National Library of Energy BETA

Sample records for gasoline diesel natural

  1. Diesel vs Gasoline Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "swing" between diesel and gasoline production deer08leister.pdf (217.54 KB) More Documents & Publications Marathon Sees Diesel Fuel in Future ITP Petroleum Refining: Energy ...

  2. ,"New York Gasoline and Diesel Retail Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Gasoline and Diesel Retail ... 4:27:01 PM" "Back to Contents","Data 1: New York Gasoline and Diesel Retail Prices" ...

  3. Gasoline and Diesel Fuel Update - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    petroleum reports Gasoline and Diesel Fuel Update Gasoline Release Date: August 8, 2016 | Next Release Date: August 15, 2016 Diesel Fuel Release Date: August 8, 2016 | Next ...

  4. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, ...

  5. DOE's Gasoline/Diesel PM Split Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline/Diesel PM Split Study DOE's Gasoline/Diesel PM Split Study 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_fujita.pdf (187.6 KB) More Documents & Publications DOE's Gasoline/Diesel PM Split Study DOE's Gasoline/Diesel PM Split Study Weekend/Weekday Ozone Study in the South Coast Air Basin

  6. DOE's Gasoline/Diesel PM Split Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications DOE's GasolineDiesel PM Split Study DOE's GasolineDiesel PM Split Study Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel ...

  7. Gasoline and Diesel Fuel Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    February 16, 2016 Reformulated Gasoline States in each PADD Region Procedures & Methodology Gasoline Data collection procedures Sampling methodology Coefficient of variation...

  8. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Detailed Price and CV Report Motor Gasoline Prices & Coefficients of Variation Spreadsheet

  9. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    On-Highway Diesel Fuel Prices & Coefficients of Variation Report

  10. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline Sampling Methodology The sample for the Motor Gasoline Price Survey was drawn from a frame of approximately 115,000 retail gasoline outlets. The gasoline outlet frame was constructed by combining information purchased from a private commercial source with information contained on existing EIA petroleum product frames and surveys. Outlet names, and zip codes were obtained from the private commercial data source. Additional information was obtained directly from companies selling retail

  11. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  12. ,"New York City Gasoline and Diesel Retail Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York City Gasoline and Diesel Retail ... 4:27:10 PM" "Back to Contents","Data 1: New York City Gasoline and Diesel Retail ...

  13. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    from the gasoline outlet frame within those counties within each sampling cell1. Every county in the United States was assigned to the corresponding sampling cell as defined. ...

  14. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Gasoline/Diesel PM Split Study Eric M. Fujita, David E. Campbell, William P. Arnott, Barbara Zielinska and Judith C. Chow Division of Atmospheric Sciences Desert Research Institute Reno, NV Douglas R. Lawson National Renewable Energy Laboratory Golden, CO 9 th Diesel Engine Emission Reduction (DEER) Workshop Newport, RI August 24-28, 2003 1 Acknowledgments Sponsor DOE's Office of FreedomCAR and Vehicle Technologies Dr. James Eberhardt Additional Support U.S. Environmental Protection Agency

  15. Gasoline and Diesel Fuel Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    These data are made available through EIA's hotline (202-586-6966), EIA's web page, and through EIA's email notification, regular and wireless. Previous Diesel Fuel Price Data ...

  16. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price

  17. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    ... to the states covered by each primary publication cell. The distribution of allocations was proportional to the annual state total volume of retail on-highway diesel fuel sales. ...

  18. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    As of December 1, 2010, any on-highway diesel fuel sold is ULSD. The prices reported in ... The price estimates each week are obtained using simple averages at the sampling cell ...

  19. Gasoline and Diesel Fuel Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    for the previous year of weekly diesel fuel survey prices for each of the sampling cells. The sample size was determined for each cell by the formula: n' (et)2 n, where t was ...

  20. Gasoline and Diesel Fuel Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the ...

  1. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Sampling Methodology The respondents reporting to the weekly diesel price survey represent a stratified probability proportional to size (PPS) sample selected from a frame list of retail outlets. The outlet sampling frame was constructed using commercially available lists from several sources in order to provide comprehensive coverage of truck stops and service stations that sell on-highway diesel fuel in the United States. The frame includes about 62,000 service stations and 4,000 truck stops.

  2. DOE's Gasoline/Diesel PM Split Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Renewable Energy Laboratory 2004_deer_lawson.pdf (275.38 KB) More Documents & Publications DOE's Gasoline/Diesel PM Split Study DOE's Gasoline/Diesel PM Split Study Collaborative Lubricating Oil Study on Emissions (CLOSE) Project

  3. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline/Diesel PM Split Study Douglas R. Lawson, National Renewable Energy Laboratory, Golden, CO Peter Gabele (retired), U.S. Environmental Protection Agency, Research Triangle Park, NC Richard Snow, BKI, Inc., Research Triangle Park, NC Nigel Clark, W. Scott Wayne, Ralph D. Nine, West Virginia University, Morgantown, WV Eric M. Fujita, Barbara Zielinska, William P. Arnott, David E. Campbell, John W. Walker, Hans Moosmüller, Desert Research Institute, Reno, NV Jamie Schauer, Charles

  4. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline Pump Components History WHAT WE PAY FOR IN A GALLON OF REGULAR GASOLINE Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) Jan-00 1.289 7.8 13.0 32.1 47.1 Feb-00 1.377 17.9 7.5 30.1 44.6 Mar-00 1.517 15.4 12.8 27.3 44.6 Apr-00 1.465 10.1 20.2 28.3 41.4 May-00 1.485 20.2 9.2 27.9 42.7 Jun-00 1.633 22.2 8.8 25.8 43.1 Jul-00 1.551 13.2 15.8 27.2 43.8 Aug-00 1.465 15.8 7.5 28.8 47.8 Sep-00 1.550

  5. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Diesel Fuel Pump Components History WHAT WE PAY FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) May-02 1.305 5.1 11.3 36.9 46.6 Jun-02 1.286 6.6 11.2 37.5 44.7 Jul-02 1.299 5.3 12.1 37.1 45.5 Aug-02 1.328 8.6 7.8 36.3 47.4 Sep-02 1.411 12.0 7.5 34.2 46.3 Oct-02 1.462 11.4 10.9 33 44.8 Nov-02 1.420 12.0 12.8 33.9 41.2 Dec-02 1.429 12.7 9.3 33.7 44.3 Jan-03 1.488 10.7

  6. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will describe preliminary emission results of gasolinediesel RCCI in a ...

  7. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials 2002 ...

  8. A Comparison of Two Gasoline and Two Diesel Cars with Varying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control ...

  9. Load Expansion with Diesel/Gasoline RCCI for Improved Engine Efficiency and Emissions

    Broader source: Energy.gov [DOE]

    This poster will describe preliminary emission results of gasoline/diesel RCCI in a medium-duty diesel engine.

  10. Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection | Department of Energy Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions. p-02_anitescu.pdf (339.45 KB) More Documents & Publications Preparation, Injection and Combustion of Supercritical Fluids Evaluation of

  11. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrotreating and Hydrocracking: A Design Case | Department of Energy Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case The goal of the U.S. Department of Energy's Bioenergy Technologies Office (BETO) is to enable the development of biomass technologies. PNNL-23053.pdf (0 B) More Documents & Publications Design

  12. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composition and Health Responses to Inhaled Emissions | Department of Energy and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_mcdonald.pdf (542.75 KB) More Documents & Publications The Effect of Changes in

  13. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate and Semi-Volatile Organic Compound Materials | Department of Energy Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials 2002 DEER Conference Presentation: U.S. Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health 2002_deer_wallace.pdf (114.23 KB) More Documents

  14. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    SciTech Connect (OSTI)

    Fairbanks, J.W.

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  15. An Experimental Investigation of Low Octane Gasoline in Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Octane Gasoline in Diesel Engines An Experimental Investigation of Low Octane Gasoline in Diesel Engines Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_ciatti.pdf (1.34 MB) More Documents & Publications Use of Low Cetane Fuel to Enable Low Temperature Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control

  16. Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

    2013-01-02

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  17. High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace_35_patton.pdf (970.31 KB) More Documents & Publications High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Expanding Robust HCCI Operation (Delphi CRADA)

  18. An experimental investigation of low octane gasoline in diesel engines.

    SciTech Connect (OSTI)

    Ciatti, S. A.; Subramanian, S.

    2011-09-01

    Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

  19. Fact #645: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 5: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe Fact #645: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe A comparison between the average annual price of a gallon of gasoline and a gallon of highway diesel fuel in several European countries shows that a large change took place in 2008. In most of the selected countries, the price of gasoline was 30 to 95 cents higher than that of diesel from 2001 to 2007. In 2008, the price

  20. Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the First Time in Six Years | Department of Energy 9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years SUBSCRIBE to the Fact of the Week In July of 2015, the nationwide average price of diesel was lower than the average price of a regular gallon of gasoline for the first time since June 2009. Both gasoline and diesel prices fluctuate throughout the

  1. A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Technologies | Department of Energy A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies 2002 DEER Conference Presentation: Ecotraffic Environmental Consultants 2002_deer_ahlvik.pdf (9.67 MB) More Documents & Publications Summary of Swedish Experiences on CNG and "Clean" Diesel Buses Diesel Particulate Filters: Market Introducution in Europe

  2. California Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    778 2.733 2.695 2.755 2.763 2.762 2000-2016 All Grades - Reformulated Areas 2.778 2.733 2.695 2.755 2.763 2.762 1995-2016 Regular 2.725 2.681 2.643 2.702 2.709 2.706 2000-2016 Reformulated Areas 2.725 2.681 2.643 2.702 2.709 2.706 1995-2016 Midgrade 2.851 2.802 2.764 2.826 2.835 2.837 2000-2016 Reformulated Areas 2.851 2.802 2.764 2.826 2.835 2.837 1995-2016 Premium 2.958 2.914 2.870 2.933 2.946 2.953 2000-2016 Reformulated Areas 2.958 2.914 2.870 2.933 2.946 2.953 1995-2016 Diesel (On-Highway)

  3. PADD 4 Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    340 2.314 2.301 2.314 2.347 2.352 1993-2016 All Grades - Conventional Areas 2.340 2.314 2.301 2.314 2.347 2.352 1994-2016 Regular 2.252 2.226 2.214 2.229 2.263 2.267 1992-2016 Conventional Areas 2.252 2.226 2.214 2.229 2.263 2.267 1992-2016 Midgrade 2.451 2.427 2.410 2.415 2.443 2.450 1994-2016 Conventional Areas 2.451 2.427 2.410 2.415 2.443 2.450 1994-2016 Premium 2.666 2.640 2.626 2.637 2.667 2.676 1994-2016 Conventional Areas 2.666 2.640 2.626 2.637 2.667 2.676 1994-2016 Diesel (On-Highway)

  4. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  5. Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on a Multi-Cylinder Light Duty Diesel Engine | Department of Energy Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-06_curran.pdf (416.42 KB) More Documents

  6. Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the First Time in Six Years - Dataset | Department of Energy 9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Excel file and dataset for Average Diesel Price Lower than Gasoline for the First Time in Six Years fotw#889_web.xlsx (19.04 KB) More Documents & Publications Fact #859 February 9, 2015 Excess Supply is the Most

  7. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    SciTech Connect (OSTI)

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde for_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  8. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Based on a worksheet developed by Argonne National Laboratory, the idle fuel consumption rate for selected gasoline and diesel vehicles with no load (no use of accessories such as air conditioners,...

  9. Diesel Fuel Price Pass-through

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  10. Design Case Summary: Production of Gasoline and Diesel from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Pyrolysis Design Case Cost targets for converting biomass to renewable gasoline and ... technologies and to determine where improvements need to take place in the future. ...

  11. Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel The amount of carbon dioxide released into the atmosphere by a vehicle is primarily determined by the carbon content of the fuel. However, there is a small portion of the fuel that is not oxidized into carbon dioxide when the fuel is burned. The Environmental Protection Agency (EPA) has published information on carbon dioxide emissions from

  12. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Natural Gas Plants (Thousand Barrels)","East Coast (PADD 1) Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand ...

  13. Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking

    SciTech Connect (OSTI)

    Jones, S. B.; Valkenburg, C.; Walkton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2010-02-01

    The Biomass Program develops design cases to understand the current state of conversion technologies and to determine where improvements need to take place in the future. This design case is the first to establish detailed cost targest for the production of diesel and gasoline blendstock from biomass via a fast pyrolysis process.

  14. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing

    SciTech Connect (OSTI)

    Hsu, D. D.

    2011-03-01

    In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

  15. An Experimental Investigation of Low Octane Gasoline in Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Enable Low Temperature Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel ... of Two-Stage Combustion in Low-Emissions Diesel Engines

  16. Gasoline and Diesel Fuel Update - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. On-Highway Diesel Fuel Prices* (dollars per gallon)full history Change from 032116 ... collected on a gallon of fuel that are paid to the federal, state, or local government. ...

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    . Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

  18. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Independence Avenue, SW Washington, DC 20585 . Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  19. Guidelines for Conversion of Diesel Buses to Compressed Natural...

    Open Energy Info (EERE)

    Conversion of Diesel Buses to Compressed Natural Gas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Guidelines for Conversion of Diesel Buses to Compressed Natural Gas...

  20. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  1. Gasoline from natural gas by sulfur processing

    SciTech Connect (OSTI)

    Erekson, E.J.; Miao, F.Q.

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  2. U.S. Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Gasoline - All Grades 2.835 3.576 3.680 3.575 3.437 2.520 1993-2015 All Grades - Conventional Areas 2.793 3.528 3.610 3.511 3.376 2.423 1994-2015 All Grades - Reformulated Areas 2.921 3.675 3.822 3.707 3.559 2.718 1994-2015 Regular 2.782 3.521 3.618 3.505 3.358 2.429 1990-2015 Conventional Areas 2.742 3.476 3.552 3.443 3.299 2.334 1990-2015 Reformulated Areas 2.864 3.616 3.757 3.635 3.481 2.629 1994-2015 Midgrade 2.902 3.644 3.756 3.663 3.539 2.645

  3. U.S. Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Gasoline - All Grades 2.071 2.216 2.371 2.467 2.345 2.284 1993-2016 All Grades - Conventional Areas 1.996 2.129 2.303 2.405 2.263 2.226 1994-2016 All Grades - Reformulated Areas 2.223 2.390 2.509 2.593 2.512 2.402 1994-2016 Regular 1.969 2.113 2.268 2.366 2.239 2.178 1990-2016 Conventional Areas 1.895 2.027 2.199 2.303 2.157 2.119 1990-2016 Reformulated Areas 2.124 2.293 2.413 2.497 2.411 2.300 1994-2016 Midgrade 2.210 2.355 2.510 2.603

  4. Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking

    Broader source: Energy.gov [DOE]

    The Biomass Program develops design cases to understand the current state of conversiontechnologies and to determine where improvements need to take place in the future. The bestavailable bench and pilot-scale conversion data are integrated with detailed process flow andengineering models to identify technical barriers where research and development could leadto significant cost improvements and to calculate production costs. Past design cases focusedon finding pathways toward cost-competitive production of ethanol. This design case is thefirst to establish detailed cost targets for the production of diesel and gasoline blendstock frombiomass via a fast pyrolysis process.

  5. U.S. average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012 Despite the recent run-up in gasoline prices, the U.S. Energy Information Administration expects falling crude oil prices will lead to a small decline in average motor fuel costs this year compared with last year. The price for regular gasoline is expected to average $3.55 a gallon in 2013 and $3.39 next year, according to EIA's new Short-Term Energy Outlook. That's down from $3.63 a gallon in 2012. For

  6. Report - Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, S. B.; Valkenburg, C.; Walton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2009-02-01

    The purpose of this design case study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels.

  7. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed

  8. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps

  9. Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Chakravarthy, Veerathu K; Daw, C Stuart

    2011-01-01

    This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

  10. Long Term Processing Using Integrated Hydropyrolysis plus Hydroconversion (IH2) for the Production of Gasoline and Diesel from Biomass

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; McLeod, Celeste; Del Paggio, Alan; Gephart, John; Starr, Jack; Hahn, John

    2013-06-09

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of a new, economical, technology named integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The life cycle analysis (LCA) shows that the use of the IH2 process to convert wood to gasoline and diesel results in a greater than 90% reduction in greenhouse gas emission compared to that found with fossil derived fuels. The technoeconomic analysis showed the conversion of wood using the IH2 process can produce gasoline and diesel at less than $2.00/gallon. In this project, the previously reported semi-continuous small scale IH2 test results were confirmed in a continuous 50 kg/day pilot plant. The continuous IH2 pilot plant used in this project was operated round the clock for over 750 hours and showed good pilot plant operability while consistently producing 26-28 wt % yields of high quality gasoline and diesel product. The IH2 catalyst showed good stability, although more work on catalyst stability is recommended. Additional work is needed to commercialize the IH2 technology including running large particle size biomass, modeling the hydropyrolysis step, studying the effects of process variables and building and operating a 1-50 ton/day demonstration scale plant. The IH2 is a true game changing technology by utilizing U.S. domestic renewable biomass resources to create transportation fuels, sufficient in quantity and quality to substantially reduce our reliance on foreign crude oil. Thus, the IH2 technology offers a path to genuine energy independence for the U. S., along with the creation of a significant number of new U.S. jobs to plant, grow, harvest, and process biomass crops into fungible

  11. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas...

  12. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  13. Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel

    DOE Patents [OSTI]

    Bose, Ranendra K.

    2002-06-04

    Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

  14. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    SciTech Connect (OSTI)

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-04-10

    Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

  15. Natural Oils - The Next Generation of Diesel Engine Lubricants? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Oils - The Next Generation of Diesel Engine Lubricants? Natural Oils - The Next Generation of Diesel Engine Lubricants? 2002 DEER Conference Presentation: The Pennsylvania State University 2002_deer_perez.pdf (315.66 KB) More Documents & Publications Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Future Engine Fluids Technologies: Durable,

  16. Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Emissions from Diesel and Compressed Natural Gas Transit Buses Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses Poster presentaiton at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_clark.pdf (100.8 KB) More Documents & Publications Evaluating Exhaust

  17. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and ... "Date","U.S. Finished Motor Gasoline Stocks at Refineries, Bulk ...

