5.23 4.99 4.43 5.17 5.68 7.26 6.43 6.61 8.72 3.43 2010's 3.84 - = No Data Reported; -- = Not Applicable;

  14. California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.30 0.31 0.31 1970's 0.32 0.33 0.37 0.37 0.44 0.70 0.94 1.17 1.36 1.70 1980's 2.17 2.57 3.09 3.57 3.80 3.36 2.89 2.37 2.39 2.32 1990's 2.36 2.46 2.34 2.38 1.50 1.73 1.82 2.41 1.97 2.36 2000's 4.81 6.93 2.92 5.04 5.65 7.45 6.47 6.62 8.38 3.96 2010's 4.87 - = No Data Reported; -- = Not

  15. Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.14 1970's 0.15 0.16 0.16 0.18 0.20 0.26 0.48 0.81 0.84 1.41 1980's 1.47 1.97 3.17 3.38 3.43 2.90 2.05 1.76 1.59 1.52 1990's 1.55 1.41 1.37 1.61 1.39 0.95 1.37 2.23 1.90 2.18 2000's 3.67 3.84 2.41 4.54 5.21 7.43 6.12 4.57 6.94 3.21 2010's 3.96 - = No Data Reported; -- = Not Applicable;

  16. Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.23 0.24 0.23 1970's 0.24 0.25 0.15 0.14 0.14 0.39 0.52 0.69 0.71 1.05 1980's 1.35 2.08 1.55 2.09 3.38 2.51 1.23 1.71 1.57 1.71 1990's 2.01 1.72 2.01 2.09 1.97 1.90 2.30 2.18 2.09 2.19 2000's 3.51 3.28 3.11 5.41 6.30 9.11 6.01 5.78 7.58 4.05 2010's 4.13 - = No Data Reported; -- = Not Applicable;

  17. Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.14 0.14 1970's 0.14 0.14 0.14 0.16 0.17 0.17 0.42 0.48 0.57 0.76 1980's 0.77 0.92 1.51 1.57 1.49 1.27 1.21 1.15 1.36 1.44 1990's 1.56 1.37 1.54 1.80 1.60 1.36 1.92 2.05 1.70 1.80 2000's 3.21 3.66 2.61 4.33 4.94 6.51 5.61 5.69 6.85 3.16 2010's 4.23 - = No Data Reported; -- = Not Applicable;

  18. Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.25 1970's 0.25 0.25 0.25 0.35 0.50 0.54 0.55 0.55 0.58 0.95 1980's 0.89 1.01 1.52 1.51 1.70 2.39 1.88 1.82 2.56 2.13 1990's 2.24 2.03 1.92 2.28 2.24 1.64 2.55 2.66 2.39 2.07 2000's 3.16 4.78 3.01 4.54 5.26 6.84 8.83 7.35 8.42 NA 2010's 4.47 - = No Data Reported; -- = Not Applicable;

  19. Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.32 0.30 0.35 0.44 0.51 0.74 1.64 1.70 1980's 1.76 2.55 3.00 2.50 3.50 2.48 1.78 1.31 1.50 1.65 1990's 1.65 1.72 1.79 2.65 2.16 1.54 2.54 2.55 2.15 2.28 2000's 4.09 3.60 3.41 5.22 6.90 9.55 6.78 6.63 8.85 3.83 2010's 4.35 - = No Data Reported; -- = Not

  20. Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.14 0.14 1970's 0.14 0.16 0.16 0.20 0.31 0.52 0.72 0.90 0.99 1.23 1980's 1.56 1.87 2.17 2.36 2.45 2.33 1.65 1.47 1.51 1.53 1990's 1.57 1.59 1.77 2.09 1.89 1.61 2.29 2.48 2.06 2.31 2000's 3.93 4.12 3.16 5.18 5.83 7.55 6.60 6.98 8.51 3.81 2010's 4.70 - = No Data Reported; -- = Not Applicable; NA

  1. Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.26 1970's 0.27 0.34 0.39 0.43 0.48 0.71 1.02 1.40 1.57 1.81 1980's 1.98 2.17 2.71 3.24 3.19 3.08 2.84 2.58 2.55 2.55 1990's 2.54 2.38 2.35 2.46 2.43 2.33 2.63 2.70 2.95 2.43 2000's 4.06 4.54 4.52 5.90 6.65 9.03 7.75 7.59 7.88 4.36 2010's 4.63 - = No Data Reported; -- = Not Applicable; NA

  2. Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.14 0.15 1970's 0.16 0.16 0.16 0.19 0.28 0.32 0.50 0.79 0.90 1.12 1980's 1.51 1.88 2.74 2.83 2.72 2.47 1.71 1.47 1.55 1.59 1990's 1.57 1.47 1.70 1.88 1.70 1.44 2.21 2.32 1.77 2.05 2000's 3.63 4.03 2.94 4.97 5.52 7.21 6.32 6.24 7.56 3.53 2010's 4.71 - = No Data Reported; -- = Not Applicable;

  3. Gate Access

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gate Access Gate Access Print When you first arrive at the ALS, gate clearance will have been arranged for you by the User Office. Berkeley Lab employees and visiting researchers (participating guests) may arrange for gate clearance for their visitors through the Lab's Site Access Office . Please notify the Site Office by submitting a Visitor Pass Request before 3:00 p.m. on the day before the expected visit. Include the name(s) of any visitors, the time you expect them, and your name and

  4. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Snow, N.J. Jr.

    1983-12-06

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

  5. INITIAL CHEMICAL AND RESERVOIR CONDITIONS AT LOS AZUFRES WELLHEAD POWER PLANT STARTUP

    SciTech Connect (OSTI)

    Kruger, P.; Semprini, L.; Verma, S.; Barragan, R.; Molinar, R.; Aragon, A.; Ortiz, J.; Miranda, C.

    1985-01-22

    One of the major concerns of electric utilities in installing geothermal power plants is not only the longevity of the steam supply, but also the potential for changes in thermodynamic properties of the resource that might reduce the conversion efficiency of the design plant equipment. Production was initiated at Los Azufres geothermal field with wellhead generators not only to obtain electric energy at a relatively early date, but also to acquire needed information about the resource so that plans for large central power plants could be finalized. Commercial electric energy production started at Los Azufres during the summer of 1982 with five 5-MWe wellhead turbine-generator units. The wells associated with these units had undergone extensive testing and have since been essentially in constant production. The Los Azufres geothermal reservoir is a complex structural and thermodynamic system, intersected by at least 4 major parallel faults and producing geothermal fluids from almost all water to all steam. The five wellhead generators are associated with wells of about 30%, 60%, and 100% steam fraction. A study to compile existing data on the chemical and reservoir conditions during the first two years of operation has been completed. Data have been compiled on mean values of wellhead and separator pressures, steam and liquid flowrates, steam fraction, enthalpy, and pertinent chemical components. The compilation serves both as a database of conditions during the start-up period and as an initial point to observe changes with continued and increased production. Current plans are to add additional wellhead generators in about two years followed by central power plants when the data have been sufficiently evaluated for optimum plant design. During the next two years, the data acquired at the five 5-MWe wellhead generator units can be compared to this database to observe any significant changes in reservoir behavior at constant production.

  6. Non intrusive sensors -- An answer to annulus pressure monitoring in subsea wellhead equipment

    SciTech Connect (OSTI)

    Adamek, F.C.; Jennings, C.; Aarskog, A.

    1995-12-01

    On offshore platform and jackup surface wellhead completions, there is the potential for leakage from the high pressure production tubing and casing strings into the low pressure outer casing string, or from poor cementing jobs. Historically, these completions maintain the capability of regularly monitoring wellhead annulus pressure so that appropriate action can be taken should a leak be detected. In the past, subsea completions have been oil producers, however, gas production, extreme reservoir pressures, and deeper waters are becoming common place. Although subsea wellhead technology and reliability have significantly improved with the introduction of the metal-to-metal sealing system, the potential for annulus pressure buildup still exists. Up to the present, the ability to monitor pressure beyond the first casing string has been virtually non-existent. This paper describes the design, development, testing, and application of non intrusive sensor technology for pressure measurement in subsea wellheads and production trees. The data and test results define and describe the phenomenon of ``inverse magnetostriction``. This phenomenon allows magnetic sensors to non intrusively penetrate three to four inches of steel in a subsea wellhead housing and measure annulus pressure from less than 30 psi to more than 15,000 psi. In addition, test data, charts, and graphs illustrate the sensor`s capability of differentiating between pressure, tension, compression, and bending stress imposed on the wellhead. The electronic interface description details how the data is obtained from the sensors, stored, and later transmitted to existing control systems or to the user interface at the surface via an ROV.

  7. ,"Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  8. ,"Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  9. ,"Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  10. ,"California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  11. ,"Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  12. ,"Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  13. ,"Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  14. ,"Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  15. ,"Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  16. ,"Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  17. ,"Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  18. ,"Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  19. ,"Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",1997 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  20. ,"Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  1. ,"Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  2. ,"Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  3. ,"Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  4. ,"Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  5. ,"Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  6. ,"South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  7. ,"Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  8. ,"Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  9. ,"Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  10. ,"West Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  11. ,"Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  12. CNEEC - Electrolyte Gating by David Goldhaber-Gordon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolyte Gating

  13. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Sinclair, B.W.

    1984-07-31

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a wellhead; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; separating LPG from gas vapors of the refrigerated natural gas; storing the separated LPG in a storage tank with a vapor space therein; and recirculating a portion of the LPG vapors in the storage tank with the natural gas exiting the wellhead to enhance recovery of LPG. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for refrigerating the compressed gases therefrom; at least one product separator downstream of the refrigerator unit for receiving refrigerated and compressed gases discharged from the refrigerator unit and separating LPG therein from gases remaining in vapor form; and a storage tank for receiving and storing the separated LPG therein, the storage tank having a vapor space therein connected upstream of the gas compressor through a pressure regulator allowing recirculation of some LPG vapors with the natural gases through said system.

