Sample records for gasoline system development

  1. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

  2. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063smith2013o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

  3. Lean Gasoline System Development for Fuel Efficient Small Cars

    SciTech Connect (OSTI)

    None

    2013-08-30T23:59:59.000Z

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  4. Gasoline price data systems

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    Timely observation on prices of gasoline at the wholesale and retail level by geographical area can serve several purposes: (1) to facilitate the monitoring of compliance with controls on distributor margins; (2) to indicate changes in the competitive structure of the distribution system; (3) to measure the incidence of changes in crude oil and refiner costs on retail prices by grade of gasoline, by type of retail outlet, and by geographic area; (4) to identify anomalies in the retail pricing structure that may create incentives for misfueling; and (5) to provide detailed time series data for use in evaluating conservation response to price changes. In order to provide the needed data for these purposes, the following detail on gasoline prices and characteristics of the sampling procedure appear to be appropriate: (1) monthly sample observations on wholesale and retail prices by gasoline grade and type of wholesale or retail dealer, together with volume weights; (2) sample size sufficient to provide detail by state and large cities; (3) responses to be tabulated and reports provided within 30 days after date of observation; and (4) a quick response sampling procedure that can provide weekly data, at least at the national level, when needed in time of rapidly changing prices. Price detail by state is suggested due to its significance for administrative purposes and since gasoline consumption data are estimated by state from other sources. Price detail for large cities are suggested in view of their relevancy as problem areas for vehicle emissions, reflecting one of the analytical uses of the data. In this report, current reporting systems and data on gasoline prices are reviewed and evaluated in terms of the needs outlined above. Recommendations are made for ways to fill the gaps in existing data systems to meet these needs.

  5. Lean Gasoline System Development for Fuel Efficient Small Car

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Progression Phase 1 Initial Concept Phase 2 Refinement Phase 3 Optimization May '10 May '11 May '12 Sep '13 May '13 2.2L NA Lean Engine Lean Boost Controls...

  6. Developing an accelerated aging system for gasoline particulate filters and an evaluation test for effects on engine performance

    E-Print Network [OSTI]

    Jorgensen, James E. (James Eastman)

    2014-01-01T23:59:59.000Z

    Stringent regulations worldwide will limit the level of particulate matter (PM) emitted from gasoline engines equipped with direct fuel injection. Gasoline particulate filters (GPFs) present one strategy for meeting PM ...

  7. TRITIUM PERMEATION AND TRANSPORT IN THE GASOLINE PRODUCTION SYSTEM COUPLED WITH HIGH TEMPERATURE GAS-COOLED REACTORS (HTGRS)

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2011-05-01T23:59:59.000Z

    This paper describes scoping analyses on tritium behaviors in the HTGR-integrated gasoline production system, which is based on a methanol-to-gasoline (MTG) plant. In this system, the HTGR transfers heat and electricity to the MTG system. This system was analyzed using the TPAC code, which was recently developed by Idaho National Laboratory. The global sensitivity analyses were performed to understand and characterize tritium behaviors in the coupled HTGR/MTG system. This Monte Carlo based random sampling method was used to evaluate maximum 17,408 numbers of samples with different input values. According to the analyses, the average tritium concentration in the product gasoline is about 3.05×10-3 Bq/cm3, and 62 % cases are within the tritium effluent limit (= 3.7x10-3 Bq/cm3[STP]). About 0.19% of released tritium is finally transported from the core to the gasoline product through permeations. This study also identified that the following four parameters are important concerning tritium behaviors in the HTGR/MTG system: (1) tritium source, (2) wall thickness of process heat exchanger, (3) operating temperature, and (4) tritium permeation coefficient of process heat exchanger. These four parameters contribute about 95 % of the total output uncertainties. This study strongly recommends focusing our future research on these four parameters to improve modeling accuracy and to mitigate tritium permeation into the gasol ine product. If the permeation barrier is included in the future study, the tritium concentration will be significantly reduced.

  8. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartmentDevelopment and1Department of

  9. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartmentDevelopment and1Department ofDepartment

  10. Gasoline marketing

    SciTech Connect (OSTI)

    Metzenbaum, H.M.

    1991-02-01T23:59:59.000Z

    Consumers have the option of purchasing several different grades of unleaded gasoline regular, mid-grade, and premium which are classified according to an octane rating. Because of concern that consumers may be needlessly buying higher priced premium unleaded gasoline for their automobiles when regular unleaded gasoline would meet their needs, this paper determines whether consumers were buying premium gasoline that they may not need, whether the higher retail price of premium gasoline includes a price mark-up added between the refinery and the retail pump which is greater than that included in the retail price for regular gasoline, and possible reasons for the price differences between premium and regular gasoline.

  11. Vehicle Technologies Office Merit Review 2015: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    Presentation given by Cummins at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline turbocharged direct...

  12. Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

  13. Design, integration, and trade-off analyses of gasoline-fueled polymer electrolyte fuel cell systems for transportation.

    SciTech Connect (OSTI)

    Kumar, R.

    1998-09-14T23:59:59.000Z

    Prototype fuel-cell-powered vehicles have recently been demonstrated in Japan, Europe, and North America. Conceptual designs and simulations of fuel-cell-powered vehicles have also been published [1-3]. Many of these simulations include detailed vehicle performance models, but they use relatively simplistic fuel-cell power system models. We have developed a comprehensive model of a polymer electrolyte fuel cell (PEFC) power system for automotive propulsion. This system simulation has been used to design and analyze fuel-cell systems and vehicles with gasoline (or other hydrocarbons) as the on-board fuel. The major objective of this analysis is to examine the influence of design parameters on system efficiency and performance, and component sizes.

  14. EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

  15. Reductant Chemistry during LNT Regeneration for a Lean Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Emissions Control for Lean Gasoline Engines Emissions Control for Lean Gasoline...

  16. Electric car Gasoline car

    E-Print Network [OSTI]

    ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preferences. · Identification of population segments with a strong interest for electric cars. · Forecasting

  17. Lean Gasoline System Development for Fuel Efficient Small Car

    Broader source: Energy.gov (indexed) [DOE]

    contain any proprietary, confidential, or otherwise restricted information Stuart R. Smith - Principal Investigator GM Powertrain May 17, 2013 2013 DOE Vehicle Technologies...

  18. Lean Gasoline System Development for Fuel Efficient Small Car

    Broader source: Energy.gov (indexed) [DOE]

    Powertrain Advanced Engineering This presentation does not contain any proprietary, confidential, or otherwise restricted information GM Powertrain Advanced Engineering This...

  19. Lean Gasoline System Development for Fuel Efficient Small Car

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e a s t e rthe Nationof

  1. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e a s t e rthe

  2. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05132011 Project...

  3. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05182012 Project...

  4. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 06192014 Project...

  5. With Mathematica Gasoline Inventory

    E-Print Network [OSTI]

    Reiter, Clifford A.

    with the delivery and storage of the gasoline and we desire not to run out of gasoline or exceed the stationPreprint 1 With Mathematica and J: Gasoline Inventory Simulation Cliff Reiter Computational for the number of gallons of gasoline sold by a station for a thousand weeks. The pattern involves demands

  6. Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices

    E-Print Network [OSTI]

    Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

    2007-01-01T23:59:59.000Z

    Regulation and Arbitrage in Wholesale Gasoline Markets,Content Regulation and Wholesale Gasoline Prices JenniferCONTENT REGULATION AND WHOLESALE GASOLINE PRICES by Jennifer

  7. Gasoline Biodesulfurization Fact Sheet

    Broader source: Energy.gov [DOE]

    This petroleum industry fact sheet describes how biodesulfurization can yield lower sulfur gasoline at lower production costs.

  8. Oligomerize for better gasoline

    SciTech Connect (OSTI)

    Nierlich, F. (Huls AG, Marl (DE))

    1992-02-01T23:59:59.000Z

    This paper reports on normal butene containing isobutene-depleted C{sub 4} hydrocarbons like raffinate II which are oligomerized using the Octol process in the liquid phase on a heterogeneous catalyst system to yield mainly C{sub 8} and C{sub 12} olefins. Raffinate II, the spent C{sub 4} fraction of an MTBE unit, is an ideal feedstock for further n-butene processing because of its high olefin concentration ranging between 70% and 80%. By modifications of MTBE technology, implementation of selective hydrogenation for removal of residual butadiene and superfractionating raffinate II, polymer grade 1-butene can be produced. Until the mid-70s raffinate I, the team cracker C{sub 4} cut after butadiene extraction, was mainly burned or blended into gasoline. Now nearly all raffinate I is or will be consumed for the purpose of converting isobutylene to MTBE.

  9. Tenneco upgrades natural gasoline

    SciTech Connect (OSTI)

    O'Gorman, E.K.

    1986-08-01T23:59:59.000Z

    Tenneco Oil Co. recently completed a natural gasoline upgrading project at its LaPorte, Tex., facility. The project was started in October 1985. The purpose was to fractionate natural gasoline and isomerize the n-pentane component. Three factors made this a particularly attractive project for the LaPorte complex: 1. The phase down of lead in gasoline made further processing of natural gasoline desirable. 2. Idle equipment and trained personnel were available at the plant as a result of a switch of Tenneco's natural gas liquids (NGL) fractionation to its Mont Belvieu, Tex., facility. 3. The plant interconnects with Houston's local markets. It has pipelines to Mont Belvieu, Texas City, and plants along the Houston Ship Channel, as well as truck, tank car, and barge-loading facilities. Here are the details on the operation of the facilities, the changes which were required to enable the plant to operate successfully, and how this conversion was completed in a timely fashion.

  10. Gasoline Jet Fuels

    E-Print Network [OSTI]

    Kemner, Ken

    C4n= Diesel Gasoline Jet Fuels C O C5: Xylose C6 into fuels. IACT is examining these key reactions to understand the fundamental chemistry and to provide

  11. Ethers help gasoline quality

    SciTech Connect (OSTI)

    Chang, E.J.; Leiby, S.M. (SRI International, Menlo Park, CA (US))

    1992-02-01T23:59:59.000Z

    In this article three scenarios to evaluate the effect of etherification on gasoline production and quality are reviewed: Base case FCC/C{sub 4} alkylation complex - FCC unit operation for maximum gasoline yield, MTBE unit added to base case FCC unit operation and MTBE unit added to maximum olefins FCC unit operation. Details of the FCC, MTBE and C{sub 4} alkylation operations used in this article are reviewed, followed by a discussion of overall results.

  12. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect (OSTI)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01T23:59:59.000Z

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  13. Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Syngas Conversion to Gasoline-Range Hydrocarbons over PdZnOAl2O3 and ZSM-5 Composite Catalyst System. Syngas Conversion to Gasoline-Range Hydrocarbons over PdZnOAl2O3 and ZSM-5...

  14. Ashland's new process could boost gasoline yield

    SciTech Connect (OSTI)

    Atkins, O.E.

    1980-04-07T23:59:59.000Z

    According to O. E. Atkins (Ashland Oil Co.), Ashland's new fluid catalytic cracking process will convert heavy residual oil to (% by vol) 11% fuel gas, 4.8% LNG, 75.7% gasoline (if all the produced olefins are converted to gasoline), 9% distillates, and 8.1% heavy fuel oil. Ashland is building a $70 million, 40,000 bbl/day unit at its 215,000 bbl/day Catlettsburg, Ky., refinery which will increase the present 90,000 bbl/day gasoline yield by 25,000 bbl/day for the same amount of feedstock. The increased gasoline yield (no-lead octane rating of 94) is expected to increase the net margin on a barrel of feed from $8 up to $12, at the present prices of $11.50/bbl of residual oil and $40/bbl of gasoline. Ashland has not disclosed detailed information on the new process, which: can accommodate atmospheric residua that are high in sulfur and metals; is a high temperature, low (about 1 atm) pressure process; does not use hydrogen; uses a proprietary new crystalline silica-alumina microspherical (zeolite) catalyst which, via a proprietary passivating technique, will demetalize crude oil fractions of vanadium and nickel. Residuum cracking processes developed by other companies are briefly discussed.

  15. Motor gasoline assessment, Spring 1997

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

  16. Price changes in the gasoline market: Are Midwestern gasoline prices downward sticky?

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    This report examines a recurring question about gasoline markets: why, especially in times of high price volatility, do retail gasoline prices seem to rise quickly but fall back more slowly? Do gasoline prices actually rise faster than they fall, or does this just appear to be the case because people tend to pay more attention to prices when they`re rising? This question is more complex than it might appear to be initially, and it has been addressed by numerous analysts in government, academia and industry. The question is very important, because perceived problems with retail gasoline pricing have been used in arguments for government regulation of prices. The phenomenon of prices at different market levels tending to move differently relative to each other depending on direction is known as price asymmetry. This report summarizes the previous work on gasoline price asymmetry and provides a method for testing for asymmetry in a wide variety of situations. The major finding of this paper is that there is some amount of asymmetry and pattern asymmetry, especially at the retail level, in the Midwestern states that are the focus of the analysis. Nevertheless, both the amount asymmetry and pattern asymmetry are relatively small. In addition, much of the pattern asymmetry detected in this and previous studies could be a statistical artifact caused by the time lags between price changes at different points in the gasoline distribution system. In other words, retail gasoline prices do sometimes rise faster than they fall, but this is largely a lagged market response to an upward shock in the underlying wholesale gasoline or crude oil prices, followed by a return toward the previous baseline. After consistent time lags are factored out, most apparent asymmetry disappears.

  17. Low-Cost Hydrogen Distributed Production System Development

    SciTech Connect (OSTI)

    C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

    2011-03-10T23:59:59.000Z

    H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

  18. Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices

    E-Print Network [OSTI]

    Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

    2007-01-01T23:59:59.000Z

    are added to gasoline at the terminal. Therefore, gasolinegasoline from one market and shipping it to another. These firms may own terminals

  19. Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel

    DOE Patents [OSTI]

    Bose, Ranendra K. (14346 Jacob La., Centreville, VA 20120-3305)

    2002-06-04T23:59:59.000Z

    Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

  20. Variable-Rate State Gasoline Taxes

    E-Print Network [OSTI]

    Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

    1999-01-01T23:59:59.000Z

    1986, the average retail gasoline price dropped from $1.17Figure 4 Average US Retail Gasoline Price (excluding taxes)of the average retail price of gasoline, with a 4.0 cent per

  1. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    SciTech Connect (OSTI)

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

    2011-09-15T23:59:59.000Z

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.

  2. Variable-Rate State Gasoline Taxes

    E-Print Network [OSTI]

    Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

    2000-01-01T23:59:59.000Z

    1986, the average retail gasoline price dropped from $I 17of the average retail price of gasoline, with a 4 oe per

  3. Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 Composite Catalyst System

    SciTech Connect (OSTI)

    Dagle, Robert A.; Lizarazo Adarme, Jair A.; Lebarbier, Vanessa MC; Gray, Michel J.; White, James F.; King, David L.; Palo, Daniel R.

    2014-07-01T23:59:59.000Z

    A composite Pd/ZnO/Al2O3-HZSM-5 (Si/Al=40) catalytic system was evaluated for the synthesis of gasoline-range hydrocarbons directly from synthesis gas. Bifunctional catalyst comprising PdZn metal and acid sites present the required catalytically active sites necessary for the methanol synthesis, methanol dehydration, and methanol-to-gasoline reactions. This system provides a unique catalytic pathway for the production of liquid hydrocarbons directly from syngas. However, selectivity control is difficult and poses many challenges. The composite catalytic system was evaluated under various process conditions. Investigated were the effects of temperature (310-375oC), pressure (300-1000 psig), time-on-stream (50 hrs), and gas-hour space velocity (740-2970 hr-1), using a H2/CO molar syngas ratio of 2.0. By operating at the lower end of the temperature range investigated, liquid hydrocarbon formation was favored, as was decreased amounts of undesirable light hydrocarbons. However, lower operating temperatures also facilitated undesirable CO2 formation via the water-gas shift reaction. Higher operating pressures slightly favored liquid synthesis. Operating at relatively low pressures (e.g. 300 psig) was made possible, whereas for methanol synthesis alone higher pressure are usually required to achieve similar conversion levels (e.g. 1000 psig). Thermodynamic constraints on methanol synthesis are eased by pushing the equilibrium through hydrocarbon formation. Catalytic performance was also evaluated by altering Pd and Zn composition of the Pd/ZnO/Al2O3 catalyst. Of the catalysts and conditions tested, selectivity toward liquid hydrocarbon was highest when using a 5% Pd metal loading and Pd/Zn molar ratio of 0.25 and mixed with HZMS-5, operating at 310oC and 300 psig, CO conversion was 43 % and selectivity (carbon weight basis) to hydrocarbons was 49 wt. %. Of the hydrocarbon fraction, 44wt. % was in the C5-C12 liquid product range and consisted primarily of aromatic polymethylbenzenes. However, as syngas conversion increases with increasing temperature, selectivity to liquid product diminished. This is attributed, in large part, to increased saturation of the olefinic intermediates over PdZn metal sites. Under all the conditions and catalysts evaluated in this study, generating liquid product in high yield was challenging (<10 wt. % C5+ yield).

  4. The producer surplus associated with gasoline fuel use in the United States1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    : Q41, Q43 Keywords: oil, marginal costs, producer surplus, gasoline, wealth transfer, drilling costs, exploratory wells, development wells 1 We received financial support from the Sustainable Transportation

  5. Restructuring: The Changing Face of Motor Gasoline Marketing

    Reports and Publications (EIA)

    2001-01-01T23:59:59.000Z

    This report reviews the U.S. motor gasoline marketing industry during the period 1990 to 1999, focusing on changes that occurred during the period. The report incorporates financial and operating data from the Energy Information Administration's Financial Reporting System (FRS), motor gasoline outlet counts collected by the National Petroleum News from the states, and U.S. Census Bureau salary and employment data published in County Business Patterns.

