Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Impact of Ethanol Blending on U.S. Gasoline Prices  

DOE Green Energy (OSTI)

This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

Not Available

2008-11-01T23:59:59.000Z

2

West Coast (PADD 5) Imports from Spain of Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Imports from Spain of Gasoline Blending Components (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9;

3

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

220 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

4

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2012 (EIA)

250 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

5

Table 28. Motor Gasoline Prices by Grade, Sales Type, PAD ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Petroleum Marketing Monthly January 2012 56 Table 28. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

6

Table 31. Refiner Motor Gasoline Prices by Grade, Sales Type ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Petroleum Marketing Monthly February 2012 76 Table 31. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

7

Table 45. Prime Supplier Sales Volumes of Motor Gasoline by ...  

U.S. Energy Information Administration (EIA)

Table 45. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) — Continued

8

Table 45. Prime Supplier Sales Volumes of Motor Gasoline by ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Petroleum Marketing Monthly February 2012 136 Table 45. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,

9

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) -...

10

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2012 (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) -...

11

Ethanol blending provides another proxy for gasoline ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook ... Search EIA.gov. A-Z Index; ... and inventory data that enter into the traditional gasoline product supplied calculation.

12

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Gasoline and Diesel Fuel Update (EIA)

- - 532.1 532.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

13

Utilization of Renewable Oxygenates as Gasoline Blending Components  

SciTech Connect

This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

Yanowitz, J.; Christensen, E.; McCormick, R. L.

2011-08-01T23:59:59.000Z

14

Investigation of Knock limited Compression Ratio of Ethanol Gasoline Blends  

DOE Green Energy (OSTI)

Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock limited compression ratio of ethanol gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single cylinder direct injection spark ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT conditions to determine the knock limited compression ratio (CR) of ethanol fuel blends. The geometric compression ratio is varied by changing pistons, producing CR from 9.2 to 13.66. The effective CR is varied using an electro-hydraulic valvetrain that changed the effective trapped displacement using both Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC). The EIVC and LIVC strategies result in effective CR being reduced while maintaining the geometric expansion ratio. It was found that at substantially similar engine conditions, increasing the ethanol content of the fuel results in higher engine efficiency and higher engine power. These can be partially attributed to a charge cooling effect and a higher heating valve of a stoichiometric mixture for ethanol blends (per unit mass of air). Additional thermodynamic effects on and a mole multiplier are also explored. It was also found that high CR can increase the efficiency of ethanol fuel blends, and as a result, the fuel economy penalty associated with the lower energy content of E85 can be reduced by about a third. Such operation necessitates that the engine be operated in a de-rated manner for gasoline, which is knock-prone at these high CR, in order to maintain compatibility. By using EIVC and LIVC strategies, good efficiency is maintained with gasoline, but power is reduced by about 34%.

Szybist, James P [ORNL; Youngquist, Adam D [ORNL; Wagner, Robert M [ORNL; Moore, Wayne [Delphi; Foster, Matthew [Delphi; Confer, Keith [Delphi

2010-01-01T23:59:59.000Z

15

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per  

E-Print Network (OSTI)

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

Phillips, David

16

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2012 (EIA)

62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration ...

17

Knock limits in spark ignited direct injected engines using gasoline/ethanol blends  

E-Print Network (OSTI)

Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

Kasseris, Emmanuel P

2011-01-01T23:59:59.000Z

18

Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales ...  

U.S. Energy Information Administration (EIA)

17 U.S. Energy Information Administration/Petroleum Marketing Monthly February 2012 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type

19

Table 6. U.S. Refiner Motor Gasoline Prices by Grade and ...  

U.S. Energy Information Administration (EIA)

17 U.S. Energy Information Administration/Petroleum Marketing Monthly December 2013 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales ...

20

Refiner and Blender Inputs of Motor Gasoline Blending Components  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ethanol blending provides another proxy for gasoline demand ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook ... Search EIA.gov. A-Z Index; ... and inventory data that enter into the traditional gasoline product supplied calculation.

22

Imports of Reformulated Gasoline Blended with Fuel Ethanol  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

23

Stocks of Reformulated Gasoline Blended with Fuel Ethanol  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

24

Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends  

E-Print Network (OSTI)

The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

Kar, Kenneth

25

Brazilian experience with self-adjusting fuel system for variable alcohol-gasoline blends  

DOE Green Energy (OSTI)

A fuel control system has been developed which allows fuels of various stoichiometries to be used interchangeably without suffering a fuel consumption penalty, allowing a more efficient use of the combustion energy. This Adaptive Lean Limit Control system uses a single, digital sensor and an electronic circuit to detect lean limit engine operation, and feeds back information to the fuel system to maintain the best economy mixture, regardless of the fuel blend being used. The hardware is described, and the results of extensive vehicle testing, using 20% and 50% ethanol-gasoline blends, are included.

Leshner, M.D.; Luengo, C.A.; Calandra, F.

1980-01-01T23:59:59.000Z

26

Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends  

DOE Green Energy (OSTI)

Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

Storey, John Morse [ORNL; Barone, Teresa L [ORNL; Thomas, John F [ORNL; Huff, Shean P [ORNL

2012-01-01T23:59:59.000Z

27

Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...  

Annual Energy Outlook 2012 (EIA)

33.9 215.8 9.7 10.0 12.1 16.3 0.0 28.4 See footnotes at end of table. 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type 14 Energy Information Administration ...

28

Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...  

Annual Energy Outlook 2012 (EIA)

35.2 213.6 9.5 9.8 12.9 16.6 NA 29.5 See footnotes at end of table. 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type 14 Energy Information Administration ...

29

Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...  

Annual Energy Outlook 2012 (EIA)

61.5 67.3 89.8 89.5 82.2 69.4 71.1 74.9 See footnotes at end of table. 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type 12 Energy Information Administration ...

30

Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...  

Annual Energy Outlook 2012 (EIA)

62.2 68.5 90.1 89.6 82.4 70.9 NA 75.9 See footnotes at end of table. 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type 12 Energy Information Administration ...

31

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2012 (EIA)

62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration ...

32

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2012 (EIA)

62.0 70.7 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration ...

33

Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .  

DOE Green Energy (OSTI)

The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

Wallner, T. (Energy Systems)

2011-08-01T23:59:59.000Z

34

Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices  

E-Print Network (OSTI)

the volume of normal butane blended into gasoline, or bythe volume of normal butane rejected from motor gasoline.

Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

2007-01-01T23:59:59.000Z

35

50,000 mile methanol/gasoline blend fleet study: a progress report  

DOE Green Energy (OSTI)

Seven current production automobiles are being used in a fleet study to obtain operational experience in using 10% methanol/90% gasoline blends as an automotive fuel. Data from chassis dynamometer tests (run according to the 1975--1978 Federal test procedure) have been obtained, showing fuel economy and exhaust emissions of carbon monoxide, oxides of nitrogen, unburned fuel, methanol, and aldehydes. These data are shown for each of the vehicles when operated on the 10% methanol blend, and on unleaded low octane Indolene. Chassis dynamometer tests were run at 5,000-mile intervals during the 35,000 miles accumulated on each of the four 1977 model-year vehicles and at 5,000 and 10,000 mile accumulation levels for each of the three 1978 model-year vehicles. These data show an average decrease in volumetric fuel economy (approx. = 5%) and a reduction in carbon monoxide emissions associated with the use of the 10% methanol blend. Exhaust emission deterioration factors are projected from the Federal test procedure urban cycle data. The most severe driveability problems that have been encountered thus far into the program are related to operating on a phase separated fuel and materials compatibility problems with an elastomer in the air-fuel control hardware of one vehicle.

Stamper, K R

1979-01-01T23:59:59.000Z

36

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions  

Science Conference Proceedings (OSTI)

Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.

Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Barone, Teresa L [ORNL

2010-01-01T23:59:59.000Z

37

Development and experimental evaluation of a high temperature mechanism for blended n-heptane-isooctane-ethanol-air-mixtures and gasoline-ethanol-air-mixtures  

Science Conference Proceedings (OSTI)

Laminar burning velocity measurements using the closed vessel bomb method have been done for fuel-blend-air-mixtures at 373 K initial temperature and up to 20 bar initial pressure. The two experimentally investigated fuel blends consist, on the one hand, ... Keywords: ethanol-gasoline-blends, laminar burning velocity

S. Jerzembeck; C. Glawe; N. Peters

2009-02-01T23:59:59.000Z

38

NIST 130 Gasoline Concerns  

Science Conference Proceedings (OSTI)

... 2004 – Added Motor Oil, ATF ... 2.1 Gasoline and Gasoline-Oxygenate Blends ... Specification for Automotive Spark-Ignition Engine Fuel,” except that ...

2011-08-30T23:59:59.000Z

39

Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline  

SciTech Connect

In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

2012-07-01T23:59:59.000Z

40

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

DOE Green Energy (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

U.S. total motor gasoline exports down slightly from last year but ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. ... Total motor gasoline = finished motor gasoline + motor gasoline blending components.

42

Table 5.24 Retail Motor Gasoline and On-Highway Diesel Fuel ...  

U.S. Energy Information Administration (EIA)

Sources: Motor Gasoline by Grade: · 1949-1973— Platt's Oil Price Handbook and Oilmanac, 1974, 51st Edition.

43

Imports of Total Motor Gasoline  

U.S. Energy Information Administration (EIA)

Reformulated and conventional gasoline production excludes adjustments for fuel ethanol and motor gasoline blending components. Historical data prior to June 4, ...

44

Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Book)  

DOE Green Energy (OSTI)

This document serves as a guide for blenders, distributors, sellers, and users of E85 and other ethanol blends above E10. It provides basic information on the proper and safe use of E85 and other ethanol blends and includes supporting technical and policy references.

Moriarty, K.

2013-09-01T23:59:59.000Z

45

Finished Motor Gasoline Net Production  

Gasoline and Diesel Fuel Update (EIA)

Data Series: Finished Motor Gasoline Finished Motor Gasoline (less Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet, Military Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil > 15 ppm to 500 ppm Sulfur Distillate Fuel Oil > 500 ppm Sulfur Residual Fuel Oil Propane/Propylene Period: Weekly 4-Week Average

46

Table 9.4 Retail Motor Gasoline and On-Highway Diesel Fuel ...  

U.S. Energy Information Administration (EIA)

1949–1973—Platt’s Oil Price Handbook and Oilmanac, 1974, 51st Edition. ... Selected years of data from 1949 through 1972 have been added to this table.

47

Measurement and inspection of engines operated 50,000 miles on methanol/gasoline blends. Final report No. MED 120, December 1979-December 1980  

DOE Green Energy (OSTI)

The inspection of 6 commercial designed engines which were operated 50,000 miles on 10% methanol/90% unleaded gasoline blend were covered. The program was conducted at the Bartlesville Energy Technology Center, Department of Energy, Bartlesville, Oklahoma with the Mobile Energy Division, Southwest Research Institute providing the technical expertise for the technical inspection of the engines following program completion. These vehicles operated throughout this program with minimal or no operational problems, this report will only indicate engine wear and deposits as determined by standard CRC rating techniques.

Brown, J.G.; Tosh, J.D.

1980-12-01T23:59:59.000Z

48

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Inputs & Utilization Inputs & Utilization Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline.

49

Stocks of Finished Motor Gasoline - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Reformulated and conventional gasoline production excludes adjustments for fuel ethanol and motor gasoline blending components. Historical data prior to June 4, ...

50

Reformulated Gasoline Complex Model  

Gasoline and Diesel Fuel Update (EIA)

Refiners Switch to Reformulated Refiners Switch to Reformulated Gasoline Complex Model Contents * Summary * Introduction o Table 1. Comparison of Simple Model and Complex Model RFG Per Gallon Requirements * Statutory, Individual Refinery, and Compliance Baselines o Table 2. Statutory Baseline Fuel Compositions * Simple Model * Complex Model o Table 3. Complex Model Variables * Endnotes Related EIA Short-Term Forecast Analysis Products * RFG Simple and Complex Model Spreadsheets * Areas Particpating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Reformulated Gasoline Foreign Refinery Rules * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 , (Adobe

51

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

& Blender Net Production & Blender Net Production Definitions Key Terms Definition Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Conventional Gasoline, Ed55 and Lower Finished conventional motor gasoline blended with a maximum of 55 volume percent denatured fuel ethanol.

52

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Imports & Exports Imports & Exports Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock.

53

Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Book), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

DOE/GO-102013-3861 DOE/GO-102013-3861 September 2013 Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its

54

Gasoline Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline Prices Gasoline Price Data Sign showing gasoline prices Local Prices: Find the cheapest gasoline prices in your area. State & Metro Area Prices: Average prices from AAA's...

55

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine  

DOE Green Energy (OSTI)

In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

Curran, Scott [ORNL; Prikhodko, Vitaly Y [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Kokjohn, Sage [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin

2010-01-01T23:59:59.000Z

56

Price spread between regular and premium gasoline has changed ...  

U.S. Energy Information Administration (EIA)

... electric power plant ... period coincides with increased blending of ethanol into the motor gasoline ... savings result from reducing octane levels ...

57

Table Definitions, Sources, and Explanatory Notes  

U.S. Energy Information Administration (EIA)

... precautions that the blends are not used as base gasolines for other oxygenated blends (commonly referred to as the "Sun" waiver).

58

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Production Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Conventional Gasoline, Ed 55 and Lower Finished conventional motor gasoline blended with a maximum of 55 volume percent denatured fuel ethanol. Conventional Gasoline, Greater than Ed 55 Finished conventional motor gasoline blended with denatured fuel ethanol where the volume percent of denatured fuel ethanol exceeds 55%.

59

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Blender Net Production Blender Net Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Conventional Gasoline, Ed55 and Lower Finished conventional motor gasoline blended with a maximum of 55 volume percent denatured fuel ethanol. Conventional Gasoline, Greater than Ed55 Finished conventional motor gasoline blended with denatured fuel ethanol where the volume percent of denatured fuel ethanol exceeds 55%.

60

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

and Blender Net Inputs and Blender Net Inputs Definitions Key Terms Definition Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates. Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline.

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reformulated Gasoline Foreign Refinery Rules  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated Gasoline Complex Model * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 Introduction On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an

62

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 295: Muons in water as calc from steam to check code ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.55509 1.000 71.6 0.44251 3.0000 0.2000 2.0000 3.5017 0.00 T p...

63

Motor Gasoline Outlook and State MTBE Bans  

Reports and Publications (EIA)

The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

Information Center

2003-04-01T23:59:59.000Z

64

MTBE, Oxygenates, and Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

MTBE, Oxygenates, and MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an

65

Motor Gasoline Outlook and State MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Outlook Motor Gasoline Outlook and State MTBE Bans Tancred Lidderdale Contents 1. Summary 2. MTBE Supply and Demand 3. Ethanol Supply 4. Gasoline Supply 5. Gasoline Prices A. Long-Term Equilibrium Price Analysis B. Short-Term Price Volatility 6. Conclusion 7. Appendix A. Estimating MTBE Consumption by State 8. Appendix B. MTBE Imports and Exports 9. Appendix C. Glossary of Terms 10. End Notes 11. References 1. Summary The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year. Three impending State bans on MTBE blending could significantly affect gasoline

66

Gasoline Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

and diesel price estimates from the Energy Information Administration Understanding Gas Prices Photo of gasoline receipt What determines the cost of gasoline? What's the...

67

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Retail Gasoline and Diesel Surveys Retail Gasoline and Diesel Surveys Definitions Key Terms Definition Conventional Area Any area that does not require the sale of reformulated gasoline. All types of finished motor gasoline may be sold in this area. Conventional Gasoline Finished motor gasoline not included in the reformulated gasoline category. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Note: this survey designates all motor gasoline collected within a conventional area as conventional gasoline (see conventional area). Gasoline Grades The classification of gasoline by octane ratings. Each type of gasoline (conventional and reformulated) is classified by three grades - regular, midgrade, and premium. Note: gasoline sales are reported by grade in accordance with their classification at the time of sale. In general, automotive octane requirements are lower at high altitudes. Therefore, in some areas of the United States, such as the Rocky Mountain States, the octane ratings for the gasoline grades may be 2 or more octane points lower.

68

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Input Input Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Fuel Ethanol An anhydrous denatured aliphatic alcohol intended for gasoline blending as described in Oxygenates definition. Gasoline Treated as Blendstock (GTAB) Non-certified Foreign Refinery gasoline classified by an importer as blendstock to be either blended or reclassified with respect to reformulated or conventional gasoline. GTAB was classified on EIA surveys as either reformulated or conventional based on emissions performance and the intended end use in data through the end of December 2009. Designation of GTAB as reformulated or conventional was discontinued beginning with data for January 2010. GTAB was reported as a single product beginning with data for January 2010. GTAB data for January 2010 and later months is presented as conventional motor gasoline blending components whenreported as a subset of motor gasoline blending components.

69

Motor Gasoline Blending Components Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

70

Stocks of Finished Motor Gasoline - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Weekly data for RBOB with Ether, RBOB with Alcohol, and Reformulated GTAB Motor Gasoline Blending Components are discontinued as of the week ending June 4, ...

71

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends  

DOE Green Energy (OSTI)

Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

2010-04-01T23:59:59.000Z

72

Areas Participating in the Reformulated Gasoline Program  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Program Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA Short-Term Forecast Analysis Products * Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 * Environmental Regulations and Changes in Petroleum Refining Operations * Areas Participating in Oxygenated Gasoline Program

73

Gasoline Prices: What is Happening?  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Prices: What is Happening? Gasoline Prices: What is Happening? 5/10/01 Click here to start Table of Contents Gasoline Prices: What is Happening? Retail Motor Gasoline Price* Forecast Doesn't Reflect Potential Volatility Midwest Looking Like Last Year RFG Responding More Strongly Gasoline Prices Vary Among Locations.Retail Regular Gasoline Price, Cents per Gallon May 8, 2001 Crude Oil Affects Gasoline Prices WTI Crude Oil Prices Are Expected To Remain Relatively High Through At Least 2001 Low Total OECD Oil Stocks* Keep Market Balance Tight Low U.S. Stocks Indicate Tight U.S. Market Regional Inventories Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) "New Factor" Contributing to Volatility: Excess Capacity is Gone Regional Refinery Utilization Shows Gulf Coast Pressure

74

Alternative Fuels Data Center: Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Blends Ethanol is blended with gasoline in various amounts for use in vehicles. E10 E10 is a low-level blend composed of 10% ethanol and 90% gasoline. It is

75

Blender Net Production of Finished Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Special Naphthas Lubricants Asphalt and Road Oil Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

76

TABLE34.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

Oils ... 36 0 0 36 227 0 0 0 Motor Gasoline Blending Components ... 0 32 0 0 0 0 381 0 Finished Motor...

77

Table Definitions, Sources, and Explanatory Notes  

U.S. Energy Information Administration (EIA)

An anhydrous denatured aliphatic alcohol intended for gasoline blending as described in ... and EIA, Office of Coal, Nuclear, Electric and Alternate ...

78

Price of Motor Gasoline Through Retail Outlets  

Gasoline and Diesel Fuel Update (EIA)

Prices, Sales Volumes & Stocks by State Prices, Sales Volumes & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price - Premium Gasoline Retail Price - Aviation Gasoline Retail Price - Kerosene-Type Jet Fuel Retail Price - Propane Retail Price - Kerosene Retail Price - No. 1 Distillate Retail Price - No. 2 Distillate Retail Price - No. 2 Fuel Oil Retail Price - No. 2 Diesel Fuel Retail Price - No. 4 Fuel Oil Prime Supplier Sales - Motor Gasoline Prime Supplier Sales - Regular Gasoline Prime Supplier Sales - Midgrade Gasoline Prime Supplier Sales - Premium Gasoline Prime Supplier Sales - Aviation Gasoline Prime Supplier Sales - Kerosene-Type Jet Fuel Prime Supplier Sales - Propane (Consumer Grade) Prime Supplier Sales - Kerosene Prime Supplier Sales - No. 1 Distillate Prime Supplier Sales - No. 2 Distillate Prime Supplier Sales - No. 2 Fuel Oil Prime Supplier Sales - No. 2 Diesel Fuel Prime Supplier Sales - No. 4 Fuel Oil Prime Supplier Sales - Residual Fuel Oil Stocks - Finished Motor Gasoline Stocks - Reformulated Gasoline Stocks - Conventional Gasoline Stocks - Motor Gasoline Blending Components Stocks - Kerosene Stocks - Distillate Fuel Oil Stocks - Distillate F.O., 15 ppm and under Sulfur Stocks - Distillate F.O., Greater than 15 to 500 ppm Sulfur Stocks - Distillate F.O., Greater 500 ppm Sulfur Stocks - Residual Fuel Oil Stocks - Propane/Propylene Period: Monthly Annual

79

Emissions with butane/propane blends  

Science Conference Proceedings (OSTI)

This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

NONE

1996-11-01T23:59:59.000Z

80

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Tanker and Barge Between PADDs Tanker and Barge Between PADDs Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock.

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Ethanol Blending Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blending Ethanol Blending Regulation to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blending Regulation on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blending Regulation on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Google Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Delicious Rank Alternative Fuels Data Center: Ethanol Blending Regulation on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blending Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blending Regulation Gasoline suppliers who provide fuel to distributors in the state must offer gasoline that is suitable for blending with fuel alcohol. Suppliers may not

82

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Mandate Ethanol Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate All gasoline offered for sale at retail stations within the state must contain 10% ethanol (E10). This requirement is waived only if a distributor is unable to purchase ethanol or ethanol-blended gasoline at the same or

83

Adsorbent-treated cat cracked gasoline in motor fuels  

SciTech Connect

A methof is described for supressing carburetor deposit formation of motor fuels containing untreated cat cracked gasoline by blending adsorbent-treated cat cracked gasoline into the motor fuel. Up to about 50 percent by weight of the total composition is adsorbent treated cat cracked gasoline, but preferably from about 5 to about 25 percent by weight of the total composition is adsorbent treated cat cracked gasoline. In a preferred embodiment a standard reference fuel capable of providing a predetermined level of carburetor deposit formation is provided by the addition of either adsorbent-treated cat cracked gasoline, untreated cat cracked gasoline, or aromatic amines to a base fuel.

Thomas, S.P.

1980-09-30T23:59:59.000Z

84

Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Prohibition of the Prohibition of the Sale of Ethanol-Blended Gasoline to someone by E-mail Share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Facebook Tweet about Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Twitter Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Google Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Delicious Rank Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Digg Find More places to share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

85

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Input Input Definitions Key Terms Definition Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Crude Oil A mixture of hydrocarbons that exists in liquid phase in natural underground reservoirs and remains liquid at atmospheric pressure after passing through surface separating facilities. Depending upon the characteristics of the crude stream, it may also include:

86

Parametric combustion modeling for ethanol-gasoline fuelled spark ignition engines.  