  18. Modeling and Analysis of Natural Gas and Gasoline In A High Compressio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression Ratio High Efficiency ICRE Modeling and Analysis of Natural Gas and Gasoline ... A Natural Gas, High Compression Ratio, High Efficiency ICRE Advanced CombustionModeling ...

  19. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  20. Modeling and Analysis of Natural Gas and Gasoline In A High Compression

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ratio High Efficiency ICRE | Department of Energy and Analysis of Natural Gas and Gasoline In A High Compression Ratio High Efficiency ICRE Modeling and Analysis of Natural Gas and Gasoline In A High Compression Ratio High Efficiency ICRE performance of a high compression ratio (32:1 to 74:1) high efficiency (50 to 60% BTE) ICRE operating on natural gas and gasoline p-02_fitzgerald.pdf (283.34 KB) More Documents & Publications A Natural Gas, High Compression Ratio, High Efficiency ICRE

  1. Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4: June 9, 2014 EPA Sulfur Standards for Gasoline Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline Sulfur naturally occurs in gasoline and diesel fuel, contributing to pollution when the fuel is burned. Beginning in 2004, standards were set on the amount of sulfur in gasoline (Tier 2 standards). Separate standards were set for different entities, such as large refiners, small refiners, importers, downstream wholesalers, etc. In March 2014, Tier 3 standards were finalized by

  2. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    SciTech Connect (OSTI)

    Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

    2005-12-01

    An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

  3. Simulation: Gasoline Compression Ignition

    SciTech Connect (OSTI)

    2015-04-13

    The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.

  4. SULFUR REDUCTION IN GASOLINE AND DIESEL FUELS BY EXTRACTION/ADSORPTION OF REFRACTORY DIBENZOTHIOPHENES

    SciTech Connect (OSTI)

    Scott G. McKinley; Celedonio M. Alvarez

    2003-03-01

    The purpose of this study was to remove thiophene, benzothiophene and dibenzothiophene from a simulated gasoline feedstock. We found that Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} reacts with a variety of thiophenes (Th*), affording Ru(NH{sub 3}){sub 5}(Th*){sup 2+}. We used this reactivity to design a biphasic extraction process that removes more than 50% of the dibenzothiophene in the simulated feedstock. This extraction system consists of a hydrocarbon phase (simulated petroleum feedstock) and extractant Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} in an aqueous phase (70% dimethylformamide, 30% H{sub 2}O). The DBT is removed in situ from the newly formed Ru(NH{sub 3}){sub 5}(DBT){sup 2+} by either an oxidation process or addition of H{sub 2}O, to regenerate Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+}.

  5. Comparative emissions from natural gas and diesel buses

    SciTech Connect (OSTI)

    Clark, N.N.; Gadapati, C.J.; Lyons, D.W.; Wang, W.; Gautam, M.; Bata, R.M.; Kelly, K.; White, C.L.

    1995-12-31

    Data has been gathered using the West Virginia University Heavy Duty Transportable Emissions Laboratories from buses operating on diesel and a variety of alternate fuels in the field. Emissions data are acquired from buses using the Central Business District cycle reported in SAE Standard J1376; this cycle has 14 ramps with 20 mph (32.2 km/h) peaks, separated by idle periods. During the three years of testing, a significant fraction of emissions data was acquired from buses with Cummins L-10 engines designed to operate on either CNG or diesel. The CNG lean burn engines were spark ignited and throttled. Early CNG engines, which were pre-certification demonstration models, have provided the bulk of the data, but data from 9 buses with more advanced technology were also available. It has been found that carbon monoxide (CO) levels from early Cummins L-10 CNG powered buses varied greatly from bus to bus, with the higher values ascribed to either faulty catalytic converters or a rich idle situation, while the later model CNG L-10 engines offered CO levels considerably lower than those typical of diesel engines. The NO{sub x} emissions were on par with those from diesel L-10 buses. Those natural gas buses with engines adjusted correctly for air-fuel ratio, returned very low emissions data. CNG bus hydrocarbon emissions are not readily compared with diesel engine levels since only the non-methane organic gases (NMOG) are of interest. Data show that NMOG levels are low for the CNG buses. Significant reduction was observed in the particulate matter emitted by the CNG powered buses compared to the diesel buses, in most cases the quantity captured was vanishingly small. Major conclusions are that engine maintenance is crucial if emissions are to remain at design levels and that the later generation CNG engines show marked improvement over the earlier models. One may project for the long term that closed loop stoichiometry control is desirable even in lean burn applications.

  6. Robust packaging system for diesel/natural gas oxidation catalysts

    SciTech Connect (OSTI)

    Gulati, S.T.; Sherwood, D.L.; Corn, S.H.

    1996-09-01

    The 290,000 vehicle-mile durability requirement for diesel/natural gas oxidation catalysts calls for robust packaging systems which ensure a positive mounting pressure on the ceramic flow-through converter under all operating conditions. New data for substrate/washcoat interaction, intumescent mat performance in dry and wet states, and high temperature strength and oxidation resistance of stainless steels, and canning techniques insensitive to tolerance stack-up are reviewed which help optimize packaging durability. Factors contributing to robustness of converter components are identified and methods to quantify their impact on design optimization are described.

  7. Combustion and Emissions Performance of Dual-Fuel Gasoline and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline ...

  8. Regulated Emissions from Diesel and Compressed Natural Gas Transit...

    Broader source: Energy.gov (indexed) [DOE]

    Emission Performance of Urban Buses Using Transient Heavy-Duty Chassis Dynamometer Heavy Duty Vehicle In-Use Emission Performance Comparison of Clean Diesel Buses to CNG Buses

  9. Gasoline from natural gas by sulfur processing. Final technical report, June 1993--July 1996

    SciTech Connect (OSTI)

    Erekson, E.J.

    1996-07-01

    The overall objective of this research project was to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each use catalysts and sulfur-containing intermediates: (1) to convert natural gas to CS{sub 2} and (2) to convert CS{sub 2} to gasoline-range liquids. Experimental data generated in this project were for use in evaluating the commercial potential of the process.

  10. U.S. Aviation Gasoline Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    Product: Aviation Gasoline Kerosene-Type Jet Fuel Propane (Consumer Grade) Kerosene No. 1 Distillate No. 2 Distillate No. 2 Diesel Fuel No. 2 Diesel, Ultra Low-Sulfur No. 2 Diesel, ...

  11. Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S.

  12. Fact #889: September 7, 2015 Average Diesel Price Lower than...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First ...

  13. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect (OSTI)

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  14. Diesel Fuel: Use, Manufacturing, Supply and Distribution | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (OFCVT). deer07williams.pdf (235.17 KB) More Documents & Publications Marathon Sees Diesel Fuel in Future Diesel vs Gasoline Production Fueling U.S. Light Duty Diesel Vehicles

  15. Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.

    SciTech Connect (OSTI)

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-08-10

    Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

  16. Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Leslie Eudy ManTech Environmental Technology, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S.

  17. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Vehicles - Dataset | Department of Energy 1 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles - Dataset Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles - Dataset Excel file and dataset for Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles fotw#861_web.xlsx (17.63 KB) More Documents & Publications Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry - Dataset Fact #916: March 14,

  18. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    263 2.244 2.210 2.221 2.270 2.314 1993-2016 All Grades - Conventional Areas 2.240 2.227 2.193 2.215 2.266 2.318 1994-2016 All Grades - Reformulated Areas 2.301 2.271 2.238 2.230 2.276 2.308 1994-2016 Regular 2.120 2.100 2.066 2.075 2.126 2.172 1992-2016 Conventional Areas 2.095 2.081 2.048 2.069 2.118 2.173 1992-2016 Reformulated Areas 2.162 2.130 2.097 2.086 2.138 2.171 1994-2016 Midgrade 2.395 2.378 2.345 2.364 2.407 2.451 1994-2016 Conventional Areas 2.358 2.346 2.313 2.344 2.395 2.442

  19. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Holiday Release Schedule The prices are published around 5:00 p.m. Monday (Eastern time), except on government holidays, when the data are released on Tuesday (but still represent Monday's price). Data for: Alternate Release Date Release Day Holiday October 12, 2015 October 13, 2015 Tuesday Columbus January 18, 2016 January 19, 2016 Tuesday Martin Luther King Jr. February 15, 2016 February 16, 2016 Tuesday President's May 30, 2016 May 31, 2016 Tuesday Memorial July 4, 2016 July 5, 2016 Tuesday

  20. Gasoline and Diesel Fuel Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    County, NH Merrimack County, NH Middlesex County, MA Nantucket County, MA Norfolk ... NY Litchfield County (partial), CT Middlesex County, NJ Monmouth County, NJ Morris ...

  1. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Counties included in New York City metro area The list below includes the counties in the EIA-878 definition for New York City Metro Area. Bergen County, NJ Bronx County, NY Essex County, NJ Fairfield County, CT Hudson County, NJ Hunterdon County, NJ Kings County, NY Litchfield County (partial), CT Middlesex County, NJ Monmouth County, NJ Morris County, NJ Nassau County, NY New Haven County (partial), CT New York County, NY Ocean County, NJ Orange County, NY Passaic County, NJ Putnam, NY Queens

  2. Gasoline and Diesel Fuel Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refining Costs & Profits - the difference between the monthly average of the spot price of ... Distribution & Marketing Costs & Profits - the difference between the average retail price ...

  3. Technical comparison between Hythane, GNG and gasoline fueled vehicles. [Hythane = 85 vol% natural gas, 15 vol% H[sub 2

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    This interim report documents progress on this 2-year Alternative Fuel project, scheduled to end early 1993. Hythane is 85 vol% compressed natural gas (CNG) and 15 vol% hydrogen; it has the potential to meet or exceed the California Ultra-Low Emission Vehicle (ULEV) standard. Three USA trucks (3/4 ton pickup) were operated on single fuel (unleaded gasoline, CNG, Hythane) in Denver. The report includes emission testing, fueling facility, hazard and operability study, and a framework for a national hythane strategy.

  4. Northeast Gasoline Supply Reserve

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Northeast region of the U.S. is particularly vulnerable to gasoline disruptions as a result of hurricanes and other natural events. Hurricane Sandy in 2012 caused widespread issues related to...

  5. Natural bioreclamation of alkylbenzenes (BTEX) from a gasoline spill in methanogenic groundwater. Book chapter

    SciTech Connect (OSTI)

    Wilson, J.T.; Kampbell, D.H.; Armstrong, J.

    1994-01-01

    A spill of gasoline from underground storage tanks (USTS) at the Sleeping Bear Dunes National Lakeshore in Benzie County, Michigan, produced a plume of contamination that reached the banks of the Platte River. The plume was short (70 feet) and it had a short residence time (5 to 53 weeks). The plume was in transmissive glacial sands and gravels. The groundwater is cold (10 to 11 C), hard (alkalinity 200 to 350 milligrams/L), and well buffered (pH 6.1 to 7.6). Along the most contaminated flow path, methanogenesis, nitrate reduction, sulfate reduction, iron reduction, and oxygen respiration accepted enough electrons to destroy 30, 14, 4.2, 1.1, and 0.8 milligrams/L of benzene, toluene, ethylbenzene, and xylenes (BTEX compounds) respectively. The actual concentration of BTEX compounds consumed was 42 milligrams/L.

  6. The development of a prechamber diesel engine family

    SciTech Connect (OSTI)

    Filtri, G.; Morello, L.; Stroppiana, B.

    1989-01-01

    The development of a new family of prechamber diesel engines, based on a technological commonalty with the gasoline engines is reported. The range of diesel engines, all of them four-cylinder-in line, consist of 3 displacements: 1365cc - 1697cc - 1930cc either naturally aspirated or turbocharged. Mention is also made of their most significant technical innovations about their architecture and combustion chambers, and the main components such as block cylinder, head, crankshaft, connecting rods, pistons, timing gear and injection pump control, intake and exhaust manifolds.

  7. Marathon Sees Diesel Fuel in Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (840.84 KB) More Documents & Publications What is the Future of U.S. Diesel Production? Diesel vs Gasoline Production Year-in-Review: 2014 Energy Infrastructure Events ...

  8. Topsoe integrated gasoline synthesis (TIGAS)

    SciTech Connect (OSTI)

    Hansen, H.K.; Joensen, F.

    1987-01-01

    Integration of Haldor Topsoe's oxygenate (MeOH, DME) synthesis and the MTG process into one single synthesis loop provides a new low investment route to gasoline from natural gas. The integrated process has been demonstrated in an industrial pilot with a capacity of 1 MTPD gasoline since 1984. The pilot has operated successfully for more than 10,000 hours.

  9. Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications

    Broader source: Energy.gov [DOE]

    Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

  10. NOx reduction in diesel fuel flames by additions of water and CO{sub 2}

    SciTech Connect (OSTI)

    Li, S.C.

    1997-12-31

    Natural gas has the highest heating value per unit mass (50.1 MJ/kg, LHV) of any of the hydrocarbon fuels (e.g., butane, liquid diesel fuel, gasoline, etc.). Since it has the lowest carbon content per unit mass, combustion of natural gas produces much less carbon dioxide, soot particles, and oxide of nitrogen than combustion of liquid diesel fuel. In view of anticipated strengthening of regulations on pollutant emissions from diesel engines, alternative fuels, such as compressed natural gas (CNG) and liquefied natural gas (LNG) have been experimentally introduced to replace the traditional diesel fuels in heavy-duty trucks, transit buses, off-road vehicles, locomotives, and stationary engines. To help in applying natural gas in Diesel engines and increasing combustion efficiency, the emphasis of the present paper is placed on the detailed flame chemistry of methane-air combustion. The present work is the continued effort in finding better methods to reduce NO{sub x}. The goal is to identify a reliable chemical reaction mechanism for natural gas in both premixed and diffusion flames and to establish a systematic reduced mechanism which may be useful for large-scale numerical modeling of combustion behavior in natural gas engines.

  11. Finished Motor Gasoline Net Production

    Gasoline and Diesel Fuel Update (EIA)

    Data Series: Finished Motor Gasoline Finished Motor Gasoline (Excl. Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & < Conventional Gasoline Blended w/ Fuel Ethanol, > Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet,

  12. U.S. Motor Gasoline Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Formulation Grade: Gasoline, Average Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional, Average Conventional Regular Conventional Midgrade Conventional Premium ...

  13. Boston Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    246 2.203 2.183 2.231 2.265 2.271 2003-2016 All Grades - Reformulated Areas 2.246 2.203 2.183 2.231 2.265 2.271 2003-2016 Regular 2.138 2.092 2.064 2.130 2.160 2.163 2003-2016 Reformulated Areas 2.138 2.092 2.064 2.130 2.160 2.163 2003-2016 Midgrade 2.388 2.357 2.355 2.356 2.404 2.411 2003-2016 Reformulated Areas 2.388 2.357 2.355 2.356 2.404 2.411 2003-2016 Premium 2.585 2.553 2.548 2.555 2.597 2.618 2003-2016 Reformulated Areas 2.585 2.553 2.548 2.555 2.597 2.618

  14. Chicago Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    350 2.442 2.380 2.479 2.556 2.437 2000-2016 All Grades - Reformulated Areas 2.350 2.442 2.380 2.479 2.556 2.437 2000-2016 Regular 2.224 2.317 2.257 2.356 2.433 2.313 2000-2016 Reformulated Areas 2.224 2.317 2.257 2.356 2.433 2.313 2000-2016 Midgrade 2.564 2.646 2.582 2.682 2.753 2.639 2000-2016 Reformulated Areas 2.564 2.646 2.582 2.682 2.753 2.639 2000-2016 Premium 2.896 2.989 2.916 3.016 3.093 2.979 2000-2016 Reformulated Areas 2.896 2.989 2.916 3.016 3.093 2.979 2000

  15. Cleveland Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    78 2.204 2.284 2.239 2.352 2.204 2003-2016 All Grades - Conventional Areas 2.178 2.204 2.284 2.239 2.352 2.204 2003-2016 Regular 2.051 2.075 2.158 2.111 2.227 2.077 2003-2016 Conventional Areas 2.051 2.075 2.158 2.111 2.227 2.077 2003-2016 Midgrade 2.338 2.368 2.447 2.411 2.510 2.353 2003-2016 Conventional Areas 2.338 2.368 2.447 2.411 2.510 2.353 2003-2016 Premium 2.644 2.675 2.742 2.701 2.808 2.679 2003-2016 Conventional Areas 2.644 2.675 2.742 2.701 2.808 2.679 2003

  16. Colorado Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    218 2.179 2.167 2.211 2.290 2.290 2000-2016 All Grades - Conventional Areas 2.218 2.179 2.167 2.211 2.290 2.290 2000-2016 Regular 2.115 2.076 2.064 2.106 2.186 2.186 2000-2016 Conventional Areas 2.115 2.076 2.064 2.106 2.186 2.186 2000-2016 Midgrade 2.374 2.336 2.324 2.370 2.445 2.450 2000-2016 Conventional Areas 2.374 2.336 2.324 2.370 2.445 2.450 2000-2016 Premium 2.631 2.588 2.577 2.625 2.703 2.706 2000-2016 Conventional Areas 2.631 2.588 2.577 2.625 2.703 2.706 2000

  17. Denver Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    93 2.156 2.150 2.180 2.278 2.268 2000-2016 All Grades - Conventional Areas 2.193 2.156 2.150 2.180 2.278 2.268 2000-2016 Regular 2.082 2.047 2.039 2.069 2.168 2.157 2000-2016 Conventional Areas 2.082 2.047 2.039 2.069 2.168 2.157 2000-2016 Midgrade 2.365 2.323 2.321 2.355 2.443 2.438 2000-2016 Conventional Areas 2.365 2.323 2.321 2.355 2.443 2.438 2000-2016 Premium 2.624 2.578 2.580 2.608 2.706 2.703 2000-2016 Conventional Areas 2.624 2.578 2.580 2.608 2.706 2.703 2000

  18. Florida Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    169 2.144 2.199 2.238 2.323 2.340 2003-2016 All Grades - Conventional Areas 2.169 2.144 2.199 2.238 2.323 2.340 2003-2016 Regular 2.014 1.989 2.044 2.082 2.171 2.189 2003-2016 Conventional Areas 2.014 1.989 2.044 2.082 2.171 2.189 2003-2016 Midgrade 2.301 2.278 2.333 2.374 2.460 2.457 2003-2016 Conventional Areas 2.301 2.278 2.333 2.374 2.460 2.457 2003-2016 Premium 2.579 2.550 2.607 2.646 2.718 2.743 2003-2016 Conventional Areas 2.579 2.550 2.607 2.646 2.718 2.743

  19. ,"San Francisco Gasoline and Diesel Retail Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...132016" ,"Excel File Name:","petprignddcusy05sfw.xls" ,"Available from Web Page:","http:www.eia.govdnavpetpetprignddcusy05sfw.htm" ,"Source:","Energy Information ...