  6. Gasoline price spikes and regional gasoline context regulations : a structural approach

    E-Print Network [OSTI]

    Muehlegger, Erich J.

    2004-01-01T23:59:59.000Z

    Since 1999, gasoline prices in California, Illinois and Wisconsin have spiked occasionally well above gasoline prices in nearby states. In May and June 2000, for example, gasoline prices in Chicago rose twenty eight cents ...

  7. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    associated with the gasoline terminal storage and the smallemissions from the gasoline terminal storage and refuelingGasoline comes to Sacramento via pipeline, is stored in terminals

  8. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gasoline-delivery truck emissions. The current 2005 lightdelivering gasoline. The truck emissions estimated for theto gasoline-delivery truck emissions for each ?eet scenario.

  9. Edgeworth Price Cycles: Evidence from the Toronto Retail Gasoline Market

    E-Print Network [OSTI]

    Noel, Michael

    2004-01-01T23:59:59.000Z

    Johnson. “Gas Wars: Retail Gasoline Price Fluctua- tions”,Canadian cities, retail gasoline prices are very volatileset of twelve-hourly retail gasoline prices for 22 service

  10. Retail Policies and Competition in the Gasoline Industry

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, Jim

    2005-01-01T23:59:59.000Z

    wholesale gasoline prices and retail prices. It includes theTable 4 - Gasoline Price Components Year Retail Price TaxesSupply Lower Retail Gasoline Prices? ” Contemporary Economic

  11. Essays on Automotive Lending, Gasoline Prices, & Automotive Demand

    E-Print Network [OSTI]

    Schulz-Mahlendorf, Wilko Ziggy

    2013-01-01T23:59:59.000Z

    National average retail gasoline prices peaked at over $so that average retail gasoline prices can be employed. Myrapid run-up in retail gasoline prices in recent history.

  12. Revisiting the Income Effect: Gasoline Prices and Grocery Purchases

    E-Print Network [OSTI]

    Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

    2008-01-01T23:59:59.000Z

    Sold On Sale and Retail Gasoline Prices Log % Purchased Onhigher gasoline prices into retail prices, by investigatingexcluding California average retail gasoline price for all

  13. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    associated with the gasoline terminal storage and the smallemissions from the gasoline terminal storage and refuelingstorage Truck distribution Gas station Vehicle operation Fig. 7. Integrated gasoline

  14. Development of a CAN Based Electric Vehicle Control System

    E-Print Network [OSTI]

    Vincent, Stephen Andrew

    2014-08-31T23:59:59.000Z

    along with increased reliability resulted in a sharp decline of electric vehicle popularity. Much later, in the 1960s, interest in electric vehicles re-emerged due to rising oil prices and concerns about the output of harmful emissions from gasoline... was mostly dead, with the exception of a few niche markets. Increasing gasoline prices along with increased concerns about vehicle emissions led to a resurgence in interest toward electric vehicles. Many electric vehicles being developed at the time were...

  15. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15T23:59:59.000Z

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  16. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  17. Liga developer apparatus system

    DOE Patents [OSTI]

    Boehme, Dale R. (Pleasanton, CA); Bankert, Michelle A. (San Francisco, CA); Christenson, Todd R. (Albuquerque, NM)

    2003-01-01T23:59:59.000Z

    A system to fabricate precise, high aspect ratio polymeric molds by photolithograpic process is described. The molds for producing micro-scale parts from engineering materials by the LIGA process. The invention is a developer system for developing a PMMA photoresist having exposed patterns comprising features having both very small sizes, and very high aspect ratios. The developer system of the present invention comprises a developer tank, an intermediate rinse tank and a final rinse tank, each tank having a source of high frequency sonic agitation, temperature control, and continuous filtration. It has been found that by moving a patterned wafer, through a specific sequence of developer/rinse solutions, where an intermediate rinse solution completes development of those portions of the exposed resist left undeveloped after the development solution, by agitating the solutions with a source of high frequency sonic vibration, and by adjusting and closely controlling the temperatures and continuously filtering and recirculating these solutions, it is possible to maintain the kinetic dissolution of the exposed PMMA polymer as the rate limiting step.

  18. RSMASS system model development

    SciTech Connect (OSTI)

    Marshall, A.C.; Gallup, D.R.

    1998-07-01T23:59:59.000Z

    RSMASS system mass models have been used for more than a decade to make rapid estimates of space reactor power system masses. This paper reviews the evolution of the RSMASS models and summarizes present capabilities. RSMASS has evolved from a simple model used to make rough estimates of space reactor and shield masses to a versatile space reactor power system model. RSMASS uses unique reactor and shield models that permit rapid mass optimization calculations for a variety of space reactor power and propulsion systems. The RSMASS-D upgrade of the original model includes algorithms for the balance of the power system, a number of reactor and shield modeling improvements, and an automatic mass optimization scheme. The RSMASS-D suite of codes cover a very broad range of reactor and power conversion system options as well as propulsion and bimodal reactor systems. Reactor choices include in-core and ex-core thermionic reactors, liquid metal cooled reactors, particle bed reactors, and prismatic configuration reactors. Power conversion options include thermoelectric, thermionic, Stirling, Brayton, and Rankine approaches. Program output includes all major component masses and dimensions, efficiencies, and a description of the design parameters for a mass optimized system. In the past, RSMASS has been used as an aid to identify and select promising concepts for space power applications. The RSMASS modeling approach has been demonstrated to be a valuable tool for guiding optimization of the power system design; consequently, the model is useful during system design and development as well as during the selection process. An improved in-core thermionic reactor system model RSMASS-T is now under development. The current development of the RSMASS-T code represents the next evolutionary stage of the RSMASS models. RSMASS-T includes many modeling improvements and is planned to be more user-friendly. RSMASS-T will be released as a fully documented, certified code at the end of 1998. A radioisotope space power system model RISMASS is also under development. RISMASS will optimize and predict system masses for radioisotope power sources coupled with close-spaced thermionic diodes. Although RSMASS-D models have been developed for a broad variety of space nuclear power and propulsion systems, only a few concepts will be included in the releasable RSMASS-T computer code. A follow-on effort is recommended to incorporate all previous models as well as solar power system models into one general code. The proposed Space Power and propulsion system MASS (SPMASS) code would provide a consistent analysis tool for comparing a very broad range of alternative power and propulsion systems for any required power level and operating conditions. As for RSMASS-T the SPMASS model should be a certified, fully documented computer code available for general use. The proposed computer program would provide space mission planners with the capability to quickly and cost effectively explore power system options for any space mission. The code should be applicable for power requirements from as low as a few milliwatts (solar and isotopic system options) to many megawatts for reactor power and propulsion systems.

  19. Gasoline prices decrease (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasolineShort

  20. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014 Gasoline prices

  1. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014 Gasoline

  2. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline prices

  3. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline

  4. Emissions Control for Lean Gasoline Engines

    Broader source: Energy.gov (indexed) [DOE]

    Reduction Lean Gasoline SI Direct Injection Engine + TWC + LNT + SCR NH 3 LNT NH 3 Optimization HC Slip Control Lean Gasoline SI Direct Injection Engine + TWC + SCR NH 3 TWC NH 3...

  5. Household gasoline demand in the United States

    E-Print Network [OSTI]

    Schmalensee, Richard

    1995-01-01T23:59:59.000Z

    Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

  6. Incidence of Federal and State Gasoline Taxes

    E-Print Network [OSTI]

    Chouinard, Hayley; Perloff, Jeffrey M.

    2003-01-01T23:59:59.000Z

    valorem taxes to the retail gasoline price. These ad valoremwholesale and retail, unleaded gasoline price equations. Wegasoline, Journal of Economic Issues 9, 409-414. Table 1: Retail and Wholesale Reduced-Form Price

  7. Retail Policies and Competition in the Gasoline Industry

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, Jim

    2005-01-01T23:59:59.000Z

    receive their gasoline at wholesale terminals, or racks, andterminal and, even though the costs of delivering gasoline

  8. Motor Gasoline Outlook and State MTBE Bans

    Reports and Publications (EIA)

    2003-01-01T23:59:59.000Z

    The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

  9. Market Power in California's Gasoline Market

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, James; Lewis, Matthew

    2004-01-01T23:59:59.000Z

    gasoline and blendstocks in California at large refineries (24 MM bbl) and terminals (gasoline storage capacity is controlled by a relatively small number of firms such as terminalterminals and is therefore under the control of the same firms that produce gasoline.

  10. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelop Low-carbonDOE's Gasoline/Diesel PM

  11. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelop Low-carbonDOE's Gasoline/Diesel

  12. High-resolution NMR process analyzer for oxygenates in gasoline

    SciTech Connect (OSTI)

    Skloss, T.W.; Kim, A.J.; Haw, J.F. (Texas A M Univ., College Station, TX (United States))

    1994-02-15T23:59:59.000Z

    We report a high-resolution 42-MHz[sup 1]HFT-NMR instrument that is suitable for use as a process analyzer and demonstrate its use in the determination of methyl tert-butyl ether (MTBE) in a flowing stream of gasoline. This spectrometer is based on a 55-kg permanent magnet with essentially no fringe field. A spectral resolution of 3 Hz was typically obtained for spinning samples, and this performance was only slightly degraded with flowing samples. We report a procedure for magnet drift compensation using a software procedure rather than a field-frequency lock channel. This procedure allowed signal averaging without loss of resolution. Regulatory changes to be implemented in the near future have created a need for the development of methods for the determination of MTBE and other oxygenates in reformulated gasolines. Existing methods employing gas chromatography are not fast enough for process control of a gasoline blender and suffer from other limitations. This study demonstrates that process analysis NMR is well-suited to the determination of MTBE in a simulated gasoline blender. The detection limit of 0.5 vol % MTBE was obtained with a measurement time of 1 min. The absolute standard deviation of independent determinations was 0.17% when the MTBE concentration was 10%, a nominal value. Preliminary results also suggest that the method may be applicable to gasolines containing mixtures of oxygenate additives as well as the measurement of aromatic and olefinic hydrogens. 33 refs., 9 figs.

  13. Advanced Dewatering Systems Development

    SciTech Connect (OSTI)

    R.H. Yoon; G.H. Luttrell

    2008-07-31T23:59:59.000Z

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  14. Power Systems Development Facility

    SciTech Connect (OSTI)

    None

    2003-07-01T23:59:59.000Z

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  15. Indirect conversion of coal to methanol and gasoline: product price vs product slate

    SciTech Connect (OSTI)

    Wham, R.M.; McCracken, D.J.; Forrester, R.C. III

    1980-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) conducts process analysis and engineering evaluation studies for the Department of Energy to provide, on a consistent basis, technical and economic assessments of processes and systems for coal conversion and utilization. Such assessments permit better understanding of the relative technical and economic potential of these processes. The objective of the work described here was to provide an assessment of the technical feasibility, economic competitiveness, and environmental acceptability of selected indirect coal liquefaction processes on a uniform, consistent, and impartial basis. Particular emphasis is placed on production of methanol as a principal product or methanol production for conversion to gasoline. Potential uses for the methanol are combustion in peaking-type turbines or blending with gasoline to yield motor fuel. Conversion of methanol to gasoline is accomplished through the use of the Mobil methanol-to-gasoline (MTG) process. Under the guidance of ORNL, Fluor Engineers and Constructors, Houston Division, prepared four conceptual process designs for indirect conversion of a Western subbituminous coal to either methanol or gasoline. The conceptual designs are based on the use of consistent technology for the core of the plant (gasification through methanol synthesis) with additional processing as necessary for production of different liquid products of interest. The bases for the conceptual designs are given. The case designations are: methanol production for turbine-grade fuel; methanol production for gasoline blending; gasoline production with coproduction of SNG; and gasoline production maximized.

  16. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2004-04-30T23:59:59.000Z

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  17. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-11-01T23:59:59.000Z

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  18. Essays on gasoline price spikes, environmental regulation of gasoline content, and incentives for refinery operation

    E-Print Network [OSTI]

    Muehlegger, Erich J

    2005-01-01T23:59:59.000Z

    Since 1999, regional retail and wholesale gasoline markets in the United States have experienced significant price volatility, both intertemporally and across geographic markets. In particular, gasoline prices in California, ...

  19. [98e]-Catalytic reforming of gasoline and diesel fuel

    SciTech Connect (OSTI)

    Pereira, C.; Wilkenhoener, R.; Ahmed, S.; Krumpelt, M.

    2000-02-29T23:59:59.000Z

    Argonne National Laboratory is developing a fuel processor for converting liquid hydrocarbon fuels to a hydrogen-rich product suitable for a polymer electrolyte fuel cell stack. The processor uses an autothermal reformer to convert the feed to a mixture of hydrogen, carbon dioxide, carbon monoxide and water with trace quantities of other components. The carbon monoxide in the product gas is then converted to carbon dioxide in water-gas shift and preferential oxidation reactors. Fuels that have been tested include standard and low-sulfur gasoline and diesel fuel, and Fischer-Tropsch fuels. Iso-octane and n-hexadecane were also examined as surrogates for gasoline and diesel, respectively. Complete conversion of gasoline was achieved at 750 C in a microreactor over a novel catalyst developed at Argonne. Diesel fuel was completely converted at 850 C over this same catalyst. Product streams contained greater than 60% hydrogen on a dry, nitrogen-free basis with iso-octane, gasoline, and n-hexadecane. For a diesel fuel, product streams contained >50% hydrogen on a dry, nitrogen-free basis. The catalyst activity did not significantly decrease over >16 hours operation with the diesel fuel feed. Coke formation was not observed. The carbon monoxide fraction of the product gas could be reduced to as low as 1% on a dry, nitrogen-free basis when the water-gas shift reactors were used in tandem with the reformer.

  20. AVGAS/AUTOGAS (aviation gasoline/automobile gasoline) comparison. Winter-grade fuels. Interim report

    SciTech Connect (OSTI)

    Ferrara, A.M.

    1986-07-01T23:59:59.000Z

    This report describes dynamometer tests that simulated conditions found in a general-aviation aircraft. In these tests, automobile gasoline was tested and compared with aviation gasoline. The tendency for vapor lock and detonation was measured as a function of gasoline grade, Reid vapor pressure, and the age of the fuel.

  1. Solar Water Splitting: Photocatalyst Materials Discovery and Systems Development

    SciTech Connect (OSTI)

    McNulty, Thomas F.

    2008-05-02T23:59:59.000Z

    Hydrogen promises to be an attractive transportation fuel in the post-fossil fuel era. Relatively abundant and clean burning (water being the principal byproduct), hydrogen offers the potential to significantly reduce greenhouse gas emissions. However, there are significant technical barriers that require solutions before hydrogen can be implemented in large scale. These are: · Sources (e.g. hydrocarbon, water) · Transportation · Storage Each of the aforementioned barriers carries with it important considerations. First, would a hydrocarbon-based hydrogen source be of any benefit compared to conventional fossil fuels? Second, will a system based on centralized generation and distribution be viable? Finally, methods of on-board storage, whether they are liquefaction, adsorption, or intercalation, are far from optimized. The scope of this program is limited to hydrogen generation, specifically generation using solarinitiated water electrolysis. Though concept of making hydrogen using water and sunlight may sound somewhat far-fetched, in reality the concept is very real. Since the discovery of solar-generated hydrogen, termed photoelectrochemical hydrogen, nearly 30 years ago by Fujishima and Honda, significant advances in both fundamental understanding and technological capability have been made. Using solar radiation to generate hydrogen in a fashion akin to using solar to generate electricity offers many advantages. First, hydrogen can be generated at the point of use, reducing the importance of transportation. Second, using water as the hydrogen source eliminates greenhouse gas evolution and the consequences that come with it. Finally, because the process uses very little electricity (pumps and compressors predominantly), the quantity of chemical fuel produced far exceeds the amount of electricity consumed. Consequently, there is some level of truth to the notion that photoelectrochemically-derived hydrogen offers the potential to nearly eliminate greenhouse gas emissions from the transportation landscape. This report focuses primarily on the technical issues inherent to developing an economically viable photoelectrochemical hydrogen system. This involves research intended to address technology gaps as well as research to address commercial feasibility. Though a firm cost target is not identified explicitly, much of the economics are presented in terms of “dollars per gallon of gasoline equivalent” ($/gge). Obviously this is a moving target, but it is important to understand cost in terms of current gasoline pricing, since the intended target is gasoline replacement. However, this does put the cost contribution into a perspective that at least allows for a reasonable assessment of technological viability. It also allows for the identification of need areas beyond the obvious technology gaps.

  2. Gasoline Price Pass-through

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan FebCubic(MillionThousandGasoline

  3. Gasoline and Diesel Fuel Update

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data CollectionGasoline Price

  4. Gasoline and Diesel Fuel Update

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data CollectionGasoline

  5. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline

  6. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014 Gasolinelong

  7. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014

  8. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-05-01T23:59:59.000Z

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids circulation rate, and reactor temperature on CO/CO{sub 2} ratio, H{sub 2}/converted carbon ratio, gasification rates, carbon conversion, and cold and hot gas efficiencies. Test run GCT3 was started on December 1, 2000, with the startup of the thermal oxidizer fan, and was completed on February 1, 2001. This test was conducted in two parts; the loop seal was commissioned during the first part of this test run from December 1 through 15, which consisted of hot inert solids circulation testing. These initial tests provided preliminary data necessary to understand different parameters associated with the operation and performance of the loop seal. The loop seal was tested with coal feed during the second part of the test run and additional data was gathered to analyze reactor operations and to identify necessary modifications to improve equipment and process performance. In the second part of GCT3, the gasification portion of the test, from January 20 to February 1, 2001, the mixing zone and riser temperatures were varied between 1,675 and 1,825 F at pressures ranging from 200 to 240 psig. There were 306 hours of solid circulation and 184 hours of coal feed attained in GCT3.