E-Print Network (OSTI)

?? Ethanol-gasoline fuel blends are increasingly being used in spark ignition (SI) engines due to continued growth in renewable fuels as part of a growing… (more)

Yeliana

2011-01-01T23:59:59.000Z

87

Gasoline with higher ethanol content getting closer to U.S ...  

U.S. Energy Information Administration (EIA)

Flex-fuel vehicles already use gasoline blended with 85% ... manufacturers are required to submit to EPA information on the emissions and health effects of their ...

88

MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)  

Reports and Publications (EIA)

The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

Information Center

1999-10-01T23:59:59.000Z

89

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Total Stocks Total Stocks Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton.

90

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Ethanol Plant Production Ethanol Plant Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Fuel Ethanol An anhydrous alcohol (ethanol with less than 1% water) intended for gasoline blending as described in the Oxygenates definition. Oxygenates Substances which, when added to gasoline, increase the amount of oxygen in that gasoline blend. Ethanol, Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), and methanol are common oxygenates. Fuel Ethanol: Blends of up to 10 percent by volume anhydrous ethanol (200 proof) (commonly referred to as the "gasohol waiver"). Methanol: Blends of methanol and gasoline-grade tertiary butyl alcohol (GTBA) such that the total oxygen content does not exceed 3.5 percent by weight and the ratio of methanol to GTBA is less than or equal to 1. It is also specified that this blended fuel must meet ASTM volatility specifications (commonly referred to as the "ARCO" waiver).

91

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Weekly Supply Estimates Weekly Supply Estimates Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and pentanes plus. Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton.

92

Alternative Fuels Data Center: Ethanol Blend Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future

93

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Prime Supplier Sales Volume Prime Supplier Sales Volume Definitions Key Terms Definition Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Finished Aviation Gasoline A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Gasoline Grades The classification of gasoline by octane ratings. Each type of gasoline (conventional and reformulated) is classified by three grades - regular, midgrade, and premium. Note: gasoline sales are reported by grade in accordance with their classification at the time of sale. In general, automotive octane requirements are lower at high altitudes. Therefore, in some areas of the United States, such as the Rocky Mountain States, the octane ratings for the gasoline grades may be 2 or more octane points lower.

94

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

U.S. Weekly Products Supplied U.S. Weekly Products Supplied Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Distillate Fuel Oil A general classification for one of the petroleum fractions produced in conventional distillation operations. It includes diesel fuels and fuel oils. Products known as No. 1, No. 2, and No. 4 diesel fuel are used in on-highway diesel engines, such as those in trucks and automobiles, as well as off-highway engines, such as those in railroad locomotives and agricultural machinery. Products known as No. 1, No. 2, and No. 4 fuel oils are used primarily for space heating and electric power generation. Finished Motor Gasoline A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in spark-ignition engines. Motor gasoline, as defined in ASTM Specification D 4814 or Federal Specification VV-G-1690C, is characterized as having a boiling range of 122 to 158 degrees Fahrenheit at the 10 percent recovery point to 365 to 374 degrees Fahrenheit at the 90 percent recovery point. Motor Gasoline includes conventional gasoline; all types of oxygenated gasoline, including gasohol; and reformulated gasoline, but excludes aviation gasoline. Note: Volumetric data on blending components, such as oxygenates, are not counted in data on finished motor gasoline until the blending components are blended into the gasoline.

95

Alternative Fuels Data Center: Biofuel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Mandate All Gasoline sold or offered for sale in Minnesota must contain at least: 10% corn-based ethanol by volume or the maximum percent by volume of corn-based ethanol authorized in a waiver issued by the U.S. Environmental

96

Factors Impacting Gasoline Prices and Areas for Further Study  

Gasoline and Diesel Fuel Update (EIA)

Factors Impacting Gasoline Prices and Areas for Further Study Factors Impacting Gasoline Prices and Areas for Further Study 8/10/01 Click here to start Table of Contents Factors Impacting Gasoline Prices and Areas for Further Study Different Factors Impact Different Aspects of Gasoline Price Correlation of Price to Inventory Levels Crude Prices Strongly Related to OECD.Crude & Product Inventories Gasoline Prices Also Influenced by Regional Gasoline Product Markets Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) Retail Price Changes Lag Spot Prices Cumulative Gasoline Price Pass-through Illustration of How Lag Effect Dampens and Slows Retail Price Changes from Wholesale Recent Weekly Retail Price Changes Have Been as Expected Summary: Most Gasoline Price Movement Can Be Explained As Rational Market Behavior Author: Joanne Shore

97

Product Supplied for Aviation Gasoline Blending Components  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Data may not add to ...

98

Motor Gasoline Blending Components Imports from Bahrain  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

99

Motor Gasoline Blending Components Exports by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

100

Motor Gasoline Blending Components Imports from Malta  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Motor Gasoline Blending Components Imports from Jamaica  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

102

Stocks of Motor Gasoline Blending Components  

Annual Energy Outlook 2012 (EIA)

169,784 168,136 166,156 171,254 169,872 169,336 1983-2013 PADD 1 49,945 49,955 48,286 47,499 46,224 45,277 2004-2013 PADD 2 30,015 30,069 29,849 36,038 36,327 35,678 2004-2013 PADD...

103

Motor Gasoline Blending Components Imports from Portugal  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

104

Motor Gasoline Blending Components Refinery, Bulk Terminal ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Distillate stocks ...

105

Reformulated Gasoline Blending Components Imports from Russia  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

106

Reformulated Gasoline Blending Components Imports from Turkey  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

107

Motor Gasoline Blending Components Imports from Syria  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

108

Reformulated Gasoline Blending Components Imports from Ecuador  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

109

Rocky Mountain (PADD 4) Reformulated Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

110

Motor Gasoline Blending Components Imports from Kyrgyzstan  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

111

Stocks of Motor Gasoline Blending Components  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

112

Motor Gasoline Blending Components Imports from Mexico  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

113

Stocks of Motor Gasoline Blending Components, CBOB  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

114

Primer on Gasoline Prices  

Reports and Publications (EIA)

This brochure answers, in laymen's terms, questions such as "What are the components of the retail price of gasoline? Why do gasoline prices fluctuate?

Information Center

2009-07-15T23:59:59.000Z

115

Crude Oil Affects Gasoline Prices  

U.S. Energy Information Administration (EIA)

Crude Oil Affects Gasoline Prices. WTI Crude Oil Price. Retail Gasoline Price. Source: Energy Information Administration

116

Summer 2003 Motor Gasoline Outlook  

U.S. Energy Information Administration (EIA)

Summer 2003 Motor Gasoline Outlook ... State gasoline taxes ... that occurred between spring 1999 and fall 2001, ...

117

Biomass-based alcohol fuels: the near-term potential for use with gasoline  

DOE Green Energy (OSTI)

This report serves as an introduction to the requirements and prospects for a nationwide alcohol-gasoline fuel system based on alcohols derived from biomass resources. Technological and economic factors of the production and use of biomass-based methanol and ethanol fuels are evaluated relative to achieving 5 or 10 percent alcohol-gasoline blends by 1990. It is concluded the maximum attainable is a nationwide 5 percent methanol or ethanol-gasoline system replacing gasoline by 1990. Relative to existing gasoline systems, costs of alcohol-gasoline systems will be substantial.

Park, W.; Price, G.; Salo, D.

1978-08-01T23:59:59.000Z

118

East Coast (PADD 1) Conventional Gasoline Blended Blended with ...  

U.S. Energy Information Administration (EIA)

Stock Type: Area: 2007 2008 2009 2010 2011 2012 View History; Total Stocks: 3: 96: 55: 29: 23: 26: 2006-2012: Bulk Terminal: 3: 96: 55: 29: 23: 26: 2006-2012-= No ...

119

Table 1.12 U.S. Government Energy Consumption by Source, Fiscal ...  

U.S. Energy Information Administration (EIA)

Web Page: See http://www1.eere.energy.gov/femp/regulations/facility_reporting.html for related information. 5 Includes ethanol blended into motor gasoline.

120

Table 3.6 Consumer Expenditure Estimates for Energy by End ...  

U.S. Energy Information Administration (EIA)

1999. 31,577 : 11,397 : 93,482: ... · Expenditures include taxes where data are ... includes fuel ethanol blended into motor gasoline that is not ...

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Ethanol Blended Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blended Fuel Ethanol Blended Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blended Fuel Definition Ethanol blended fuel, such as gasohol, is defined as any gasoline blended with 10% or more of anhydrous ethanol. (Reference Idaho Statutes 63-240

122

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

U.S. Refiner Motor Gasoline Prices by Formulation, Grade, Sales Type U.S. Refiner Motor Gasoline Prices by Formulation, Grade, Sales Type Definitions Key Terms Definition Bulk Sales Wholesale sales of gasoline in individual transactions which exceed the size of a truckload. Conventional Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Dealer Tank Wagon Sales (DTW) Wholesale sales of gasoline priced on a delivered basis to a retail outlet. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are fractionated or otherwise separated into natural gas liquid products or both. For the purposes of this survey, gas plant operator data are contained in the refiner categories.

123

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Prices by Formulation, Grade, Sales Type Motor Gasoline Prices by Formulation, Grade, Sales Type Definitions Key Terms Definition Bulk Sales Wholesale sales of gasoline in individual transactions which exceed the size of a truckload. Conventional Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Dealer Tank Wagon Sales (DTW) Wholesale sales of gasoline priced on a delivered basis to a retail outlet. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are fractionated or otherwise separated into natural gas liquid products or both. For the purposes of this survey, gas plant operator data are contained in the refiner categories.

124

Electric car Gasoline car  

E-Print Network (OSTI)

ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preferences. · Identification of population segments with a strong interest for electric cars. · Forecasting

125

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Net Production Net Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Conventional Gasoline, Ed55 and Lower Finished conventional motor gasoline blended with a maximum of 55 volume percent denatured fuel ethanol. Conventional Gasoline, Greater than Ed55 Finished conventional motor gasoline blended with denatured fuel ethanol where the volume percent of denatured fuel ethanol exceeds 55%. Distillate Fuel Oil A general classification for one of the petroleum fractions produced in conventional distillation operations. It includes diesel fuels and fuel oils. Products known as No. 1, No. 2, and No. 4 diesel fuel are used in on-highway diesel engines, such as those in trucks and automobiles, as well as off-highway engines, such as those in railroad locomotives and agricultural machinery. Products known as No. 1, No. 2, and No. 4 fuel oils are used primarily for space heating and electric power generation.

126

Alternative Fuels Data Center: Ethanol Blend Labeling Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Labeling Ethanol Blend Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Labeling Requirements Pumps that dispense ethanol-blended gasoline available for purchase must be

127

Thermal Stabilization Blend Plan  

SciTech Connect

The Blend Plan was written to identify items stored outside of the 213 MBA that will be moved into the MBA for thermal stabilization processing. Product quality oxide items stored in our vaults are found in Appendix A. A table is included in Appendix A which details the isotopic values for the oxide items and calculates the amount of material of any specific run that can be placed in a product can and maintain the 15 watt limit to meet storage vault specifications. This Revision of the Blend Plan adds items of lesser dose rate to lower the exposure of the workers until additional shielding can be added to the gloveboxes.

RISENMAY, H.R.

2000-04-20T23:59:59.000Z

128

Fractionation of reformate: A new variant of gasoline production technology  

Science Conference Proceedings (OSTI)

The Novo-Ufa Petroleum Refinery is the largest domestic producer of the unique high-octane unleaded automotive gasolines AI-93 and AI-95 and the aviation gasolines B-91/115 and B-92. The base component for these gasolines is obtained by catalytic reforming of wide-cut naphtha; this basic component is usually blended with certain other components that are expensive and in short supply: toluene, xylenes, and alkylate. For example, the unleaded gasoline AI-93 has been prepared by blending reformate, alkylate, and toluene in a 65:20:15 weight ratio; AI-95 gasoline by blending alkylate and xylenes in an 80:20 weight ratio; and B-91/115 gasoline by compounding a reformate obtained with light straight-run feed, plus alkylate and toluene, in a 55:35:10 weight ratio. Toluene and xylenes have been obtained by process schemes that include the following consecutive processes: redistillation of straight-run naphtha cuts to segregate the required narrow fraction; catalytic reforming (Platforming) of the narrow toluene-xylene straight-run fraction; azeotropic distillation of the reformate to recover toluene and xylenes. A new technology based on the use of reformate fractions is proposed.

Karakuts, V.N.; Tanatarov, M.A.; Telyashev, G.G. [and others

1995-07-01T23:59:59.000Z

129

Retail Motor Gasoline Prices*  

Gasoline and Diesel Fuel Update (EIA)

motor gasoline is projected to be about 1.38 per gallon. As was the case with heating oil, last year's peak average gasoline price, at 1.633 per gallon in June, was the...

130

Biodiesel Blends  

DOE Green Energy (OSTI)

A 2-page fact sheet discussing general biodiesel blends and the improvement in engine performance and emissions.

Not Available

2005-04-01T23:59:59.000Z

131

Alternative Fuels Data Center: Ethanol Fuel Blend Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Standard to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that

132

DOE Gasoline Price Watch Website and Hotline | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasoline Price Watch Website and Hotline Gasoline Price Watch Website and Hotline DOE Gasoline Price Watch Website and Hotline April 20, 2006 - 12:26pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today is reminding consumers about the Department of Energy's (DOE) gasoline price reporting system. Consumers can report activity at local gasoline filling stations that they believe may constitute "gouging" or "price fixing" by visiting gaswatch.energy.gov/. "There are many legitimate factors influencing the price consumers are paying at the pump, including growing demand, the high price of crude oil, the lingering effects of last summer's hurricanes on our refining sector and the regular transition of fuel blends as we head into the summer," said Secretary Bodman. "And while the majority of local merchants are fair and

133

Ethanol Demand in United States Gasoline Production  

SciTech Connect

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

134

Fact Sheet: Effects of Intermediate Ethanol Blends | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Effects of Intermediate Ethanol Blends Effects of Intermediate Ethanol Blends Fact Sheet: Effects of Intermediate Ethanol Blends October 7, 2008 - 4:14pm Addthis In August 2007, the U.S. Department of Energy (DOE) initiated a test program to assess the potential impacts of higher intermediate ethanol blends on conventional vehicles and other engines that rely on gasoline. The test program focuses specifically on the effects of intermediate blends of E15 and E20-gasoline blended with 15 and 20 percent ethanol, respectively-on emissions, catalyst and engine durability, drivability or operability, and materials associated with these vehicles and engines. This DOE test program includes technical expertise from DOE's National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory.

135

Trends in motor gasolines: 1942-1981  

Science Conference Proceedings (OSTI)

Trends in motor gasolines for the years of 1942 through 1981 have been evaluated based upon data contained in surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. The surveys have been conducted in cooperation with the American Petroleum Institute (API) since 1948. Various companies from throughout the country obtain samples from retail outlets, analyze the samples by the American Society for Testing and Materials (ASTM) procedures, and report data to the Bartlesville center for compilation, tabulation, calculation, analysis and publication. A typical motor gasoline report covers 2400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots, and tables of test results from about a dozen different tests. From these data in 77 semiannual surveys, a summary report has thus been assembled that shows trends in motor gasolines throughout the entire era of winter 1942 to 1943 to the present. Trends of physical properties including octane numbers, antiknock ratings, distillation temperatures, Reid vapor pressure, sulfur and lead content are tabulated, plotted and discussed in the current report. Also included are trend effects of technological advances and the interactions of engine design, societal and political events and prices upon motor gasoline evolution during the 40 year period.

Shelton, E M; Whisman, M L; Woodward, P W

1982-06-01T23:59:59.000Z

136

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Exports by Destination Exports by Destination Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

137

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Area of Entry Area of Entry Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

138

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Stocks by Type Stocks by Type Definitions Key Terms Definition Alaskan in Transit Alaskan crude oil stocks in transit by water between Alaska and the other States, the District of Columbia, Puerto Rico, and the Virgin Islands. Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

139

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

U.S. Imports by Country of Origin U.S. Imports by Country of Origin Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

140

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Refinery Stocks Refinery Stocks Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Supply and Disposition Balance Supply and Disposition Balance Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

142

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Products Supplied Products Supplied Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

143

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

PAD District Imports by Country of Origin PAD District Imports by Country of Origin Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

144

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Imports by Destination Imports by Destination Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Aviation Gasoline Blending Components Naphthas which will be used for blending or compounding into finished aviation gasoline (e.g., straight-run gasoline, alkylate, reformate, benzene, toluene, and xylene). Excludes oxygenates (alcohols, ethers), butane, and pentanes plus. Oxygenates are reported as other hydrocarbons, hydrogen, and oxygenates.

145

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Production Oxygenate Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Captive Refinery Oxygenate Plants Oxygenate production facilities located within or adjacent to a refinery complex. Fuel Ethanol An anhydrous denatured aliphatic alcohol intended for gasoline blending as described in Oxygenates definition. Gasohol A blend of finished motor gasoline containing alcohol (generally ethanol but sometimes methanol) at a concentration of 10 percent or less by volume. Data on gasohol that has at least 2.7 percent oxygen, by weight, and is intended for sale inside carbon monoxide nonattainment areas are included in data on oxygenated gasoline. Merchant Oxygenate Plants Oxygenate production facilities that are not associated with a petroleum refinery. Production from these facilities is sold under contract or on the spot market to refiners or other gasoline blenders.

146

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

& Blender Net Production & Blender Net Production Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline.

147

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Pipeline, Tanker, and Barge Between PADDs Pipeline, Tanker, and Barge Between PADDs Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline.

148

Conventional Gasoline Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

149

Venezuela Gasoline Production & Demand  

U.S. Energy Information Administration (EIA)

... Change and Uncertainty Today’s gasoline imports essential to meet ... Refinery-based MTBE production and some merchant MTBE facilities will be ...

150

Motor gasolines, winter 1982-83  

Science Conference Proceedings (OSTI)

Analytical data for 1330 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 28 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.5 for unleaded 90.0 and above, and 89.1 for leaded below 93.0, and no data was reported in this report for leaded gasolines with an antiknock index (R + M)/2 93.0 and above. 21 figures, 5 tables.

Shelton, E.M.

1983-07-01T23:59:59.000Z

151

gasoline | OpenEI  

Open Energy Info (EERE)

gasoline gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline plastics polymers Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon plastics_dma_results_san.xlsx (xlsx, 4.9 MiB)

152

Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion  

SciTech Connect

Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

2013-01-02T23:59:59.000Z

153

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline

154

Table of Exhibits..................................................................................................... iii  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii

Pjm Interconnection

2007-01-01T23:59:59.000Z

155

Retail Motor Gasoline Prices*  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Gasoline pump prices have backed down from the high prices experienced last summer and fall. The retail price for regular motor gasoline fell 11 cents per gallon from September to December. However, with crude oil prices rebounding somewhat from their December lows combined with lower than normal stock levels, we project that prices at the pump will rise modestly as the 2001 driving season begins this spring. For the summer of 2001, we expect only a little difference from the average price of $1.50 per gallon seen during the previous driving season, as motor gasoline stocks going into the driving season are projected to be slightly less than they were last year. The situation of relatively low inventories for gasoline could set the stage for some regional imbalances in supply that could once again

156

Tenneco upgrades natural gasoline  

SciTech Connect

Tenneco Oil Co. recently completed a natural gasoline upgrading project at its LaPorte, Tex., facility. The project was started in October 1985. The purpose was to fractionate natural gasoline and isomerize the n-pentane component. Three factors made this a particularly attractive project for the LaPorte complex: 1. The phase down of lead in gasoline made further processing of natural gasoline desirable. 2. Idle equipment and trained personnel were available at the plant as a result of a switch of Tenneco's natural gas liquids (NGL) fractionation to its Mont Belvieu, Tex., facility. 3. The plant interconnects with Houston's local markets. It has pipelines to Mont Belvieu, Texas City, and plants along the Houston Ship Channel, as well as truck, tank car, and barge-loading facilities. Here are the details on the operation of the facilities, the changes which were required to enable the plant to operate successfully, and how this conversion was completed in a timely fashion.

O'Gorman, E.K.

1986-08-01T23:59:59.000Z

157

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Refinery, Bulk Terminal, and Natural Gas Plant Stocks by State Refinery, Bulk Terminal, and Natural Gas Plant Stocks by State Definitions Key Terms Definition Bulk Terminal A facility used primarily for the storage and/or marketing of petroleum products which has a total bulk storage capacity of 50,000 barrels or more and/or receives petroleum products by tanker, barge, or pipeline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Crude Oil A mixture of hydrocarbons that exists in liquid phase in natural underground reservoirs and remains liquid at atmospheric pressure after passing through surface separating facilities. Depending upon the characteristics of the crude stream, it may also include:

158

EIA Energy Kids - Gasoline - Energy Information Administration  

U.S. Energy Information Administration (EIA)

File Scrub L4 ::::: EE ... gasoline_home-basics ... gasoline_history-basics. History of Gasoline The first oil well was dug just before the Civil War.

159

Table 3.4 Consumer Price Estimates for Energy by End-Use ...  

U.S. Energy Information Administration (EIA)

1999. 6.50 : 7.78 [R] 23.93: 13.15 [R] 5.22 ... includes fuel ethanol blended into motor gasoline. Notes: · Prices include taxes where ... includes fu ...