  20. ,"Los Angeles Gasoline and Diesel Retail Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...132016" ,"Excel File Name:","petprignddcusy05law.xls" ,"Available from Web Page:","http:www.eia.govdnavpetpetprignddcusy05law.htm" ,"Source:","Energy Information ...

  1. Houston Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    040 2.060 2.021 2.059 2.100 2.109 2000-2016 All Grades - Reformulated Areas 2.040 2.060 2.021 2.059 2.100 2.109 2000-2016 Regular 1.911 1.930 1.891 1.931 1.968 1.977 2000-2016 Reformulated Areas 1.911 1.930 1.891 1.931 1.968 1.977 2000-2016 Midgrade 2.200 2.221 2.176 2.213 2.254 2.265 2000-2016 Reformulated Areas 2.200 2.221 2.176 2.213 2.254 2.265 2000-2016 Premium 2.467 2.489 2.456 2.487 2.540 2.550 2000-2016 Reformulated Areas 2.467 2.489 2.456 2.487 2.540 2.550

  2. Los Angeles Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    763 2.718 2.671 2.771 2.788 2.792 2000-2016 All Grades - Reformulated Areas 2.763 2.718 2.671 2.771 2.788 2.792 2000-2016 Regular 2.714 2.668 2.622 2.722 2.739 2.739 2000-2016 Reformulated Areas 2.714 2.668 2.622 2.722 2.739 2.739 2000-2016 Midgrade 2.818 2.774 2.726 2.827 2.844 2.852 2000-2016 Reformulated Areas 2.818 2.774 2.726 2.827 2.844 2.852 2000-2016 Premium 2.918 2.874 2.826 2.927 2.943 2.959 2000-2016 Reformulated Areas 2.918 2.874 2.826 2.927 2.943 2.959

  3. Massachusetts Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    251 2.204 2.184 2.234 2.268 2.267 2003-2016 All Grades - Reformulated Areas 2.251 2.204 2.184 2.234 2.268 2.267 2003-2016 Regular 2.144 2.093 2.065 2.132 2.161 2.158 2003-2016 Reformulated Areas 2.144 2.093 2.065 2.132 2.161 2.158 2003-2016 Midgrade 2.383 2.350 2.352 2.356 2.403 2.402 2003-2016 Reformulated Areas 2.383 2.350 2.352 2.356 2.403 2.402 2003-2016 Premium 2.570 2.533 2.531 2.543 2.587 2.597 2003-2016 Reformulated Areas 2.570 2.533 2.531 2.543 2.587 2.597

  4. Miami Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    490 2.473 2.446 2.474 2.547 2.527 2003-2016 All Grades - Conventional Areas 2.490 2.473 2.446 2.474 2.547 2.527 2003-2016 Regular 2.324 2.310 2.277 2.308 2.380 2.360 2003-2016 Conventional Areas 2.324 2.310 2.277 2.308 2.380 2.360 2003-2016 Midgrade 2.631 2.608 2.581 2.597 2.668 2.648 2003-2016 Conventional Areas 2.631 2.608 2.581 2.597 2.668 2.648 2003-2016 Premium 2.927 2.907 2.895 2.923 3.001 2.980 2003-2016 Conventional Areas 2.927 2.907 2.895 2.923 3.001 2.980 2003

  5. Minnesota Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    102 2.140 2.191 2.267 2.324 2.277 2000-2016 All Grades - Conventional Areas 2.102 2.140 2.191 2.267 2.324 2.277 2000-2016 Regular 2.039 2.079 2.130 2.207 2.264 2.217 2000-2016 Conventional Areas 2.039 2.079 2.130 2.207 2.264 2.217 2000-2016 Midgrade 2.178 2.216 2.266 2.343 2.400 2.350 2000-2016 Conventional Areas 2.178 2.216 2.266 2.343 2.400 2.350 2000-2016 Premium 2.421 2.453 2.501 2.572 2.626 2.579 2000-2016 Conventional Areas 2.421 2.453 2.501 2.572 2.626 2.579

  6. New York Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    419 2.384 2.374 2.380 2.399 2.405 2000-2016 All Grades - Conventional Areas 2.340 2.313 2.304 2.320 2.358 2.359 2000-2016 All Grades - Reformulated Areas 2.487 2.445 2.434 2.433 2.434 2.444 2000-2016 Regular 2.296 2.262 2.253 2.260 2.279 2.284 2000-2016 Conventional Areas 2.232 2.204 2.195 2.212 2.252 2.251 2000-2016 Reformulated Areas 2.355 2.315 2.304 2.303 2.303 2.313 2000-2016 Midgrade 2.559 2.521 2.506 2.509 2.527 2.536 2000-2016 Conventional Areas 2.453 2.424 2.413 2.418 2.461 2.465

  7. Ohio Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    205 2.249 2.186 2.264 2.277 2.260 2003-2016 All Grades - Conventional Areas 2.205 2.249 2.186 2.264 2.277 2.260 2003-2016 Regular 2.089 2.132 2.070 2.147 2.160 2.143 2003-2016 Conventional Areas 2.089 2.132 2.070 2.147 2.160 2.143 2003-2016 Midgrade 2.351 2.397 2.334 2.414 2.424 2.405 2003-2016 Conventional Areas 2.351 2.397 2.334 2.414 2.424 2.405 2003-2016 Premium 2.631 2.677 2.613 2.694 2.705 2.692 2003-2016 Conventional Areas 2.631 2.677 2.613 2.694 2.705 2.692 2003

  8. PADD 5 Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    677 2.635 2.596 2.637 2.656 2.660 1993-2016 All Grades - Conventional Areas 2.553 2.526 2.492 2.493 2.529 2.539 1995-2016 All Grades - Reformulated Areas 2.727 2.680 2.639 2.696 2.707 2.709 1995-2016 Regular 2.614 2.573 2.534 2.573 2.592 2.594 1992-2016 Conventional Areas 2.490 2.462 2.428 2.430 2.467 2.473 1992-2016 Reformulated Areas 2.668 2.621 2.581 2.636 2.647 2.647 1994-2016 Midgrade 2.785 2.741 2.702 2.747 2.766 2.773 1994-2016 Conventional Areas 2.688 2.660 2.626 2.626 2.670 2.685

  9. San Francisco Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    843 2.797 2.762 2.811 2.809 2.802 2000-2016 All Grades - Reformulated Areas 2.843 2.797 2.762 2.811 2.809 2.802 2000-2016 Regular 2.784 2.745 2.710 2.758 2.752 2.743 2000-2016 Reformulated Areas 2.784 2.745 2.710 2.758 2.752 2.743 2000-2016 Midgrade 2.930 2.864 2.829 2.880 2.886 2.884 2000-2016 Reformulated Areas 2.930 2.864 2.829 2.880 2.886 2.884 2000-2016 Premium 3.035 2.980 2.944 2.991 3.007 3.002 2000-2016 Reformulated Areas 3.035 2.980 2.944 2.991 3.007 3.002

  10. Seattle Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    662 2.639 2.619 2.622 2.646 2.662 2003-2016 All Grades - Conventional Areas 2.662 2.639 2.619 2.622 2.646 2.662 2003-2016 Regular 2.607 2.584 2.565 2.566 2.591 2.608 2003-2016 Conventional Areas 2.607 2.584 2.565 2.566 2.591 2.608 2003-2016 Midgrade 2.777 2.749 2.728 2.734 2.757 2.765 2003-2016 Conventional Areas 2.777 2.749 2.728 2.734 2.757 2.765 2003-2016 Premium 2.891 2.865 2.844 2.854 2.877 2.893 2003-2016 Conventional Areas 2.891 2.865 2.844 2.854 2.877 2.893

  11. Texas Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    063 2.049 2.057 2.081 2.113 2.117 2000-2016 All Grades - Conventional Areas 2.075 2.055 2.065 2.088 2.130 2.119 2000-2016 All Grades - Reformulated Areas 2.045 2.039 2.046 2.071 2.088 2.115 2000-2016 Regular 1.959 1.944 1.953 1.978 2.013 2.016 2000-2016 Conventional Areas 1.974 1.954 1.963 1.988 2.035 2.023 2000-2016 Reformulated Areas 1.936 1.928 1.937 1.963 1.980 2.005 2000-2016 Midgrade 2.223 2.209 2.217 2.230 2.258 2.264 2000-2016 Conventional Areas 2.243 2.219 2.235 2.240 2.277 2.264

  12. Washington Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    All Grades - Conventional Areas 2.309 2.330 2.320 2.362 2.384 2.453 2003-2016 Regular 2.243 2.266 2.254 2.297 2.317 2.387 2003-2016 Conventional Areas 2.243 2.266 2.254 2.297 2.317 ...

  13. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  14. Assisting Transit Agencies with Natural Gas Bus Technologies; Natural Gas Trasit Users Group (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and infrastructure research, development, and deployment through its FreedomCAR and Vehicle Technologies Program to help the United States reduce its dependence on imported petro- leum and to pave the way to a future transportation network based on hydrogen. Natural gas vehicles can also reduce emissions of regulated pollutants compared with vehicles powered by conventional fuels such as gasoline and diesel. The goal of the Natural Gas Transit Users Group (TUG) is to facilitate the deployment of

  15. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision

    SciTech Connect (OSTI)

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-05-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  16. Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.

    SciTech Connect (OSTI)

    Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

    1999-12-03

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  17. Summary of Swedish Experiences on CNG and "Clean" Diesel Buses | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Swedish Experiences on CNG and "Clean" Diesel Buses Summary of Swedish Experiences on CNG and "Clean" Diesel Buses 2003 DEER Conference Presentation: Ecotraffic ERD3 AB deer_2003_ahlvik.pdf (3.43 MB) More Documents & Publications A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies Diesel Health Impacts & Recent Comparisons to Other Fuels Comparison of Clean Diesel Buses to CNG Buses

  18. Fact #860 February 16, 2015 Relationship of Vehicle Miles of Travel and the Price of Gasoline

    Broader source: Energy.gov [DOE]

    The prices of gasoline and diesel fuel affect the transportation sector in many ways. For example, fuel prices can impact the number of miles driven and affect the choices consumers make when...

  19. Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 859 February 9, 2015 Excess Supply is the Most Recent Event to Affect Crude Oil Prices - Dataset Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for ...

  20. Reformulated gasoline quality issues

    SciTech Connect (OSTI)

    Gonzalez, R.G.; Felch, D.E.; Edgar, M.D.

    1995-11-01

    One year ago, a panel of industry experts were interviewed in the November/December 1994 issue of Fuel Reformulation (Vol. 4, No. 6). With the focus then and now on refinery investments, the panelists were asked to forecast which refining processes would grow in importance. It is apparent from their response, and from other articles and discussions throughout the year, that hydroprocessing and catalytic conversion processes are synergistic in the overall refinery design, with flexibility and process objectives varying on a unit-by-unit case. To an extent, future refinery investments in downstream petrochemicals, such as for paraxylene production, are based on available catalytic reforming feedstock. Just a importantly, hydroprocessing units (hydrotreating, hydrocracking) needed for clean fuel production (gasoline, diesel, aviation fuel), are heavily dependent on hydrogen production from the catalytic reformer. Catalytic reforming`s significant influence in the refinery hydrogen balance, as well as its status as a significant naphtha conversion route to higher-quality fuels, make this unit a high-priority issue for engineers and planners striving for flexibility.

  1. Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

    SciTech Connect (OSTI)

    Lammert, M.

    2008-06-01

    This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

  2. Natural Gas Monthly (NGM) - Energy Information Administration - August 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    With Data for June 2016 / U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation,

  3. Evaluating the Safety of a Natural Gas Home Refueling Appliance (HRA); Natural Gas Infrastructure Evaluation (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and infrastructure R&D through its FreedomCAR and Vehicle Technologies Program to help the United States reduce its dependence on imported petroleum and to pave the way to a future transportation network based on hydrogen. Natural gas vehicles can also reduce emissions of regulated pollutants compared with vehicles powered by conventional fuels such as gasoline and diesel. The goal of this project was to evaluate the safety implications of refueling natural gas vehicles at home with a home

  4. Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

    SciTech Connect (OSTI)

    Choi, Jae-Soon; Prikhodko, Vitaly Y; Partridge Jr, William P; Parks, II, James E; Norman, Kevin M; Huff, Shean P; Chambon, Paul H; Thomas, John F

    2010-01-01

    Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

  5. Enabling and Expanding HCCI in PFI Gasoline Engines with High EGR and Spark

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assist | Department of Energy and Expanding HCCI in PFI Gasoline Engines with High EGR and Spark Assist Enabling and Expanding HCCI in PFI Gasoline Engines with High EGR and Spark Assist 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_wagner.pdf (831.03 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: High-Dilution Stoichiometric Gasoline Direct-Injection (SGDI) Combustion Control Development Enabling the Next

  6. NGVs: Driving to the 21st Century. 17th National Natural Gas Vehicle Conference and Exhibition, October 3-5, 1999 [conference organizational literature and agenda

    SciTech Connect (OSTI)

    1999-10-05

    By attending the conference, participants learn about new and planned OEM vehicle and engine technologies; studies comparing Diesel and gasoline emissions to natural gas; new state and federal legislation; and innovative marketing programs they can use to help sell their products and services.

  7. Gasoline Biodesulfurization Fact Sheet

    Broader source: Energy.gov [DOE]

    This petroleum industry fact sheet describes how biodesulfurization can yield lower sulfur gasoline at lower production costs.

  8. FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2011-01-01

    This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

  9. Lower gasoline prices ahead

    U.S. Energy Information Administration (EIA) Indexed Site

    Lower gasoline prices ahead U.S. retail gasoline prices are expected to continue falling through the end of 2016, even though gasoline demand is projected to remain strong. In its new monthly forecast, the U.S. Energy Information Administration said the average monthly price for regular-grade gasoline is expected to decline to $1.92 a gallon by December the lowest for the month in eight years. Lower motor fuel prices are expected in the coming months, despite gasoline demand this year that is on

  10. Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Gasoline Vehicles | Department of Energy Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline Vehicles Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline Vehicles Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  11. Hazard analysis of compressed natural gas fueling systems and fueling procedures used at retail gasoline service stations. Final report

    SciTech Connect (OSTI)

    1995-04-28

    An evaluation of the hazards associated with operations of a typical compressed natural gas (CNG) fueling station is presented. The evaluation includes identification of a typical CNG fueling system; a comparison of the typical system with ANSI/NFPA (American National Standards Institute/National Fire Protection Association) Standard 52, Compressed Natural Gas (CNG) Vehicular Fuel System, requirements; a review of CNG industry safety experience as identified in current literature; hazard identification of potential internal (CNG system-specific causes) and external (interface of co-located causes) events leading to potential accidents; and an analysis of potential accident scenarios as determined from the hazard evaluation. The study considers CNG dispensing equipment and associated equipment, including the compressor station, storate vessels, and fill pressure sensing system.

  12. The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion | Department of Energy The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion Almost 2 dozen gasoline fuels, blending components, and surrogates were evaluated in a single-cylinder HCCI gasoline engine for combustion, emissions, and efficiency performance. p-05_bunting.pdf (495.39 KB) More Documents & Publications APBF Effects on Combustion Fuel-Borne Reductants for NOx

  13. Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

    SciTech Connect (OSTI)

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    2015-04-14

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.

  14. Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    2015-04-14

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less

  15. Future Potential of Hybrid and Diesel Powertrains in the U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market Future ... with HyTrans Fact 869: April 20, 2015 Gasoline Direct Injection Captures 38% Market ...

  16. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

    Broader source: Energy.gov [DOE]

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace

  17. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine

    Broader source: Energy.gov [DOE]

    Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace

  18. Motor gasolines, summer 1979

    SciTech Connect (OSTI)

    Shelton, E.M.

    1980-02-01

    Analytical data for 2401 samples of motor gasoline, from service stations throughout the country, were collected and analyzed under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing areas and districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R + M)/2) averages of gasoline sold in this country were 88.6, 89.3, and 93.7 unleaded, regular, and premium grades of gasolines, respectively.

  19. Motor gasolines, summer 1985

    SciTech Connect (OSTI)

    Dickson, C.L.; Woodward, P.W.