  9. Analysis of leaded and unleaded gasoline pricing. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-03-15T23:59:59.000Z

    This report summarizes the evaluation of the cost price relation between the two fuels. The original scope of work identified three separate categories of effort: Gather and organize available data on the wholesale and retail prices of gasoline at a national level for the past 5 years. Using the data collected in Subtask 1, develop models of pricing practices that aid in explaining retail markups and price differentials for different types and grades of gasoline at different retail outlets in the current gasoline market. Using the data from Subtask 1 and the analysis framework from Subtask 2, analyze the likely range of future retail markups and price differentials for different grades of leaded and unleaded gasoline. The report is organized in a format that is different than suggested by the subtasks outlined above. The first section provides a characterization of the problem - data available to quantify cost and price of the fuels as well as issues that directly affect this relationship. The second section provides a discussion of issues likely to affect this relation in the future. The third section postulates a model that can be used to quantify the relation between fuels, octane levels, costs and prices.

  10. Comparing Scales of Environmental Effects from Gasoline and Ethanol Production

    SciTech Connect (OSTI)

    Parish, Esther S [ORNL; Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; McBride, Allen [ORNL; Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Hilliard, Michael R [ORNL; Bielicki, Dr Jeffrey M [University of Minnesota

    2013-01-01T23:59:59.000Z

    Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the scales (i.e., spatial extent and temporal duration) of ethanol and gasoline production processes and environmental effects based on a literature review, and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.

  11. Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

    2013-01-02T23:59:59.000Z

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  12. Systemic Signalling in Plant Development

    E-Print Network [OSTI]

    Jackson, David

    develop continuously throughout their life cycle, constantly initiating new or- gans. They doSystemic Signalling in Plant Development David Jackson, Cold Spring Harbor Laboratory, Cold Spring to the production of systemic signals that control the development of distant organs and tissues. Introduction

  13. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies...

  14. Advantages of Oxygenates Fuels over Gasoline in Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

  15. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01T23:59:59.000Z

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  16. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Energy Savers [EERE]

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

  17. Design Case Summary: Production of Gasoline and Diesel from Biomass...

    Energy Savers [EERE]

    Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking Design Case Summary: Production of Gasoline and Diesel from...

  18. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

  19. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

  20. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI...

  1. Energy Department Announces First Regional Gasoline Reserve to...

    Office of Environmental Management (EM)

    Announces First Regional Gasoline Reserve to Strengthen Fuel Resiliency Energy Department Announces First Regional Gasoline Reserve to Strengthen Fuel Resiliency May 2, 2014 -...

  2. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    SciTech Connect (OSTI)

    Lammert, M.

    2008-06-01T23:59:59.000Z

    This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

  3. The Impact of Carbon Control on Low-Income Household Electricity and Gasoline Expenditures

    SciTech Connect (OSTI)

    Eisenberg, Joel Fred [ORNL

    2008-06-01T23:59:59.000Z

    In July of 2007 The Department of Energy's (DOE's) Energy Information Administration (EIA) released its impact analysis of 'The Climate Stewardship And Innovation Act of 2007,' known as S.280. This legislation, cosponsored by Senators Joseph Lieberman and John McCain, was designed to significantly cut U.S. greenhouse gas emissions over time through a 'cap-and-trade' system, briefly described below, that would gradually but extensively reduce such emissions over many decades. S.280 is one of several proposals that have emerged in recent years to come to grips with the nation's role in causing human-induced global climate change. EIA produced an analysis of this proposal using the National Energy Modeling System (NEMS) to generate price projections for electricity and gasoline under the proposed cap-and-trade system. Oak Ridge National Laboratory integrated those price projections into a data base derived from the EIA Residential Energy Consumption Survey (RECS) for 2001 and the EIA public use files from the National Household Transportation Survey (NHTS) for 2001 to develop a preliminary assessment of impact of these types of policies on low-income consumers. ORNL will analyze the impacts of other specific proposals as EIA makes its projections for them available. The EIA price projections for electricity and gasoline under the S.280 climate change proposal, integrated with RECS and NHTS for 2001, help identify the potential effects on household electric bills and gasoline expenditures, which represent S.280's two largest direct impacts on low-income household budgets in the proposed legislation. The analysis may prove useful in understanding the needs and remedies for the distributive impacts of such policies and how these may vary based on patterns of location, housing and vehicle stock, and energy usage.

  4. Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-05-01T23:59:59.000Z

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

  5. ISE System Development Methodology Manual

    SciTech Connect (OSTI)

    Hayhoe, G.F.

    1992-02-17T23:59:59.000Z

    The Information Systems Engineering (ISE) System Development Methodology Manual (SDM) is a framework of life cycle management guidelines that provide ISE personnel with direction, organization, consistency, and improved communication when developing and maintaining systems. These guide-lines were designed to allow ISE to build and deliver Total Quality products, and to meet the goals and requirements of the US Department of Energy (DOE), Westinghouse Savannah River Company, and Westinghouse Electric Corporation.

  6. Gasoline price volatility and the elasticity of demand for gasoline1 C.-Y. Cynthia Lina

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    externalities including local air pollution, global climate change, accidents, congestion, and dependence at reducing demand for gasoline or reducing pollution from automobiles. The latter could be addressed

  7. Edgeworth price cycles in retail gasoline markets

    E-Print Network [OSTI]

    Noel, Michael David, 1971-

    2002-01-01T23:59:59.000Z

    In this dissertation, I present three essays that are motivated by the interesting and dynamic price-setting behavior of firms in Canadian retail gasoline markets. In the first essay, I examine behavior at the market level ...

  8. Insights into Spring 2008 Gasoline Prices

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    Gasoline prices rose rapidly in spring 2007 due a variety of factors, including refinery outages and lower than expected imports. This report explores those factors and looks at the implications for 2008.

  9. Chemistry Impacts in Gasoline HCCI

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; Bunting, Bruce G [ORNL

    2006-09-01T23:59:59.000Z

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its shortcomings, and its relevance to HCCI. Section 3 discusses the effects of fuel volatility on fuel and air mixing and the consequences it has on HCCI. The effects of alcohol fuels on HCCI performance, and specifically the effects that they have on the operable speed/load range, are reviewed in Section 4. Finally, conclusions are drawn in Section 5.

  10. Natural System Evaluation and Tool Development: International...

    Energy Savers [EERE]

    Natural System Evaluation and Tool Development: International Collaborations - FY'13 Progress Report Natural System Evaluation and Tool Development: International Collaborations -...

  11. Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen

    E-Print Network [OSTI]

    Melaina, Marc W

    2007-01-01T23:59:59.000Z

    canned gasoline, gasoline storage and delivery in barrels,gasoline pump, dispensing hose, ?ow meter and underground storagethan gasoline. This being said, our handling and storage

  12. Vertical Integration in Gasoline Supply: An Empirical Test of Raising Rivals' Costs

    E-Print Network [OSTI]

    Gilbert, Richard; Hastings, Justine

    2001-01-01T23:59:59.000Z

    Gasoline terminals serve a large market area. Some terminalsthan one terminal. The gasoline supplied at a terminal is awholesale gasoline that is available at a terminal facility.

  13. Vertical Integration in Gasoline Supply: An Empirical Test of Raising Rivals' Costs

    E-Print Network [OSTI]

    Gilbert, Richard; Hastings, Justine

    2001-01-01T23:59:59.000Z

    erentials in wholesale and retail gasoline prices, sometimesand control retail gasoline prices, while still permittingnopolize retail gasoline markets and raise prices. Several

  14. The Speed of Gasoline Price Response in Markets With and Without Edgeworth Cycles

    E-Print Network [OSTI]

    Lewis, Matt; Noel, Michael

    2009-01-01T23:59:59.000Z

    3, 2009 Abstract Retail gasoline prices are known to respondspeed with which retail gasoline prices respond to wholesaleDeltas, George, “Retail Gasoline Price Dynamics and Local

  15. The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    result in a target retail gasoline price of about $3.00 perAdministration, retail gasoline prices in Californiaprice, the expected retail gasoline price and consumption

  16. Gasoline Price Differences: Taxes, Pollution Regulations, Mergers, Market Power, and Market Conditions

    E-Print Network [OSTI]

    Chouinard, Hayley; Perloff, Jeffrey M.

    2002-01-01T23:59:59.000Z

    of Information and Retail Gasoline Price Behavior: Anform wholesale and retail gasoline price equations usingfor some of the retail gasoline price dispersion within a

  17. Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Market

    E-Print Network [OSTI]

    Lewis, Matt

    2003-01-01T23:59:59.000Z

    The Behavior of Retail Gasoline Prices: Symmetric or Not? ”Adjustment of U.K. Retail Gasoline Prices to Cost Changes. ”documented that retail gasoline prices respond more quickly

  18. Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Industry

    E-Print Network [OSTI]

    Lewis, Matt

    2003-01-01T23:59:59.000Z

    Adjustment of U.K. Retail Gasoline Prices to Cost Changes. ”The Behavior of Retail Gasoline Prices: Symmetric or Not? ”documented that retail gasoline prices respond more quickly

  19. Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model

    E-Print Network [OSTI]

    Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

    2000-01-01T23:59:59.000Z

    the gasoline-equivalent fuel retail price, excluding exciseprice is the full retail price of gasoline, including allon the retail cost and break-even gasoline price, because

  20. Edgeworth Price Cycles, Cost-based Pricing and Sticky Pricing in Retail Gasoline Markets

    E-Print Network [OSTI]

    Noel, Michael

    2004-01-01T23:59:59.000Z

    Johnson. “Gas Wars: Retail Gasoline Price Fluctua- tions”,were collected on retail gasoline prices, wholesale (rack)ancillary information. Retail gasoline prices, RET AIL mt ,

  1. Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Market

    E-Print Network [OSTI]

    Lewis, Matt

    2004-01-01T23:59:59.000Z

    George. (2004) “Retail Gasoline Price Dynamics and Localof Information and Retail Gasoline Price Behavior: Andocumented that retail gasoline prices respond more quickly

  2. Do Gasoline Prices Resond Asymmetrically to Cost Shocks? The Confounding Effect of Edgeworth Cycles

    E-Print Network [OSTI]

    Noel, Michael

    2007-01-01T23:59:59.000Z

    Atkinson, B . (2006) "Retail Gasoline Price Cycles: Evidenceof Adjustment of U K Retail Gasoline Prices to Cost Changes"1993) "Gas Wars: Retail Gasoline Price Fluctuations", of and

  3. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    vs. LH2, assuming the gasoline storage terminals are aboutemissions from the gasoline terminal storage and refuelingstorage Truck distribution Gas station Vehicle operation Figure 37. Integrated gasoline

  4. Developing Secure Power Systems Professional Competence: Alignment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs - Phase 2 (JulyAugust 2013) Developing Secure Power Systems...

  5. Motor gasolines, winter 1981-1982

    SciTech Connect (OSTI)

    Shelton, E M

    1982-07-01T23:59:59.000Z

    Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

  6. The potential for low petroleum gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.; Webb, G.M.; Clauson, M.

    1996-06-01T23:59:59.000Z

    The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

  7. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24T23:59:59.000Z

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  8. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect (OSTI)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)

    2002-06-01T23:59:59.000Z

    Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  9. ENGINEERING SYSTEMS THE FUTURE OF ENGINEERING SYSTEMS: DEVELOPMENT OF

    E-Print Network [OSTI]

    de Weck, Olivier L.

    ENGINEERING SYSTEMS MONOGRAPH THE FUTURE OF ENGINEERING SYSTEMS: DEVELOPMENT OF ENGINEERING LEADERS OF ENGINEERING SYSTEMS: DEVELOPMENT OF ENGINEERING LEADERS Daniel Hastings INTRODUCTION From birth through death, inhabitants of developed societies live supported in a complex, interconnected set of overlapping systems

  10. NAFTA and gasoline: Canada, U. S. , Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-03-31T23:59:59.000Z

    The North American Free Trade Agreement has become a hotly debated topic all over the world, but especially in the countries involved: Mexico, United States, and Canada. Comments made by high ranking officials imply there are differences to reconcile before the agreement is passed. Toward seeing these countries in trio, this issue compares gasoline markets and some energy perspectives. The purpose of this article is to contribute to understanding of the three countries through their petroleum industry structure. Gasoline consumption and retail delivery infrastructure are compared and contrasted to illustrate the differences among the NAFTA countries.

  11. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline prices continueGasoline

  12. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline prices

  13. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline prices4,

  14. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline prices4,1,

  15. Gasoline prices continue to rise (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline prices4,1,

  16. Gasoline prices continue to rise (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline

  17. Combustion and Emissions Performance of Dual-Fuel Gasoline and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline...

  18. Fact #835: August 25, Average Historical Annual Gasoline Pump...

    Broader source: Energy.gov (indexed) [DOE]

    early 1980's with the price of gasoline peaking in 1982. From 2002 to 2008 the price of gasoline rose substantially, but then fell in 2009 during the economic recession. In 2012,...

  19. Revisiting the Income Effect: Gasoline Prices and Grocery Purchases

    E-Print Network [OSTI]

    Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

    2008-01-01T23:59:59.000Z

    Gasoline and Crude Oil Prices, 2000-2006 Figure I:Weekly Gasoline and Crude Oil Prices for 2001- 2006 Crudeargue that increases in oil prices may lead to recessions

  20. Why Do Motor Gasoline Prices Vary Regionally? California Case Study

    Reports and Publications (EIA)

    1998-01-01T23:59:59.000Z

    Analysis of the difference between the retail gasoline prices in California and the average U.S. retail prices.

  1. National Survey of E85 and Gasoline Prices

    SciTech Connect (OSTI)

    Bergeron, P.

    2008-10-01T23:59:59.000Z

    Study compares the prices of E85 and regular gasoline nationally and regionally over time for one year.

  2. What Do Consumers Believe About Future Gasoline Soren T. Anderson

    E-Print Network [OSTI]

    Silver, Whendee

    What Do Consumers Believe About Future Gasoline Prices? Soren T. Anderson Michigan State University of consumers about their expectations of future gasoline prices. Overall, we find that consumer beliefs follow a random walk, which we deem a reasonable forecast of gasoline prices, but we find a deviation from

  3. ISSN 1745-9648 Gasoline Prices Jump Up on Mondays

    E-Print Network [OSTI]

    Feigon, Brooke

    ISSN 1745-9648 Gasoline Prices Jump Up on Mondays: an Outcome of Aggressive Competition? by Øystein Research Council is gratefully acknowledged. #12;Gasoline prices jump up on Mondays: An outcome, 2008 Abstract This paper examines Norwegian gasoline pump prices using daily station

  4. Author's personal copy Gasoline prices and traffic safety in Mississippi

    E-Print Network [OSTI]

    Levinson, David M.

    Author's personal copy Gasoline prices and traffic safety in Mississippi Guangqing Chi a, , Arthur November 2010 Keywords: Gasoline prices Traffic crashes Traffic safety Age Gender Race Problem: Limited literature suggests that gasoline prices have substantial effects on reducing fatal crashes. However

  5. Vertical Relationships and Competition in Retail Gasoline Markets

    E-Print Network [OSTI]

    California at Berkeley. University of

    , if any, of the differences in retail gasoline prices between markets is attributable to differences substantially higher retail gasoline prices than other regions of the country. For example, for the first week of August 1999, the price of reformulated gasoline in California was 39.6 cents higher than the average

  6. Ethanol Production and Gasoline Prices: A Spurious Correlation

    E-Print Network [OSTI]

    Rothman, Daniel

    Ethanol Production and Gasoline Prices: A Spurious Correlation Christopher R. Knittel and Aaron proponents of ethanol have argued that ethanol production greatly lowers gasoline prices, with one industry group claiming it reduced gasoline prices by 89 cents in 2010 and $1.09 in 2011. The estimates have been

  7. Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    2008 Abstract The relationship between gasoline prices and the demand for vehicle fuel efficiencyAutomobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We

  8. Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel

    E-Print Network [OSTI]

    Utah, University of

    gasoline mechanism based on the chemistry of n-heptane and isooctanesthe two indicator fuels for octanePollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel Structural Functionalities H O fractions of gasoline fuels, the Utah Surrogate Mechanisms is extended to include submecha- nisms

  9. Empirical Regularities of Asymmetric Pricing in the Gasoline Industry

    E-Print Network [OSTI]

    Niebur, Ernst

    pricing in the retail gasoline industry, and also documents empirical regularities in the market. I find of asymmetric price movements in the retail gasoline industry. Yet, there is no general agreement as to whether asym- metric pricing is widespread throughout the retail gasoline industry or merely an anomaly

  10. Reformulated gasoline: Costs and refinery impacts

    SciTech Connect (OSTI)

    Hadder, G.R.

    1994-02-01T23:59:59.000Z

    Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region.