160

Motor gasolines, Summer 1982  

Science Conference Proceedings (OSTI)

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1983-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

This Week In Petroleum Gasoline Section  

Gasoline and Diesel Fuel Update (EIA)

Regular Gasoline Retail Prices (Dollars per Gallon) Regular Gasoline Retail Prices (Dollars per Gallon) Retail Average Regular Gasoline Prices Petroleum Data Tables more data Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13 12/17/12 U.S. 3.265 3.194 3.219 3.293 3.272 3.269 3.239 3.254 East Coast (PADD 1) 3.289 3.243 3.282 3.386 3.389 3.382 3.373 3.350 Midwest (PADD 2) 3.188 3.074 3.126 3.191 3.121 3.132 3.079 3.144 Gulf Coast (PADD 3) 3.030 2.978 3.004 3.140 3.124 3.104 3.047 3.045 Rocky Mountain (PADD 4) 3.307 3.227 3.183 3.145 3.113 3.077 3.055 3.211 West Coast (PADD 5) 3.564 3.507 3.467 3.457 3.475 3.477 3.472 3.457 Retail Conventional Regular Gasoline Prices Petroleum Data Tables more data Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13

162

Regional Retail Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Retail gasoline prices, like those for distillate fuels, have hit record prices nationally and in several regions this year. The national average regular gasoline price peaked at $1.68 per gallon in mid-June, but quickly declined, and now stands at $1.45, 17 cents higher than a year ago. Two regions, in particular, experienced sharp gasoline price runups this year. California, which often has some of the highest prices in the nation, saw prices peak near $1.85 in mid-September, while the Midwest had average prices over $1.87 in mid-June. Local prices at some stations in both areas hit levels well over $2.00 per gallon. The reasons for the regional price runups differed significantly. In the Midwest, the introduction of Phase 2 RFG was hampered by low stocks,

163

El Paso Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Good morning. IÂ’m glad to be here in El Paso to share some of my agencyÂ’s insights on crude oil and gasoline prices. I represent the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. My division has the responsibility to monitor petroleum supplies and prices in the United States. As part of that work, we operate a number of surveys on a weekly, monthly, and annual basis. One of these is a weekly survey of retail gasoline prices at about 800 stations nationwide. This survey in particular allows us to observe the differences between local gasoline markets in the United States. While we track relatively few stations in the El Paso area, we have compared our price data with that collected by the El Paso City-County Health and Environmental District and

164

Effect of ethanol denaturant on gasoline RVP (revised). Topical report, June 21, 1993--December 31, 1993  

SciTech Connect

The Clean Air Act (CAA) Amendments of 1990 require further reduction in gasoline Reid vapor pressure (RVP) to reduce pollution. This research focused on characterizing the effect of ethanol denaturant and water on the RVP of the final ethanol-blended fuel. Anectdotal stories tell of up to a 0.5-psi effect of ethanol denaturant on the RVP of the finished ethanol-blended gasoline. Additionally, earlier Energy & Environmental Research Center (EERC) data indicated water could have a significant effect on the RVP. It was necessary to scientifically verify these effects using acceptable laboratory protocols.

Wu, L.; Timpe, R.C.

1993-12-01T23:59:59.000Z

165

Gasoline price data systems  

SciTech Connect

Timely observation on prices of gasoline at the wholesale and retail level by geographical area can serve several purposes: (1) to facilitate the monitoring of compliance with controls on distributor margins; (2) to indicate changes in the competitive structure of the distribution system; (3) to measure the incidence of changes in crude oil and refiner costs on retail prices by grade of gasoline, by type of retail outlet, and by geographic area; (4) to identify anomalies in the retail pricing structure that may create incentives for misfueling; and (5) to provide detailed time series data for use in evaluating conservation response to price changes. In order to provide the needed data for these purposes, the following detail on gasoline prices and characteristics of the sampling procedure appear to be appropriate: (1) monthly sample observations on wholesale and retail prices by gasoline grade and type of wholesale or retail dealer, together with volume weights; (2) sample size sufficient to provide detail by state and large cities; (3) responses to be tabulated and reports provided within 30 days after date of observation; and (4) a quick response sampling procedure that can provide weekly data, at least at the national level, when needed in time of rapidly changing prices. Price detail by state is suggested due to its significance for administrative purposes and since gasoline consumption data are estimated by state from other sources. Price detail for large cities are suggested in view of their relevancy as problem areas for vehicle emissions, reflecting one of the analytical uses of the data. In this report, current reporting systems and data on gasoline prices are reviewed and evaluated in terms of the needs outlined above. Recommendations are made for ways to fill the gaps in existing data systems to meet these needs.

1980-05-01T23:59:59.000Z

166

Gasoline prices - January 7, 2013  

U.S. Energy Information Administration (EIA) Indexed Site

7, 2013 Gasoline prices flat this week (long version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices remained flat at 3.30 a...

167

Gasoline prices decrease (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline prices decrease (long version) The U.S. average retail price for regular gasoline fell to 3.70 a gallon on Monday. That's down 1.4 cents from a week ago, based on the...

168

Is the gasoline tax regressive?  

E-Print Network (OSTI)

Claims of the regressivity of gasoline taxes typically rely on annual surveys of consumer income and expenditures which show that gasoline expenditures are a larger fraction of income for very low income households than ...

Poterba, James M.

1990-01-01T23:59:59.000Z

169

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

viewing this page, please call (202) 586-8800 Gasoline Price Pass-through EIA Home > Petroleum > Petroleum Feature Articles Gasoline Price Pass-through January 2003 by Michael...

170

TABLE OF CONTENTS  

E-Print Network (OSTI)

Table of Contents………………………………………………………………………………...…...i List of Tables……………………………………………………………………………………….....ii

Ingleside Tx; Base Realignment

2010-01-01T23:59:59.000Z

171

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Sampling Methodology Gasoline Sampling Methodology The sample for the Motor Gasoline Price Survey was drawn from a frame of approximately 115,000 retail gasoline outlets. The gasoline outlet frame was constructed by combining information purchased from a private commercial source with information contained on existing EIA petroleum product frames and surveys. Outlet names, and zip codes were obtained from the private commercial data source. Additional information was obtained directly from companies selling retail gasoline to supplement information on the frame. The individual frame outlets were mapped to counties using their zip codes. The outlets were then assigned to the published geographic areas as defined by the EPA program area, or for conventional gasoline areas, as defined by the Census Bureau's Standard Metropolitan

172

Motor gasoline assessment, Spring 1997  

SciTech Connect

The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

NONE

1997-07-01T23:59:59.000Z

173

Fuel excise taxes and consumer gasoline demand: comparing average retail price effects and gasoline tax effects.  

E-Print Network (OSTI)

??Interest in using gasoline taxes as a gasoline consumption reduction policy has increased. This study asks three questions to help determine how consumer gasoline consumption… (more)

Sauer, William

174

Thermal Stabilization Blend Plan  

SciTech Connect

The Blend Plan was written to identify items stored outside of the 213 MBA that will be moved into the MBA for thermal stabilization processing. Product quality oxide items stored in our vaults are found in Appendix B. A table is included in Appendix B which details the isotopic values for the oxide items and calculates the amount of material of any specific run that can be placed in a product can and maintain the 15 watt limit to meet storage vault specifications. There is no chance of exceeding the 15 watt limit with items starting with the designations ''LAO'' or ''PBO.'' All items starting with the designations ''BO,'' ''BLO,'' and ''DZ0'' are at risk of exceeding the 15 watt specification if the can were to be filled.

RISENMAY, H.R.

1999-08-19T23:59:59.000Z

175

table09.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

3,434 3,434 - 5,080 -9 -1,729 230 0 6,546 0 0 Natural Gas Liquids and LRGs ....... 1,272 347 65 - -68 -208 - 229 29 1,566 Pentanes Plus .................................. 188 - 33 - -5 30 - 66 0 119 Liquefied Petroleum Gases .............. 1,084 347 31 - -63 -238 - 163 29 1,446 Ethane/Ethylene ........................... 503 24 18 - 112 -52 - 0 0 709 Propane/Propylene ....................... 363 301 4 - -158 -120 - 0 21 610 Normal Butane/Butylene .............. 76 3 6 - -11 -89 - 100 8 54 Isobutane/Isobutylene ................... 142 19 4 - -6 22 - 63 0 73 Other Liquids .................................... 172 - 223 - -73 82 - 216 65 -41 Other Hydrocarbons/Oxygenates .... 149 - 1 - 0 6 - 97 46 0 Unfinished Oils ................................. - - 221 - 4 72 - 195 0 -41 Motor Gasoline Blend. Comp. .......... 23 - 1 - -77 4 - -76 19 0 Aviation Gasoline Blend. Comp. ....... - - 0 - 0 (s) - (s) 0 0 Finished Petroleum Products

176

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Prices, Sales Volumes & Stocks by State Prices, Sales Volumes & Stocks by State Definitions Key Terms Definition Aviation Gasoline (Finished) A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are fractionated or otherwise separated into natural gas liquid products or both. For the purposes of this survey, gas plant operator data are contained in the refiner categories.

177

table07.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

558 558 - 893 -73 1,935 -111 0 3,387 38 0 Natural Gas Liquids and LRGs ....... 283 89 116 - 9 -210 - 123 24 558 Pentanes Plus .................................. 37 - 1 - 17 7 - 25 15 9 Liquefied Petroleum Gases .............. 246 89 115 - -8 -217 - 98 10 550 Ethane/Ethylene ........................... 94 0 (s) - -71 -4 - 0 0 26 Propane/Propylene ....................... 100 116 86 - 31 -155 - 0 3 485 Normal Butane/Butylene .............. 37 -27 16 - 18 -48 - 74 6 12 Isobutane/Isobutylene ................... 15 (s) 13 - 14 -10 - 24 0 27 Other Liquids .................................... 24 - 0 - 38 40 - 46 (s) -24 Other Hydrocarbons/Oxygenates .... 45 - 0 - 0 7 - 37 (s) 0 Unfinished Oils ................................. - - 0 - -4 17 - 3 0 -24 Motor Gasoline Blend. Comp. .......... -21 - 0 - 42 16 - 6 (s) 0 Aviation Gasoline Blend. Comp. ....... - - 0 - 0 -1 - 1 0 0 Finished Petroleum Products .......... 71 3,648 9 - 646 154

178

table05.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

27 27 - 1,721 -65 -3 170 0 1,511 0 0 Natural Gas Liquids and LRGs ....... 27 18 40 - 153 -28 - 8 1 257 Pentanes Plus .................................. 3 - 0 - 0 (s) - 0 (s) 2 Liquefied Petroleum Gases .............. 24 18 40 - 153 -28 - 8 1 254 Ethane/Ethylene ............................ 8 0 0 - 0 0 - 0 0 8 Propane/Propylene ........................ 11 54 39 - 149 -8 - 0 1 261 Normal Butane/Butylene ............... 4 -27 1 - 3 -18 - 5 (s) -7 Isobutane/Isobutylene ................... 1 -9 0 - 0 -2 - 3 0 -8 Other Liquids .................................... -9 - 183 - 11 17 - 234 1 -67 Other Hydrocarbons/Oxygenates ..... 64 - 22 - 0 7 - 79 1 0 Unfinished Oils ................................. - - 34 - 0 -2 - 104 0 -68 Motor Gasoline Blend. Comp. ........... -72 - 126 - 11 12 - 54 (s) 0 Aviation Gasoline Blend. Comp. ....... - - 0 - 0 1 - -2 0 1 Finished Petroleum Products .......... 76 1,798 771 - 2,918 -104 - - 63 5,603 Finished

179

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Product Prices by Sales Type Petroleum Product Prices by Sales Type Definitions Key Terms Definition Aviation Gasoline (Finished) A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Gas Plant Operator Any firm, including a gas plant owner, which operates a gas plant and keeps the gas plant records. A gas plant is a facility in which natural gas liquids are separated from natural gas or in which natural gas liquids are fractionated or otherwise separated into natural gas liquid products or both. For the purposes of this survey, gas plant operator data are contained in the refiner categories.

180

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Plant Field Production Plant Field Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Butylene (C4H8) An olefinic hydrocarbon recovered from refinery processes. Ethane (C2H6) A normally gaseous straight-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of -127.48º F. It is extracted from natural gas and refinery gas streams. Field Production Represents crude oil production on leases, natural gas liquids production at natural gas processing plants, new supply of other hydrocarbons/oxygenates and motor gasoline blending components, and fuel ethanol blended into finished motor gasoline. Isobutane (C4H10) A normally gaseous branch-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of 10.9º F. It is extracted from natural gas or refinery gas streams.

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Motor Gasoline Market Spring 2007 and Implications for Spring...  

Annual Energy Outlook 2012 (EIA)

...2 2. Weekly Total Motor Gasoline Inventories and Gasoline-Crude Oil Price Spread ...4 3. Gasoline Product Supplied...

182

U.S. Reformulated Gasoline Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

183

U.S. Conventional Gasoline Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

184

TABLE33.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

3. 3. Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, January 1998 Crude Oil ........................................................ 0 433 157 978 772 0 58,118 Petroleum Products ...................................... 7,922 0 1,760 5,765 2,885 73,877 20,560 Pentanes Plus ............................................ 0 0 0 159 0 0 549 Liquefied Petroleum Gases ........................ 0 0 1,093 5,010 262 3,310 4,920 Motor Gasoline Blending Components ...... 0 0 1 0 0 0 1,310 Finished Motor Gasoline ............................ 5,162 0 438 502 897 38,620 7,634 Reformulated ......................................... 0 0 0 338 0 10,058 338 Oxygenated ........................................... 0 0 0 0 26 0 0 Other ...................................................... 5,162 0 438 164 871 28,562 7,296 Finished Aviation Gasoline

185

East Coast (PADD 1) Imports of Gasoline Blending Components ...  

U.S. Energy Information Administration (EIA)

456: 448: 2013: 514: 529: 492: 669: 648: 574: 551: 458-= No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual ...

186

Weekly U.S. Imports of Conventional Other Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

456 : 2011-Mar: 03/04 : 376 : 03/11 : 406 : 03/18 : 433 : 03/25 : 445 : 2011-Apr: 04/01 : 586 : 04/08 : 505 : 04/15 : 483 : 04/22 : 423 : 04/29 : 457 : 2011-May: 05/06 :

187

Motor Gasoline Blending Components Movements by Tanker and ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

188

Motor Gasoline Blending Components Imports by Area of Entry  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil includes ...

189

East Coast (PADD 1) Motor Gasoline Blending Components Imports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

190

Motor Gasoline Blending Components Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

191

Midwest (PADD 2) Motor Gasoline Blending Components Imports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

192

East Coast (PADD 1) Imports from Chile of Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1995: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 1996: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 1997: 0: 0: 0: 0: 0: 0: 0: 0 ...

193

Reformulated Gasoline Blending Components Imports from Non OPEC  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

194

U.S. Motor Gasoline Blending Components Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

195

Refiner and Blender Net Inputs of Motor Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Percent Utilization is ...

196

Blender Net Input of Reformulated GTAB Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether, RBOB ...

197

Stocks by Type - Rocky Mountain (PADD 4) CBOB Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

198

Conventional Gasoline Blended Bulk Terminal Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

199

Reformulated GTAB Gasoline Blending Components Total Stocks Stocks ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

200

Blender Net Production of Conventional Gasoline Blended with ...  

U.S. Energy Information Administration (EIA)

East Coast: 1,688: 1,693: 1,715: 1,697: 1,696: 1,742: 2005-2013: Appalachian No. 1: 215: 228: 213: 204: 213: 202: ... La. Gulf Coast: 107: 102: 103: ...

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Catalytic reforming boosts octane for gasoline blending - Today in ...  

U.S. Energy Information Administration (EIA)

Because reformate contains significant amounts of benzene, toluene, and xylene, it also is an important source of feedstock for the petrochemical industry.

202

U.S. Motor Gasoline Blending Components Imports  

U.S. Energy Information Administration (EIA)

Spatly Islands : 2007-2007: Swaziland : 1999-1999: Sweden: 4 : 5: 1 : 1997-2013: Switzerland : 1997-1997: Syria : 2011-2011: Taiwan : 5 : 2000-2013: Thailand : 1999-2007:

203

U.S. Motor Gasoline Blending Components Imports  

U.S. Energy Information Administration (EIA)

Spatly Islands : 2007-2007: Swaziland : 1999-1999: Sweden : 142: 44 : 1997-2013: Switzerland : 1997-1997: Syria : 2011-2011: Taiwan : 150 : 2000-2013: Thailand

204

U.S. Motor Gasoline Blending Components Imports  

U.S. Energy Information Administration (EIA)

Spatly Islands: 43 : 2007-2007: Swaziland : 1999-1999: Sweden: 2,847: 3,729: 3,197: 2,490: 5,846: 1,388: 1997-2012: Switzerland : 1997-1997: Syria : 134 : 2011-2011 ...

205

U.S. Conventional Gasoline Blending Components Imports  

U.S. Energy Information Administration (EIA)

Spatly Islands : 2007-2007: Sweden: 110 : 142: 9 : 2004-2013: Syria : 2011-2011: Taiwan : 150 : 2004-2013: Thailand : 2006-2007: Togo : 2012-2012: Trinidad and Tobago

206

U.S. Conventional Gasoline Blending Components Imports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

207

Stocks of Motor Gasoline RBOB with Alcohol Blending Components  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

208

Stocks of All Other Motor Gasoline Blending Components  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

209

Stocks of Conventional Gasoline Blended with Fuel Ethanol  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

210

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Spot Prices Spot Prices Definitions Key Terms Definition Brent A blended crude stream produced in the North Sea region which serves as a reference or "marker" for pricing a number of other crude streams. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock. Crude Oil A mixture of hydrocarbons that exists in liquid phase in natural underground reservoirs and remains liquid at atmospheric pressure after passing through surface separating facilities. Depending upon the characteristics of the crude stream, it may also include: Small amounts of hydrocarbons that exist in gaseous phase in natural underground reservoirs but are liquid at atmospheric pressure after being recovered from oil well (casinghead) gas in lease separators and are subsequently commingled with the crude stream without being separately measured. Lease condensate recovered as a liquid from natural gas wells in lease or field separation facilities and later mixed into the crude stream is also included;

211

DOE Hydrogen Analysis Repository: Ethanol-Diesel Blends in Buses and  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Diesel Blends in Buses and Tractors Ethanol-Diesel Blends in Buses and Tractors Project Summary Full Title: Fuel-Cycle Energy and Emission Impacts of Ethanol-Diesel Blends in Urban Buses and Farming Tractors Project ID: 86 Principal Investigator: Michael Wang Brief Description: This project studied the full fuel-cycle energy and emissions effects of ethanol-diesel blends relative to those of petroleum diesel when used in urban transit buses and farming tractors. Keywords: Ethanol; diesel; emissions; well-to-wheels (WTW) Purpose Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark- ignition engine vehicles. Those studies did not address the energy and emission effects of

212

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology For Gasoline and Diesel Fuel Pump Components Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of gasoline or diesel fuel as it exits the refinery) and the average price of crude oil purchased by refiners (the crude oil component). Distribution & Marketing Costs & Profits - the difference between the average retail price of gasoline or diesel fuel as computed from EIA's

213

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Pass-through Gasoline Price Pass-through January 2003 by Michael Burdette and John Zyren* The single most visible energy statistic to American consumers is the retail price of gasoline. While the average consumer probably has a general notion that gasoline prices are related to those for crude oil, he or she likely has little idea that gasoline, like most other goods, is priced at many different levels in the marketing chain, and that changes ripple through the system as prices rise and fall. When substantial price changes occur, especially upward, there are often allegations of impropriety, even price gouging, on the part of petroleum refiners and/or marketers. In order to understand the movement of gasoline prices over time, it is necessary to examine the relationship between prices at retail and various wholesale levels.

214

Intermediate Ethanol Blends Catalyst Durability Program  

Science Conference Proceedings (OSTI)

In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

2012-02-01T23:59:59.000Z

215

Finished Motor Gasoline Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

216

California Gasoline Price Study, 2003  

Reports and Publications (EIA)

This is the final report to Congressman Ose describing the factors driving California's spring 2003 gasoline price spike and the subsequent price increases in June and August.

Information Center

2003-05-01T23:59:59.000Z

217

Gasoline Volatility - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... anything goes wrong both because of its unique gasoline that not all refiners can make,and because of its geographic distance ... problems with ...

218

Dispensing Equipment Testing with Mid-Level Ethanol/Gasoline Test Fluid: Summary Report  

SciTech Connect

The National Renewable Energy Laboratory's (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy's (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

Boyce, K.; Chapin, J. T.

2010-11-01T23:59:59.000Z

219

EIA lowers forecast for summer gasoline prices  

Annual Energy Outlook 2012 (EIA)

EIA lowers forecast for summer gasoline prices U.S. gasoline prices are expected to be lower this summer than previously thought. The price for regular gasoline this summer is now...

220

Variable-Rate State Gasoline Taxes  

E-Print Network (OSTI)

state levy taxes on gasoline and diesel fuel. Motor fueltax on gasoline of 7.5 cents per gallon and a “second motormotor fuel taxes could keep pace with changing conditions might be by indexing gasoline taxes

Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

What's an Alternative Fuel? Energy Department Proposes Additional Substitute for Gasolin  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NEWS MEDIA CONTACTS: NEWS MEDIA CONTACTS: FOR IMMEDIATE RELEASE Jayne Brady, 202/586-5806 July 28, 1998 WHAT'S AN ALTERNATIVE FUEL? Energy Department Proposes Additional Substitute for Gasoline The Department of Energy today published a proposed rule to add another new substitute for gasoline, called the "P-series fuels," to the regulatory definition of "alternative fuel." P-series fuels are designed to operate in flexible-fuel vehicles that can run on E85 (85 percent ethanol mixed with 15 percent gasoline), or gasoline, or any blend of the two. Chrysler and Ford have begun to mass-produce flexible-fuel engines as standard equipment for certain vehicle models. Chrysler's most popular minivan equipped with a flexible-fuel engine is on the market today and the Ford Ranger pick-up truck will have such an engine in the 1999 model year. These

222

Emergency Operations Table of Contents  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii

unknown authors

2012-01-01T23:59:59.000Z

223

Smokeless Gasoline Fire Test  

SciTech Connect

As a result of the recent concern by environmentalists, the hypothetical accident thermal test can no longer be performed by simply burning gasoline in an open pit. The uncontrolled open pit technique creates thick, dense, black clouds of smoke which are not permitted by local authorities. This paper deals with the design of the fire test facility and the techniques used to eliminate the smoke plume. The techniques include the addition of excess air to the fire in combination with a spray of water mist near the fuel surface. The excess air technique has been used successfully in an experimental setup; it was found that the temperature could be controlled in the neighborhood of the required 1475 degrees F environment and the smoke could be reduced to very low levels. The water spray technique has been successfully used by others in similar applications and, on completion of a permanent fire test facility at Mound Laboratory (anticipated July, 1974), test results will be available. The water is believed to interact with the combustion reaction to provide more complete combustion. The permanent facility will be a 10 x 10 ft cement block enclosure lined with firebrick. It will be 8 ft high on three sides and 4 ft high on one side to provide for observation of the test. A 5000 gal underground tank provides storage for the aviation gasoline which is gravity fed to the fire.

Williams, H.; Griffin, J. F.

1974-04-01T23:59:59.000Z

224

Delaware Rack Prices for Motor Gasoline  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, Sales Type (Dollars per Gallon Excluding Taxes) ... History; Gasoline, Average: 2.144: 2.529: 1.724: 2.165 - ...