    1986-06-01

    Samples for this report were collected from service stations throughout the country and were analyzed in laboratories of various refiners, motor manufacturers, chemical companies, and research institutes. Analytical data for the 1571 motor gasoline and 206 motor gasoline/alcohol blend samples were submitted to the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, for reporting. This work is jointly funded by the American Petroleum Institute (API) and the United States Department of Energy (DOE), Bartlesville Project Office (DOE cooperative agreement No. FC22-83FE60149). The data are representative of the products of 62 marketers, large and small, which manufacture and supply gasoline. They are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map shows the marketing areas, districts, and sampling locations. The report includes trend charts of selected properties of motor fuels over the last twenty-five years. Twelve octane distribution graphs for leaded and unleaded grades of gasoline are presented for areas 1, 2, 3, and 4. The average antiknock (octane) index (R + M)/2 of gasoline sold in the United States during June, July, and August 1985 was 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.8 for leaded below 93.0 grades of gasoline. Analyses of motor gasoline containing various alcohols are reported in separate tables beginning with this report. The average antiknock (octane) index (R + M)/2 of gasoline containing alcohols was 88.6 for unleaded below 90.0, 91.4 for unleaded 90.0 and above, and 90.2 for leaded below 93.0 grades of gasoline. 16 figs., 8 tabs.

  20. Price of Motor Gasoline Through Retail Outlets

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price...

  1. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Collaboration | Department of Energy Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration August 28, 2014 - 9:51am Addthis Pictured here is a clean diesel engine for light trucks that was part of Cummins research and development effort from 1997-2004. Supported with funding by the Energy Department, this engine is as clean and quiet as a gasoline

  2. Particle Measurement Methodology: Comparison of On-road and Lab Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particle Size Distributions | Department of Energy Measurement Methodology: Comparison of On-road and Lab Diesel Particle Size Distributions Particle Measurement Methodology: Comparison of On-road and Lab Diesel Particle Size Distributions 2002 DEER Conference Presentation: University of Minnesota 2002_deer_kittelson2.pdf (360.23 KB) More Documents & Publications Gasoline Vehicle Exhuast Particle Sampling Study Nanoparticle Emissions from Internal Combustion Engines Review of Diesel

  3. Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts

    Reports and Publications (EIA)

    2009-01-01

    This report responds to a request from Senator Jeff Sessions for an analysis of the environmental and energy efficiency attributes of light-duty diesel vehicles. Specifically, the inquiry asked for a comparison of the characteristics of diesel-fueled vehicles with those of similar gasoline-fueled, E85-fueled, and hybrid vehicles, as well as a discussion of any technical, economic, regulatory, or other obstacles to increasing the use of diesel-fueled vehicles in the United States.

  4. Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference Presentation: The Ohio State University 2003_deer_rizzoni.pdf (987.99 KB) More Documents & Publications Diesel HCCI with External Mixture Preparation Gasoline-like fuel effects on advanced combustion regimes A Mixed Mode HCCI/DI Engine Based on a Novel Heavy Fuel Atomizer

  5. Ruling on Liquefied Natural Gas (LNG) Tax Rate Sparks Debate

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    IRS Ruling On August 7, 1995, the Federal Register reported the Internal Revenue Service (IRS) ruling that liquefied natural gas (LNG) is a liquid fuel and will thus be taxed as a "special motor fuel," effective October 1, 1995. This definition covers all liquids that substitute for gasoline and diesel. The ruling refuted the claim of petitioners, such as the Natural Gas Vehicle (NGV) Coalition, that LNG is the same as compressed natural gas (CNG) and should be taxed at the equivalent

  6. Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opposition | Department of Energy 6: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition SUBSCRIBE to the Fact of the Week The prices of gasoline and diesel fuel affect the transportation sector in many ways. For example, fuel prices can impact the number of miles driven and affect the choices consumers make when purchasing vehicles. The graph below shows a three-month moving average

  7. Motor gasolines, summer 1983

    SciTech Connect (OSTI)

    Shelton, E.M.

    1984-02-01

    The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, chemical companies, and research institutes. The analytical data for 1583 samples of motor gasoline, were submitted to the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma for study, necessary calculations, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER) and the American Petroleum Institute (API). They represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, and leaded antiknock index (R+M)/2 below 93.0 grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.5 for unleaded below 90.0, 91.4 for unleaded 90.0 and above, and 89.0 for leaded below 93.0 grades of gasoline. 16 figures, 5 tables.

  8. Motor gasolines, summer 1980

    SciTech Connect (OSTI)

    Shelton, E.M.

    1981-02-01

    Analytical data for 2062 samples of motor gasoline were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The anitknock (octane) index ((R + M)/2) averages of gasolines sold in this country were 87.8 for the unleaded below 90.0, 91.6 for the unleaded 90.0 and above, 88.9 for the regular, and 92.8 for the premium grades of gasoline.

  9. Motor gasolines, Summer 1982

    SciTech Connect (OSTI)

    Shelton, E.M.

    1983-03-01

    The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

  10. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) ...

  11. Caterpillar Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

    1999-04-26

    In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

  12. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    SciTech Connect (OSTI)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  13. MTBE, Oxygenates, and Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased

  14. Reformulated Gasoline Foreign Refinery Rules

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated

  15. Chemistry Impacts in Gasoline HCCI

    SciTech Connect (OSTI)

    Szybist, James P; Bunting, Bruce G

    2006-09-01

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its

  16. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  17. Motor gasoline assessment, Spring 1997

    SciTech Connect (OSTI)

    1997-07-01

    The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

  18. Prices of Refiner Motor Gasoline Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    Product/ Sales Type: Gasoline, All Grades - Sales to End Users (U.S. only) Gasoline, All Grades - Through Retail Outlets Gasoline, All Grades - Other End Users Gasoline, All Grades - Sales for Resale Gasoline, All Grades - DTW (U.S. only) Gasoline, All Grades - Rack (U.S. only) Gasoline, All Grades - Bulk (U.S. only) Regular Gasoline - Sales to End Users (U.S. only) Regular Gasoline - Through Retail Outlets Regular Gasoline - Other End Users Regular Gasoline - Sales for Resale Regular Gasoline -

  19. Combatting urban air pollution through Natural Gas Vehicle (NGV) analysis, testing, and demonstration

    SciTech Connect (OSTI)

    1995-03-01

    Deteriorating urban air quality ranks as a top concern worldwide, since air pollution adversely affects both public health and the environment. The outlook for improving air quality in the world`s megacities need not be bleak, however, The use of natural gas as a transportation fuel can measurably reduce urban pollution levels, mitigating chronic threats to health and the environment. Besides being clean burning, natural gas vehicles (NGVs) are economical to operate and maintain. The current cost of natural gas is lower than that of gasoline. Natural gas also reduces the vehicle`s engine wear and noise level, extends engine life, and decreases engine maintenance. Today, about 700,000 NGVs operate worldwide, the majority of them converted from gasoline or diesel fuel. This article discusses the economic, regulatory and technological issues of concern to the NGV industry.

  20. Assessment of Summer 1997 motor gasoline price increase

    SciTech Connect (OSTI)

    1998-05-01

    Gasoline markets in 1996 and 1997 provided several spectacular examples of petroleum market dynamics. The first occurred in spring 1996, when tight markets, following a long winter of high demand, resulted in rising crude oil prices just when gasoline prices exhibit their normal spring rise ahead of the summer driving season. Rising crude oil prices again pushed gasoline prices up at the end of 1996, but a warm winter and growing supplies weakened world crude oil markets, pushing down crude oil and gasoline prices during spring 1997. The 1996 and 1997 spring markets provided good examples of how crude oil prices can move gasoline prices both up and down, regardless of the state of the gasoline market in the United States. Both of these spring events were covered in prior Energy Information Administration (EIA) reports. As the summer of 1997 was coming to a close, consumers experienced yet another surge in gasoline prices. Unlike the previous increase in spring 1996, crude oil was not a factor. The late summer 1997 price increase was brought about by the supply/demand fundamentals in the gasoline markets, rather than the crude oil markets. The nature of the summer 1997 gasoline price increase raised questions regarding production and imports. Given very strong demand in July and August, the seemingly limited supply response required examination. In addition, the price increase that occurred on the West Coast during late summer exhibited behavior different than the increase east of the Rocky Mountains. Thus, the Petroleum Administration for Defense District (PADD) 5 region needed additional analysis (Appendix A). This report is a study of this late summer gasoline market and some of the important issues surrounding that event.

  1. Fact #650: November 22, 2010 Diesel Fuel Prices hit a Two-Year High |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 50: November 22, 2010 Diesel Fuel Prices hit a Two-Year High Fact #650: November 22, 2010 Diesel Fuel Prices hit a Two-Year High According to the Energy Information Administration's weekly fuel price data, the price of highway diesel fuel on the week of November 17, 2010, reached a 2-year high of $3.18 per gallon. Back in 2008, the prices for gasoline and diesel fuel rose to record levels in mid-summer, but plummeted by about 50% before the end of the year. Though fuel

  2. EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

  3. Diesel Emission Control Review

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and technology approaches for diesel emission control for heavy and light duty applications

  4. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel ...

  5. Motor Gasoline Assessment, Spring 1997

    Reports and Publications (EIA)

    1997-01-01

    Analyzes the factors causing the run up of motor gasoline prices during spring 1996 and the different market conditions during spring 1997 that caused prices to decline.

  6. California Gasoline Price Study, 2003

    Reports and Publications (EIA)

    2003-01-01

    This is the final report to Congressman Ose describing the factors driving California's spring 2003 gasoline price spike and the subsequent price increases in June and August.

  7. Compressed natural gas fueled vehicles: The Houston experience

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  8. Central Atlantic (PADD 1B) Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    310 2.283 2.283 2.326 2.357 2.361 1993-2016 All Grades - Conventional Areas 2.346 2.321 2.326 2.371 2.412 2.405 1994-2016 All Grades - Reformulated Areas 2.288 2.260 2.256 2.298 2.323 2.334 1994-2016 Regular 2.172 2.144 2.143 2.187 2.220 2.225 1993-2016 Conventional Areas 2.224 2.198 2.204 2.246 2.290 2.285 1993-2016 Reformulated Areas 2.139 2.110 2.105 2.150 2.176 2.187 1994-2016 Midgrade 2.450 2.423 2.424 2.467 2.494 2.497 1994-2016 Conventional Areas 2.446 2.426 2.429 2.484 2.514 2.503

  9. East Coast (PADD 1) Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    44 2.210 2.221 2.270 2.314 2.314 1993-2016 All Grades - Conventional Areas 2.227 2.193 2.215 2.266 2.318 2.314 1994-2016 All Grades - Reformulated Areas 2.271 2.238 2.230 2.276 2.308 2.315 1994-2016 Regular 2.100 2.066 2.075 2.126 2.172 2.173 1992-2016 Conventional Areas 2.081 2.048 2.069 2.118 2.173 2.171 1992-2016 Reformulated Areas 2.130 2.097 2.086 2.138 2.171 2.176 1994-2016 Midgrade 2.378 2.345 2.364 2.407 2.451 2.440 1994-2016 Conventional Areas 2.346 2.313 2.344 2.395 2.442 2.422

  10. West Coast less California Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    488 2.454 2.414 2.419 2.457 2.469 1998-2016 All Grades - Conventional Areas 2.553 2.526 2.492 2.493 2.529 2.539 2000-2016 All Grades - Reformulated Areas 2.180 2.111 2.043 2.065 2.115 2.140 1998-2016 Regular 2.421 2.387 2.347 2.352 2.391 2.401 1998-2016 Conventional Areas 2.490 2.462 2.428 2.430 2.467 2.473 2000-2016 Reformulated Areas 2.090 2.020 1.953 1.975 2.025 2.051 1998-2016 Midgrade 2.623 2.587 2.548 2.551 2.596 2.612 1998-2016 Conventional Areas 2.688 2.660 2.626 2.626 2.670 2.685

  11. Volatility of Gasoline and Diesel Fuel Blends for Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Preparation, Injection and Combustion of Supercritical Fluids Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced ...

  12. Gulf Coast (PADD 3) Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    054 2.038 2.052 2.076 2.118 2.113 1993-2016 All Grades - Conventional Areas 2.056 2.037 2.053 2.077 2.127 2.113 1994-2016 All Grades - Reformulated Areas 2.045 2.039 2.046 2.071 2.088 2.115 1994-2016 Regular 1.944 1.928 1.938 1.964 2.009 2.005 1992-2016 Conventional Areas 1.947 1.928 1.939 1.965 2.018 2.005 1992-2016 Reformulated Areas 1.936 1.928 1.937 1.963 1.980 2.005 1994-2016 Midgrade 2.195 2.179 2.204 2.218 2.259 2.251 1994-2016 Conventional Areas 2.195 2.174 2.207 2.219 2.267 2.247

  13. Lower Atlantic (PADD 1C) Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    84 2.149 2.175 2.227 2.284 2.281 1993-2016 All Grades - Conventional Areas 2.187 2.150 2.179 2.231 2.287 2.284 1994-2016 All Grades - Reformulated Areas 2.156 2.138 2.133 2.181 2.249 2.245 1994-2016 Regular 2.025 1.991 2.016 2.068 2.128 2.125 1993-2016 Conventional Areas 2.030 1.993 2.021 2.073 2.132 2.130 1993-2016 Reformulated Areas 1.980 1.965 1.959 2.011 2.080 2.075 1994-2016 Midgrade 2.321 2.285 2.322 2.371 2.424 2.402 1994-2016 Conventional Areas 2.317 2.280 2.320 2.371 2.423 2.399

  14. Midwest (PADD 2) Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    64 2.204 2.208 2.259 2.313 2.269 1993-2016 All Grades - Conventional Areas 2.152 2.186 2.193 2.243 2.294 2.259 1994-2016 All Grades - Reformulated Areas 2.242 2.320 2.304 2.360 2.436 2.337 1994-2016 Regular 2.075 2.115 2.121 2.171 2.227 2.180 1992-2016 Conventional Areas 2.066 2.100 2.109 2.159 2.211 2.172 1992-2016 Reformulated Areas 2.132 2.210 2.198 2.250 2.329 2.227 1994-2016 Midgrade 2.328 2.361 2.361 2.411 2.461 2.424 1994-2016 Conventional Areas 2.309 2.337 2.339 2.387 2.434 2.406

  15. New England (PADD 1A) Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    79 2.237 2.219 2.270 2.305 2.309 1993-2016 All Grades - Conventional Areas 2.286 2.261 2.246 2.294 2.336 2.346 1994-2016 All Grades - Reformulated Areas 2.278 2.231 2.212 2.264 2.298 2.299 1994-2016 Regular 2.168 2.125 2.104 2.166 2.201 2.202 1993-2016 Conventional Areas 2.181 2.156 2.141 2.192 2.239 2.248 1993-2016 Reformulated Areas 2.165 2.117 2.095 2.160 2.192 2.191 1994-2016 Midgrade 2.441 2.404 2.391 2.410 2.449 2.455 1994-2016 Conventional Areas 2.439 2.416 2.401 2.439 2.471 2.481

  16. New York City Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    304 2.270 2.260 2.282 2.296 2.311 2000-2016 All Grades - Reformulated Areas 2.304 2.270 2.260 2.282 2.296 2.311 2000-2016 Regular 2.159 2.125 2.112 2.137 2.153 2.168 2000-2016 Reformulated Areas 2.159 2.125 2.112 2.137 2.153 2.168 2000-2016 Midgrade 2.482 2.450 2.443 2.458 2.467 2.481 2000-2016 Reformulated Areas 2.482 2.450 2.443 2.458 2.467 2.481 2000-2016 Premium 2.671 2.635 2.630 2.648 2.657 2.673 2000-2016 Reformulated Areas 2.671 2.635 2.630 2.648 2.657 2.673

  17. U.S. Gasoline and Diesel Retail Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    67 2.256 2.256 2.299 2.341 2.329 1993-2016 All Grades - Conventional Areas 2.198 2.193 2.203 2.243 2.292 2.277 1994-2016 All Grades - Reformulated Areas 2.406 2.384 2.364 2.413 2.441 2.436 1994-2016 Regular 2.159 2.150 2.149 2.193 2.237 2.223 1990-2016 Conventional Areas 2.091 2.087 2.096 2.136 2.187 2.170 1990-2016 Reformulated Areas 2.302 2.281 2.262 2.312 2.341 2.333 1994-2016 Midgrade 2.413 2.398 2.401 2.441 2.481 2.468 1994-2016 Conventional Areas 2.335 2.325 2.340 2.378 2.424 2.405

  18. Design Case Summary: Production of Gasoline and Diesel from Biomass...

    Broader source: Energy.gov (indexed) [DOE]

    Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing Bioenergy Technologies ...

  19. Gasoline and Diesel Fuel Update Data Revision Notice

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    for some stations in the West Coast less California region. EIA has corrected this error and provides a revision to the affected areas for December 28, 2015 in this...

  20. Maximizing Potential of Diesel and Gasoline for a Cleaner, More...

    Office of Environmental Management (EM)

    That quick compression makes the air hot enough to ignite the fuel without spark plugs, but the higher temperature and pressure inside the cylinder produce more pollution. "So we ...

  1. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    SciTech Connect (OSTI)

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel ?- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.

  2. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    SciTech Connect (OSTI)

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.

  3. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less

  4. Diesel Health Impacts & Recent Comparisons to Other Fuels | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Impacts & Recent Comparisons to Other Fuels Diesel Health Impacts & Recent Comparisons to Other Fuels 2002 DEER Conference Presentation: Natural Resources Defense Council ...

  5. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices decrease (short version) The U.S. average retail price for regular gasoline fell to $3.68 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  6. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices decrease (short version) The U.S. average retail price for regular gasoline fell to $3.67 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  7. Gasoline prices increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices increase (short version) The U.S. average retail price for regular gasoline rose to $3.69 a gallon on Monday. That's up 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  8. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-12-15

    Detailed chemical kinetic models are needed to simulate the combustion of current and future transportation fuels. These models should represent the various chemical classes in these fuels. Conventional diesel fuels are composed of n-alkanes, iso-alkanes, cycloalkanes and aromatics (Farrell et al. 2007). For future fuels, there is a renewed interest in Fischer-Tropsch (F-T) processes which can be used to synthesize diesel and other transportation fuels from biomass, coal and natural gas. F-T diesel fuels are expected to be similar to F-T jet fuels which are commonly comprised of iso-alkanes with some n-alkanes (Smith and Bruno, 2008). Thus, n-alkanes and iso-alkanes are common chemical classes in these conventional and future fuels. This paper reports on the development of chemical kinetic models of large n-alkanes and iso-alkanes to represent these chemical classes in conventional and future fuels. Two large iso-alkanes are 2,2,4,4,6,8,8-heptamethylnonane, which is a primary reference fuel for diesel, and isooctane, a primary reference fuel for gasoline. Other iso-alkanes are branched alkanes with a single methyl side chain, typical of most F-T fuels. The chemical kinetic models are then used to predict the effect of these fuel components on ignition characteristics under conditions found in internal combustion engines.

