Sample records for gasoline product quality

  1. Ethers help gasoline quality

    SciTech Connect (OSTI)

    Chang, E.J.; Leiby, S.M. (SRI International, Menlo Park, CA (US))

    1992-02-01T23:59:59.000Z

    In this article three scenarios to evaluate the effect of etherification on gasoline production and quality are reviewed: Base case FCC/C{sub 4} alkylation complex - FCC unit operation for maximum gasoline yield, MTBE unit added to base case FCC unit operation and MTBE unit added to maximum olefins FCC unit operation. Details of the FCC, MTBE and C{sub 4} alkylation operations used in this article are reviewed, followed by a discussion of overall results.

  2. Design Case Summary: Production of Gasoline and Diesel from Biomass...

    Energy Savers [EERE]

    Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking Design Case Summary: Production of Gasoline and Diesel from...

  3. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

  4. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24T23:59:59.000Z

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  5. Ethanol Production and Gasoline Prices: A Spurious Correlation

    E-Print Network [OSTI]

    Rothman, Daniel

    Ethanol Production and Gasoline Prices: A Spurious Correlation Christopher R. Knittel and Aaron proponents of ethanol have argued that ethanol production greatly lowers gasoline prices, with one industry group claiming it reduced gasoline prices by 89 cents in 2010 and $1.09 in 2011. The estimates have been

  6. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    associated with the gasoline terminal storage and the smallemissions from the gasoline terminal storage and refuelingGasoline comes to Sacramento via pipeline, is stored in terminals

  7. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gasoline-delivery truck emissions. The current 2005 lightdelivering gasoline. The truck emissions estimated for theto gasoline-delivery truck emissions for each ?eet scenario.

  8. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    associated with the gasoline terminal storage and the smallemissions from the gasoline terminal storage and refuelingstorage Truck distribution Gas station Vehicle operation Fig. 7. Integrated gasoline

  9. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.

    2000-08-16T23:59:59.000Z

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  10. CLEARING THE AIR? THE EFFECTS OF GASOLINE CONTENT REGULATION ON AIR QUALITY

    E-Print Network [OSTI]

    Edwards, Paul N.

    gasoline markets and raise prices paid by consumers. We provide the first comprehensive empirical estimatesCLEARING THE AIR? THE EFFECTS OF GASOLINE CONTENT REGULATION ON AIR QUALITY Maximilian Auffhammer and Ryan Kellogg* January 2009 Abstract This paper examines the effects of U.S. gasoline content

  11. Blender Net Production of Finished Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil

  12. Diesel vs Gasoline Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * SEnergyTemperatureDepartment ofUsevs Gasoline

  13. Comparing Scales of Environmental Effects from Gasoline and Ethanol Production

    SciTech Connect (OSTI)

    Parish, Esther S [ORNL; Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; McBride, Allen [ORNL; Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Hilliard, Michael R [ORNL; Bielicki, Dr Jeffrey M [University of Minnesota

    2013-01-01T23:59:59.000Z

    Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the scales (i.e., spatial extent and temporal duration) of ethanol and gasoline production processes and environmental effects based on a literature review, and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.

  14. Response to "Ethanol Production and Gasoline Prices: A Spurious Correlation" by Knittel and Smith

    E-Print Network [OSTI]

    Rothman, Daniel

    Response to "Ethanol Production and Gasoline Prices: A Spurious Correlation" by Knittel and Smith Beardshear Hall, (515) 294-7612." #12;1 Response to "Ethanol Production and Gasoline Prices: A Spurious Relating Ethanol Production to Gasoline Prices" written by myself and Xiadong Du, and published in 2009

  15. Indirect conversion of coal to methanol and gasoline: product price vs product slate

    SciTech Connect (OSTI)

    Wham, R.M.; McCracken, D.J.; Forrester, R.C. III

    1980-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) conducts process analysis and engineering evaluation studies for the Department of Energy to provide, on a consistent basis, technical and economic assessments of processes and systems for coal conversion and utilization. Such assessments permit better understanding of the relative technical and economic potential of these processes. The objective of the work described here was to provide an assessment of the technical feasibility, economic competitiveness, and environmental acceptability of selected indirect coal liquefaction processes on a uniform, consistent, and impartial basis. Particular emphasis is placed on production of methanol as a principal product or methanol production for conversion to gasoline. Potential uses for the methanol are combustion in peaking-type turbines or blending with gasoline to yield motor fuel. Conversion of methanol to gasoline is accomplished through the use of the Mobil methanol-to-gasoline (MTG) process. Under the guidance of ORNL, Fluor Engineers and Constructors, Houston Division, prepared four conceptual process designs for indirect conversion of a Western subbituminous coal to either methanol or gasoline. The conceptual designs are based on the use of consistent technology for the core of the plant (gasification through methanol synthesis) with additional processing as necessary for production of different liquid products of interest. The bases for the conceptual designs are given. The case designations are: methanol production for turbine-grade fuel; methanol production for gasoline blending; gasoline production with coproduction of SNG; and gasoline production maximized.

  16. Study of Brazilian Gasoline Quality Using Hydrogen Nuclear Magnetic Resonance (1H NMR) Spectroscopy and Chemometrics

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    . The 1H NMR-PCA and 1H NMR-HCA models were evaluated through the analyses of 21 intentionally adulterated concentration. 1. Introduction Gasoline is a petroleum-derived product constituted by a complex mixture gasoline is becoming a common practice because of economic issues. In 2006, 10% from the 24.0 billion L

  17. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    Gasoline and Diesel Fuel Update (EIA)

    table. 56 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  18. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    220 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  19. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) Indexed Site

    table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  20. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  1. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    vs. LH2, assuming the gasoline storage terminals are aboutemissions from the gasoline terminal storage and refuelingstorage Truck distribution Gas station Vehicle operation Figure 37. Integrated gasoline

  2. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    150.0 2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  3. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    253.2 2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  4. Long Term Processing Using Integrated Hydropyrolysis plus Hydroconversion (IH2) for the Production of Gasoline and Diesel from Biomass

    SciTech Connect (OSTI)

    Marker, Terry [Gas Technology Institute; Roberts, Michael [Gas Technology Institute; Linck, Martin [Gas Technology Institute; Felix, Larry [Gas Technology Institute; Ortiz-Toral, Pedro [Gas Technology Institute; Wangerow, Jim [Gas Technology Institute; McLeod, Celeste [CRI Catalyst; Del Paggio, Alan [CRI Catalyst; Gephart, John [Johnson Timber; Starr, Jack [Cargill; Hahn, John [Cargill

    2013-06-09T23:59:59.000Z

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of a new, economical, technology named integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The life cycle analysis (LCA) shows that the use of the IH2 process to convert wood to gasoline and diesel results in a greater than 90% reduction in greenhouse gas emission compared to that found with fossil derived fuels. The technoeconomic analysis showed the conversion of wood using the IH2 process can produce gasoline and diesel at less than $2.00/gallon. In this project, the previously reported semi-continuous small scale IH2 test results were confirmed in a continuous 50 kg/day pilot plant. The continuous IH2 pilot plant used in this project was operated round the clock for over 750 hours and showed good pilot plant operability while consistently producing 26-28 wt % yields of high quality gasoline and diesel product. The IH2 catalyst showed good stability, although more work on catalyst stability is recommended. Additional work is needed to commercialize the IH2 technology including running large particle size biomass, modeling the hydropyrolysis step, studying the effects of process variables and building and operating a 1-50 ton/day demonstration scale plant. The IH2 is a true game changing technology by utilizing U.S. domestic renewable biomass resources to create transportation fuels, sufficient in quantity and quality to substantially reduce our reliance on foreign crude oil. Thus, the IH2 technology offers a path to genuine energy independence for the U. S., along with the creation of a significant number of new U.S. jobs to plant, grow, harvest, and process biomass crops into fungible fuels.

  5. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    Gasoline and Diesel Fuel Update (EIA)

    82.4 77.1 68.9 62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information...

  6. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    production and gaseous hydrogen pipeline delivery systems (ratios relative to the hydrogen pipeline pathway Pollutantvia SMR with gaseous hydrogen pipeline delivery, and central

  7. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    emissions from the gasoline terminal storage and refuelingLH2, assuming the gasoline storage terminals are about asGasoline comes to Sacramento via pipeline, stored in terminals

  8. NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. To produce these products, Margaret purchases crude oil at a price of £11 per barrel. Each day to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

  9. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    pathway are due to diesel truck emissions resulting from thelike gasoline-delivery truck emissions. As gasoline vehiclepollutants. Recall the truck emissions estimated for the LH2

  10. Gasoline Biodesulfurization Fact Sheet

    Broader source: Energy.gov [DOE]

    This petroleum industry fact sheet describes how biodesulfurization can yield lower sulfur gasoline at lower production costs.

  11. Polygeneration Integration of Gasoline Synthesis and IGCC Power Production Using

    E-Print Network [OSTI]

    of chemical plants are being built using coal and petcoke as feedstock. Power production is another efficiencies higher than what can be obtained in conventional coal fired power plants. However, the IGCC production. In an Integrated Gasification Combined Cycle (IGCC) plant, power is produced by burning synthesis

  12. Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality

    E-Print Network [OSTI]

    Auffhammer, Maximilian; Kellogg, Ryan

    2009-01-01T23:59:59.000Z

    gasoline distribution stations. Refiners and wholesale terminalsgasoline distribution stations. Refiners and wholesale terminalsgasoline stations and May 1 – September 15 for refiners and wholesale distribution terminals.

  13. Gasoline accounts for about half the U.S. consumption of petroleum products, and its

    E-Print Network [OSTI]

    . Many claim to observe an asymmetric relationship between gasoline and oil prices -- specifically different model Crude Oil and Gasoline Prices: An Asymmetric Relationship? Nathan S. Balke Research relationship between gasoline and oil prices...that gasoline prices respond more quickly when oil prices

  14. NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel.5 for heating oil. To produce these products, Margaret can purchase two types of crude oil: crude 1 (at £12 per Jet fuel Heating oil Minimum octane 8.5 7 4.5 Price (£) 18 16 14 Minimum production 2500 3000 3500

  15. Energy and crude oil input requirements for the production of reformulated gasolines

    SciTech Connect (OSTI)

    Singh, M. [Argonne National Lab., Washington, DC (United States); McNutt, B. [USDOE, Washington, DC (United States)

    1993-11-01T23:59:59.000Z

    The energy and crude oil requirements for the production of reformulated gasolines (RFG) are estimated. Both the energy and crude oil embodied in the final product and the process energy required to manufacture the RFG and its components are included. The effects on energy and crude oil use of using various oxygenates to meet the minimum oxygen content level required by the Clean Air Act Amendments are evaluated. The analysis illustrates that production of RFG requires more total energy than that of conventional gasoline but uses less crude oil. The energy and crude oil use requirements of the different RFGs vary considerably. For the same emissions performance level, RFG with ethanol requires substantially more total energy and crude oil than RFG with MTBE or ETBE. A specific proposal by the EPA designed to allow the use of ethanol in RFG would increase the total energy required to produce RFG by 2% and the total crude oil required by 2.0 to 2.5% over that for the base RFG with MTBE.

  16. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25T23:59:59.000Z

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

  17. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28T23:59:59.000Z

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

  18. Gasoline marketing

    SciTech Connect (OSTI)

    Metzenbaum, H.M.

    1991-02-01T23:59:59.000Z

    Consumers have the option of purchasing several different grades of unleaded gasoline regular, mid-grade, and premium which are classified according to an octane rating. Because of concern that consumers may be needlessly buying higher priced premium unleaded gasoline for their automobiles when regular unleaded gasoline would meet their needs, this paper determines whether consumers were buying premium gasoline that they may not need, whether the higher retail price of premium gasoline includes a price mark-up added between the refinery and the retail pump which is greater than that included in the retail price for regular gasoline, and possible reasons for the price differences between premium and regular gasoline.

  19. Process for conversion of lignin to reformulated hydrocarbon gasoline

    DOE Patents [OSTI]

    Shabtai, Joseph S. (Salt Lake City, UT); Zmierczak, Wlodzimierz W. (Salt Lake City, UT); Chornet, Esteban (Golden, CO)

    1999-09-28T23:59:59.000Z

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  20. TRITIUM PERMEATION AND TRANSPORT IN THE GASOLINE PRODUCTION SYSTEM COUPLED WITH HIGH TEMPERATURE GAS-COOLED REACTORS (HTGRS)

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2011-05-01T23:59:59.000Z

    This paper describes scoping analyses on tritium behaviors in the HTGR-integrated gasoline production system, which is based on a methanol-to-gasoline (MTG) plant. In this system, the HTGR transfers heat and electricity to the MTG system. This system was analyzed using the TPAC code, which was recently developed by Idaho National Laboratory. The global sensitivity analyses were performed to understand and characterize tritium behaviors in the coupled HTGR/MTG system. This Monte Carlo based random sampling method was used to evaluate maximum 17,408 numbers of samples with different input values. According to the analyses, the average tritium concentration in the product gasoline is about 3.05×10-3 Bq/cm3, and 62 % cases are within the tritium effluent limit (= 3.7x10-3 Bq/cm3[STP]). About 0.19% of released tritium is finally transported from the core to the gasoline product through permeations. This study also identified that the following four parameters are important concerning tritium behaviors in the HTGR/MTG system: (1) tritium source, (2) wall thickness of process heat exchanger, (3) operating temperature, and (4) tritium permeation coefficient of process heat exchanger. These four parameters contribute about 95 % of the total output uncertainties. This study strongly recommends focusing our future research on these four parameters to improve modeling accuracy and to mitigate tritium permeation into the gasol ine product. If the permeation barrier is included in the future study, the tritium concentration will be significantly reduced.

  1. Consumptive water use in the production of ethanonl and petroleum gasoline.

    SciTech Connect (OSTI)

    Wu, M.; Mintz, M.; Wang, M.; Arora, S.; Energy Systems

    2009-01-30T23:59:59.000Z

    The production of energy feedstocks and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass, and agricultural residues need water for growth and conversion to ethanol, but petroleum feedstocks like crude oil and oil sands also require large volumes of water for drilling, extraction, and conversion into petroleum products. Moreover, in many cases, crude oil production is increasingly water dependent. Competing uses strain available water resources and raise the specter of resource depletion and environmental degradation. Water management has become a key feature of existing projects and a potential issue in new ones. This report examines the growing issue of water use in energy production by characterizing current consumptive water use in liquid fuel production. As used throughout this report, 'consumptive water use' is the sum total of water input less water output that is recycled and reused for the process. The estimate applies to surface and groundwater sources for irrigation but does not include precipitation. Water requirements are evaluated for five fuel pathways: bioethanol from corn, ethanol from cellulosic feedstocks, gasoline from Canadian oil sands, Saudi Arabian crude, and U.S. conventional crude from onshore wells. Regional variations and historic trends are noted, as are opportunities to reduce water use.

  2. Use TAME and heavier ethers to improve gasoline properties

    SciTech Connect (OSTI)

    Ignatius, J.; Jaervelin, H.; Lindqvist, P. (Neste Engineering, Porvoo (Finland))

    1995-02-01T23:59:59.000Z

    Producing oxygenates from all potential FCC tertiary olefins is one of the most economic methods for reducing olefins and Reid vapor pressure (Rvp) in motor gasoline. MTBE production based on FCC isobutylene has reached a very high level. But the amount of MTBE from a refinery sidestream MTBE unit is insufficient for producing reformulated gasoline (RFG) and additional oxygenates must be purchased. The next phase will see conversion of isoamylenes in FCC light gasoline to TAME. Very little attention has been given to the heavier tertiary olefins present in the FCC light gasoline like tert-hexenes and heptenes. This route allows higher levels of oxygenates production, thereby lowering Rvp and the proportion of olefins in the gasoline pool and maximizing the use of FCC olefins. By using all the components produced by an FCC efficiently, many gasoline problems can be solved. Isobutene is converted to MTBE, C[sub 3]/C[sub 4] olefins are converted to alkylate and C[sub 5] tertiary olefins can be converted to TAME. All of these are preferred components for gasoline quality. By producing more oxygenates like MTBE, TAME and heavier ethers, a refinery can be self-sufficient in blending reformulated gasoline and no oxygenates need to be purchased. The technology for producing TAME and other ethers is described.

  3. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    SMR production with gaseous hydrogen pipeline delivery, andhydrogen: gaseous hydrogen pipeline vs. liquid hydrogenproduction with gaseous hydrogen pipeline delivery systems;

  4. Raman Scattering Sensor for Control of the Acid Alkylation Process in Gasoline Production

    SciTech Connect (OSTI)

    Uibel, Rory, H.; Smith, Lee M.; Benner, Robert, E.