  11. Development of Building Automation and Control Systems

    E-Print Network [OSTI]

    Yang, Yang; Zhu, Qi; Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

    2012-01-01T23:59:59.000Z

    A design flow for building automation and control systems,’’Development of Building Automation and Control Systems Yangdesign of the build- ing automation system (including the

  12. Development of Building Automation and Control Systems

    E-Print Network [OSTI]

    Yang, Yang; Zhu, Qi; Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

    2012-01-01T23:59:59.000Z

    design flow for building automation systems that focuses onflow for building automation and control systems,’’ in Proc.Development of Building Automation and Control Systems Yang

  13. Non-Thermal Plasma System Development for CIDI Exhaust Aftertreatment

    SciTech Connect (OSTI)

    Balmer, M. Lou (Pacific Northwest National Laboratory (PNNL)); Tonkyn, Russell (Battelle Pacific Northwest Laboratories (BPNL)); Maupin, Gary; Yoon, Steven; Kolwaite, Ana (PNNL); Barlow, Stephen (BPNL); Domingo, Norberto; Storey, John M. (Oak Ridge National Laboratory); Hoard, John Wm. (Ford Research Laboratory); Howden, Ken (U.S. Dept. of Energy)

    2000-04-01T23:59:59.000Z

    There is a need for an efficient, durable technology to reduce NOx emissions from oxidative exhaust streams such as those produced by compression-ignition, direct injection (CIDI) diesel or lean-burn gasoline engines. A partnership formed between the DOE Office of Advanced Automotive Technology, Pacific Northwest National Laboratory, Oak Ridge National Laboratory and the USCAR Low Emission Technologies Research and Development Partnership is evaluating the effectiveness of a non-thermal plasma in conjunction with catalytic materials to mediate NOx and particulate emissions from diesel fueled light duty (CIDI) engines. Preliminary studies showed that plasma-catalyst systems could reduce up to 70% of NOx emissions at an equivalent cost of 3.5% of the input fuel in simulated diesel exhaust. These studies also showed that the type and concentration of hydrocarbon play a key role in both the plasma gas phase chemistry and the catalyst surface chemistry. More recently, plasma/catalyst systems have been evaluated for NOx reduction and particulate removal on a CIDI engine. Performance results for select plasma-catalyst systems for both simulated and actual CIDI exhaust will be presented. The effect of NOx and hydrocarbon concentration on plasma-catalyst performance will also be shown. SAE Paper SAE-2000-01-1601 {copyright} 2000 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

  14. Common Rail Injection System Development

    SciTech Connect (OSTI)

    Electro-Motive,

    2005-12-30T23:59:59.000Z

    The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

  15. Transonic Combustion ? - Injection Strategy Development for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transonic Combustion - Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine Transonic Combustion - Injection Strategy...

  16. CREATING THE NORTHEAST GASOLINE SUPPLY RESERVE

    Broader source: Energy.gov [DOE]

    In 2012, Superstorm Sandy made landfall in the northeastern United States and caused heavy damage to two refineries and left more than 40 terminals in New York Harbor closed due to water damage and loss of power. This left some New York gas stations without fuel for as long as 30 days. As part of the Obama Administration’s ongoing response to the storm, the Department of Energy created the first federal regional refined product reserve, the Northeast Gasoline Supply Reserve.

  17. The Extraction of Gasoline from Natural Gas

    E-Print Network [OSTI]

    Schroeder, J. P.

    1914-05-15T23:59:59.000Z

    for the quantitative estimation of the condensable gasoline consti- tuents of so-called rtwetn natural gas» Three general lines of experimentation suggested themselves after a preliminary study of the problem. These were the separation of a liqui- fied sample... fractionation of a mixture of natural gases are, however, not available in the ordinary laboratory, so this method altho successful and accurate is hardly practical. Even after the fractionation of the gas has ^lebeau and Damiens in Chen. Abstr. 7, 1356...

  18. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    prototype personal comfort system devices, (5) a buildingprototype personal comfort system devices, (5) a buildingparts. Each personal comfort system device creates normal

  19. Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance of Lube

    E-Print Network [OSTI]

    Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance from natural gas vehicles will help in the development of PM mitigation technologies. This in turn emissions beyond applicable standards, and that benefit natural gas ratepayers (Public Resources Code 25620

  20. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: Energy.gov (indexed) [DOE]

    materials and applied battery research into full battery systems for vehicles. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and...

  1. Develop a Web-Based Information System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop a Web-Based Information System Sam Jody Energy Systems Division DOE Vehicle Technologies Program Annual Merit Review February 27, 2008 "This presentation does not contain...

  2. Vertical Relationships and Competition in Retail Gasoline Markets: An Empirical Evidence from Contract Changes in Southern California

    E-Print Network [OSTI]

    Hastings, Justine

    2000-01-01T23:59:59.000Z

    The Behavior of Retail Gasoline Prices: Symmetric or Not? ”vertical contracts and retail gasoline prices. The thirdthe differences in retail gasoline prices between markets is

  3. Development and application of earth system models

    E-Print Network [OSTI]

    Development and application of earth system models Ronald G. Prinn *Reprinted from Proceedings, 2011) The global environment is a complex and dynamic system. Earth system modeling is needed to help: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Development and application of earth system

  4. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect (OSTI)

    Confer, Keith

    2014-09-30T23:59:59.000Z

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  5. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    250 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  6. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  7. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    - - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy...

  8. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    220 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  9. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1998 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  10. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1995 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  11. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    Gasoline and Diesel Fuel Update (EIA)

    table. 56 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  12. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  13. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    220 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  14. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  15. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    134 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  16. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    220 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  17. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  18. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    - - - - W W - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

  19. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  20. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) Indexed Site

    table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  1. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  2. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - - - 64.7 64.7 - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

  3. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    - - - - - - - - - - - - See footnotes at end of table. 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 116 Energy Information...

  4. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  5. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  6. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  7. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    250 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  8. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1999 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  9. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  10. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    134 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  11. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health...

  12. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01T23:59:59.000Z

    emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

  13. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

  14. Characterization of Pre-Commercial Gasoline Engine Particulates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends. deer12zelenyuk.pdf More Documents & Publications...

  15. High Compression Ratio Turbo Gasoline Engine Operation Using...

    Broader source: Energy.gov (indexed) [DOE]

    Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement PI: John B. Heywood Sloan Automotive Laboratory Massachusetts Institute of Technology June 19, 2014...

  16. Design of product development systems

    E-Print Network [OSTI]

    Aguirre Granados, Adrian

    2008-01-01T23:59:59.000Z

    The development of successful new products in less time and using fewer resources is key to the financial success of most consumer product companies. In this thesis we have studied the development of new products and how ...

  17. Embedded Automotive System Development Process

    E-Print Network [OSTI]

    Langenwalter, Joachim

    2011-01-01T23:59:59.000Z

    Model based design enables the automatic generation of final-build software from models for high-volume automotive embedded systems. This paper presents a framework of processes, methods and tools for the design of automotive embedded systems. A steer-by-wire system serves as an example.

  18. U.S. gasoline prices increase slightly

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short14,0,long,long

  19. Areas Participating in the Oxygenated Gasoline Program

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are there Gains from

  20. Areas Participating in the Reformulated Gasoline Program

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are there Gains

  1. Blender Net Production of Finished Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil

  2. Conventional Gasoline Sales to End Users Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX Imeans ofF DataContango

  3. Gasoline prices continue to fall (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email:UraniumNaturallong version)Gasoline

  4. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline prices continue to

  5. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline prices continue

  6. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline prices

  7. Gasoline prices inch down (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014long version) The U.S.Gasoline

  8. Diesel vs Gasoline Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * SEnergyTemperatureDepartment ofUsevs Gasoline

  9. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    emissions from the gasoline terminal storage and refuelingLH2, assuming the gasoline storage terminals are about asGasoline comes to Sacramento via pipeline, stored in terminals

  10. Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand

    E-Print Network [OSTI]

    Hughes, Jonathan; Knittel, Christopher R; Sperling, Dan

    2007-01-01T23:59:59.000Z

    Consumption and Real Retail Gasoline Price for January 19742006. FIGURE 2 Real Retail Gasoline Price for Two Periodsjt is the real retail price of gasoline in month j and year

  11. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends

    SciTech Connect (OSTI)

    Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

    2010-04-01T23:59:59.000Z

    Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

  12. Toward Lean Hardware/Software System Development: An Evaluation of Selected Complex Electronic System Development Methodologies

    E-Print Network [OSTI]

    Hou, Alex

    The development of electronic hardware and software has become a major component of major DoD systems. This report surveys a wide set of new electronic hardware/software development methods and develops a system to evaluate ...

  13. OE Power Systems Engineering Research & Development Program Partnershi...

    Office of Environmental Management (EM)

    Mission Power Systems Engineering Research and Development OE Power Systems Engineering Research & Development Program Partnerships OE Power Systems Engineering Research &...

  14. Use TAME and heavier ethers to improve gasoline properties

    SciTech Connect (OSTI)

    Ignatius, J.; Jaervelin, H.; Lindqvist, P. (Neste Engineering, Porvoo (Finland))

    1995-02-01T23:59:59.000Z

    Producing oxygenates from all potential FCC tertiary olefins is one of the most economic methods for reducing olefins and Reid vapor pressure (Rvp) in motor gasoline. MTBE production based on FCC isobutylene has reached a very high level. But the amount of MTBE from a refinery sidestream MTBE unit is insufficient for producing reformulated gasoline (RFG) and additional oxygenates must be purchased. The next phase will see conversion of isoamylenes in FCC light gasoline to TAME. Very little attention has been given to the heavier tertiary olefins present in the FCC light gasoline like tert-hexenes and heptenes. This route allows higher levels of oxygenates production, thereby lowering Rvp and the proportion of olefins in the gasoline pool and maximizing the use of FCC olefins. By using all the components produced by an FCC efficiently, many gasoline problems can be solved. Isobutene is converted to MTBE, C[sub 3]/C[sub 4] olefins are converted to alkylate and C[sub 5] tertiary olefins can be converted to TAME. All of these are preferred components for gasoline quality. By producing more oxygenates like MTBE, TAME and heavier ethers, a refinery can be self-sufficient in blending reformulated gasoline and no oxygenates need to be purchased. The technology for producing TAME and other ethers is described.

  15. Fact #858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest Decline since 2008 Fact 858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest...

  16. SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

  17. Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination

    E-Print Network [OSTI]

    Fischer, M.L.

    2011-01-01T23:59:59.000Z

    OF SUBSURFACE GASOLINE CONTAMINATION Marc L. Fischer, AbraOF SUBSURFACE GASOLINE CONTAMINATION Marc L. Fischer, Abrareporting indoor air contamination (6,7). Estimation of

  18. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    pathway are due to diesel truck emissions resulting from thelike gasoline-delivery truck emissions. As gasoline vehiclepollutants. Recall the truck emissions estimated for the LH2

  19. A Comparison of Two Gasoline and Two Diesel Cars with Varying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control...

  20. Developing energy efficient filtering systems

    E-Print Network [OSTI]

    Azzopardi, L.

    Azzopardi,L. Vanderbauwhede,W. Moadeli,M. Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (SIGIR09) pp 664-665 ACM

  1. Sandia National Laboratories: PV system development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system development Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News &...

  2. Regional Systems Development for Geothermal Energy Resources...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii)....

  3. Assessment of Summer 1997 motor gasoline price increase

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    Gasoline markets in 1996 and 1997 provided several spectacular examples of petroleum market dynamics. The first occurred in spring 1996, when tight markets, following a long winter of high demand, resulted in rising crude oil prices just when gasoline prices exhibit their normal spring rise ahead of the summer driving season. Rising crude oil prices again pushed gasoline prices up at the end of 1996, but a warm winter and growing supplies weakened world crude oil markets, pushing down crude oil and gasoline prices during spring 1997. The 1996 and 1997 spring markets provided good examples of how crude oil prices can move gasoline prices both up and down, regardless of the state of the gasoline market in the United States. Both of these spring events were covered in prior Energy Information Administration (EIA) reports. As the summer of 1997 was coming to a close, consumers experienced yet another surge in gasoline prices. Unlike the previous increase in spring 1996, crude oil was not a factor. The late summer 1997 price increase was brought about by the supply/demand fundamentals in the gasoline markets, rather than the crude oil markets. The nature of the summer 1997 gasoline price increase raised questions regarding production and imports. Given very strong demand in July and August, the seemingly limited supply response required examination. In addition, the price increase that occurred on the West Coast during late summer exhibited behavior different than the increase east of the Rocky Mountains. Thus, the Petroleum Administration for Defense District (PADD) 5 region needed additional analysis (Appendix A). This report is a study of this late summer gasoline market and some of the important issues surrounding that event.

  4. IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE

    E-Print Network [OSTI]

    IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly added to gasoline. In 1998, 11.9 billion liters of MTBE were produced in the U.S. MTBE has been detected frequently

  5. Resilient engineered systems: the development of an inherent system property

    E-Print Network [OSTI]

    Mitchell, Susan McAlpin

    2007-09-17T23:59:59.000Z

    was defined as the amount of energy a system can store before reaching a point of instability. The energy input into each system as well as the system�s exergy were used to develop system stress and system strain variables. Process variable changes...

  6. Developing Business Case for Electrical System Replacement

    E-Print Network [OSTI]

    Miller, Carles

    2006-05-19T23:59:59.000Z

    and distribution equipment. This paper is a great resource for technical information concerning failure rates of electrical system protective relaying. ?Upgrading and Enhancing the Generator Protection System by Making Use of Digital Systems?, published.... This paper focus on upgrading generation plant electrical systems and is a good reference for performing generator relay protection upgrades. Chapter 2 ? Literature Review Page 7 of 47 Developing Business Case For Electrical System Replacement Projects...

  7. Security alarm communication and display systems development

    SciTech Connect (OSTI)

    Waddoups, I.G.

    1990-01-01T23:59:59.000Z

    Sandia National Laboratories has developed a variety of alarm communication and display systems for a broad spectrum of users. This paper will briefly describe the latest systems developed for the Department of Energy (DOE), the Department of Defense (DoD), and the Department of State (DOS) applications. Applications covered will vary from relatively small facilities to large complex sites. Ongoing system developments will also be discussed. The concluding section will summarize the practical, implementable state-of-the-art features available in new systems. 6 figs.

  8. Technology Development and Field Trials of EGS Drilling Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Project objective: Development of drilling systems...

  9. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    None

    2014-04-15T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  10. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  11. New developments in multi-meson systems

    E-Print Network [OSTI]

    William Detmold; Brian Smigielski

    2011-01-13T23:59:59.000Z

    New developments in the study of multi-meson systems are reviewed. We highlight a new recursive algorithm for generating the requisite contractions needed for studying complex systems of mesons involving large numbers of particles or multiple species of particles. First results on mixed species systems involving pions and kaons are also presented.

  12. Model Development Development of a system emulating the global carbon cycle in Earth system models

    E-Print Network [OSTI]

    K. Tachiiri; J. C. Hargreaves; J. D. Annan; A. Oka; A. Abe-ouchi; M. Kawamiya

    2010-01-01T23:59:59.000Z

    developed a loosely coupled model (LCM) which can represent the outputs of a GCMbased Earth system model

  13. MTBE growth limited despite lead phasedown in gasoline

    SciTech Connect (OSTI)

    Storck, W.

    1985-07-15T23:59:59.000Z

    This month's legislated reduction of the allowable amount of lead additives in gasoline will increase demand strongly for methyl-tert-butyl ether (MTBE) as an octane enhancer, but the economics of the refinery business and the likelihood of rapidly increasing high-octane gasoline imports probably will limit the size of the business in coming years. MTBE will be used to fill the octane gap now, but economics and imports of gasoline later on could hold down demand. The limited growth in sales of MTBE is discussed.

  14. Modeling intraurban price competition: an example of gasoline pricing

    SciTech Connect (OSTI)

    Haining, R.

    1983-11-01T23:59:59.000Z

    Three interacting market models are considered as models for intraurban retail price variation for a single homogenous good, price-posted gasoline. Modifications include spatial markets instead of interacting economic sectors and supply functions independent of price levels in other markets. The final section discusses the results of fitting one of the models to gasoline data for the city of Sheffield during a period of intensifying price competition in the first quarter of 1982. It is concluded, with respect to gasoline price modeling, both independent and interacting market models exist but at different intraurban scales. 15 references, 1 figure, 1 table.

  15. Who is Exposed to Gas Prices? How Gasoline Prices Affect Automobile Manufacturers and Dealerships

    E-Print Network [OSTI]

    Rothman, Daniel

    Who is Exposed to Gas Prices? How Gasoline Prices Affect Automobile Manufacturers and Dealerships-busse@kellogg.northwestern.edu, knittel@mit.edu, f-zettelmeyer@kellogg.northwestern.edu #12;Who is Exposed to Gas Prices? How Gasoline of gasoline prices, and consumer responses to gasoline prices have been well studied. In this paper

  16. Gasoline accounts for about half the U.S. consumption of petroleum products, and its

    E-Print Network [OSTI]

    . Many claim to observe an asymmetric relationship between gasoline and oil prices -- specifically different model Crude Oil and Gasoline Prices: An Asymmetric Relationship? Nathan S. Balke Research relationship between gasoline and oil prices...that gasoline prices respond more quickly when oil prices

  17. HVDC control developments - addressing system requirements

    SciTech Connect (OSTI)

    Hauth, R.L.; Patel, H.S.; Piwko, R.J.

    1984-01-01T23:59:59.000Z

    This article describes typical high voltage direct current (HVDC) control systems and some of the new developments in the control area. HVDC control systems are showing their flexible characteristics as demonstrated, for example, by the new modulation, torsional damping, and alternating current voltage and reactive power controllers. Extensive studies are conducted to design and integrate such controllers into HVDC systems and to assure against any detrimental interactions within the total control system. 8 figures.

  18. Advanced Boost System Development for Diesel HCCI/LTC Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Boost System Development for Diesel HCCILTC Application Advanced Boost System Development for Diesel HCCILTC Application...

  19. High compression ratio turbo gasoline engine operation using alcohol enhancement

    E-Print Network [OSTI]

    Lewis, Raymond (Raymond A.)

    2013-01-01T23:59:59.000Z

    Gasoline - ethanol blends were explored as a strategy to mitigate engine knock, a phenomena in spark ignition engine combustion when a portion of the end gas is compressed to the point of spontaneous auto-ignition. This ...

  20. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    150.0 2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  1. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - 466.1 466.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

  2. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    253.2 2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  3. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    150.0 2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  4. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    253.2 2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  5. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - 532.1 532.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

  6. Process for conversion of lignin to reformulated hydrocarbon gasoline

    DOE Patents [OSTI]

    Shabtai, Joseph S. (Salt Lake City, UT); Zmierczak, Wlodzimierz W. (Salt Lake City, UT); Chornet, Esteban (Golden, CO)

    1999-09-28T23:59:59.000Z

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  7. Determination of methyl tert. butyl ether (MTBE) in gasoline

    SciTech Connect (OSTI)

    Feldman, J.; Orchin, M. (Univ. of Cincinnati, OH (United States))

    1993-02-01T23:59:59.000Z

    A GLC-acid extraction method is described for the determination of MTBE in gasolines. The method consists of a programmed GLC analysis starting at about room temperature conducted before and after extraction with cold 85% phosphoric acid. This treatment results in the preferential solubility of ethers and other oxygenated compounds while minimizing the reaction of olefins and aromatics which may be present in the gasolines. Plotting various known concentrations of MTBE in gasolines against the concentrations determined in the same samples by the authors methodology results in a straight line relationship. The concentration of MTBE in any sample of gasoline may thus be determined using their GLC-extraction procedure and the calibration line. The analysis can accommodate a wide choice of standard GLC columns and programs. 2 refs., 1 fig., 1 tab.