225

South Carolina Rack Prices for Motor Gasoline  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, Sales Type (Dollars per Gallon Excluding Taxes) ... History; Gasoline, Average: 2.136: 2.576: 1.732: 2.127 - ...

226

U.S. Total Gasoline Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

7 Notes: Gasoline inventories in the United States began last summer's driving season low and ended low. In October 2000, with the market focusing on distillate, gasoline...

227

Price Changes in the Gasoline Market  

Annual Energy Outlook 2012 (EIA)

1999 Price Changes in the Gasoline Market Are Midwestern Gasoline Prices Downward Sticky? Energy Information Administration Washington, DC 20585 This report was prepared by the...

228

EIA initiates daily gasoline availability survey for ...  

U.S. Energy Information Administration (EIA)

To develop the emergency survey, EIA used the representative sample of retail stations selling gasoline used in EIA's Form EIA-878, "Motor Gasoline ...

229

Table Search (or Ranking Tables)  

E-Print Network (OSTI)

Table Search (or Ranking Tables) Alon Halevy Google DBRank @ ICDE March 1, 2010 #12;Structured Data organizations Requires infrastructure, concerns about losing control Hard to find structured data via search Search #1 store locations used cars radio stations patents recipes · Deep = not accessible through

Halevy, Alon

230

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Learn more... Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the entire production and distribution chain, including... read more in

231

Global Carbon Biomass Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 1c. Mixed Forest Classes Table 1d. NaturalBurnt Forest Mosaic Classes Table 1e. CropForest Mosaic Classes Table 1f. Shrub Cover Classes Table 1g. Grassland Classes Table...

232

this table  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table 1.2 World Petroleum Consumption, 1980-2006 (Thousand Barrels per Day) Page 1980.00 ...

233

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

125 69 112 131 137 158 7.36 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

234

Table 4  

Gasoline and Diesel Fuel Update (EIA)

378 913 993 1,130 1,316 1,625 8.24 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

235

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

2.2 2.2 71.6 66.6 60.0 56.1 63.1 81.2 80.6 71.7 64.6 - 69.7 February ............................. 72.7 72.2 67.3 60.3 56.4 63.3 81.5 80.9 72.7 64.8 - 70.4 March .................................. 77.0 76.6 71.7 66.0 64.7 68.7 85.9 85.3 77.7 70.0 - 75.5 April .................................... 87.8 87.6 82.8 76.2 76.2 79.5 96.1 95.6 88.4 80.5 - 86.2 May ..................................... 94.1 93.7 89.0 76.6 74.5 82.0 103.1 102.3 93.9 80.5 - 90.1 June .................................... 91.6 91.0 86.1 70.6 67.0 77.6 100.7 99.7 91.6 74.8 - 86.7 July ..................................... 87.8 87.6 83.0 70.8 68.0 76.3 96.9 96.3 88.3 74.9 - 84.3 August ................................ 84.0 83.8 78.3 68.9 65.0 72.8 93.1 92.5 83.5 73.3 W 80.6 September .......................... 82.1 82.0 76.0 69.6 66.1 72.2 91.0 90.6 81.2 73.7 W

236

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

8,502.8 8,502.8 30,091.1 22,860.9 121,863.2 24,529.2 169,253.3 7,955.3 8,081.1 12,658.5 10,618.5 1,152.7 24,429.7 February ............................. 33,160.7 35,054.9 31,625.2 135,105.9 26,023.8 192,754.9 5,205.4 5,273.9 5,951.6 5,714.2 333.0 11,998.8 March .................................. 37,159.8 39,011.8 35,012.6 142,409.7 27,404.1 204,826.5 2,090.0 2,127.2 2,619.4 2,344.1 - 4,963.5 April .................................... 38,869.0 40,735.1 36,827.8 142,606.1 26,540.1 205,973.9 568.3 580.0 980.8 1,461.1 - 2,442.0 May ..................................... 39,582.4 41,396.9 37,319.3 150,843.9 27,558.2 215,721.4 573.6 584.7 957.5 1,537.7 - 2,495.2 June .................................... 40,991.9 42,912.3 37,954.3 156,346.5 32,447.1 226,747.9 591.6 592.0 990.8 1,609.0 -

237

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

220.9 220.9 31,104.3 23,193.9 128,995.0 28,849.6 181,038.6 5,089.3 5,164.2 4,062.8 5,720.8 - 9,783.6 February ............................. 31,284.4 33,213.6 24,062.8 134,673.5 33,175.3 191,911.6 4,908.5 4,980.9 4,025.8 5,317.8 - 9,343.6 March .................................. 34,100.8 36,002.0 25,985.0 139,340.5 30,160.8 195,486.2 2,710.3 2,764.7 2,622.6 2,796.9 - 5,419.5 April .................................... 35,684.3 37,877.0 27,895.8 146,733.8 29,409.3 204,038.9 1,203.7 1,224.2 652.4 2,016.6 - 2,669.0 May ..................................... 35,150.2 36,866.7 27,401.6 148,271.7 28,449.3 204,122.6 1,711.4 1,730.6 1,284.0 2,091.9 - 3,375.9 June .................................... 36,536.0 38,235.2 27,402.2 151,739.3 24,832.7 203,974.3 1,956.2 1,978.1

238

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

4,707.0 4,707.0 35,821.0 18,450.2 130,177.8 22,726.5 171,354.5 3,900.7 3,926.0 4,696.8 7,088.7 - 11,785.5 February ............................. 36,412.6 37,699.7 20,174.0 142,313.8 25,388.9 187,876.8 3,924.9 3,949.8 5,137.3 6,882.9 - 12,020.2 March .................................. 36,632.6 38,121.0 21,255.9 152,151.5 30,915.0 204,322.3 3,382.2 3,401.8 4,711.1 5,122.9 - 9,833.9 April .................................... 37,971.4 39,384.5 23,410.4 155,157.1 40,216.9 218,784.4 1,927.8 1,934.5 1,997.5 3,438.3 - 5,435.9 May ..................................... 37,771.0 39,109.5 22,504.7 154,536.5 34,938.2 211,979.5 1,944.7 1,953.1 1,570.1 3,450.5 - 5,020.5 June .................................... 37,777.7 38,969.0 22,350.8 163,781.5 29,805.1 215,937.4 2,027.1

239

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

161.3 161.3 30,767.0 22,353.2 127,342.1 24,284.9 173,980.2 8,319.4 8,460.9 13,456.3 W W 24,653.0 February ............................. 32,286.1 34,080.3 31,066.3 138,106.2 29,977.1 199,149.6 6,264.3 6,341.7 6,239.1 5,890.3 - 12,129.4 March .................................. 36,529.7 38,362.8 35,134.3 141,063.5 25,588.4 201,786.1 2,972.7 3,032.6 2,589.4 W W 4,958.5 April .................................... 36,904.9 38,994.6 31,715.8 147,020.0 33,979.9 212,715.8 1,558.8 1,592.8 1,049.5 1,668.8 - 2,718.3 May ..................................... 36,751.1 38,541.5 28,743.2 148,337.4 29,640.9 206,721.5 1,299.8 1,333.0 1,005.5 1,838.7 - 2,844.3 June .................................... 37,465.1 39,108.4 28,592.7 147,682.3 36,046.6 212,321.6

240

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

3,177.2 3,177.2 34,690.6 19,370.8 133,144.1 32,691.0 185,205.9 4,123.8 4,154.0 3,780.0 6,946.2 - 10,726.2 February ............................. 34,982.2 36,460.3 20,433.1 137,937.1 31,470.5 189,840.6 3,923.6 3,954.4 3,674.9 6,513.4 - 10,188.4 March .................................. 37,598.4 39,137.5 21,474.3 144,372.0 29,697.5 195,543.8 2,947.2 2,972.1 3,243.6 4,126.4 - 7,370.0 April .................................... 34,901.4 36,438.7 22,519.1 148,658.4 39,120.8 210,298.2 2,159.0 2,174.7 1,880.2 3,562.0 - 5,442.2 May ..................................... 35,698.2 37,200.2 22,890.9 150,690.5 35,704.2 209,285.5 2,007.8 2,022.5 1,824.9 3,446.9 - 5,271.8 June .................................... 36,351.1 37,897.0 23,252.4 157,837.8 38,644.7 219,734.8 2,006.0

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

7.2 7.2 66.8 59.8 52.5 48.2 53.6 75.7 75.1 65.4 57.1 W 60.9 February ............................. 67.0 66.6 60.6 53.5 49.6 54.8 75.4 74.9 66.1 58.1 NA 61.8 March .................................. 67.9 67.6 61.1 54.5 50.4 55.7 75.8 75.3 66.5 58.3 NA 62.2 April .................................... 73.1 72.8 66.9 62.3 56.4 62.6 80.8 80.4 72.4 66.7 W 69.3 May ..................................... 79.0 78.6 72.1 67.7 62.0 68.0 87.2 86.6 77.4 72.5 NA 74.8 June .................................... 79.2 78.6 70.3 62.4 58.5 63.9 87.6 86.8 75.9 66.8 NA 71.0 July ..................................... 75.6 75.0 66.0 56.4 52.9 58.5 83.8 83.0 71.4 60.2 NA 65.5 August ................................ 73.0 72.6 64.8 57.0 51.8 58.3 81.0 80.5 69.8 60.8 NA 64.9 September .......................... 72.0 71.8 64.8 57.7 52.3 58.7 79.8 79.5 69.6

242

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2012 (EIA)

161.3 30,767.0 22,353.2 127,342.1 24,284.9 173,980.2 8,319.4 8,460.9 13,456.3 W W 24,653.0 February ... 32,286.1 34,080.3 31,066.3 138,106.2 29,977.1...

243

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

W W - 431.3 December ... W 78.1 W 1,202.7 W 1,973.3 W W W W - 456.8 1995 Average ... W 81.8 W 1,146.5 W 2,026.8 W W 252.0 201.3 -...

244

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2012 (EIA)

37,052.3 38,512.4 20,352.1 143,788.5 25,764.3 189,904.9 3,474.2 3,501.5 4,456.9 7,396.7 - 11,853.6 December ... 37,771.5 39,137.4 20,656.5...

245

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2012 (EIA)

W 4,496.2 W 7,788.3 128.8 129.1 W W - 1,138.2 December ... 448.7 456.3 W 4,677.2 W 8,688.2 129.3 129.8 657.5 525.4 - 1,182.9 1997 Average...

246

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2012 (EIA)

2,271.9 14,759.4 39,254.5 1999 Average ... 170,969.7 9,988.2 79,456.7 260,414.6 22,467.2 1,516.6 14,336.0 38,319.9 PAD District I January...

247

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Sales Type, PAD District, and State (Thousand Gallons per Day) - Continued Geographic Area Month Reformulated All Formulations Sales to End Users Sales for Resale Sales to End...

248

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Annual Energy Outlook 2012 (EIA)

Type, PAD District, and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Premium All Grades Sales to End Users Sales for Resale Sales to End Users Sales...

249

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

W W 53.8 W W 62.5 W W 64.6 W W 56.9 July ... W W 51.0 W W 61.2 W W 63.1 W W 54.4 August ... W W 49.3 W W 57.4...

250

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

Sales Type, PAD District, and State (Thousand Gallons per Day) - Continued Geographic Area Month Premium All Grades Sales to End Users Sales for Resale Sales to End Users Sales...

251

Table SF01. U.S. Motor Gasoline Summer Outlook  

U.S. Energy Information Administration (EIA)

Q2 Q3 Season Q2 Q3 Season Q2 Q3 Season Nominal Prices (dollars per gallon) WTI Crude Oil (Spot) a 2.22 2.20 2.21 2.22 2.20 2.21 -0.3 0.1 -0.1 Brent Crude oil Price ...

252

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

84.5 84.5 84.3 77.3 74.4 72.2 75.5 93.4 93.0 82.9 78.3 W 81.7 February ............................. 84.3 84.0 77.5 71.6 71.6 74.6 93.3 92.9 83.1 75.4 81.2 81.0 March .................................. 82.7 82.5 77.8 70.5 71.8 74.1 91.7 91.3 83.3 74.2 W 80.7 April .................................... 82.8 82.6 79.3 68.6 68.2 73.7 91.9 91.5 84.4 72.5 W 80.9 May ..................................... 82.3 81.6 77.5 68.2 63.8 71.9 91.5 90.8 83.2 72.3 W 79.9 June .................................... 80.3 79.4 75.0 63.9 58.9 68.5 89.9 89.0 80.9 68.7 W 77.2 July ..................................... 78.8 78.0 73.0 64.8 59.0 67.9 88.3 87.5 79.0 69.2 W 75.8 August ................................ 85.0 84.5 80.6 74.0 70.7 76.5 94.5 93.9 86.5 78.3 W 83.9 September .......................... 88.1 87.2 83.6 71.9 71.2 77.2 97.6 96.7 89.4 75.8 W

253

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

73.0 73.0 72.5 68.2 57.5 55.3 62.2 82.0 81.4 74.0 61.5 W 70.2 February ............................. 67.2 66.8 62.0 54.9 53.1 57.9 76.8 76.4 67.7 58.9 W 65.0 March .................................. 62.7 62.4 57.3 52.2 49.7 54.3 72.2 71.9 63.2 56.0 W 61.0 April .................................... 65.2 65.0 59.8 55.6 53.9 57.3 74.1 73.9 65.6 59.7 W 63.8 May ..................................... 69.7 69.3 65.1 58.0 53.8 60.7 78.8 78.4 70.9 62.1 W 68.2 June .................................... 68.6 68.0 63.7 54.5 48.4 57.8 77.8 77.3 69.8 58.9 W 66.3 July ..................................... 66.9 66.4 61.6 51.8 47.6 55.5 76.6 76.1 68.0 56.2 W 64.1 August ................................ 65.0 64.4 59.4 48.1 45.2 52.8 75.1 74.5 65.7 52.4 W 61.4 September .......................... 63.4 63.0 58.4 49.1 46.1 52.8 73.4 73.0 64.6 53.1 W

254

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

91.0 91.0 91.0 80.1 77.2 - 78.5 100.2 100.0 84.9 80.2 - 82.6 February ............................. 93.1 92.9 83.8 77.7 - 80.4 101.1 100.8 88.1 80.2 - 84.1 March .................................. 91.7 91.5 85.2 75.1 - 79.8 96.8 96.8 90.1 NA - 84.4 April .................................... 88.3 88.1 79.3 69.6 - NA 94.0 93.9 83.7 70.7 - NA May ..................................... 89.4 89.3 81.7 75.8 - 78.1 95.8 95.7 88.0 76.9 - 81.6 June .................................... 88.5 88.4 79.4 71.7 - 74.6 95.5 95.5 84.5 72.9 - 77.2 July ..................................... 86.2 86.1 75.4 71.2 - 72.8 93.0 93.0 81.2 72.8 - 75.9 August ................................ 89.3 89.2 79.6 77.7 - 78.4 96.6 96.5 85.0 79.2 - 81.3 September .......................... 91.3 91.0 84.4 74.8 - 78.3 97.9 97.7 88.2 77.7 - 81.5 October

255

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

59.5 59.5 58.9 54.4 42.1 37.1 46.8 70.2 69.7 61.7 46.4 - 56.9 February ............................. 57.3 56.7 52.7 40.6 39.2 45.9 68.2 67.7 60.2 44.8 W 55.3 March .................................. 64.5 64.4 60.1 52.3 48.6 55.3 74.2 73.8 67.6 55.6 W 63.8 April .................................... 82.3 81.6 79.9 62.3 57.2 69.6 92.4 91.6 84.9 65.4 W 78.7 May ..................................... 79.8 78.9 76.3 59.2 54.0 66.0 90.6 89.9 82.9 63.9 W 76.6 June .................................... 74.7 74.6 71.0 61.1 58.0 64.9 85.2 84.8 77.6 64.9 W 73.4 July ..................................... 79.4 79.3 75.9 69.7 66.3 71.9 89.3 88.9 81.9 72.6 NA 78.7 August ................................ 86.5 86.0 82.9 73.3 73.5 77.7 96.4 95.7 88.9 76.6 W 84.8 September .......................... 86.9 86.3 82.0 73.5 70.5 76.9 96.3 95.6 88.7 77.5 W

256

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

83.6 83.6 83.3 77.1 71.3 66.2 71.8 91.6 91.1 82.2 75.5 - 78.4 February ............................. 82.1 81.8 74.8 68.6 64.3 69.3 90.3 89.8 80.0 72.5 - 75.7 March .................................. 79.9 79.7 72.6 66.3 62.6 67.2 88.1 87.8 78.3 70.3 W 73.5 April .................................... 79.0 78.8 72.4 65.2 60.7 66.3 87.3 87.0 77.8 69.3 - 72.7 May ..................................... 79.6 79.5 73.0 67.5 61.8 67.9 87.5 87.2 78.4 70.7 - 73.8 June .................................... 78.9 78.7 70.9 63.9 59.0 65.0 86.8 86.5 76.6 67.2 - 71.0 July ..................................... 77.3 77.2 69.7 63.8 57.6 64.3 85.4 85.1 75.7 67.3 - 70.6 August ................................ 82.1 81.9 75.4 71.0 63.7 70.9 89.9 89.6 81.0 74.8 - 77.3 September .......................... 80.9 80.7 73.3 66.3 60.8 67.1 89.1 88.6 79.2 69.9 -

257

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

6 6 68.7 60.7 56.0 64.5 85.1 84.6 73.7 64.3 - 70.0 February ............................. 76.3 76.1 67.3 62.9 55.2 65.1 84.6 83.9 70.0 65.5 - 68.2 March .................................. 78.1 77.9 72.0 65.0 W 68.5 84.1 83.8 75.1 66.1 - 70.1 April .................................... 82.6 82.5 76.1 67.9 - 71.4 89.7 89.6 80.0 69.7 - 73.8 May ..................................... 87.9 87.9 79.9 71.8 - 75.1 94.3 94.2 84.6 73.5 - 77.7 June .................................... 90.2 90.2 80.0 66.5 - 72.0 96.4 96.3 84.0 68.7 - 75.0 July ..................................... 86.3 86.4 77.3 62.6 - 68.5 92.5 92.5 78.3 63.9 - 69.6 August ................................ 82.8 82.8 76.3 63.7 - 68.7 87.9 87.8 77.6 65.3 - 69.8 September .......................... 82.4 81.9 73.9 66.4 NA 69.4 NA NA 75.7 68.9 - 72.4 October ...............................

258

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

7 7 69.7 61.6 W 65.5 84.2 83.9 75.4 65.0 - 71.8 February ............................. 78.1 77.6 71.3 64.5 - 68.0 85.6 85.1 77.4 67.6 - 73.8 March .................................. 83.3 83.0 79.0 72.2 W 75.7 89.7 89.4 85.1 74.4 - 81.1 April .................................... 92.1 91.9 86.0 76.1 - 79.5 100.6 100.1 93.3 77.6 - 84.9 May ..................................... 96.8 96.4 92.4 76.5 - 81.5 105.4 104.6 99.0 77.5 - 86.2 June .................................... 95.6 95.3 NA 76.7 - 81.6 103.7 103.2 98.0 77.5 - 85.8 July ..................................... 93.8 93.5 NA 75.3 - 80.2 101.5 101.1 96.1 76.2 - 84.7 August ................................ 95.2 95.0 NA 78.5 - 82.7 102.2 102.0 NA 80.0 - 86.7 September .......................... 97.1 96.7 88.1 79.7 - 82.9 104.7 104.4 93.7 82.0 - 87.4 October

259

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

51.0 51.0 50.8 45.0 38.1 33.0 39.1 59.9 59.7 51.9 42.3 - 46.1 February ............................. 49.4 49.3 43.4 36.3 32.8 37.6 58.6 58.4 50.4 40.4 - 44.3 March .................................. 57.2 57.1 52.4 46.9 39.7 47.1 65.7 65.5 58.6 50.5 - 53.7 April .................................... 68.1 68.0 64.2 56.7 47.2 56.2 76.5 76.2 69.8 60.5 - 63.9 May ..................................... 68.9 68.8 63.6 56.3 48.2 56.1 77.4 77.0 69.4 60.0 - 63.4 June .................................... 68.2 68.2 63.7 56.3 48.6 56.7 76.5 76.3 69.1 59.8 - 63.2 July ..................................... 73.6 73.6 69.8 63.6 55.3 63.8 81.8 81.6 75.0 67.2 - 70.0 August ................................ 78.7 78.7 74.6 68.4 62.5 69.0 87.5 87.2 79.9 72.0 - 74.9 September .......................... 82.1 81.9 77.5 71.5 64.7 71.9 90.9 90.5 83.1 75.3 -

260

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

9.0 9.0 68.8 61.7 55.1 51.1 56.0 77.1 76.6 66.9 59.4 - 62.6 February ............................. 69.6 69.4 63.4 56.3 52.0 57.4 77.6 77.2 68.9 60.4 - 64.3 March .................................. 75.3 75.1 69.2 63.6 57.7 64.3 83.2 82.8 74.6 67.5 W 70.8 April .................................... 83.2 83.0 77.3 71.5 64.3 71.6 91.1 90.7 82.5 75.8 - 78.9 May ..................................... 86.2 85.9 79.2 71.7 65.6 72.6 94.1 93.6 84.2 75.8 - 79.5 June .................................... 83.7 83.4 75.2 66.6 59.9 67.4 91.6 90.9 80.2 69.5 - 74.2 July ..................................... 81.8 81.5 74.0 66.6 60.0 67.3 89.6 89.1 79.2 70.2 - 74.2 August ................................ 80.3 80.2 73.1 66.2 60.0 66.9 88.0 87.6 78.4 69.8 W 73.5 September .......................... 80.6 80.5 73.7 67.2 60.4 67.8 88.3 87.9 78.8 70.9 -

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

66.1 66.1 65.8 58.4 51.1 49.2 52.4 74.6 74.2 64.6 55.6 - 59.1 February ............................. 63.3 63.2 56.3 50.1 47.4 51.0 72.0 71.6 62.1 54.1 - 57.3 March .................................. 61.3 61.2 54.2 47.9 45.4 48.9 69.9 69.5 60.0 51.9 - 55.0 April .................................... 62.6 62.5 56.3 51.1 47.1 51.5 71.0 70.7 61.8 55.1 - 57.7 May ..................................... 65.3 65.2 58.8 53.8 48.4 53.9 73.5 73.1 64.3 57.6 - 60.3 June .................................... 64.6 64.4 57.4 51.2 46.2 51.7 73.2 72.6 63.2 54.9 W 58.2 July ..................................... 63.4 63.2 56.0 49.8 45.1 50.5 72.2 71.7 62.2 53.4 - 56.9 August ................................ 60.5 60.3 52.9 45.0 41.0 46.3 69.6 69.2 59.2 48.8 - 53.0 September .......................... 59.2 59.1 52.8 45.8 40.8 46.7 68.2 67.9 58.8 49.7 -

262

Table SF01. U.S. Motor Gasoline Summer Outlook  

U.S. Energy Information Administration (EIA)

Usage (kWh) 3,229 3,119 3,471 3,444 3,355 3,212 ?4.3% ... EIA does not estimate or project end-use consumption of non-marketed renewable energy. (d) ...