  9. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  10. The contribution of lubricant to the formation of particulate matter with reactivity controlled compression ignition in light-duty diesel engines

    SciTech Connect (OSTI)

    Storey, John Morse; Curran, Scott; Dempsey, Adam B.; Lewis, Sr., Samuel Arthur; Reitz, Rolf; Walker, N. Ryan; Wright, Chris

    2014-12-25

    Reactivity controlled compression ignition (RCCI) has been shown in single- and multi-cylinder engine research to achieve high thermal efficiencies with ultra-low NOX and soot emissions. The nature of the particulate matter (PM) produced by RCCI operation has been shown in recent research to be different than that of conventional diesel combustion and even diesel low-temperature combustion. Previous research has shown that the PM from RCCI operation contains a large amount of organic material that is volatile and semi-volatile. However, it is unclear if the organic compounds are stemming from fuel or lubricant oil. The PM emissions from dual-fuel RCCI were investigated in this study using two engine platforms, with an emphasis on the potential contribution of lubricant. Both engine platforms used the same base General Motors (GM) 1.9-L diesel engine geometry. The first study was conducted on a single-cylinder research engine with primary reference fuels (PRFs), n-heptane, and iso-octane. The second study was conducted on a four-cylinder GM 1.9-L ZDTH engine which was modified with a port fuel injection (PFI) system while maintaining the stock direct injection fuel system. Multi-cylinder RCCI experiments were run with PFI gasoline and direct injection of 2-ethylhexyl nitrate (EHN) mixed with gasoline at 5 % EHN by volume. In addition, comparison cases of conventional diesel combustion (CDC) were performed. Particulate size distributions were measured, and PM filter samples were collected for analysis of lube oil components. Triplicate PM filter samples (i.e., three individual filter samples) for both gas chromatography-mass spectroscopy (GC-MS; organic) analysis and X-ray fluorescence (XRF; metals) were obtained at each operating point and queued for analysis of both organic species and lubricant metals. Here, the results give a clear indication that lubricants do not contribute significantly to the formation of RCCI PM.

  11. The contribution of lubricant to the formation of particulate matter with reactivity controlled compression ignition in light-duty diesel engines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Storey, John Morse; Curran, Scott; Dempsey, Adam B.; Lewis, Sr., Samuel Arthur; Reitz, Rolf; Walker, N. Ryan; Wright, Chris

    2014-12-25

    Reactivity controlled compression ignition (RCCI) has been shown in single- and multi-cylinder engine research to achieve high thermal efficiencies with ultra-low NOX and soot emissions. The nature of the particulate matter (PM) produced by RCCI operation has been shown in recent research to be different than that of conventional diesel combustion and even diesel low-temperature combustion. Previous research has shown that the PM from RCCI operation contains a large amount of organic material that is volatile and semi-volatile. However, it is unclear if the organic compounds are stemming from fuel or lubricant oil. The PM emissions from dual-fuel RCCI weremore » investigated in this study using two engine platforms, with an emphasis on the potential contribution of lubricant. Both engine platforms used the same base General Motors (GM) 1.9-L diesel engine geometry. The first study was conducted on a single-cylinder research engine with primary reference fuels (PRFs), n-heptane, and iso-octane. The second study was conducted on a four-cylinder GM 1.9-L ZDTH engine which was modified with a port fuel injection (PFI) system while maintaining the stock direct injection fuel system. Multi-cylinder RCCI experiments were run with PFI gasoline and direct injection of 2-ethylhexyl nitrate (EHN) mixed with gasoline at 5 % EHN by volume. In addition, comparison cases of conventional diesel combustion (CDC) were performed. Particulate size distributions were measured, and PM filter samples were collected for analysis of lube oil components. Triplicate PM filter samples (i.e., three individual filter samples) for both gas chromatography-mass spectroscopy (GC-MS; organic) analysis and X-ray fluorescence (XRF; metals) were obtained at each operating point and queued for analysis of both organic species and lubricant metals. Here, the results give a clear indication that lubricants do not contribute significantly to the formation of RCCI PM.« less

  12. Recent Developments in BMW's Diesel Technology

    SciTech Connect (OSTI)

    Steinparzer, F

    2003-08-24

    The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in the diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for

  13. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  14. Effect of CNG start - gasoline run on emissions from a 3/4 ton pick-up truck

    SciTech Connect (OSTI)

    Springer, K.J.; Smith, L.R.; Dickinson, A.G.

    1994-10-01

    This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start - gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The results was a reductiopn in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

  15. Crude Oil and Gasoline Price Monitoring

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Product Price Formation September 7, 2016 | Washington, DC An analysis of the factors that influence product prices, with chart data updated monthly, quarterly and annually Gasoline spot prices 2 Sources: U.S. Energy Information Administration, Bloomberg L.P. September 7, 2016 dollars per gallon Chicago CBOB New York Harbor Conventional gasoline Gulf Coast Conventional gasoline Los Angeles CARBOB Northwest Europe gasoline Singapore gasoline 2002 2003 2004 2005 2006 2007 2008 2009 2010

  16. Gasoline Price Pass-through

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    differences, whereas stationary series can be estimated in level form. The unit root test could not reject the hypothesis that the retail and spot gasoline price series have a...

  17. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ace016_wagner_2010_o.pdf (1.43 MB) More Documents & Publications Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty

  18. diesel.vp

    Gasoline and Diesel Fuel Update (EIA)

    Assessment of Summer 1997 Motor Gasoline Price Increase, (DOEEIA-0621, May 1998)). Using lessons learned from that experience, EIA has now focused the same type of analysis on...

  19. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 5.8;" " Unit: Percents." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze

  20. Chemical Kinetic Models for HCCI and Diesel Combustion

    SciTech Connect (OSTI)

    Pitz, W J; Westbook, C K; Mehl, M

    2008-10-30

    Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  1. This Week In Petroleum Gasoline Section

    Gasoline and Diesel Fuel Update (EIA)

    Regular gasoline retail prices (dollars per gallon) U.S. Average Conventional Reformulated U.S. retail regular gasoline prices graph Retail average regular gasoline prices graph Retail conventional regular gasoline prices graph Retail reformulated regular gasoline prices graph Retail average regular gasoline prices (dollars per gallon) more price data › Year ago Most recent 08/31/15 08/29/16 08/22/16 08/15/16 08/08/16 08/01/16 07/25/16 07/18/16 U.S. 2.510 2.237 2.193 2.149 2.150 2.159 2.182

  2. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  3. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  4. Emissions and fuel economy of a Comprex pressure wave supercharged diesel. Report EPA-AA-TEB-81-1

    SciTech Connect (OSTI)

    Barth, E.A.; Burgenson, R.N.

    1980-10-01

    In order to increase public interest in vehicles equipped with diesel engines, methods of improving diesel-fueled engine performance, as compared to current gasoline-fueled counterparts, are being investigated. One method to increase performance is to supercharge or turbocharge the engine. This report details an EPA assessment of a supercharging technique previously evaluated, however, since that evaluation, specific areas of operation have been refined.

  5. Comparing the Performance of SunDiesel and Conventional Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Variable ...

  6. ,"U.S. Motor Gasoline Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Motor Gasoline Prices",6,"Monthly","42016","1... AM" "Back to Contents","Data 1: U.S. Motor Gasoline Prices" "Sourcekey","EMAEPM0PTA...

  7. EIA lowers forecast for summer gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA lowers forecast for summer gasoline prices U.S. gasoline prices are expected to be ... according to the new monthly forecast from the U.S. Energy Information Administration. ...

  8. Price Changes in the Gasoline Market - Are Midwestern Gasoline Prices Downward Sticky?

    Reports and Publications (EIA)

    1999-01-01

    The report concentrates on regional gasoline prices in the Midwest from October 1992 through June 1998.

  9. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices decrease (long version) The U.S. average retail price for regular gasoline fell to $3.70 a gallon on Monday. That's down 1.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 4.01 a gallon, down 4.2 cents from a week ago. Prices were lowest in the Rocky Mountain States at 3.47 a gallon, remaining unchanged from last week

  10. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Gasoline prices decrease (long version) The U.S. average retail price for regular gasoline fell to $3.68 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 4.06 a gallon, down 1.8 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.47 a gallon, down 2.6 cents.This is Amerine Woodyard, with EIA, in Washington.

  11. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine ...

  12. Blender Net Production of Finished Motor Gasoline

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O.,

  13. Motor Gasoline Outlook and State MTBE Bans

    Reports and Publications (EIA)

    2003-01-01

    The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

  14. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  15. Gasoline prices - January 7, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices remained flat at $3.30 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington. For more information, contact Amerine Woodyard on

  16. Gasoline prices decrease (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Short version) The U.S. average retail price for regular gasoline fell to $3.65 a gallon on Monday. That's down 2.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  17. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.63 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  18. Microsoft Word - Summer 2004 Motor Gasoline Outlook.doc

    Gasoline and Diesel Fuel Update (EIA)

    April 2004 Summer 2004 Motor Gasoline Outlook Summary * Gasoline markets are tight as the 2004 driving season begins and conditions are likely to remain volatile through the summer. High crude oil costs, strong gasoline demand growth, low gasoline inventories, uncertainty about the availability of gasoline imports, high transportation costs, and changes in gasoline specifications have added to current and expected gasoline costs and pump prices. * For the upcoming summer driving season (April to

  19. Experimental and numerical assessment of on-road diesel and biodiesel emissions

    SciTech Connect (OSTI)

    West, B.H.; Storey, J.M.; Lewis, S.A.; Devault, G.L.; Green, J.B.; Sluder, C.S.; Hodgson, J.W.; Moore, B.L.

    1997-12-31

    The Federal Highway Administration`s TRAF-series of models use modal data to estimate fuel consumption and emissions for different traffic scenarios. A process for producing data-based modal models from road and dynamometer measurements has been developed and applied to a number of light-duty gasoline vehicles for the FHWA. The resulting models, or lookup tables, provide emissions and fuel consumption as functions of vehicle speed and acceleration. Surface plots of the data provide a valuable visual benchmark of the emissions characteristics of the vehicles. Due to the potential fuel savings in the light-duty sector via introduction of diesels, and the concomitant growing interest in diesel engine emissions, the measurement methodology has been extended under DOE sponsorship to include a diesel pickup truck running a variety of fuels, including number 2 diesel fuel, biodiesel, Fischer-Tropsch, and blends.

  20. Diesel Engines: Environmental Impact and Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impact and Control Diesel Engines: Environmental Impact and Control 2002 ... More Documents & Publications Cleaning Up Diesel Engines DIesel Emission Control ...

  1. Diesel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $4.05 a gallon on Monday. That's down 4.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.20 a gallon, down 3.9 cents from a week ago. Prices were lowest in the Rocky Mountain States at 3.97 a gallon, down 3.9 cents

  2. Diesel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $3.88 a gallon on Monday. That's down a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.99 a gallon, remaining unchanged from a week ago. Prices were lowest in the Gulf Coast region at 3.78 a gallon, also unchanged from a week ago.

  3. Diesel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $3.85 a gallon on Monday. That's down 2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.98 a gallon, down 6-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.75 a gallon, down 2.2 cents.

  4. Diesel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $3.82 a gallon on Monday. That's down 2.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.97 a gallon, down 1.3 cents from a week ago. Prices were lowest in the Lower Atlantic and the Gulf Coast regions at 3.73 a gallon

  5. Diesel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $3.87 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.04 a gallon, down 1.3 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.78 a gallon, down 1

  6. Diesel prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to $3.88 a gallon on Monday. That's down 0.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.07 a gallon, up 2.6 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.77 a gallon, down 0.7 cents. This is Marlana Anderson, with EIA, in Washington. For more information, contact Marlana

  7. Diesel prices decrease slightly

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices decrease slightly The U.S. average retail price for on-highway diesel fuel fell slightly to $3.84 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.98 a gallon, up 4-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.74 a gallon, down a tenth of a penny.

  8. Diesel prices flat

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices flat The U.S. average retail price for on-highway diesel fuel saw no movement from last week. Prices remained flat at $3.89 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.05 a gallon, up 2-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.80 a gallon, up 3-tenths of a penny

  9. Diesel prices flat nationally

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices flat nationally The U.S. average retail price for on-highway diesel fuel remained the same from a week ago at $3.98 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.14 a gallon, up 1.4 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.90 a gallon, up a tenth of a penny.

  10. Diesel prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices increase The U.S. average retail price for on-highway diesel fuel rose to $3.84 a gallon on Monday. That's up 2.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at $4.00 a gallon, up 2.2 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.75 a gallon, up 8-tenths of a penny. This is Marlana Anderson, with EIA, in Washington. For more information, contact

  11. Diesel prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices increase The U.S. average retail price for on-highway diesel fuel rose to $3.90 a gallon on Monday. That's up 3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.11 a gallon, up 4.2 cents from a week ago. Prices were lowest in the Gulf Coast states at 3.79 a gallon, up 1.7 cents.

  12. Diesel prices increase nationally

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices increase nationally The U.S. average retail price for on-highway diesel fuel rose to $3.91 a gallon on Monday. That's up 1.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.07 a gallon, up 1 1/2 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.83 a gallon, up 7-tenths of a penny.

  13. Diesel prices rise slightly

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices rise slightly The U.S. average retail price for on-highway diesel fuel rose slightly to $4.16 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.34 a gallon, up a penny from a week ago. Prices were lowest in the Rocky Mountain States at 4.06 a gallon, up 2 1/

  14. Diesel prices slightly decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell to $3.87 a gallon on Monday. That's down 1.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.98 a gallon, down 7-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.77 a gallon, down half a penny. This is Amerine Woodyard, with EIA, in

  15. Diesel prices slightly decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell slightly to $3.84 a gallon on Monday. That's down 8-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.98 a gallon, up 2-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.74 a gallon, down 7-tenths of a penny.

  16. Diesel prices slightly increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices slightly increase The U.S. average retail price for on-highway diesel fuel rose slightly to $3.87 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.07 a gallon, up half a penny from a week ago. Prices were lowest in the Gulf Coast states at 3.77 a gallon, up 6-tenths of a penny.

  17. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel, diesel motor fuel, electric, and natural gas, excluding propane because NHTSA's CAFE program does not track these vehicles. See Gasoline, Gasohol, Unleaded Gasoline, Leaded...

  18. Diesel fuel component contribution to engine emissions and performance. Final report

    SciTech Connect (OSTI)

    Erwin, J.; Ryan, T.W. III; Moulton, D.S.

    1994-11-01

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  19. New 11 liter Komatsu diesel engine

    SciTech Connect (OSTI)

    Mizusawa, M.; Tanosaki, T.; Kawase, M.; Oguchi, T.

    1984-01-01

    New 6 cylinder direct injection 11 liter diesel engines which have naturally aspirated, turbocharged, and turbocharged-aftercooled versions have been developed and moved in production at the end of 1983. The highest output of the turbocharged-aftercooled version is 276 kW (375 ps) at 2200 RPM. Based on Komatsu new technologies 125 mm bore diesel has been designed to meet the users' demands, such as compact in size, light in weight, extremely high performance, high reliability and durability. The turbocharged and turbocharged-aftercooled engines are characterized by the adoption of the ductile cast iron piston which is the first application into the high speed, four cycle diesels in production in the world, and which was enabled by Komatsu design and precision casting technologies. This paper also covers the other design aspects and performance characteristics.

  20. Areas Participating in the Reformulated Gasoline Program

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA

  1. Microsoft Word - Gasoline_2008 Supplement.doc

    Gasoline and Diesel Fuel Update (EIA)

    8 1 April 2008 Short-Term Energy Outlook Supplement: Motor Gasoline Consumption 2008 A Historical Perspective and Short-Term Projections 1 Highlights * Income growth rates have less of an impact on recent trends in gasoline consumption than in the past, but short-run effects are still significant. * High gasoline prices are once again motivating drivers to conserve by driving less and purchasing more fuel-efficient transportation. * The increasing share of lower-Btu-content ethanol has

  2. Calibraton of a Directly Injected Natural Gas HD Engine for Class...

    Broader source: Energy.gov (indexed) [DOE]

    This poster offers a comparison of high-pressure direct injection (HPDI) of natural gas engines with pilot diesel ignition with diesel engines used in heavy-duty diesel engine ...

  3. New Diesel Emissions Control Strategy for U.S. Tier 2 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Emissions Control Strategy for U.S. Tier 2 New Diesel Emissions Control Strategy for U.S. Tier 2 2004 Diesel Engine Emissions Reduction (DEER) Conference: Southwest Research Institute 2004_deer_leet.pdf (401.75 KB) More Documents & Publications Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Combining Low-Temperature Combustion with Lean-NOx Trap

  4. California Gasoline Price Study, 2003 Preliminary Findings

    Reports and Publications (EIA)

    2003-01-01

    This is the preliminary report to Congressman Ose describing the factors driving California's spring 2003 gasoline price spike and the subsequent price increases in June and August.

  5. Eliminating MTBE in Gasoline in 2006

    Gasoline and Diesel Fuel Update (EIA)

    in 2006. Companies' decisions to eliminate MTBE have been driven by State bans due to water contamination concerns, continuing liability exposure from adding MTBE to gasoline,...