    2006-04-19T23:59:59.000Z

    Gasoline refineries utilize a process called acid alkylation to increase the octane rating of blended gasoline, and this is the single most expensive process in the refinery. For process efficiency and safety reasons, the sulfuric acid can only be used while it is in the concentration range of 98 to 86 %. The conventional technique to monitor the acid concentration is time consuming and is typically conducted only a few times per day. This results in running higher acid concentrations than they would like to ensure that the process proceeds uninterrupted. Maintaining an excessively high acid concentration costs the refineries millions of dollars each year. Using SBIR funding, Process Instruments Inc. has developed an inline sensor for real time monitoring of acid concentrations in gasoline refinery alkylation units. Real time data was then collected over time from the instrument and its responses were matched up with the laboratory analysis. A model was then developed to correlate the laboratory acid values to the Raman signal that is transmitted back to the instrument from the process stream. The instrument was then used to demonstrate that it could create real-time predictions of the acid concentrations. The results from this test showed that the instrument could accurately predict the acid concentrations to within ~0.15% acid strength, and this level of prediction proved to be similar or better then the laboratory analysis. By utilizing a sensor for process monitoring the most economic acid concentrations can be maintained. A single smaller refinery (50,000 barrels/day) estimates that they should save over $120,000/year, with larger refineries saving considerably more.

  5. Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D *Department ofDescriptiveGasoline and

  6. Electric car Gasoline car

    E-Print Network [OSTI]

    ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preferences. · Identification of population segments with a strong interest for electric cars. · Forecasting

  7. Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.

    2000-08-01T23:59:59.000Z

    The Energy Policy Act of 1992 (the Act) outlined a national energy strategy that called for reducing the nation's dependency on petroleum imports. The Act directed the Secretary of Energy to establish a program to promote and expand the use of renewable fuels. The Office of Transportation Technologies (OTT) within the U.S. Department of Energy (DOE) has evaluated a wide range of potential fuels and has concluded that cellulosic ethanol is one of the most promising near-term prospects. Ethanol is widely recognized as a clean fuel that helps reduce emissions of toxic air pollutants. Furthermore, cellulosic ethanol produces less greenhouse gas emissions than gasoline or any of the other alternative transportation fuels being considered by DOE.

  8. With Mathematica Gasoline Inventory

    E-Print Network [OSTI]

    Reiter, Clifford A.

    with the delivery and storage of the gasoline and we desire not to run out of gasoline or exceed the stationPreprint 1 With Mathematica and J: Gasoline Inventory Simulation Cliff Reiter Computational for the number of gallons of gasoline sold by a station for a thousand weeks. The pattern involves demands

  9. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01T23:59:59.000Z

    for Modern Lighting Product Quality Assurance for Off-GridLighting Africa Product Quality Assurance Workshop AirlieLighting Initiative Quality Certification Institute United

  10. Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices

    E-Print Network [OSTI]

    Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

    2007-01-01T23:59:59.000Z

    Regulation and Arbitrage in Wholesale Gasoline Markets,Content Regulation and Wholesale Gasoline Prices JenniferCONTENT REGULATION AND WHOLESALE GASOLINE PRICES by Jennifer

  11. Process for conversion of lignin to reformulated, partially oxygenated gasoline

    DOE Patents [OSTI]

    Shabtai, Joseph S. (Salt Lake City, UT); Zmierczak, Wlodzimierz W. (Salt Lake City, UT); Chornet, Esteban (Golden, CO)

    2001-01-09T23:59:59.000Z

    A high-yield process for converting lignin into reformulated, partially oxygenated gasoline compositions of high quality is provided. The process is a two-stage catalytic reaction process that produces a reformulated, partially oxygenated gasoline product with a controlled amount of aromatics. In the first stage of the process, a lignin feed material is subjected to a base-catalyzed depolymerization reaction, followed by a selective hydrocracking reaction which utilizes a superacid catalyst to produce a high oxygen-content depolymerized lignin product mainly composed of alkylated phenols, alkylated alkoxyphenols, and alkylbenzenes. In the second stage of the process, the depolymerized lignin product is subjected to an exhaustive etherification reaction, optionally followed by a partial ring hydrogenation reaction, to produce a reformulated, partially oxygenated/etherified gasoline product, which includes a mixture of substituted phenyl/methyl ethers, cycloalkyl methyl ethers, C.sub.7 -C.sub.10 alkylbenzenes, C.sub.6 -C.sub.10 branched and multibranched paraffins, and alkylated and polyalkylated cycloalkanes.

  12. RESEARCH ARTICLE Carbon quantity defines productivity while its quality defines

    E-Print Network [OSTI]

    Vincent, Warwick F.

    RESEARCH ARTICLE Carbon quantity defines productivity while its quality defines community that dissolved organic carbon (DOC) quantity and quality differently influence bacterioplankton. The ponds were production, abundance, biomass were highest in mid-summer and correlated positively with the concentration

  13. Tenneco upgrades natural gasoline

    SciTech Connect (OSTI)

    O'Gorman, E.K.

    1986-08-01T23:59:59.000Z

    Tenneco Oil Co. recently completed a natural gasoline upgrading project at its LaPorte, Tex., facility. The project was started in October 1985. The purpose was to fractionate natural gasoline and isomerize the n-pentane component. Three factors made this a particularly attractive project for the LaPorte complex: 1. The phase down of lead in gasoline made further processing of natural gasoline desirable. 2. Idle equipment and trained personnel were available at the plant as a result of a switch of Tenneco's natural gas liquids (NGL) fractionation to its Mont Belvieu, Tex., facility. 3. The plant interconnects with Houston's local markets. It has pipelines to Mont Belvieu, Texas City, and plants along the Houston Ship Channel, as well as truck, tank car, and barge-loading facilities. Here are the details on the operation of the facilities, the changes which were required to enable the plant to operate successfully, and how this conversion was completed in a timely fashion.

  14. Gasoline Jet Fuels

    E-Print Network [OSTI]

    Kemner, Ken

    C4n= Diesel Gasoline Jet Fuels C O C5: Xylose C6 into fuels. IACT is examining these key reactions to understand the fundamental chemistry and to provide

  15. MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)

    Reports and Publications (EIA)

    1999-01-01T23:59:59.000Z

    The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

  16. Motor gasolines, winter 1981-1982

    SciTech Connect (OSTI)

    Shelton, E M

    1982-07-01T23:59:59.000Z

    Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

  17. The potential for low petroleum gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.; Webb, G.M.; Clauson, M.

    1996-06-01T23:59:59.000Z

    The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

  18. Gasoline price data systems

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    Timely observation on prices of gasoline at the wholesale and retail level by geographical area can serve several purposes: (1) to facilitate the monitoring of compliance with controls on distributor margins; (2) to indicate changes in the competitive structure of the distribution system; (3) to measure the incidence of changes in crude oil and refiner costs on retail prices by grade of gasoline, by type of retail outlet, and by geographic area; (4) to identify anomalies in the retail pricing structure that may create incentives for misfueling; and (5) to provide detailed time series data for use in evaluating conservation response to price changes. In order to provide the needed data for these purposes, the following detail on gasoline prices and characteristics of the sampling procedure appear to be appropriate: (1) monthly sample observations on wholesale and retail prices by gasoline grade and type of wholesale or retail dealer, together with volume weights; (2) sample size sufficient to provide detail by state and large cities; (3) responses to be tabulated and reports provided within 30 days after date of observation; and (4) a quick response sampling procedure that can provide weekly data, at least at the national level, when needed in time of rapidly changing prices. Price detail by state is suggested due to its significance for administrative purposes and since gasoline consumption data are estimated by state from other sources. Price detail for large cities are suggested in view of their relevancy as problem areas for vehicle emissions, reflecting one of the analytical uses of the data. In this report, current reporting systems and data on gasoline prices are reviewed and evaluated in terms of the needs outlined above. Recommendations are made for ways to fill the gaps in existing data systems to meet these needs.

  19. Qualities That Define a Well-Designed Product

    E-Print Network [OSTI]

    Pirics, Marjorie

    2011-08-08T23:59:59.000Z

    The primary objective of this research is to identify the defining characteristics of “good design” as applied to Industrial Design and to determine what specific qualities it possesses. I assessed what qualities in a product serve as attractors...

  20. analyzing product quality: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: on "Management & Use of Coal Combustion Products (CCPS)" held in San Antonio, TX, January 2001. Department are appropriate for manufacture of high-quality,...

  1. Reformulated gasoline: Costs and refinery impacts

    SciTech Connect (OSTI)

    Hadder, G.R.

    1994-02-01T23:59:59.000Z

    Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region.

  2. Quality and Quantity Modeling of a Production Line

    E-Print Network [OSTI]

    Kim, Jongyoon

    During the past three decades, the success of the Toyota Production System has spurred research in the area of manufacturing systems engineering. Two research fields, productivity and quality, have been extensively studied ...

  3. Motor gasoline assessment, Spring 1997

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

  4. EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

  5. Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices

    E-Print Network [OSTI]

    Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

    2007-01-01T23:59:59.000Z

    are added to gasoline at the terminal. Therefore, gasolinegasoline from one market and shipping it to another. These firms may own terminals

  6. Finished Motor Gasoline Net Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)Second QuarterThe

  7. Product Supplied for Finished Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0 167,905.6 173,210.44,1159,600

  8. Assessment of Summer 1997 motor gasoline price increase

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    Gasoline markets in 1996 and 1997 provided several spectacular examples of petroleum market dynamics. The first occurred in spring 1996, when tight markets, following a long winter of high demand, resulted in rising crude oil prices just when gasoline prices exhibit their normal spring rise ahead of the summer driving season. Rising crude oil prices again pushed gasoline prices up at the end of 1996, but a warm winter and growing supplies weakened world crude oil markets, pushing down crude oil and gasoline prices during spring 1997. The 1996 and 1997 spring markets provided good examples of how crude oil prices can move gasoline prices both up and down, regardless of the state of the gasoline market in the United States. Both of these spring events were covered in prior Energy Information Administration (EIA) reports. As the summer of 1997 was coming to a close, consumers experienced yet another surge in gasoline prices. Unlike the previous increase in spring 1996, crude oil was not a factor. The late summer 1997 price increase was brought about by the supply/demand fundamentals in the gasoline markets, rather than the crude oil markets. The nature of the summer 1997 gasoline price increase raised questions regarding production and imports. Given very strong demand in July and August, the seemingly limited supply response required examination. In addition, the price increase that occurred on the West Coast during late summer exhibited behavior different than the increase east of the Rocky Mountains. Thus, the Petroleum Administration for Defense District (PADD) 5 region needed additional analysis (Appendix A). This report is a study of this late summer gasoline market and some of the important issues surrounding that event.

  9. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Ban-Weiss, George A.

    2009-01-01T23:59:59.000Z

    losses when sampling diesel aerosol: A quality assurancefrom on-road gasoline and diesel vehicles. AtmosphericSource apportionment of diesel and spark ignition exhaust

  10. Variable-Rate State Gasoline Taxes

    E-Print Network [OSTI]

    Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

    1999-01-01T23:59:59.000Z

    1986, the average retail gasoline price dropped from $1.17Figure 4 Average US Retail Gasoline Price (excluding taxes)of the average retail price of gasoline, with a 4.0 cent per

  11. Tools for Integrating Energy, Materials Productivity, and Quality Efforts 

    E-Print Network [OSTI]

    Roothaan, E. S.

    1999-01-01T23:59:59.000Z

    is being formed that includes the Texas Natural Resource Conservation Commission (environment), the Industrial Assessment Center (energy), and the Texas Manufacturing Assistance Centers (productivity and quality). This assistance network is helping...

  12. QUAUTE DES PRODUITS — QUALITY OF PRODUCTS Processing ability of pork products

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    QUAUTE DES PRODUITS — QUALITY OF PRODUCTS Processing ability of pork products B. JACQUET-de-Gaulle, 94700 Maisons-Alfort The first part is devoted to the economics of pig meat products as well in terms of national consumption as in terms of production of fresh, processed and cured products, canned meat

  13. CREATING THE NORTHEAST GASOLINE SUPPLY RESERVE

    Broader source: Energy.gov [DOE]

    In 2012, Superstorm Sandy made landfall in the northeastern United States and caused heavy damage to two refineries and left more than 40 terminals in New York Harbor closed due to water damage and loss of power. This left some New York gas stations without fuel for as long as 30 days. As part of the Obama Administration’s ongoing response to the storm, the Department of Energy created the first federal regional refined product reserve, the Northeast Gasoline Supply Reserve.

  14. Variable-Rate State Gasoline Taxes

    E-Print Network [OSTI]

    Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

    2000-01-01T23:59:59.000Z

    1986, the average retail gasoline price dropped from $I 17of the average retail price of gasoline, with a 4 oe per

  15. Underground coal gasification product quality parameters

    SciTech Connect (OSTI)

    Bruggink, P.R.; Davis, B.E.

    1981-01-01T23:59:59.000Z

    A simplified model is described which will indicate the economic value of the raw product gas from an experimental underground coal gasification test on a real-time basis in order to aid in the optimization of the process during the course of the test. The model relates the properties of the product gas and the injection gas to the cost of producing each of five potential commercial products. This model was utilized to evaluate data during the Gulf-DOE underground coal gasification test at Rawlins, Wyoming in the fall of 1981. 6 refs.

  16. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM); Anthony, Brian W. (Clearfield, PA)

    1997-01-01T23:59:59.000Z

    A method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries.

  17. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOE Patents [OSTI]

    Sinha, D.N.; Anthony, B.W.

    1997-02-25T23:59:59.000Z

    A method is described for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries. 3 figs.

  18. Oligomerize for better gasoline

    SciTech Connect (OSTI)

    Nierlich, F. (Huls AG, Marl (DE))

    1992-02-01T23:59:59.000Z

    This paper reports on normal butene containing isobutene-depleted C{sub 4} hydrocarbons like raffinate II which are oligomerized using the Octol process in the liquid phase on a heterogeneous catalyst system to yield mainly C{sub 8} and C{sub 12} olefins. Raffinate II, the spent C{sub 4} fraction of an MTBE unit, is an ideal feedstock for further n-butene processing because of its high olefin concentration ranging between 70% and 80%. By modifications of MTBE technology, implementation of selective hydrogenation for removal of residual butadiene and superfractionating raffinate II, polymer grade 1-butene can be produced. Until the mid-70s raffinate I, the team cracker C{sub 4} cut after butadiene extraction, was mainly burned or blended into gasoline. Now nearly all raffinate I is or will be consumed for the purpose of converting isobutylene to MTBE.

  19. AVLIS Production Plant Preliminary Quality Assurance Plan and Assessment

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    This preliminary Quality Assurance Plan and Assessment establishes the Quality Assurance requirements for the AVLIS Production Plant Project. The Quality Assurance Plan defines the management approach, organization, interfaces, and controls that will be used in order to provide adequate confidence that the AVLIS Production Plant design, procurement, construction, fabrication, installation, start-up, and operation are accomplished within established goals and objectives. The Quality Assurance Program defined in this document includes a system for assessing those elements of the project whose failure would have a significant impact on safety, environment, schedule, cost, or overall plant objectives. As elements of the project are assessed, classifications are provided to establish and assure that special actions are defined which will eliminate or reduce the probability of occurrence or control the consequences of failure. 8 figures, 18 tables.

  20. Product Quality Assurance for Off-Grid Lighting in Africa

    SciTech Connect (OSTI)

    World Bank; Mills, Evan; Mills, Evan

    2008-07-13T23:59:59.000Z

    Although the emergence of markets for high efficiency off-grid lighting technologies holds promise, realizing the potential of this opportunity on a long-term, sustainable basis requires careful attention to issues of product quality, consumer protection, and the potential for significant 'market spoiling', in anticipation of increases of sales of low cost, low performance off-grid lighting products. The goal of the Lighting Africa quality assurance workshop was to articulate strategies to mitigate the dangers of market spoiling and to explore ways to protect consumers from misleading advertising for sales of inferior, off-grid lighting products in the context of Lighting Africa's overarching objective to support the industry in developing a robust off-grid lighting market in Africa. The workshop resulted in the identification of two strategic approaches for meeting Lighting Africa quality assurance programmatic needs. The first strategy is intended to meet a short-term programmatic need for quality associated with requests for lighting products by bulk procurement agents, such as in a World Bank-financed project. The development of procurement specifications and test procedures that could be used in a quality/usability screening method in order to provide guidance for forthcoming large volume purchases emerged as the best solution to meet this need. Such approaches are used in World Bank-financed solar home systems (SHSs) projects in Bangladesh, Sri Lanka, and China, among others. However, unlike the SHSs which have multiple balance-of-system (BOS) components warranting the need for an array of specifications for individual components, stand alone lighting systems require specifications that are amenable to individual light points. To test this approach, Lighting Africa elected to use the technical specifications issued by the Photovoltaic Global Approval Program for solar lanterns that use CFL bulbs (PVRS11A) as the basis of qualifying such products. A contract has been competitively awarded to the Global Approval Program for Photovoltaics (PV GAP) under the Lighting Africa Program to select and test ten solar lantern product models. Lantern selection will be determined based on a number of criteria, among them, the ability to provide a daily duty cycle of at least 3 hours of light, the number of days of autonomy of battery, the volume of sales (especially in Africa), and whether or not the manufacturing facility is ISO 9000 certified. Those that are confirmed as meeting the specifications may be eligible to receive a PVGAP quality seal. The work is being carried out in partnership with the Photovoltaic and Wind Quality Test Center in Beijing, China and TUV Rhineland in Koeln, Germany. As off-grid LED-based stand-alone lighting products is in a nascent stage of development compared to CFL-based lanterns, Lighting Africa will support the development of a 'Quality Screening' approach to selecting LED lighting, in order not to delay consumers benefiting from such advances. The screening methodology could be used by procurement agencies to qualify LED lighting products for bulk or programmatic procurements. The main elements of this work comprises of developing a procurement specification and test procedure for undertaking a 'quick' quality/usability screening to be used for procuring LED lights and to test up to 30 LED-based lights to screen products that meet the requirement. The second strategy is intended to meet a longer-term need associated with creating a self-sustaining product quality assurance program that will effectively protect the African consumer, prevent significant market spoiling, adapt with expected technological advancements over the long-term--in other words, give consumers the ability to detect quality products and the information needed to find products that meet their specific needs from among the myriad of lighting products that become available commercially. Workshop discussions and the discussions evolving from the workshop led the Lighting Africa team to opt for an approach similar to that of th

  1. Dispatching Demand ResponseTransit Service: Maximizing Productivity and Service Quality Guidebook

    E-Print Network [OSTI]

    Dispatching Demand ResponseTransit Service: Maximizing Productivity and Service Quality Guidebook and Subtitle Dispatching Demand Response Transit Service Maximizing Productivity and Service Quality Guidebook while maintaining service quality. Researchers collected data from 42 demand response rural and small

  2. Gasoline price spikes and regional gasoline context regulations : a structural approach

    E-Print Network [OSTI]

    Muehlegger, Erich J.