  14. Stage Gate Management Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stage Gate Management in the Biomass Program February 2005 Revision 2 2 TABLE OF CONTENTS OVERVIEW............................................................................................................................. 4 STAGE GATE MANAGEMENT .................................................................................................... 4 STAGE GATE PROCESS AND LONG RANGE STRATEGIC PROGRAM PLANNING ........................ 5 GATE REVIEWS

  15. South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.11 1980's 2.75 3.08 3.37 3.67 2.51 2.46 2.71 1.95 1.11 1990's 1.56 1.12 1.79 2.13 1.73 1.59 2.09 2.47 2.13 2000's 3.56 3.42 2.95 4.98 5.49 7.44 6.40 7.22 7.94 NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  16. Geothermal rotary separator turbine: wellhead power system tests at Milford, Utah

    SciTech Connect (OSTI)

    Hughes, E.E.

    1983-08-01

    Through development of a separator/expander engine EPRI is improving the efficiency of single flash geothermal power systems. Under cost-shared contracts with Biphase Energy Systems and Utah Power and Light Company (UP and L), a wellhead power generating system has been built and tested. The wellhead unit has been operated for 4000 hours at Roosevelt Hot Springs near Milford, Utah. Phillips Petroleum Company operates the geothermal field at this site. The rotary separator turbine (RST) is a separating expander that increases the resource utilization efficiency by extracting power upstream of a steam turbine in either a 1-stage or 2-stage flash power system. The first power output was achieved October 28, 1981, six weeks after arrival of the RST at the site. The RST system produced 3270 MWh(e) gross and 2770 MWh(e) net to the UP and L grid. Total equivalent power produced by the wellhead RST (actual power output of the RST plus the power obtainable from the steam flow out of the RST) is 15 to 20 percent above the power that would be produced by an optimum 1-stage direct flash plant operated on the same geothermal well.

  17. ,"U.S. Natural Gas Wellhead Value and Marketed Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Value and Marketed Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Wellhead Value and Marketed Production",4,"Annual",2015,"06/30/1900" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  18. Response of the Los Azufres Geothermal Field to Four Years of 25 MW Wellhead Generation

    SciTech Connect (OSTI)

    Kruger, P.; Ortiz, J.; Miranda, G.; Gallardo, M.

    1987-01-20

    Production and chemical data have been compiled and analyzed on a six-month averaged basis for the first four years of electric energy generation with five 5-MW wellhead generators at the Los Azufres geothermal field. The data were evaluated with respect to the extent of observable thermal drawdown of the reservoir from 25 MW of generation in relation to the estimated capacity of the field of several hundred megawatts of power. The analysis updates the previous one compiled after the first two years of continuous production, at which time the results indicated that differences in reservoir temperature estimated from geochemical thermometers and wellhead production data were not statistically significant based on the number of data and the standard deviations. Analysis of the data after four years of operation were made for the larger number of data and smaller standard deviations. The results review the adequacy of the sampling frequency and the reliability of the measurements from statistical t-Test of the means of the first and second two-year periods. 3 figs., 5 tabs., 20 refs.

  19. Latest design of gate valves

    SciTech Connect (OSTI)

    Kurzhofer, U.; Stolte, J.; Weyand, M.

    1996-12-01

    Babcock Sempell, one of the most important valve manufacturers in Europe, has delivered valves for the nuclear power industry since the beginning of the peaceful application of nuclear power in the 1960s. The latest innovation by Babcock Sempell is a gate valve that meets all recent technical requirements of the nuclear power technology. At the moment in the United States, Germany, Sweden, and many other countries, motor-operated gate and globe valves are judged very critically. Besides the absolute control of the so-called {open_quotes}trip failure,{close_quotes} the integrity of all valve parts submitted to operational forces must be maintained. In case of failure of the limit and torque switches, all valve designs have been tested with respect to the quality of guidance of the gate. The guidances (i.e., guides) shall avoid a tilting of the gate during the closing procedure. The gate valve newly designed by Babcock Sempell fulfills all these characteristic criteria. In addition, the valve has cobalt-free seat hardfacing, the suitability of which has been proven by friction tests as well as full-scale blowdown tests at the GAP of Siemens in Karlstein, West Germany. Babcock Sempell was to deliver more than 30 gate valves of this type for 5 Swedish nuclear power stations by autumn 1995. In the presentation, the author will report on the testing performed, qualifications, and sizing criteria which led to the new technical design.

  20. Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead

    SciTech Connect (OSTI)

    BC Technologies

    2009-12-30

    Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL

  1. Gated strip proportional detector

    DOE Patents [OSTI]

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  2. Gated strip proportional detector

    DOE Patents [OSTI]

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  3. Range gated imaging experiments using gated intensifiers

    SciTech Connect (OSTI)

    McDonald, T.E. Jr.; Yates, G.J.; Cverna, F.H.; Gallegos, R.A.; Jaramillo, S.A.; Numkena, D.M.; Payton, J.; Pena-Abeyta, C.R.

    1999-03-01

    A variety of range gated imaging experiments using high-speed gated/shuttered proximity focused microchannel plate image intensifiers (MCPII) are reported. Range gated imaging experiments were conducted in water for detection of submerged mines in controlled turbidity tank test and in sea water for the Naval Coastal Sea Command/US Marine Corps. Field experiments have been conducted consisting of kilometer range imaging of resolution targets and military vehicles in atmosphere at Eglin Air Force Base for the US Air Force, and similar imaging experiments, but in smoke environment, at Redstone Arsenal for the US Army Aviation and Missile Command (AMCOM). Wavelength of the illuminating laser was 532 nm with pulse width ranging from 6 to 12 ns and comparable gate widths. These tests have shown depth resolution in the tens of centimeters range from time phasing reflected LADAR images with MCPII shutter opening.

  4. Sliding-gate valve

    DOE Patents [OSTI]

    Usnick, George B.; Ward, Gene T.; Blair, Henry O.; Roberts, James W.; Warner, Terry N.

    1979-01-01

    This invention is a novel valve of the slidable-gate type. The valve is designed especially for long-term use with highly abrasive slurries. The sealing surfaces of the gate are shielded by the valve seats when the valve is fully open or closed, and the gate-to-seat clearance is swept with an inflowing purge gas while the gate is in transit. A preferred form of the valve includes an annular valve body containing an annular seat assembly defining a flow channel. The seat assembly comprises a first seat ring which is slidably and sealably mounted in the body, and a second seat ring which is tightly fitted in the body. These rings cooperatively define an annular gap which, together with passages in the valve body, forms a guideway extending normal to the channel. A plate-type gate is mounted for reciprocation in the guideway between positions where a portion of the plate closes the channel and where a circular aperture in the gate is in register with the channel. The valve casing includes opposed chambers which extend outwardly from the body along the axis of the guideway to accommodate the end portions of the gate. The chambers are sealed from atmosphere; when the gate is in transit, purge gas is admitted to the chambers and flows inwardly through the gate-to-seat-ring, clearance, minimizing buildup of process solids therein. A shaft reciprocated by an external actuator extends into one of the sealed chambers through a shaft seal and is coupled to an end of the gate. Means are provided for adjusting the clearance between the first seat ring and the gate while the valve is in service.

  5. Optical NAND gate

    DOE Patents [OSTI]

    Skogen, Erik J.; Raring, James; Tauke-Pedretti, Anna

    2011-08-09

    An optical NAND gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator and a photodetector. One pair of the optical waveguide devices is electrically connected in parallel to operate as an optical AND gate; and the other pair of the optical waveguide devices is connected in series to operate as an optical NOT gate (i.e. an optical inverter). The optical NAND gate utilizes two digital optical inputs and a continuous light input to provide a NAND function output. The optical NAND gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  6. Optical NOR gate

    DOE Patents [OSTI]

    Skogen, Erik J.; Tauke-Pedretti, Anna

    2011-09-06

    An optical NOR gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical NOR gate utilizes two digital optical inputs and a continuous light input to provide a NOR function digital optical output. The optical NOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  7. Optical XOR gate

    DOE Patents [OSTI]

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  8. Advanced insulated gate bipolar transistor gate drive

    DOE Patents [OSTI]

    Short, James Evans; West, Shawn Michael; Fabean, Robert J.

    2009-08-04

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  9. SU-E-T-350: Verification of Gating Performance of a New Elekta Gating Solution: Response Kit and Catalyst System

    SciTech Connect (OSTI)

    Xie, X; Cao, D; Housley, D; Mehta, V; Shepard, D

    2014-06-01

    Purpose: In this work, we have tested the performance of new respiratory gating solutions for Elekta linacs. These solutions include the Response gating and the C-RAD Catalyst surface mapping system.Verification measurements have been performed for a series of clinical cases. We also examined the beam on latency of the system and its impact on delivery efficiency. Methods: To verify the benefits of tighter gating windows, a Quasar Respiratory Motion Platform was used. Its vertical-motion plate acted as a respiration surrogate and was tracked by the Catalyst system to generate gating signals. A MatriXX ion-chamber array was mounted on its longitudinal-moving platform. Clinical plans are delivered to a stationary and moving Matrix array at 100%, 50% and 30% gating windows and gamma scores were calculated comparing moving delivery results to the stationary result. It is important to note that as one moves to tighter gating windows, the delivery efficiency will be impacted by the linac's beam-on latency. Using a specialized software package, we generated beam-on signals of lengths of 1000ms, 600ms, 450ms, 400ms, 350ms and 300ms. As the gating windows get tighter, one can expect to reach a point where the dose rate will fall to nearly zero, indicating that the gating window is close to beam-on latency. A clinically useful gating window needs to be significantly longer than the latency for the linac. Results: As expected, the use of tighter gating windows improved delivery accuracy. However, a lower limit of the gating window, largely defined by linac beam-on latency, exists at around 300ms. Conclusion: The Response gating kit, combined with the C-RAD Catalyst, provides an effective solution for respiratorygated treatment delivery. Careful patient selection, gating window design, even visual/audio coaching may be necessary to ensure both delivery quality and efficiency. This research project is funded by Elekta.