263

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2012 (EIA)

1,442.5 1,639.6 1,276.8 330.7 3,247.2 November ... 195.5 197.5 241.1 172.4 - 413.5 1,429.9 1,446.9 1,582.9 1,336.9 173.5 3,093.4 December...

264

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2012 (EIA)

47,959.1 11,050.9 67,812.0 226,822.0 21,260.7 1,818.7 15,161.7 38,241.1 February ... 154,899.9 10,617.6 70,698.9 236,216.5 22,197.4 1,690.4 15,506.0...

265

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Gasoline and Diesel Fuel Update (EIA)

229.8 - - 229.8 1,367.1 - - 1,367.1 October ... 241.1 - - 241.1 1,407.1 - - 1,407.1 November ... 238.4 - - 238.4...

266

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2012 (EIA)

W 4,596.9 W 5,392.5 July ... - - - - - - 1,222.9 1,241.1 W 4,295.5 W 5,061.9 August ... - - - - - - 1,259.2...

267

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

2,109.3 - 4,980.7 April ... - 6.9 751.6 454.5 W 1,241.1 - 44.3 2,978.0 2,285.3 W 5,309.5 May ... - W 744.9 W...

268

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

1,442.5 1,639.6 1,276.8 330.7 3,247.2 November ... 195.5 197.5 241.1 172.4 - 413.5 1,429.9 1,446.9 1,582.9 1,336.9 173.5 3,093.4 December...

269

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2012 (EIA)

508.8 - 755.9 33.8 33.8 W W - 57.9 October ... 147.9 151.8 241.1 466.1 - 707.2 34.1 34.1 W W - 50.1 November ... 143.0 144.7...

270

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Gasoline and Diesel Fuel Update (EIA)

... 15,344.6 - 13,358.4 28,703.0 77,240.7 - 52,000.4 129,241.1 August ... 15,201.5 - 13,221.9 28,423.4 76,061.8 -...

271

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

W 449.6 W W 1,212.7 July ... 16.0 16.1 105.8 135.3 - 241.1 70.0 73.0 439.9 W W 1,120.6 August ... 17.5 17.8 110.8...

272

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Annual Energy Outlook 2012 (EIA)

83.6 83.3 77.1 71.3 66.2 71.8 91.6 91.1 82.2 75.5 - 78.4 February ... 82.1 81.8 74.8 68.6 64.3 69.3 90.3 89.8 80.0 72.5 - 75.7 March ......

273

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

... 77.0 76.6 71.7 66.0 64.7 68.7 85.9 85.3 77.7 70.0 - 75.5 April ... 87.8 87.6 82.8 76.2 76.2 79.5 96.1 95.6...

274

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

84.5 64.5 69.5 91.7 68.6 71.5 79.7 62.9 62.8 May ... 75.0 59.3 59.3 84.7 63.9 68.7 92.3 68.3 71.2 79.0 60.8 62.1 June ......

275

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

83.0 73.6 72.4 92.4 79.2 79.1 101.0 83.3 84.5 87.2 75.5 75.0 February ... 82.4 72.4 70.4 91.9 78.9 77.5 100.2 84.0 82.6 86.5 74.5 73.0 March...

276

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Annual Energy Outlook 2012 (EIA)

84.5 84.3 77.3 74.4 72.2 75.5 93.4 93.0 82.9 78.3 W 81.7 February ... 84.3 84.0 77.5 71.6 71.6 74.6 93.3 92.9 83.1 75.4 81.2 81.0 March...

277

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

4.6 73.9 70.5 59.6 55.7 64.4 84.2 83.3 75.7 63.9 - 72.4 February ... 73.7 73.0 69.3 59.8 57.2 64.1 82.9 82.1 74.2 64.6 - 71.6 March ......

278

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

7.2 66.8 59.8 52.5 48.2 53.6 75.7 75.1 65.4 57.1 W 60.9 February ... 67.0 66.6 60.6 53.5 49.6 54.8 75.4 74.9 66.1 58.1 NA 61.8 March ......

279

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

7 69.7 61.6 W 65.5 84.2 83.9 75.4 65.0 - 71.8 February ... 78.1 77.6 71.3 64.5 - 68.0 85.6 85.1 77.4 67.6 - 73.8 March ......

280

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Annual Energy Outlook 2012 (EIA)

64.9 85.2 84.8 77.6 64.9 W 73.4 July ... 79.4 79.3 75.9 69.7 66.3 71.9 89.3 88.9 81.9 72.6 NA 78.7 August ......

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

70.5 58.3 57.7 79.6 61.2 65.4 88.3 67.0 70.1 75.4 60.0 61.0 February ... 70.5 58.1 58.4 79.8 61.0 66.1 88.4 66.8 70.6 75.5 59.8 61.6 March...

282

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

- 68.2 March ... 78.1 77.9 72.0 65.0 W 68.5 84.1 83.8 75.1 66.1 - 70.1 April ... 82.6 82.5 76.1 67.9 - 71.4 89.7...

283

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Annual Energy Outlook 2012 (EIA)

68.0 56.2 W 64.1 August ... 65.0 64.4 59.4 48.1 45.2 52.8 75.1 74.5 65.7 52.4 W 61.4 September ... 63.4 63.0 58.4 49.1 46.1...

284

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

101.1 100.8 88.1 80.2 - 84.1 March ... 91.7 91.5 85.2 75.1 - 79.8 96.8 96.8 90.1 NA - 84.4 April ... 88.3 88.1...

285

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

69.9 56.0 56.4 80.0 58.7 65.2 88.9 64.6 70.0 75.2 57.7 60.0 February ... 68.9 56.1 56.7 78.6 59.5 65.0 87.6 65.4 70.2 74.1 57.9 60.3 March...

286

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,  

Gasoline and Diesel Fuel Update (EIA)

4.6 4.6 73.9 70.5 59.6 55.7 64.4 84.2 83.3 75.7 63.9 - 72.4 February ............................. 73.7 73.0 69.3 59.8 57.2 64.1 82.9 82.1 74.2 64.6 - 71.6 March .................................. 72.3 71.6 68.0 57.9 54.1 62.3 81.7 80.8 73.1 62.4 - 70.1 April .................................... 74.8 74.2 70.8 64.0 59.7 67.0 83.8 83.2 75.8 68.3 - 73.7 May ..................................... 80.4 80.0 75.3 69.5 64.6 71.9 89.2 88.6 80.5 74.2 - 78.7 June .................................... 81.7 81.0 75.3 65.9 61.6 70.3 90.3 89.5 80.6 70.7 - 77.7 July ..................................... 78.7 77.8 71.7 60.3 57.9 65.6 87.5 86.5 77.1 65.1 - 73.6 August ................................ 75.5 74.7 68.8 59.9 56.7 63.6 83.9 83.2 73.8 64.5 - 71.0 September .......................... 73.5 72.9 67.4 61.0 56.9 63.4 81.6 81.0 72.2 65.2 -

287

California Gasoline Price Study  

Gasoline and Diesel Fuel Update (EIA)

DIRECTOR, PETROLEUM DIVISION DIRECTOR, PETROLEUM DIVISION ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY BEFORE THE SUBCOMMITTEE ON ENERGY AND RESOURCES COMMITTEE ON GOVERNMENT REFORM U.S. HOUSE OF REPRESENTATIVES MAY 9, 2005 Mr. Chairman, I appreciate this opportunity to testify today on the Energy Information Administration's (EIA) insights into factors affecting recent gasoline prices. EIA is the statutorily chartered statistical and analytical agency within the U.S. Department of Energy. We are charged with providing objective, timely, and relevant data, analysis, and projections for the use of the Department of Energy, other Government agencies, the U.S. Congress, and the public. We produce data and analysis reports that are meant to assist policy makers in determining energy policy. Because we have an element of

288

Gasoline Prices Also Influenced by Regional Gasoline Product Markets  

Gasoline and Diesel Fuel Update (EIA)

1 1 Notes: Next we examine the wholesale market's added contribution to gasoline price variation and analyze the factors that impact the gasoline balance. There are two points to take away from this chart: The U.S. market moves with the world market, as can be seen with the high inventories in 1998, being drawn down to low levels during 1999. Crude and product markets are not independent. Crude oil and product markets move together fairly closely, with some lead/lag effects during transitions. The relationship between international crude oil markets and domestic product markets raises another issue. A subtle, but very important point, lost in recent discussions of gasoline price increases: The statement has been made that crude markets are not a factor in this past spring's high gasoline prices, since crude prices were

289

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) ...

290

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

291

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) Impacts

292

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

293

Gasoline Prices at Historical Lows  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Before looking at El Paso gasoline prices, letÂ’s take a minute to look at the U.S. average price for context. Gasoline prices this year, adjusted for inflation, are the lowest ever. Back in March, before prices began to rise ahead of the traditional high-demand season, the U.S. average retail price fell to $1.00 per gallon. Prices rose an average of 7.5 cents, less than the typical seasonal runup, to peak in early June. Since then, prices have fallen back to $1.013. Given recent declines in crude oil and wholesale gasoline prices, we expect retail prices to continue to ease over at least the next few weeks. Since their sharp runup during the energy crises of the 1970Â’s, gasoline prices have actually been non-inflationary. Adjusting the historical prices by the Consumer Price Index, we can see that todayÂ’s

294

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Data Collection Procedures Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price except in areas having only full-serve. The price data are used to calculate weighted average price estimates at the city, state, regional and national levels using sales and delivery volume data from other EIA surveys and population estimates from the Bureau of Census.

295

Crude Oil Affects Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

5 Notes: This graph illustrates how crude oil explains much of the large movements in gasoline prices that we have seen over time -- such as during the Gulf War at the end of 1990,...

296

Reformulated gasoline quality issues  

Science Conference Proceedings (OSTI)

One year ago, a panel of industry experts were interviewed in the November/December 1994 issue of Fuel Reformulation (Vol. 4, No. 6). With the focus then and now on refinery investments, the panelists were asked to forecast which refining processes would grow in importance. It is apparent from their response, and from other articles and discussions throughout the year, that hydroprocessing and catalytic conversion processes are synergistic in the overall refinery design, with flexibility and process objectives varying on a unit-by-unit case. To an extent, future refinery investments in downstream petrochemicals, such as for paraxylene production, are based on available catalytic reforming feedstock. Just a importantly, hydroprocessing units (hydrotreating, hydrocracking) needed for clean fuel production (gasoline, diesel, aviation fuel), are heavily dependent on hydrogen production from the catalytic reformer. Catalytic reforming`s significant influence in the refinery hydrogen balance, as well as its status as a significant naphtha conversion route to higher-quality fuels, make this unit a high-priority issue for engineers and planners striving for flexibility.

Gonzalez, R.G.; Felch, D.E.; Edgar, M.D.

1995-11-01T23:59:59.000Z

297

Gasoline price spikes and regional gasoline context regulations : a structural approach  

E-Print Network (OSTI)

Since 1999, gasoline prices in California, Illinois and Wisconsin have spiked occasionally well above gasoline prices in nearby states. In May and June 2000, for example, gasoline prices in Chicago rose twenty eight cents ...

Muehlegger, Erich J.

2004-01-01T23:59:59.000Z

298

The Origins of US Transportation Policy: Was There Ever Support for Gasoline Taxes?  

E-Print Network (OSTI)

From 1864 to 1972, the real price of oil fell by, on average, over one percent per year. This trend dramatically broke when prices for crude increased by over 650 percent from 1972 to 1980. Policy makers adopted several policies designed to keep oil prices in check and reduce consumption. Missing from these policies were taxes on either oil or gasoline, prompting a long economics literature documenting the inefficiencies of these alternative policies. In this paper, I review the policy discussion related to the transportation sector that occurred during the time through the lens of the printed press. In doing so, I pay particular attention to whether gasoline taxes were “on the table, ” as well as how consumers viewed the inefficient set of policies that were ultimately adopted. The discussions at the time suggest that meaningful changes in gasoline taxes were on the table; the public discussion seemed to be much greater than it is today. Some in Congress and many presidential advisors in the Nixon, Ford, and, Carter administrations supported and proposed gasoline taxes. The main roadblocks for taxes were Congress and the American people. Polling evidence at the time suggests that consumers preferred price controls and rationing and vehicle taxes over higher gasoline taxes or letting gasoline prices clear the market. Given the saliency of rationing and vehicle taxes, it seems difficult to argue that these alternative polices were adopted because they hide their true costs. This paper has benefited from conversations with Severin Borenstein, Joe Doyle, Ryan Kellogg, Bob

Christopher R. Knittel

2013-01-01T23:59:59.000Z

299

Refiner Prices of Gasoline, All Grades - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/ Sales Type: Gasoline, All Grades - Sales to End Users (U.S. only) Gasoline, All Grades - Through Retail Outlets Gasoline, All Grades - Other End Users Gasoline, All Grades - Sales for Resale Gasoline, All Grades - DTW (U.S. only) Gasoline, All Grades - Rack (U.S. only) Gasoline, All Grades - Bulk (U.S. only) Regular Gasoline - Sales to End Users (U.S. only) Regular Gasoline - Through Retail Outlets Regular Gasoline - Other End Users Regular Gasoline - Sales for Resale Regular Gasoline - DTW (U.S. only) Regular Gasoline - Rack (U.S. only) Regular Gasoline - Bulk (U.S. only) Midgrade Gasoline - Sales to End Users (U.S. only) Midgrade Gasoline - Through Retail Outlets Midgrade Gasoline - Other End Users Midgrade Gasoline - Sales for Resale Midgrade Gasoline - DTW (U.S. only) Midgrade Gasoline - Rack (U.S. only) Midgrade Gasoline - Bulk (U.S. only) Premium - Sales to End Users (U.S. only) Premium Gasoline - Through Retail Outlets Premium Gasoline - Other End Users Premium Gasoline - Sales for Resale Premium Gasoline - DTW (U.S. only) Premium Gasoline - Rack (U.S. only) Premium Gasoline - Bulk (U.S. only) Period: Monthly Annual

300

Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995  

U.S. Energy Information Administration (EIA)

benzene extracted from the reformulated motor gasoline pool in their conventional motor gasoline. Importers lacking 1990 motor gasoline quality data with which to

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ethanol Production and Gasoline Prices: A Spurious Correlation  

E-Print Network (OSTI)

Ethanol made from corn comprises 10 % of US gasoline, up from 3 % in 2003. This dramatic increase was spurred by recent policy initiatives such as the Renewable Fuel Standard and state-level blend mandates, and supported by direct subsidies such as the Volumetric Ethanol Excise Tax Credit. Some proponents of ethanol have argued that ethanol production greatly lowers gasoline prices, with one industry group claiming it reduced gasoline prices by 89 cents in 2010 and $1.09 in 2011. The estimates have been cited in numerous speeches by Secretary of Agriculture Thomas Vilsack. These estimates are based on a series of papers by Xiaodong Du and Dermot Hayes. We show that these results are driven by implausible economic assumptions and spurious statistical correlations. To support this last point, we use the same statistical models and find that ethanol production “decreases ” natural gas prices, but “increases” unemployment in both the US and Europe. We even show that ethanol production “increases ” the ages of our children.

Christopher R. Knittel; Aaron Smith

2012-01-01T23:59:59.000Z

302

Market behavior under partial price controls: the case of the retail gasoline market  

SciTech Connect

The use of firm-specific controls on the price of gasoline during 1979 and 1980, at both the wholesale and the retail level, dramatically affected the retail market for gasoline. The most visible effect was a diversity of monetary prices across service stations within particular retail market areas. Price could no longer play its usual role in clearing the retail market for gasoline. Queues and other changes in quality of service at stations arose to maintain the balance of market demand and supply. This report examines the behavior of an otherwise competitive market in the presence of such regulation-induced nonprice phenomena. In such a market, consumers consider both monetary prices and costs imposed by queues in deciding where to buy gasoline and how much to buy. Using a price-theoretic model of behavior, this paper predicts how various changes in effective price regulation affect consumers. 14 references, 7 figures, 2 tables.

Camm, F.

1983-03-01T23:59:59.000Z

303

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Production Capacity of Operable Petroleum Refineries Production Capacity of Operable Petroleum Refineries Definitions Key Terms Definition Alkylate The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline. Aromatics Hydrocarbons characterized by unsaturated ring structures of carbon atoms. Commercial petroleum aromatics are benzene, toluene, and xylene (BTX). Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton.

304

Gasoline Prices Vary Among Locations  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The public is probably more knowledgeable about what they pay for gasoline than about anything else they use regularly. Most Americans are bombarded several times a day with the price of gasoline. Many people who phone our office don't only want to know why prices have risen, but why their prices are different than prices in some other area - the gasoline station two blocks away, the average price quoted on the news, the price their uncle is paying in a different region of the country. This chart shows some of the different state averages for a specific month. Besides taxes, these differences are due to factors such as distance from refining sources, and mix of reformulated versus conventional fuels. What this snapshot does not show,is that all of these prices can

305

Standby gasoline rationing plan: narrative  

SciTech Connect

The objectives of the rationing plan are to provide a mechanism capable of maintaining an orderly and equitable market for gasoline in a severe supply shortfall, and capable of rapid implementation; and to comply with requirements of EPCA, which mandates the development of a contingency rationing plan. Eligibility for ration allotments will be based principally on motor vehicle registration records, maintained in a national vehicle registration file. Supplemental allotments will be granted for certain priority activities to ensure the maintenance of essential public services. Supplemental allotments will also be granted to businesses and government organizations with significant off-highway gasoline requirements. Local rationing boards or other offices will be established by states, to provide special allotments to hardship applicants, within DOE guidelines. The background and history of the plan are described. The gasoline rationing plan operations, government operations, program costs, staffing, and funding are also detailed in this report. (MCW)

1979-02-01T23:59:59.000Z

306

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Procedures, Methodology, and Coefficients of Variation Procedures, Methodology, and Coefficients of Variation Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price except in areas having only full-serve. The price data are used to calculate weighted average price estimates at the city, state, regional and national levels using sales and delivery volume data from other EIA surveys and population estimates from the Bureau of Census.

307

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

5 5 Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format Excel logo Spreadsheets are provided in excel 1 to117 - Complete set of Supplemental Tables PDF Energy Consumption by Sector (Census Division) Table 1. New England XLS PDF Table 2. Middle Atlantic XLS PDF Table 3. East North Central XLS PDF Table 4. West North Central XLS PDF Table 5. South Atlantic XLS PDF Table 6. East South Central XLS PDF Table 7. West South Central XLS PDF Table 8. Mountain XLS PDF Table 9. Pacific XLS PDF Table 10. Total United States XLS PDF Energy Prices by Sector (Census Division) Table 11. New England XLS PDF Table 12. Middle Atlantic XLS PDF Table 13. East North Central XLS PDF Table 14. West North Central XLS PDF Table 15. South Atlantic XLS PDF Table 16. East South Central

308

TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II  

NLE Websites -- All DOE Office Websites (Extended Search)

i i ii TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II EXECUTIVE SUMMARY ........................................................................................................................................... 3 INTRODUCTION......................................................................................................................................................... 4 COMPLIANCE SUMMARY ....................................................................................................................................... 6 COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) .................... 6

309

Gasoline prices continue to decrease (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

, 2013 Gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to 3.65 a gallon on Monday. That's down 3 12 cents from a week...

310

Gasoline prices continue to fall (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline prices continue to fall (long version) The U.S. average retail price for regular gasoline decreased for the second week in a row to 3.71 a gallon on Monday. That's down...

311

Gasoline prices continue to rise (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline prices continue to rise (long version) The U.S. average retail price for regular gasoline rose to 3.67 a gallon on Monday. That's up 7 cents from a week ago, based on the...

312

Gasoline prices continue to fall (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline prices continue to fall (long version) The U.S. average retail price for regular gasoline fell to 3.61 a gallon on Monday. That's down 3.7 cents from a week ago, based on...

313

Gasoline prices inch down (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline prices inch down (long version) The U.S. average retail price for regular gasoline fell to 3.68 a gallon on Monday. That's down 1.6 cents from a week ago, based on the...

314

Variable-Rate State Gasoline Taxes  

E-Print Network (OSTI)

gasoline tax, fell correspondingly. As shown in Figure 3, state motorGasoline Taxes Inflation and increased fuel economy have reduced the buying power of the revenues collected from state and federal motor

Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

2000-01-01T23:59:59.000Z

315

Household gasoline demand in the United States  

E-Print Network (OSTI)

Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

316

A Dozen Reasons for Raising Gasoline Taxes  

E-Print Network (OSTI)

Gasoline Taxes Martin Wachs University of California, Berkeley MotorMotor Fuel Taxes Are Lower Now Than In The Past. The federal gasoline taxgasoline and other motor fuels depends on changes in response to many factors in addition to tax

Wachs, Martin

2003-01-01T23:59:59.000Z

317

Washington Refiner Gasoline Prices by Grade and Sales Type  

U.S. Energy Information Administration (EIA)

Refiner Gasoline Prices by Grade and Sales Type (Dollars per Gallon Excluding Taxes) ... History; Gasoline, All Grades : Through Retail Outlets: ...

318

North Carolina Refiner Gasoline Prices by Grade and Sales Type  

U.S. Energy Information Administration (EIA)

Refiner Gasoline Prices by Grade and Sales Type (Dollars per Gallon Excluding Taxes) Area: ... History; Gasoline, All Grades : Through Retail ...