    2004-01-01T23:59:59.000Z

    Since 1999, gasoline prices in California, Illinois and Wisconsin have spiked occasionally well above gasoline prices in nearby states. In May and June 2000, for example, gasoline prices in Chicago rose twenty eight cents ...

  3. Edgeworth Price Cycles: Evidence from the Toronto Retail Gasoline Market

    E-Print Network [OSTI]

    Noel, Michael

    2004-01-01T23:59:59.000Z

    Johnson. “Gas Wars: Retail Gasoline Price Fluctua- tions”,Canadian cities, retail gasoline prices are very volatileset of twelve-hourly retail gasoline prices for 22 service

  4. Retail Policies and Competition in the Gasoline Industry

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, Jim

    2005-01-01T23:59:59.000Z

    wholesale gasoline prices and retail prices. It includes theTable 4 - Gasoline Price Components Year Retail Price TaxesSupply Lower Retail Gasoline Prices? ” Contemporary Economic

  5. Essays on Automotive Lending, Gasoline Prices, & Automotive Demand

    E-Print Network [OSTI]

    Schulz-Mahlendorf, Wilko Ziggy

    2013-01-01T23:59:59.000Z

    National average retail gasoline prices peaked at over $so that average retail gasoline prices can be employed. Myrapid run-up in retail gasoline prices in recent history.

  6. Revisiting the Income Effect: Gasoline Prices and Grocery Purchases

    E-Print Network [OSTI]

    Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

    2008-01-01T23:59:59.000Z

    Sold On Sale and Retail Gasoline Prices Log % Purchased Onhigher gasoline prices into retail prices, by investigatingexcluding California average retail gasoline price for all

  7. State Gasoline Taxes

    E-Print Network [OSTI]

    Learned, Edmund Philip

    1925-03-15T23:59:59.000Z

    products in the present and should attempt to save a part of the supply for the future. The important part of the oil product is the lubricants which constitute about five per cent of the refined product. Lubricating oils can be se cured from oil shales...

  8. [98e]-Catalytic reforming of gasoline and diesel fuel

    SciTech Connect (OSTI)

    Pereira, C.; Wilkenhoener, R.; Ahmed, S.; Krumpelt, M.

    2000-02-29T23:59:59.000Z

    Argonne National Laboratory is developing a fuel processor for converting liquid hydrocarbon fuels to a hydrogen-rich product suitable for a polymer electrolyte fuel cell stack. The processor uses an autothermal reformer to convert the feed to a mixture of hydrogen, carbon dioxide, carbon monoxide and water with trace quantities of other components. The carbon monoxide in the product gas is then converted to carbon dioxide in water-gas shift and preferential oxidation reactors. Fuels that have been tested include standard and low-sulfur gasoline and diesel fuel, and Fischer-Tropsch fuels. Iso-octane and n-hexadecane were also examined as surrogates for gasoline and diesel, respectively. Complete conversion of gasoline was achieved at 750 C in a microreactor over a novel catalyst developed at Argonne. Diesel fuel was completely converted at 850 C over this same catalyst. Product streams contained greater than 60% hydrogen on a dry, nitrogen-free basis with iso-octane, gasoline, and n-hexadecane. For a diesel fuel, product streams contained >50% hydrogen on a dry, nitrogen-free basis. The catalyst activity did not significantly decrease over >16 hours operation with the diesel fuel feed. Coke formation was not observed. The carbon monoxide fraction of the product gas could be reduced to as low as 1% on a dry, nitrogen-free basis when the water-gas shift reactors were used in tandem with the reformer.

  9. Gasoline prices decrease (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasolineShort

  10. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014 Gasoline prices

  11. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014 Gasoline

  12. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline prices

  13. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline

  14. Increasing Gas Prices: Good Economics, but Bad Public Relations Rising gasoline prices captured the attention of the press and politicians in recent months,

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Increasing Gas Prices: Good Economics, but Bad Public Relations Rising gasoline prices captured interest during our current gasoline shortage. That is, a higher price rations the product to the best use for temporarily foregoing the state gasoline tax. Will that lower gas prices? No. Gas prices rose not because

  15. Emissions Control for Lean Gasoline Engines

    Broader source: Energy.gov (indexed) [DOE]

    Reduction Lean Gasoline SI Direct Injection Engine + TWC + LNT + SCR NH 3 LNT NH 3 Optimization HC Slip Control Lean Gasoline SI Direct Injection Engine + TWC + SCR NH 3 TWC NH 3...

  16. Household gasoline demand in the United States

    E-Print Network [OSTI]

    Schmalensee, Richard

    1995-01-01T23:59:59.000Z

    Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

  17. Incidence of Federal and State Gasoline Taxes

    E-Print Network [OSTI]

    Chouinard, Hayley; Perloff, Jeffrey M.

    2003-01-01T23:59:59.000Z

    valorem taxes to the retail gasoline price. These ad valoremwholesale and retail, unleaded gasoline price equations. Wegasoline, Journal of Economic Issues 9, 409-414. Table 1: Retail and Wholesale Reduced-Form Price

  18. Retail Policies and Competition in the Gasoline Industry

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, Jim

    2005-01-01T23:59:59.000Z

    receive their gasoline at wholesale terminals, or racks, andterminal and, even though the costs of delivering gasoline

  19. Motor Gasoline Outlook and State MTBE Bans

    Reports and Publications (EIA)

    2003-01-01T23:59:59.000Z

    The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

  20. Market Power in California's Gasoline Market

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, James; Lewis, Matthew

    2004-01-01T23:59:59.000Z

    gasoline and blendstocks in California at large refineries (24 MM bbl) and terminals (gasoline storage capacity is controlled by a relatively small number of firms such as terminalterminals and is therefore under the control of the same firms that produce gasoline.

  1. Areas Participating in the Oxygenated Gasoline Program (Released in the STEO July 1999)

    Reports and Publications (EIA)

    1999-01-01T23:59:59.000Z

    Section 211(m) of the Clean Air Act (42 U.S.C. 7401-7671q) requires that gasoline containing at least 2.7% oxygen by weight is to be used in the wintertime in those areas of the county that exceed the carbon monoxide National Ambient Air Quality Standards (NAAQS). The winter oxygenated gasoline program applies to all gasoline sold in the larger of the Consolidated Metropolitan Statistical Area (CMSA) or Metropolitan Statistical Area (MSA) in which the nonattainment area is located.

  2. Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

    2013-01-02T23:59:59.000Z

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  3. Approaches to Demonstrating Bankability and Differentiating Product Quality (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2014-07-01T23:59:59.000Z

    As the PV Industry has matured, there is increasing interest in quantifying higher quality so that customers may select products that meet their needs, and investors are demanding high confidence before committing millions of dollars. The community is developing the knowledge and standard methods needed to address these. This talk will give an overview of new developments in the last year including descriptions and status of Qualification Plus (a test protocol that goes beyond the standard qualification tests), a PV-specific version of ISO 9001 (for increased confidence in manufacturing consistency), and the Regional Test Centers (where new products can be tested to quantify performance and durability in multiple climate zones.) Development of PV system-level certification will also be described.

  4. Reformulated Gasoline Complex Model

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0622Product:Refiners Switch to

  5. Essays on gasoline price spikes, environmental regulation of gasoline content, and incentives for refinery operation

    E-Print Network [OSTI]

    Muehlegger, Erich J

    2005-01-01T23:59:59.000Z

    Since 1999, regional retail and wholesale gasoline markets in the United States have experienced significant price volatility, both intertemporally and across geographic markets. In particular, gasoline prices in California, ...

  6. Evaluating nonmetallic materials` compatibility with MTBE and MTBE + gasoline service

    SciTech Connect (OSTI)

    Hotaling, A.C.

    1995-12-31T23:59:59.000Z

    Methyl-tertiary-butyl-ether (MTBE) has become the leading oxygenate in use in the petroleum industry. Since its introduction several years ago there has been premature deterioration of nonmetallic materials in both neat MTBE and MTBE + gasoline. This degradation is costly in several ways: maintenance, replacement, environmental, and product-loss. Identifying nonmetallic materials compatible with MTBE and MTBE + gasoline is important to the petroleum industry -- all the way from the refinery to the retail sale. Exposure tests have been conducted with different types of nonmetallics in neat MTBE, neat MTBE vapor, and 5% MTBE + 95% gasoline. As in previously reported tests, Teflon{reg_sign} laminates were the top performers, experiencing very little change in any of the properties tested. An ester and ether-based urethane laminate also exhibited only small property changes. Most materials displayed significant deterioration of one or more of the measured properties, even in MTBE condensing vapor and the 5% MTBE + 95% gasoline. The specific effects on each material need to be individually evaluated to determine the effect on service life.

  7. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05132011 Project...

  8. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05182012 Project...

  9. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 06192014 Project...

  10. AVGAS/AUTOGAS (aviation gasoline/automobile gasoline) comparison. Winter-grade fuels. Interim report

    SciTech Connect (OSTI)

    Ferrara, A.M.

    1986-07-01T23:59:59.000Z

    This report describes dynamometer tests that simulated conditions found in a general-aviation aircraft. In these tests, automobile gasoline was tested and compared with aviation gasoline. The tendency for vapor lock and detonation was measured as a function of gasoline grade, Reid vapor pressure, and the age of the fuel.

  11. Semicoke production and quality at Chinese vertical SJ furnaces

    SciTech Connect (OSTI)

    V.M. Strakhov; I.V. Surovtseva; A.V. D'yachenko; V.M. Men'shenin [Kuznetsk Center, Eastern Coal-Chemistry Institute (Russian Federation)

    2007-05-15T23:59:59.000Z

    In Russia there has been little interest on the thermal processing of non-sintering coal. However it may be used to obtain many special types of coke and semicoke that are necessary for processes other than blast furnace smelting and employing small metallurgical coke fractions that do not meet the relevant quality requirements. China has recently made great progress in developing the thermal processing of coal (mainly energy coal) to obtain a highly effective product, semicoke, primarily used in metallurgy and adsorption process. The article considers the operation of a Chinese semicoking plant equipped with vertical SJ furnaces. The plant is in the Shenmu district of Shanxi province (Inner Mongolia). The enterprise includes two furnaces of total output of about 100,000 t/yr of semicoke.

  12. Market behavior under partial price controls: the case of the retail gasoline market

    SciTech Connect (OSTI)

    Camm, F.

    1983-03-01T23:59:59.000Z

    The use of firm-specific controls on the price of gasoline during 1979 and 1980, at both the wholesale and the retail level, dramatically affected the retail market for gasoline. The most visible effect was a diversity of monetary prices across service stations within particular retail market areas. Price could no longer play its usual role in clearing the retail market for gasoline. Queues and other changes in quality of service at stations arose to maintain the balance of market demand and supply. This report examines the behavior of an otherwise competitive market in the presence of such regulation-induced nonprice phenomena. In such a market, consumers consider both monetary prices and costs imposed by queues in deciding where to buy gasoline and how much to buy. Using a price-theoretic model of behavior, this paper predicts how various changes in effective price regulation affect consumers. 14 references, 7 figures, 2 tables.

  13. Gasoline Price Pass-through

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan FebCubic(MillionThousandGasoline

  14. Gasoline and Diesel Fuel Update

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data CollectionGasoline Price

  15. Gasoline and Diesel Fuel Update

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data CollectionGasoline

  16. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline

  17. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014 Gasolinelong

  18. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014

  19. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies...

  20. Advantages of Oxygenates Fuels over Gasoline in Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

  1. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01T23:59:59.000Z

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  2. Reductant Chemistry during LNT Regeneration for a Lean Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Emissions Control for Lean Gasoline Engines Emissions Control for Lean Gasoline...

  3. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Energy Savers [EERE]

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

  4. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

  5. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI...

  6. Energy Department Announces First Regional Gasoline Reserve to...

    Office of Environmental Management (EM)

    Announces First Regional Gasoline Reserve to Strengthen Fuel Resiliency Energy Department Announces First Regional Gasoline Reserve to Strengthen Fuel Resiliency May 2, 2014 -...

  7. Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-05-01T23:59:59.000Z

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

  8. Gasoline price volatility and the elasticity of demand for gasoline1 C.-Y. Cynthia Lina

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    externalities including local air pollution, global climate change, accidents, congestion, and dependence at reducing demand for gasoline or reducing pollution from automobiles. The latter could be addressed

  9. Edgeworth price cycles in retail gasoline markets

    E-Print Network [OSTI]

    Noel, Michael David, 1971-

    2002-01-01T23:59:59.000Z

    In this dissertation, I present three essays that are motivated by the interesting and dynamic price-setting behavior of firms in Canadian retail gasoline markets. In the first essay, I examine behavior at the market level ...

  10. Insights into Spring 2008 Gasoline Prices

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    Gasoline prices rose rapidly in spring 2007 due a variety of factors, including refinery outages and lower than expected imports. This report explores those factors and looks at the implications for 2008.

  11. Chemistry Impacts in Gasoline HCCI

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; Bunting, Bruce G [ORNL

    2006-09-01T23:59:59.000Z

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its shortcomings, and its relevance to HCCI. Section 3 discusses the effects of fuel volatility on fuel and air mixing and the consequences it has on HCCI. The effects of alcohol fuels on HCCI performance, and specifically the effects that they have on the operable speed/load range, are reviewed in Section 4. Finally, conclusions are drawn in Section 5.

  12. Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen

    E-Print Network [OSTI]

    Melaina, Marc W

    2007-01-01T23:59:59.000Z

    canned gasoline, gasoline storage and delivery in barrels,gasoline pump, dispensing hose, ?ow meter and underground storagethan gasoline. This being said, our handling and storage

  13. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01T23:59:59.000Z

    of technological options for off-grid light provision thatQuality Assurance for Off-Grid Lighting in Africa Conferencemarkets for high efficiency off-grid lighting technologies

  14. Integrated quality and quantity modeling of a production line

    E-Print Network [OSTI]

    Kim, Jongyoon, 1974-

    2005-01-01T23:59:59.000Z

    The interaction of quantity and quality performance in a factory is clearly of great economic importance. However, there is very little quantitative analytical literature in this area. This thesis is an essential early ...

  15. Vertical Integration in Gasoline Supply: An Empirical Test of Raising Rivals' Costs

    E-Print Network [OSTI]

    Gilbert, Richard; Hastings, Justine

    2001-01-01T23:59:59.000Z

    Gasoline terminals serve a large market area. Some terminalsthan one terminal. The gasoline supplied at a terminal is awholesale gasoline that is available at a terminal facility.

  16. Vertical Integration in Gasoline Supply: An Empirical Test of Raising Rivals' Costs

    E-Print Network [OSTI]

    Gilbert, Richard; Hastings, Justine

    2001-01-01T23:59:59.000Z

    erentials in wholesale and retail gasoline prices, sometimesand control retail gasoline prices, while still permittingnopolize retail gasoline markets and raise prices. Several

  17. The Speed of Gasoline Price Response in Markets With and Without Edgeworth Cycles

    E-Print Network [OSTI]

    Lewis, Matt; Noel, Michael

    2009-01-01T23:59:59.000Z

    3, 2009 Abstract Retail gasoline prices are known to respondspeed with which retail gasoline prices respond to wholesaleDeltas, George, “Retail Gasoline Price Dynamics and Local

  18. The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    result in a target retail gasoline price of about $3.00 perAdministration, retail gasoline prices in Californiaprice, the expected retail gasoline price and consumption

  19. Gasoline Price Differences: Taxes, Pollution Regulations, Mergers, Market Power, and Market Conditions

    E-Print Network [OSTI]

    Chouinard, Hayley; Perloff, Jeffrey M.