  10. Compact gate valve

    DOE Patents [OSTI]

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  11. ONE SHAKE GATE FORMER

    DOE Patents [OSTI]

    Kalibjian, R.; Perez-Mendez, V.

    1957-08-20

    An improved circuit for forming square pulses having substantially short and precise durations is described. The gate forming circuit incorporates a secondary emission R. F. pentode adapted to receive input trigger pulses amd having a positive feedback loop comnected from the dynode to the control grid to maintain conduction in response to trigger pulses. A short circuited pulse delay line is employed to precisely control the conducting time of the tube and a circuit for squelching spurious oscillations is provided in the feedback loop.

  12. Penn State DOE GATE Program

    SciTech Connect (OSTI)

    Anstrom, Joel

    2012-08-31

    The Graduate Automotive Technology Education (GATE) Program at The Pennsylvania State University (Penn State) was established in October 1998 pursuant to an award from the U.S. Department of Energy (U.S. DOE). The focus area of the Penn State GATE Program is advanced energy storage systems for electric and hybrid vehicles.

  13. Gate Hours & Services | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    personnel contactdirectory (SLAC phone directory) assistance, and directions and maps. ... Satellite view | Aerial view detail Gate 17 Sector 30 Gate 247 proximity access for ...

  14. Method for voltage-gated protein fractionation

    DOE Patents [OSTI]

    Hatch, Anson; Singh, Anup K.

    2012-04-24

    We report unique findings on the voltage dependence of protein exclusion from the pores of nanoporous polymer exclusion membranes. The pores are small enough that proteins are excluded from passage with low applied electric fields, but increasing the field enables proteins to pass through. The requisite field necessary for a change in exclusion is protein-specific with a correlation to protein size. The field-dependence of exclusion is important to consider for preconcentration applications. The ability to selectively gate proteins at exclusion membranes is also a promising means for manipulating and characterizing proteins. We show that field-gated exclusion can be used to selectively remove proteins from a mixture, or to selectively trap protein at one exclusion membrane in a series.

  15. Gate Solar | Open Energy Information

    Open Energy Info (EERE)

    Spain Sector: Solar Product: JV set up for the promotion, exploitation and sale of photovoltaic solar power plants. References: Gate Solar1 This article is a stub. You can help...

  16. Natural Gas Wellhead Price

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1973

  17. Natural Gas Wellhead Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 4.48 3.95 2.66 NA NA NA 1922-2015 Alabama 4.46 1967-2010 Alaska 3.17 1967-2010 Arizona 4.11 1967-2010 Arkansas 3.84 1967-2010 California 4.87 1967-2010 Colorado 3.96 1967-2010 Florida NA 1967-2010 Illinois NA 1967-2010 Indiana 4.13 1967-2010 Kansas 4.23 1967-2010 Kentucky 4.47 1967-2010

  18. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  19. Stage-Gate Innovation Management Guidelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Stage-Gate Innovation Management Guidelines Managing risk through structured project decision-making February 2007 Version 1.3 Table of Contents Overview of ITP Stage-Gate Innovation Management........................................................ 1 Background............................................................................................................................................. 1 Process

  20. Radial gate evaluation: Olympus Dam, Colorado

    SciTech Connect (OSTI)

    1997-06-01

    The report presents a structural analysis of the radial gates of Olympus Dam in eastern Colorado. Five 20-foot wide by 17-foot high radial gates are used to control flow through the spillway at Olympus Dam. The spillway gates were designed in 1947. The gate arm assemblies consist of two separate wide flange beams, with a single brace between the arms. The arms pivot about a 4.0-inch diameter pin and bronze graphite-insert bushing. The pin is cantilevered from the pier anchor girder. The radial gates are supported by a pin bearing on a pier anchor birder bolted to the end of the concrete pier. The gates are operated by two-part wire rope 15,000-pound capacity hoise. Stoplog slots upstream of the radial gates are provided in the concrete piers. Selected drawings of the gates and hoists are located in appendix A.

  1. Graduate Automotive Technology Education (GATE) Initiative Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards September 8, 2011 - 11:46am Addthis Graduate Automotive Technology Education (GATE) Initiative Awards DOE's Graduate Automotive Technology Education (GATE) initiative will award $6.4 million over the course of five years to support seven Centers of Excellence at American colleges, universities, and university-affiliated research

  2. Dynamic gating window for compensation of baseline shift in respiratory-gated radiation therapy

    SciTech Connect (OSTI)

    Pepin, Eric W.; Wu Huanmei; Shirato, Hiroki

    2011-04-15

    Purpose: To analyze and evaluate the necessity and use of dynamic gating techniques for compensation of baseline shift during respiratory-gated radiation therapy of lung tumors. Methods: Motion tracking data from 30 lung tumors over 592 treatment fractions were analyzed for baseline shift. The finite state model (FSM) was used to identify the end-of-exhale (EOE) breathing phase throughout each treatment fraction. Using duty cycle as an evaluation metric, several methods of end-of-exhale dynamic gating were compared: An a posteriori ideal gating window, a predictive trend-line-based gating window, and a predictive weighted point-based gating window. These methods were evaluated for each of several gating window types: Superior/inferior (SI) gating, anterior/posterior beam, lateral beam, and 3D gating. Results: In the absence of dynamic gating techniques, SI gating gave a 39.6% duty cycle. The ideal SI gating window yielded a 41.5% duty cycle. The weight-based method of dynamic SI gating yielded a duty cycle of 36.2%. The trend-line-based method yielded a duty cycle of 34.0%. Conclusions: Dynamic gating was not broadly beneficial due to a breakdown of the FSM's ability to identify the EOE phase. When the EOE phase was well defined, dynamic gating showed an improvement over static-window gating.

  3. Ligand-gated Diffusion Across the Bacterial Outer Membrane

    SciTech Connect (OSTI)

    B Lepore; M Indic; H Pham; E Hearn; D Patel; B van den Berg

    2011-12-31

    Ligand-gated channels, in which a substrate transport pathway is formed as a result of the binding of a small-molecule chemical messenger, constitute a diverse class of membrane proteins with important functions in prokaryotic and eukaryotic organisms. Despite their widespread nature, no ligand-gated channels have yet been found within the outer membrane (OM) of Gram-negative bacteria. Here we show, using in vivo transport assays, intrinsic tryptophan fluorescence and X-ray crystallography, that high-affinity (submicromolar) substrate binding to the OM long-chain fatty acid transporter FadL from Escherichia coli causes conformational changes in the N terminus that open up a channel for substrate diffusion. The OM long-chain fatty acid transporter FadL from E. coli is a unique paradigm for OM diffusion-driven transport, in which ligand gating within a {beta}-barrel membrane protein is a prerequisite for channel formation.

  4. Double-disc gate valve

    DOE Patents [OSTI]

    Wheatley, Seth J.

    1979-01-01

    This invention relates to an improvement in a conventional double-disc gate valve having a vertically movable gate assembly including a wedge, spreaders slidably engaged therewtih, a valve disc carried by the spreaders. When the gate assembly is lowered to a selected point in the valve casing, the valve discs are moved transversely outward to close inlet and outlet ports in the casing. The valve includes hold-down means for guiding the disc-and-spreader assemblies as they are moved transversely outward and inward. If such valves are operated at relatively high differential pressures, they sometimes jam during opening. Such jamming has been a problem for many years in gate valves used in gaseous diffusion plants for the separtion of uranium isotopes. The invention is based on the finding that the above-mentioned jamming results when the outlet disc tilts about its horizontal axis in a certain way during opening of the valve. In accordance with the invention, tilting of the outlet disc is maintained at a tolerable value by providing the disc with a rigid downwardly extending member and by providing the casing with a stop for limiting inward arcuate movement of the member to a preselected value during opening of the valve.

  5. Gating of the proton-gated ion channel from Gloeobacter violaceus...

    Office of Scientific and Technical Information (OSTI)

    Title: Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by X-ray crystallography Authors: Gonzalez-Gutierrez, Giovanni ; Cuello, Luis G. ; ...

  6. David A Gates | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physicist, Stellerator Physics Lead, Advanced Projects Division, Science Focus Group Leader for Macroscopic Stability David Gates is a principal research physicist for the...

  7. Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency

    SciTech Connect (OSTI)

    Not Available

    1985-07-04

    A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

  8. Optimal gate-width setting for passive neutrons multiplicity counting

    SciTech Connect (OSTI)

    Croft, Stephen; Evans, Louise G; Schear, Melissa A

    2010-01-01

    When setting up a passive neutron coincidence counter it is natural to ask what coincidence gate settings should be used to optimize the counting precision. If the gate width is too short then signal is lost and the precision is compromised because in a given period only a few coincidence events will be observed. On the other hand if the gate is too large the signal will be maximized but it will also be compromised by the high level of random pile-up or Accidental coincidence events which must be subtracted. In the case of shift register electronics connected to an assay chamber with an exponential dieaway profile operating in the regime where the Accidentals rate dominates the Reals coincidence rate but where dead-time is not a concern, simple arguments allow one to show that the relative precision on the net Reals rate is minimized when the coincidence gate is set to about 1.2 times the lie dieaway time of the system. In this work we show that making the same assumptions it is easy to show that the relative precision on the Triples rates is also at a minimum when the relative precision of the Doubles (or Reals) is at a minimum. Although the analysis is straightforward to our knowledge such a discussion has not been documented in the literature before. Actual measurement systems do not always behave in the ideal we choose to model them. Fortunately however the variation in the relative precision as a function of gate width is rather flat for traditional safeguards counters and so the performance is somewhat forgiving of the exact choice. The derivation further serves to delineate the important parameters which determine the relative counting precision of the Doubles and Triples rates under the regime considered. To illustrate the similarities and differences we consider the relative standard deviation that might be anticipated for a passive correlation count of an axial section of a spent nuclear fuel assembly under practically achievable conditions.

  9. Optimization efforts in gated x-ray intensifiers (Conference...

    Office of Scientific and Technical Information (OSTI)

    Optimization efforts in gated x-ray intensifiers Citation Details In-Document Search Title: Optimization efforts in gated x-ray intensifiers Gated x-ray intensifiers are often ...