  8. Gasoline Prices, Fuel Economy, and the Energy Paradox

    E-Print Network [OSTI]

    Wozny, Nathan

    It is often asserted that consumers purchasing automobiles or other goods and services underweight the costs of gasoline or other "add-ons." We test this hypothesis in the US automobile market by examining the effects of ...

  9. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    of the Global Crude Oil Market and the U.S. Retail Gasolines to a¤ect the world oil market. ) I use tax instruments andthe integration of the world oil market rescues the original

  10. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  11. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  12. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...

    Broader source: Energy.gov (indexed) [DOE]

    35: Average Annual Gasoline Pump Price, 1929-2013 fotw835web.xlsx More Documents & Publications Offshore Wind Market and Economic Analysis Report 2013 Response to several FOIA...

  13. Fact #835: August 25, Average Annual Gasoline Pump Price, 1929...

    Broader source: Energy.gov (indexed) [DOE]

    50% since the data series began in 1929. The effect of the U.S. embargo of oil from Iran can be seen in the early 1980's with the price of gasoline peaking in 1982. From 2002...

  14. Development of plutonium aerosol fractionation system 

    E-Print Network [OSTI]

    Mekala, Malla R.

    1993-01-01T23:59:59.000Z

    DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Mechanical Engineering DEVELOPMENT OP A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Approved as to style and content by: A. R. McFarland (Chair of Committee) N. K. Anand (Mer toer) (', & C. B...

  15. A Foundation for Verified Software Development Systems

    E-Print Network [OSTI]

    Kreitz, Christoph

    engineering techniques cannot provide stringent guarantees on software reliability only very few computer is adopted in safety-critical areas such as aircraft and nuclear reactors. More reliable methods supporting to develop powerful, flexible, and reliable systems for knowledge-based software development. Keywords

  16. Advanced Turbo-Charging Research and Development

    SciTech Connect (OSTI)

    None

    2008-02-27T23:59:59.000Z

    The objective of this project is to conduct analysis, design, procurement and test of a high pressure ratio, wide flow range, and high EGR system with two stages of turbocharging. The system needs to meet the stringent 2010MY emissions regulations at 20% + better fuel economy than its nearest gasoline competitor while allowing equivalent vehicle launch characteristics and higher torque capability than its nearest gasoline competitor. The system will also need to meet light truck/ SUV life requirements, which will require validation or development of components traditionally used only in passenger car applications. The conceived system is termed 'seriessequential turbocharger' because the turbocharger system operates in series at appropriate times and also sequentially when required. This is accomplished using intelligent design and control of flow passages and valves. Components of the seriessequential system will also be applicable to parallel-sequential systems which are also expected to be in use for future light truck/SUV applications.

  17. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

    2010-01-01T23:59:59.000Z

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  18. iquid fuel--such as gasoline, diesel, aviation fuel, and ethanol--will continue to be important for pow-

    E-Print Network [OSTI]

    Gilbert, Matthew

    L iquid fuel--such as gasoline, diesel, aviation fuel, and ethanol--will continue to be important for pow- ering our transportation systems in the foreseeable future. Transportation fuels derived from-derived transportation fuels are to substitute (on a large scale) for petroleum-based fuels. For example, how do we

  19. Assessment of Fuel Cells as Auxiliary Power Systems for

    E-Print Network [OSTI]

    W gasoline SOFC technology development program APU applications can provide entry markets for fuel cell & Select APU Systems 2 · Summarize PEM and SOFC performance parameters · Determine most promising future Task 3: Develop design concepts · Truck Cab/SOFC/diesel · Transit bus/SOFC/CNG or diesel · Police

  20. Technology Development and Field Trials of EGS Drilling Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS...

  1. Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels

    E-Print Network [OSTI]

    Jawitz, James W.

    the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen solar energy to syngas, which is then converted to "drop in" fuel (diesel, gasoline or hydrogen

  2. Solar-Electric Dish Stirling System Development

    SciTech Connect (OSTI)

    Mancini, T.R.

    1997-12-31T23:59:59.000Z

    Electrical power generated with the heat from the sun, called solar thermal power, is produced with three types of concentrating solar systems - trough or line-focus systems; power towers in which a centrally-located thermal receiver is illuminated with a large field of sun-tracking heliostats; and dish/engine systems. A special case of the third type of system, a dish/Stirling system, is the subject of this paper. A dish/Stirling system comprises a parabolic dish concentrator, a thermal receiver, and a Stirling engine/generator located at the focus of the dish. Several different dish/Stirling systems have been built and operated during the past 15 years. One system claims the world record for net conversion of solar energy to electric power of 29.4%; and two different company`s systems have accumulated thousands of hours of on-sun operation. Due to de-regulation and intense competition in global energy markets as well as the immaturity of the technology, dish/Stirling systems have not yet found their way into the marketplace. This situation is changing as solar technologies become more mature and manufacturers identify high-value niche markets for their products. In this paper, I review the history of dish/Stirling system development with an emphasis on technical and other issues that directly impact the Stirling engine. I also try to provide some insight to the opportunities and barriers confronting the application of dish/Stirling in power generation markets.

  3. Software development methodology for high consequence systems

    SciTech Connect (OSTI)

    Baca, L.S.; Bouchard, J.F.; Collins, E.W.; Eisenhour, M.; Neidigk, D.D.; Shortencarier, M.J.; Trellue, P.A.

    1997-10-01T23:59:59.000Z

    This document describes a Software Development Methodology for High Consequence Systems. A High Consequence System is a system whose failure could lead to serious injury, loss of life, destruction of valuable resources, unauthorized use, damaged reputation or loss of credibility or compromise of protected information. This methodology can be scaled for use in projects of any size and complexity and does not prescribe any specific software engineering technology. Tasks are described that ensure software is developed in a controlled environment. The effort needed to complete the tasks will vary according to the size, complexity, and risks of the project. The emphasis of this methodology is on obtaining the desired attributes for each individual High Consequence System.

  4. The SLC control system - status and development

    SciTech Connect (OSTI)

    Phinney, N.; Shoaee, H.

    1987-03-01T23:59:59.000Z

    The SLC control system is installed and operational in the full SLC through the Linac, Damping Rings, Positron Source, Arcs and Final Focus. The system now includes a host VAX 11/785, a development VAX 11/780, 4 VAX workstations, a distributed network of 70 microprocessors, and about 270 Camac crates with more than 4000 modules. The micros are used for control and monitoring of the hardware, for pulse-to-pulse feedback, and for consoles (COWs). High level model-driven host software provides a variety of tools for beam setup, optimization, diagnosis, and stabilization. This paper will summarize the current status and projects under development.

  5. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30T23:59:59.000Z

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

  6. MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)

    Reports and Publications (EIA)

    1999-01-01T23:59:59.000Z

    The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

  7. Wind Farm Power System Model Development: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.

    2004-07-01T23:59:59.000Z

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  8. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect (OSTI)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01T23:59:59.000Z

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  9. Heatpipe power system and heatpipe bimodal system development status

    SciTech Connect (OSTI)

    Houts, Michael G.; Poston, David I.; Emrich, William J. Jr. [Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States); NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35758 (United States)

    1998-01-15T23:59:59.000Z

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is underway, and testing should begin in early 1998.

  10. Heatpipe power system and heatpipe bimodal system development status

    SciTech Connect (OSTI)

    Houts, M.G.; Poston, D.I. [Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States); Emrich, W.J. Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35758 (United States)

    1998-01-01T23:59:59.000Z

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is underway, and testing should begin in early 1998. {copyright} {ital 1998 American Institute of Physics.}

  11. Controls system developments for the ERL facility

    SciTech Connect (OSTI)

    Jamilkowski, J.; Altinbas, Z.; Gassner, D.; Hoff, L.; Kankiya, P.; Kayran, D.; Miller, T.; Olsen, R.; Sheehy, B.; Xu, W.

    2011-10-07T23:59:59.000Z

    The BNL Energy Recovery LINAC (ERL) is a high beam current, superconducting RF electron accelerator that is being commissioned to serve as a research and development prototype for a RHIC facility upgrade for electron-ion collision (eRHIC). Key components of the machine include a laser, photocathode, and 5-cell superconducting RF cavity operating at a frequency of 703 MHz. Starting with a foundation based on existing ADO software running on Linux servers and on the VME/VxWorks platforms developed for RHIC, we are developing a controls system that incorporates a wide range of hardware I/O interfaces that are needed for machine R&D. Details of the system layout, specifications, and user interfaces are provided.

  12. Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine 

    E-Print Network [OSTI]

    Sun, Jiafeng

    2014-08-05T23:59:59.000Z

    Diesel/gasoline dual-fuel combustion uses both gasoline and diesel fuel in diesel engines to exploit their different reactivities. This operation combines the advantages of diesel fuel and gasoline while avoiding their disadvantages, attains...

  13. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect (OSTI)

    Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Eibl, Mary A [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Kaul, Brian C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  14. Development of an Integrated Distribution Management System

    SciTech Connect (OSTI)

    Schatz, Joe E.

    2010-10-20T23:59:59.000Z

    This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nation’s critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nation’s economic security. Our Nation’s economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

  15. Development of Advanced Alarm System for SMART

    SciTech Connect (OSTI)

    Jang, Gwi-sook; Seoung, Duk-hyun; Suh, Sang-moon; Lee, Jong-bok; Park, Geun-ok; Koo, In-soo [SMART-P MMIS Department, Korea Atomic Energy Research Institute 150, Duckjin-dong, Yusung-ku, Taejon 305-353 (Korea, Republic of)

    2004-07-01T23:59:59.000Z

    A SMART-Alarm System (SMART-AS) is a new system being developed as part of the SMART (System-integrated Modular Advanced Reactor) project. The SMART-AS employs modern digital technology to implement the alarm functions of the SMART. The use of modern digital technology can provide advanced alarm processing in which new algorithms such as a signal validation, advanced alarm processing logic and other features are applied to improve the control room man-machine interfaces. This paper will describe the design process of the SMART-AS, improving the system reliability and availability using the reliability prediction tool, design strategies regarding the human performance topics associated with a computer-based SMART-AS and the results of the performance analysis using a prototype of the SMART-AS. (authors)

  16. Sensor Development for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Steve Magee; Richard Gehman

    2005-07-12T23:59:59.000Z

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  17. Analytical Tool Development for Aftertreatment Sub-Systems Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tool Development for Aftertreatment Sub-Systems Integration Analytical Tool Development for Aftertreatment Sub-Systems Integration 2003 DEER Conference Presentation: Detroit Diesel...

  18. High Efficiency Engine Systems Development and Evaluation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    High Efficiency Engine Systems Development and Evaluation High Efficiency Engine Systems Development and Evaluation 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  19. Colorado Firm Develops Innovative Materials for Geothermal Systems...

    Office of Environmental Management (EM)

    Firm Develops Innovative Materials for Geothermal Systems Colorado Firm Develops Innovative Materials for Geothermal Systems April 18, 2013 - 12:00am Addthis With support from...

  20. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA)...

  1. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of...

  2. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Particulate Filters...

  3. Advanced Boost System Development for Diesel HCCI/LTC Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boost System Development for Diesel HCCILTC Application Advanced Boost System Development for Diesel HCCILTC Application Optimization of a turbocharger for high EGR applications...

  4. Advanced boost system development for diesel HCCI/LTC applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    boost system development for diesel HCCILTC applications Advanced boost system development for diesel HCCILTC applications 2009 DOE Hydrogen Program and Vehicle Technologies...

  5. Advanced boost system development for diesel HCCI/LTC applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    boost system development for diesel HCCILTC applications Advanced boost system development for diesel HCCILTC applications Presentation from the U.S. DOE Office of Vehicle...

  6. Health studies indicate MTBE is safe gasoline additive

    SciTech Connect (OSTI)

    Anderson, E.V.

    1993-09-01T23:59:59.000Z

    Implementation of the oxygenated fuels program by EPA in 39 metropolitan areas, including Fairbanks and Anchorage, Alaska, in the winter of 1992, encountered some unexpected difficulties. Complaints of headaches, dizziness, nausea, and irritated eyes started in Fairbanks, jumped to Anchorage, and popped up in various locations in the lower 48 states. The suspected culprit behind these complaints was the main additive for oxygenation of gasoline is methyl tert-butyl ether (MTBE). A test program, hastily organized in response to these complaints, has indicated that MTBE is a safe gasoline additive. However, official certification of the safety of MTBE is still awaited.

  7. U.S. gasoline prices continued to decreased (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S. gasoline9,

  8. U.S. gasoline prices continued to decreased (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S. gasoline9,6,

  9. U.S. gasoline prices continued to decreased (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S. gasoline

  10. U.S. gasoline prices decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 201514, 2014gasoline

  11. U.S. gasoline prices remain steady (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) The U.S.gasoline

  12. U.S. gasoline prices unchanged (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version)gasoline prices

  13. U.S. gasoline prices unchanged (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version)gasoline

  14. Gasoline prices fall for first time this year (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline4,gasolinelong

  15. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S. gasoline prices

  16. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S. gasoline

  17. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S. gasolineJune 1,

  18. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S. gasolineJune

  19. Modeling and Analysis of Natural Gas and Gasoline In A High Compressio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Analysis of Natural Gas and Gasoline In A High Compression Ratio High Efficiency ICRE Modeling and Analysis of Natural Gas and Gasoline In A High Compression Ratio High...

  20. Savings at the pump help push U.S. gasoline demand to 8-year...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    U.S. gasoline demand to 8-year high U.S. gasoline consumption this year is expected to top 9 million barrels per day for the first time since 2007. In its new monthly forecast,...

  1. Coal-log pipeline system development

    SciTech Connect (OSTI)

    Liu, H.

    1991-12-01T23:59:59.000Z

    Project tasks include: (1) Perform the necessary testing and development to demonstrate that the amount of binder in coal logs can be reduced to 8% or lower to produce logs with adequate strength to eliminate breakage during pipeline transportation, under conditions experienced in long distance pipeline systems. Prior to conducting any testing and demonstration, grantee shall perform an information search and make full determination of all previous attempts to extrude or briquette coal, upon which the testing and demonstration shall be based. (2) Perform the necessary development to demonstrate a small model of the most promising injection system for coal-logs, and tests the logs produced. (3) Conduct economic analysis of coal-log pipeline, based upon the work to date. Refine and complete the economic model. (VC)

  2. Development of plutonium aerosol fractionation system

    E-Print Network [OSTI]

    Mekala, Malla R.

    1993-01-01T23:59:59.000Z

    microns), inhalation accidents occurring during maintenance operations can be expected to result in long term retention of 20% to 30% of the inhaled aerosol. Thind"' performed experiments over a span of one year to observe the consistency...DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August...

  3. The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    oil price, the expected retail gasoline price and consumption quantities are shown using a short-run demand elasticity assumption

  4. Off-Highway Gasoline Consuption Estimation Models Used in the Federal Highway Administration Attribution Process: 2008 Updates

    SciTech Connect (OSTI)

    Hwang, Ho-Ling [ORNL; Davis, Stacy Cagle [ORNL

    2009-12-01T23:59:59.000Z

    This report is designed to document the analysis process and estimation models currently used by the Federal Highway Administration (FHWA) to estimate the off-highway gasoline consumption and public sector fuel consumption. An overview of the entire FHWA attribution process is provided along with specifics related to the latest update (2008) on the Off-Highway Gasoline Use Model and the Public Use of Gasoline Model. The Off-Highway Gasoline Use Model is made up of five individual modules, one for each of the off-highway categories: agricultural, industrial and commercial, construction, aviation, and marine. This 2008 update of the off-highway models was the second major update (the first model update was conducted during 2002-2003) after they were originally developed in mid-1990. The agricultural model methodology, specifically, underwent a significant revision because of changes in data availability since 2003. Some revision to the model was necessary due to removal of certain data elements used in the original estimation method. The revised agricultural model also made use of some newly available information, published by the data source agency in recent years. The other model methodologies were not drastically changed, though many data elements were updated to improve the accuracy of these models. Note that components in the Public Use of Gasoline Model were not updated in 2008. A major challenge in updating estimation methods applied by the public-use model is that they would have to rely on significant new data collection efforts. In addition, due to resource limitation, several components of the models (both off-highway and public-us models) that utilized regression modeling approaches were not recalibrated under the 2008 study. An investigation of the Environmental Protection Agency's NONROAD2005 model was also carried out under the 2008 model update. Results generated from the NONROAD2005 model were analyzed, examined, and compared, to the extent that is possible on the overall totals, to the current FHWA estimates. Because NONROAD2005 model was designed for emission estimation purposes (i.e., not for measuring fuel consumption), it covers different equipment populations from those the FHWA models were based on. Thus, a direct comparison generally was not possible in most sectors. As a result, NONROAD2005 data were not used in the 2008 update of the FHWA off-highway models. The quality of fuel use estimates directly affect the data quality in many tables published in the Highway Statistics. Although updates have been made to the Off-Highway Gasoline Use Model and the Public Use Gasoline Model, some challenges remain due to aging model equations and discontinuation of data sources.

  5. The Power Systems Development Facility -- Current status

    SciTech Connect (OSTI)

    Pinkston, T.E.; Maxwell, J.D.; Leonard, R.F.; Vimalchand, P.