  6. Motor Gasoline Outlook and State MTBE Bans

    Gasoline and Diesel Fuel Update (EIA)

    Motor Gasoline Outlook and State MTBE Bans Tancred Lidderdale Contents 1. Summary 2. MTBE Supply and Demand 3. Ethanol Supply 4. Gasoline Supply 5. Gasoline Prices A. Long-Term Equilibrium Price Analysis B. Short-Term Price Volatility 6. Conclusion 7. Appendix A. Estimating MTBE Consumption by State 8. Appendix B. MTBE Imports and Exports 9. Appendix C. Glossary of Terms 10. End Notes 11. References 1. Summary The U.S. is beginning the summer 2003 driving season with lower gasoline inventories

  7. STEO January 2013 - average gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    drivers to see lower average gasoline prices in 2013 and 2014 U.S. retail gasoline prices are expected to decline over the next two years. The average pump price for regular unleaded gasoline was $3.63 a gallon during 2012. That is expected to fall to $3.44 this year and then drop to $3.34 in 2014, according to the new forecast from the U.S. Energy Information Administration. Expected lower crude oil prices.....which accounted for about two-thirds of the price of gasoline in 2012....will

  8. ,"Motor Gasoline Sales Through Retail Outlets Prices "

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Motor Gasoline Sales Through Retail Outlets Prices ",60,"Annual",2014,"6301984" ,"Release...

  9. Understanding diesel engine lubrication at low temperature

    SciTech Connect (OSTI)

    Smith, M.F. Jr.

    1990-01-01

    This paper reports on oil pumpability in passenger car gasoline engines that was well-characterized by an ASTM program and by individual researchers in the 1970's and early 1980's. oil pumpability in diesel engines however, was not investigated to any significant extent until the mid-1980's. This study was initiated to define the performance of several commercial viscosity modifiers in different formulations containing 3 detergent-inhibitor (DI) additive packages and 4 basestock types. The test oils were run at {minus}18{degrees} C (0{degrees} F) in a Cummins NTC-400 diesel engine. The results, when statistically analyzed, indicated that a new, second generation olefin copolymer (OCP) viscosity modifier has better performance that a first generation OCP and, furthermore, had performance equal to a polymethacrylate (PMA) viscosity modifier. The analysis also showed that one DI/base stock combination had a significant effect on performance. The apparent shear rate of the oil in the pump inlet tube was calculated from the oil pump flow rate measured at idle speed at low temperature and the pump inlet tube diameter. The shear rate and oil viscosity were used to estimate the shear stress in the pump inlet tube. The shear stress level of the engine is 56% higher than the Mini-Rotary Viscometer (MRV). Hence, the current MRV procedure is rheologically unsuitable to predict pumpability in a large diesel engine. A new device was developed for measuring the oil film thickness in the turbocharge bearing and noting the time when a full oil film is formed. Results indicate that a full oil film occurs almost immediately, well before any oil pressure is observed at the turbocharge inlet. Residual oil remaining in the bearing after shutdown may account of this observation. The oil film maintained its thickness both before, and after the first indication of oil pressure. More work is needed to study this effect.

  10. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  11. Gasoline Biodesulfurization DE-FC07-97ID13570 FINAL REPORT

    SciTech Connect (OSTI)

    Pienkos, Philip T.

    2002-01-15

    Nine strains were identified to grow with gasoline as sole sulfur source. Two different genes were cloned from Gordonia terrae KGB1 and tested for the ability to support gasoline BDS. The first of these, fmoA, was cloned by screening a KGB1 gene library for the ability to convert indole to indigo (a sulfur-regulated capability in KGB1). The fmoA gene was overexpressed in a gasoline tolerant strain of Pseudomonas putida PpG1 and the recombinant strain was shown to convert thiophene to a dimer of thiophene sulfoxide at rates nearly two orders of magnitude higher than KGB1 could catalyze the reaction. Despite this high activity the recombinant PpG1 was unable to demonstrate any activity against gasoline either in shake flask or in bench-scale gasoline BDS bioreactor. A second gene (toeA) was cloned from KGB1 and shown to support growth of Rhodococcus erythropolis JB55 on gasoline. The toeA gene was also identified in another gasoline strain T. wratislaviensis EMT4, and was identified as a homolog of dszA from R. erythropolis IGTS8. Expression of this gene in JB55 supported conversion of DBTO2 (the natural substrate for DszA) to HPBS, but activity against gasoline was low and BDS results were inconsistent. It appeared that activity was directed against C2- and C3-thiophenes. Efforts to increase gene expression by plasmid manipulation, by addition of flavin reductase genes, or by expression in PpG1 were unsuccessful. The DszC protein (DBT monooxygenase) from IGTS8 has very little activity against the sulfur compounds in gasoline, but a mutant enzyme with a substitution of phenylalanine for valine at position 261 was shown to have an altered substrate range. This alteration resulted in increased activity against gasoline, with activity towards mainly C3- and C4-thiophenes and benzothiophene. A mutant library of dszB was constructed by RACHITT (W. C. Coco et al., DNA shuffling method for generating highly recombined genes and evolved enzymes. 2001. Nature Biotech. 19

  12. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis Briefs Environment...

  13. Untitled Document

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis Briefs Environment...

  14. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  15. Untitled Document

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  16. Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

  17. Gasoline prices - January 7, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices remained flat at $3.30 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the New England and Central Atlantic regions, at 3.52 a gallon, up around 2 cents in both regions from a week ago. For the second week in a row, prices were lowest in the Rocky Mountain States at 2.94 a gallon, down 8.1 cents. This is

  18. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline fell to $3.65 a gallon on Monday. That's down 2.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.93 a gallon, down 1.9 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.37 a gallon, down 2.6 cents

  19. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline fell to $3.63 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.89 a gallon, up a penny from a week ago. Prices were lowest in the Gulf Coast States at 3.38 a gallon, down 3.9 cents

  20. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  1. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon; Wagner, Robert M

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  2. A NOVEL VAPOR-PHASE PROCESS FOR DEEP DESULFURIZATION OF NAPHTHA/DIESEL

    SciTech Connect (OSTI)

    B.S. Turk; R.P. Gupta; S.K. Gangwal

    2003-06-30

    Tier 2 regulations issued by the U.S. Environmental Protection Agency (EPA) require a substantial reduction in the sulfur content of gasoline. Similar regulations have been enacted for the sulfur level in on-road diesel and recently off-road diesel. The removal of this sulfur with existing and installed technology faces technical and economic challenges. These challenges created the opportunity for new emerging technologies. Research Triangle Institute (RTI) with subcontract support from Kellogg Brown & Root, Inc., (KBR) used this opportunity to develop RTI's transport reactor naphtha desulfurization (TReND) process. Starting with a simple conceptual process design and some laboratory results that showed promise, RTI initiated an accelerated research program for sorbent development, process development, and marketing and commercialization. Sorbent development has resulted in the identification of an active and attrition resistant sorbent that has been prepared in commercial equipment in 100 lb batches. Process development has demonstrated both the sulfur removal performance and regeneration potential of this sorbent. Process development has scaled up testing from small laboratory to pilot plant transport reactor testing. Testing in the transport reactor pilot plant has demonstrated the attrition resistance, selective sulfur removal activity, and regeneration activity of this sorbent material. Marketing and commercialization activities have shown with the existing information that the process has significant capital and operating cost benefits over existing and other emerging technologies. The market assessment and analysis provided valuable feedback about the testing and performance requirements for the technical development program. This market analysis also provided a list of potential candidates for hosting a demonstration unit. Although the narrow window of opportunity generated by the new sulfur regulations and the conservative nature of the refining industry

  3. Diesel Energy | Open Energy Information

    Open Energy Info (EERE)

    search Name: Diesel Energy Place: Spain Product: Joint venture set up to invest in biodiesel plants. References: Diesel Energy1 This article is a stub. You can help OpenEI...

  4. ,"U.S. Motor Gasoline Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Motor Gasoline Refiner Sales ... AM" "Back to Contents","Data 1: U.S. Motor Gasoline Refiner Sales Volumes" ...

  5. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  6. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy ...

  7. Oxidation characteristics of gasoline direct-injection (GDI)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics of gasoline direct-injection (GDI) engine soot: Catalytic effects of ash and modified kinetic correlation Title Oxidation characteristics of gasoline...

  8. Characterization of Pre-Commercial Gasoline Engine Particulates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods ...

  9. Fact #890: September 14, 2015 Gasoline Prices Are Affected by...

    Broader source: Energy.gov (indexed) [DOE]

    Gasoline Prices Are Affected by Changes in Refinery Output File fotw890web.xlsx More Documents & Publications Fact 858 February 2, 2015 Retail Gasoline Prices in 2014 ...

  10. Gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to decrease (short version) The U.S. average retail price for regular gasoline fell to $3.29 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  11. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.44 a gallon on Monday. That's up 6.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  12. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.48 a gallon on Monday. That's up 3 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  13. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.51 a gallon on Monday. That's up 3.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  14. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.55 a gallon on Monday. That's up 3½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  15. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    4, 2014 Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.65 a gallon on Monday. That's up 5½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  16. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    1, 2014 Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.68 a gallon on Monday. That's up 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  17. Gasoline prices continue to rise (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to rise (short version) The U.S. average retail price for regular gasoline rose to $3.67 a gallon on Monday. That's up 7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  18. Diesel lubrication and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film describes the parts of diesel lubricating and cooling systems and how they work in relation to each other.

  19. Diesel lubrication and cooling systems

    SciTech Connect (OSTI)

    1994-12-31

    The film describes the parts of diesel lubricating and cooling systems and how they work in relation to each other.

  20. Active Diesel Emission Control Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Active Diesel Emission Control Systems 2004 Diesel Engine Emissions Reduction (DEER) Conferencen Presentation: RYPOS Active Diesel Emission Control Systems ...

  1. Effect of CNG start-gasoline run on emissions from a 3/4 ton pick-up truck

    SciTech Connect (OSTI)

    Springer, K.J.; Smith, L.R.; Dickinson, A.G.

    1994-10-01

    This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start-gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The result was a reduction in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

  2. Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel In 1995, over 95% of the fuel used in transit buses was diesel. In 2006, diesel fuel constituted just under 75% of the fuel used by transit buses while other fuel types such as compressed natural gas (CNG) and liquefied natural gas (LNG) have become much more prevalent. The use of CNG in buses has grown from less than 2% in 1995 to

  3. Performance, Efficiency and Emissions Assessment of Natural Gas Direct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Injection compared to Gasoline and Natural Gas Port-Fuel Injection in an Automotive Engine | Argonne National Laboratory Performance, Efficiency and Emissions Assessment of Natural Gas Direct Injection compared to Gasoline and Natural Gas Port-Fuel Injection in an Automotive Engine Title Performance, Efficiency and Emissions Assessment of Natural Gas Direct Injection compared to Gasoline and Natural Gas Port-Fuel Injection in an Automotive Engine Publication Type Journal Article Year of

  4. Gasoline Vehicle Exhuast Particle Sampling Study | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particle Measurement Methodology: Comparison of On-road and Lab Diesel Particle Size Distributions Evaluation of the European PMP Methodologies Using Chassis Dynamometer and ...

  5. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect (OSTI)

    Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

    2008-05-29

    Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the

  6. Diesel engine fuel systems

    SciTech Connect (OSTI)

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  7. Diesel engine fuel systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  8. DIESEL FUEL LUBRICATION

    SciTech Connect (OSTI)

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  9. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Parks, II, James E; Wagner, Robert M

    2013-01-01

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  10. Assessment of Summer 1997 Motor Gasoline Price Increase

    Reports and Publications (EIA)

    1998-01-01

    Assesses the 1997 late summer gasoline market and some of the important issues surrounding that event.

  11. Gasoline Ultra Fuel Efficient Vehicle Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Fuel Efficient Vehicle Program Update Gasoline Ultra Fuel Efficient Vehicle Program Update Discusses hardware and system development activities to achieve in-vehicle fuel economy and emissions performance improvements compared to a production baseline vehicle. deer12_confer.pdf (1.38 MB) More Documents & Publications Gasoline Ultra Fuel Efficient Vehicle Gasoline Ultra Fuel Efficient Vehicle Gasoline Ultra Fuel Efficient Vehicle

  12. Cleaning Up Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engines Cleaning Up Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_witherspoon.pdf (333.11 KB) More Documents & Publications ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines DIesel Emission Control Technology Developments The Need to Reduce Mobile Source Emissions in the South Coast Air Basin

  13. Insights into Spring 2008 Gasoline Prices

    Reports and Publications (EIA)

    2008-01-01

    Gasoline prices rose rapidly in spring 2007 due a variety of factors, including refinery outages and lower than expected imports. This report explores those factors and looks at the implications for 2008.

  14. Inquiry into August 2003 Gasoline Price Spike

    Reports and Publications (EIA)

    2003-01-01

    U.S. Secretary of Energy Spencer Abraham requested that the Energy Information Administration conduct an inquiry into the causes of the price increases of gasoline in July and August of 2003.

  15. Reformulated Gasoline Market Affected Refiners Differently, 1995

    Reports and Publications (EIA)

    1996-01-01

    This article focuses on the costs of producing reformulated gasoline (RFG) as experienced by different types of refiners and on how these refiners fared this past summer, given the prices for RFG at the refinery gate.

  16. Gasoline prices show sharp increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline saw its sharpest increase this year at 3.54 a gallon on Monday. That's up 18.1 cents from a week ago, based on ...

  17. Gasoline prices show sharp increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline saw its sharpest increase this year at 3.54 a gallon on Monday. That's up 18.1 cents from a week ago, based on the ...

  18. Summer 2003 Motor Gasoline Outlook.doc

    Gasoline and Diesel Fuel Update (EIA)

    3 1 Short-Term Energy Outlook April 2003 Summer 2003 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2003), high crude oil costs and other factors are expected to yield average retail motor gasoline prices higher than those of last year. Current crude oil prices reflect a substantial uncertainty premium due to concerns about the current conflict in the Persian Gulf, lingering questions about whether Venezuelan oil production will recover to near pre-strike

  19. Trends in motor gasolines: 1942-1981

    SciTech Connect (OSTI)

    Shelton, E M; Whisman, M L; Woodward, P W

    1982-06-01

    Trends in motor gasolines for the years of 1942 through 1981 have been evaluated based upon data contained in surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. The surveys have been conducted in cooperation with the American Petroleum Institute (API) since 1948. Various companies from throughout the country obtain samples from retail outlets, analyze the samples by the American Society for Testing and Materials (ASTM) procedures, and report data to the Bartlesville center for compilation, tabulation, calculation, analysis and publication. A typical motor gasoline report covers 2400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots, and tables of test results from about a dozen different tests. From these data in 77 semiannual surveys, a summary report has thus been assembled that shows trends in motor gasolines throughout the entire era of winter 1942 to 1943 to the present. Trends of physical properties including octane numbers, antiknock ratings, distillation temperatures, Reid vapor pressure, sulfur and lead content are tabulated, plotted and discussed in the current report. Also included are trend effects of technological advances and the interactions of engine design, societal and political events and prices upon motor gasoline evolution during the 40 year period.

  20. U.S. average gasoline prices falling to near $2 in December

    U.S. Energy Information Administration (EIA) Indexed Site

    In its new forecast, the U.S. Energy Information Administration said high gasoline production, cheaper winter-grade gasoline, and lower gasoline demand following this summer's peak ...

  1. Filter-based control of particulate matter from a lean gasoline direct injection engine

    SciTech Connect (OSTI)

    Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses; Prikhodko, Vitaly Y; Storey, John Morse

    2016-01-01

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The

  2. Technical comparison between Hythane, GNG and gasoline fueled vehicles

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    This interim report documents progress on this 2-year Alternative Fuel project, scheduled to end early 1993. Hythane is 85 vol% compressed natural gas (CNG) and 15 vol% hydrogen; it has the potential to meet or exceed the California Ultra-Low Emission Vehicle (ULEV) standard. Three USA trucks (3/4 ton pickup) were operated on single fuel (unleaded gasoline, CNG, Hythane) in Denver. The report includes emission testing, fueling facility, hazard and operability study, and a framework for a national hythane strategy.

  3. Renewable Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Diesel Fuels: Status of Technology and R&D Needs Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel Recent Research to Address Technical Barriers to ...

  4. Alternative Fuels Data Center: Diesel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center:

  5. Clean Diesel Technologies | Open Energy Information

    Open Energy Info (EERE)

    Clean Diesel Technologies Retrieved from "http:en.openei.orgwindex.php?titleCleanDieselTechnologies&oldid768455" Categories: Organizations Energy Efficiency...

  6. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  7. Southeast BioDiesel | Open Energy Information

    Open Energy Info (EERE)

    BioDiesel Jump to: navigation, search Name: Southeast BioDiesel Place: Charleston, South Carolina Product: Biodiesel producer based in South Carolina References: Southeast...

  8. Diesel Particulate Filters: Market Introducution in Europe |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications A New Active DPF System for "Stop and Go" Duty-Cycle Vehicles French perspective on diesel engines & emissions Diesel Particulate Filter: A Success ...

  9. Diesel Desulfurization Filter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desulfurization Filter Diesel Desulfurization Filter 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005deerrohrbach.pdf More ...

  10. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration Durability of ...

  11. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Biofuels Impact ...

  12. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation PDF icon 2003deerbolton1.pdf ...

  13. EPA Diesel Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA Diesel Update 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005deercharmley.pdf More Documents & Publications EPA Mobile Source ...

  14. Efficiency Considerations of Diesel Premixed Charge Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine Fuel-Induced System ...

  15. American Agri diesel LLC | Open Energy Information

    Open Energy Info (EERE)

    American Agri diesel LLC Jump to: navigation, search Name: American Agri-diesel LLC Place: Colorado Springs, Colorado Product: Biodiesel producer in Colorado. References: American...

  16. Further improvement of conventional diesel NOx aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV Further improvement of conventional diesel NOx aftertreatment concepts as pathway for ...