  10. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    SciTech Connect (OSTI)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgstrm, Magnus T.; Hessman, Dan; Samuelson, Lars

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  11. Automatically closing swing gate closure assembly

    DOE Patents [OSTI]

    Chang, Shih-Chih; Schuck, William J.; Gilmore, Richard F.

    1988-01-01

    A swing gate closure assembly for nuclear reactor tipoff assembly wherein the swing gate is cammed open by a fuel element or spacer but is reliably closed at a desired closing rate primarily by hydraulic forces in the absence of a fuel charge.

  12. Retaining latch for a water pit gate

    DOE Patents [OSTI]

    Beale, Arden R. (Idaho Falls, ID)

    1997-01-01

    A retaining latch for use in a hazardous materials storage or handling facility to adjustably retain a water pit gate in a gate frame. A retaining latch is provided comprising a latch plate which is rotatably mounted to each end of the top of the gate and a recessed opening, formed in the gate frame, for engaging an edge of the latch plate. The latch plate is circular in profile with one side cut away or flat, such that the latch plate is D-shaped. The remaining circular edge of the latch plate comprises steps of successively reduced thickness. The stepped edge of the latch plate fits inside a recessed opening formed in the gate frame. As the latch plate is rotated, alternate steps of the latch plate are engaged by the recessed opening. When the latch plate is rotated such that the flat portion of the latch plate faces the recessed opening in the gate frame, there is no connection between the opening and the latch plate and the gate is unlatched from the gate frame.

  13. Retaining latch for a water pit gate

    DOE Patents [OSTI]

    Beale, A.R.

    1997-11-18

    A retaining latch is described for use in a hazardous materials storage or handling facility to adjustably retain a water pit gate in a gate frame. A retaining latch is provided comprising a latch plate which is rotatably mounted to each end of the top of the gate and a recessed opening, formed in the gate frame, for engaging an edge of the latch plate. The latch plate is circular in profile with one side cut away or flat, such that the latch plate is D-shaped. The remaining circular edge of the latch plate comprises steps of successively reduced thickness. The stepped edge of the latch plate fits inside a recessed opening formed in the gate frame. As the latch plate is rotated, alternate steps of the latch plate are engaged by the recessed opening. When the latch plate is rotated such that the flat portion of the latch plate faces the recessed opening in the gate frame, there is no connection between the opening and the latch plate and the gate is unlatched from the gate frame. 4 figs.

  14. Method for voltage-gated protein fractionation (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Method for voltage-gated protein fractionation Title: Method for voltage-gated protein fractionation We report unique findings on the voltage dependence of protein exclusion from ...

  15. Unbalanced edge modes and topological phase transition in gated...

    Office of Scientific and Technical Information (OSTI)

    Unbalanced edge modes and topological phase transition in gated trilayer graphene Title: Unbalanced edge modes and topological phase transition in gated trilayer graphene Authors: ...

  16. Development of Dual-Gated Bilayer Graphene Device Structures...

    Office of Scientific and Technical Information (OSTI)

    Development of Dual-Gated Bilayer Graphene Device Structures. Citation Details In-Document Search Title: Development of Dual-Gated Bilayer Graphene Device Structures. Abstract not ...

  17. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and ...

  18. Repeat-until-success cubic phase gate for universal continuous...

    Office of Scientific and Technical Information (OSTI)

    phase gate for universal continuous-variable quantum computation Citation Details In-Document Search Title: Repeat-until-success cubic phase gate for universal ...

  19. AgraGate Carbon Credits Corporation | Open Energy Information

    Open Energy Info (EERE)

    AgraGate Carbon Credits Corporation Jump to: navigation, search Name: AgraGate Carbon Credits Corporation Place: Des Moines, Iowa Zip: 50266 Product: Offset aggregators that work...

  20. University of Illinois at Urbana-Champaign's GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion ...

  1. GATE Center of Excellence in Sustainable Vehicle Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications GATE Center of Excellence in Sustainable Vehicle Systems Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence in Sustainable ...

  2. GATE: Energy Efficient Vehicles for Sustainable Mobility | Department...

    Broader source: Energy.gov (indexed) [DOE]

    GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle ...

  3. Gate-tunable exchange coupling between cobalt clusters on graphene...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Publisher's Accepted Manuscript: Gate-tunable exchange coupling between cobalt clusters on graphene Title: Gate-tunable exchange coupling between cobalt ...

  4. Locking apparatus for gate valves

    DOE Patents [OSTI]

    Fabyan, Joseph; Williams, Carl W.

    1988-01-01

    A locking apparatus for fluid operated valves having a piston connected to the valve actuator which moves in response to applied pressure within a cylinder housing having a cylinder head, a catch block is secured to the piston, and the cylinder head incorporates a catch pin. Pressure applied to the cylinder to open the valve moves the piston adjacent to the cylinder head where the catch pin automatically engages the catch block preventing futher movement of the piston or premature closure of the valve. Application of pressure to the cylinder to close the valve, retracts the catch pin, allowing the valve to close. Included are one or more selector valves, for selecting pressure application to other apparatus depending on the gate valve position, open or closed, protecting such apparatus from damage due to premature closing caused by pressure loss or operational error.

  5. Locking apparatus for gate valves

    DOE Patents [OSTI]

    Fabyan, J.; Williams, C.W.

    A locking apparatus for fluid operated valves having a piston connected to the valve actuator which moves in response to applied pressure within a cylinder housing having a cylinder head, a catch block is secured to the piston, and the cylinder head incorporates a catch pin. Pressure applied to the cylinder to open the valve moves the piston adjacent to the cylinder head where the catch pin automatically engages the catch block preventing further movement of the piston or premature closure of the valve. Application of pressure to the cylinder to close the valve, retracts the catch pin, allowing the valve to close. Included are one or more selector valves, for selecting pressure application to other apparatus depending on the gate valve position, open or closed, protecting such apparatus from damage due to premature closing caused by pressure loss or operational error.

  6. Graduate Automotive Technology Education (GATE) Center

    SciTech Connect (OSTI)

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  7. GRD Import

    Energy Science and Technology Software Center (OSTI)

    2010-11-01

    Imports RAW data (*.GRD) files created by Ion-TOF’s SurfaceLab version 6.1 or later into Matlab and saves the resulting variables to a file.

  8. Digital gate pulse generator for cycloconverter control

    DOE Patents [OSTI]

    Klein, Frederick F.; Mutone, Gioacchino A.

    1989-01-01

    The present invention provides a digital gate pulse generator which controls the output of a cycloconverter used for electrical power conversion applications by determining the timing and delivery of the firing pulses to the switching devices in the cycloconverter. Previous gate pulse generators have been built with largely analog or discrete digital circuitry which require many precision components and periodic adjustment. The gate pulse generator of the present invention utilizes digital techniques and a predetermined series of values to develop the necessary timing signals for firing the switching device. Each timing signal is compared with a reference signal to determine the exact firing time. The present invention is significantly more compact than previous gate pulse generators, responds quickly to changes in the output demand and requires only one precision component and no adjustments.

  9. Gates, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Gates is a city in Linn County and Marion County, Oregon. It falls under Oregon's 4th congressional district and Oregon's 5th...

  10. Gate valve and motor-operator research findings

    SciTech Connect (OSTI)

    Steele, R. Jr.; DeWall, K.G.; Watkins, J.C.; Russell, M.J.; Bramwell, D.

    1995-09-01

    This report provides an update on the valve research being sponsored by the US Nuclear Regulatory Commission (NRC) and conducted at the Idaho National Engineering Laboratory (INEL). The research addresses the need to provide assurance that motor-operated valves can perform their intended safety function, usually to open or close against specified (design basis) flow and pressure loads. This report describes several important developments: Two methods for estimating or bounding the design basis stem factor (in rising-stem valves), using data from tests less severe than design basis tests; a new correlation for evaluating the opening responses of gate valves and for predicting opening requirements; an extrapolation method that uses the results of a best effort flow test to estimate the design basis closing requirements of a gate valve that exhibits atypical responses (peak force occurs before flow isolation); and the extension of the original INEL closing correlation to include low- flow and low-pressure loads. The report also includes a general approach, presented in step-by-step format, for determining operating margins for rising-stem valves (gate valves and globe valves) as well as quarter-turn valves (ball valves and butterfly valves).

  11. Gate fidelity fluctuations and quantum process invariants

    SciTech Connect (OSTI)

    Magesan, Easwar; Emerson, Joseph [Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Blume-Kohout, Robin [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2011-07-15

    We characterize the quantum gate fidelity in a state-independent manner by giving an explicit expression for its variance. The method we provide can be extended to calculate all higher order moments of the gate fidelity. Using these results, we obtain a simple expression for the variance of a single-qubit system and deduce the asymptotic behavior for large-dimensional quantum systems. Applications of these results to quantum chaos and randomized benchmarking are discussed.

  12. GaTe semiconductor for radiation detection

    DOE Patents [OSTI]

    Payne, Stephen A.; Burger, Arnold; Mandal, Krishna C.

    2009-06-23

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  13. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  14. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  15. Sliding-gate valve for use with abrasive materials

    DOE Patents [OSTI]

    Ayers, Jr., William J.; Carter, Charles R.; Griffith, Richard A.; Loomis, Richard B.; Notestein, John E.

    1985-01-01

    The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

  16. Gated IR Images of Shocked Surfaces

    SciTech Connect (OSTI)

    S. S. Lutz; W. D. Turley; P. M. Rightley; L. E. Primas

    2001-06-01

    Gated infrared (IR) images have been taken of a series of shocked surface geometries in tin. Metal coupons machined with steps and flats were mounted directly to the high explosive. The explosive was point-initiated and 500-ns to 1-microsecond-wide gated images of the target were taken immediately following shock breakout using a Santa Barbara Focalplane InSb camera (SBF-134). Spatial distributions of surface radiance were extracted from the images of the shocked samples and found to be non-single-valued. Several geometries were modeled using CTH, a two-dimensional Eulerian hydrocode.