    1995-11-01T23:59:59.000Z

    Southern Company Services, Inc. (SCS) has entered into a cooperative agreement with the US Department of Energy (DOE) to build and operate the Power Systems Development Facility (PSDF), currently under construction in Wilsonville, Alabama, 40 miles southeast of Birmingham. The objectives of the PSDF are to develop advanced coal-fired power generation technologies through testing and evaluation of hot gas cleanup systems and other major components at the pilot scale. The performance of components will be assessed and demonstrated in an integrated mode of operation and at a component size readily scaleable to commercial systems. The facility will initially contain five modules: (1) a transport reactor gasifier and combustor, (2) an advanced pressurized fluidized-bed combustion (APFBC) system, (3) a particulate control module, (4) an advanced burner-gas turbine module, and (5) a fuel cell. The five modules will initially be configured into two separate test trains, the transport reactor train (2 tons/hour of coal feed) and the APFBC train (3 tons/hour of coal feed). In addition to a project description, the project design and construction status, preparations for operations, and project test plans are reported in this paper.

  6. Gasoline price effects on traffic safety in urban and rural areas: Evidence from Minnesota, 19982007

    E-Print Network [OSTI]

    Levinson, David M.

    Gasoline price effects on traffic safety in urban and rural areas: Evidence from Minnesota, 1998 February 2012 Received in revised form 3 May 2013 Accepted 24 May 2013 Keywords: Gasoline prices Traffic examines the role of gasoline prices in the occurrence of traffic crashes. However, no studies have

  7. Response to "Ethanol Production and Gasoline Prices: A Spurious Correlation" by Knittel and Smith

    E-Print Network [OSTI]

    Rothman, Daniel

    Response to "Ethanol Production and Gasoline Prices: A Spurious Correlation" by Knittel and Smith Beardshear Hall, (515) 294-7612." #12;1 Response to "Ethanol Production and Gasoline Prices: A Spurious Relating Ethanol Production to Gasoline Prices" written by myself and Xiadong Du, and published in 2009

  8. CLEARING THE AIR? THE EFFECTS OF GASOLINE CONTENT REGULATION ON AIR QUALITY

    E-Print Network [OSTI]

    Edwards, Paul N.

    gasoline markets and raise prices paid by consumers. We provide the first comprehensive empirical estimatesCLEARING THE AIR? THE EFFECTS OF GASOLINE CONTENT REGULATION ON AIR QUALITY Maximilian Auffhammer and Ryan Kellogg* January 2009 Abstract This paper examines the effects of U.S. gasoline content

  9. Vertical Integration in Gasoline Supply: An Empirical Test of Raising Rivals' Costs

    E-Print Network [OSTI]

    California at Berkeley. University of

    gasoline prices. The 1997 acquisition of Unocal's West Coast refining and marketing assets by Tosco, and potentially confounding city-specific covariates. We find that Tosco increased the wholesale price of gasoline During the week of January 4-8, 1999, the average wholesale price of unbranded regular gasoline was 46

  10. Stranded Vehicles: How Gasoline Taxes Change the Value of Households' Vehicle Assets

    E-Print Network [OSTI]

    Rothman, Daniel

    of increases in gasoline prices varies across income, geography, and political affiliation. One standard that changes in gasoline prices can have sizable effects on the market value of vehicles. In this paper in gasoline prices affect the value of the vehicles that people own and how this varies across demographic

  11. forthcoming in Economic Letters Incidence of Federal and State Gasoline Taxes

    E-Print Network [OSTI]

    Perloff, Jeffrey M.

    concerns over high gasoline prices. As recently as April 2003, Congress argued over the merits of includingforthcoming in Economic Letters Incidence of Federal and State Gasoline Taxes Hayley Chouinarda, Berkeley, and member of the Giannini Foundation. Abstract The federal specific gasoline tax falls equally

  12. The impact of gasoline price changes on traffic safety: a time geography explanation Guangqing Chi a,

    E-Print Network [OSTI]

    Levinson, David M.

    The impact of gasoline price changes on traffic safety: a time geography explanation Guangqing Chi, United States a r t i c l e i n f o Keywords: Time geography Gasoline prices Traffic safety Traffic crashes Fatal crashes Space­time path a b s t r a c t The impact of gasoline price changes on traffic

  13. Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex-Fuel flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

  14. Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we- ration, air-to-fuel ratio control, gasoline-ethanol blend, flex-fuel vehicles I. INTRODUCTION Currently

  15. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of

    E-Print Network [OSTI]

    Silver, Whendee

    Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline

  16. Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices Ahmed distributed lags (NARDL) mod- el to examine the pass-through of crude oil prices into gasoline and natural gas the possibility to quantify the respective responses of gasoline and natural gas prices to positive and negative

  17. A near infrared regression model for octane measurements in gasolines which contain MTBE

    SciTech Connect (OSTI)

    Maggard, S.M. (Ashland Petroleum Co., KY (USA))

    1990-01-01T23:59:59.000Z

    Near infrared (NIR) spectroscopy has emerged as a superior technique for the on-line determination of octane during the blending of gasoline. This results from the numerous advantages that NIR spectroscopy has over conventional on-line instrumentation. Methyl t-butyl ether (MTBE) is currently the oxygenated blending component of choice. MTBE is advantageous because it has a high blending octane, a low Reid vapor pressure, is relatively cheap, and does not form peroxides (1). The goal of this project was to develop a NIR regression model that could be used to predict pump octanes regardless of whether they contained MTBE.

  18. Gasoline from natural gas by sulfur processing. Final technical report, June 1993--July 1996

    SciTech Connect (OSTI)

    Erekson, E.J.

    1996-07-01T23:59:59.000Z

    The overall objective of this research project was to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each use catalysts and sulfur-containing intermediates: (1) to convert natural gas to CS{sub 2} and (2) to convert CS{sub 2} to gasoline-range liquids. Experimental data generated in this project were for use in evaluating the commercial potential of the process.

  19. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    61.5 70.8 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

  20. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    Gasoline and Diesel Fuel Update (EIA)

    82.4 77.1 68.9 62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information...

  1. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    62.6 71.7 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

  2. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    71.8 W 70.5 78.9 W 76.0 83.6 W 69.2 75.2 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

  3. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    W 68.4 70.8 W W 78.6 W 85.7 81.8 W 69.3 73.8 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

  4. Evaluating nonmetallic materials` compatibility with MTBE and MTBE + gasoline service

    SciTech Connect (OSTI)

    Hotaling, A.C.

    1995-12-31T23:59:59.000Z

    Methyl-tertiary-butyl-ether (MTBE) has become the leading oxygenate in use in the petroleum industry. Since its introduction several years ago there has been premature deterioration of nonmetallic materials in both neat MTBE and MTBE + gasoline. This degradation is costly in several ways: maintenance, replacement, environmental, and product-loss. Identifying nonmetallic materials compatible with MTBE and MTBE + gasoline is important to the petroleum industry -- all the way from the refinery to the retail sale. Exposure tests have been conducted with different types of nonmetallics in neat MTBE, neat MTBE vapor, and 5% MTBE + 95% gasoline. As in previously reported tests, Teflon{reg_sign} laminates were the top performers, experiencing very little change in any of the properties tested. An ester and ether-based urethane laminate also exhibited only small property changes. Most materials displayed significant deterioration of one or more of the measured properties, even in MTBE condensing vapor and the 5% MTBE + 95% gasoline. The specific effects on each material need to be individually evaluated to determine the effect on service life.

  5. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect (OSTI)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01T23:59:59.000Z

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  6. An independent refiner`s approach to reformulated gasolines

    SciTech Connect (OSTI)

    Czeskleba, H.M. [Ashland Petroleum Co., KY (United States)

    1995-12-31T23:59:59.000Z

    Included in this paper are brief reviews of Ashland Petroleum Company`s renewable oxygenate (ethanol) usage, the latest CAA oxygenate supply and demand forecasts, oxygenated fuel and reformulated blending economics, some very brief comments on the EPA proposed renewable oxygenate standard (ROS), and Ashland`s approach to reformulated gasolines (RFG).

  7. LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL

    E-Print Network [OSTI]

    Boyer, Edmond

    1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 , R. Bounaceur1 , H. Le Gall1 , A. Pires da Cruz2 , A. The influence of ethanol as an oxygenated additive has been investigated for these two fuels and has been found

  8. Raman Scattering Sensor for Control of the Acid Alkylation Process in Gasoline Production

    SciTech Connect (OSTI)

    Uibel, Rory, H.; Smith, Lee M.; Benner, Robert, E.

    2006-04-19T23:59:59.000Z

    Gasoline refineries utilize a process called acid alkylation to increase the octane rating of blended gasoline, and this is the single most expensive process in the refinery. For process efficiency and safety reasons, the sulfuric acid can only be used while it is in the concentration range of 98 to 86 %. The conventional technique to monitor the acid concentration is time consuming and is typically conducted only a few times per day. This results in running higher acid concentrations than they would like to ensure that the process proceeds uninterrupted. Maintaining an excessively high acid concentration costs the refineries millions of dollars each year. Using SBIR funding, Process Instruments Inc. has developed an inline sensor for real time monitoring of acid concentrations in gasoline refinery alkylation units. Real time data was then collected over time from the instrument and its responses were matched up with the laboratory analysis. A model was then developed to correlate the laboratory acid values to the Raman signal that is transmitted back to the instrument from the process stream. The instrument was then used to demonstrate that it could create real-time predictions of the acid concentrations. The results from this test showed that the instrument could accurately predict the acid concentrations to within ~0.15% acid strength, and this level of prediction proved to be similar or better then the laboratory analysis. By utilizing a sensor for process monitoring the most economic acid concentrations can be maintained. A single smaller refinery (50,000 barrels/day) estimates that they should save over $120,000/year, with larger refineries saving considerably more.

  9. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 19, NO. 6, NOVEMBER 2011 1433 Hardware-in-the-Loop Simulation of

    E-Print Network [OSTI]

    Choi, Jongeun

    - duction of DI fuel systems for the internal combustion engine, port-fuel-injection fuel systems several fuel control strategies developed for internal combustion engines to improve the efficiency and ex of freedom for engine optimization to reduce emissions with improved fuel economy. The use of gasoline port

  11. Development of casthouse expert system for tapping

    SciTech Connect (OSTI)

    Takihira, K.; Ino, K.; Yamana, S.; Masumoto, S.; Sugawara, H. (Kawasaki Steel Corp., Tokyo (Japan). Ironmaking Dept.)

    1993-01-01T23:59:59.000Z

    Although the standardization of casting operations is necessary to secure stable blast furnace operation, intuitive practices (which are by definition non-quantifiable) and experience are prevalent. Because BF operation is a field which is difficult to standardize and reduce to documentary form, the present work had as its goal the standardization of judgments and systematization of information related to taphole opening and closing. The project was carried out in the highly computerized environment at Mizushima No. 3 BF, where the authors introduced an expert system guidance function in February, 1992. Standardization of operations through the use of this guidance system and the completion of guidance function development resulted in better consistency in taphole depths and optimization of the size of the taphole (taphole volume), which have in turn led to improvement in the pig/slag balance and a reduction in the time required for taphole opening.

  12. Performance Systems Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformation US RecoverySystems Development

  13. State of competition in gasoline marketing. The effects of refiner operation at retail (a study required by Title III of the Petroleum Marketing Practices Act)

    SciTech Connect (OSTI)

    Delaney, J.B.; Fenili, R.N.

    1980-05-01T23:59:59.000Z

    Title III of the Petroleum Marketing Practices Act requires the Secretary of Energy to report to the Congress on the extent to which producers, refiners, and other suppliers of motor fuel subsidize the sale of such fuel at retail or wholesale with profits obtained from other operations. This is Part I of the report required under that Title. It addresses a number of questions relating to the central issue - the state of competition in the gasoline marketing industry. Part II of the report, to be issued this fall, will discuss the subpoenaed documents of nine integrated companies, and will contain recommendations for action, if deemed necessary. The basic thrust of Part I is an examination of three issues: (1) Are integrated refiners subsidizing their company operated gasoline retail outlets; (2) Are integrated refiners moving gasoline away from their branded dealer network into their own retail outlets; and (3) Are integrated refiners manipulating the allocation system in favor of their own retail outlets to the detriment of other gasoline marketers. At a series of regional hearings, independent marketers charged that integrated refiners were engaging in each of these practices. In essence, integrated refiners were portrayed as using unfair or illegal competitive practices which would ultimately lead to their domination of retail gasoline markets. This report addresses each allegation, after providing a historical and theoretical framework for today's debate.

  14. Development of a new airborne humidigraph system.

    SciTech Connect (OSTI)

    Pekour, Mikhail S.; Schmid, Beat; Chand, Duli; Hubbe, John M.; Kluzek, Celine D.; Nelson, Danny A.; Tomlinson, Jason M.; Cziczo, Daniel J.

    2012-12-06T23:59:59.000Z

    Modeling and measurements of aerosol properties is complicated by the hygroscopic behavior of the aerosols adding significant uncertainty to our best estimates of the direct effect aerosols exert on the radiative balance of the atmosphere. Airborne measurements of aerosol hygroscopicity are particularly challenging but critically needed. This motivated the development of a newly designed system which can measure the dependence of the aerosol light scattering coefficient (?sp) on relative humidity (RH), known as f(RH), in real-time at a rapid rate (<10 s) on an aerial platform. The new system has several advantages over existing systems. It consists of three integrating nephelometers and humidity conditioners for simultaneous measurement of the ?sp at three different RHs. The humidity is directly controlled in exchanger cells without significant temperature disturbances and without particle dilution, heating or loss of volatile compounds. The single-wavelength nephelometers are illuminated by LED-based light sources thereby minimizing heating of the sample stream. The flexible design of the RH conditioners, consisting of a number of specially designed exchanger cells (driers or humidifiers), enables us to measure f(RH) under hydration or dehydration conditions (always starting with the aerosol in a known state) with a simple system re-configuration. These exchanger cells have been characterized for losses of particles using latex spheres and laboratory generated ammonium sulfate aerosols. Residence times of 6 - 9 s in the exchangers and subsequent lines is sufficient for most aerosols to attain equilibrium with the new water vapor content. The performance of this system has been assessed aboard DOE’s G-1 research aircraft during test flights over California, Oregon, and Washington.

  15. Advanced Electric Traction System Technology Development

    SciTech Connect (OSTI)

    Anderson, Iver

    2011-01-14T23:59:59.000Z

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  16. Fact #858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest Decline since 2008 – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Retail Gasoline Prices in 2014 Experienced the Largest Decline since 2008

  17. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

    2010-01-01T23:59:59.000Z

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  18. Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine

    SciTech Connect (OSTI)

    Naik, C V; Pitz, W J; Sj?berg, M; Dec, J E; Orme, J; Curran, H J; Simmie, J M; Westbrook, C K

    2005-01-07T23:59:59.000Z

    Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1214 species and 5401 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation. Experimental data are available for both how the combustion phasing changes with fueling at a constant intake temperature, and also how the intake temperature has to be changed with pressure in order to maintain combustion phasing for a fixed equivalence ratio. Three different surrogate fuel mixtures are used for the modeling. Predictions are in reasonably good agreement with the engine data. In addition, the heat release rate is calculated and compared to the data from experiments. The model predicts less low-temperature heat release than that measured. It is found that the low temperature heat-release rate depends strongly on engine speed, reactions of RO{sub 2}+HO{sub 2}, fuel composition, and pressure boost.

  19. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  20. Development of Advanced Small Hydrogen Engines

    SciTech Connect (OSTI)

    Krishna Sapru; Zhaosheng Tan; Ben Chao

    2010-09-30T23:59:59.000Z

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  1. A Layered Architecture for Describing Information System Development Methodologies

    E-Print Network [OSTI]

    Han, Jun

    of the development process such as requirements engineering, while others cover the whole system development life cycle. Some include project management and estimation techniques while others focus only

  2. application development system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 22 23 24 25 Next Page Last Page Topic Index 1 Development and application of earth system models Environmental Sciences and Ecology Websites Summary: Development and...

  3. Cask systems development program seal technology

    SciTech Connect (OSTI)

    Madsen, M.M.; Edwards, K.R.; Humphreys, D.L.

    1991-01-01T23:59:59.000Z

    General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (10 CFR 71). Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. Experiments were performed to characterize the performance of several seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fuorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Results show that the seal materials tested, with the exception of silicone S613-60, are not leak tight at manufacturer low-temperature ratings. This paper documents the initial series of experiments developed to characterize the performance of several static seals under conditions representative of RAM transport container environments. Helium leak rates of face seals were measured at low and ambient temperatures to compare seal materials. As scaling laws have not been developed for seals, the leakage rates measured in this program are intended to be used in a qualitative rather than quantitative manner. 5 refs., 7 figs., 2 tabs.

  4. Assessment of California reformulated gasoline impact on vehicle fuel economy

    SciTech Connect (OSTI)

    Aceves, S., LLNL

    1997-01-01T23:59:59.000Z

    Fuel economy data contained in the 1996 California Air Resources Board (CARB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4%, with a 95% upper confidence bound of 6%. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CARB with respect to the impact of CaRFG on fuel economy.

  5. Development of a High-Efficiency Zonal Thermoelectric HVAC System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications...

  6. Process for conversion of lignin to reformulated, partially oxygenated gasoline

    DOE Patents [OSTI]

    Shabtai, Joseph S. (Salt Lake City, UT); Zmierczak, Wlodzimierz W. (Salt Lake City, UT); Chornet, Esteban (Golden, CO)

    2001-01-09T23:59:59.000Z

    A high-yield process for converting lignin into reformulated, partially oxygenated gasoline compositions of high quality is provided. The process is a two-stage catalytic reaction process that produces a reformulated, partially oxygenated gasoline product with a controlled amount of aromatics. In the first stage of the process, a lignin feed material is subjected to a base-catalyzed depolymerization reaction, followed by a selective hydrocracking reaction which utilizes a superacid catalyst to produce a high oxygen-content depolymerized lignin product mainly composed of alkylated phenols, alkylated alkoxyphenols, and alkylbenzenes. In the second stage of the process, the depolymerized lignin product is subjected to an exhaustive etherification reaction, optionally followed by a partial ring hydrogenation reaction, to produce a reformulated, partially oxygenated/etherified gasoline product, which includes a mixture of substituted phenyl/methyl ethers, cycloalkyl methyl ethers, C.sub.7 -C.sub.10 alkylbenzenes, C.sub.6 -C.sub.10 branched and multibranched paraffins, and alkylated and polyalkylated cycloalkanes.