  17. The potential for low petroleum gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.; Webb, G.M.; Clauson, M.

    1996-06-01

    The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

  18. Motor gasolines, winter 1981-1982

    SciTech Connect (OSTI)

    Shelton, E M

    1982-07-01

    Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

  19. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  20. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

  1. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  2. Reformulated diesel fuel and method

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  3. Detailed Chemical Kinetic Reaction Mechanisms for Primary Reference Fuels for Diesel Cetane Number and Spark-Ignition Octane Number

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2010-03-03

    For the first time, a detailed chemical kinetic reaction mechanism is developed for primary reference fuel mixtures of n-hexadecane and 2,2,4,4,6,8,8-heptamethyl nonane for diesel cetane ratings. The mechanisms are constructed using existing rules for reaction pathways and rate expressions developed previously for the primary reference fuels for gasoline octane ratings, n-heptane and iso-octane. These reaction mechanisms are validated by comparisons between computed and experimental results for shock tube ignition and for oxidation under jet-stirred reactor conditions. The combined kinetic reaction mechanism contains the submechanisms for the primary reference fuels for diesel cetane ratings and submechanisms for the primary reference fuels for gasoline octane ratings, all in one integrated large kinetic reaction mechanism. Representative applications of this mechanism to two test problems are presented, one describing fuel/air autoignition variations with changes in fuel cetane numbers, and the other describing fuel combustion in a jet-stirred reactor environment with the fuel varying from pure 2,2,4,4,6,8,8-heptamethyl nonane (Cetane number of 15) to pure n-hexadecane (Cetane number of 100). The final reaction mechanism for the primary reference fuels for diesel fuel and gasoline is available on the web.

  4. The potential for alcohols and related ethers to displace conventional gasoline components

    SciTech Connect (OSTI)

    Hadder, G.R.; McNutt, B.D.

    1996-02-01

    The United States Department of Energy is required by law to determine the feasibility of producing sufficient replacement fuels to replace 30 percent of the projected United States consumption of motor fuels by light duty vehicles in the year 2010. A replacement fuel is a non-petroleum portion of gasoline, including alcohols, natural gas and certain other components. A linear program has been used to study refinery impacts for production of ``low petroleum`` gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and major contributors to cost increase can include investment in processes to produce olefins for etherification with alcohols. High oxygenation can increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum might be produced with cost increases of 23 to 37 cents per gallon, with substantial decreases in greenhouse gas emissions in some cases. Cost estimates are sensitive to assumptions about extrapolation of a national model for pollutant emissions, availability of raw materials and other issues. Reduction in crude oil use, a major objective of the low petroleum gasoline program, is 10 to 17 percent in the analysis.

  5. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    SciTech Connect (OSTI)

    William E. Wallace

    2006-09-30

    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  6. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect (OSTI)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  7. A Natural Gas, High Compression Ratio, High Efficiency ICRE

    Broader source: Energy.gov [DOE]

    Using natural gas and gasoline modeling, indications are that a free piston-floating stroke engine configuration can realize engine efficiency greater than 60 percent.

  8. Comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG) used by transit agencies in Texas. Research report

    SciTech Connect (OSTI)

    Lede, N.W.

    1997-09-01

    This study is a detailed comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG). The study provides data on two alternative fuels used by transit agencies in Texas. First, we examine the `state-of-the- art` in alternative fuels to established a framework for the study. Efforts were made to examine selected characteristics of two types of natural gas demonstrations in terms of the following properties: energy source characteristics, vehicle performance and emissions, operations, maintenance, reliability, safety costs, and fuel availability. Where feasible, two alternative fuels were compared with conventional gasoline and diesel fuel. Environmental considerations relative to fuel distribution and use are analyzed, with a focus on examining flammability an other safety-related issues. The objectives of the study included: (1) assess the state-of-the-art and document relevant findings pertaining to alternative fuels; (2) analyze and synthesize existing databases on two natural gas alternatives: liquefied natural gas (LNG) and compressed natural gas (CNG): and (3) compare two alterative fuels used by transit properties in Texas, and address selected aspects of alternative fuels such as energy source characteristics, vehicle performance and emissions, safety, costs, maintenance and operations, environmental and related issues.

  9. Motor Gasoline Market Spring 2007 and Implications for Spring 2008

    Reports and Publications (EIA)

    2008-01-01

    This report focuses on the major factors that drove the widening difference between wholesale gasoline and crude oil prices in 2007 and explores how those factors might impact gasoline prices in 2008.

  10. U.S. summer gasoline prices dive this year

    U.S. Energy Information Administration (EIA) Indexed Site

    Cheaper gasoline along with a stronger economy will encourage more driving. As a result, gasoline demand is forecast to reach a record high of nearly 9.5 million barrels per day ...

  11. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...

    Broader source: Energy.gov (indexed) [DOE]

    35: Average Annual Gasoline Pump Price, 1929-2013 fotw835web.xlsx (21.31 KB) More Documents & Publications Fact 915: March 7, 2016 Average Historical Annual Gasoline Pump Price, ...

  12. U.S. gasoline price falls under $3 (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    November 3, 2014 U.S. gasoline price falls under 3 (long version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon ...

  13. U.S. gasoline price falls under $3 (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 U.S. gasoline price falls under 3 (short version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon on Monday. ...

  14. What Drives U.S. Gasoline Prices?

    U.S. Energy Information Administration (EIA) Indexed Site

    What Drives U.S. Gasoline Prices? October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | What Drives U.S. Gasoline Prices? i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  15. Gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $3.29 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.49 a gallon, up 6-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.08 a gallon, down 9-tenths of a penny. This is Amerine Woodyard, with

  16. Gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    19, 2014 Gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $3.67 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 4.02 a gallon, down 7-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.44 a gallon, up 2-tenths of a penny.

  17. Gasoline prices continue to fall (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to fall (long version) The U.S. average retail price for regular gasoline decreased for the second week in a row to $3.71 a gallon on Monday. That's down 4.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 4.05 a gallon, down 2 cents from a week ago. Prices were lowest in the Rocky Mountain States at 3.47 a gallon, down 7-tenths of a penny

  18. Gasoline prices continue to fall (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to fall (long version) The U.S. average retail price for regular gasoline fell to $3.61 a gallon on Monday. That's down 3.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.93 a gallon, down 1.7 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.43 a gallon, down 4.6

  19. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    , 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.48 a gallon on Monday. That's up 3 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.71 a gallon, up 5.6 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.23 a gallon, up 1.8 cents. This is Marcela Rourk, with EIA, in Washington.

  20. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    March 10, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.51 a gallon on Monday. That's up 3.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.76 a gallon, up 4.7 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.25 a gallon, up 2 ½ cents.

  1. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.55 a gallon on Monday. That's up 3½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.81 a gallon, up 5½ cents from a week ago. Prices were lowest in the Gulf Coast region at 3.28 a gallon, up 3.1 cents. This is Marcela Rourk, with EIA, in Washington.

  2. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    14, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.65 a gallon on Monday. That's up 5½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.98 a gallon, up 9.7 cents from a week ago. Prices were lowest in the Rocky Mountain states at 3.44 a gallon, down 8-tenths of a penny

  3. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    21, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.68 a gallon on Monday. That's up 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 4.03 a gallon, up a nickel from a week ago. Prices were lowest in the Rocky Mountain states at 3.45 a gallon, up 8-tenths of a penny

  4. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    24, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.44 a gallon on Monday. That's up 6.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.65 a gallon, up 8 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.21 a gallon, up

  5. Gasoline prices continue to rise (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to rise (long version) The U.S. average retail price for regular gasoline rose to $3.67 a gallon on Monday. That's up 7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.95 a gallon, up 1.4 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.39 a gallon, up 2.8 cents. The Midwest region boasted the highest weekly increase at 18.8 cents with

  6. Gasoline prices inch down (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices inch down (long version) The U.S. average retail price for regular gasoline fell to $3.68 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.96 a gallon, down 4.2 cents from a week ago and marking the first dip below the 4 dollar mark since mid-February. Prices were lowest in the Rocky Mountain States at 3.47 a gallon, remaining unchanged

  7. NAFTA and gasoline: Canada, U. S. , Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-03-31

    The North American Free Trade Agreement has become a hotly debated topic all over the world, but especially in the countries involved: Mexico, United States, and Canada. Comments made by high ranking officials imply there are differences to reconcile before the agreement is passed. Toward seeing these countries in trio, this issue compares gasoline markets and some energy perspectives. The purpose of this article is to contribute to understanding of the three countries through their petroleum industry structure. Gasoline consumption and retail delivery infrastructure are compared and contrasted to illustrate the differences among the NAFTA countries.

  8. Motor Gasoline Market Model documentation report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The purpose of this report is to define the objectives of the Motor Gasoline Market Model (MGMM), describe its basic approach and to provide detail on model functions. This report is intended as a reference document for model analysts, users, and the general public. The MGMM performs a short-term (6- to 9-month) forecast of demand and price for motor gasoline in the US market; it also calculates end of month stock levels. The model is used to analyze certain market behavior assumptions or shocks and to determine the effect on market price, demand and stock level.

  9. Note on the structural stability of gasoline demand and the welfare economics of gasoline taxation

    SciTech Connect (OSTI)

    Kwast, M.L.

    1980-04-01

    A partial adjustment model is used to investigate how the 1973 to 1974 oil embargo affected the structural stability of gasoline demand and to compute the welfare effects of higher gasoline taxes. A variety of statistical tests are used to demonstrate the structural stability of gasoline demand in spite of higher prices. A case study demonstrates only modest price elasticity in response to increased taxes. Higher excise taxes are felt to be justified, however, as an efficient source of revenue even though their effect on demand is limited. 17 references, 4 tables. (DCK)

  10. Coal-fueled diesel locomotive test

    SciTech Connect (OSTI)

    Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

    1993-01-01

    The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

  11. EPA Clean Diesel Funding Assistance Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Clean Diesel Funding Assistance Program for projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure, particularly from fleets operating at or servicing goods movement facilities located in areas designated as having poor air quality.

  12. EPA Tribal Clean Diesel Funding Assistance Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Tribal Clean Diesel Funding Assistance Program for tribal projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure. Eligible entities include tribal governments.

  13. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  14. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Reciprocating Engine System (ARES) Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Integration of Diesel Engine Technology ...

  15. Fact #565: April 6, 2009 Household Gasoline Expenditures by Income |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: April 6, 2009 Household Gasoline Expenditures by Income Fact #565: April 6, 2009 Household Gasoline Expenditures by Income In the annual Consumer Expenditure Survey, household incomes are grouped into five equal parts called quintiles (each quintile is 20%). Households in the second and third quintiles consistently have a higher share of spending on gasoline each year than households in the other quintiles. Household Gasoline Expenditures by Income Quintile Bar graph

  16. National Survey of E85 and Gasoline Prices

    SciTech Connect (OSTI)

    Bergeron, P.

    2008-10-01

    Study compares the prices of E85 and regular gasoline nationally and regionally over time for one year.

  17. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Euro VI Emissions | Department of Energy Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions 3-cylindery gasoline direct injection engines offer similar value in CO2 reduction capability (Euros/% CO2 reduction) at a significantly lower on-cost. deer09_kirwan.pdf (1.32 MB) More Documents & Publications Gasoline Ultra Fuel Efficient Vehicle Reducing

  18. Why Do Motor Gasoline Prices Vary Regionally? California Case Study

    Reports and Publications (EIA)

    1998-01-01

    Analysis of the difference between the retail gasoline prices in California and the average U.S. retail prices.

  19. DOE Gasoline Price Watch Website and Hotline | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline Price Watch Website and Hotline DOE Gasoline Price Watch Website and Hotline April 20, 2006 - 12:26pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today is reminding consumers about the Department of Energy's (DOE) gasoline price reporting system. Consumers can report activity at local gasoline filling stations that they believe may constitute "gouging" or "price fixing" by visiting gaswatch.energy.gov/. "There are many legitimate factors

  20. Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000

    Gasoline and Diesel Fuel Update (EIA)

    Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 Tancred Lidderdale and Aileen Bohn (1) Contents * Summary * Introduction * Reformulated Gasoline Demand * Oxygenate Demand * Logistics o Interstate Movements and Storage o Local Distribution o Phase 2 RFG Logistics o Possible Opt-Ins to the RFG Program o State Low Sulfur, Low RVP Gasoline Initiatives o NAAQS o Tier 2 Gasoline * RFG Production Options o Toxic Air Pollutants (TAP) Reduction o Nitrogen Oxides (NOx) Reduction o

  1. Improving Ethanol-Gasoline Blends by Addition of Higher Alcohols |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ethanol-Gasoline Blends by Addition of Higher Alcohols Improving Ethanol-Gasoline Blends by Addition of Higher Alcohols Mixtures of ethanol, gasoline, and higher alcohols were evaluated to determine if they offer superior performance to ethanol/gasoline blends in meeting the Renewal Fuels Standard II. deer12_ickes.pdf (1.45 MB) More Documents & Publications Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Impact of ethanol and butanol as oxygenates on

  2. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)&

  3. Path to High Efficiency Gasoline Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine deer10_johansson.pdf (4.97 MB) More Documents & Publications Partially Premixed Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control Advanced Lean-Burn DI Spark Ignition Fuels Research

  4. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions ...

  5. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  6. Dumping Dirty Diesels: The View From the Bridge | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dumping Dirty Diesels: The View From the Bridge Dumping Dirty Diesels: The View From the Bridge 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters ...

  7. Light Duty Diesels in the United States - Some Perspectives ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KB) More Documents & Publications Update on Diesel Exhaust Emission Control Technology and Regulations Review of Diesel Emission Control Technology Diesel Emission Control Review

  8. Update on Diesel Exhaust Emission Control Technology and Regulations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology ... Light Duty Diesels in the United States - Some Perspectives Review of Diesel Emission ...

  9. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine ...

  10. Advanced Modeling of Direct-Injection Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling of Direct-Injection Diesel Engines Advanced Modeling of Direct-Injection Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters ...

  11. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  12. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel ...

  13. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine ...

  14. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions ...

  15. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine ...

  16. Lubricant Formulation and Consumption Effects on Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine ...

  17. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine ...

  18. North American Market Challenges for Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North American Market Challenges for Diesel Engines North American Market Challenges for Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Gale ...

  19. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $4.01 a gallon on Monday. That's down 4.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.17 a gallon, down 3.3 cents from a week ago. Prices were lowest in the Gulf Coast region and the Rocky Mountain States at 3.94 a gallon, down 5.4 cents and down 3.6 cents, respectively

  20. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.98 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.13 a gallon, down 1.4 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.89 a gallon, down 2.7

  1. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.94 a gallon on Monday. That's down 3 1/2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.11 a gallon, down 2.9 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.85 a gallon, down 3.6 cents. This is Amerine Woodyard, with EIA, in Washington.

  2. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.89 a gallon on Monday. That's down 5 1/2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.03 a gallon, down 7.8 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.80 a gallon, down a nickel. This is Amerine Woodyard, with EIA, in Washington.

  3. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.92 a gallon on Monday. That's down 7-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England and Central Atlantic regions at 4.12 a gallon, down 6-tenths of a penny and 1.1 cents, respectively, from a week ago. Prices were lowest in the Gulf Coast region at 3.78 a gallon.

  4. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.90 a gallon on Monday. That's down 1.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region and West Coast states at 4.05 a gallon. Prices were lowest in the Gulf Coast region at 3.82 a gallon, down 1.7 cents from a week ago.

  5. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.92 a gallon on Monday. That's down 3 cents from a week ago based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.08 a gallon, down 3.6 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.83 a gallon, down 3.1 cents.

  6. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.89 a gallon on Monday. That's down 1.1 cents from a week ago based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.05 a gallon, down 5-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.80 a gallon, down 8-tenths of a penny.

  7. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.86 a gallon on Monday. That's down 1.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.02 a gallon, down 2.1 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.77 a gallon, down 1.4 cents. This is Marlana Anderson, with EIA, in Washington. For more information,

  8. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.83 a gallon on Monday. That's down 2 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.99 a gallon, down 1.7 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.75 a gallon, down 1.7 cents. This is Amerine Woodyard, with EIA, in Washington. For more information,

  9. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.82 a gallon on Monday. That's down a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.98 a gallon, down a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.75 a gallon, down 7-tenths of a penny. This is Amerine Woodyard, with EIA, in Washington. For more

  10. Diesel prices continue to decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to $3.87 a gallon on Monday. That's down 8-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.06 a gallon, down 2-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 3.77 a gallon, down 7-tenths of a penny

  11. Diesel prices continue to fall

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to fall The U.S. average retail price for on-highway diesel fuel fell to $4.09 a gallon on Monday. That's down 4.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.24 a gallon, down 5.5 cents from a week ago. Prices were lowest in the Rocky Mountain States at 4.01 a gallon, down 3.7 cents

  12. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.91 a gallon on Monday. That's up 7-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.12 a gallon, up 4-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 3.80 a gallon, up 1.3 cents.

  13. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. retail price for on-highway diesel fuel rose to its highest average since September at $3.95 a gallon. That's up 4.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.31 a gallon, up 13.4 cents from a week ago and marking the highest average this region has seen since last February. Prices were lowest in the Gulf Coast states at 3.78 a gallon,

  14. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.98 a gallon. That's up 2.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.37 a gallon, up 6.4 cents from a week ago and marking the highest average this region has seen since August 2008. Prices were lowest in the Gulf Coast states at 3.79 a gallon, up 1.3 cents.

  15. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.89 a gallon on Monday. That's up 2.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. For the first time this year, the West Coast surpassed New England for the highest regional diesel prices at 4.01 a gallon, up 3.9 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.78 a gallon, up 3.6 cents

  16. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.87 a gallon on Monday. That's up 3.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.01 a gallon, up 4 cents from a week ago, followed by the West Coast region at 4.00 a gallon, up 4.6 cents. Prices were lowest in the Gulf Coast region and Lower Atlantic States at 3.80 a gallon.