  17. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 range (1-2...

  18. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is ... Now, for the first time, a group of researchers has obtained real-time oxidation results ...

  19. Chi-Nu "Gate Review" (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Chi-Nu "Gate Review" Citation Details In-Document Search Title: Chi-Nu "Gate Review" You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This...

  20. Designing robust unitary gates: Application to concatenated composite pulses

    SciTech Connect (OSTI)

    Ichikawa, Tsubasa; Bando, Masamitsu; Kondo, Yasushi; Nakahara, Mikio

    2011-12-15

    We propose a simple formalism to design unitary gates robust against given systematic errors. This formalism generalizes our previous observation [Y. Kondo and M. Bando, J. Phys. Soc. Jpn. 80, 054002 (2011)] that vanishing dynamical phase in some composite gates is essential to suppress pulse-length errors. By employing our formalism, we derive a composite unitary gate which can be seen as a concatenation of two known composite unitary operations. The obtained unitary gate has high fidelity over a wider range of error strengths compared to existing composite gates.

  1. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, Larry; Hopkins, Harvey S.

    1998-12-10

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse.

  2. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, L.; Hopkins, H.S.

    1998-12-01

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse. {copyright} {ital 1998 American Institute of Physics.}

  3. Gated monochromatic x-ray imager

    SciTech Connect (OSTI)

    Oertel, J.A.; Archuleta, T.; Clark, L.

    1995-09-01

    We have recently developed a gated monochromatic x-ray imaging diagnostic for the national Inertial-Confinement Fusion (ICF) program. This new imaging system will be one of the primary diagnostics to be utilized on University of Rochester`s Omega laser fusion facility. The new diagnostic is based upon a Kirkpatrick-Baez (KB) microscope dispersed by diffraction crystals, as first described by Marshall and Su. The dispersed images are gated by four individual proximity focused microchannel plates and recorded on film. Spectral coverage is tunable up to 8 keV, spectral resolution has been measured at 20 eV, temporal resolution is 80 ps, and spatial resolution is better than 10 {mu}m.

  4. Cluster computing software for GATE simulations

    SciTech Connect (OSTI)

    Beenhouwer, Jan de; Staelens, Steven; Kruecker, Dirk; Ferrer, Ludovic; D'Asseler, Yves; Lemahieu, Ignace; Rannou, Fernando R.

    2007-06-15

    Geometry and tracking (GEANT4) is a Monte Carlo package designed for high energy physics experiments. It is used as the basis layer for Monte Carlo simulations of nuclear medicine acquisition systems in GEANT4 Application for Tomographic Emission (GATE). GATE allows the user to realistically model experiments using accurate physics models and time synchronization for detector movement through a script language contained in a macro file. The downside of this high accuracy is long computation time. This paper describes a platform independent computing approach for running GATE simulations on a cluster of computers in order to reduce the overall simulation time. Our software automatically creates fully resolved, nonparametrized macros accompanied with an on-the-fly generated cluster specific submit file used to launch the simulations. The scalability of GATE simulations on a cluster is investigated for two imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT). Due to a higher sensitivity, PET simulations are characterized by relatively high data output rates that create rather large output files. SPECT simulations, on the other hand, have lower data output rates but require a long collimator setup time. Both of these characteristics hamper scalability as a function of the number of CPUs. The scalability of PET simulations is improved here by the development of a fast output merger. The scalability of SPECT simulations is improved by greatly reducing the collimator setup time. Accordingly, these two new developments result in higher scalability for both PET and SPECT simulations and reduce the computation time to more practical values.

  5. GATE Center of Excellence in Lightweight Materials and Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Technologies | Department of Energy 6_vaidya_2012_p.pdf (4.01 MB) More Documents & Publications GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

  6. PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational...

    Energy Savers [EERE]

    PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah...

  7. Penn State DOE Graduate Automotive Technology Education (Gate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education ...

  8. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon ape003tolbert2010p.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Wide Bandgap Materials Smart ...

  9. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. PDF icon ape03marlino.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module ...

  10. Vehicle Technologies Office Merit Review 2015: Gate Driver Optimizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gate Driver Optimization for WBG Applications Vehicle Technologies Office Merit Review ... Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells ...

  11. PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health and Safety Medical System (OHS) (Includes the Drug and Alcohol Testing System (Assistant)) PIA - Savannah River Nuclear Solution (SRNS) MedGate Occupational Health and ...

  12. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Fertilizer use can cause environmental problems, ...

  13. Gates County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Gates County, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.4202077, -76.6874701 Show Map Loading map......

  14. Stage Gate Review Guide for the Industrial Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Stage-Gate Innovation Management Guidelines: Managing Risk Through Structured Project Decision-Making, February 2007. From the Industrial Technologies Program (now the Advanced Manufacturing Office).

  15. GATE Center of Excellence in Lightweight Materials and Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit...

  16. Thermosensitive gating effect and selective gas adsorption in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermosensitive gating effect and selective gas adsorption in a porous coordination nanocage Previous Next List Dan Zhao , Daqiang Yuan , Rajamani Krishna , Jasper M. van Baten and...

  17. GATE Global Alternative Energy Holding AG | Open Energy Information

    Open Energy Info (EERE)

    Energy Holding AG Place: Wrzburg, Bavaria, Germany Zip: 97080 Product: Germany-based biodiesel producer. References: GATE Global Alternative Energy Holding AG1 This article...

  18. Vehicle Technologies Office: Graduate Automotive Technology Education (GATE)

    Broader source: Energy.gov [DOE]

    DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive...

  19. Speed control system for an access gate

    SciTech Connect (OSTI)

    Bzorgi, Fariborz M.

    2012-03-20

    An access control apparatus for an access gate. The access gate typically has a rotator that is configured to rotate around a rotator axis at a first variable speed in a forward direction. The access control apparatus may include a transmission that typically has an input element that is operatively connected to the rotator. The input element is generally configured to rotate at an input speed that is proportional to the first variable speed. The transmission typically also has an output element that has an output speed that is higher than the input speed. The input element and the output element may rotate around a common transmission axis. A retardation mechanism may be employed. The retardation mechanism is typically configured to rotate around a retardation mechanism axis. Generally the retardation mechanism is operatively connected to the output element of the transmission and is configured to retard motion of the access gate in the forward direction when the first variable speed is above a control-limit speed. In many embodiments the transmission axis and the retardation mechanism axis are substantially co-axial. Some embodiments include a freewheel/catch mechanism that has an input connection that is operatively connected to the rotator. The input connection may be configured to engage an output connection when the rotator is rotated at the first variable speed in a forward direction and configured for substantially unrestricted rotation when the rotator is rotated in a reverse direction opposite the forward direction. The input element of the transmission is typically operatively connected to the output connection of the freewheel/catch mechanism.

  20. Modeling gated neutron images of THD capsules

    SciTech Connect (OSTI)

    Wilson, Douglas Carl; Grim, Gary P; Tregillis, Ian L; Wilke, Mark D; Morgan, George L; Loomis, Eric N; Wilde, Carl H; Oertel, John A; Fatherley, Valerie E; Clark, David D; Schmitt, Mark J; Merrill, Frank E; Wang, Tai - Sen F; Danly, Christopher R; Batha, Steven H; Patel, M; Sepke, S; Hatarik, R; Fittinghoff, D; Bower, D; Marinak, M; Munro, D; Moran, M; Hilko, R; Frank, M; Buckles, R

    2010-01-01

    Time gating a neutron detector 28m from a NIF implosion can produce images at different energies. The brighter image near 14 MeV reflects the size and symmetry of the capsule 'hot spot'. Scattered neutrons, {approx}9.5-13 MeV, reflect the size and symmetry of colder, denser fuel, but with only {approx}1-7% of the neutrons. The gated detector records both the scattered neutron image, and, to a good approximation, an attenuated copy of the primary image left by scintillator decay. By modeling the imaging system the energy band for the scattered neutron image (10-12 MeV) can be chosen, trading off the decayed primary image and the decrease of scattered image brightness with energy. Modeling light decay from EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A leads to a preference from BCF99-55 for the first NIF detector, but DPAC 30 and Liquid A would be preferred if incorporated into a system. Measurement of the delayed light from the NIF scintillator using implosions at the Omega laser shows BCF99-55 to be a good choice for down-scattered imaging at 28m.

  1. University of Illinois at Urbana-Champaigns GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion ...

  2. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Looking at Transistor Gate Oxide Formation in Real Time Print Wednesday, 25 June 2008 00:00 The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under

  3. Stage Gate Review Guide for the Biomass Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Program Stage Gate Review Guide for the Biomass Program Stage Gate Management in the Biomass Program (now the Bioenergy Technologies Office), a document from February 2005. Stage Gate Review Guide (282.61 KB) More Documents & Publications Stage Gate Review Guide for the Industrial Technologies Program 2009 Biochemical Conversion Platform Review Report 2009 Thermochemical Conversion Platform Review Report

  4. Gating of Permanent Molds for ALuminum Casting (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    problems caused by improper gating are entrained aluminum oxide films and entrapped gas. ... Publication Date: 2004-03-30 OSTI Identifier: 822451 DOE Contract Number: FC36-01ID13983 ...

  5. Liquid-based gating mechanism with tunable multiphase selectivity...

    Office of Scientific and Technical Information (OSTI)

    uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open ...

  6. Ultrafast terahertz gating of the polarization and giant nonlinear...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Ultrafast terahertz gating of the polarization and giant nonlinear optical response in BiFeO3 thin films Citation Details In-Document Search Title: Ultrafast ...

  7. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ti_01_anstrom.pdf (1.33 MB) More Documents & Publications IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS Vehicle Technologies Office Merit Review 2015: Penn State DOE Graduate

  8. Gated integrator with signal baseline subtraction

    DOE Patents [OSTI]

    Wang, X.