  7. Simulation methods for the development of modular strategic guidance systems

    E-Print Network [OSTI]

    Long, Stephen Michael, Ensign

    2003-01-01T23:59:59.000Z

    The traditional approach to simulation-based system design results in a stovepiped development process where subsystems are developed independently and integration requirements are then levied on the system architecture. ...

  8. Solid Oxide Fuel Cell and Power System Development at PNNL

    Broader source: Energy.gov (indexed) [DOE]

    Solid Oxide Fuel Cell and Power Solid Oxide Fuel Cell and Power S t D l t t PNNL S t D l t t PNNL System Development at PNNL System Development at PNNL Larry Chick Energy Materials...

  9. Reduced chemistry for a gasoline surrogate valid at engine-relevant conditions

    E-Print Network [OSTI]

    Niemeyer, Kyle E

    2014-01-01T23:59:59.000Z

    A detailed mechanism for the four-component gasoline surrogate developed by Lawrence Livermore National Laboratory has shown good agreement with experiments in engine-relevant conditions. However, with 1388 species and 5933 reversible reactions, this detailed mechanism is far too large to use in practical engine simulations. Therefore, reduction of the detailed mechanism was performed using a multi-stage approach consisting of the DRGEPSA method, unimportant reaction elimination, isomer lumping, and analytic QSS reduction based on CSP analysis. A new greedy sensitivity analysis algorithm was developed and demonstrated to be capable of removing more species for the same error limit compared to the conventional sensitivity analysis used in DRG-based skeletal reduction methods. Using this new greedy algorithm, several skeletal and reduced mechanisms were developed at varying levels of complexity and for different target condition ranges. The final skeletal and reduced mechanisms consisted of 213 and 148 species,...

  10. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov [DOE]

    Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

  11. Disposal Systems Evaluations and Tool Development - Engineered...

    Broader source: Energy.gov (indexed) [DOE]

    stability at repository-relevant conditions, thermodynamic database development for cement and clay phases, and THMC coupled phenomena along with the development of tools and...

  12. Catalytic conversion of C/sub 3/-C/sub 4/ paraffins to gasoline

    SciTech Connect (OSTI)

    Batchelder, R.F.; Pennline, H.W.; Schehl, R.R.; Finseth, D.H.

    1984-12-01T23:59:59.000Z

    The reaction of propane and butane to form gasoline-range hydrocarbons in a single-step catalytic process has been investigated in a tubular packed-bed reactor maintained at near isothermal conditions. Three catalyst systems were studied: a zeolite, ZSM-5; a dehydrogenation catalyst, chromia-alumina; and a 50:50 mixture by weight of the previous two catalysts. The effects of process parameters on the catalyst activity and product selectivity were determined. It was found that ZSM-5 alone will convert propane or butane to gasoline-range products over a temperaure range of 350/sup 0/ to 540/sup 0/C. The reaction of butane over ZSM-5 results in a large selectivity to propane (30 to 70 weight percent) depending on the temperature. The addition of chromia-alumina to ZSM-5 increased the first-order rate constant for butane conversion by 60% at 450/sup 0/C. The addition of chromia-alumina to ZSM-5 also increased the C/sub 5+/ selectivity for butane conversion by 30% at 540/sup 0/C. The addition of chromia-alumina to ZSM-5 had little effect on the rate of propane conversion, but it did increase the C/sub 5+/ selectivity for propane conversion by over 100% at 540/sup 0/C. The liquid product from alkane conversion was highly aromatic (>80%) under all conditions tested. 12 references, 8 figures.

  13. System development & validation process for emerging growing organizations

    E-Print Network [OSTI]

    Almazán López, José Antonio

    2009-01-01T23:59:59.000Z

    This thesis has the main purpose of presenting the Development and Validation phase of the product development system from the point of view of an emerging and growing product development organization, denoting the obstacles ...

  14. Seamless Energy Management Systems Part II: Development of Prototype

    E-Print Network [OSTI]

    Seamless Energy Management Systems Part II: Development of Prototype Core Elements Final Project System #12;#12;Seamless Energy Management Systems Part II: Development of Prototype Core Elements Final Center (PSERC) research project entitled "Seamless Energy Management Systems" (S-53G for 2013

  15. Interdisciplinary investigation of subsurface contaminant transport and fate at point-source releases of gasoline containing MTBE

    SciTech Connect (OSTI)

    Buxton, H.T.; Baehr, A.L. [Geological Survey, West Trenton, NJ (United States); Landmeyer, J.E. [Geological Survey, Columbia, SC (United States)] [and others

    1997-12-31T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) is commonly found at concentrations above the current U.S. Environmental Protection Agency draft lifetime health advisory for drinking water (20 to 200 micrograms per liter) at many point-source gasoline release sites. MTBE is significantly more persistent than benzene, toluene, ethyl-benzene and xylenes (BTEX) in the subsurface. Therefore, evaluation of the implications of its presence in gasoline to monitored natural attenuation and engineered bioremediation alternatives is warranted. An interdisciplinary, field-based investigation of the subsurface transport and fate of MTBE and petroleum hydrocarbons is being conducted by the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program at the site of an underground gasoline storage-tank release near Beaufort, South Carolina. The objective of the investigation is to provide a systematic evaluation of natural attenuation of MTBE compared to BTEX. Results of the field and laboratory studies at this site will be generalized to a broader range of hydrogeochemical conditions through experiments at other sites. Furthermore, newly developed methods of analysis can be applied to sites across the Nation. This investigation of MTBE at point-source release sites is coordinated with investigations of the occurrence of MTBE in shallow ground water, surface water, precipitation, and the atmosphere being conducted by the USGS National Water-Quality Assessment Program.

  16. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM); Anthony, Brian W. (Clearfield, PA)

    1997-01-01T23:59:59.000Z

    A method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries.

  17. The Speed of Gasoline Price Response in Markets With and Without Edgeworth Cycles

    E-Print Network [OSTI]

    Lewis, Matt; Noel, Michael

    2009-01-01T23:59:59.000Z

    Columbus, OH. , “Temporary Wholesale Gasoline Price Spikesrespond fairly slowly to wholesale price changes. This doesand asymmetrically to wholesale costs, with cost increases

  18. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) - Continued Year...

  19. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    table. 56 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  20. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1999 401 Table A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District and State, 1984-Present (Cents per Gallon...

  1. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Information Administration Petroleum Marketing Annual 1995 Table A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District and State, 1984-Present (Cents per Gallon...

  2. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    table. 56 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  3. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationPetroleum Marketing Annual 1999 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  4. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  5. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1999 Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) Year Month...

  6. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationPetroleum Marketing Annual 1998 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  7. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationPetroleum Marketing Annual 1998 Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) - Continued Year...

  8. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  9. The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    economic slowdown cuts oil demand. At the intersection ofoil price, the expected retail gasoline price and consumption quantities are shown using a short-run demand

  10. Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality

    E-Print Network [OSTI]

    Auffhammer, Maximilian; Kellogg, Ryan

    2009-01-01T23:59:59.000Z

    gasoline distribution stations. Refiners and wholesale terminalsgasoline distribution stations. Refiners and wholesale terminalsgasoline stations and May 1 – September 15 for refiners and wholesale distribution terminals.

  11. A Comparison of Two Gasoline and Two Diesel Cars with Varying...

    Broader source: Energy.gov (indexed) [DOE]

    local lower for gasoline: local NO NO 2 2 , acidification, , acidification, eutrophication eutrophication F F Cancer risk: low, in general, but with varying Cancer risk:...

  12. Impacts of Oxygenated Gasoline Use on California Light-Duty Vehicle Emissions

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1996-01-01T23:59:59.000Z

    possibly due to running loss evaporative emissions thatOnlyrunning exhaust and running loss evaporative emissionshad opposing effects on running loss evapo- gasoline shown

  13. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  14. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  15. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) - Continued Year...

  16. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOE Patents [OSTI]

    Sinha, D.N.; Anthony, B.W.

    1997-02-25T23:59:59.000Z

    A method is described for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries. 3 figs.

  17. Central Energy Systems - Applications to Economic Development

    E-Print Network [OSTI]

    Myers, M. S.; Diserens, S. E.

    1985-01-01T23:59:59.000Z

    the conceptual stage of design. The second program, Central Energy Systems Analysis Program (CESAP) analyzes energy efficiency for a group of buildings and determines if a new district heating and cooling (DHC) system would be a cost effective application...

  18. Development and Application of Earth System Models

    E-Print Network [OSTI]

    Prinn, Ronald G.

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. ...

  19. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25T23:59:59.000Z

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

  20. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28T23:59:59.000Z

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

  1. Development of a Portable Muon Witness System

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-01-01T23:59:59.000Z

    Since understanding and quantifying cosmic ray induced radioactive backgrounds in copper and germanium are important to the MAJORANA DEMONSTRATOR, methods are needed for monitoring the levels of such backgrounds produced in materials being transported and processed for the experiment. This report focuses on work conducted at Pacific Northwest National Laboratory to develop a muon witness system as a one way of monitoring induced activities. The operational goal of this apparatus is to characterize cosmic ray exposure of materials. The cosmic ray flux at the Earth’s surface is composed of several types of particles, including neutrons, muons, gamma rays and protons. These particles induce nuclear reactions, generating isotopes that contribute to the radiological background. Underground, the main mechanism of activation is by muon produced spallation neutrons since the hadron component of cosmic rays is removed at depths greater than a few tens of meters. This is a sub-dominant contributor above ground, but muons become predominant in underground experiments. For low-background experiments cosmogenic production of certain isotopes, such as 68Ge and 60Co, must be accounted for in the background budgets. Muons act as minimum ionizing particles, depositing a fixed amount of energy per unit length in a material, and have a very high penetrating power. Using muon flux measurements as a “witness” for the hadron flux, the cosmogenic induced activity can be quantified by correlating the measured muon flux and known hadronic production rates. A publicly available coincident muon cosmic ray detector design, the Berkeley Lab Cosmic Ray Detector (BLCRD), assembled by Juniata College, is evaluated in this work. The performance of the prototype is characterized by assessing its muon flux measurements. This evaluation is done by comparing data taken in identical scenarios with other cosmic ray telescopes. The prototype is made of two plastic scintillator paddles with associated electronics to measure energy depositions in coincidence in the two paddles. For this particular application of the prototype, the measurements performed concentrated on a broad investigation of the dependence of the muon flux on depth underground. These tests were conducted inside at Building 3420/1307 and underground at Building 3425 at the Pacific Northwest National Laboratory. The second half of this report analyzes modifications to the electronics of the BLCRD to make this detector portable. Among other modifications, a battery powered version of these electronics is proposed for the final Muon Witness design.

  2. Biomedical System for Monitoring Pressure Ulcer Development

    E-Print Network [OSTI]

    Wang, Frank Tinghwa

    2013-01-01T23:59:59.000Z

    Battery Voltage Monitor Microprocessor uSD Card Local Storage Bluetooth Wireless Data Android Smartphone Capacitance to Digital Converter Conformal Electrode System Signal Conditioning

  3. DOE Gasoline Price Watch Website and Hotline | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million to PromoteGasoline

  4. U.S. gasoline prices continued to decreased (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.

  5. U.S. gasoline prices decrease (Short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9, 20150,

  6. U.S. gasoline prices decrease (Short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9, 20150,6,

  7. U.S. gasoline prices decrease (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9,

  8. U.S. gasoline prices decrease (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9,April 6,

  9. U.S. gasoline prices decrease (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9,April

  10. U.S. gasoline prices decrease (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9,April14,

  11. U.S. gasoline prices decrease (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9,April14,

  12. U.S. gasoline prices decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015

  13. U.S. gasoline prices decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 201514, 2014 U.S.

  14. U.S. gasoline prices decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 201514, 2014

  15. U.S. gasoline prices decreased (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short version) The29,,

  16. U.S. gasoline prices decreased (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short version)

  17. U.S. gasoline prices increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short14,0, 20145, 20146,

  18. U.S. gasoline prices increase slightly (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short14,0,long,longlong

  19. U.S. gasoline prices increase slightly (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue

  20. U.S. gasoline prices increase slightly (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) The U.S. average

  1. U.S. gasoline prices remain steady (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) The U.S.

  2. U.S. gasoline prices show little movement (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) Theshort

  3. U.S. gasoline prices show little movement (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) Theshort7, 2014

  4. U.S. gasoline prices show little movement (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) Theshort7, 20141,

  5. U.S. gasoline prices show little movement (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) Theshort7,

  6. U.S. gasoline prices unchanged (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version)

  7. U.S. gasoline prices unchanged (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version)gasolinegasoline

  8. Aviation Gasoline Sales to End Users Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil andMarketW W W W W W

  9. Conventional Gasoline Sales to End Users, Total Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX Imeans ofF

  10. Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : 42Q)2Q)6)2k(STEO)

  11. Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : 42Q)2Q)6)2k(STEO)

  12. U.S. gasoline price decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy5.530, 2013 U.S.gasoline price

  13. U.S. gasoline price decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy5.530, 2013 U.S.gasoline pricegasoline

  14. U.S. Gasoline and Diesel Retail Prices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may be keyNuclearEconomic growthChange |Gasoline863

  15. U.S. gasoline continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea:diesel pricesU.S. gasoline

  16. U.S. gasoline continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea:diesel pricesU.S. gasolineU.S.

  17. U.S. gasoline price continues to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea:diesel pricesU.S.6,gasoline price

  18. U.S. gasoline price continues to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea:diesel pricesU.S.6,gasoline

  19. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea:diesel6,Novemberlong,gasoline

  20. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decrease (short version) The

  1. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decrease (short version)

  2. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decrease (short

  3. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decrease (shortgasoline

  4. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decrease

  5. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decreasegasoline prices

  6. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decreasegasoline pricesshort

  7. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decreasegasoline

  8. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decreasegasolinelongshort9,

  9. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to

  10. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S.

  11. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S.increase (short

  12. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S.increase

  13. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S.increaseshort

  14. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015

  15. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015short version) The

  16. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015short version)

  17. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015short version)short

  18. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015short

  19. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015shortgasoline prices

  20. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015shortgasoline

  1. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015shortgasolinegasoline

  2. THE SYSTEM DEVELOPMENT LIFE CYCLE (SDLC) Shirley Radack, Editor

    E-Print Network [OSTI]

    THE SYSTEM DEVELOPMENT LIFE CYCLE (SDLC) Shirley Radack, Editor Computer Security Division the maintenance and disposal of the system, is called the System Development Life Cycle (SDLC). The Information general guide that helps organizations plan for and implement security throughout the SDLC. The revised

  3. Standardization of information systems development processes and banking industry adaptations

    E-Print Network [OSTI]

    Tanrikulu, Zuhal

    2011-01-01T23:59:59.000Z

    This paper examines the current system development processes of three major Turkish banks in terms of compliance to internationally accepted system development and software engineering standards to determine the common process problems of banks. After an in-depth investigation into system development and software engineering standards, related process-based standards were selected. Questions were then prepared covering the whole system development process by applying the classical Waterfall life cycle model. Each question is made up of guidance and suggestions from the international system development standards. To collect data, people from the information technology departments of three major banks in Turkey were interviewed. Results have been aggregated by examining the current process status of the three banks together. Problematic issues were identified using the international system development standards.

  4. A model-based systems engineering framework for concept development

    E-Print Network [OSTI]

    London, Brian (Brian N.)

    2012-01-01T23:59:59.000Z

    The development of increasingly complex, innovative systems under greater constraints has been the trend over the past several decades. In order to be successful, organizations must develop products that meet customer needs ...

  5. Development of a Computer Heating Monitoring System and Its Applications 

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Shen, L.

    2006-01-01T23:59:59.000Z

    This paper develops a computer heating monitoring system, introduces the components and principles of the monitoring system, and provides a study on its application to residential building heating including analysis of indoor and outdoor air...

  6. Development of By-Pass Blending Station System

    E-Print Network [OSTI]

    Liu, M.; Barnes, D.; Bunz, K.; Rosenberry, N.

    2003-01-01T23:59:59.000Z

    A new building blending station system named by-pass blending station (BBS) has been developed to reduce building pump energy consumption in both district heating and cooling systems. Theoretical investigation demonstrated that the BBS can...

  7. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) ace22lee.pdf More Documents & Publications...

  8. An experimental investigation of low octane gasoline in diesel engines.

    SciTech Connect (OSTI)

    Ciatti, S. A.; Subramanian, S. (Energy Systems)

    2011-09-01T23:59:59.000Z

    Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

  9. Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .

    SciTech Connect (OSTI)

    Wallner, T. (Energy Systems)

    2011-08-01T23:59:59.000Z

    The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

  10. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles Chris A. Jakober, 2

    E-Print Network [OSTI]

    1 Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1 Chris A0205CH11231. LBNL752E #12;Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1Chris A-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were

  11. Automakers' Short-Run Responses to Changing Gasoline Prices and the Implications for Energy Policy

    E-Print Network [OSTI]

    Edwards, Paul N.

    Automakers' Short-Run Responses to Changing Gasoline Prices and the Implications for Energy Policy Preliminary, Please do not Cite Abstract We provide empirical evidence that automobile manufacturers price as if consumers respond to gasoline prices. We estimate a selection-corrected regression equation and exploit

  12. Supplement for "Secondary organic aerosol1 formation from idling gasoline passenger vehicle2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Supplement for "Secondary organic aerosol1 formation from idling gasoline passenger vehicle2.O. Box 503, FIN-00101 Helsinki, Finland}14 [5]{Department of Chemistry, Atmospheric Science, University experiment show a total concentration of light aromatics of less than 1 ppb.6 Vehicles7 In total six gasoline

  13. Study of Brazilian Gasoline Quality Using Hydrogen Nuclear Magnetic Resonance (1H NMR) Spectroscopy and Chemometrics

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    . The 1H NMR-PCA and 1H NMR-HCA models were evaluated through the analyses of 21 intentionally adulterated concentration. 1. Introduction Gasoline is a petroleum-derived product constituted by a complex mixture gasoline is becoming a common practice because of economic issues. In 2006, 10% from the 24.0 billion L

  14. Realization of a Virtual Lambda Sensor on a Fixed Precision System P. Amato, N. Cesario, M. Di Meglio, F. Pirozzi

    E-Print Network [OSTI]

    Boyer, Edmond

    in a model based EMS (En- gine Management System) for trade gasoline engines. FIS design target is to obtain able to forecast engine air-fuel ratio process- ing the cylinder pressure signal of the gasoline engine real constraints and real-time experiments on a trade 125cc gasoline engine. 1.1. Virtual Lambda Sensor

  15. Help for the Developers of Control System Cyber Security Standards

    SciTech Connect (OSTI)

    Robert P. Evans

    2008-05-01T23:59:59.000Z

    A Catalog of Control Systems Security: Recommendations for Standards Developers (Catalog), aimed at assisting organizations to facilitate the development and implementation of control system cyber security standards, has been developed. This catalog contains requirements that can help protect control systems from cyber attacks and can be applied to the Critical Infrastructures and Key Resources of the United States and other nations. The requirements contained in the catalog are a compilation of practices or various industry bodies used to increase the security of control systems from both physical and cyber attacks. They should be viewed as a collection of recommendations to be considered and judiciously employed, as appropriate, when reviewing and developing cyber security standards for control systems. The recommendations in the Catalog are intended to be broad enough to provide any industry using control systems the flexibility needed to develop sound cyber security standards specific to their individual security requirements.

  16. Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs—Summary Report

    SciTech Connect (OSTI)

    O'Neil, Lori Ross; Assante, Michael; Tobey, D. H.; Conway, T. J.; Vanderhorst, Jr, T. J.; Januszewski, III, J.; Leo, R.; Perman, K.

    2013-07-01T23:59:59.000Z

    This document is a summarization of the report, Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs, the final report for phase 2 of the SPSP (DOE workforce study) project.

  17. Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

    Broader source: Energy.gov [DOE]

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

  18. Fact #834: August 18, 2014 About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #834: About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles

  19. Manufacturing Research & Development for Systems that will

    E-Print Network [OSTI]

    focused on manufacturability issues such as low-cost, high-volume manufacturing systems, advanced to move the United States toward a future hydrogen economy. While many scientific, technical's laboratory-scale fabrication technologies to high-volume commercial manufacturing has been identified as one

  20. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.

    2000-08-16T23:59:59.000Z

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  1. Industrial Plant Objectives and Cogeneration System Development

    E-Print Network [OSTI]

    Kovacik, J. M.

    1983-01-01T23:59:59.000Z

    cogen eration facility. APPLICATION CONSIDERATIONS FOR COGENERATION CYCLES Cogeneration is the term popularly used to describe energy supply systems where turbines gene rate power (kW or hpj while providing thermal energy for use in process areas... HEAT 15% 48% BOILER CONOENSER ASSOC. LOSSES LOSSES FIG. 2 - FUEL UTILIZATION EFFECTIVENESS The three types of topping cogeneration cycles usually encountered in industrial practice are steam turbine, gas turbine, and combined cycles...

  2. Math 115 Excel Group Project 3 Worksheet Price Elasticity of Demand: U.S. Demand for Gasoline

    E-Print Network [OSTI]

    Newberger, Florence

    Math 115 Excel Group Project 3 Worksheet Price Elasticity of Demand: U.S. Demand for Gasoline 1 for Gasoline 2 4. Consider the two price-demand graphs below. The labels give the x-value. Which graph for Gasoline 3 6. Jewelry This quote is from the article "Americans Snap Up Gold Jewelry as Metal's Price Sinks

  3. The Elasticity of Demand for Gasoline in China1 C.-Y. Cynthia Lin, Jieyin (Jean) Zeng

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    understanding of the relationships among gasoline demand, gasoline price and disposable income is important and the Brent crude oil price over the period 1997-2009. Except for 2009, domestic gasoline and diesel prices followed the trends in the Brent crude oil price, though not exactly. Although China's domestic fuel prices

  4. Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve Timing

    E-Print Network [OSTI]

    Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve engine efficiency. Fuel-flexible engines permit the increased use of ethanol-gasoline blends. Ethanol points across the engine operating range for four blends of gasoline and ethanol. I. INTRODUCTION Fuel

  5. Quantitative in-cylinder NO-LIF imaging in a realistic gasoline engine with spray-guided direct injection

    E-Print Network [OSTI]

    Lee, Tonghun

    of engines with gasoline direct injection. Exhaust gas aftertreatment requires storage catalystsQuantitative in-cylinder NO-LIF imaging in a realistic gasoline engine with spray-guided direct fractions in a gasoline engine with spray-guided direct injection using laser-induced fluorescence (LIF

  6. Modernizing systems engineering : cognitive systems and model-based approaches for spacecraft architecture development

    E-Print Network [OSTI]

    Karlow, Brandon (Brandon James)

    2014-01-01T23:59:59.000Z

    Systems engineering exists as a discipline to enable organizations to control and manage the development of complex hardware and software. These methods are particularly essential in the development of space systems, which ...

  7. In-Vivo Storage System Development Noah Watkins1

    E-Print Network [OSTI]

    Maltzahn, Carlos

    In-Vivo Storage System Development Noah Watkins1 , Carlos Maltzahn1 , Scott Brandt1 , Ian Pye3. The emergence of high-performance open-source storage sys- tems is allowing application and middleware developers to consider non- standard storage system interfaces. In contrast to the practice of virtually

  8. Development of Speckle Interferometry Algorithm and System

    SciTech Connect (OSTI)

    Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S. [Engineering Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2011-05-25T23:59:59.000Z

    Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is optically mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.

  9. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31T23:59:59.000Z

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  10. Development of a focused ion beam micromachining system

    SciTech Connect (OSTI)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01T23:59:59.000Z

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  11. Mapping surrogate gasoline compositions into RON/MON space

    SciTech Connect (OSTI)

    Morgan, Neal; Kraft, Markus [Department of Chemical Engineering, University of Cambridge, Cambridge CB2 3RA (United Kingdom); Smallbone, Andrew; Bhave, Amit [Reaction Engineering Solutions Ltd., 61 Canterbury Street, Cambridge CB4 3QG (United Kingdom); Cracknell, Roger; Kalghatgi, Gautam [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

    2010-06-15T23:59:59.000Z

    In this paper, new experimentally determined octane numbers (RON and MON) of blends of a tri-component surrogate consisting of toluene, n-heptane, i-octane (called toluene reference fuel TRF) arranged in an augmented simplex design are used to derive a simple response surface model for the octane number of any arbitrary TRF mixture. The model is second-order in its complexity and is shown to be more accurate to the standard ''linear-by-volume'' (LbV) model which is often used when no other information is available. Such observations are due to the existence of both synergistic and antagonistic blending of the octane numbers between the three components. In particular, antagonistic blending of toluene and iso-octane leads to a maximum in sensitivity that lies on the toluene/iso-octane line. The model equations are inverted so as to map from RON/MON space back into composition space. Enabling one to use two simple formulae to determine, for a given fuel with known RON and MON, the volume fractions of toluene, n-heptane and iso-octane to be blended in order to emulate that fuel. HCCI engine simulations using gasoline with a RON of 98.5 and a MON of 88 were simulated using a TRF fuel, blended according to the derived equations to match the RON and MON. The simulations matched the experimentally obtained pressure profiles well, especially when compared to simulations using only PRF fuels which matched the RON or MON. This suggested that the mapping is accurate and that to emulate a refinery gasoline, it is necessary to match not only the RON but also the MON of the fuel. (author)

  12. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; Thomas, John F [ORNL; Parks, II, James E [ORNL; West, Brian H [ORNL

    2015-01-01T23:59:59.000Z

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  13. Development status of the heatpipe power and bimodal systems

    SciTech Connect (OSTI)

    Poston, David I.; Houts, Michael G. [Nuclear Systems Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] Emrich, William J., Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35738 (United States)

    1999-01-01T23:59:59.000Z

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power ({gt}1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999. {copyright} {ital 1999 American Institute of Physics.}

  14. Development status of the heatpipe power and bimodal systems

    SciTech Connect (OSTI)

    Poston, David I.; Houts, Michael G. [Nuclear Systems Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Emrich, William J. Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35738 (United States)

    1999-01-22T23:59:59.000Z

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.

  15. Agile Development and Dependency Management for Industrial Control Systems

    E-Print Network [OSTI]

    Copy, B

    2011-01-01T23:59:59.000Z

    The production and exploitation of industrial control systems differ substantially from traditional information systems; this is in part due to constraints on the availability and change lifecycle of production systems, as well as their reliance on proprietary protocols and software packages with little support for open development standards [1]. The application of agile software development methods therefore represents a challenge which requires the adoption of existing change and build management tools and approaches that can help bridging the gap and reap the benefits of managed development when dealing with industrial control systems. This paper will consider how agile development tools such as Apache Maven for build management, Hudson for continuous integration or Sonatype Nexus for the operation of "definite media libraries" were leveraged to manage the development lifecyle of the CERN UAB framework [2], as well as other crucial building blocks of the CERN accelerator infrastructure, such as the CERN Co...

  16. ETBE as a gasoline blending component. The experience of Elf Aquitaine

    SciTech Connect (OSTI)

    Chatin, L.; Fombarlet, C.; Bernasconi, C.; Gauthier, A.; Schmelzle, P.

    1994-10-01T23:59:59.000Z

    This study, led by Elf Aquitaine for several years, shows the possibility to use ETBE instead of MTBE as a gasoline component and compares properties of these two ethers regarding different parameters like octanes, volatility, engine cleanliness, stability of the ethers themselves and of gasoline blends, lubricant compatibility and toxicological data. ETBE appears at least as good as MTBE and sometimes better, as ETBE is chemically more similar to hydrocarbons than MTBE and can be used advantageously as a gasoline oxygenated component. 9 refs., 4 figs., 8 tabs.

  17. Determination of a peak benzene exposure to consumers at typical self-service gasoline stations

    E-Print Network [OSTI]

    Carapezza, Ted

    1977-01-01T23:59:59.000Z

    the public exposure to benzene at the self-serv1ce gas pump seems of paramount importance dur1ng this time of the highly publicized benzene hazard and increased gasoline consumption. These factors produced the amtivating effect for th1s research effort wh... Table ~Pa e I. HUMAN INHALATION EXPOSURE TO GASOLINE VAPOR. I I. SELF-SERVICE GASOLINE STATIONS . III. SAMPLING RESULTS IV. FIELD DATA: STATION I V. FIELD DATA: STATION II VI. FIEI D DATA: STATION III. VI I. FIELD DATA: STATION IV . VIII...

  18. Areas Participating in the Oxygenated Gasoline Program (Released in the STEO July 1999)

    Reports and Publications (EIA)

    1999-01-01T23:59:59.000Z

    Section 211(m) of the Clean Air Act (42 U.S.C. 7401-7671q) requires that gasoline containing at least 2.7% oxygen by weight is to be used in the wintertime in those areas of the county that exceed the carbon monoxide National Ambient Air Quality Standards (NAAQS). The winter oxygenated gasoline program applies to all gasoline sold in the larger of the Consolidated Metropolitan Statistical Area (CMSA) or Metropolitan Statistical Area (MSA) in which the nonattainment area is located.

  19. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline pricesGasoline

  20. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline4, 2014 Gasoline

  1. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline4, 2014Gasoline

  2. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline4,gasoline

  3. Thermal and mechanical development of the East African Rift System

    E-Print Network [OSTI]

    Ebinger, Cynthia Joan

    1988-01-01T23:59:59.000Z

    The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

  4. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems David W. Raymond, PI Steven D. Knudsen, Co-PI Sandia National Laboratories ARRA Funded R&D April 22-25, 2013 This...

  5. Development of a composite repair system for reinforcing offshore risers

    E-Print Network [OSTI]

    Alexander, Christopher Richard

    2009-05-15T23:59:59.000Z

    A research program was conducted to investigate the application of composite materials in repairing corroded offshore risers, leading to the development of an optimized repair using a hybrid carbon/E-glass system. The objective of this research...

  6. Development of a robot localization and environment mapping system

    E-Print Network [OSTI]

    Panas, Cynthia Dawn Walker

    2012-01-01T23:59:59.000Z

    The intent of this research is to develop a robust, efficient, self-contained localization module for use in a robotic liquefied petroleum gas (LPG) tank inspection system. Inspecting large LPG tanks for defects is difficult, ...

  7. Development of an advanced nanocalorimetry system for rapid material characterizations

    E-Print Network [OSTI]

    Liu, Yen-Shan

    2007-04-25T23:59:59.000Z

    The development of a versatile system capable of providing rapid, portable, and inexpensive detection of explosives and energetic compounds is needed critically to offer an enhanced level of protection against current and future threats to homeland...

  8. Advanced Turbine Systems Program: Conceptual design and product development

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    Objective is to provide the conceptual design and product development plant for an ultra high efficiency, environmentally superior, and cost competitive industrial gas turbine system to be commercialized by the year 2000 (secondary objective is to begin early development of technologies critical to the success of ATS). This report addresses the remaining 7 of the 9 subtasks in Task 8, Design and Test of Critical Components: catalytic combustion, recuperator, high- temperature turbine disc, advanced control system, and ceramic materials.

  9. Further Developments on the Geothermal System Scoping Model: Preprint

    SciTech Connect (OSTI)

    Antkowiak, M.; Sargent, R.; Geiger, J. W.

    2010-07-01T23:59:59.000Z

    This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

  10. Development of a GIS Based Dust Dispersion Modeling System.

    SciTech Connect (OSTI)

    Rutz, Frederick C.; Hoopes, Bonnie L.; Crandall, Duard W.; Allwine, K Jerry

    2004-08-12T23:59:59.000Z

    With residential areas moving closer to military training sites, the effects upon the environment and neighboring civilians due to dust generated by training exercises has become a growing concern. Under a project supported by the Strategic Environmental Research and Development Program (SERDP) of the Department of Defense, a custom application named DUSTRAN is currently under development that integrates a system of EPA atmospheric dispersion models with the ArcGIS application environment in order to simulate the dust dispersion generated by a planned training maneuver. This integration between modeling system and GIS application allows for the use of real world geospatial data such as terrain, land-use, and domain size as input by the modeling system. Output generated by the modeling system, such as concentration and deposition plumes, can then be displayed upon accurate maps representing the training site. This paper discusses the development of this integration between modeling system and Arc GIS application.

  11. Integrating externally developed systems for SNS Linac cooling and vacuum.

    SciTech Connect (OSTI)

    Marroquin, P. S. (Pilar S.)

    2001-01-01T23:59:59.000Z

    External contractors are developing the local cooling and vacuum control systems for the Spallation Neutron Source (SNS) linac. Soon these systems will be integrated into the facility-wide controls system. Allen-Bradley Logix5000 series programmable controllers, populated with appropriate input/output modules, were selected as the local controllers. These controllers will be interfaced to the facility-wide control system via VME systems with PowerPC processors running the Wind River VxWorks operating system and Experimental Physics and Industrial Control System (EPICS) front-end controller software. This paper describes the interface and integration issues driven by project, cooling system and vacuum system requirements and hardware selections.

  12. Innovation system dynamics and sustainable development Challenges for policy

    E-Print Network [OSTI]

    Innovation system dynamics and sustainable development ­ Challenges for policy Paper in progress Innovation, Sustainability and Policy Conference, 23-25 May 2004 Kloster Seeon, Germany Dr. Maj Munch, while market development perspectives are neglected. The NIS perspective forwarded in this paper has

  13. Development of a Novel Bioreactor System for Treatment of

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    Development of a Novel Bioreactor System for Treatment of Gaseous Benzene Sung-Ho Yeom,1,2 Andrew J 2000 Abstract: A novel, continuous bioreactor system combin- ing a bubble column (absorption section) and a two- phase bioreactor (degradation section) has been de- signed to treat a gas stream containing

  14. Understanding energy technology developments from an innovation system perspective

    E-Print Network [OSTI]

    Understanding energy technology developments from an innovation system perspective Mads Borup1. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells

  15. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Walter, M.Todd

    Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Engineering) W. VA #12;Energy Transitions: A Systems Approach August 2011 version Page 2 Energy Transitions sources globally, some very strong short-term drivers of energy transitions reflect rising concerns over

  16. The Canadian Food System: A Community Development Approach

    E-Print Network [OSTI]

    Fox, Michael

    management, food security, food safety and the regulation of genetically modified foods and pesticidesThe Canadian Food System: A Community Development Approach ERST/CAST 334 H -Fall 2008 Course Description: This interdisciplinary course examines agriculture and the food system in Canada, emphasizing

  17. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01T23:59:59.000Z

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  18. Knock limits in spark ignited direct injected engines using gasoline/ethanol blends

    E-Print Network [OSTI]

    Kasseris, Emmanuel P

    2011-01-01T23:59:59.000Z

    Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

  19. Vehicle Technologies Office Merit Review 2014: Gasoline-Like Fuel Effects on Advanced Combustion Regimes

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about gasoline-like...

  20. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    5.7 5.9 4.4 12.9 NA 17.3 See footnotes at end of table. 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type 18 Energy Information Administration ...