    2002-01-01T23:59:59.000Z

    of Information and Retail Gasoline Price Behavior: Anform wholesale and retail gasoline price equations usingfor some of the retail gasoline price dispersion within a

  20. Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Market

    E-Print Network [OSTI]

    Lewis, Matt

    2003-01-01T23:59:59.000Z

    The Behavior of Retail Gasoline Prices: Symmetric or Not? ”Adjustment of U.K. Retail Gasoline Prices to Cost Changes. ”documented that retail gasoline prices respond more quickly

  1. Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Industry

    E-Print Network [OSTI]

    Lewis, Matt

    2003-01-01T23:59:59.000Z

    Adjustment of U.K. Retail Gasoline Prices to Cost Changes. ”The Behavior of Retail Gasoline Prices: Symmetric or Not? ”documented that retail gasoline prices respond more quickly

  2. Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model

    E-Print Network [OSTI]

    Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

    2000-01-01T23:59:59.000Z

    the gasoline-equivalent fuel retail price, excluding exciseprice is the full retail price of gasoline, including allon the retail cost and break-even gasoline price, because

  3. Edgeworth Price Cycles, Cost-based Pricing and Sticky Pricing in Retail Gasoline Markets

    E-Print Network [OSTI]

    Noel, Michael

    2004-01-01T23:59:59.000Z

    Johnson. “Gas Wars: Retail Gasoline Price Fluctua- tions”,were collected on retail gasoline prices, wholesale (rack)ancillary information. Retail gasoline prices, RET AIL mt ,

  4. Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Market

    E-Print Network [OSTI]

    Lewis, Matt

    2004-01-01T23:59:59.000Z

    George. (2004) “Retail Gasoline Price Dynamics and Localof Information and Retail Gasoline Price Behavior: Andocumented that retail gasoline prices respond more quickly

  5. Do Gasoline Prices Resond Asymmetrically to Cost Shocks? The Confounding Effect of Edgeworth Cycles

    E-Print Network [OSTI]

    Noel, Michael

    2007-01-01T23:59:59.000Z

    Atkinson, B . (2006) "Retail Gasoline Price Cycles: Evidenceof Adjustment of U K Retail Gasoline Prices to Cost Changes"1993) "Gas Wars: Retail Gasoline Price Fluctuations", of and

  6. Reformulated Gasoline Foreign Refinery Rules (Released in the STEO January 1998)

    Reports and Publications (EIA)

    1998-01-01T23:59:59.000Z

    On August 27, 1997, the Environmental Protection Agency (EPA) promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an individual refinery baseline is not available to domestic refiners.) If a foreign refiner did not establish and use an individual baseline, the gasoline they export to the United States would be regulated through the importer, and subject to the importer's baseline (most likely the statutory baseline). Specific regulatory provisions are implemented to ensure that the option to use an individual baseline would not lead to adverse environmental impacts. This involves monitoring the average quality of imported gasoline, and if a specified benchmark is exceeded, remedial action would be taken by adjusting the requirements applicable to imported gasoline.

  7. The Effect of Culture Temperature on Recombinant IFN-? Production and Quality

    E-Print Network [OSTI]

    Fox, Steven R.

    The goal of this research project is to analyze the effect of culture temperature on the production and quality of IFN-? produced and secreted by suspension culture CHO cells.The effect of low temperature on IFN-? ...

  8. Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems 

    E-Print Network [OSTI]

    Husmoen, Derek Howard

    2012-07-16T23:59:59.000Z

    Intensive biomass production in emerging bioenergy systems could increase nonpoint-source sediment and nutrient losses and impair surface and groundwater quality. Recycling biochar, a charcoal byproduct from pyrolysis of biomass, provides potential...

  9. Evaluation of the Quality of Quickbird Fused Products R. ALONSO REYES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Evaluation of the Quality of Quickbird Fused Products R. ALONSO REYES Atmosphere, Remote Sensing, comparison, quality ABSTRACT: Most of the satellite sensors, presently operating in the optical domain spatial resolution but with a lower spectral content. The trend of satellite sensors is similar

  10. November 2005 Issue #2 2005 Soil Quality and Crop Production Systems

    E-Print Network [OSTI]

    Balser, Teri C.

    . It integrates soil physical, chemical, and biological properties and reflects the effects of management. Some an "unhealthy soil" could be nursed back to health with improved management. The quantification of soil quality or user group. Within an agricultural context a high quality soil would be productive and be sustainable

  11. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing

    SciTech Connect (OSTI)

    Hsu, D. D.

    2011-03-01T23:59:59.000Z

    In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

  12. Characterization of Product Quality Attributes and Thermal Properties of Potato Chips during Vacuum Frying

    E-Print Network [OSTI]

    Yagua Olivares, Carla Veronica

    2010-10-12T23:59:59.000Z

    CHARACTERIZATION OF PRODUCT QUALITY ATTRIBUTES AND THERMAL PROPERTIES OF POTATO CHIPS DURING VACUUM FRYING A Thesis by CARLA VERONICA YAGUA OLIVARES Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2010 Major Subject: Biological and Agricultural Engineering CHARACTERIZATION OF PRODUCT QUALITY ATTRIBUTES AND THERMAL PROPERTIES OF POTATO CHIPS DURING VACUUM FRYING...

  13. Ashland's new process could boost gasoline yield

    SciTech Connect (OSTI)

    Atkins, O.E.

    1980-04-07T23:59:59.000Z

    According to O. E. Atkins (Ashland Oil Co.), Ashland's new fluid catalytic cracking process will convert heavy residual oil to (% by vol) 11% fuel gas, 4.8% LNG, 75.7% gasoline (if all the produced olefins are converted to gasoline), 9% distillates, and 8.1% heavy fuel oil. Ashland is building a $70 million, 40,000 bbl/day unit at its 215,000 bbl/day Catlettsburg, Ky., refinery which will increase the present 90,000 bbl/day gasoline yield by 25,000 bbl/day for the same amount of feedstock. The increased gasoline yield (no-lead octane rating of 94) is expected to increase the net margin on a barrel of feed from $8 up to $12, at the present prices of $11.50/bbl of residual oil and $40/bbl of gasoline. Ashland has not disclosed detailed information on the new process, which: can accommodate atmospheric residua that are high in sulfur and metals; is a high temperature, low (about 1 atm) pressure process; does not use hydrogen; uses a proprietary new crystalline silica-alumina microspherical (zeolite) catalyst which, via a proprietary passivating technique, will demetalize crude oil fractions of vanadium and nickel. Residuum cracking processes developed by other companies are briefly discussed.

  14. High Ethanol Fuel Endurance: A Study of the Effects of Running Gasoline with 15% Ethanol Concentration in Current Production Outboard Four-Stroke Engines and Conventional Two-Stroke Outboard Marine Engines

    SciTech Connect (OSTI)

    Hilbert, D.

    2011-10-01T23:59:59.000Z

    Three Mercury Marine outboard marine engines were evaluated for durability using E15 fuel -- gasoline blended with 15% ethanol. Direct comparison was made to operation on E0 (ethanol-free gasoline) to determine the effects of increased ethanol on engine durability. Testing was conducted using a 300-hour wide-open throttle (WOT) test protocol, a typical durability cycle used by the outboard marine industry. Use of E15 resulted in reduced CO emissions, as expected for open-loop, non-feedback control engines. HC emissions effects were variable. Exhaust gas and engine operating temperatures increased as a consequence of leaner operation. Each E15 test engine exhibited some deterioration that may have been related to the test fuel. The 9.9 HP, four-stroke E15 engine exhibited variable hydrocarbon emissions at 300 hours -- an indication of lean misfire. The 300HP, four-stroke, supercharged Verado engine and the 200HP, two-stroke legacy engine tested with E15 fuel failed to complete the durability test. The Verado engine failed three exhaust valves at 285 endurance hours while the 200HP legacy engine failed a main crank bearing at 256 endurance hours. All E0-dedicated engines completed the durability cycle without incident. Additional testing is necessary to link the observed engine failures to ethanol in the test fuel.

  15. Health and productivity benefits of improved indoor air quality

    SciTech Connect (OSTI)

    Dorgan, C.B. [Dorgan Associates, Inc., Madison, WI (United States); Dorgan, C.E.; Kanarek, M.S. [Univ. of Wisconsin, Madison, WI (United States); Willman, A.J. [Quantum Technology, Inc., Springfield, VA (United States)

    1998-10-01T23:59:59.000Z

    This paper is a summary of two studies completed for a national contractor`s association on the health costs and productivity benefits of improved IAQ. The original study documented the general health costs and productivity benefits of improved IAQ. The second study expanded the scope to include medical cost reductions for specific illnesses from improved IAQ. General information on the objectives, assumptions, definitions, and results of the studies are presented, followed by detailed information on research methodology, building inventory and wellness categories, health and medical effects of poor IAQ, health cost benefits, productivity benefits, recommended improvements, and conclusions and future improvements.

  16. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect (OSTI)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01T23:59:59.000Z

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  17. NAFTA and gasoline: Canada, U. S. , Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-03-31T23:59:59.000Z

    The North American Free Trade Agreement has become a hotly debated topic all over the world, but especially in the countries involved: Mexico, United States, and Canada. Comments made by high ranking officials imply there are differences to reconcile before the agreement is passed. Toward seeing these countries in trio, this issue compares gasoline markets and some energy perspectives. The purpose of this article is to contribute to understanding of the three countries through their petroleum industry structure. Gasoline consumption and retail delivery infrastructure are compared and contrasted to illustrate the differences among the NAFTA countries.

  18. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline prices continueGasoline

  19. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline prices

  20. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline prices4,

  1. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline prices4,1,

  2. Gasoline prices continue to rise (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline prices4,1,

  3. Gasoline prices continue to rise (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline

  4. Combustion and Emissions Performance of Dual-Fuel Gasoline and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline...

  5. Fact #835: August 25, Average Historical Annual Gasoline Pump...

    Broader source: Energy.gov (indexed) [DOE]

    early 1980's with the price of gasoline peaking in 1982. From 2002 to 2008 the price of gasoline rose substantially, but then fell in 2009 during the economic recession. In 2012,...

  6. Revisiting the Income Effect: Gasoline Prices and Grocery Purchases

    E-Print Network [OSTI]

    Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

    2008-01-01T23:59:59.000Z

    Gasoline and Crude Oil Prices, 2000-2006 Figure I:Weekly Gasoline and Crude Oil Prices for 2001- 2006 Crudeargue that increases in oil prices may lead to recessions

  7. Why Do Motor Gasoline Prices Vary Regionally? California Case Study

    Reports and Publications (EIA)

    1998-01-01T23:59:59.000Z

    Analysis of the difference between the retail gasoline prices in California and the average U.S. retail prices.

  8. National Survey of E85 and Gasoline Prices

    SciTech Connect (OSTI)

    Bergeron, P.

    2008-10-01T23:59:59.000Z

    Study compares the prices of E85 and regular gasoline nationally and regionally over time for one year.

  9. The potential for alcohols and related ethers to displace conventional gasoline components

    SciTech Connect (OSTI)

    Hadder, G.R. [Oak Ridge National Lab., TN (United States); McNutt, B.D. [USDOE, Washington, DC (United States)

    1996-02-01T23:59:59.000Z

    The United States Department of Energy is required by law to determine the feasibility of producing sufficient replacement fuels to replace 30 percent of the projected United States consumption of motor fuels by light duty vehicles in the year 2010. A replacement fuel is a non-petroleum portion of gasoline, including alcohols, natural gas and certain other components. A linear program has been used to study refinery impacts for production of ``low petroleum`` gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and major contributors to cost increase can include investment in processes to produce olefins for etherification with alcohols. High oxygenation can increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum might be produced with cost increases of 23 to 37 cents per gallon, with substantial decreases in greenhouse gas emissions in some cases. Cost estimates are sensitive to assumptions about extrapolation of a national model for pollutant emissions, availability of raw materials and other issues. Reduction in crude oil use, a major objective of the low petroleum gasoline program, is 10 to 17 percent in the analysis.

  10. What Do Consumers Believe About Future Gasoline Soren T. Anderson

    E-Print Network [OSTI]

    Silver, Whendee

    What Do Consumers Believe About Future Gasoline Prices? Soren T. Anderson Michigan State University of consumers about their expectations of future gasoline prices. Overall, we find that consumer beliefs follow a random walk, which we deem a reasonable forecast of gasoline prices, but we find a deviation from

  11. ISSN 1745-9648 Gasoline Prices Jump Up on Mondays

    E-Print Network [OSTI]

    Feigon, Brooke

    ISSN 1745-9648 Gasoline Prices Jump Up on Mondays: an Outcome of Aggressive Competition? by Øystein Research Council is gratefully acknowledged. #12;Gasoline prices jump up on Mondays: An outcome, 2008 Abstract This paper examines Norwegian gasoline pump prices using daily station

  12. Author's personal copy Gasoline prices and traffic safety in Mississippi

    E-Print Network [OSTI]

    Levinson, David M.

    Author's personal copy Gasoline prices and traffic safety in Mississippi Guangqing Chi a, , Arthur November 2010 Keywords: Gasoline prices Traffic crashes Traffic safety Age Gender Race Problem: Limited literature suggests that gasoline prices have substantial effects on reducing fatal crashes. However

  13. Vertical Relationships and Competition in Retail Gasoline Markets

    E-Print Network [OSTI]

    California at Berkeley. University of

    , if any, of the differences in retail gasoline prices between markets is attributable to differences substantially higher retail gasoline prices than other regions of the country. For example, for the first week of August 1999, the price of reformulated gasoline in California was 39.6 cents higher than the average

  14. Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    2008 Abstract The relationship between gasoline prices and the demand for vehicle fuel efficiencyAutomobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We

  15. Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel

    E-Print Network [OSTI]

    Utah, University of

    gasoline mechanism based on the chemistry of n-heptane and isooctanesthe two indicator fuels for octanePollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel Structural Functionalities H O fractions of gasoline fuels, the Utah Surrogate Mechanisms is extended to include submecha- nisms

  16. Empirical Regularities of Asymmetric Pricing in the Gasoline Industry

    E-Print Network [OSTI]

    Niebur, Ernst

    pricing in the retail gasoline industry, and also documents empirical regularities in the market. I find of asymmetric price movements in the retail gasoline industry. Yet, there is no general agreement as to whether asym- metric pricing is widespread throughout the retail gasoline industry or merely an anomaly

  17. Societyof Petroleum Engineers Cleaning Up Spilled Gasoline With Steam: Compo~itional Simulations

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Societyof Petroleum Engineers SPE 25257 Cleaning Up Spilled Gasoline With Steam: Compo~itional Simulations A.E. Adenekan, Exxon Production Research Co., and T.W. Patzek, * U. of California 'SPE Member Copyright 1993, Society of Petroleum Engineers, Inc. This paper was prepared for presentation at the 121h

  18. Price changes in the gasoline market: Are Midwestern gasoline prices downward sticky?

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    This report examines a recurring question about gasoline markets: why, especially in times of high price volatility, do retail gasoline prices seem to rise quickly but fall back more slowly? Do gasoline prices actually rise faster than they fall, or does this just appear to be the case because people tend to pay more attention to prices when they`re rising? This question is more complex than it might appear to be initially, and it has been addressed by numerous analysts in government, academia and industry. The question is very important, because perceived problems with retail gasoline pricing have been used in arguments for government regulation of prices. The phenomenon of prices at different market levels tending to move differently relative to each other depending on direction is known as price asymmetry. This report summarizes the previous work on gasoline price asymmetry and provides a method for testing for asymmetry in a wide variety of situations. The major finding of this paper is that there is some amount of asymmetry and pattern asymmetry, especially at the retail level, in the Midwestern states that are the focus of the analysis. Nevertheless, both the amount asymmetry and pattern asymmetry are relatively small. In addition, much of the pattern asymmetry detected in this and previous studies could be a statistical artifact caused by the time lags between price changes at different points in the gasoline distribution system. In other words, retail gasoline prices do sometimes rise faster than they fall, but this is largely a lagged market response to an upward shock in the underlying wholesale gasoline or crude oil prices, followed by a return toward the previous baseline. After consistent time lags are factored out, most apparent asymmetry disappears.

  19. ARM - Evaluation Product - AERI Data Quality Metric (AERI-QC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m Documentation DataDatastreamsxsaprhsrhi DocumentationAtlanticENAProcessesProductsAERI

  20. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    SciTech Connect (OSTI)

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

    2011-09-15T23:59:59.000Z

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.