    1996-12-17

    An ultrafast, high precision gated integrator includes an opamp having differential inputs. A signal to be integrated is applied to one of the differential inputs through a first input network, and a signal indicative of the DC offset component of the signal to be integrated is applied to the other of the differential inputs through a second input network. A pair of electronic switches in the first and second input networks define an integrating period when they are closed. The first and second input networks are substantially symmetrically constructed of matched components so that error components introduced by the electronic switches appear symmetrically in both input circuits and, hence, are nullified by the common mode rejection of the integrating opamp. The signal indicative of the DC offset component is provided by a sample and hold circuit actuated as the integrating period begins. The symmetrical configuration of the integrating circuit improves accuracy and speed by balancing out common mode errors, by permitting the use of high speed switching elements and high speed opamps and by permitting the use of a small integrating time constant. The sample and hold circuit substantially eliminates the error caused by the input signal baseline offset during a single integrating window. 5 figs.

  9. Gated integrator with signal baseline subtraction

    DOE Patents [OSTI]

    Wang, Xucheng

    1996-01-01

    An ultrafast, high precision gated integrator includes an opamp having differential inputs. A signal to be integrated is applied to one of the differential inputs through a first input network, and a signal indicative of the DC offset component of the signal to be integrated is applied to the other of the differential inputs through a second input network. A pair of electronic switches in the first and second input networks define an integrating period when they are closed. The first and second input networks are substantially symmetrically constructed of matched components so that error components introduced by the electronic switches appear symmetrically in both input circuits and, hence, are nullified by the common mode rejection of the integrating opamp. The signal indicative of the DC offset component is provided by a sample and hold circuit actuated as the integrating period begins. The symmetrical configuration of the integrating circuit improves accuracy and speed by balancing out common mode errors, by permitting the use of high speed switching elements and high speed opamps and by permitting the use of a small integrating time constant. The sample and hold circuit substantially eliminates the error caused by the input signal baseline offset during a single integrating window.

  10. Final Technical GATE Report, 1998-2006

    SciTech Connect (OSTI)

    GATE Fuel Cell Vehicle Center

    2006-09-30

    In 1998, the U.S. Department of Energy (DOE) funded 10 proposals to establish graduate automotive technology education (GATE) centers of excellence at nine universities, each addressing a specific technological area. The University of California, Davis was chosen for two centers: Fuel Cell Center and Hybrid-Electric Vehicle Design Center (power drivetrains and control strategies). This report is specific to the Fuel Cell Center only, which was housed at the UC Davis Institute of Transportation Studies (ITS-Davis). ITS-Davis created the Fuel Cell Vehicle Center, with the following goals: (1) create an interdisciplinary fuel cell vehicle curriculum that cuts across engineering, the physical sciences and, to a lesser extent, the social sciences; (2) expand and strengthen the then-emerging multidisciplinary fuel cell vehicle research program; (3) strengthen links with industry; (4) create an active public outreach program; and (5) serve as neutral ground for interactions between academia, the auto, energy, and technology industries, government, and public-interest non-governmental organizations. At the time of proposal, the Center had a solid track record in fuel cell research, strong connections with industry, strong campus support, a core group of distinguished and motivated faculty, and an established institutional foundation for fuel cell vehicle research and education.

  11. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-09-08

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling. 25 figs.

  12. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-09-08

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna (10), so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive (24) and transmit cavities (22) by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling.

  13. Rapidly reconfigurable all-optical universal logic gate

    DOE Patents [OSTI]

    Goddard, Lynford L.; Bond, Tiziana C.; Kallman, Jeffrey S.

    2010-09-07

    A new reconfigurable cascadable all-optical on-chip device is presented. The gate operates by combining the Vernier effect with a novel effect, the gain-index lever, to help shift the dominant lasing mode from a mode where the laser light is output at one facet to a mode where it is output at the other facet. Since the laser remains above threshold, the speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal optical modulation speed of the laser, which can be on the order of up to about tens of GHz. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog optical or electrical signal at the gate selection port. Other all-optical functionality includes wavelength conversion, signal duplication, threshold switching, analog to digital conversion, digital to analog conversion, signal routing, and environment sensing. Since each gate can perform different operations, the functionality of such a cascaded circuit grows exponentially.

  14. Company Level Imports Archives

    U.S. Energy Information Administration (EIA) Indexed Site

    Company Level Imports Company Level Imports Archives 2015 Imports by Month January XLS February XLS March XLS April XLS May XLS June XLS July XLS August XLS September XLS October...

  15. Innovative secondary support systems for gate roads

    SciTech Connect (OSTI)

    Barczak, T.; Molinda, G.M.; Zelanko, J.C.

    1996-12-31

    With the development of the shield support, the primary requirement for successful ground control in longwall mining is to provide stable gate road and bleeder entries. Wood cribbing has been the dominant form of secondary and supplemental support. However, the cost and limited availability of timber, along with the poor performance of softwood crib supports, has forced western U.S. mines to explore the utilization of support systems other than conventional wood cribbing. The recent success of cable bolts has engendered much interest from western operators. Eastern U.S. coal operators are also now experimenting with various intrinsic and freestanding alternative support systems that provide effective ground control while reducing material handling costs and injuries. These innovative freestanding support systems include (1) {open_quotes}The Can{close_quotes} support by Burrell Mining Products International, Inc., (2) Hercules and Link-N-Lock wood cribs and Propsetter supports by Strata Products (USA) Inc., (3) Variable Yielding Crib and Power Crib supports by Mountainland Support Systems, (4) the Confined Core Crib developed by Southern Utah Fuels Corporation; and (5) the MEGA prop by MBK Hydraulik. This paper assesses design considerations and compares the performance and application of these alternative secondary support systems. Support performance in the form of load-displacement behavior is compared to conventional wood cribbing. Much of the data was developed through full-scale tests conducted by the U.S. Bureau of Mines (USBM) at the Strategic Structures Testing Laboratory in the unique Mine Roof Simulator load frame at the Pittsburgh Research Center. A summary of current mine experience with these innovative supports is also documented.

  16. Note: The design of thin gap chamber simulation signal source based on field programmable gate array

    SciTech Connect (OSTI)

    Hu, Kun; Wang, Xu; Li, Feng; Jin, Ge; Lu, Houbing; Liang, Futian

    2015-01-15

    The Thin Gap Chamber (TGC) is an important part of ATLAS detector and LHC accelerator. Targeting the feature of the output signal of TGC detector, we have designed a simulation signal source. The core of the design is based on field programmable gate array, randomly outputting 256-channel simulation signals. The signal is generated by true random number generator. The source of randomness originates from the timing jitter in ring oscillators. The experimental results show that the random number is uniform in histogram, and the whole system has high reliability.

  17. Deterministic and cascadable conditional phase gate for photonic qubits

    SciTech Connect (OSTI)

    Chudzicki, Christopher; Chuang, Isaac; Shapiro, Jeffrey H.

    2014-12-04

    Previous analyses of conditional ?{sub NL}-phase gates for photonic qubits that treat crossphase modulation (XPM) in a causal, multimode, quantum field setting suggest that a large (?? rad) nonlinear phase shift is always accompanied by fidelity-degrading noise [J. H. Shapiro, Phys. Rev. A 73, 062305 (2006); J. Gea-Banacloche, Phys. Rev. A 81, 043823 (2010)]. Using an atomic V-system to model an XPM medium, we present a conditional phase gate that, for sufficiently small nonzero ?{sub NL}, has high fidelity. The gate is made cascadable by using a special measurement, principal mode projection, to exploit the quantum Zeno effect and preclude the accumulation of fidelity-degrading departures from the principal-mode Hilbert space when both control and target photons illuminate the gate. The nonlinearity of the V-system we study is too weak for this particular implementation to be practical. Nevertheless, the idea of cascading through principal mode projection is of potential use to overcome fidelity degrading noise for a wide variety of nonlinear optical primitive gates.

  18. Effects of breathing variation on gating window internal target volume in respiratory gated radiation therapy

    SciTech Connect (OSTI)

    Cai Jing; McLawhorn, Robert; Read, Paul W.; Larner, James M.; Yin, Fang-fang; Benedict, Stanley H.; Sheng, Ke

    2010-08-15

    Purpose: To investigate the effects of breathing variation on gating window internal target volume (ITV{sub GW}) in respiratory gated radiation therapy. Method and Materials: Two-dimensional dynamic MRI (dMRI) of lung motion was acquired in ten volunteers and eight lung cancer patients. Resorted dMRI using 4DCT acquisition method (RedCAM) was generated for selected subjects by simulating the image rebinning process. A dynamic software generated phantom (dSGP) was created by moving a solid circle (to mimic the ''tumor'') with dMRI-determined motion trajectories. The gating window internal target area (ITA{sub GW}, 2D counterpart of ITV{sub GW}) was determined from both RedCAM and dSGP/dMRI. Its area (A), major axis (L1), minor axis (L2), and similarity (S) were calculated and compared. Results: In the phantom study of 3 cm tumor, measurements of the ITA{sub GW} from dSGP (A=10.0{+-}1.3 cm{sup 2}, L1=3.8{+-}0.4 cm, and L2=3.3{+-}0.1 cm) are significantly (p<0.001) greater than those from RedCAM (A=8.5{+-}0.7 cm{sup 2}, L1=3.5{+-}0.2 cm, and L2=3.1{+-}0.1 cm). Similarly, the differences are significantly greater (p<0.001) for the 1 cm tumor (A=1.9{+-}0.5 cm{sup 2}, L1=1.9{+-}0.4 cm, and L2=1.3{+-}0.1 cm in dSGP; A=1.3{+-}0.1 cm{sup 2}, L1=1.5{+-}0.2 cm, and L2=1.1{+-}0.1 cm in RedCAM). In patient studies, measurements of the ITA{sub GW} from dMRI (A=15.5{+-}8.2 cm{sup 2}, L1=5.0{+-}1.1 cm, and L2=3.8{+-}1.2 cm) are also significantly greater (p<0.05) than those from RedCAM (A=13.2{+-}8.5 cm{sup 2}, L1=4.3{+-}1.4 cm, and L2=3.7{+-}1.2 cm). Similarities were 0.9{+-}0.1, 0.8{+-}0.1, and 0.8{+-}0.1 in the 3 cm tumor phantom, 1 cm tumor phantom, and patient studies, respectively. Conclusion: ITV{sub GW} can be underestimated by 4DCT due to breathing variations. An additional margin may be needed to account for this potential error in generating a PTV{sub GW}. Cautions need to be taken when generating ITV{sub GW} from 4DCT in respiratory gated radiation therapy, especially

  19. Nonlinear transport in ionic liquid gated strontium titanate nanowires

    SciTech Connect (OSTI)

    Bretz-Sullivan, Terence M.; Goldman, A. M.