319

Standby Gasoline Rationing Plan. Contingency gasoline rationing regulations  

SciTech Connect

The Economic Regulatory Administration issues final rules with respect to standby gasoline rationing. The plan is designed for and would be used only in the event of a severe gasoline shortage. The plan provides that eligibility for ration allotments will be primarily on the basis of motor vehicle registrations. DOE will mail government ration checks to the parties named in a national vehicle registration file to be maintained by DOE. Ration recipients may cash these checks for ration coupons at various designated coupon issuance points. Retail outlets and other suppliers will be required to redeem the ration coupons received in exchange for gasoline sold. Supplemental gas will be given to high-priority activities. A ration banking system will be established with two separate and distinct of ration accounts: retail outlets and other suppliers will open redemption accounts for the deposit of redeemed ration rights; and individuals or firms may open ration rights accounts, which will operate in much the same manner as monetary checking accounts. A white market will be permitted for the sale of transfer of ration rights. A percentage of the total ration rights to be issued will be reserved for distribution to the states as a State Ration Reserve, to be used by the states primarily for the relief of hardship. A National Ration Reserave will also be established. All sections of the Standby Gasoline Rationing Regulations are analyzed. (MCW)

1979-02-01T23:59:59.000Z

320

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Why Is West Coast Gasoline So Expensive?  

Reports and Publications (EIA)

Testimony on current gasoline prices as well as the unique situations on the West Coast with regard to prices.

Information Center

2001-04-25T23:59:59.000Z

322

Market Power in California's Gasoline Market  

E-Print Network (OSTI)

price (See Figure 2.2a). Jet Fuel Distillate Fuel Oil: Reformulated Gasoline Residual Fuel Oil Petroleum Coke

Borenstein, Severin; Bushnell, James; Lewis, Matthew

2004-01-01T23:59:59.000Z

323

Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.  

DOE Green Energy (OSTI)

About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

Wang, M.; Saricks, C.; Lee, H.

2003-09-11T23:59:59.000Z

324

Table 25  

Gasoline and Diesel Fuel Update (EIA)

89 89 Table 25 Created on: 1/3/2014 3:10:33 PM Table 25. Natural gas home customer-weighted heating degree days, New England Middle Atlantic East North Central West North Central South Atlantic Month/Year/Type of data CT, ME, MA, NH, RI, VT NJ, NY, PA IL, IN, MI, OH, WI IA, KS, MN, MO, ND, NE, SD DE, FL, GA, MD, DC, NC, SC, VA, WV November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0 November to November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0

325

Microsoft Word - Gasoline_2008 Supplement.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 1 April 2008 Short-Term Energy Outlook Supplement: Motor Gasoline Consumption 2008 A Historical Perspective and Short-Term Projections 1 Highlights * Income growth rates have less of an impact on recent trends in gasoline consumption than in the past, but short-run effects are still significant. * High gasoline prices are once again motivating drivers to conserve by driving less and purchasing more fuel-efficient transportation. * The increasing share of lower-Btu-content ethanol has contributed to a growing divergence between volume-based and energy-content-based measures of trends in gasoline consumption. * Consumer sensitivity to gasoline price changes increases during periods when

326

Notices TABLE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Federal Register 7 Federal Register / Vol. 76, No. 160 / Thursday, August 18, 2011 / Notices TABLE 2-NET BURDEN CHANGE-Continued 2011-2012 2012-2013 Change % Change Burden disposition Total Applicants .................................... 23,611,500 24,705,864 +1,094,364 +4.63 Net decrease in burden. The increase in applicants is offset by the results of the Department's simplification changes. This has created an over- all decrease in burden of 8.94% or 2,881,475 hours. Total Applicant Burden ......................... 32,239,328 29,357,853 ¥2,881,475 ¥8.94 Total Annual Responses ....................... 32,239,328 46,447,024 +14,207,696 +44.07 Cost for All Applicants .......................... $159,370.20 $234,804.24 $75,434.04 +47.33 The Department is proud that efforts to simplify the FAFSA submission

327

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Mean Annual Electricity Expenditures for Lighting, by Number of 4. Mean Annual Electricity Expenditures for Lighting, by Number of Household Members by Number of Rooms, 1993 (Dollars) Number of Rooms Number of Household Members All Households One to Three Four Five Six Seven Eight or More RSE Column Factors: 0.5 1.8 1.1 0.9 0.9 1.0 1.2 RSE Row Factors All Households................................... 83 49 63 76 87 104 124 2.34 One..................................................... 55 44 51 54 69 78 87 5.33 Two..................................................... 80 56 63 77 82 96 107 3.38 Three.................................................. 92 60 73 82 95 97 131 4.75 Four.................................................... 106 64 78 93 96 124 134 4.53 Five or More....................................... 112 70 83 98 99 117 150 5.89 Notes: -- To obtain the RSE percentage for any table cell, multiply the

328

TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

... a higher percentage of light products, like gasoline and heating oil, than heavier ... oil reserve in the world and is highly visible when oil prices rise or ...

2006-03-30T23:59:59.000Z

329

Decomposition of the price and income elasticities of the consumer demand for gasoline  

Science Conference Proceedings (OSTI)

The authors specify and estimate a model of the short-run demand for gasoline which allows them to decompose a consumer's gasoline demand elasticities into miles-driven and driving-efficiency components. Their model is estimated using detailed household survey data which allows direct focus on the short run, holding both the household's automobile stock and demographic profile fixed. Among the most interesting results are: (1) The data allow interesting insights to be drawn into the interrelationship between these important variables and household behavior with respect to gasoline consumption, miles driven, and driving efficiency. (2) The gasoline demand behavior of one-car and multi-car households differ significantly from each other. Evaluated at overall sample means, one-car households have higher (in absolute value) price elasticites for gasoline, miles driven and fuel-efficiency demand. Conversely, multi-car households have higher (in absolute value) total expenditure elasticities for each category. (3) For both one-car and multi-car households, roughly 75% of the estimated price elasticity and roughly 80% of the estimated total-expenditure elasticity of gasoline demand stem from the miles-driven component. The estimated fuel-efficiency elasticities, though smaller than their standard errors, indicate that households respond to changes in prices and total-expenditure levels not only by changing the number of miles they drive, but also by changing the efficiency with which they drive them. 23 references, 3 tables.

Archibald, R. (College of William and Mary, Williamsburg, VA); Gillingham, R.

1981-04-01T23:59:59.000Z

330

JV Task 112-Optimal Ethanol Blend-Level Investigation  

SciTech Connect

Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

2008-01-31T23:59:59.000Z

331

1992 CBECS Detailed Tables  

Gasoline and Diesel Fuel Update (EIA)

Detailed Tables Detailed Tables To download all 1992 detailed tables: Download Acrobat Reader for viewing PDF files. Yellow Arrow Buildings Characteristics Tables (PDF format) (70 tables, 230 pages, file size 1.39 MB) Yellow Arrow Energy Consumption and Expenditures Tables (PDF format) (47 tables, 208 pages, file size 1.28 MB) Yellow Arrow Energy End-Use Tables (PDF format) (6 tables, 6 pages, file size 31.7 KB) Detailed tables for other years: Yellow Arrow 1999 CBECS Yellow Arrow 1995 CBECS Background information on detailed tables: Yellow Arrow Description of Detailed Tables and Categories of Data Yellow Arrow Statistical Significance of Data 1992 Commercial Buildings Energy Consumption Survey (CBECS) Detailed Tables Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables:

332

chapter 5. Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

5. Detailed Tables 5. Detailed Tables Chapter 5. Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1994 Residential Transportation Energy Consumption Survey. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle-miles traveled (VMT) or gallons consumed; (2) tables of per household statistics such as VMT per household; and (3) tables of per-vehicle statistics, such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model-year data or family-income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table.

333

Certification and Training Requirements Table of Contents  

E-Print Network (OSTI)

Table of Exhibits..................................................................................................... iii

unknown authors

2008-01-01T23:59:59.000Z

334

Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gasoline Gallon Gasoline Gallon Equivalent (GGE) Definition to someone by E-mail Share Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Facebook Tweet about Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Twitter Bookmark Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Google Bookmark Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Delicious Rank Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Digg Find More places to share Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Gasoline Gallon Equivalent (GGE) Definition

335

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2004 Appendix tables A2 and A3,...

336

Supplement Tables - Supplemental Data  

Annual Energy Outlook 2012 (EIA)

are in spreadsheet format. A total of one hundred and nine tables is presented. The data for tables 10 and 20 match those published in AEO2003 Appendix tables A2 and A3,...

337

Meson Summary Table See  

NLE Websites -- All DOE Office Websites (Extended Search)

Meson Summary Table See also the table of suggested qq quark-model assignments in the Quark Model section. * Indicates particles that appear in the preceding Meson Summary Table....

338

Supplement Tables - Supplemental Data  

Annual Energy Outlook 2012 (EIA)

Vehicle Fuel Economy Table 57. New Light-Duty Vehicle Prices Table 58. New Light-Duty Vehicle Range Table 59. Electric Power Projections for EMM Region 01- East Central Area...

339

Essays on gasoline price spikes, environmental regulation of gasoline content, and incentives for refinery operation  

E-Print Network (OSTI)

Since 1999, regional retail and wholesale gasoline markets in the United States have experienced significant price volatility, both intertemporally and across geographic markets. In particular, gasoline prices in California, ...

Muehlegger, Erich J

2005-01-01T23:59:59.000Z

340

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

1) 1) June 2013 State Energy Price and Expenditure Estimates 1970 Through 2011 2011 Price and Expenditure Summary Tables Table E1. Primary Energy, Electricity, and Total Energy Price Estimates, 2011 (Dollars per Million Btu) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 3.09 5.66 26.37 22.77 25.54 27.12 13.18 19.42 25.90 0.61 3.01 8.75 2.56 27.08 19.85 Alaska 3.64 6.70 29.33 23.12 29.76 31.60 20.07 34.62 26.61 - 14.42 20.85 6.36 47.13 25.17 Arizona 1.99 7.07 27.73 22.84 31.95 26.97 17.00 17.23 26.71 0.75 6.31 10.79 2.16 28.46 25.23 Arkansas 1.93 6.94 26.37 22.45 26.66 27.35 17.35 33.22

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

All Consumption Tables  

U.S. Energy Information Administration (EIA)

2010 Consumption Summary Tables. Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2010 (Trillion Btu) ... Ranked by State, 2010

342

1995 Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Households, Buildings & Industry > Commercial Buildings Energy Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey > Detailed Tables 1995 Detailed Tables Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Summary Table—All Principal Buildings Activities (HTML Format) Background information on detailed tables: Description of Detailed Tables and Categories of Data Statistical Significance of Data

343

DOE Energy Information Administration Motor Gasoline Watch  

U.S. Energy Information Administration (EIA)

Motor Gasoline Watch November 18, 1998. SUPPLY. Higher production levels and a decline in demand contributed to an increase in stocks last week.

344

2012 Brief: Retail gasoline prices vary significantly ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. ... Retail gasoline prices are published by region, for 9 selected states, 10 selected cities, ...

345

Houston Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

Notes: Conventional area is any area that does not require the sale of reformulated gasoline. ... Publication of Low Sulfur On-Highway Diesel (LSD) ...

346

EIA's Testimony on Current Gasoline Situation  

Reports and Publications (EIA)

On April 25, Dr. John Cook, Petroleum Division Director in the Office of Oil and Gas, testified on West Coast gasoline prices before the Senate Subcommittee on Consumer Affairs , Foreign Commerce, and Tourism. This Subcommittee is under the jurisdiction of the Senate Committee on Commerce, Science and Transportation. Dr. Cook provided the Subcommittee with information on the current gasoline price situation as well as identified unique characteristics of the West Coast gasoline market that help make its gasoline prices generally higher than other regions of the United States.

Information Center

2001-04-25T23:59:59.000Z

347

Regular Gasoline Rack Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, ... History; U.S.-----1994-2013: East Coast (PADD 1) ... Alabama-----1994-2013: Arkansas-----

348

U.S. Motor Gasoline Prices  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, Sales Type (Dollars per Gallon Excluding Taxes) Area: ... History; Sales to End Users, Average-----1983-2013:

349

Motor Gasoline Sales Through Retail Outlets Prices  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, ... History; U.S.-----1983-2013: East Coast (PADD 1) ... Alabama-----1983-2013: Arkansas-----

350

Market Power in California's Gasoline Market  

E-Print Network (OSTI)

the difference in production costs. A number of observersgasoline. The marginal production cost of gasoline includesof imports with similar production costs as in-state, but an

Borenstein, Severin; Bushnell, James; Lewis, Matthew

2004-01-01T23:59:59.000Z

351

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

352

California Gasoline Price Study, 2003 Preliminary Findings  

Reports and Publications (EIA)

This is the preliminary report to Congressman Ose describing the factors driving California's spring 2003 gasoline price spike and the subsequent price increases in June and August.

Information Center

2003-05-01T23:59:59.000Z

353

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Get the RSS feed. Release Schedule. Details... Procedures, Methodology & CV's Gasoline Diesel fuel. ... How do I calculate/find diesel fuel surcharges? ...

354

Why are gasoline prices falling so rapidly?  

U.S. Energy Information Administration (EIA)

... this decline comes on the heels of a 33-cent drop in the national average ... the introduction of Phase 2 ... 11 combined to relieve pressure on the gasoline ...

355

The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization  

SciTech Connect

Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.

Szybist, James P [ORNL; West, Brian H [ORNL

2013-01-01T23:59:59.000Z

356

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Pump Components History Gasoline Pump Components History WHAT WE PAY FOR IN A GALLON OF REGULAR GASOLINE Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) Jan-00 1.289 7.8 13.0 32.1 47.1 Feb-00 1.377 17.9 7.5 30.1 44.6 Mar-00 1.517 15.4 12.8 27.3 44.6 Apr-00 1.465 10.1 20.2 28.3 41.4 May-00 1.485 20.2 9.2 27.9 42.7 Jun-00 1.633 22.2 8.8 25.8 43.1 Jul-00 1.551 13.2 15.8 27.2 43.8 Aug-00 1.465 15.8 7.5 28.8 47.8 Sep-00 1.550 15.4 9.0 27.2 48.3 Oct-00 1.532 13.7 10.1 27.5 48.6 Nov-00 1.517 10.4 11.8 27.8 50.0 Dec-00 1.443 8.0 17.9 29.2 44.8 Jan-01 1.447 17.8 10.4 29.2 42.7 Feb-01 1.450 17.3 11.0 29.1 42.6 Mar-01 1.409 18.8 9.7 30.0 41.5

357

Reformulated gasoline study, executive summary  

Science Conference Proceedings (OSTI)

The feasibility of adopting alternative standards for reformulated gasoline (RFG) in New York State has been studied for the New York State Energy Research and Development Authority (the Energy Authority). In addition to Federal RFG (EPA 1) and EPA II, California Air Resources Board RFG (CARB 2) and a modified Federal low sulfur RFG (LS-EPA II) were investigated. The effects of these alternative RFGs on petroleum refinery gasoline production costs, gasoline distribution costs, New York State air quality and the New York State economy were considered. New York has already adopted the California low emission vehicle (LEV) and other emission control programs that will affect vehicles and maintenance. From 1998 to 2012 without the introduction of any type of RFG, these programs are estimated to reduce New York State mobile source summer emissions by 341 tons per day (or 40%) of non-methane hydrocarbons (NMHC) and by 292 tons per day (or 28%) of nitrogen oxides (NO{sub x}), and to reduce winter emissions of carbon monoxide (CO) by 3,072 tons per day (or 39%). By 2012, the planned imposition of Federal RFG will produce further reductions (percent of 1998 levels) of 10 %, 4 % and 11%, respectively, for NMHC, NO{sub x} and CO. If New York State goes beyond EPA II and adopts CARB 2 specifications, further reductions achieved in 2012 are estimated to be very small, equaling 2% or less of 1998 levels of NMHC and NO{sub x} emissions, while CO emissions would actually increase by about 2%. When compared to EPA II over the same time frame, LS-EPA II would produce negligible (less than 1%) reductions in each of the above emissions categories.

Cunningham, R.E.; Michalski, G.W. [Turner, Mason & Co., Dallas, TX (United States); Baron, R.E.; Lyons, J.M.

1994-10-01T23:59:59.000Z

358

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, James Edward

2003-01-01T23:59:59.000Z

359

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

Don Karner; Francfort, James Edward

2003-01-01T23:59:59.000Z

360

Insights into Spring 2008 Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices EIA released a new analytical report entitled Motor Gasoline Market Spring 2007 and Implications for Spring 2008. It includes a discussion of scheduled refinery outages in 2008 prepared in accordance with Section 804 of the Energy Independence and Security Act (EISA) of 2007, which requires EIA to review and analyze information on such outages from commercial reporting services and assess to their expected effects on the price and supply of gasoline. Changes in wholesale gasoline prices relative to crude oil are determined by the tightness between gasoline supply (production and net imports) and demand. Expectations for U.S. gasoline supply relative to demand are for a more favorable situation in January through May 2008 than was the case in the comparable 2007 period. Demand growth, which varies seasonally and depends on economic factors, is expected to slow. New gasoline supply is affected by refinery outages, refinery run decisions, and import variations. Planned refinery outages for January through May 2008 are lower than for the same period in 2007. Given lower planned outages and assuming the return of unplanned outages to more typical levels, including the return of BP's Texas City refinery to full operation, gasoline production could increase between 100 and 200 thousand barrels per day over last year's level, depending on the market incentives. In addition, ethanol use, which adds to gasoline supply, is expected to continue to increase. Considering the uncertainty in all the gasoline supply components, there is little likelihood of events combining in 2008 to lead to the kind of tight supply downstream from crude oil markets seen in spring 2007. In summary, refinery outage and import impacts should contribute less to gasoline price increases in 2008 than in 2007. If all of the low-range estimates for supply occurred, total gasoline supply would increase about 200 thousand barrels per day (Figure S1). However, record crude oil prices are nonetheless pushing current and expected gasoline prices to record levels.

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Just enough tabling  

Science Conference Proceedings (OSTI)

We introduce just enough tabling (JET), a mechanism to suspend and resume the tabled execution of logic programs at an arbitrary point. In particular, JET allows pruning of tabled logic programs to be performed without resorting to any recomputation. ... Keywords: logic programming, pruning, suspension/resumption in the WAM, tabling

Konstantinos Sagonas; Peter J. Stuckey

2004-08-01T23:59:59.000Z

362

Alternative Fuels Data Center: Biodiesel Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blends on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blends on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blends on Google Bookmark Alternative Fuels Data Center: Biodiesel Blends on Delicious Rank Alternative Fuels Data Center: Biodiesel Blends on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blends on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Blends Biodiesel can be blended and used in many different concentrations, including B100 (pure biodiesel), B20 (20% biodiesel, 80% petroleum diesel),

363

Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline G. R. Hadder Center for Transportation Analysis Oak Ridge National Laboratory Oak Ridge, Tennessee August 2000 Prepared for Office of Fuels Development Office of Transportation Technologies U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by UT-BATTELLE, LLC for the U. S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 iii TABLE OF CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix EXECUTIVE SUMMARY

364

OFF-HIGHWAY GASOLINE CONSUMPTION ESTIMATION MODELS USED IN THE FEDERAL HIGHWAY ADMINISTRATION ATTRIBUTION AND PROCESS  

NLE Websites -- All DOE Office Websites (Extended Search)

222 222 Center for Transportation Analysis Energy and Transportation Science Division OFF-HIGHWAY GASOLINE CONSUMPTION ESTIMATION MODELS USED IN THE FEDERAL HIGHWAY ADMINISTRATION ATTRIBUTION AND PROCESS 2008 Updates Ho-Ling Hwang, Ph.D. Stacy Davis Date Published: December 2009 Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6283 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 iii TABLE OF CONTENTS LIST OF FIGURES AND TABLES....................................................................................v LIST OF ACRONYMS .................................................................................................... vii ABSTRACT ....................................................................................................................... ix

365

How much gasoline does the United States consume? - FAQ ...  

U.S. Energy Information Administration (EIA)

How much gasoline does the United States consume? In 2012, ... (or 3.18 billion barrels) of gasoline where consumed 2 in the United States, ...

366

Revisiting the Income Effect: Gasoline Prices and Grocery Purchases  

E-Print Network (OSTI)

Formulations Gasoline and Crude Oil Prices, 2000-2006 FigureI: Weekly Gasoline and Crude Oil Prices for2001- 2006 Crude Oil CA Regular Reformulated Figure II:

Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

2008-01-01T23:59:59.000Z

367

At end of summer driving season, gasoline prices are lower ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... the U.S. national average retail price for regular gasoline has fallen 13 cents per gallon below the apparent summer peak of ...

368

Vehicle Technologies Office: Fact #540: October 13, 2008 Gasoline...  

NLE Websites -- All DOE Office Websites (Extended Search)

40: October 13, 2008 Gasoline Prices Adjusted for Inflation to someone by E-mail Share Vehicle Technologies Office: Fact 540: October 13, 2008 Gasoline Prices Adjusted for...

369

Revisiting the Income Effect: Gasoline Prices and Grocery Purchases  

E-Print Network (OSTI)

or Rent Gasoline and Motor Oil Income after taxes Number ofor Rent Gasoline and Motor Oil Income after taxes Number of

Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

2008-01-01T23:59:59.000Z

370

Maryland DTW Prices for Motor Gasoline - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, Sales Type (Dollars per Gallon Excluding Taxes) ... History; Gasoline, Average: 2.259: 2.688: 1.820: 2.261 - ...

371

Michigan Rack Prices for Motor Gasoline - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, Sales Type (Dollars per Gallon Excluding Taxes) ... History; Gasoline, Average: 2.191: 2.555: 1.758: 2.140 - ...

372

Massachusetts Refiner Gasoline Prices by Grade and Sales Type  

U.S. Energy Information Administration (EIA)

Refiner Gasoline Prices by Grade and Sales Type (Dollars per Gallon Excluding Taxes) Area: ... History; Gasoline, All Grades : Through Retail Outlets: ...

373

Why has diesel fuel been more expensive than gasoline? - FAQ ...  

U.S. Energy Information Administration (EIA)

Why has diesel fuel been more expensive than gasoline? On-highway diesel fuel prices have been higher than regular gasoline prices almost continuously ...