  17. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.90 a gallon on Monday. That's up 3.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.05 a gallon, up 4.2 cents from a week ago, followed closely by the West Coast region at 4.04 a gallon, up 4.4 cents. Prices were lowest in the Gulf Coast region at 3.84 a gallon, up 4.3 cents.

  18. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.92 a gallon on Monday. That's up 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Regionally, diesel prices were highest in New England at 4.06 a gallon, up 1.4 cents from a week ago, followed closely by the West Coast states at 4.05 a gallon, up 1.1 cents. Prices were lowest in the Gulf Coast region at 3.85 a gallon, up 4-tenths of a

  19. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.98 a gallon on Labor Day Monday. That's up 6.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.13 a gallon, up 5.6 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.90 a gallon, up 6.8 cents.

  20. Diesel prices continue to increase

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to $3.88 a gallon on Monday. That's up 3.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.04 a gallon, up 3.7 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.78 a gallon, up 2.7cents. This is Marlana Anderson, with EIA, in Washington. For more information, contact

  1. Diesel prices continue to rise

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices continue to rise The U.S. average retail price for on-highway diesel fuel rose to $4.16 a gallon on Monday. That's up 5.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.33 a gallon, up 6.8 cents from a week ago. Prices were lowest in the Rocky Mountain States at 4.03 a gallon, up 6.8

  2. Diesel prices remain fairly stable

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices remain fairly stable The U.S. average retail price for on-highway diesel fuel slightly fell to $3.85 a gallon on Monday. That's down 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 3.99 a gallon, down 7-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.74 a gallon, down 2.2 cents

  3. Diesel prices see slight drop

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices see slight drop The U.S. average retail price for on-highway diesel fuel fell slightly to $3.91 a gallon on Monday. That's down 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Regionally, diesel prices were highest in New England at 4.06 a gallon, down half a penny from a week ago, followed closely by the West Coast states at 4.05 a gallon, up 2-tenths of a penny. Prices were lowest in the Gulf Coast region at

  4. Diesel prices slightly decrease nationally

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices slightly decrease nationally The U.S. average retail price for on-highway diesel fuel fell to $3.97 a gallon on Monday. That's down 7-tenths of a penny from a week ago based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.14 a gallon, down 4-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.89 a gallon, down 9-tenths of a penny.

  5. Diesel prices slightly increase nationally

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices slightly increase nationally The U.S. average retail price for on-highway diesel fuel rose slightly to $3.90 a gallon on Monday. That's up 4-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the West Coast states at 4.06 a gallon, up 1.2 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.82 a gallon, down 2-tenths of a penny.

  6. Gasoline price shows small increase (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    shows small increase (Short version) The U.S. average retail price for regular gasoline rose to $3.32 a gallon on Monday. That's up 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  7. Gasoline price shows small increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Short version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices rose 4/10 of a cent to $3.30 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration.

  8. Gasoline price up this week (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline rose to $3.36 a gallon on Monday. That's up 4.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  9. Gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    (short version) The U.S. average retail price for regular gasoline fell to $3.65 a gallon on Monday. That's down 3 1/2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  10. Gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.50 a gallon on Monday. That's down 8.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  11. Gasoline prices continue to fall (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    (short version) The U.S. average retail price for regular gasoline fell to $3.54 a gallon on Monday. That's down 6.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  12. Gasoline prices continue to fall (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    (short version) The U.S. average retail price for regular gasoline decreased for the second week in a row to $3.71 a gallon on Monday. That's down 4.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  13. Gasoline prices continue to fall (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.70 a gallon on Monday. That's down 1.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  14. Gasoline prices continue to fall (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.61 a gallon on Monday. That's down 3.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  15. Gasoline prices continue to fall (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.52 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  16. Gasoline prices fall slightly (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell slightly to $3.49 a gallon on Monday. That's down 4-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  17. Gasoline prices inch down (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline rose slightly to $3.66 a gallon on Monday. That's up nine tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  18. Gasoline prices inch down (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.68 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  19. Gasoline prices inch down slightly (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell slightly to $3.54 a gallon on Monday. That's down 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  20. Eliminating MTBE in Gasoline in 2006

    Reports and Publications (EIA)

    2006-01-01

    A review of the market implications resulting from the rapid change from methyl tertiary butyl ether (MTBE) to ethanol-blended reformulated gasoline (RFG) on the East Coast and in Texas. Strains in ethanol supply and distribution will increase the potential for price volatility in these regions this summer.

  1. Gasoline prices up this week (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline rose to $3.61 a gallon on Monday. That's up 7.3 cents from a week ago and up 25.4 cents from two weeks ago, based on the weekly price survey by the U.S. Energy Information Administration.

  2. Gasoline prices up this week (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline rose to $3.75 a gallon on Monday. That's up almost 14 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  3. Gasoline prices up this week (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline rose to $3.78 a gallon on Monday. That's up 3.7 cents from a week ago and up almost 43 cents from 4 weeks ago, based on the weekly price survey by the U.S. Energy Information Administration.

  4. Price changes in the gasoline market: Are Midwestern gasoline prices downward sticky?

    SciTech Connect (OSTI)

    1999-03-01

    This report examines a recurring question about gasoline markets: why, especially in times of high price volatility, do retail gasoline prices seem to rise quickly but fall back more slowly? Do gasoline prices actually rise faster than they fall, or does this just appear to be the case because people tend to pay more attention to prices when they`re rising? This question is more complex than it might appear to be initially, and it has been addressed by numerous analysts in government, academia and industry. The question is very important, because perceived problems with retail gasoline pricing have been used in arguments for government regulation of prices. The phenomenon of prices at different market levels tending to move differently relative to each other depending on direction is known as price asymmetry. This report summarizes the previous work on gasoline price asymmetry and provides a method for testing for asymmetry in a wide variety of situations. The major finding of this paper is that there is some amount of asymmetry and pattern asymmetry, especially at the retail level, in the Midwestern states that are the focus of the analysis. Nevertheless, both the amount asymmetry and pattern asymmetry are relatively small. In addition, much of the pattern asymmetry detected in this and previous studies could be a statistical artifact caused by the time lags between price changes at different points in the gasoline distribution system. In other words, retail gasoline prices do sometimes rise faster than they fall, but this is largely a lagged market response to an upward shock in the underlying wholesale gasoline or crude oil prices, followed by a return toward the previous baseline. After consistent time lags are factored out, most apparent asymmetry disappears.

  5. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting ...

  6. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

  7. U.S. gasoline consumption highest in 8 years

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. gasoline consumption highest in 8 years U.S. gasoline consumption this year is expected to be at the highest level since the record fuel demand seen back in 2007 as lower gasoline prices and more people finding jobs means more sales at the gasoline pump. In its new monthly forecast, the U.S. Energy Information Administration said gasoline consumption increased by 2.7% during the first eight months of 2015 and should rise by an average of 190,000 barrels per day this year to 9.1 million

  8. SEP Success Story: Detroit Diesel

    Broader source: Energy.gov [DOE]

    This video features Detroit Diesel’s success with DOE’s Superior Energy Performance® (SEP™) program. Daimler’s Detroit Diesel Corporation facility earned Platinum SEP certification in November 2015...

  9. Next Generation Diesel Engine Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  10. Diesel Emission Control in Review

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  11. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect (OSTI)

    Storey, John Morse; Barone, Teresa L; Thomas, John F; Huff, Shean P

    2012-01-01

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle

  12. DIESEL OXIDATION CATALYST CONTROL OF HYDROCARBON AEROSOLS FROM REACTIVITY CONTROLLED COMPRESSION IGNITION COMBUSTION

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Parks, II, James E; Barone, Teresa L; Curran, Scott; Cho, Kukwon; Lewis Sr, Samuel Arthur; Storey, John Morse; Wagner, Robert M

    2011-01-01

    Reactivity Controlled Compression Ignition (RCCI) is a novel combustion process that utilizes two fuels with different reactivity to stage and control combustion and enable homogeneous combustion. The technique has been proven experimentally in previous work with diesel and gasoline fuels; low NOx emissions and high efficiencies were observed from RCCI in comparison to conventional combustion. In previous studies on a multi-cylinder engine, particulate matter (PM) emission measurements from RCCI suggested that hydrocarbons were a major component of the PM mass. Further studies were conducted on this multi-cylinder engine platform to characterize the PM emissions in more detail and understand the effect of a diesel oxidation catalyst (DOC) on the hydrocarbon-dominated PM emissions. Results from the study show that the DOC can effectively reduce the hydrocarbon emissions as well as the overall PM from RCCI combustion. The bimodal size distribution of PM from RCCI is altered by the DOC which reduces the smaller mode 10 nm size particles.

  13. Method to improve lubricity of low-sulfur diesel and gasoline fuels

    DOE Patents [OSTI]

    Erdemir, Ali

    2004-08-31

    A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.

  14. SULFUR REDUCTION IN GASOLINE AND DIESEL FUELS BY EXTRACTION/ADSORPTION OF REFRACTORY DIBENZOTHIOPHENES

    SciTech Connect (OSTI)

    Robert J. Angelici; Scott G. McKinley; Celedonio Alvarez

    2001-10-01

    Using the classical coordination compound, Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+}, they have prepared a metal complex with a 4,6-dimenthyldibenzothiophene ligand. The compound Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} also reacts with thiophene, benzothiophene and dibenzothiophene (DBT) at room temperature. They have found that Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} removes over 50% of the DBT in simulated petroleum feedstocks by a biphasic extraction process. The extraction phase is readily generated by air-oxidation thereby completing a cyclic process that removes DBT from petroleum feedstocks.

  15. High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  16. Advanced Diesel Common Rail Injection System for Future Emission Legislation

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Robert Bosch GMBH Common Rail System Engineering for PC Diesel Systems

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  18. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  19. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  20. Detailed Kinetic Modeling of Gasoline Surrogate Mixtures

    SciTech Connect (OSTI)

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-03-09

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  1. Predicting Thermal Stress in Diesel Particulate Filters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thermal Stress in Diesel Particulate Filters Predicting Thermal Stress in Diesel Particulate Filters 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Corning Incorporated 2004_deer_wilcox.pdf (224.39 KB) More Documents & Publications Diesel Emission Control Review Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration

  2. Cummins Light Truck Clean Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Truck Clean Diesel Cummins Light Truck Clean Diesel 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation 2004_deer_stang2.pdf (257.78 KB) More Documents & Publications Cummins/DOE Light Truck Clean Diesel Engine Progress Report Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins/DOE Light Truck Diesel Engine Progress Report

  3. Business Case for Light-Duty Diesels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesels Business Case for Light-Duty Diesels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_godwin.pdf (706.73 KB) More Documents & Publications Clean Diesel: The Progress, The Message, The Opportunity Light-Duty Diesel Market Potential in North America Accelerating Light-Duty Diesel Sales in the U.S. Market

  4. CREATING THE NORTHEAST GASOLINE SUPPLY RESERVE

    Broader source: Energy.gov [DOE]

    In 2012, Superstorm Sandy made landfall in the northeastern United States and caused heavy damage to two refineries and left more than 40 terminals in New York Harbor closed due to water damage and loss of power. This left some New York gas stations without fuel for as long as 30 days. As part of the Obama Administration’s ongoing response to the storm, the Department of Energy created the first federal regional refined product reserve, the Northeast Gasoline Supply Reserve.

  5. Reformulated gasoline deal with Venezuela draws heat

    SciTech Connect (OSTI)

    Begley, R.

    1994-04-06

    A fight is brewing in Congress over a deal to let Venezuela off the hook in complying with the Clean Air Act reformulated gasoline rule. When Venezuela threatened to call for a GATT panel to challenge the rule as a trade barrier, the Clinton Administration negotiated to alter the rule, a deal that members of Congress are characterizing as {open_quotes}secret{close_quotes} and {open_quotes}back door.{close_quotes}

  6. European Lean Gasoline Direct Injection Vehicle Benchmark

    SciTech Connect (OSTI)

    Chambon, Paul H; Huff, Shean P; Edwards, Kevin Dean; Norman, Kevin M; Prikhodko, Vitaly Y; Thomas, John F

    2011-01-01

    Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

  7. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  8. BPM Diesel Engineering | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: WR12 7NL Product: Converts diesel engines to operate on Dual Fuel using a digital generic system. References: BPM Diesel Engineering1 This article is a stub. You can...

  9. Earthship BioDiesel | Open Energy Information

    Open Energy Info (EERE)

    Earthship BioDiesel Jump to: navigation, search Name: Earthship BioDiesel Place: Taos, New Mexico Zip: 87571 Product: Supplier and retailer of biodiesel made from Waste Vegetable...

  10. Nanocatalysts for Diesel Engine Emissions Remediation

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop durable zeolite nanocatalysts with broad temperature operating windows to treat diesel engine emissions, thus enabling diesel engine equipment and vehicles to meet regulatory requirements.

  11. COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES

    SciTech Connect (OSTI)

    Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

    2003-08-24

    Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

  12. Diesel Particulate Filtration (DPF) Technology: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Materials Laboratory (HTML) User Program Durability of Diesel Engine Particulate Filters High Temperature Thermoelectric Materials Characterization for Automotive Waste ...

  13. Elastomer Compatibility Testing of Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Frame, E.; McCormick, R. L.

    2005-11-01

    In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

  14. Heavy Duty Low-Temperature & Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Lab Foundations Bioscience Computing & Info Sciences Geoscience Engineering ... diesel engines will likely require unconventional engine combustion and operating ...

  15. Vehicle Technologies Office Merit Review 2014: Low-Temperature Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion (LTGC) Engine Research | Department of Energy Low-Temperature Gasoline Combustion (LTGC) Engine Research Vehicle Technologies Office Merit Review 2014: Low-Temperature Gasoline Combustion (LTGC) Engine Research Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-temperature gasoline combustion engine research. ace004_dec_2014_o.pdf (1.5 MB) More

  16. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace065_rinkevich_2011_o.pdf (512.16 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2015: Advanced Gasoline Turbocharged

  17. Energy Department Announces First Regional Gasoline Reserve to Strengthen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Resiliency | Department of Energy First Regional Gasoline Reserve to Strengthen Fuel Resiliency Energy Department Announces First Regional Gasoline Reserve to Strengthen Fuel Resiliency May 2, 2014 - 10:29am Addthis News Media Contact 202-586-4940 WASHINGTON - As part of the Obama Administration's response to Superstorm Sandy, Energy Secretary Ernest Moniz today announced the creation of the first federal regional refined petroleum product reserve containing gasoline. Based on the

  18. Vehicle Technologies Office Merit Review 2015: Low-Temperature Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion (LTGC) Engine Research | Department of Energy Low-Temperature Gasoline Combustion (LTGC) Engine Research Vehicle Technologies Office Merit Review 2015: Low-Temperature Gasoline Combustion (LTGC) Engine Research Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-temperature gasoline combustion engine research. ace004_dec_2015_o.pdf (1.46 MB) More

  19. Comparing the Powertrain Energy Densities of Electric and Gasoline Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne National Laboratory Comparing the Powertrain Energy Densities of Electric and Gasoline Vehicles Title Comparing the Powertrain Energy Densities of Electric and Gasoline Vehicles Publication Type Conference Paper Year of Publication 2016 Authors Vijayagopal, R, Gallagher, K, Lee, D, Rousseau, A Conference Name SAE 2016 World Congress and Exhibition Date Published 04052016 Other Numbers SAE Paper No. 2016-01-0903 Keywords batteries, electric vehicles, EVs, fuel economy, gasoline,

  20. Comparing the Performance of SunDiesel and Conventional Diesel in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicle and Engines | Department of Energy the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_ng.pdf (358.36 KB) More Documents & Publications Development of Advanced Combustion Technologies for Increased Thermal Efficiency Development of Enabling

  1. Sandia explores aggressive high-efficiency sparkplug-free gasoline auto

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engines explores aggressive high-efficiency sparkplug-free gasoline auto engines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  2. ,"U.S. Reformulated, Average Refiner Gasoline Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...www.eia.govdnavpetpetprirefmg2cnusepm0rdpgalm.htm" ,"Source:","Energy Information ... Reformulated Gasoline Retail Sales by Refiners (Dollars per ...

  3. ,"U.S. Conventional, Average Refiner Gasoline Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...www.eia.govdnavpetpetprirefmg2cnusepm0udpgalm.htm" ,"Source:","Energy Information ... Conventional Gasoline Retail Sales by Refiners (Dollars per ...

  4. Advantages of Oxygenates Fuels over Gasoline in Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  5. Reformulated Gasoline Use Under the 8-Hour Ozone Rule

    Reports and Publications (EIA)

    2002-01-01

    This paper focuses on the impact on gasoline price and supply when additional ozone non-attainment areas come under the new 8-hour ozone standard.

  6. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...

  7. Motor Gasoline Market Spring 2007 and Implications for Spring...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    began to decline, and with the transition from methyl tertiary butyl ether (MTBE) to ethanol completed and the end of the summer driving season drawing near, gasoline prices...

  8. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1997 Table 43....

  9. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) - Continued Geographic Area Month Premium All Grades Sales...

  10. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) - Continued Geographic Area Month Premium All Grades Sales...

  11. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Premium All...

  12. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Premium All...

  13. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1996 Table 43....

  14. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) Indexed Site

    at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration Petroleum Marketing Annual 1996 Table 31. Motor...

  15. Gasoline prices peak, expected to fall through end of 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices peak, expected to fall through end of 2016 It's all downhill for U.S. drivers at least far as the outlook for gasoline prices is concerned. Gasoline prices are expected to gradually fall through the end of this year. In its new monthly forecast, the U.S. Energy Information Administration said the retail price for regular-grade gasoline averaged $2.37 per gallon in June. That's down 43 cents from the same month last year. The average monthly pump price is expected to drop to $2.01

  16. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace063smith2013o.pdf More Documents & Publications Lean Gasoline System Development for Fuel ...

  17. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  18. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  19. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    250 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  20. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...