    2015-09-14

    Measurements of the current-voltage (I–V) characteristics of ionic liquid gated nanometer scale channels of strontium titanate have been carried out. At low gate voltages, the I–V characteristics exhibit a large voltage threshold for conduction and a nonlinear power law behavior at all temperatures measured. The source-drain current of these nanowires scales as a power law of the difference between the source-drain voltage and the threshold voltage. The scaling behavior of the I–V characteristic is reminiscent of collective electronic transport through an array of quantum dots. At large gate voltages, the narrow channel acts as a quasi-1D wire whose conductance follows Landauer's formula for multichannel transport.

  20. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  1. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  2. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  3. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  4. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  5. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  6. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is critical to every transistor, and present-day layer thicknesses are in the 10-20 Å range (1-2 nm). However, little information exists on the oxidation process at this thickness. Available results are either for thicker layers grown under high-pressure conditions or for only the first couple of monolayers studied under high-vacuum conditions. Now, for the first time, a group of researchers has obtained

  7. Radiation Hardening of Gated X-ray Imagers for the National Ignition...

    Office of Scientific and Technical Information (OSTI)

    Radiation Hardening of Gated X-ray Imagers for the National Ignition Facility Citation Details In-Document Search Title: Radiation Hardening of Gated X-ray Imagers for the National ...

  8. Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors

    SciTech Connect (OSTI)

    Wang, Yang; Chen, Xiaolong; Ye, Weiguang; Wu, Zefei; Han, Yu; Han, Tianyi; He, Yuheng; Cai, Yuan; Wang, Ning

    2014-12-15

    High-quality BN-Graphene-BN nanoribbon capacitors with double side-gates of graphene have been experimentally realized. The double side-gates can effectively modulate the electronic properties of graphene nanoribbon capacitors. By applying anti-symmetric side-gate voltages, we observed significant upward shifting and flattening of the V-shaped capacitance curve near the charge neutrality point. Symmetric side-gate voltages, however, only resulted in tilted upward shifting along the opposite direction of applied gate voltages. These modulation effects followed the behavior of graphene nanoribbons predicted theoretically for metallic side-gate modulation. The negative quantum capacitance phenomenon predicted by numerical simulations for graphene nanoribbons modulated by graphene side-gates was not observed, possibly due to the weakened interactions between the graphene nanoribbon and side-gate electrodes caused by the Ga{sup +} beam etching process.

  9. Electrolyte Gate-Controlled Kondo Effect in SrTiO3 (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Electrolyte Gate-Controlled Kondo Effect in SrTiO3 Prev Next Title: Electrolyte Gate-Controlled Kondo Effect in SrTiO3 Authors: Lee, Menyoung ; Williams, J. R. ; Zhang, Sipei ...

  10. Company Level Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Company Level Imports With Data for June 2016 | Release Date: August 31, 2016 | Next Release Date: September 30, 2016 | XLS Previous Issues Month: June 2016 May 2016 April 2016 March 2016 February 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 June 2015 prior issues Go June 2016 Import Highlights Monthly data on the origins of crude oil imports in June 2016 show that two countries, Canada and Saudi Arabia, exported more than one million barrels

  11. Fast Out of the Gate: How Developing Asian Countries can Prepare...

    Open Energy Info (EERE)

    (Redirected from Fast Out of the Gate: How Developing Asian Countries can Prepare to Access International Green Growth Financing)...

  12. Technical Feasibility Assessment of LED Roadway Lighting on the Golden Gate Bridge

    SciTech Connect (OSTI)

    Tuenge, J. R.

    2012-09-01

    GATEWAY program report on the technical feasibility of LED roadway lighting on the Golden Gate Bridge in San Francisco, CA.

  13. Controlled phase gate for solid-state charge-qubit architectures

    SciTech Connect (OSTI)

    Schirmer, S.G.; Oi, D.K.L.; Greentree, Andrew D.

    2005-01-01

    We describe a mechanism for realizing a controlled phase gate for solid-state charge qubits. By augmenting the positionally defined qubit with an auxiliary state, and changing the charge distribution in the three-dot system, we are able to effectively switch the Coulombic interaction, effecting an entangling gate. We consider two architectures, and numerically investigate their robustness to gate noise.

  14. Gating of high-mobility InAs metamorphic heterostructures

    SciTech Connect (OSTI)

    Shabani, J.; McFadden, A. P.; Shojaei, B.; Palmstrøm, C. J.

    2014-12-29

    We investigate the performance of gate-defined devices fabricated on high mobility InAs metamorphic heterostructures. We find that heterostructures capped with In{sub 0.75}Ga{sub 0.25}As often show signs of parallel conduction due to proximity of their surface Fermi level to the conduction band minimum. Here, we introduce a technique that can be used to estimate the density of this surface charge that involves cool-downs from room temperature under gate bias. We have been able to remove the parallel conduction under high positive bias, but achieving full depletion has proven difficult. We find that by using In{sub 0.75}Al{sub 0.25}As as the barrier without an In{sub 0.75}Ga{sub 0.25}As capping, a drastic reduction in parallel conduction can be achieved. Our studies show that this does not change the transport properties of the quantum well significantly. We achieved full depletion in InAlAs capped heterostructures with non-hysteretic gating response suitable for fabrication of gate-defined mesoscopic devices.

  15. Temperature-controlled molecular depolarization gates in nuclear magnetic resonance

    SciTech Connect (OSTI)

    Schroder, Leif; Schroder, Leif; Chavez, Lana; Meldrum, Tyler; Smith, Monica; Lowery, Thomas J.; E. Wemmer, David; Pines, Alexander

    2008-02-27

    Down the drain: Cryptophane cages in combination with selective radiofrequency spin labeling can be used as molecular 'transpletor' units for transferring depletion of spin polarization from a hyperpolarized 'source' spin ensemble to a 'drain' ensemble. The flow of nuclei through the gate is adjustable by the ambient temperature, thereby enabling controlled consumption of hyperpolarization.

  16. SU-C-210-03: Impact of Breathing Irregularities On Gated Treatments

    SciTech Connect (OSTI)

    Schiuma, D; Arheit, M; Schmelzer, P; Scheib, S; Buchsbaum, T; Pemler, P

    2015-06-15

    Purpose: To evaluate the effect of breathing irregularities on target location in gated treatments using amplitude and phase gating. Methods: 111 breathing patterns acquired using RPM system were categorized based on period and amplitude STD as regular (STD period ≤ 0.5 s, STD amplitude ≤ 1.5 mm), medium (0.5 s < STD period ≤ 1 s, 1.5 mm < STD amplitude ≤ 3 mm) and irregular (STD period > 1 s, STD amplitude > 3 mm). One pattern representative of the average defined population was selected per category and corresponding target motion reproduced using Quasar Respiratory Motion Phantom. Phantom in motion underwent 4D-CT scan with phase reconstruction. Gated window was defined at end of exhale and DRRs reconstructed in treatment planning at 40% (beam on) and 60% phase (beam off). Target location uncertainty was assessed by comparing gated kV triggered images continuously acquired at beam on/off on a True Beam 2.0 with corresponding DRRs. Results: Average target uncertainty with amplitude gating was in [0.4 – 1.9] mm range for the different scenarios with maximum STD of 1.2 mm for the irregular pattern. Average target uncertainty with phase gating was [1.1 – 2.2] mm for regular and medium patterns, while it increased to [3.6 – 9.6] mm for the irregular pattern. Live gated motion was stable with amplitude gating, while increasing with phase gating for the irregular pattern. Treatment duration range was [68 – 160] s with amplitude and [70 – 74] s with phase gating. Conclusion: Breathing irregularities were found to affect gated treatments only when using phase gating. For regular and medium patterns no significant difference was found between the two gating strategies. Amplitude gating ensured stable gated motion within the different patterns, thus reducing intra-fraction target location variability for the irregular pattern and resulting in longer treatment duration.

  17. American coal imports 2015

    SciTech Connect (OSTI)

    Frank Kolojeski

    2007-09-15

    As 2007 ends, the US coal industry passes two major milestones - the ending of the Synfuel tax break, affecting over 100M st annually, and the imposition of tighter and much more expensive safety measures, particularly in deep mines. Both of these issues, arriving at a time of wretched steam coal price levels, promise to result in a major shake up in the Central Appalachian mining sector. The report utilizes a microeconomic regional approach to determine whether either of these two schools of thought have any validity. Transport, infrastructure, competing fuels and regional issues are examined in detail and this forecasts estimates coal demand and imports on a region by region basis for the years 2010 and 2015. Some of the major highlights of the forecast are: Import growth will be driven by steam coal demand in the eastern and southern US; Transport will continue to be the key driver - we believe that inland rail rates will deter imports from being railed far inland and that the great majority of imports will be delivered directly by vessel, barge or truck to end users; Colombian coal will be the overwhelmingly dominant supply source and possesses a costs structure to enable it to compete with US-produced coal in any market conditions; Most of the growth will come from existing power plants - increasing capacity utilization at existing import facilities and other plants making investments to add imports to the supply portfolio - the growth is not dependent upon a lot of new coal fired capacity being built. Contents of the report are: Key US market dynamics; International supply dynamics; Structure of the US coal import market; and Geographic analysis.