374

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

State State Energy Data 2011: Consumption 11 Table C8. Transportation Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Retail Electricity Sales Net Energy Electrical System Energy Losses e Total Aviation Gasoline Distillate Fuel Oil Jet Fuel b LPG c Lubricants Motor Gasoline d Residual Fuel Oil Total Alabama ............. 0.0 23.5 0.4 124.4 13.4 0.3 2.3 316.3 6.7 463.7 0.0 487.2 0.0 487.2 Alaska ................. 0.0 3.5 0.8 44.4 118.2 (s) 0.4 32.9 0.4 197.2 0.0 200.7 0.0 200.7 Arizona ............... 0.0 15.6 1.0 111.3 21.5 0.8 1.6 318.2 0.0 454.5 0.0 470.1 0.0 470.1 Arkansas ............. 0.0 11.5 0.4 99.7 5.9 0.4 2.0 171.3 0.0 279.8 (s) 291.2 (s) 291.2 California ............ 0.0 25.7 1.9 440.9 549.7 3.8 13.3 1,770.1 186.9 2,966.5 2.8 2,995.1 5.5 3,000.5 Colorado ............. 0.0 14.7 0.6 83.2 58.3 0.3

375

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. MS Excel Viewer Spreadsheets are provided in excel Errata - August 25, 2004 1 to117 - Complete set of of Supplemental Tables PDF Table 1. Energy Consumption by Source and Sector (New England) XLS PDF Table 2. Energy Consumption by Source and Sector (Middle Atlantic) XLS PDF Table 3. Energy Consumption by Source and Sector (East North Central) XLS PDF Table 4. Energy Consumption by Source and Sector (West North Central) XLS PDF Table 5. Energy Consumption by Source and Sector (South Atlantic) XLS PDF Table 6. Energy Consumption by Source and Sector (East South Central) XLS PDF Table 7. Energy Consumption by Source and Sector (West South Central) XLS PDF Table 8. Energy Consumption by Source and Sector (Mountain)

376

1999 CBECS Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables 1999 CBECS Detailed Tables Building Characteristics | Consumption & Expenditures Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. A table of Relative Standard Errors (RSEs) is included as a worksheet tab in each Excel tables. Complete sets of RSE tables are also available in .pdf format. (What is an RSE?) Preliminary End-Use Consumption Estimates for 1999 | Description of 1999 Detailed Tables and Categories of Data

377

Gasoline Price Differences Caused by:  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: While my agency cannot be expert in every local gasoline market in the United States, we are familiar with a number of factors that can account for significant differences in prices between markets: Proximity of supply - distance from the refineries supplying the local market. Additionally, the proximity of those refineries to crude oil supplies can be a factor, as well as shipping logistics, including pipeline or waterborne, from refinery to market. Cost of supply - including crude oil, refinery operating, and transportation costs. Supply/demand balance - some regions are typically in excess or short supply, while others may vary seasonally, or when supply interruptions (such as refinery shutdowns) occur. Competitive environment - including the number of suppliers, and the

378

BlendDB : blending table layouts to support efficient browsing of relational databases  

E-Print Network (OSTI)

The physical implementation of most relational databases follows their logical description, where each relation is stored in its own file or collection of files on disk. Such an implementation is good for queries that ...

Marcus, Adam, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

379

An Improved Technique for Increasing the Accuracy of Photometrically Determined Redshifts for ___Blended___ Galaxies  

SciTech Connect

The redshift of a galaxy can be determined by one of two methods; photometric or spectroscopic. Photometric is a term for any redshift determination made using the magnitudes of light in different filters. Spectroscopic redshifts are determined by measuring the absorption spectra of the object then determining the difference in wavelength between the 'standard' absorption lines and the measured ones, making it the most accurate of the two methods. The data for this research was collected from SDSS DR8 and then separated into blended and non-blended galaxy sets; the definition of 'blended' is discussed in the Introduction section. The current SDSS photometric redshift determination method does not discriminate between blended and non-blended data when it determines the photometric redshift of a given galaxy. The focus of this research was to utilize machine learning techniques to determine if a considerably more accurate photometric redshift determination method could be found, for the case of the blended and non-blended data being treated separately. The results show a reduction of 0.00496 in the RMS error of photometric redshift determinations for blended galaxies and a more significant reduction of 0.00827 for non-blended galaxies, illustrated in Table 2.

Parker, Ashley Marie; /Marietta Coll. /SLAC

2012-08-24T23:59:59.000Z

380

Chicago Gasoline - WTI Spot Spread - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Chicago Gasoline - WTI Spot Spread. Previous slide: Next slide: Back to first slide: View graphic version

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Michigan Finished Motor Gasoline Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Michigan Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

382

Colorado Finished Motor Gasoline Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

383

Cost Development Guidelines Table of Contents  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii Table of Exhibits...................................................................................................... v Approval.................................................................................................................. vi

unknown authors

2011-01-01T23:59:59.000Z

384

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

December 22, 2000 (Next Release: December, 2001) Related Links Annual Energy Outlook 2001 Assumptions to the AEO2001 NEMS Conference Contacts Forecast Homepage EIA Homepage AEO Supplement Reference Case Forecast (1999-2020) (HTML) Table 1. Energy Consumption by Source and Sector (New England) Table 2. Energy Consumption by Source and Sector (Middle Atlantic) Table 3. Energy Consumption by Source and Sector (East North Central) Table 4. Energy Consumption by Source and Sector (West North Central) Table 5. Energy Consumption by Source and Sector (South Atlantic) Table 6. Energy Consumption by Source and Sector (East South Central) Table 7. Energy Consumption by Source and Sector (West South Central) Table 8. Energy Consumption by Source and Sector (Mountain)

385

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary......

386

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

7) 7) August 2009 State Energy Price and Expenditure Estimates 1970 Through 2007 2007 Price and Expenditure Summary Tables Table S1a. Energy Price Estimates by Source, 2007 (Nominal Dollars per Million Btu) State Primary Energy Electric Power Sector e,f Retail Electricity Total Energy e,g Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total e,f,g Distillate Fuel Oil Jet Fuel LPG b Motor Gasoline Residual Fuel Oil Other c Total Wood and Waste d Alabama 2.17 9.06 19.43 16.20 21.84 21.26 8.46 14.19 19.62 0.42 2.71 7.47 2.29 22.46 16.01 Alaska 2.34 5.76 19.43 16.35 28.63 22.14 11.51 23.69 17.97 - 10.51 14.88 4.94 38.96 17.87 Arizona 1.61 8.44 19.84 16.24 27.16 21.95 10.04 11.27 20.50 0.57 10.86 9.61 2.78 25.02 20.72 Arkansas 1.65 9.33 19.63 15.73 21.10 21.54 8.65 18.76 20.42 0.57 2.66 9.45 1.98 20.57

387

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Price and Expenditure Estimates 1970 Through 2004 2004 Price and Expenditure Summary Tables Table S1a. Energy Price Estimates by Source, 2004 (Nominal Dollars per Million Btu) State Primary Energy Electric Power Sector d,e Retail Electricity Total Energy d,f Coal Natural Gas Petroleum Nuclear Fuel Biomass c Total d,e,f Distillate Fuel Jet Fuel LPG a Motor Gasoline Residual Fuel Other b Total Alabama 1.57 7.72 11.91 8.82 15.78 13.68 4.78 8.25 12.28 0.43 1.81 5.32 1.68 18.01 11.29 Alaska 1.91 3.59 12.43 9.61 19.64 15.55 3.63 12.09 11.05 - 6.68 9.07 3.18 32.29 11.09 Arizona 1.31 6.84 13.59 9.53 18.40 15.33 5.29 7.23 13.92 0.45 5.90 6.68 2.18 21.83 15.24 Arkansas 1.25 8.09 12.01 8.30 14.80 13.97 4.67 11.02 12.77 0.49 1.79 6.59 1.43 16.76 11.89 California 1.82 7.63 13.58

388

FY 2005 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration completion................................................... 6 Uranium enrichment D&D fund.................................................................... 6 Non-Defense environmental services.......................................................... 6 Science.........................................................................................................

389

Ethanol-blended Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Blended Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle performance, the environment, and the economy. As a renewable alternative energy source made from grain and other biomass resources, ethanol study serves as an excellent learning opportunity for students to use in issue clarification and problem-solving activities. Ethanol illustrates that science and technology can provide us with new

390

Summer 2002 Motor Gasoline Outlook2.doc  

Gasoline and Diesel Fuel Update (EIA)

Summer 2002 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2002), rising average crude oil costs are expected to yield above -average seasonal gasoline price increases at the pump. However, year-over-year comparisons for pump prices are still likely to be lower this summer. Inventories are at higher levels than last year in April, so some cushion against early-season price spikes is in place and price levels are expected to range below last year's averages, assuming no unanticipated disruptions. Still, OPEC production restraint and tightening world oil markets now probably mark the end of the brief respite (since last fall) from two years of relatively high gasoline prices. * Retail gasoline prices (regular grade) are expected to average $1.46 per gallon, 5

391

Why are gasoline prices falling so rapidly?  

Gasoline and Diesel Fuel Update (EIA)

Why are gasoline prices falling so rapidly? Why are gasoline prices falling so rapidly? As of October 29, 2001, the national average retail price of regular gasoline was $1.235 per gallon, its lowest level since November 8, 1999 (Figure 1). The average price has fallen 29 cents in 6 weeks since September 17, with further declines perhaps to come. The sharpest decline has been in the Midwest (Petroleum Administration for Defense District 2), where the average has dropped 57 cents in 8 weeks since Labor Day (September 3). Additionally, this decline comes on the heels of a 33-cent drop in the national average in 10 weeks from Memorial Day through August 6, interrupted only by a brief 17-cent rise in August. In total, the national average retail gasoline price has fallen nearly 48 cents from its peak on May 14. This is already the widest one-year range in retail prices

392

Eliminating MTBE in Gasoline in 2006  

Gasoline and Diesel Fuel Update (EIA)

02/22/2006 02/22/2006 Eliminating MTBE in Gasoline in 2006 Summary In 2005, a number of petroleum companies announced their intent to remove methyl tertiary-butyl ether (MTBE) from their gasoline in 2006. Companies' decisions to eliminate MTBE have been driven by State bans due to water contamination concerns, continuing liability exposure from adding MTBE to gasoline, and perceived potential for increased liability exposure due to the elimination of the oxygen content requirement for reformulated gasoline (RFG) included in the Energy Policy Act of 2005. EIA's informal discussions with a number of suppliers indicate that most of the industry is trying to move away from MTBE before the 2006 summer driving season. Currently, the largest use of MTBE is in RFG consumed on the East Coast outside of

393

2003 California Gasoline Price Study (preliminary version)  

U.S. Energy Information Administration (EIA)

SR/O&G/2003-01 2003 California Gasoline Price Study: Preliminary Findings May 2003 Office of Oil and Gas Energy Information Administration U.S. Department of Energy

394

Minnesota Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

Download Series History: Definitions, Sources & Notes: Show Data By: Product: Area: Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History; Gasoline - All Grades: 3 ...

395

Gasoline price shows small increase (long version)  

Annual Energy Outlook 2012 (EIA)

long version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices rose 410 of a cent to 3.30 a gallon on Monday, based on the weekly...

396

Gasoline prices continue to fall (short version)  

U.S. Energy Information Administration (EIA) Indexed Site

price for regular gasoline fell to 3.52 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration....

397

Gasoline prices continue to fall (short version)  

U.S. Energy Information Administration (EIA) Indexed Site

price for regular gasoline fell to 3.54 a gallon on Monday. That's down 6.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration....

398

Gasoline price up this week (short version)  

U.S. Energy Information Administration (EIA) Indexed Site

price for regular gasoline rose to 3.36 a gallon on Monday. That's up 4.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration....

399

Gasoline prices up this week (short version)  

U.S. Energy Information Administration (EIA) Indexed Site

for regular gasoline rose to 3.75 a gallon on Monday. That's up almost 14 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration....

400

Gasoline price shows small increase (Short version)  

U.S. Energy Information Administration (EIA) Indexed Site

price for regular gasoline rose to 3.32 a gallon on Monday. That's up 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration....

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Washington Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

3.930: 3.875: 3.809: 2003-2013-= No Data Reported; ... EIA did not collect weekly retail motor gasoline data between December 10, 1990 and January 14, 1991.

402

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 37. Refrigeration Equipment, Number of Buildings and Floorspace, 1995 Table 38. Water-Heating Equipment, Number of Buildings and Floorspace, 1995 Table 39. Lighting...

403

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 25. Cooling Energy Sources, Number of Buildings and Floorspace, 1995 Table 26. Water-Heating Energy Sources, Number of Buildings, 1995 Table 27. Water-Heating Energy...

404

Chemistry Impacts in Gasoline HCCI  

SciTech Connect

The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its shortcomings, and its relevance to HCCI. Section 3 discusses the effects of fuel volatility on fuel and air mixing and the consequences it has on HCCI. The effects of alcohol fuels on HCCI performance, and specifically the effects that they have on the operable speed/load range, are reviewed in Section 4. Finally, conclusions are drawn in Section 5.

Szybist, James P [ORNL; Bunting, Bruce G [ORNL

2006-09-01T23:59:59.000Z

405

Conversion of waste organic material to gasoline  

DOE Green Energy (OSTI)

The present status of a development project to convert organic waste material to gasoline has been described. The method is based on the Fischer-Tropsch synthesis of straight-chain hydrocarbons from the pyrolysis gas with the subsequent reforming of these hydrocarbons to gasoline. The concept appears technically feasible. Implementation on a large scale is dependent on refinements in process performance and demonstrated operational reliability. If these objectives are achieved, the process economics could be attractive.

Kuester, J.L.

1976-01-01T23:59:59.000Z

406

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Supplement Tables to the AEO2001 The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2001 (AEO2001) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2001, but contain regional and other more detailed projections underlying the AEO2001 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables is presented. The data for tables 10 and 20 match those published in AEO2001 Appendix tables A2 and A3, respectively. Forecasts for 1999 and 2000 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

407

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

The AEO Supplementary tables were generated for the reference case of the The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2002 (AEO2002) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2002, but contain regional and other more detailed projections underlying the AEO2002 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seven tables is presented. The data for tables 10 and 20 match those published in AEO2002 Appendix tables A2 and A3, respectively. Forecasts for 2000-2002 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current

408

Supplemental Tables to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Gases Bi-fuel Total Natural Gas Technology Electric Technology Electric Vehicle Plug-in Gasoline Hybrid Electric-Diesel Hybrid Electric-Gasoline Hybrid Total...

409

Table of Contents PJM Manual [18]: PJM Capacity Market  

E-Print Network (OSTI)

Table of Contents Table of Contents..................................................................................................... ii

unknown authors

2008-01-01T23:59:59.000Z

410

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. The data for tables 10 and 20 match those published in AEO200 Appendix tables A2 and A3, respectively. Forecasts for 1998, and 2000 may differ slightly from values published in the Short Term Energy Outlook, Fourth Quarter 1999 or Short Term Energy Outlook, First Quarter 2000, which are the official EIA short-term forecasts and are based on more current information than the AEO.

411

Low Gasoline Stocks Indicate Increased Odds of Spring Volatility  

Gasoline and Diesel Fuel Update (EIA)

We cannot just focus on distillate. Gasoline will likely be our next We cannot just focus on distillate. Gasoline will likely be our next major concern. Gasoline stock levels have fallen well below the typical band for this time of year, primarily for the same reason distillate stocks fell to low levels -- namely relatively low production due to low margins. At the end of January, total gasoline inventories were almost 13 million barrels (6%) below the low end of the normal band. While gasoline stocks are generally not as important a supply source to the gasoline market this time of year as are distillate stocks to the distillate market, gasoline stocks still are needed. Gasoline stocks are usually used to help meet gasoline demand during February and March as refiners go through maintenance and turnarounds, but we do not have the

412

Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 4, 9: August 4, 2003 Gasoline Stations to someone by E-mail Share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Facebook Tweet about Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Twitter Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Google Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Delicious Rank Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Digg Find More places to share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on AddThis.com... Fact #279: August 4, 2003 Gasoline Stations The number of retail outlets that sell gasoline to the public has declined by 17.7% from 1993 to 2002 - from 207,416 in 1993, to 170,678 in 2002.

413

Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

414

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

415

U.S. Motor Gasoline Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Motor Gasoline Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Product: Motor Gasoline Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Sales to End Users, Total 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 Through Retail Outlets 26,507.1 22,632.7 22,641.3 22,038.2 22,474.5 21,660.0 1983-2013 Sales for Resale, Total NA NA NA NA NA NA 1983-2013 DTW 24,954.1 29,704.3 30,138.3 29,222.8 30,011.9 28,880.3 1994-2013 Rack 236,373.7 242,166.6 243,892.5 243,789.7 248,761.4 237,431.5 1994-2013

416

The potential for low petroleum gasoline  

DOE Green Energy (OSTI)

The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

Hadder, G.R.; Webb, G.M.; Clauson, M.

1996-06-01T23:59:59.000Z

417

Motor gasoline from shale oil. [Review of selected research on upgrading shale gasoline  

DOE Green Energy (OSTI)

Shale oil produced from oil shale of the Rocky Mountain region by many of the usual retorting processes consists mainly of high boiling compounds of nitrogen, sulfur, and oxygen; less than half of the oil consists of hydrocarbons. Selected research on the upgrading of shale oil is reviewed. Thermal cracking of the oil followed by acid and caustic treating of the gasoline fraction has produced stable gasolines with low to moderate octane numbers. Hydrogenating the raw crude oil has produced higher yields of stable gasolines, also with low to moderate octane numbers. The yields and octane numbers of the gasolines are dependent on the hydrogenation temperatures used. Low-octane hydrogenated gasoline has been catalytically reformed over platinum-containing catalyst to produce high-octane motor fuel.

Cottingham, P.L.

1976-01-01T23:59:59.000Z

418

All Price Tables.vp  

Annual Energy Outlook 2012 (EIA)

Sector Energy Price Estimates, 2011 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy Coal Natural Gas Petroleum Total Aviation Gasoline a Distillate...

419

FY 2005 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

420

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables to the Annual Energy Outlook 2005 Supplemental Tables to the Annual Energy Outlook 2005 EIA Glossary Supplemental Tables to the Annual Energy Outlook 2005 Release date: February 2005 Next release date: February 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2005 (AEO2005) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2025. Most of the tables were not published in the AEO2005, but contain regional and other more detailed projections underlying the AEO2005 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2005 Appendix tables A2 and A3, respectively. Forecasts for 2003-2005 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table of Contents  

Science Conference Proceedings (OSTI)

Table of Contents. A, B. 1, USGCB Settings. 2, This spreadsheet captures the USGCB defined configuration settings. 3, Tab Name, Tab Description. ...

2013-11-19T23:59:59.000Z

422

FY 2007 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy FY 2007 Congressional Budget Request February 2006 Office of Chief Financial Officer state tables preliminary Department of Energy FY 2007 Congressional Budget...

423

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

424

Tropexx – Blending System - Home - Energy Innovation Portal  

• Process gas-blending system • Blending of volatile liquids or gases PATENTS AND AWARDS The Y-12 National Security Complex has

425

Tropexx – Blending System - Energy Innovation Portal  

The Tropexx Blending System is a high-resolution blending system that works with gases, vapors and volatile (readily vaporizable) liquids in addition ...

426

Low-Level Ethanol Fuel Blends  

DOE Green Energy (OSTI)

This fact sheet addresses: (a) why Clean Cities promotes ethanol blends; (b) how these blends affect emissions; (c) fuel performance and availability; and (d) cost, incentives, and regulations.

Not Available

2005-04-01T23:59:59.000Z

427

South Texas Blending | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon South Texas Blending Jump to: navigation, search Name South Texas Blending Place Laredo, Texas Zip...

428

Long Term Processing Using Integrated Hydropyrolysis plus Hydroconversion (IH2) for the Production of Gasoline and Diesel from Biomass  

DOE Green Energy (OSTI)

Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of a new, economical, technology named integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The life cycle analysis (LCA) shows that the use of the IH2 process to convert wood to gasoline and diesel results in a greater than 90% reduction in greenhouse gas emission compared to that found with fossil derived fuels. The technoeconomic analysis showed the conversion of wood using the IH2 process can produce gasoline and diesel at less than $2.00/gallon. In this project, the previously reported semi-continuous small scale IH2 test results were confirmed in a continuous 50 kg/day pilot plant. The continuous IH2 pilot plant used in this project was operated round the clock for over 750 hours and showed good pilot plant operability while consistently producing 26-28 wt % yields of high quality gasoline and diesel product. The IH2 catalyst showed good stability, although more work on catalyst stability is recommended. Additional work is needed to commercialize the IH2 technology including running large particle size biomass, modeling the hydropyrolysis step, studying the effects of process variables and building and operating a 1-50 ton/day demonstration scale plant. The IH2 is a true game changing technology by utilizing U.S. domestic renewable biomass resources to create transportation fuels, sufficient in quantity and quality to substantially reduce our reliance on foreign crude oil. Thus, the IH2 technology offers a path to genuine energy independence for the U. S., along with the creation of a significant number of new U.S. jobs to plant, grow, harvest, and process biomass crops into fungible fuels.

Marker, Terry [Gas Technology Institute; Roberts, Michael [Gas Technology Institute; Linck, Martin [Gas Technology Institute; Felix, Larry [Gas Technology Institute; Ortiz-Toral, Pedro [Gas Technology Institute; Wangerow, Jim [Gas Technology Institute; McLeod, Celeste [CRI Catalyst; Del Paggio, Alan [CRI Catalyst; Gephart, John [Johnson Timber; Starr, Jack [Cargill; Hahn, John [Cargill

2013-06-09T23:59:59.000Z

429

Cost of Adding E85 Fuel Capability to Existing Gasoline Stations: NREL Survey and Literature Search (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: NREL Survey and Literature Search The cost of purchasing and installing E85 fueling equip- ment varies widely, yet station owners need to have an idea of what to expect when budgeting or reviewing bids for this upgrade. The purpose of this document is to provide a framework for station owners to assess what a reason- able cost would be. This framework was developed by the National Renewable Energy Laboratory (NREL) by surveying actual costs for stations, conducting a literature search, not- ing the major cost-affecting variables, addressing anomalies in the survey, and projecting changes in future costs. The findings of NREL's survey and literature search are shown in the table below. This table divides the study's

430

Certification of alternative aviation fuels and blend components  

SciTech Connect

Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

2013-01-15T23:59:59.000Z

431

Summer 2003 Motor Gasoline Outlook.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook April 2003 Summer 2003 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2003), high crude oil costs and other factors are expected to yield average retail motor gasoline prices higher than those of last year. Current crude oil prices reflect a substantial uncertainty premium due to concerns about the current conflict in the Persian Gulf, lingering questions about whether Venezuelan oil production will recover to near pre-strike levels in time for the peak driving season, and the impact of recent disruptions in Nigerian oil output. Moreover, unusually low crude oil and gasoline inventory levels at the outset of the driving season are expected to keep prices high throughout much of the

432

Metropolitan functional specialization, transportation, and gasoline consumption  

SciTech Connect

This study examines metropolitan functional specialization relative to urban commuting patterns and per capita gasoline consumption in 55 Standard Metropolitan Statistical Areas throughout the United States. Under the concept of sustenance organization in human ecology, social scientists have documented support for the importance of the key urban economic function for composition and distribution of population and firms in cities. However, sociological and ecological knowledge of the relationships of functional specialization, commuting, and transportation energy use is extremely limited. The present research utilizes the concept of function specialization and the framework of the ecological complex in developing relationships and models of personal daily urban travel patterns and gasoline use. The effort is made to examine human ecological factors in a physical approach to energy consumption. Relationships are tested using correlation matrices, regression analyses, and scatterplots where necessary. The findings indicate that the functional specialization of communities is significant in accounting for variance and patterns in their commuting travel and per capita gasoline consumption.