  1. Reformulated Gasoline Foreign Refinery Rules

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0622Product:Refiners Switch

  2. The Extraction of Gasoline from Natural Gas

    E-Print Network [OSTI]

    Schroeder, J. P.

    1914-05-15T23:59:59.000Z

    for the quantitative estimation of the condensable gasoline consti- tuents of so-called rtwetn natural gas» Three general lines of experimentation suggested themselves after a preliminary study of the problem. These were the separation of a liqui- fied sample... fractionation of a mixture of natural gases are, however, not available in the ordinary laboratory, so this method altho successful and accurate is hardly practical. Even after the fractionation of the gas has ^lebeau and Damiens in Chen. Abstr. 7, 1356...

  3. Blue Oak Canopy Effect On Seasonal Forage Production and Quality1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Blue Oak Canopy Effect On Seasonal Forage Production and Quality1 William E. Frost Neil K. Mc the canopy of blue oak (Quercus douglasii) and in open grassland at the San Joaquin Experimental Range blue oak compared to open grassland. At most sampling dates, the protein content was greater

  4. The UPF is the Spanish leader in quality of its scientific production

    E-Print Network [OSTI]

    Pompeu Fabra, Universitat

    The UPF is the Spanish leader in quality of its scientific production Experts from the CSIC of scientific publications The report analyses the number of scientific publications of the Spanish higher of the Spanish university institutions (2006-2010)", based on three essential dimensions: the volume of all

  5. Vertical Relationships and Competition in Retail Gasoline Markets: An Empirical Evidence from Contract Changes in Southern California

    E-Print Network [OSTI]

    Hastings, Justine

    2000-01-01T23:59:59.000Z

    The Behavior of Retail Gasoline Prices: Symmetric or Not? ”vertical contracts and retail gasoline prices. The thirdthe differences in retail gasoline prices between markets is

  6. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    250 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  7. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  8. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    - - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy...

  9. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    220 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  10. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1998 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  11. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1995 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  12. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  13. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    220 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  14. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  15. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    134 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  16. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  17. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    - - - - W W - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

  18. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  19. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  20. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - - - 64.7 64.7 - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

  1. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    - - - - - - - - - - - - See footnotes at end of table. 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 116 Energy Information...

  2. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  3. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  4. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    250 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  5. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1999 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  6. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  7. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    134 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  8. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

  9. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health...

  10. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01T23:59:59.000Z

    emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

  11. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

  12. Characterization of Pre-Commercial Gasoline Engine Particulates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends. deer12zelenyuk.pdf More Documents & Publications...

  13. High Compression Ratio Turbo Gasoline Engine Operation Using...

    Broader source: Energy.gov (indexed) [DOE]

    Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement PI: John B. Heywood Sloan Automotive Laboratory Massachusetts Institute of Technology June 19, 2014...

  14. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063smith2013o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

  15. U.S. gasoline prices increase slightly

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short14,0,long,long

  16. Areas Participating in the Oxygenated Gasoline Program

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are there Gains from

  17. Areas Participating in the Reformulated Gasoline Program

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are there Gains

  18. Conventional Gasoline Sales to End Users Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX Imeans ofF DataContango

  19. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelop Low-carbonDOE's Gasoline/Diesel PM

  20. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelop Low-carbonDOE's Gasoline/Diesel

  1. Gasoline prices continue to fall (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email:UraniumNaturallong version)Gasoline

  2. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline prices continue to

  3. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline prices continue

  4. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline prices

  5. Gasoline prices inch down (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014long version) The U.S.Gasoline

  6. Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand

    E-Print Network [OSTI]

    Hughes, Jonathan; Knittel, Christopher R; Sperling, Dan

    2007-01-01T23:59:59.000Z

    Consumption and Real Retail Gasoline Price for January 19742006. FIGURE 2 Real Retail Gasoline Price for Two Periodsjt is the real retail price of gasoline in month j and year

  7. Production of High Quality Dust Control Foam to Minimize Moisture Addition to Coal

    E-Print Network [OSTI]

    Termine, F.; Jordan, S. T.

    PRODUCTION OF HIGH QUALITY DUST CONTROL FOAM TO MINIMIZE MOISTURE ADDITION TO COAL Frank Tenni ne Steve T. Jordan BETZ Laboratories, Trevose, PA Inc. ABSTRACT Foam is displacing wet suppression as the method of choice for controlling... fugitive emissions from coal. Coal treated by wet suppression consumes through moisture addition, a heat energy equivalent of 1 ton out of every 500 tons fired. The application of foam requires less than 10% of the moisture usually required for wet...

  8. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    Oil refinery Pipeline Storage Truck distribution Gas stationrefinery Pipeline Terminal storage Truck distribution Gas

  9. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    Coal extraction Rail transport Power plant Elec transmission emissionsemissions emissions Coal extraction Rail transport Power

  10. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

  11. Fact #858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest Decline since 2008 Fact 858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest...

  12. SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

  13. Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination

    E-Print Network [OSTI]

    Fischer, M.L.

    2011-01-01T23:59:59.000Z

    OF SUBSURFACE GASOLINE CONTAMINATION Marc L. Fischer, AbraOF SUBSURFACE GASOLINE CONTAMINATION Marc L. Fischer, Abrareporting indoor air contamination (6,7). Estimation of

  14. A Comparison of Two Gasoline and Two Diesel Cars with Varying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control...

  15. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  16. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  17. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  18. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  19. Optimization of production quality and post-production longevity for miniature pot roses

    E-Print Network [OSTI]

    Kyalo, Titus Mulwa

    1992-01-01T23:59:59.000Z

    82 x(v Page Table 5. 2. Effect of forcing environment (ENV) on plant growth and flowering characteristics. Summary of ANOVA table is also presented. Factors were ENV and cultivar (cv) . . 87 Table 5. 3. Effect of cultivar (cv) and forcing... environment (ENV) on plant height, number of flowering shoots and number of blind shoots 89 Table 5. 4. Effect of environment (ENV), post-production treatment (TRT) and cultivar (cv) on plant shelf-life, 7 day abscission rating and final abscission...

  20. Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand

    E-Print Network [OSTI]

    Hughes, Jonathan; Knittel, Christopher R; Sperling, Dan

    2007-01-01T23:59:59.000Z

    Monthly, World Crude Oil Production. U.S. Department of2006). The monthly crude oil production for Venezuela, Iraqcrude oil quality and crude oil production disruptions. Here

  1. Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand

    E-Print Network [OSTI]

    Hughes, Jonathan; Knittel, Christopher R; Sperling, Dan

    2007-01-01T23:59:59.000Z

    Monthly, World Crude Oil Production. U.S. Department of2006). The monthly crude oil production for Venezuela, Iraqoil quality and crude oil production disruptions. Here we

  2. IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE

    E-Print Network [OSTI]

    IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly added to gasoline. In 1998, 11.9 billion liters of MTBE were produced in the U.S. MTBE has been detected frequently

  3. Draft regulatory analysis: notice of proposed rulemaking motor gasoline allocation revisions

    SciTech Connect (OSTI)

    None

    1980-06-01T23:59:59.000Z

    The Draft Regulatory Analysis is prepared for those proposed regulations which either may have a major impact on the general economy, individual industries, or geographic regions and levels of government, or may be significant in that they affect important DOE policy concerns and are the object of public interest. The problems and proposed solutions for the Notice of Proposed Rulemaking and Public Hearings on the Motor Gasoline Allocation Program are examined. The ERA's mandate for this program is set out in the Emergency Petroleum Allocation Act of 1973. Under this Act, the President is empowered to enforce, at his discretion, price and allocation controls on petroleum and petroleum products, including gasoline, through September 30, 1981. The Act sets the following allocation goals: protect public health; maintain public services and agricultural operations; foster competition in the petroleum industry; distribute petroleum among industry sectors and US regions equitably; and minimize economic disruption and unnecessary interference wth market mechanisms.

  4. MTBE growth limited despite lead phasedown in gasoline

    SciTech Connect (OSTI)

    Storck, W.

    1985-07-15T23:59:59.000Z

    This month's legislated reduction of the allowable amount of lead additives in gasoline will increase demand strongly for methyl-tert-butyl ether (MTBE) as an octane enhancer, but the economics of the refinery business and the likelihood of rapidly increasing high-octane gasoline imports probably will limit the size of the business in coming years. MTBE will be used to fill the octane gap now, but economics and imports of gasoline later on could hold down demand. The limited growth in sales of MTBE is discussed.

  5. Modeling intraurban price competition: an example of gasoline pricing

    SciTech Connect (OSTI)

    Haining, R.

    1983-11-01T23:59:59.000Z

    Three interacting market models are considered as models for intraurban retail price variation for a single homogenous good, price-posted gasoline. Modifications include spatial markets instead of interacting economic sectors and supply functions independent of price levels in other markets. The final section discusses the results of fitting one of the models to gasoline data for the city of Sheffield during a period of intensifying price competition in the first quarter of 1982. It is concluded, with respect to gasoline price modeling, both independent and interacting market models exist but at different intraurban scales. 15 references, 1 figure, 1 table.

  6. Who is Exposed to Gas Prices? How Gasoline Prices Affect Automobile Manufacturers and Dealerships

    E-Print Network [OSTI]

    Rothman, Daniel

    Who is Exposed to Gas Prices? How Gasoline Prices Affect Automobile Manufacturers and Dealerships-busse@kellogg.northwestern.edu, knittel@mit.edu, f-zettelmeyer@kellogg.northwestern.edu #12;Who is Exposed to Gas Prices? How Gasoline of gasoline prices, and consumer responses to gasoline prices have been well studied. In this paper

  7. Off-Highway Gasoline Consuption Estimation Models Used in the Federal Highway Administration Attribution Process: 2008 Updates

    SciTech Connect (OSTI)

    Hwang, Ho-Ling [ORNL; Davis, Stacy Cagle [ORNL

    2009-12-01T23:59:59.000Z

    This report is designed to document the analysis process and estimation models currently used by the Federal Highway Administration (FHWA) to estimate the off-highway gasoline consumption and public sector fuel consumption. An overview of the entire FHWA attribution process is provided along with specifics related to the latest update (2008) on the Off-Highway Gasoline Use Model and the Public Use of Gasoline Model. The Off-Highway Gasoline Use Model is made up of five individual modules, one for each of the off-highway categories: agricultural, industrial and commercial, construction, aviation, and marine. This 2008 update of the off-highway models was the second major update (the first model update was conducted during 2002-2003) after they were originally developed in mid-1990. The agricultural model methodology, specifically, underwent a significant revision because of changes in data availability since 2003. Some revision to the model was necessary due to removal of certain data elements used in the original estimation method. The revised agricultural model also made use of some newly available information, published by the data source agency in recent years. The other model methodologies were not drastically changed, though many data elements were updated to improve the accuracy of these models. Note that components in the Public Use of Gasoline Model were not updated in 2008. A major challenge in updating estimation methods applied by the public-use model is that they would have to rely on significant new data collection efforts. In addition, due to resource limitation, several components of the models (both off-highway and public-us models) that utilized regression modeling approaches were not recalibrated under the 2008 study. An investigation of the Environmental Protection Agency's NONROAD2005 model was also carried out under the 2008 model update. Results generated from the NONROAD2005 model were analyzed, examined, and compared, to the extent that is possible on the overall totals, to the current FHWA estimates. Because NONROAD2005 model was designed for emission estimation purposes (i.e., not for measuring fuel consumption), it covers different equipment populations from those the FHWA models were based on. Thus, a direct comparison generally was not possible in most sectors. As a result, NONROAD2005 data were not used in the 2008 update of the FHWA off-highway models. The quality of fuel use estimates directly affect the data quality in many tables published in the Highway Statistics. Although updates have been made to the Off-Highway Gasoline Use Model and the Public Use Gasoline Model, some challenges remain due to aging model equations and discontinuation of data sources.

  8. High compression ratio turbo gasoline engine operation using alcohol enhancement

    E-Print Network [OSTI]

    Lewis, Raymond (Raymond A.)

    2013-01-01T23:59:59.000Z

    Gasoline - ethanol blends were explored as a strategy to mitigate engine knock, a phenomena in spark ignition engine combustion when a portion of the end gas is compressed to the point of spontaneous auto-ignition. This ...

  9. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    150.0 2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  10. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - 466.1 466.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

  11. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    253.2 2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  12. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - 532.1 532.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

  13. Determination of methyl tert. butyl ether (MTBE) in gasoline

    SciTech Connect (OSTI)

    Feldman, J.; Orchin, M. (Univ. of Cincinnati, OH (United States))

    1993-02-01T23:59:59.000Z

    A GLC-acid extraction method is described for the determination of MTBE in gasolines. The method consists of a programmed GLC analysis starting at about room temperature conducted before and after extraction with cold 85% phosphoric acid. This treatment results in the preferential solubility of ethers and other oxygenated compounds while minimizing the reaction of olefins and aromatics which may be present in the gasolines. Plotting various known concentrations of MTBE in gasolines against the concentrations determined in the same samples by the authors methodology results in a straight line relationship. The concentration of MTBE in any sample of gasoline may thus be determined using their GLC-extraction procedure and the calibration line. The analysis can accommodate a wide choice of standard GLC columns and programs. 2 refs., 1 fig., 1 tab.

  14. Gasoline Prices, Fuel Economy, and the Energy Paradox

    E-Print Network [OSTI]

    Wozny, Nathan

    It is often asserted that consumers purchasing automobiles or other goods and services underweight the costs of gasoline or other "add-ons." We test this hypothesis in the US automobile market by examining the effects of ...

  15. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    of the Global Crude Oil Market and the U.S. Retail Gasolines to a¤ect the world oil market. ) I use tax instruments andthe integration of the world oil market rescues the original

  16. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  17. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  18. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...

    Broader source: Energy.gov (indexed) [DOE]

    35: Average Annual Gasoline Pump Price, 1929-2013 fotw835web.xlsx More Documents & Publications Offshore Wind Market and Economic Analysis Report 2013 Response to several FOIA...

  19. Fact #835: August 25, Average Annual Gasoline Pump Price, 1929...

    Broader source: Energy.gov (indexed) [DOE]

    50% since the data series began in 1929. The effect of the U.S. embargo of oil from Iran can be seen in the early 1980's with the price of gasoline peaking in 1982. From 2002...

  20. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26T23:59:59.000Z

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  1. Restructuring: The Changing Face of Motor Gasoline Marketing

    Reports and Publications (EIA)

    2001-01-01T23:59:59.000Z

    This report reviews the U.S. motor gasoline marketing industry during the period 1990 to 1999, focusing on changes that occurred during the period. The report incorporates financial and operating data from the Energy Information Administration's Financial Reporting System (FRS), motor gasoline outlet counts collected by the National Petroleum News from the states, and U.S. Census Bureau salary and employment data published in County Business Patterns.

  2. Lean Gasoline System Development for Fuel Efficient Small Cars

    SciTech Connect (OSTI)

    None

    2013-08-30T23:59:59.000Z

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  3. International Journal of Systems Science, 1998, volume 29, number 9, pages 939-951 Performance analysis of serial production lines with quality

    E-Print Network [OSTI]

    Lim, Jong-Tae

    defective parts. The rejection rate of quality inspection machines should be considered as . . total number analysis of serial production lines with quality inspection machines M.-S. HANt, i.-T. LIMt* and D. The high production rate of machines in isolation and quality inspection machines are the basis of highly

  4. Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels

    E-Print Network [OSTI]

    Jawitz, James W.

    the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen solar energy to syngas, which is then converted to "drop in" fuel (diesel, gasoline or hydrogen

  5. High-resolution NMR process analyzer for oxygenates in gasoline

    SciTech Connect (OSTI)

    Skloss, T.W.; Kim, A.J.; Haw, J.F. (Texas A M Univ., College Station, TX (United States))

    1994-02-15T23:59:59.000Z

    We report a high-resolution 42-MHz[sup 1]HFT-NMR instrument that is suitable for use as a process analyzer and demonstrate its use in the determination of methyl tert-butyl ether (MTBE) in a flowing stream of gasoline. This spectrometer is based on a 55-kg permanent magnet with essentially no fringe field. A spectral resolution of 3 Hz was typically obtained for spinning samples, and this performance was only slightly degraded with flowing samples. We report a procedure for magnet drift compensation using a software procedure rather than a field-frequency lock channel. This procedure allowed signal averaging without loss of resolution. Regulatory changes to be implemented in the near future have created a need for the development of methods for the determination of MTBE and other oxygenates in reformulated gasolines. Existing methods employing gas chromatography are not fast enough for process control of a gasoline blender and suffer from other limitations. This study demonstrates that process analysis NMR is well-suited to the determination of MTBE in a simulated gasoline blender. The detection limit of 0.5 vol % MTBE was obtained with a measurement time of 1 min. The absolute standard deviation of independent determinations was 0.17% when the MTBE concentration was 10%, a nominal value. Preliminary results also suggest that the method may be applicable to gasolines containing mixtures of oxygenate additives as well as the measurement of aromatic and olefinic hydrogens. 33 refs., 9 figs.

  6. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next > SunChallengeHydrotreating and Hydrocracking: A

  7. Refiner and Blender Net Production of Conventional Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0 Weekly7a.7.Nov-14

  8. Refiner and Blender Net Production of Finished Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0

  9. Refiner and Blender Net Production of Reformulated Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0622 1,652 1,632 1,641

  10. Refinery & Blender Net Production of Finished Motor Gasoline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)Thousand Cubic Feet) Year Jan2009698Nov-142009 2010

  11. Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine 

    E-Print Network [OSTI]

    Sun, Jiafeng

    2014-08-05T23:59:59.000Z

    Diesel/gasoline dual-fuel combustion uses both gasoline and diesel fuel in diesel engines to exploit their different reactivities. This operation combines the advantages of diesel fuel and gasoline while avoiding their disadvantages, attains...

  12. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect (OSTI)

    Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Eibl, Mary A [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Kaul, Brian C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  13. Catalytic conversion of C/sub 3/-C/sub 4/ paraffins to gasoline

    SciTech Connect (OSTI)

    Batchelder, R.F.; Pennline, H.W.; Schehl, R.R.; Finseth, D.H.

    1984-12-01T23:59:59.000Z

    The reaction of propane and butane to form gasoline-range hydrocarbons in a single-step catalytic process has been investigated in a tubular packed-bed reactor maintained at near isothermal conditions. Three catalyst systems were studied: a zeolite, ZSM-5; a dehydrogenation catalyst, chromia-alumina; and a 50:50 mixture by weight of the previous two catalysts. The effects of process parameters on the catalyst activity and product selectivity were determined. It was found that ZSM-5 alone will convert propane or butane to gasoline-range products over a temperaure range of 350/sup 0/ to 540/sup 0/C. The reaction of butane over ZSM-5 results in a large selectivity to propane (30 to 70 weight percent) depending on the temperature. The addition of chromia-alumina to ZSM-5 increased the first-order rate constant for butane conversion by 60% at 450/sup 0/C. The addition of chromia-alumina to ZSM-5 also increased the C/sub 5+/ selectivity for butane conversion by 30% at 540/sup 0/C. The addition of chromia-alumina to ZSM-5 had little effect on the rate of propane conversion, but it did increase the C/sub 5+/ selectivity for propane conversion by over 100% at 540/sup 0/C. The liquid product from alkane conversion was highly aromatic (>80%) under all conditions tested. 12 references, 8 figures.

  14. Preliminary evaluation of VTA effectiveness to protect runoff water quality on small pork production facilities in Texas 

    E-Print Network [OSTI]

    Wagner, K.; Harmel, D.; Higgs, K.

    2013-01-01T23:59:59.000Z

    Preliminary evaluation of VTA effectiveness to protect runoff water quality on small pork production facilities in Texas Kevin Wagner, Texas Water Resources Institute Daren Harmel and Kori Higgs, U.S. Department of Agriculture – Agricultural... 12-53 Prepared for: TEXAS STATE SOIL AND WATER CONSERVATION BOARD Prepared by: DR. KEVIN WAGNER TEXAS WATER RESOURCES INSTITUTE ------------------------------------------------------------- DR. DAREN HARMEL KORI HIGGS...

  15. Preliminary evaluation of VTA effectiveness to protect runoff water quality on small pork production facilities in Texas

    E-Print Network [OSTI]

    Wagner, K.; Harmel, D.; Higgs, K.

    2013-01-01T23:59:59.000Z

    Preliminary evaluation of VTA effectiveness to protect runoff water quality on small pork production facilities in Texas Kevin Wagner, Texas Water Resources Institute Daren Harmel and Kori Higgs, U.S. Department of Agriculture – Agricultural... 12-53 Prepared for: TEXAS STATE SOIL AND WATER CONSERVATION BOARD Prepared by: DR. KEVIN WAGNER TEXAS WATER RESOURCES INSTITUTE ------------------------------------------------------------- DR. DAREN HARMEL KORI HIGGS...

  16. Internalization of robust engineering methods in automotive product development : a study of corporate quality change in a large, mature automotive company

    E-Print Network [OSTI]

    Fallu, John W. (John William), 1966-

    2004-01-01T23:59:59.000Z

    It is broadly recognized in the automotive industry, as well as many others, that those organizations that can deliver timely new products or existing product upgrades at desired cost and quality targets will produce higher ...

  17. Health studies indicate MTBE is safe gasoline additive

    SciTech Connect (OSTI)

    Anderson, E.V.

    1993-09-01T23:59:59.000Z

    Implementation of the oxygenated fuels program by EPA in 39 metropolitan areas, including Fairbanks and Anchorage, Alaska, in the winter of 1992, encountered some unexpected difficulties. Complaints of headaches, dizziness, nausea, and irritated eyes started in Fairbanks, jumped to Anchorage, and popped up in various locations in the lower 48 states. The suspected culprit behind these complaints was the main additive for oxygenation of gasoline is methyl tert-butyl ether (MTBE). A test program, hastily organized in response to these complaints, has indicated that MTBE is a safe gasoline additive. However, official certification of the safety of MTBE is still awaited.

  18. U.S. gasoline prices continued to decreased (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S. gasoline9,

  19. U.S. gasoline prices continued to decreased (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S. gasoline9,6,

  20. U.S. gasoline prices continued to decreased (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S. gasoline

  1. U.S. gasoline prices decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 201514, 2014gasoline

  2. U.S. gasoline prices remain steady (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) The U.S.gasoline

  3. U.S. gasoline prices unchanged (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version)gasoline prices

  4. U.S. gasoline prices unchanged (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version)gasoline

  5. Gasoline prices fall for first time this year (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline4,gasolinelong

  6. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S. gasoline prices

  7. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S. gasoline

  8. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S. gasolineJune 1,

  9. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S. gasolineJune

  10. Modeling and Analysis of Natural Gas and Gasoline In A High Compressio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Analysis of Natural Gas and Gasoline In A High Compression Ratio High Efficiency ICRE Modeling and Analysis of Natural Gas and Gasoline In A High Compression Ratio High...

  11. Savings at the pump help push U.S. gasoline demand to 8-year...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    U.S. gasoline demand to 8-year high U.S. gasoline consumption this year is expected to top 9 million barrels per day for the first time since 2007. In its new monthly forecast,...

  12. Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Syngas Conversion to Gasoline-Range Hydrocarbons over PdZnOAl2O3 and ZSM-5 Composite Catalyst System. Syngas Conversion to Gasoline-Range Hydrocarbons over PdZnOAl2O3 and ZSM-5...

  13. Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    However, refined products such as motor oil and gasoline areused oil in itself is not a dangerous product if handledoil plastic containers can be processed to produce plastic products

  14. The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    oil price, the expected retail gasoline price and consumption quantities are shown using a short-run demand elasticity assumption

  15. Gasoline price effects on traffic safety in urban and rural areas: Evidence from Minnesota, 19982007

    E-Print Network [OSTI]

    Levinson, David M.

    Gasoline price effects on traffic safety in urban and rural areas: Evidence from Minnesota, 1998 February 2012 Received in revised form 3 May 2013 Accepted 24 May 2013 Keywords: Gasoline prices Traffic examines the role of gasoline prices in the occurrence of traffic crashes. However, no studies have

  16. Vertical Integration in Gasoline Supply: An Empirical Test of Raising Rivals' Costs

    E-Print Network [OSTI]

    California at Berkeley. University of

    gasoline prices. The 1997 acquisition of Unocal's West Coast refining and marketing assets by Tosco, and potentially confounding city-specific covariates. We find that Tosco increased the wholesale price of gasoline During the week of January 4-8, 1999, the average wholesale price of unbranded regular gasoline was 46

  17. Stranded Vehicles: How Gasoline Taxes Change the Value of Households' Vehicle Assets

    E-Print Network [OSTI]

    Rothman, Daniel

    of increases in gasoline prices varies across income, geography, and political affiliation. One standard that changes in gasoline prices can have sizable effects on the market value of vehicles. In this paper in gasoline prices affect the value of the vehicles that people own and how this varies across demographic

  18. forthcoming in Economic Letters Incidence of Federal and State Gasoline Taxes

    E-Print Network [OSTI]

    Perloff, Jeffrey M.

    concerns over high gasoline prices. As recently as April 2003, Congress argued over the merits of includingforthcoming in Economic Letters Incidence of Federal and State Gasoline Taxes Hayley Chouinarda, Berkeley, and member of the Giannini Foundation. Abstract The federal specific gasoline tax falls equally

  19. The impact of gasoline price changes on traffic safety: a time geography explanation Guangqing Chi a,

    E-Print Network [OSTI]

    Levinson, David M.

    The impact of gasoline price changes on traffic safety: a time geography explanation Guangqing Chi, United States a r t i c l e i n f o Keywords: Time geography Gasoline prices Traffic safety Traffic crashes Fatal crashes Space­time path a b s t r a c t The impact of gasoline price changes on traffic

  20. Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex-Fuel flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

  1. Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we- ration, air-to-fuel ratio control, gasoline-ethanol blend, flex-fuel vehicles I. INTRODUCTION Currently

  2. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of

    E-Print Network [OSTI]

    Silver, Whendee

    Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline

  3. Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices Ahmed distributed lags (NARDL) mod- el to examine the pass-through of crude oil prices into gasoline and natural gas the possibility to quantify the respective responses of gasoline and natural gas prices to positive and negative

  4. Determining the PTE and formulating a Title V permitting strategy for a bulk gasoline terminal

    SciTech Connect (OSTI)

    Wilder, A.A.; Turner, R.S. [TRC Environmental Corporation, Windsor, CT (United States)

    1996-12-31T23:59:59.000Z

    Bulk gasoline terminals may take operational restrictions and maintain operational flexibility while avoiding requirements of Title III and Title V of the Clean Air Act Amendments (CAA-A). Title V establishes a federally enforceable renewable operating permit program for major sources. Title III regulates Hazardous Air Pollutants (HAPs) to reduce emissions from all sources to a degree sufficient to protect the public by using Maximum Achievable Control Technology (MACT) standards achieved in practice within the industry. Volatile Organic Compounds (VOCs) and HAPs are emitted from storage tanks, loading operations, and components at gasoline terminals. To calculate the potential to emit (PTE) and assess regulation applicability, maximum facility throughputs should be determined by physical limitations of the loadrack. Loadrack throughputs can be correlated to storage tanks throughputs based on type of tank and the highest volatility product stored in that tank. Component emissions should be based on continuous service of the highest volatility product. To avoid recordkeeping and reporting requirements of Title III and/or Title V, VOC and HAP emissions may be restricted to below thresholds determined by the region`s ozone attainment status by limiting loadrack throughput and/or by meeting higher control equipment efficiencies. However, careful consideration must be given to operational flexibility and the potential future expansion of the facility.

  5. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    61.5 70.8 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

  6. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    62.6 71.7 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

  7. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    71.8 W 70.5 78.9 W 76.0 83.6 W 69.2 75.2 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

  8. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    W 68.4 70.8 W W 78.6 W 85.7 81.8 W 69.3 73.8 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

  9. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect (OSTI)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01T23:59:59.000Z

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  10. An independent refiner`s approach to reformulated gasolines

    SciTech Connect (OSTI)

    Czeskleba, H.M. [Ashland Petroleum Co., KY (United States)

    1995-12-31T23:59:59.000Z

    Included in this paper are brief reviews of Ashland Petroleum Company`s renewable oxygenate (ethanol) usage, the latest CAA oxygenate supply and demand forecasts, oxygenated fuel and reformulated blending economics, some very brief comments on the EPA proposed renewable oxygenate standard (ROS), and Ashland`s approach to reformulated gasolines (RFG).

  11. Analysis of leaded and unleaded gasoline pricing. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-03-15T23:59:59.000Z

    This report summarizes the evaluation of the cost price relation between the two fuels. The original scope of work identified three separate categories of effort: Gather and organize available data on the wholesale and retail prices of gasoline at a national level for the past 5 years. Using the data collected in Subtask 1, develop models of pricing practices that aid in explaining retail markups and price differentials for different types and grades of gasoline at different retail outlets in the current gasoline market. Using the data from Subtask 1 and the analysis framework from Subtask 2, analyze the likely range of future retail markups and price differentials for different grades of leaded and unleaded gasoline. The report is organized in a format that is different than suggested by the subtasks outlined above. The first section provides a characterization of the problem - data available to quantify cost and price of the fuels as well as issues that directly affect this relationship. The second section provides a discussion of issues likely to affect this relation in the future. The third section postulates a model that can be used to quantify the relation between fuels, octane levels, costs and prices.

  12. LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL

    E-Print Network [OSTI]

    Boyer, Edmond

    1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 , R. Bounaceur1 , H. Le Gall1 , A. Pires da Cruz2 , A. The influence of ethanol as an oxygenated additive has been investigated for these two fuels and has been found

  13. Interdisciplinary investigation of subsurface contaminant transport and fate at point-source releases of gasoline containing MTBE

    SciTech Connect (OSTI)

    Buxton, H.T.; Baehr, A.L. [Geological Survey, West Trenton, NJ (United States); Landmeyer, J.E. [Geological Survey, Columbia, SC (United States)] [and others

    1997-12-31T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) is commonly found at concentrations above the current U.S. Environmental Protection Agency draft lifetime health advisory for drinking water (20 to 200 micrograms per liter) at many point-source gasoline release sites. MTBE is significantly more persistent than benzene, toluene, ethyl-benzene and xylenes (BTEX) in the subsurface. Therefore, evaluation of the implications of its presence in gasoline to monitored natural attenuation and engineered bioremediation alternatives is warranted. An interdisciplinary, field-based investigation of the subsurface transport and fate of MTBE and petroleum hydrocarbons is being conducted by the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program at the site of an underground gasoline storage-tank release near Beaufort, South Carolina. The objective of the investigation is to provide a systematic evaluation of natural attenuation of MTBE compared to BTEX. Results of the field and laboratory studies at this site will be generalized to a broader range of hydrogeochemical conditions through experiments at other sites. Furthermore, newly developed methods of analysis can be applied to sites across the Nation. This investigation of MTBE at point-source release sites is coordinated with investigations of the occurrence of MTBE in shallow ground water, surface water, precipitation, and the atmosphere being conducted by the USGS National Water-Quality Assessment Program.

  14. Management of nitrogen and composted biosolids to cycle nutrients and enhance environmental quality during production and after transplanting turfgrass sod 

    E-Print Network [OSTI]

    Schnell, Ronnie Wayne

    2009-05-15T23:59:59.000Z

    MANAGEMENT OF NITROGEN AND COMPOSTED BIOSOLIDS TO CYCLE NUTRIENTS AND ENHANCE ENVIRONMENTAL QUALITY DURING PRODUCTION AND AFTER TRANSPLANTING TURFGRASS SOD A Thesis by RONNIE WAYNE SCHNELL Submitted to the Office of Graduate Studies... of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2007 Major Subject: Agronomy MANAGEMENT OF NITROGEN AND COMPOSTED BIOSOLIDS TO CYCLE NUTRIENTS AND ENHANCE...

  15. Management of nitrogen and composted biosolids to cycle nutrients and enhance environmental quality during production and after transplanting turfgrass sod

    E-Print Network [OSTI]

    Schnell, Ronnie Wayne

    2009-05-15T23:59:59.000Z

    MANAGEMENT OF NITROGEN AND COMPOSTED BIOSOLIDS TO CYCLE NUTRIENTS AND ENHANCE ENVIRONMENTAL QUALITY DURING PRODUCTION AND AFTER TRANSPLANTING TURFGRASS SOD A Thesis by RONNIE WAYNE SCHNELL Submitted to the Office of Graduate Studies... of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2007 Major Subject: Agronomy MANAGEMENT OF NITROGEN AND COMPOSTED BIOSOLIDS TO CYCLE NUTRIENTS AND ENHANCE...

  16. Fact #858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest Decline since 2008 – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Retail Gasoline Prices in 2014 Experienced the Largest Decline since 2008

  17. 382-1 underground gasoline storage tank soil-gas survey

    SciTech Connect (OSTI)

    Jacques, I.D.

    1993-08-27T23:59:59.000Z

    A soil-gas survey was conducted near the 382 Pump House in the 300 Area of the Hanford Site. The objective of the soil-gas survey was to characterize the extent of petroleum product contamination in the soil beneath the 382-1 underground gasoline storage tank excavation. The tank was discovered to have leaked when it was removed in September 1992. The results of this soil-gas survey indicate petroleum products released from the 382-1 tank are probably contained in a localized region of soil directly beneath the tank excavation site. The soil-gas data combined with earlier tests of groundwater from a nearby downgradient monitoring well suggest the spilled petroleum hydrocarbons have not penetrated the soil profile to the water table.

  18. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  19. Inheritance of Oil Production and Quality Factors in Peant (Arachis hypogaea L.)

    E-Print Network [OSTI]

    Wilson, Jeffrey Norman

    2013-08-02T23:59:59.000Z

    Peanut (Arachis hypogaea L.) has the potential to become a major source of biodiesel but for market viability, peanut oil yields must increase and specific quality requirements must be met. Oil yield in peanut is influenced by many components...

  20. Managing Rangeland Watersheds for Agricultural Production, Water Quality, and Food Safety

    E-Print Network [OSTI]

    Tate, Kenneth

    raw food always safe Salinas River riparian corridors wildlife habitat water quality Juxtaposition of plant agriculture and grazed rangeland Salinas Valley example Chaparral wildlife habitat Year Food flows, retention basins, constructed wetlands, etc. 2012 technical reports on waterborne pathogens

  1. Assessment of California reformulated gasoline impact on vehicle fuel economy

    SciTech Connect (OSTI)

    Aceves, S., LLNL

    1997-01-01T23:59:59.000Z

    Fuel economy data contained in the 1996 California Air Resources Board (CARB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4%, with a 95% upper confidence bound of 6%. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CARB with respect to the impact of CaRFG on fuel economy.

  2. Lead Section Grower Four Star Greenhouse has been producing high quality garden products since

    E-Print Network [OSTI]

    products since 1977 and is the largest partner/supplier of the nationally recognized Greenhouse's Mission Statement in all job related functions. Minimum Qualifications: 1

  3. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998

    SciTech Connect (OSTI)

    None

    1999-03-01T23:59:59.000Z

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.

  4. Seston food quality and Daphnia production efficiencies in an oligo-mesotrophic Subalpine Lake

    E-Print Network [OSTI]

    Brett, Michael T.

    biomass dynamics in Castle Lake during 1991. Life table experiments showed HUFA effects on D. rosea at the primary producer and herbivore interface is influ- enced by both the quality and quantity of food avail and Schulz 1998). While food quantity can be easily de- fined and studied, limnologists have debated what de

  5. U.S. Aviation Gasoline Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New England (PADD 1A) ConnecticutProduct: Aviation

  6. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which can lead to public health problems. * MtBE (Methyl tert Butyl Ether), a gasoline additive, has begun to contaminate ground water supplies. * Similarly, perchlorate has...

  7. Runoff water quality and vegetation production on reclaimed mine spoil in the Post Oak Savannah of Texas

    E-Print Network [OSTI]

    Losensky, Karen Mae

    1986-01-01T23:59:59.000Z

    since the 1970's. This increase is due to a switch from the reliance on oil and gas to coal by private industries and public utilites. Texas has 110 billion tons of lignite of which 10. 4 billion tons can be recovered by strip mining. This means more...RUNOFF WATER QUALITY AND VEGETATION PRODUCTION ON RECLAIMED MINE SPOIL IN THE POST OAK SAVANNAH OF TEXAS A Thesis by KAREN MAE LOSENSKY Submitted to rhe Graduate College of Texas AAM University in partial fulfillment of the requirement...

  8. The Speed of Gasoline Price Response in Markets With and Without Edgeworth Cycles

    E-Print Network [OSTI]

    Lewis, Matt; Noel, Michael

    2009-01-01T23:59:59.000Z

    Columbus, OH. , “Temporary Wholesale Gasoline Price Spikesrespond fairly slowly to wholesale price changes. This doesand asymmetrically to wholesale costs, with cost increases

  9. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) - Continued Year...

  10. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    table. 56 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  11. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1999 401 Table A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District and State, 1984-Present (Cents per Gallon...

  12. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Information Administration Petroleum Marketing Annual 1995 Table A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District and State, 1984-Present (Cents per Gallon...

  13. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    table. 56 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  14. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationPetroleum Marketing Annual 1999 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  15. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  16. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1999 Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) Year Month...

  17. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationPetroleum Marketing Annual 1998 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  18. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationPetroleum Marketing Annual 1998 Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) - Continued Year...

  19. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  20. Vehicle Technologies Office Merit Review 2015: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    Presentation given by Cummins at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline turbocharged direct...

  1. The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    economic slowdown cuts oil demand. At the intersection ofoil price, the expected retail gasoline price and consumption quantities are shown using a short-run demand

  2. The producer surplus associated with gasoline fuel use in the United States1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    : Q41, Q43 Keywords: oil, marginal costs, producer surplus, gasoline, wealth transfer, drilling costs, exploratory wells, development wells 1 We received financial support from the Sustainable Transportation

  3. A Comparison of Two Gasoline and Two Diesel Cars with Varying...

    Broader source: Energy.gov (indexed) [DOE]

    local lower for gasoline: local NO NO 2 2 , acidification, , acidification, eutrophication eutrophication F F Cancer risk: low, in general, but with varying Cancer risk:...

  4. Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

  5. Impacts of Oxygenated Gasoline Use on California Light-Duty Vehicle Emissions

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1996-01-01T23:59:59.000Z

    possibly due to running loss evaporative emissions thatOnlyrunning exhaust and running loss evaporative emissionshad opposing effects on running loss evapo- gasoline shown

  6. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  7. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  8. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) - Continued Year...

  9. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    DOE Patents [OSTI]

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02T23:59:59.000Z

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  10. DOE Gasoline Price Watch Website and Hotline | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million to PromoteGasoline

  11. U.S. gasoline prices continued to decreased (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.

  12. U.S. gasoline prices decrease (Short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9, 20150,

  13. U.S. gasoline prices decrease (Short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9, 20150,6,

  14. U.S. gasoline prices decrease (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9,

  15. U.S. gasoline prices decrease (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9,April 6,

  16. U.S. gasoline prices decrease (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9,April

  17. U.S. gasoline prices decrease (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9,April14,

  18. U.S. gasoline prices decrease (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S.9,April14,

  19. U.S. gasoline prices decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015

  20. U.S. gasoline prices decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 201514, 2014 U.S.

  1. U.S. gasoline prices decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 201514, 2014

  2. U.S. gasoline prices decreased (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short version) The29,,

  3. U.S. gasoline prices decreased (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short version)

  4. U.S. gasoline prices increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short14,0, 20145, 20146,

  5. U.S. gasoline prices increase slightly (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short14,0,long,longlong

  6. U.S. gasoline prices increase slightly (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue

  7. U.S. gasoline prices increase slightly (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) The U.S. average

  8. U.S. gasoline prices remain steady (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) The U.S.

  9. U.S. gasoline prices show little movement (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) Theshort

  10. U.S. gasoline prices show little movement (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) Theshort7, 2014

  11. U.S. gasoline prices show little movement (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) Theshort7, 20141,

  12. U.S. gasoline prices show little movement (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) Theshort7,

  13. U.S. gasoline prices unchanged (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version)

  14. U.S. gasoline prices unchanged (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version)gasolinegasoline

  15. Aviation Gasoline Sales to End Users Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil andMarketW W W W W W

  16. Conventional Gasoline Sales to End Users, Total Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX Imeans ofF

  17. Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : 42Q)2Q)6)2k(STEO)

  18. Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : 42Q)2Q)6)2k(STEO)

  19. U.S. gasoline price decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy5.530, 2013 U.S.gasoline price

  20. U.S. gasoline price decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy5.530, 2013 U.S.gasoline pricegasoline

  1. U.S. Gasoline and Diesel Retail Prices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may be keyNuclearEconomic growthChange |Gasoline863

  2. U.S. gasoline continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea:diesel pricesU.S. gasoline

  3. U.S. gasoline continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea:diesel pricesU.S. gasolineU.S.

  4. U.S. gasoline price continues to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea:diesel pricesU.S.6,gasoline price

  5. U.S. gasoline price continues to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea:diesel pricesU.S.6,gasoline

  6. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea:diesel6,Novemberlong,gasoline

  7. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decrease (short version) The

  8. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decrease (short version)

  9. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decrease (short

  10. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decrease (shortgasoline

  11. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decrease

  12. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decreasegasoline prices

  13. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decreasegasoline pricesshort

  14. U.S. gasoline prices continue to decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decreasegasoline

  15. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to decreasegasolinelongshort9,

  16. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to

  17. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S.

  18. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S.increase (short

  19. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S.increase

  20. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S.increaseshort

  1. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015

  2. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015short version) The

  3. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015short version)

  4. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015short version)short

  5. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015short

  6. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015shortgasoline prices

  7. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015shortgasoline

  8. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015shortgasolinegasoline

  9. Effect of coal and coke qualities on blast furnace injection and productivity at Taranto

    SciTech Connect (OSTI)

    Salvatore, E.; Calcagni, M. [ILVA, Taranto (Italy); Eichinger, F.; Rafi, M.

    1995-12-01T23:59:59.000Z

    Injection rates at Taranto blast furnaces Nos. 2 and 4, for more than 16 months, was maintained above 175 kg/thm. Monthly average injection rate for two months stabilized above 190 kg/thm. This performance was possible due to the very high combined availabilities of Taranto blast furnaces and the KST injection system. Based upon this experience the quantitative relationships between coke/coal and blast furnace operational parameters were studied and are shown graphically. During this period due to coke quality changes, injection rate had to be reduced. The effect of using coke breeze in coke/ferrous charge as well as coal blend was also evaluated. Permeability of the furnace was found to be directly affected by O{sub 2} enrichment level, while at a high PCI rate no correlation between actual change in coke quality and permeability could be established. The future of PCI technology lies in better understanding of relationships between material specifications and blast furnace parameters of which permeability is of prime importance.

  10. Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint

    SciTech Connect (OSTI)

    He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

    2011-02-01T23:59:59.000Z

    The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

  11. Upper Middle Mainstem Columbia River Subbasin Water Quality Parameters Affected by Hydropower Production

    E-Print Network [OSTI]

    by Hydropower Production Total Dissolved Gas Total dissolved gas (TDG) supersaturation often occurs during periods of high runoff and spill at hydropower projects and can be harmful to fish. Supersaturation occurs of hydropower projects on Columbia River water temperature has been to delay the time when thermal maximums

  12. Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .

    SciTech Connect (OSTI)

    Wallner, T. (Energy Systems)

    2011-08-01T23:59:59.000Z

    The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

  13. An experimental investigation of low octane gasoline in diesel engines.

    SciTech Connect (OSTI)

    Ciatti, S. A.; Subramanian, S. (Energy Systems)

    2011-09-01T23:59:59.000Z

    Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

  14. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles Chris A. Jakober, 2

    E-Print Network [OSTI]

    1 Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1 Chris A0205CH11231. LBNL752E #12;Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1Chris A-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were

  15. Automakers' Short-Run Responses to Changing Gasoline Prices and the Implications for Energy Policy

    E-Print Network [OSTI]

    Edwards, Paul N.

    Automakers' Short-Run Responses to Changing Gasoline Prices and the Implications for Energy Policy Preliminary, Please do not Cite Abstract We provide empirical evidence that automobile manufacturers price as if consumers respond to gasoline prices. We estimate a selection-corrected regression equation and exploit

  16. Supplement for "Secondary organic aerosol1 formation from idling gasoline passenger vehicle2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Supplement for "Secondary organic aerosol1 formation from idling gasoline passenger vehicle2.O. Box 503, FIN-00101 Helsinki, Finland}14 [5]{Department of Chemistry, Atmospheric Science, University experiment show a total concentration of light aromatics of less than 1 ppb.6 Vehicles7 In total six gasoline

  17. Developing an accelerated aging system for gasoline particulate filters and an evaluation test for effects on engine performance

    E-Print Network [OSTI]

    Jorgensen, James E. (James Eastman)

    2014-01-01T23:59:59.000Z

    Stringent regulations worldwide will limit the level of particulate matter (PM) emitted from gasoline engines equipped with direct fuel injection. Gasoline particulate filters (GPFs) present one strategy for meeting PM ...

  18. Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations

    SciTech Connect (OSTI)

    Egbendewe-Mondzozo, Aklesso; Swinton, S.; Izaurralde, Roberto C.; Manowitz, David H.; Zhang, Xuesong

    2013-03-01T23:59:59.000Z

    This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environ- mental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy, rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government.

  19. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

  20. Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

    Broader source: Energy.gov [DOE]

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks

  1. Fact #834: August 18, 2014 About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #834: About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles

  2. Math 115 Excel Group Project 3 Worksheet Price Elasticity of Demand: U.S. Demand for Gasoline

    E-Print Network [OSTI]

    Newberger, Florence

    Math 115 Excel Group Project 3 Worksheet Price Elasticity of Demand: U.S. Demand for Gasoline 1 for Gasoline 2 4. Consider the two price-demand graphs below. The labels give the x-value. Which graph for Gasoline 3 6. Jewelry This quote is from the article "Americans Snap Up Gold Jewelry as Metal's Price Sinks

  3. The Elasticity of Demand for Gasoline in China1 C.-Y. Cynthia Lin, Jieyin (Jean) Zeng

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    understanding of the relationships among gasoline demand, gasoline price and disposable income is important and the Brent crude oil price over the period 1997-2009. Except for 2009, domestic gasoline and diesel prices followed the trends in the Brent crude oil price, though not exactly. Although China's domestic fuel prices

  4. Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve Timing

    E-Print Network [OSTI]

    Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve engine efficiency. Fuel-flexible engines permit the increased use of ethanol-gasoline blends. Ethanol points across the engine operating range for four blends of gasoline and ethanol. I. INTRODUCTION Fuel

  5. Quantitative in-cylinder NO-LIF imaging in a realistic gasoline engine with spray-guided direct injection

    E-Print Network [OSTI]

    Lee, Tonghun

    of engines with gasoline direct injection. Exhaust gas aftertreatment requires storage catalystsQuantitative in-cylinder NO-LIF imaging in a realistic gasoline engine with spray-guided direct fractions in a gasoline engine with spray-guided direct injection using laser-induced fluorescence (LIF

  6. Office of Quality Assurance

    Broader source: Energy.gov [DOE]

    The Office of Quality Assurance establishes and maintains the quality assurance (QA) policies, requirements and guidance for the Department and serves as DOE's corporate resource to ensure that products and services meet or exceed the Department’s quality objectives.

  7. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-17T23:59:59.000Z

    This Order ensures that the quality of DOE/NNSA products and services meets or exceeds the customers' expectations. Cancels DOE O 414.1B and DOE N 411.1. Canceled by DOE O 414.1D.

  8. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect (OSTI)

    Confer, Keith

    2014-09-30T23:59:59.000Z

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  9. Mapping surrogate gasoline compositions into RON/MON space

    SciTech Connect (OSTI)

    Morgan, Neal; Kraft, Markus [Department of Chemical Engineering, University of Cambridge, Cambridge CB2 3RA (United Kingdom); Smallbone, Andrew; Bhave, Amit [Reaction Engineering Solutions Ltd., 61 Canterbury Street, Cambridge CB4 3QG (United Kingdom); Cracknell, Roger; Kalghatgi, Gautam [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

    2010-06-15T23:59:59.000Z

    In this paper, new experimentally determined octane numbers (RON and MON) of blends of a tri-component surrogate consisting of toluene, n-heptane, i-octane (called toluene reference fuel TRF) arranged in an augmented simplex design are used to derive a simple response surface model for the octane number of any arbitrary TRF mixture. The model is second-order in its complexity and is shown to be more accurate to the standard ''linear-by-volume'' (LbV) model which is often used when no other information is available. Such observations are due to the existence of both synergistic and antagonistic blending of the octane numbers between the three components. In particular, antagonistic blending of toluene and iso-octane leads to a maximum in sensitivity that lies on the toluene/iso-octane line. The model equations are inverted so as to map from RON/MON space back into composition space. Enabling one to use two simple formulae to determine, for a given fuel with known RON and MON, the volume fractions of toluene, n-heptane and iso-octane to be blended in order to emulate that fuel. HCCI engine simulations using gasoline with a RON of 98.5 and a MON of 88 were simulated using a TRF fuel, blended according to the derived equations to match the RON and MON. The simulations matched the experimentally obtained pressure profiles well, especially when compared to simulations using only PRF fuels which matched the RON or MON. This suggested that the mapping is accurate and that to emulate a refinery gasoline, it is necessary to match not only the RON but also the MON of the fuel. (author)

  10. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; Thomas, John F [ORNL; Parks, II, James E [ORNL; West, Brian H [ORNL

    2015-01-01T23:59:59.000Z

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  11. Scrap recycling and production of high quality steel grades in Europe

    SciTech Connect (OSTI)

    Marique, C. [C.R.M., Liege (Belgium)

    1996-12-31T23:59:59.000Z

    The possible deleterious effects of higher contents in tramp elements on steel properties must be well defined in order to keep them within acceptable limits. No industrial technique is presently available to remove tramp elements from steel melts. Only a strict control on the metallic input and on the scrap composition is feasible. In this matter, scrap preparation which aims at a better separation between iron and other nonferrous components, is getting more attention. A large multinational project has been initiated in Europe under the sponsorship of ECSC and of the Steel Industry to better identify the effects of residuals on steel properties and to examine potential techniques able to control tramp elements during steelmaking operations. The project has been supported and orientated by a preliminary study, reviewing the relevant published data on the tramp element influence for long and flat products. The present report is devoted to overview available information on the effects of tramp elements and to describe the targets and the content of the European megaproject on scrap recycling.

  12. ETBE as a gasoline blending component. The experience of Elf Aquitaine

    SciTech Connect (OSTI)

    Chatin, L.; Fombarlet, C.; Bernasconi, C.; Gauthier, A.; Schmelzle, P.

    1994-10-01T23:59:59.000Z

    This study, led by Elf Aquitaine for several years, shows the possibility to use ETBE instead of MTBE as a gasoline component and compares properties of these two ethers regarding different parameters like octanes, volatility, engine cleanliness, stability of the ethers themselves and of gasoline blends, lubricant compatibility and toxicological data. ETBE appears at least as good as MTBE and sometimes better, as ETBE is chemically more similar to hydrocarbons than MTBE and can be used advantageously as a gasoline oxygenated component. 9 refs., 4 figs., 8 tabs.

  13. Determination of a peak benzene exposure to consumers at typical self-service gasoline stations

    E-Print Network [OSTI]

    Carapezza, Ted

    1977-01-01T23:59:59.000Z

    the public exposure to benzene at the self-serv1ce gas pump seems of paramount importance dur1ng this time of the highly publicized benzene hazard and increased gasoline consumption. These factors produced the amtivating effect for th1s research effort wh... Table ~Pa e I. HUMAN INHALATION EXPOSURE TO GASOLINE VAPOR. I I. SELF-SERVICE GASOLINE STATIONS . III. SAMPLING RESULTS IV. FIELD DATA: STATION I V. FIELD DATA: STATION II VI. FIEI D DATA: STATION III. VI I. FIELD DATA: STATION IV . VIII...

  14. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline pricesGasoline

  15. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline4, 2014 Gasoline

  16. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline4, 2014Gasoline

  17. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline4,gasoline

  18. Knock limits in spark ignited direct injected engines using gasoline/ethanol blends

    E-Print Network [OSTI]

    Kasseris, Emmanuel P

    2011-01-01T23:59:59.000Z

    Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

  19. Vehicle Technologies Office Merit Review 2014: Gasoline-Like Fuel Effects on Advanced Combustion Regimes

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about gasoline-like...

  20. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    5.7 5.9 4.4 12.9 NA 17.3 See footnotes at end of table. 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type 18 Energy Information Administration ...

  1. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    98.0 98.0 86.6 75.0 - 80.1 See footnotes at end of table. 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type 20 Energy Information Administration ...

  2. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    3.3 3.4 7.9 3.3 W 11.3 See footnotes at end of table. 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type 26 Energy Information Administration ...

  3. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    92.4 92.1 83.7 74.1 W 80.9 See footnotes at end of table. 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type 24 Energy Information Administration ...

  4. Table 8. U.S. Refiner Conventional Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    87.4 86.9 78.3 68.5 W 70.8 See footnotes at end of table. 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type 16 Energy Information Administration ...

  5. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    92.8 92.5 84.0 72.5 W 80.7 See footnotes at end of table. 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type 24 Energy Information Administration ...

  6. Table 8. U.S. Refiner Conventional Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    88.4 87.8 80.1 70.0 NA 72.6 See footnotes at end of table. 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type 16 Energy Information Administration ...

  7. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    94.0 93.9 83.2 73.8 - 79.3 See footnotes at end of table. 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type 20 Energy Information Administration ...

  8. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    3.6 3.7 7.9 3.1 W 11.0 See footnotes at end of table. 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type 26 Energy Information Administration ...

  9. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    5.7 5.9 3.9 12.7 W 16.6 See footnotes at end of table. 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type 18 Energy Information Administration ...

  10. Vehicle Technologies Office Merit Review 2015: Gasoline-Like Fuel Effects on Advanced Combustion Regimes

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about gasoline-like...

  11. Beyond a Billion: Clean Cities Coaliations Have Displaced More Than a Billion Gallons of Gasoline

    SciTech Connect (OSTI)

    Not Available

    2005-10-01T23:59:59.000Z

    In 2004, DOE's Clean Cities achieved a milestone - displacing the equivalent of more than 1 billion gallons of gasoline since 1994. This fact sheet describes how Clean Cities achieved this goal.

  12. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    SciTech Connect (OSTI)

    Lammert, M.

    2008-06-01T23:59:59.000Z

    This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

  13. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect (OSTI)

    Splitter, Derek A [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  14. Determining Air Quality and Greenhouse Gas Impacts of

    E-Print Network [OSTI]

    Dabdub, Donald

    Determining Air Quality and Greenhouse Gas Impacts of Hydrogen Infrastructure and Fuel Cell of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure

  15. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-29T23:59:59.000Z

    This Order ensures that the quality of DOE/NNSA products and services meets or exceeds the customer's expectations. This Order cancels DOE O 414.1A, Quality Assurance, dated 9-29-99, and Attachment 1, paragraph 8, and Attachment 2, paragraph 22, of DOE O 440.1A, Worker Protection Management for DOE Federal and Contractor Employees, dated 3-27-98. Cancels: DOE O 414.1A and DOE O 440.1A, parts as noted.

  16. Productivity Techniques and Quality Aspects in the Criticality Safety Evaluation of Y-12 Type-B Fissile Material Packages

    SciTech Connect (OSTI)

    DeClue, J. F.

    2011-06-28T23:59:59.000Z

    The inventory of certified Type-B fissile material packages consists of ten performance-based packages for offsite transportation purposes, serving transportation programs at the Y-12 National Security Complex. The containment vessels range from 5 to 19 in. in diameter and from 17 to 58 in. in height. The drum assembly external to the containment vessel ranges from 18 to 34 in. in diameter and from 26 to 71 in. in height. The weight of the packaging (drum assembly and containment vessel) ranges from 239 to 1550 lb. The older DT-nn series of Cellotex-based packages are being phased-out and replaced by a new generation of Kaolite-based ('Y-12 patented insulation') packages capable of withstanding the dynamic crush test 10 CFR 71.73(c)(2). Three replacement packages are in various stages of development; two are in use. The U.S. Department of Transportation (DOT) 6M specification package, which does not conform to the U.S. Nuclear Regulatory Commission requirements for Type-B packages, is no longer authorized for service on public roads. The ES-3100 shipping package is an example of a Kaolite-based Type-B fissile material package developed as a replacement package for the DOT 6M. With expanded utility, the ES-3100 is designed and licensed for transporting highly enriched uranium and plutonium materials on public roads. The ES-3100 provides added capability for air transport of up to 7-kg quantities of uranium material. This paper presents the productivity techniques and quality aspects in the criticality safety evaluation of Y-12 packages using the ES-3100 as an example.

  17. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  18. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    2004. Fuel economy of hydrogen fuel cell vehicles. JournalSwitching to a U.S. hydrogen fuel cell vehicle fleet: TheImproving Health with Hydrogen Fuel-Cell Vehicles. SCIENCE

  19. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    Oil refinery Pipeline Storage Truck distribution Gas stationOil refinery Pipeline Storage Truck distribution Gas stationrefinery Pipeline Terminal storage Truck distribution Gas

  20. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    involved in the full fuel cycle, including producing,2000). The concept of a full fuel cycle is illustrated inand tire wear. The full fuel cycle is also called well-to-

  1. Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality

    E-Print Network [OSTI]

    Auffhammer, Maximilian; Kellogg, Ryan

    2009-01-01T23:59:59.000Z

    Massachusetts during the years these measurements were taken. In contrast to RVP, CARB regulations (

  2. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    emissions factors and hydrogen infrastructure engineering/consumption of hydrogen infrastructure such as the hydrogenspatial layouts of hydrogen infrastructure were determined.

  3. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    from diesel-truck delivery and electric generation at powerfrom diesel-truck delivery and electric generation at power

  4. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    exhaust, starting exhaust, diurnal, hot soak, running loss,resting loss Running exhaust, idle exhaust, starting exhaust

  5. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    from diesel-truck delivery and electric generation at powerfrom diesel-truck delivery and electric generation at powerHydro Total Generation mix 2.2.5.3. Diesel-fueled delivery

  6. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    Coal extraction Rail transport Power plant Elec transmission emissionsCoal extraction Rail transport Power plant Elec transmission emissionsCoal extraction Rail transport Power plant Elec transmission emissions

  7. Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    most underground storage tanks for gasoline were made ofwaters, gasoline spills from leaking underground storage

  8. Price controls and international petroleum product prices

    SciTech Connect (OSTI)

    Deacon, R.T.; Mead, W.J.; Agarwal, V.B.

    1980-02-01T23:59:59.000Z

    The effects of Federal refined-product price controls upon the price of motor gasoline in the United States through 1977 are examined. A comparison of domestic and foreign gasoline prices is made, based on the prices of products actually moving in international trade. There is also an effort to ascribe US/foreign market price differentials to identifiable cost factors. Primary emphasis is on price comparisons at the wholesale level, although some retail comparisons are presented. The study also examines the extent to which product price controls are binding, and attempts to estimate what the price of motor gasoline would have been in the absence of controls. The time period under consideration is from 1969 through 1977, with primary focus on price relationships in 1970-1971 (just before US controls) and 1976-1977. The foreign-domestic comparisons are made with respect to four major US cities, namely, Boston, New York, New Orleans, and Los Angeles. 20 figures, 14 tables.

  9. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOE Patents [OSTI]

    Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

    1993-01-01T23:59:59.000Z

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  10. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOE Patents [OSTI]

    Baker, E.G.; Elliott, D.C.

    1993-01-19T23:59:59.000Z

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  11. Proton NMR analysis of octane number for motor gasoline: Part V

    SciTech Connect (OSTI)

    Ichikawa, M.; Nonaka, N.; Amano, H.; Takada, I.; Ishimori, S. [Suzuki Motor Corp., Hamamatsu (Japan); Andoh, H.; Kumamoto, K. [Showa Shell Sikiyu Tokyo (Japan)

    1992-10-01T23:59:59.000Z

    A method to predict the octane number of automobile gasoline containing methyl tert-butyl ether (MTBE) by proton magnetic resonance (PMR) spectrometry was studied. Samples of gasoline whose octane numbers had been identified according to the ASTM standards (commercially available premium gasoline to which MTBE was added at rates of 7 vol % and 14 vol %) were used in this investigation of the effect of MTBE on the octane number. The findings were utilized to introduce a term regarding MTBE into the previously reported linear regression equation for estimating the octane number from the PMR spectrum, and the appropriateness of the linear regression equation was assessed. As a result the MTBE contents in the sample were determined with satisfactory accuracy by using a standard addition method, and a linear regression equation reflecting the effect of MTBE was obtained. These achievements are reported. 11 refs., 3 figs., 5 tabs.

  12. U.S. gasoline prices fall to lowest level since February 2010 (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short14, 2014gasoline

  13. U.S. gasoline prices fall to lowest level since February 2010 (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short14, 2014gasoline8,

  14. U.S. gasoline prices increase for first time in a month (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short14,0, 20145,gasoline

  15. U.S. monthly gasoline price in December on track to be lowest in 3 years

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaper gasoline prices

  16. U.S. monthly gasoline price in December on track to be lowest in 3 years

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaper gasoline

  17. Gasoline prices decrease nationally for first time in 4 weeks (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline3, 2014

  18. Gasoline prices decrease nationally for first time in 4 weeks (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline3, 20147,

  19. Gasoline prices decrease nationally for first time in 4 weeks (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline3,

  20. Gasoline prices decrease nationally for first time in 4 weeks (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline3,1, 2014

  1. Gasoline prices decrease nationally for first time in 4 weeks (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline3,1, 20144,

  2. Gasoline prices decrease nationally for first time in 4 weeks (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline3,1,

  3. Gasoline prices decrease nationally for first time in 4 weeks (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline3,1,26,

  4. Gasoline prices decrease nationally for first time in 4 weeks (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline3,1,26,June

  5. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline prices decrease

  6. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline prices

  7. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline

  8. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline4, 2014

  9. Gasoline prices decrease nationally for first time in 4 weeks (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline4,

  10. ,"U.S. Conventional Gasoline Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to End Users, Total Refiner SalesConventional Gasoline Refiner Sales

  11. ,"U.S. Conventional, Average Refiner Gasoline Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to End Users, Total Refiner SalesConventional Gasoline Refiner

  12. ,"U.S. Reformulated, Average Refiner Gasoline Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average Refiner Gasoline Prices" ,"Click

  13. ,"U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average Refiner Gasoline Prices"Sales Volumes

  14. ,"U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average Refiner Gasoline Prices"SalesSales

  15. Fact #869: April 20, 2015 Gasoline Direct Injection Captures 38% Market Share in Just Seven Years from First Significant Use – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Gasoline Direct Injection Captures 38% Market Share in Just Seven Years from First Significant Use

  16. Relative ozone forming potential of methanol-fueled vehicle emissions and gasoline-fueled vehicle emissions in outdoor smog chambers. Interim report, 1991-1992

    SciTech Connect (OSTI)

    Jeffries, H.E.; Sexton, K.G.

    1993-02-01T23:59:59.000Z

    The experimental program compares the relative NO oxidation and O3 forming capabilities of surrogate VOC mixtures that are representative of urban air, emissions from vehicles using methanol fuels, and emissions from vehicles using industry-average gasoline. The experiments used a dual side-by-side outdoor chamber with initial NOx of 330 ppb and hydrocarbon-to-NOx ratios 4.5, 6, and 9:1. The urban VOC mixture was based upon ambient air analyses conducted by EPA for 6-9 AM in 41 cities over the period 1984-1988. The automotive VOC mixtures were based upon exhaust, evaporative, and running loss measurements made in the Auto/Oil Air Quality Improvement Research Program and upon the application of EPA's MOBILE4 emissions model applied in a model scenario in Dallas/Fort Worth in the year 2005. Each of the VOC mixtures had about 55 individual species in which about 45 species were surrogates for the remaining measured carbon. In addition to testing the relative reactivity of each VOC mixture against the other mixtures, the majority of the experiments used mixtures in which 50% of the carbon was from the urban mix and 50% of the carbon was from industry-average gasoline vehicle emissions or 50% of the carbon was from the methanol-fueled vehicle emissions. Some experiments were also conducted with higher fractions of formaldehyde (HCHO) in either the urban mix or in the methanol mix.

  17. Relative ozone forming potential of methanol-fueled vehicle emissions and gasoline-fueled vehicle emisons in outdoor smog chambers. Final report

    SciTech Connect (OSTI)

    Jeffries, H.E.; Sexton, K.G.

    1995-01-01T23:59:59.000Z

    This experimental program compares the relative NO oxidation and O3 forming capabilities of surrogate VOC mixtures that are representative of urban air, emissions from vehicles using methanol fuels, and emission from vehicles using industry-average gasoline and Fuel F, one of the reformulated fuels used in the Auto/Oil test program. The urban VOC mixture was based upon ambient air analyses conducted by EPA for 6-9 AM in 41 cities over the period 1984-1988. The automotive VOC mixtures were based upon exhaust, evaporative, and running loss measurements made in the Auto/Oil Air Quality Improvement Research Program and upon the application of EPA`s MOBILE4 emissions model applied in an Urban Airshed scenario in Dallas/Fort Worth in the year 2005. In addition to testing the relative reactivity of each VOC mixture against the other mixtures, the majority of the experiments used mixtures in which 50% of the carbon was from urban mix and 50% of the carbon was from industry-average gasoline vehicle emissions or 50% of the carbon was from the methanol-fueled vehicle emissions. Some experiments were also conducted with higher fractions of formaldehyde (HCHO) in either the urban mix or in the methanol mix. Another set of experiments compared just the alkane and alkene fractions while in another set, just the aromatic species reactivities were compared.

  18. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

  19. Solving Water Quality Problems in the Home

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.

    2004-02-20T23:59:59.000Z

    system will not operate effectively. One source of consumer information about water treatment equipment is NSF International, an inde- pendent, nonprofit organization that develops equip- ment standards and evaluates products against those standards. NSF..., musty, earthy Total coliform bacteria, methane Alkali pH, total dissolved salts Gasoline or oil Hydrocarbon scan Soapy Surfactants Corrosion of pipes or pH, lead, iron, manganese, plumbing copper Source: ?Water Testing,? pubication AEX-314, Ohio...

  20. Atmospheric Environment 38 (2004) 14171423 Measurements of ion concentration in gasoline and diesel

    E-Print Network [OSTI]

    Yu, Fangqun

    2004-01-01T23:59:59.000Z

    and diesel engine exhaust Fangqun Yua, *, Thomas Lannib , Brian P. Frankb a Atmospheric Sciences Research of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported with most of the ions larger than 3 nm in the diesel engine exhaust. This difference in the measured ion