  18. A Compact Reactor Gate Discharge Monitor for Spent Fuel.

    SciTech Connect (OSTI)

    Franco, J. B.; Menlove, Howard O.; Eccleston, G. W.; Miller, M. C.

    2005-01-01

    This paper presents a new design for a reactor gate discharge monitor that has evolved from the baseline discharge monitors used at the Fugen and Tokai-1 reactors in Japan. The main design innovation is the ability to determine direction-of-motion of spent fuel using a single sensor module, as opposed to the two modules used in both baseline design systems. Use of a single module reduces the final system complexity and weight significantly without compromising functionality. The reactor gate discharge monitor uses standard International Atomic Energy Agency (IAEA) hardware and software components. The requirements to determine direction-of-motion from a single module precipitated several development efforts described herein in both the MiniGRAND data acquisition hardware and in the uninterruptible power supply source.

  19. Quantum gate using qubit states separated by terahertz

    SciTech Connect (OSTI)

    Toyoda, Kenji; Urabe, Shinji [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); JST-CREST, 4-1-8 Honmachi, Kawaguchi, Saitama 331-0012 (Japan); Haze, Shinsuke [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Yamazaki, Rekishu [JST-CREST, 4-1-8 Honmachi, Kawaguchi, Saitama 331-0012 (Japan)

    2010-03-15

    A two-qubit quantum gate is realized using electronically excited states in a single ion with an energy separation on the order of a terahertz times the Planck constant as a qubit. Two phase-locked lasers are used to excite a stimulated Raman transition between two metastable states D{sub 3/2} and D{sub 5/2} separated by 1.82 THz in a single trapped {sup 40}Ca{sup +} ion to construct a qubit, which is used as the target bit for the Cirac-Zoller two-qubit controlled NOT gate. Quantum dynamics conditioned on a motional qubit is clearly observed as a fringe reversal in Ramsey interferometry.

  20. Negative differential transconductance in electrolyte-gated ruthenate

    SciTech Connect (OSTI)

    Hassan, Muhammad Umair; Dhoot, Anoop Singh; Wimbush, Stuart C.

    2015-01-19

    We report on a study of electric field-induced doping of the highly conductive ruthenate SrRuO{sub 3} using an ionic liquid as the gate dielectric in a field-effect transistor configuration. Two distinct carrier transport regimes are identified for increasing positive gate voltage in thin (10 nm) films grown heteroepitaxially on SrTiO{sub 3} substrates. For V{sub g} = 2 V and lower, the sample shows an increased conductivity of up to 13%, as might be expected for electron doping of a metal. At higher V{sub g} = 2.5 V, we observe a large decrease in electrical conductivity of >20% (at 4.2 K) due to the prevalence of strongly blocked conduction pathways.

  1. Unitary-gate synthesis for continuous-variable systems

    SciTech Connect (OSTI)

    Fiurasek, Jaromir

    2003-08-01

    We investigate the synthesis of continuous-variable two-mode unitary gates in the setting where two modes A and B are coupled by a fixed quadratic Hamiltonian H. The gate synthesis consists of a sequence of evolutions governed by Hamiltonian H, which are interspaced by local phase shifts applied to A and B. We concentrate on protocols that require the minimum number of necessary steps and we show how to implement the beam splitter and the two-mode squeezer in just three steps. Particular attention is paid to Hamiltonian x{sub A}p{sub B} that describes the effective off-resonant interaction of light with the collective atomic spin.

  2. Operating experience feedback report -- Pressure locking and thermal binding of gate valves. Commercial power reactors: Volume 9

    SciTech Connect (OSTI)

    Hsu, C.

    1993-03-01

    The potential for valve inoperability caused by pressure locking and thermal binding has been known for many years in the nuclear industry. Pressure locking or thermal binding is a common-mode failure mechanism that can prevent a gate valve from opening, and could render redundant trains of safety systems or multiple safety systems inoperable. In spite of numerous generic communications issued in the past by the Nuclear Regulatory Commission (NRC) and industry, pressure locking and thermal binding continues to occur to gate valves installed in safety-related systems of both boding water reactors (BWRs) and pressurized water reactors (PWRs). The generic communications to date have not led to effective industry action to fully identify, evaluate, and correct the problem. This report provides a review of operating events involving these failure mechanisms. As a result of this review this report: (1) identifies conditions when the failure mechanisms have occurred, (2) identifies the spectrum of safety systems that have been subjected to the failure mechanisms, and (3) identifies conditions that may introduce the failure mechanisms under both normal and accident conditions. On the basis of the evaluation of the operating events, the Office for Analysis and Evaluation of Operational Data (AEOD) of the NRC concludes that the binding problems with gate valves are an important safety issue that needs priority NRC and industry attention. This report also provides AEOD`s recommendation for actions to effectively prevent the occurrence of valve binding failures.

  3. Amorphorized tantalum-nickel binary films for metal gate applications

    SciTech Connect (OSTI)

    Ouyang, Jiaomin; Wongpiya, Ranida; Clemens, Bruce M.; Deal, Michael D.; Nishi, Yoshio

    2015-04-13

    Amorphous metal gates have the potential to eliminate the work function variation due to grain orientation for poly-crystalline metal gate materials, which is a leading contributor to threshold voltage variation for small transistors. Structural and electrical properties of TaNi alloys using co-sputtering with different compositions and multilayer structures with different thicknesses are investigated in this work. It is found that TaNi films are amorphous for a wide range of compositions as deposited, and the films stay amorphous after annealing at 400?C in RTA for 1?min and up to at least 700?C depending on the composition. The amorphous films eventually crystallize into Ni, Ta, and TaNi{sub 3} phases at high enough temperature. For multilayer Ta/Ni structures, samples with individual layer thickness of 0.12?nm and 1.2?nm are amorphous as deposited due to intermixing during deposition, and stay amorphous until annealed at 500?C. The resistivity of the films as-deposited are around 200 ??cm. The work function of the alloy is fixed at close to the Ta work function of 4.6?eV for a wide range of compositions. This is attributed to the segregation of Ta at the metal-oxide interface, which is confirmed by XPS depth profile. Overall, the excellent thermal stability and low resistivity makes this alloy system a promising candidate for eliminating work function variation for gate last applications, as compared to crystalline Ta or TiN gates.

  4. Gate dielectric degradation: Pre-existing vs. generated defects

    SciTech Connect (OSTI)

    Veksler, Dmitry E-mail: gennadi.bersuker@sematech.org; Bersuker, Gennadi E-mail: gennadi.bersuker@sematech.org

    2014-01-21

    We consider the possibility that degradation of the electrical characteristics of high-k gate stacks under low voltage stresses of practical interest is caused primarily by activation of pre-existing defects rather than generation of new ones. In nFETs in inversion, in particular, defect activation is suggested to be associated with the capture of an injected electron: in this charged state, defects can participate in a fast exchange of charge carriers with the carrier reservoir (substrate or gate electrode) that constitutes the physical process underlying a variety of electrical measurements. The degradation caused by the activation of pre-existing defects, as opposed to that of new defect generation, is both reversible and exhibits a tendency to saturate through the duration of stress. By using the multi-phonon assisted charge transport description, it is demonstrated that the trap activation concept allows reproducing a variety of experimental results including stress time dependency of the threshold voltage, leakage current, charge pumping current, and low frequency noise. Continuous, long-term degradation described by the power law time dependency is shown to be determined by the activation of defects located in the interfacial SiO{sub 2} layer of the high-k gate stacks. The findings of this study can direct process optimization efforts towards reduction of as-grown precursors of the charge trapping defects as the major factor affecting reliability.

  5. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    SciTech Connect (OSTI)

    Nelson, Douglas

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  6. Website Policies / Important Links | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Website Policies Important Links Website Policies Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  7. Website Policies / Important Links | sciencecinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  8. Electric actuator for the sempell gate valve

    SciTech Connect (OSTI)

    Herbstritt, E.C.

    1996-12-01

    The automation of valves has a primary importance in the scope of central control and regulation of power generation processes in power plants and especially in nuclear power plants. AUMA WERNER RIESTER GmbH & Co. KG is considered a leading manufacturer of electric actuators for the automation of valves. More than 30 years experience in designing, developing, and manufacturing provide a sound basis for offering reliable products, especially for nuclear applications. The quality assurance system of AUMA was developed according to 10 CFR 50, Appendix B and has been consistently accomplished. The program was certified by the TUV Germany (Technical Authorized Inspection Agency), according to ISO-9001, in 1994. AUMA offers two actuator type ranges for application in nuclear power plants. The range SAI is qualified according to IEEE 382-1978 and is designed for inside containment. The range SAN is qualified according to IEEE 382-1985 and KTA 3504-1988 for use in non-radioactive applications in the nuclear power plants.

  9. Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Contolini, Robert J.

    2001-01-01

    A process for fabricating a nanofilament field emission device in which a via in a dielectric layer is self-aligned to gate metal via structure located on top of the dielectric layer. By the use of a hard mask layer located on top of the gate metal layer, inert to the etch chemistry for the gate metal layer, and in which a via is formed by the pattern from etched nuclear tracks in a trackable material, a via is formed by the hard mask will eliminate any erosion of the gate metal layer during the dielectric via etch. Also, the hard mask layer will protect the gate metal layer while the gate structure is etched back from the edge of the dielectric via, if such is desired. This method provides more tolerance for the electroplating of a nanofilament in the dielectric via and sharpening of the nanofilament.

  10. Technical Feasibility Assessment of LED Roadway Lighting on the Golden Gate

    Office of Scientific and Technical Information (OSTI)

    Bridge (Technical Report) | SciTech Connect Technical Report: Technical Feasibility Assessment of LED Roadway Lighting on the Golden Gate Bridge Citation Details In-Document Search Title: Technical Feasibility Assessment of LED Roadway Lighting on the Golden Gate Bridge Subsequent to preliminary investigations by the Golden Gate Bridge Highway & Transportation District (GGB), in coordination with Pacific Gas & Electric (PG&E), the GATEWAY Demonstration program was asked to