Hoffman, W.D.

1985-01-01T23:59:59.000Z

433

1995 Reformulated Gasoline Market Affected Refiners Differently  

Gasoline and Diesel Fuel Update (EIA)

5 Reformulated Gasoline Market Affected 5 Reformulated Gasoline Market Affected Refiners Differently by John Zyren, Charles Dale and Charles Riner Introduction The United States has completed its first summer driving season using reformulated gasoline (RFG). Motorists noticed price increases at the retail level, resulting from the increased cost to produce and deliver the product, as well as from the tight sup- ply/demand balance during the summer. This arti- cle focuses on the costs of producing RFG as experienced by different types of refiners and on how these refiners fared this past summer, given the prices for RFG at the refinery gate. RFG Regulatory Requirements The use of RFG is a result of the Clean Air Act Amendments of 1990 (CAAA). The CAAA cover a wide range of programs aimed at improving air qual-

434

Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies  

DOE Green Energy (OSTI)

This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

2011-01-01T23:59:59.000Z

435

Alternative Fuels Data Center: Ethanol Blend Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Blend Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and

436

Motor Gasoline Market Model documentation report  

SciTech Connect

The purpose of this report is to define the objectives of the Motor Gasoline Market Model (MGMM), describe its basic approach and to provide detail on model functions. This report is intended as a reference document for model analysts, users, and the general public. The MGMM performs a short-term (6- to 9-month) forecast of demand and price for motor gasoline in the US market; it also calculates end of month stock levels. The model is used to analyze certain market behavior assumptions or shocks and to determine the effect on market price, demand and stock level.

1993-09-01T23:59:59.000Z

437

Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Michigan Fleet Reduces Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Facebook Tweet about Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Twitter Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Google Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Delicious Rank Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Digg Find More places to share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on AddThis.com... Feb. 11, 2010 Michigan Fleet Reduces Gasoline and Diesel Use D iscover how the City of Ann Arbor reduced municipal fleet gas and diesel

438

Microsoft Word - Summer 2004 Motor Gasoline Outlook.doc  

Gasoline and Diesel Fuel Update (EIA)

April 2004 April 2004 Summer 2004 Motor Gasoline Outlook Summary * Gasoline markets are tight as the 2004 driving season begins and conditions are likely to remain volatile through the summer. High crude oil costs, strong gasoline demand growth, low gasoline inventories, uncertainty about the availability of gasoline imports, high transportation costs, and changes in gasoline specifications have added to current and expected gasoline costs and pump prices. * For the upcoming summer driving season (April to September 2004), retail gasoline prices (regular grade, all formulations) are projected to average $1.76 per gallon, about 20 cents above last summer. A 95-percent confidence range for the summer price average, excluding specific consideration of major

439

Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price  

NLE Websites -- All DOE Office Websites (Extended Search)

8: February 26, 8: February 26, 2007 Gasoline Price Expectations to someone by E-mail Share Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Facebook Tweet about Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Twitter Bookmark Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Google Bookmark Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Delicious Rank Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Digg Find More places to share Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on AddThis.com... Fact #458: February 26, 2007 Gasoline Price Expectations

440

Vehicle Technologies Office: Fact #27: April 21, 1997 Gasoline...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: April 21, 1997 Gasoline and Diesel Fuel Prices for Selected Countries: 1996 to someone by E-mail Share Vehicle Technologies Office: Fact 27: April 21, 1997 Gasoline and Diesel...

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

April 2006 Factsheet: How to Beat High Gasoline Prices | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 2006 Factsheet: How to Beat High Gasoline Prices April 2006 Factsheet: How to Beat High Gasoline Prices A fact sheet from April 2006 on ways for consumers to reduce their...

442

U.S. gasoline prices decreased (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

December 2, 2013 U.S. gasoline prices decreased (long version) The U.S. average retail price for regular gasoline fell to 3.27 a gallon on Monday. That's down 2.1 cents from a...

443

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

444

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

445

How much carbon dioxide is produced by burning gasoline and ...  

U.S. Energy Information Administration (EIA)

How much carbon dioxide is produced by burning gasoline and diesel fuel? About 19.64 pounds of carbon dioxide (CO 2) are produced from burning a gallon of gasoline ...

446

Retail Motor Gasoline Price* Forecast Doesn't Reflect Potential...  

Gasoline and Diesel Fuel Update (EIA)

5 Notes: EIA's gasoline price forecast has gasoline prices, on a monthly average, possibly exceeding 1.70 per gallon. Of course, weekly prices would likely peak this summer even...

447

Revisiting the Income Effect: Gasoline Prices and Grocery Purchases  

E-Print Network (OSTI)

Gasoline and Crude Oil Prices, 2000-2006 Figure I:Weekly Gasoline and Crude Oil Prices for 2001- 2006 Crudeargue that increases in oil prices may lead to recessions

Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

2008-01-01T23:59:59.000Z

448

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

449

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

450

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" type=text/css rel=stylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > RSE Tables 2003 CBECS Relative Standard Error (RSE) Tables Released: Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100. (More information on RSEs)

451

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table C6. Commercial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric Power e Biomass Geothermal Retail Electricity Sales Net Energy g Electrical System Energy Losses h Total g Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste f Alabama ............. 0.0 25.5 7.0 (s) 2.7 0.2 0.0 10.0 0.0 0.9 0.0 75.9 112.4 144.8 257.2 Alaska ................. 9.4 16.9 10.1 0.1 0.6 0.7 0.0 11.5 0.0 0.3 0.1 9.7 48.0 20.2 68.2 Arizona ............... 0.0 33.1 6.8 (s) 1.5 0.7 0.0 8.9 0.0 0.5 (s) 100.7 143.2 202.3 345.5 Arkansas ............. 0.0 40.6 3.6 (s) 1.2 0.4 0.0 5.2 0.0 1.3 0.0 41.4 88.6 86.1 174.7 California ............ 0.0 250.9 47.9 0.1 8.7 1.4 0.0 58.1 (s) 17.4 0.7 418.9 746.2 809.9 1,556.1 Colorado ............. 3.2 57.6 5.9 (s) 2.9 0.2 0.0 9.1 0.0 1.2 0.2

452

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 State Energy Data 2011: Consumption Table C7. Industrial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power e Biomass Geo- thermal Retail Electricity Sales Net Energy h,i Electrical System Energy Losses j Total h,i Distillate Fuel Oil LPG b Motor Gasoline c Residual Fuel Oil Other d Total Wood and Waste f Losses and Co- products g Alabama ............. 65.0 179.1 23.9 3.7 3.3 6.7 46.3 83.9 0.0 147.2 0.0 (s) 115.1 590.4 219.5 810.0 Alaska ................. 0.1 253.8 19.2 0.1 1.0 0.0 27.1 47.4 0.0 0.1 0.0 0.0 4.5 306.0 9.4 315.4 Arizona ............... 10.0 22.0 33.2 1.4 4.6 (s) 18.4 57.6 0.0 1.4 3.1 0.2 42.1 136.5 84.7 221.2 Arkansas ............. 5.6 93.1 31.1 2.6 4.0 0.1 17.4 55.1 0.0 72.7 0.0 (s) 58.0 284.5 120.5 405.0 California ............ 35.6 767.4 77.2 23.9 29.6 (s) 312.5

453

Gasoline and Diesel Fuel Update Data Revision Notice  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

454

Alabama Aviation Gasoline All Sales/Deliveries by Prime ...  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) Alabama Aviation Gasoline All Sales/Deliveries by Prime Supplier ... Alabama Prices, ...

455

Price spread between regular and premium gasoline has changed over ...  

U.S. Energy Information Administration (EIA)

Exploration and reserves, storage, imports and exports, production, ... more cost savings result from reducing octane levels for premium gasoline blendstock ...

456

Weather and other events can cause disruptions to gasoline ...  

U.S. Energy Information Administration (EIA)

Weather and other events can cause disruptions to gasoline infrastructure and supply. Source: U.S. Energy Information Administration.

457

Why do Motor Gasoline Prices Vary Regionally? California Case Study  

Reports and Publications (EIA)

Analysis of the difference between the retail gasoline prices in California and the average U.S. retail prices.

Information Center

1998-07-15T23:59:59.000Z

458

National Survey of E85 and Gasoline Prices  

DOE Green Energy (OSTI)

Study compares the prices of E85 and regular gasoline nationally and regionally over time for one year.

Bergeron, P.

2008-10-01T23:59:59.000Z

459

Modeling the Effects of Outdoor Use of Portable Gasoline ...  

Science Conference Proceedings (OSTI)

... Health hazard assessment of CO poisoning associated with emissions from a portable, 5.5 Kilowatt, gasoline-powered generator. ...

2009-08-10T23:59:59.000Z

460

Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000  

U.S. Energy Information Administration (EIA)

earth and provides protection from harmful radiation. The Phase 2 reformulated gasoline (RFG) standards consist of 2

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Weather and other events can cause disruptions to gasoline ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Weather and other events can cause disruptions to gasoline infrastructure and ...

462

Thermal Stabilization Blend Plan  

SciTech Connect

This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

RISENMAY, H.R.

2000-05-02T23:59:59.000Z

463

Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint  

DOE Green Energy (OSTI)

The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

2011-02-01T23:59:59.000Z

464

Author's personal copy Gasoline prices and traffic safety in Mississippi  

E-Print Network (OSTI)

November 2010 Keywords: Gasoline prices Traffic crashes Traffic safety Age Gender Race Problem: Limited-grade unleaded gasoline price data from the Energy Information Administration of the U.S. Department of Energy were used to investigate the effects of gasoline prices on traffic safety by age, gender, and race

Levinson, David M.

465

LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL  

E-Print Network (OSTI)

1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 (2014) 162-169" DOI : 10.1016/j.fuel.2013.07.015 #12;2 LAMINAR BURNING VELOCITY OF GASOLINES, Sweden Abstract The adiabatic laminar burning velocities of a commercial gasoline and of a model fuel (n

466

Proposed standby gasoline rationing plan: public comments  

SciTech Connect

Under the proposed plan, DOE would allocate ration rights (rights to purchase gasoline) to owners of registered vehicles. All vehicles in a given class would receive the same entitlement. Essential services would receive supplemental allotments of ration rights as pririty firms. Once every 3 months, ration checks would be mailed out to all vehicle registrants, allotting them a certain amount of ration rights. These checks would then be cashed at Coupon Issuance Points, where the bearer would receive ration coupons to be used at gasoline stations. Large users of gasoline could deposit their allotment checks in accounts at ration banks. Coupons or checks would be freely exchangeable in a white market. A certain percentage of the gasoline supply would be set aside in reserve for use in national emergencies. When the plan was published in the Federal Register, public comments were requested. DOE also solicited comments from private citizens, public interest groups, business and industry, state and local governments. A total of 1126 responses were reveived and these are analyzed in this paper. The second part of the report describes how the comments were classified, and gives a statistical breakdown of the major responses. The last section is a discussion and analysis of theissue raised by commenting agencies, firms, associations, and individuals. (MCW)

1978-12-01T23:59:59.000Z

467

Vehicle Technologies Office: Intermediate Ethanol Blends  

NLE Websites -- All DOE Office Websites (Extended Search)

Intermediate Ethanol Intermediate Ethanol Blends to someone by E-mail Share Vehicle Technologies Office: Intermediate Ethanol Blends on Facebook Tweet about Vehicle Technologies Office: Intermediate Ethanol Blends on Twitter Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Google Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Delicious Rank Vehicle Technologies Office: Intermediate Ethanol Blends on Digg Find More places to share Vehicle Technologies Office: Intermediate Ethanol Blends on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

468

Price changes in the gasoline market: Are Midwestern gasoline prices downward sticky?  

SciTech Connect

This report examines a recurring question about gasoline markets: why, especially in times of high price volatility, do retail gasoline prices seem to rise quickly but fall back more slowly? Do gasoline prices actually rise faster than they fall, or does this just appear to be the case because people tend to pay more attention to prices when they`re rising? This question is more complex than it might appear to be initially, and it has been addressed by numerous analysts in government, academia and industry. The question is very important, because perceived problems with retail gasoline pricing have been used in arguments for government regulation of prices. The phenomenon of prices at different market levels tending to move differently relative to each other depending on direction is known as price asymmetry. This report summarizes the previous work on gasoline price asymmetry and provides a method for testing for asymmetry in a wide variety of situations. The major finding of this paper is that there is some amount of asymmetry and pattern asymmetry, especially at the retail level, in the Midwestern states that are the focus of the analysis. Nevertheless, both the amount asymmetry and pattern asymmetry are relatively small. In addition, much of the pattern asymmetry detected in this and previous studies could be a statistical artifact caused by the time lags between price changes at different points in the gasoline distribution system. In other words, retail gasoline prices do sometimes rise faster than they fall, but this is largely a lagged market response to an upward shock in the underlying wholesale gasoline or crude oil prices, followed by a return toward the previous baseline. After consistent time lags are factored out, most apparent asymmetry disappears.

NONE

1999-03-01T23:59:59.000Z

469

Alternative Fuels Data Center: Biodiesel Blend Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Standards to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Standards on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Standards on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Standards on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Standards on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Standards on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Standards Biodiesel blends are considered compliant with Texas Low Emissions Diesel Fuel (TxLED) regulations if the diesel fuel is compliant with TxLED

470

ARM - Instrument Location Table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsLocation Table govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation NSA SGP TWP AMF C1 C2 EF BF CF EF IF C1 C2 C3 EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements associated with the Aerosol Observing System AOSMET Broadband Radiometer Station BRS

471

Net Imports of Motor Gasoline Blending Components into the U.S ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

472

U.S. Imports from Trinidad and Tobago of Gasoline Blending ...  

U.S. Energy Information Administration (EIA)

241: 768: 307: 624: 530: 563: 2008: 510: 337: 142: 588: 336: 30: 375: 240: 2009: 430: 712: 222: 240: 240: 239: 105: 595: 238: 240: 2010: 720: 234: 110: 2011: 110: 251 ...

473

West Coast (PADD 5) CBOB Gasoline Blending Components Stocks by Type  

U.S. Energy Information Administration (EIA)

Stock Type: Area: 2007 2008 2009 2010 2011 2012 View History; Total Stocks: 1,769: 2,651: 3,784: 4,085: 3,756: 5,082: 2005-2012: Refinery: 1,001: 1,018: 1,022: 824 ...

474

U.S. Reformulated RBOB Gasoline Blending Components Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

475

Method to blend separator powders  

DOE Patents (OSTI)

A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

Guidotti, Ronald A. (Albuquerque, NM); Andazola, Arthur H. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM)

2007-12-04T23:59:59.000Z

476

FY 2010 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

477

FY 2009 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2009 Congressional Budget 1/30/2008 Department Of Energy (Dollars In Thousands) 9:01:45AM Page 1 of 2 FY 2007 Appropriation FY 2008 Appropriation FY 2009 Request State Table 1 1 $27,588

478

FY 2005 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Management, Budget Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number

479

FY 2010 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2010 Congressional Budget 5/4/2009 Department Of Energy (Dollars In Thousands) 2:13:22PM Page 1 of 2 FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request State Table 1 1 $46,946 $48,781 $38,844 Alabama 2 $6,569

480

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 1999 Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) Contacts bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage supplemental.gif (7420 bytes) (Errata as of 9/13/99) The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 1999 (AEO99) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1997 to 2020. Most of the tables were not published in the AEO99, but contain regional and other more detailed projections underlying the AEO99 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables are presented.

Note: This page contains sample records for the topic "gasoline blends table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FY 2006 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2006 Congressional Budget 1/27/2005 Department Of Energy (Dollars In Thousands) 3:32:58PM Page 1 of 2 FY 2004 Comp/Approp FY 2005 Comp/Approp FY 2006 Request State Table

482

table E1  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table E.1 World Primary Energy Consumption (Btu), 1980-2006 (Quadrillion (10 15 ) Btu) Page

483

Table - Energy Information Administration  

U.S. Energy Information Administration (EIA)

September 2013 U.S. Energy Information 9/27/2013 9:52:45 AM Administration | Natural Gas Monthly 9 Created on: Table 4. U.S. natural gas imports ...

484

FY 2008 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Table State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2008 Congressional Budget 2/1/2007 Department Of Energy (Dollars In Thousands) 6:53:08AM Page 1 of 2 FY 2006 Appropriation FY 2007 Request FY 2008 Request State Table 1 1 $28,332 $30,341

485

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

486

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

5HVLGHQWLDO (QHUJ\\ &RQVXPSWLRQ 6XUYH\\V 1997 Consumption and Expenditures Tables Appliances Consumption Tables (17 pages, 60 kb) Contents Pages CE5-1c.

487

Control theoretic model of automobile demand and gasoline consumption  

SciTech Connect

The purpose of this research is to examine the controllability of gasoline consumption and automobile demand using gasoline price as a policy instrument. The author examines the problem of replacing the standby motor-fuel rationing plan with use of the federal excise tax on gasoline. It is demonstrated that the standby targets are attainable with the tax. The problem of multiple control of automobile demand and gasoline consumption is also addressed. When the federal gasoline excise tax is used to control gasoline consumption, the policy maker can also use the tax to direct automobile demand. There exists a trade-off between various automobile demand targets and the target implied for gasoline consumption. We seek to measure this trade-off and use the results for planning. This research employs a time series of cross section data base with a disaggregated model of automobile demand, and an aggregate model of gasoline consumption. Automobile demand is divided into five mutually exclusive classes of cars. Gasoline demand is model as the sum of regular, premium, and unleaded gasoline. The pooled data base is comprised of a quarterly time series running from 1963 quarter one through 1979 quarter four, for each of the 48 continuous states. The demand equations are modelled using dynamic theories of demand. Estimates of the respective equations are made with error components and covariance techniques. Optimal control is applied to examine the gasoline-control problem.

Panerali, R.B.

1982-01-01T23:59:59.000Z

488

Engines - Fuel Injection and Spray Research - Gasoline Sprays  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline Sprays Gasoline Sprays Animated image of fuel emerging from a gasoline injector Animated image of fuel emerging from a gasoline injector (simulated environment). Some newer automobiles in the U.S. use gasoline direct injection (GDI) engines. These advanced gasoline engines inject the fuel directly into the engine cylinder rather than into the intake port. These engines can achieve higher fuel efficiency, but they depend on a precise fuel/air mixture at the spark plug to initiate ignition. This leads to more stringent requirements on spray quality and reproducibility. GDI also enables new combustion strategies for gasoline engines such as lean burn engines that use less fuel and air. Lean burn engines may achieve efficiencies near those of diesels while producing low emissions. This

489

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate All diesel fuel sold to state agencies, political subdivisions of the state, and public schools for use in on-road motor vehicles must contain at

490

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate Within one year after the Montana Department of Transportation has certified that ethanol producers in the state have produced a total of 40 million gallons of denatured ethanol and have maintained that level of

491

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate In September 2013, the commissioners of the Minnesota Department of Agriculture, Department of Commerce, and Pollution Control Agency determined that all conditions had been satisfied to implement a 10%

492

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate Pursuant to state law, all diesel motor vehicle fuel and all other liquid fuel used to operate motor vehicle diesel engines in Massachusetts must

493

Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study  

DOE Green Energy (OSTI)

The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

Shoffner, Brent [Southwest Research Institute, San Antonio; Johnson, Ryan [Southwest Research Institute, San Antonio; Heimrich, Martin J. [Southwest Research Institute, San Antonio; Lochte, Michael [Southwest Research Institute, San Antonio

2010-11-01T23:59:59.000Z

494

Why Are Gasoline Prices Rising so Fast  

Gasoline and Diesel Fuel Update (EIA)

Statement of John Cook Statement of John Cook Before the Committee on Government Reform Subcommittee on Energy Policy, Natural Resources and Regulatory Affairs U.S. House of Representatives June 14, 2001 Thank you Mr. Chairman and members of the Committee for the opportunity to testify today. Gasoline prices have begun declining, as expected, from this spring's apparent peak price of $1.71 on May 14, with the national average for regular gasoline at $1.65 per gallon as of June 11 (Figure 1). Between late March and mid-May, retail prices rose 31 cents per gallon, with some regions experiencing even greater increases. Like last year, Midwest consumers saw some of the largest increases, and along with California, some of the highest prices. Prices in the Midwest increased 43 cents per

495

Detailed Kinetic Modeling of Gasoline Surrogate Mixtures  

DOE Green Energy (OSTI)

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

2009-03-09T23:59:59.000Z

496

Vehicle trends and future gasoline needs  

Science Conference Proceedings (OSTI)

The passenger car continues to change at a rapid pace, responding both to customers' preferences and to regulations. Vehicle trends place demands on the powertrain for high specific output, efficiency and reliability. Engine design and calibration must be optimized to utilize available fuel octane fully since low speed knock remains a significant constraint. Emerging capabilities for engine control provide flexible, adaptive approaches for fuel/engine matching. Recent, substantial increases in fuel volatility raise concerns for both driveability and emissions. Expanded use of fuel injection will be helpful for future vehicles, but new problems have appeared, and tighter definition of gasoline properties will be needed. The high sensitivity of fuel systems and emission controls to fuel quality is demonstrated by injector deposits and plugged catalysts. Dependable gasoline quality is essential. High standards of quality and reliability are necessary for fuel and lubricant products. The precision offered by current emission control systems can only be achieved with fuels that are properly prepared and marketed.

Baker, R.E.; Chui, G.K.

1986-06-01T23:59:59.000Z

497

Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments  

DOE Green Energy (OSTI)

The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.

Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

2011-09-15T23:59:59.000Z

498

2001 Housing Characteristics Detailed Tables  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey-Housing Characteristics, 2001 Detailed Tables, Energy Information Administration

499

European Lean Gasoline Direct Injection Vehicle Benchmark  

DOE Green Energy (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL; Huff, Shean P [ORNL; Edwards, Kevin Dean [ORNL; Norman, Kevin M [ORNL; Prikhodko, Vitaly Y [ORNL; Thomas, John F [ORNL

2011-01-01T23:59:59.000Z

500

FY 2006 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp