National Library of Energy BETA

Sample records for gasoline blending components

  1. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect (OSTI)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  2. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  3. Improving Ethanol-Gasoline Blends by Addition of Higher Alcohols |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ethanol-Gasoline Blends by Addition of Higher Alcohols Improving Ethanol-Gasoline Blends by Addition of Higher Alcohols Mixtures of ethanol, gasoline, and higher alcohols were evaluated to determine if they offer superior performance to ethanol/gasoline blends in meeting the Renewal Fuels Standard II. deer12_ickes.pdf (1.45 MB) More Documents & Publications Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Impact of ethanol and butanol as oxygenates on

  4. Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection | Department of Energy Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions. p-02_anitescu.pdf (339.45 KB) More Documents & Publications Preparation, Injection and Combustion of Supercritical Fluids Evaluation of

  5. The Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    none,

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the United States today and the potential impact of ethanol on gasoline prices at higher blending concentrations (10%, 15% and 20% of the total U.S. gasoline consumption).

  6. Investigation of Knock limited Compression Ratio of Ethanol Gasoline Blends

    SciTech Connect (OSTI)

    Szybist, James P; Youngquist, Adam D; Wagner, Robert M; Moore, Wayne; Foster, Matthew; Confer, Keith

    2010-01-01

    Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock limited compression ratio of ethanol gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single cylinder direct injection spark ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT conditions to determine the knock limited compression ratio (CR) of ethanol fuel blends. The geometric compression ratio is varied by changing pistons, producing CR from 9.2 to 13.66. The effective CR is varied using an electro-hydraulic valvetrain that changed the effective trapped displacement using both Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC). The EIVC and LIVC strategies result in effective CR being reduced while maintaining the geometric expansion ratio. It was found that at substantially similar engine conditions, increasing the ethanol content of the fuel results in higher engine efficiency and higher engine power. These can be partially attributed to a charge cooling effect and a higher heating valve of a stoichiometric mixture for ethanol blends (per unit mass of air). Additional thermodynamic effects on and a mole multiplier are also explored. It was also found that high CR can increase the efficiency of ethanol fuel blends, and as a result, the fuel economy penalty associated with the lower energy content of E85 can be reduced by about a third. Such operation necessitates that the engine be operated in a de-rated manner for

  7. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect (OSTI)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Szybist, James P; Thomas, John F; Barone, Teresa L; Eibl, Mary A; Nafziger, Eric J; Kaul, Brian C

    2014-01-01

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  8. Stocks of Motor Gasoline Blending Components

    Gasoline and Diesel Fuel Update (EIA)

    194,259 203,187 212,640 217,489 220,765 226,935 1983-2016 PADD 1 51,306 53,633 57,200 56,763 58,920 62,421 2004-2016 PADD 2 43,744 46,809 50,163 51,441 51,859 54,773 2004-2016 PADD...

  9. The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion | Department of Energy The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion Almost 2 dozen gasoline fuels, blending components, and surrogates were evaluated in a single-cylinder HCCI gasoline engine for combustion, emissions, and efficiency performance. p-05_bunting.pdf (495.39 KB) More Documents & Publications APBF Effects on Combustion Fuel-Borne Reductants for NOx

  10. Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .

    SciTech Connect (OSTI)

    Wallner, T.

    2011-08-01

    The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of

  11. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect (OSTI)

    Splitter, Derek A; Szybist, James P

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  12. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    SciTech Connect (OSTI)

    Cai, Hao; Canter, Christina E.; Dunn, Jennifer B.; Tan, Eric; Biddy, Mary; Talmadge, Michael; Hartley, Damon S.; Snowden-Swan, Lesley

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  13. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect (OSTI)

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-02-13

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  14. Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst

    SciTech Connect (OSTI)

    Pihl, Josh A; Toops, Todd J; Fisher, Galen; West, Brian H

    2014-01-01

    Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NOx conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%. NO2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH3 SCR of NOx does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. The gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.

  15. Finished Motor Gasoline Net Production

    Gasoline and Diesel Fuel Update (EIA)

    Data Series: Finished Motor Gasoline Finished Motor Gasoline (Excl. Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & < Conventional Gasoline Blended w/ Fuel Ethanol, > Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet,

  16. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J; Thomas, John F; Parks, II, James E; West, Brian H

    2015-01-01

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  17. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect (OSTI)

    Storey, John Morse; Barone, Teresa L; Thomas, John F; Huff, Shean P

    2012-01-01

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle

  18. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect (OSTI)

    Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

    2008-05-29

    Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the

  19. Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

    SciTech Connect (OSTI)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Barone, Teresa L

    2010-01-01

    Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size

  20. Refinery Net Input of Motor Gasoline Blending Components (Net)

    U.S. Energy Information Administration (EIA) Indexed Site

    -224,415 -196,460 -205,085 -201,403 -213,659 -206,750 2005-2016 PADD 1 -17,942 -14,705 -15,325 -15,088 -16,507 -15,534 2005-2016 East Coast -17,889 -14,746 -15,326 -15,154 -16,492 -15,493 2005-2016 Appalachian No. 1 -53 41 1 66 -15 -41 2005-2016 PADD 2 -56,553 -48,250 -48,728 -44,224 -48,504 -47,699 2005-2016 Ind., Ill. and Ky. -36,491 -32,814 -31,456 -27,909 -31,097 -30,704 2005-2016 Minn., Wis., N. Dak., S. Dak. -7,599 -5,879 -6,476 -5,086 -5,818 -5,937 2005-2016 Okla., Kans., Mo. -12,463

  1. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  2. Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study

    SciTech Connect (OSTI)

    Shoffner, Brent; Johnson, Ryan; Heimrich, Martin J.; Lochte, Michael

    2010-11-01

    The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

  3. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  4. Autoignition response of n-butanol and its blend with primary reference fuel constituents of gasoline.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumar, Kamal; Zhang, Yu; Sung, Chi -Jen; Pitz, William J.

    2015-04-13

    We study the influence of blending n-butanol on the ignition delay times of n-heptane and iso-octane, the primary reference fuels for gasoline. The ignition delay times are measured using a rapid compression machine, with an emphasis on the low-to-intermediate temperature conditions. The experiments are conducted at equivalence ratios of 0.4 and 1.0, for a compressed pressure of 20 bar, with the temperatures at the end of compression ranging from 613 K to 979 K. The effect of n-butanol addition on the development of the two-stage ignition characteristics for the two primary reference fuels is also examined. The experimental results aremore » compared to predictions obtained using a detailed chemical kinetic mechanism, which has been obtained by a systematic merger of previously reported base models for the combustion of the individual fuel constituents. In conclusion, a sensitivity analysis on the base, and the merged models, is also performed to understand the dependence of autoignition delay times on the model parameters.« less

  5. Methanol/ethanol/gasoline blend-fuels demonstration with stratified-charge-engine vehicles: Consultant report. Final report

    SciTech Connect (OSTI)

    Pefley, R.; Adelman, H.; Suga, T.

    1980-03-01

    Four 1978 Honda CVCC vehicles have been in regular use by California Energy Commission staff in Sacramento for 12 months. Three of the unmodified vehicles were fueled with alcohol/gasoline blends (5% methanol, 10% methanol, and 10% ethanol) with the fourth remaining on gasoline as a control. The operators did not know which fuels were in the vehicles. At 90-day intervals the cars were returned to the Univerity of Santa Clara for servicing and for emissions and fuel economy testing in accordance with the Federal Test Procedures. The demonstration and testing have established the following: (1) the tested blends cause no significant degradation in exhaust emissions, fuel economy, and driveability; (2) the tested blends cause significant increases in evaporative emissions; (3) analysis of periodic oil samples shows no evidence of accelerated metal wear; and (4) higher than 10% alcohols will require substantial modification to most existing California motor vehicles for acceptable emissions, performance, and fuel economy. Many aspects of using methanol and ethanol fuels, both straight and in blends, in various engine technologies are discussed.

  6. Certification of alternative aviation fuels and blend components

    SciTech Connect (OSTI)

    Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend

  7. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol

    SciTech Connect (OSTI)

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    2011-07-01

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

  8. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect (OSTI)

    Kass, Michael D; Pawel, Steven J; Theiss, Timothy J; Janke, Christopher James

    2012-07-01

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more

  9. Emissions with butane/propane blends

    SciTech Connect (OSTI)

    1996-11-01

    This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

  10. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    SciTech Connect (OSTI)

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  11. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends

    SciTech Connect (OSTI)

    2013-09-17

    This document serves as a guide for blenders, distributors, sellers, and users of E85 and other ethanol blends above E10. It provides basic information on the proper and safe use of E85 and other ethanol blends and includes supporting technical and policy references.

  12. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Book)

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-09-01

    This document serves as a guide for blenders, distributors, sellers, and users of E85 and other ethanol blends above E10. It provides basic information on the proper and safe use of E85 and other ethanol blends and includes supporting technical and policy references.

  13. The potential for alcohols and related ethers to displace conventional gasoline components

    SciTech Connect (OSTI)

    Hadder, G.R.; McNutt, B.D.

    1996-02-01

    The United States Department of Energy is required by law to determine the feasibility of producing sufficient replacement fuels to replace 30 percent of the projected United States consumption of motor fuels by light duty vehicles in the year 2010. A replacement fuel is a non-petroleum portion of gasoline, including alcohols, natural gas and certain other components. A linear program has been used to study refinery impacts for production of ``low petroleum`` gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and major contributors to cost increase can include investment in processes to produce olefins for etherification with alcohols. High oxygenation can increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum might be produced with cost increases of 23 to 37 cents per gallon, with substantial decreases in greenhouse gas emissions in some cases. Cost estimates are sensitive to assumptions about extrapolation of a national model for pollutant emissions, availability of raw materials and other issues. Reduction in crude oil use, a major objective of the low petroleum gasoline program, is 10 to 17 percent in the analysis.

  14. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions

    SciTech Connect (OSTI)

    Mehl, M; Pitz, W J; Westbrook, C K; Curran, H J

    2010-01-11

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, an improved version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multicomponent gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines (3-50 atm, 650-1200K, stoichiometric fuel/air mixtures). Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  15. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    DOE/GO-102016-4854 February 2016 Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  16. Vehicle Technologies Office: Intermediate Ethanol Blends Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intermediate Ethanol Blends Research and Testing Vehicle Technologies Office: Intermediate Ethanol Blends Research and Testing Ethanol can be combined with gasoline in blends ...

  17. Blender Net Production of Finished Motor Gasoline

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O.,

  18. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  19. MTBE, Oxygenates, and Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased

  20. Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

    2013-01-02

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  1. Motor Gasoline Outlook and State MTBE Bans

    Reports and Publications (EIA)

    2003-01-01

    The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

  2. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  3. Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods

    Broader source: Energy.gov [DOE]

    Advanced aerosol analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends.

  4. Motor gasolines, summer 1985

    SciTech Connect (OSTI)

    Dickson, C.L.; Woodward, P.W.

    1986-06-01

    Samples for this report were collected from service stations throughout the country and were analyzed in laboratories of various refiners, motor manufacturers, chemical companies, and research institutes. Analytical data for the 1571 motor gasoline and 206 motor gasoline/alcohol blend samples were submitted to the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, for reporting. This work is jointly funded by the American Petroleum Institute (API) and the United States Department of Energy (DOE), Bartlesville Project Office (DOE cooperative agreement No. FC22-83FE60149). The data are representative of the products of 62 marketers, large and small, which manufacture and supply gasoline. They are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map shows the marketing areas, districts, and sampling locations. The report includes trend charts of selected properties of motor fuels over the last twenty-five years. Twelve octane distribution graphs for leaded and unleaded grades of gasoline are presented for areas 1, 2, 3, and 4. The average antiknock (octane) index (R + M)/2 of gasoline sold in the United States during June, July, and August 1985 was 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.8 for leaded below 93.0 grades of gasoline. Analyses of motor gasoline containing various alcohols are reported in separate tables beginning with this report. The average antiknock (octane) index (R + M)/2 of gasoline containing alcohols was 88.6 for unleaded below 90.0, 91.4 for unleaded 90.0 and above, and 90.2 for leaded below 93.0 grades of gasoline. 16 figs., 8 tabs.

  5. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends

    SciTech Connect (OSTI)

    Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

    2010-04-01

    Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

  6. Methyl aryl ethers from coal liquids as gasoline extenders and octane improvers

    SciTech Connect (OSTI)

    Singerman, G.M.

    1980-11-01

    A mixture of methyl aryl ethers derived from the phenols present in direct liquefaction coal liquids shows considerable promise as a gasoline blending agent and octane improver. The mixture of methyl aryl ethers was blended at five volume percent with a commercial, unleaded gasoline. The properties and performance of the blend in a variety of laboratory and automotive tests is reported. The tests show that the mixture of methyl aryl ethers improves gasoline octane without degrading other gasoline properties.

  7. Vehicle Technologies Office: Intermediate Ethanol Blends Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing | Department of Energy Intermediate Ethanol Blends Research and Testing Vehicle Technologies Office: Intermediate Ethanol Blends Research and Testing Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline), with those in-between being called "intermediate blends." The U.S. Environmental Protection Agency's Renewable Fuels Standard (under the Energy Policy Act of 2005 and the Energy

  8. Fact Sheet: Effects of Intermediate Ethanol Blends | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Effects of Intermediate Ethanol Blends Fact Sheet: Effects of Intermediate Ethanol Blends October 7, 2008 - 4:14pm Addthis In August 2007, the U.S. Department of Energy (DOE) initiated a test program to assess the potential impacts of higher intermediate ethanol blends on conventional vehicles and other engines that rely on gasoline. The test program focuses specifically on the effects of intermediate blends of E15 and E20-gasoline blended with 15 and 20 percent ethanol,

  9. MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)

    Reports and Publications (EIA)

    1999-01-01

    The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

  10. Eliminating MTBE in Gasoline in 2006

    Reports and Publications (EIA)

    2006-01-01

    A review of the market implications resulting from the rapid change from methyl tertiary butyl ether (MTBE) to ethanol-blended reformulated gasoline (RFG) on the East Coast and in Texas. Strains in ethanol supply and distribution will increase the potential for price volatility in these regions this summer.

  11. U.S. Motor Gasoline Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Formulation Grade: Gasoline, Average Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional, Average Conventional Regular Conventional Midgrade Conventional Premium ...

  12. Biofuel Facts for the Road: The Energy Department and Your Gasoline Pump |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Biofuel Facts for the Road: The Energy Department and Your Gasoline Pump Biofuel Facts for the Road: The Energy Department and Your Gasoline Pump November 24, 2015 - 11:05am Addthis Biofuel Facts for the Road: The Energy Department and Your Gasoline Pump The “Contains 10% ethanol” label means that ethanol has been blended into the petroleum gasoline—10% ethanol and 90% petroleum gasoline. The "Contains 10% ethanol" label means that ethanol has

  13. Gasoline Biodesulfurization Fact Sheet

    Broader source: Energy.gov [DOE]

    This petroleum industry fact sheet describes how biodesulfurization can yield lower sulfur gasoline at lower production costs.

  14. HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model

    SciTech Connect (OSTI)

    Andrae, J.C.G.; Head, R.A.

    2009-04-15

    Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p{sub in}=0.1 and 0.2 MPa, T{sub in}=80 and 250 C, {phi}=0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline surrogate fuel blends at 1.0{<=} p{<=}5.0MPa, 700{<=} T{<=}1200 K and {phi}=1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent on the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel

  15. Lower gasoline prices ahead

    U.S. Energy Information Administration (EIA) Indexed Site

    Lower gasoline prices ahead U.S. retail gasoline prices are expected to continue falling through the end of 2016, even though gasoline demand is projected to remain strong. In its new monthly forecast, the U.S. Energy Information Administration said the average monthly price for regular-grade gasoline is expected to decline to $1.92 a gallon by December the lowest for the month in eight years. Lower motor fuel prices are expected in the coming months, despite gasoline demand this year that is on

  16. Long Term Processing Using Integrated Hydropyrolysis plus Hydroconversion (IH2) for the Production of Gasoline and Diesel from Biomass

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; McLeod, Celeste; Del Paggio, Alan; Gephart, John; Starr, Jack; Hahn, John

    2013-06-09

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of a new, economical, technology named integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The life cycle analysis (LCA) shows that the use of the IH2 process to convert wood to gasoline and diesel results in a greater than 90% reduction in greenhouse gas emission compared to that found with fossil derived fuels. The technoeconomic analysis showed the conversion of wood using the IH2 process can produce gasoline and diesel at less than $2.00/gallon. In this project, the previously reported semi-continuous small scale IH2 test results were confirmed in a continuous 50 kg/day pilot plant. The continuous IH2 pilot plant used in this project was operated round the clock for over 750 hours and showed good pilot plant operability while consistently producing 26-28 wt % yields of high quality gasoline and diesel product. The IH2 catalyst showed good stability, although more work on catalyst stability is recommended. Additional work is needed to commercialize the IH2 technology including running large particle size biomass, modeling the hydropyrolysis step, studying the effects of process variables and building and operating a 1-50 ton/day demonstration scale plant. The IH2 is a true game changing technology by utilizing U.S. domestic renewable biomass resources to create transportation fuels, sufficient in quantity and quality to substantially reduce our reliance on foreign crude oil. Thus, the IH2 technology offers a path to genuine energy independence for the U. S., along with the creation of a significant number of new U.S. jobs to plant, grow, harvest, and process biomass crops into fungible

  17. Biodiesel Blends

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet discussing general biodiesel blends and the improvement in engine performance and emissions.

  18. Vaporization modeling of petroleum-biofuel drops using a hybrid multi-component approach

    SciTech Connect (OSTI)

    Zhang, Lei; Kong, Song-Charng

    2010-11-15

    Numerical modeling of the vaporization characteristics of multi-component fuel mixtures is performed in this study. The fuel mixtures studied include those of binary components, biodiesel, diesel-biodiesel, and gasoline-ethanol. The use of biofuels has become increasingly important for reasons of environmental sustainability. Biofuels are often blended with petroleum fuels, and the detailed understanding of the vaporization process is essential to designing a clean and efficient combustion system. In this study, a hybrid vaporization model is developed that uses continuous thermodynamics to describe petroleum fuels and discrete components to represent biofuels. The model is validated using the experimental data of n-heptane, n-heptane-n-decane mixture, and biodiesel. Since biodiesel properties are not universal due to the variation in feedstock, methods for predicting biodiesel properties based on the five dominant fatty acid components are introduced. Good levels of agreement in the predicted and measured drop size histories are obtained. Furthermore, in modeling the diesel-biodiesel drop, results show that the drop lifetime increases with the biodiesel concentration in the blend. During vaporization, only the lighter components of diesel fuel vaporize at the beginning. Biodiesel components do not vaporize until some time during the vaporization process. On the other hand, results of gasoline-ethanol drops indicate that both fuels start to vaporize once the process begins. At the beginning, the lighter components of gasoline have a slightly higher vaporization rate than ethanol. After a certain time, ethanol vaporizes faster than the remaining gasoline components. At the end, the drop reduces to a regular gasoline drop with heavier components. Overall, the drop lifetime increases as the concentration of ethanol increases in the drop due to the higher latent heat. (author)

  19. Gasoline and Diesel Fuel Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    February 16, 2016 Reformulated Gasoline States in each PADD Region Procedures & Methodology Gasoline Data collection procedures Sampling methodology Coefficient of variation...

  20. Simulation: Gasoline Compression Ignition

    SciTech Connect (OSTI)

    2015-04-13

    The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.

  1. Motor gasolines, summer 1979

    SciTech Connect (OSTI)

    Shelton, E.M.

    1980-02-01

    Analytical data for 2401 samples of motor gasoline, from service stations throughout the country, were collected and analyzed under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing areas and districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R + M)/2) averages of gasoline sold in this country were 88.6, 89.3, and 93.7 unleaded, regular, and premium grades of gasolines, respectively.

  2. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    SciTech Connect (OSTI)

    Heywood, John; Jo, Young Suk; Lewis, Raymond; Bromberg, Leslie; Heywood, John

    2015-10-31

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving the efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.

  3. The potential for low petroleum gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.; Webb, G.M.; Clauson, M.

    1996-06-01

    The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

  4. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Detailed Price and CV Report Motor Gasoline Prices & Coefficients of Variation Spreadsheet

  5. Northeast Gasoline Supply Reserve

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Northeast region of the U.S. is particularly vulnerable to gasoline disruptions as a result of hurricanes and other natural events. Hurricane Sandy in 2012 caused widespread issues related to...

  6. Price of Motor Gasoline Through Retail Outlets

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price...

  7. Detailed Kinetic Modeling of Gasoline Surrogate Mixtures

    SciTech Connect (OSTI)

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-03-09

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  8. Motor gasolines, summer 1983

    SciTech Connect (OSTI)

    Shelton, E.M.

    1984-02-01

    The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, chemical companies, and research institutes. The analytical data for 1583 samples of motor gasoline, were submitted to the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma for study, necessary calculations, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER) and the American Petroleum Institute (API). They represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, and leaded antiknock index (R+M)/2 below 93.0 grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.5 for unleaded below 90.0, 91.4 for unleaded 90.0 and above, and 89.0 for leaded below 93.0 grades of gasoline. 16 figures, 5 tables.

  9. Motor gasolines, summer 1980

    SciTech Connect (OSTI)

    Shelton, E.M.

    1981-02-01

    Analytical data for 2062 samples of motor gasoline were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The anitknock (octane) index ((R + M)/2) averages of gasolines sold in this country were 87.8 for the unleaded below 90.0, 91.6 for the unleaded 90.0 and above, 88.9 for the regular, and 92.8 for the premium grades of gasoline.

  10. Motor gasolines, Summer 1982

    SciTech Connect (OSTI)

    Shelton, E.M.

    1983-03-01

    The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

  11. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) ...

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Motor Gasoline Blending Components (Net) " ,"Click worksheet name or tab at bottom for ... for" ,"Data 1","Refinery Net Input of Motor Gasoline Blending Components (Net) ...

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Motor Gasoline Blending Components (Net) " ,"Click worksheet name or tab at bottom for ... Net Input of Motor Gasoline Blending Components (Net) ",16,"Monthly","32016","115...

  14. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline Sampling Methodology The sample for the Motor Gasoline Price Survey was drawn from a frame of approximately 115,000 retail gasoline outlets. The gasoline outlet frame was constructed by combining information purchased from a private commercial source with information contained on existing EIA petroleum product frames and surveys. Outlet names, and zip codes were obtained from the private commercial data source. Additional information was obtained directly from companies selling retail

  15. Reformulated Gasoline Foreign Refinery Rules

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated

  16. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline Pump Components History WHAT WE PAY FOR IN A GALLON OF REGULAR GASOLINE Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) Jan-00 1.289 7.8 13.0 32.1 47.1 Feb-00 1.377 17.9 7.5 30.1 44.6 Mar-00 1.517 15.4 12.8 27.3 44.6 Apr-00 1.465 10.1 20.2 28.3 41.4 May-00 1.485 20.2 9.2 27.9 42.7 Jun-00 1.633 22.2 8.8 25.8 43.1 Jul-00 1.551 13.2 15.8 27.2 43.8 Aug-00 1.465 15.8 7.5 28.8 47.8 Sep-00 1.550

  17. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    Commodity Motor Gasoline Motor Gasoline Blending Components Kerosene Reformulated Conventional Total Reformulated Conventional Total PAD District 1 ......

  18. Motor gasoline assessment, Spring 1997

    SciTech Connect (OSTI)

    1997-07-01

    The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

  19. Prices of Refiner Motor Gasoline Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    Product/ Sales Type: Gasoline, All Grades - Sales to End Users (U.S. only) Gasoline, All Grades - Through Retail Outlets Gasoline, All Grades - Other End Users Gasoline, All Grades - Sales for Resale Gasoline, All Grades - DTW (U.S. only) Gasoline, All Grades - Rack (U.S. only) Gasoline, All Grades - Bulk (U.S. only) Regular Gasoline - Sales to End Users (U.S. only) Regular Gasoline - Through Retail Outlets Regular Gasoline - Other End Users Regular Gasoline - Sales for Resale Regular Gasoline -

  20. Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions

    SciTech Connect (OSTI)

    He, X.; Ratcliff, M. A.; Zigler, B. T.

    2012-04-19

    A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissions is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.

  1. EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

  2. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    SciTech Connect (OSTI)

    Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael; Divita, Vincent

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREET — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.

  3. Annual Energy Review 2003 - September 2004

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 (Million Barrels per Day) Energy Information Administration Annual Energy Review 2003 121 a Unfinished oils, motor gasoline blending components, aviation gasoline blending...

  4. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    from the gasoline outlet frame within those counties within each sampling cell1. Every county in the United States was assigned to the corresponding sampling cell as defined. ...

  5. Motor Gasoline Assessment, Spring 1997

    Reports and Publications (EIA)

    1997-01-01

    Analyzes the factors causing the run up of motor gasoline prices during spring 1996 and the different market conditions during spring 1997 that caused prices to decline.

  6. California Gasoline Price Study, 2003

    Reports and Publications (EIA)

    2003-01-01

    This is the final report to Congressman Ose describing the factors driving California's spring 2003 gasoline price spike and the subsequent price increases in June and August.

  7. Word Pro - S3

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil a Distillate Fuel Oil f Jet Fuel g LPG b Motor Gasoline i Residual Fuel Oil ... finished motor gasoline and motor gasoline blending components; excludes oxygenates. ...

  8. Volatility of Gasoline and Diesel Fuel Blends for Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Preparation, Injection and Combustion of Supercritical Fluids Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced ...

  9. Dispensing Equipment Testing with Mid-Level Ethanol/Gasoline Test Fluid: Summary Report

    SciTech Connect (OSTI)

    Boyce, K.; Chapin, J. T.

    2010-11-01

    The National Renewable Energy Laboratory's (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy's (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

  10. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices decrease (short version) The U.S. average retail price for regular gasoline fell to $3.68 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  11. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices decrease (short version) The U.S. average retail price for regular gasoline fell to $3.67 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  12. Gasoline prices increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices increase (short version) The U.S. average retail price for regular gasoline rose to $3.69 a gallon on Monday. That's up 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  13. Topsoe integrated gasoline synthesis (TIGAS)

    SciTech Connect (OSTI)

    Hansen, H.K.; Joensen, F.

    1987-01-01

    Integration of Haldor Topsoe's oxygenate (MeOH, DME) synthesis and the MTG process into one single synthesis loop provides a new low investment route to gasoline from natural gas. The integrated process has been demonstrated in an industrial pilot with a capacity of 1 MTPD gasoline since 1984. The pilot has operated successfully for more than 10,000 hours.

  14. Refractometric determination of content of aromatic hydrocarbons in AI-93 gasolines

    SciTech Connect (OSTI)

    Kuznetsova, L.M.; Ioffe, B.V.; Mikheeva, E.G.

    1982-11-01

    Investigates the possibility of extending the use of the dispersometric method to the control of aromatic hydrocarbon content in AI-93 gasolines. Uses 4 model blends with aromatics content of 20-40% by weight. Finds that the dispersometric method can be used in analyzing both unleaded and leaded AI-93 gasolines, since the addition of ethyl fluid and dye in formulating the leaded gasolines does not affect the accuracy in determining the aromatic hydrocarbon content. Concludes that the dispersometric method can be used to determine the aromatic hydrocarbon content in AI-93 gasolines to within + or - 1.0% by weight, both in the laboratory (IRF-23M refractometer) and under commercial conditions (in ''Nafta-74'' unit).

  15. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    SciTech Connect (OSTI)

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel ?- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.

  16. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    SciTech Connect (OSTI)

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.

  17. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less

  18. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect (OSTI)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  19. The motor gasoline industry: Past, present, and future. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Motor gasoline constitutes the largest single component of US demand for petroleum products and is the Nation's most widely used transportation fuel. Because of its importance as a transportation fuel, motor gasoline has been the focus of several regulatory and tax policy initiatives in recent years. Much of the US refining capacity is specifically geared toward maximizing motor gasoline production, and future investments by the petroleum industry in refining infrastructure are likely to be made largely to produce larger volumes of clean motor gasoline. This report addresses major events and developments that have had an impact on motor gasoline supply, distribution, prices, and demand. The report provides historical perspective as well as analyses of important events from the 1970's and 1980's. Long-term forecasts are provided for the period from 1990 to 2010 in an effort to present and analyze possible future motor gasoline trends. Other forecasts examine the near-term impact of the invasion of Kuwait. 18 figs., 10 tabs.

  20. Fact #809: December 23, 2013 What Do We Pay for in a Gallon of Gasoline? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: December 23, 2013 What Do We Pay for in a Gallon of Gasoline? Fact #809: December 23, 2013 What Do We Pay for in a Gallon of Gasoline? The figure below shows how the shares of component costs have changed for a gallon of regular gasoline over the ten-year period from September 2003 to September 2013. In 2003, crude oil accounted for 38.3% of the retail price of a gallon of regular gasoline. By 2013, the share for crude oil nearly doubled to 70.8% of the price. While

  1. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price

  2. Crude Oil and Gasoline Price Monitoring

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Product Price Formation September 7, 2016 | Washington, DC An analysis of the factors that influence product prices, with chart data updated monthly, quarterly and annually Gasoline spot prices 2 Sources: U.S. Energy Information Administration, Bloomberg L.P. September 7, 2016 dollars per gallon Chicago CBOB New York Harbor Conventional gasoline Gulf Coast Conventional gasoline Los Angeles CARBOB Northwest Europe gasoline Singapore gasoline 2002 2003 2004 2005 2006 2007 2008 2009 2010

  3. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline Test Fluid

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Renewable Energy Laboratory’s (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy’s (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. The U.S. Environmental Protection Agency (EPA) is considering a waiver application for 15% by volume ethanol blended into gasoline (E15). Should the waiver be granted, service stations may be able to use their current equipment to dispense the new fuel. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

  4. Gasoline Price Pass-through

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    differences, whereas stationary series can be estimated in level form. The unit root test could not reject the hypothesis that the retail and spot gasoline price series have a...

  5. Reformulated gasoline quality issues

    SciTech Connect (OSTI)

    Gonzalez, R.G.; Felch, D.E.; Edgar, M.D.

    1995-11-01

    One year ago, a panel of industry experts were interviewed in the November/December 1994 issue of Fuel Reformulation (Vol. 4, No. 6). With the focus then and now on refinery investments, the panelists were asked to forecast which refining processes would grow in importance. It is apparent from their response, and from other articles and discussions throughout the year, that hydroprocessing and catalytic conversion processes are synergistic in the overall refinery design, with flexibility and process objectives varying on a unit-by-unit case. To an extent, future refinery investments in downstream petrochemicals, such as for paraxylene production, are based on available catalytic reforming feedstock. Just a importantly, hydroprocessing units (hydrotreating, hydrocracking) needed for clean fuel production (gasoline, diesel, aviation fuel), are heavily dependent on hydrogen production from the catalytic reformer. Catalytic reforming`s significant influence in the refinery hydrogen balance, as well as its status as a significant naphtha conversion route to higher-quality fuels, make this unit a high-priority issue for engineers and planners striving for flexibility.

  6. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    SciTech Connect (OSTI)

    Fairbanks, J.W.

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  7. This Week In Petroleum Gasoline Section

    Gasoline and Diesel Fuel Update (EIA)

    Regular gasoline retail prices (dollars per gallon) U.S. Average Conventional Reformulated U.S. retail regular gasoline prices graph Retail average regular gasoline prices graph Retail conventional regular gasoline prices graph Retail reformulated regular gasoline prices graph Retail average regular gasoline prices (dollars per gallon) more price data › Year ago Most recent 08/31/15 08/29/16 08/22/16 08/15/16 08/08/16 08/01/16 07/25/16 07/18/16 U.S. 2.510 2.237 2.193 2.149 2.150 2.159 2.182

  8. Evaluation of Ethanol Blends for PHEVs using Simulation and

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Distillation Curve Method | Department of Energy Supercritical transesterification processing permits efficient fuel system and combustion chamber designs to optimize fuel utilization in diesel engines., p-01_anitescu.pdf (408.75 KB) More Documents & Publications Preparation, Injection and Combustion of Supercritical Fluids Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Algae Biofuels Technology Energy

    This research effort is a part of the

  9. ,"U.S. Motor Gasoline Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Motor Gasoline Prices",6,"Monthly","42016","1... AM" "Back to Contents","Data 1: U.S. Motor Gasoline Prices" "Sourcekey","EMAEPM0PTA...

  10. ,"New York Gasoline and Diesel Retail Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Gasoline and Diesel Retail ... 4:27:01 PM" "Back to Contents","Data 1: New York Gasoline and Diesel Retail Prices" ...

  11. EIA lowers forecast for summer gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA lowers forecast for summer gasoline prices U.S. gasoline prices are expected to be ... according to the new monthly forecast from the U.S. Energy Information Administration. ...

  12. Price Changes in the Gasoline Market - Are Midwestern Gasoline Prices Downward Sticky?

    Reports and Publications (EIA)

    1999-01-01

    The report concentrates on regional gasoline prices in the Midwest from October 1992 through June 1998.

  13. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices decrease (long version) The U.S. average retail price for regular gasoline fell to $3.70 a gallon on Monday. That's down 1.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 4.01 a gallon, down 4.2 cents from a week ago. Prices were lowest in the Rocky Mountain States at 3.47 a gallon, remaining unchanged from last week

  14. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Gasoline prices decrease (long version) The U.S. average retail price for regular gasoline fell to $3.68 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 4.06 a gallon, down 1.8 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.47 a gallon, down 2.6 cents.This is Amerine Woodyard, with EIA, in Washington.

  15. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine ...

  16. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    & Blender Net Production Definitions Key Terms Definition Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Conventional Gasoline

  17. Gasoline prices - January 7, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices remained flat at $3.30 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington. For more information, contact Amerine Woodyard on

  18. Gasoline prices decrease (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Short version) The U.S. average retail price for regular gasoline fell to $3.65 a gallon on Monday. That's down 2.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  19. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.63 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  20. Microsoft Word - Summer 2004 Motor Gasoline Outlook.doc

    Gasoline and Diesel Fuel Update (EIA)

    April 2004 Summer 2004 Motor Gasoline Outlook Summary * Gasoline markets are tight as the 2004 driving season begins and conditions are likely to remain volatile through the summer. High crude oil costs, strong gasoline demand growth, low gasoline inventories, uncertainty about the availability of gasoline imports, high transportation costs, and changes in gasoline specifications have added to current and expected gasoline costs and pump prices. * For the upcoming summer driving season (April to

  1. Impact of Biodiesel on Fuel System Component Durability

    SciTech Connect (OSTI)

    Terry, B.

    2005-09-01

    A study of the effects of biodiesel blends on fuel system components and the physical characteristics of elastomer materials.

  2. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non‑Road Engines, Report 1 - Updated

    SciTech Connect (OSTI)

    Knoll, Keith; West, Brian H; Clark, Wendy; Graves, Ronald L; Orban, John; Przesmitzki, Steve; Theiss, Timothy J

    2009-02-01

    In summer 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends on legacy vehicles and other engines. The purpose of the test program is to assess the viability of using intermediate blends as a contributor to meeting national goals in the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20--gasoline blended with 15 and 20% ethanol--on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This first report provides the results available to date from the first stages of a much larger overall test program. Results from additional projects that are currently underway or in the planning stages are not included in this first report. The purpose of this initial study was to quickly investigate the effects of adding up to 20% ethanol to gasoline on the following: (1) Regulated tailpipe emissions for 13 popular late model vehicles on a drive cycle similar to real-world driving and 28 small non-road engines (SNREs) under certification or typical in use procedures. (2) Exhaust and catalyst temperatures of the same vehicles under more severe conditions. (3) Temperature of key engine components of the same SNREs under certification or typical in-use conditions. (4) Observable operational issues with either the vehicles or SNREs during the course of testing. As discussed in the concluding section of this report, a wide range of additional studies are underway or planned to consider the effects of intermediate ethanol blends on materials, emissions, durability, and driveability of vehicles, as well as impacts on a wider range of nonautomotive engines, including marine applications, snowmobiles, and motorcycles. Section 1 (Introduction) gives background on the test program and describes collaborations with industry and agencies to date. Section 2

  3. JV Task 112-Optimal Ethanol Blend-Level Investigation

    SciTech Connect (OSTI)

    Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

    2008-01-31

    Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

  4. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline Between PADDs Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Conventional Gasoline Finished motor gasoline not included in the oxygenated or reformulated gasoline categories. Excludes reformulated gasoline blendstock for oxygenate blending (RBOB) as well as other blendstock.

  5. Areas Participating in the Reformulated Gasoline Program

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA

  6. Microsoft Word - Gasoline_2008 Supplement.doc

    Gasoline and Diesel Fuel Update (EIA)

    8 1 April 2008 Short-Term Energy Outlook Supplement: Motor Gasoline Consumption 2008 A Historical Perspective and Short-Term Projections 1 Highlights * Income growth rates have less of an impact on recent trends in gasoline consumption than in the past, but short-run effects are still significant. * High gasoline prices are once again motivating drivers to conserve by driving less and purchasing more fuel-efficient transportation. * The increasing share of lower-Btu-content ethanol has

  7. Diesel vs Gasoline Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "swing" between diesel and gasoline production deer08leister.pdf (217.54 KB) More Documents & Publications Marathon Sees Diesel Fuel in Future ITP Petroleum Refining: Energy ...

  8. California Gasoline Price Study, 2003 Preliminary Findings

    Reports and Publications (EIA)

    2003-01-01

    This is the preliminary report to Congressman Ose describing the factors driving California's spring 2003 gasoline price spike and the subsequent price increases in June and August.

  9. Eliminating MTBE in Gasoline in 2006

    Gasoline and Diesel Fuel Update (EIA)

    in 2006. Companies' decisions to eliminate MTBE have been driven by State bans due to water contamination concerns, continuing liability exposure from adding MTBE to gasoline,...

  10. Motor Gasoline Outlook and State MTBE Bans

    Gasoline and Diesel Fuel Update (EIA)

    Motor Gasoline Outlook and State MTBE Bans Tancred Lidderdale Contents 1. Summary 2. MTBE Supply and Demand 3. Ethanol Supply 4. Gasoline Supply 5. Gasoline Prices A. Long-Term Equilibrium Price Analysis B. Short-Term Price Volatility 6. Conclusion 7. Appendix A. Estimating MTBE Consumption by State 8. Appendix B. MTBE Imports and Exports 9. Appendix C. Glossary of Terms 10. End Notes 11. References 1. Summary The U.S. is beginning the summer 2003 driving season with lower gasoline inventories

  11. STEO January 2013 - average gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    drivers to see lower average gasoline prices in 2013 and 2014 U.S. retail gasoline prices are expected to decline over the next two years. The average pump price for regular unleaded gasoline was $3.63 a gallon during 2012. That is expected to fall to $3.44 this year and then drop to $3.34 in 2014, according to the new forecast from the U.S. Energy Information Administration. Expected lower crude oil prices.....which accounted for about two-thirds of the price of gasoline in 2012....will

  12. ,"Motor Gasoline Sales Through Retail Outlets Prices "

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Motor Gasoline Sales Through Retail Outlets Prices ",60,"Annual",2014,"6301984" ,"Release...

  13. TABLE31.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    motor gasoline blending components, minus input of natural gas plant liquids, other hydrocarbons and oxygenates. c Based on finished aviation gasoline output minus net input of...

  14. Annual Energy Review 2008 - Released June 2009

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Administration Annual Energy Review 2008 127 1 Unfinished oils, other hydrocarbonshydrogen, and motor gasoline and aviation gasoline blending components. 2 Net imports (1.51)...

  15. Word Pro - S5.lwp

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2 (Million Barrels per Day) 1 Unfinished oils, hydrogenoxygenatesrenewablesother hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels...

  16. Annual Energy Review - July 2006

    Gasoline and Diesel Fuel Update (EIA)

    Administration Annual Energy Review 2005 125 a Unfinished oils, other hydrocarbonshydrogen, and motor gasoline and aviation gasoline blending components. b Net Imports (1.04),...

  17. Annual Energy Review 2006 - June 2007

    Gasoline and Diesel Fuel Update (EIA)

    Administration Annual Energy Review 2006 123 a Unfinished oils, other hydrocarbonshydrogen, and motor gasoline and aviation gasoline blending components. b Net imports (1.34)...

  18. Word Pro - S5

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 (Million Barrels per Day) 1 Unfinished oils, hydrogenoxygenatesrenewablesother hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels...

  19. Annual Energy Review 2007 - June 2008

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Administration Annual Energy Review 2007 123 a Unfinished oils, other hydrocarbonshydrogen, and motor gasoline and aviation gasoline blending components. b Net imports (1.41)...

  20. Gasoline prices - January 7, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices remained flat at $3.30 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the New England and Central Atlantic regions, at 3.52 a gallon, up around 2 cents in both regions from a week ago. For the second week in a row, prices were lowest in the Rocky Mountain States at 2.94 a gallon, down 8.1 cents. This is

  1. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline fell to $3.65 a gallon on Monday. That's down 2.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.93 a gallon, down 1.9 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.37 a gallon, down 2.6 cents

  2. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline fell to $3.63 a gallon on Monday. That's down 2.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.89 a gallon, up a penny from a week ago. Prices were lowest in the Gulf Coast States at 3.38 a gallon, down 3.9 cents

  3. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  4. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and ... "Date","U.S. Finished Motor Gasoline Stocks at Refineries, Bulk ...

  5. ,"U.S. Motor Gasoline Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Motor Gasoline Refiner Sales ... AM" "Back to Contents","Data 1: U.S. Motor Gasoline Refiner Sales Volumes" ...

  6. Gasoline and Diesel Fuel Update - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    petroleum reports Gasoline and Diesel Fuel Update Gasoline Release Date: August 8, 2016 | Next Release Date: August 15, 2016 Diesel Fuel Release Date: August 8, 2016 | Next ...

  7. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy ...

  8. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, ...

  9. Oxidation characteristics of gasoline direct-injection (GDI)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics of gasoline direct-injection (GDI) engine soot: Catalytic effects of ash and modified kinetic correlation Title Oxidation characteristics of gasoline...

  10. Characterization of Pre-Commercial Gasoline Engine Particulates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods ...

  11. Fact #890: September 14, 2015 Gasoline Prices Are Affected by...

    Broader source: Energy.gov (indexed) [DOE]

    Gasoline Prices Are Affected by Changes in Refinery Output File fotw890web.xlsx More Documents & Publications Fact 858 February 2, 2015 Retail Gasoline Prices in 2014 ...

  12. Gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to decrease (short version) The U.S. average retail price for regular gasoline fell to $3.29 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  13. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.44 a gallon on Monday. That's up 6.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  14. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.48 a gallon on Monday. That's up 3 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  15. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.51 a gallon on Monday. That's up 3.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  16. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.55 a gallon on Monday. That's up 3½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  17. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    4, 2014 Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.65 a gallon on Monday. That's up 5½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  18. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    1, 2014 Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.68 a gallon on Monday. That's up 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  19. Gasoline prices continue to rise (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to rise (short version) The U.S. average retail price for regular gasoline rose to $3.67 a gallon on Monday. That's up 7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  20. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Input Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Blending Plant A facility which has no refining capability but is either capable of producing finished motor gasoline through mechanical blending or blends oxygenates with motor gasoline. Conventional Blendstock for Oxygenate Blending (CBOB) Motor gasoline blending components intended for blending with oxygenates to produce finished conventional motor gasoline. Fuel Ethanol An anhydrous denatured aliphatic

  1. The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization

    SciTech Connect (OSTI)

    Szybist, James P; West, Brian H

    2013-01-01

    Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon

  2. Blends of chitin and chitosan with polyamide 66

    SciTech Connect (OSTI)

    Gonzalez, V.; Guerrero, C.

    1996-12-31

    For several years, intense interest has been focused on polymer blends in which both components are synthetic polymers. However, few studies have been made on blends in which one component is chitin (QA), or chitosan (QN), the most abundant natural polymers after cellulose. Its chemical structure, based in partially acetilated {beta}-aminosaccharide units, permits the formation of natural blends with proteins and inorganic salts were the intermolecular hydrogen bonds play an important role. The choice of a partner for these natural polymers was made expecting strong interaction between the two polymers. For this reason, on this work, polyamide 66 (P66), has been chosen.

  3. Phase Segregation in Polystyrene?Polylactide Blends

    SciTech Connect (OSTI)

    Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

    2010-06-09

    Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

  4. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  5. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  6. The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization | Department of Energy The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization deer12_szybist.pdf (3.46 MB) More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Gasoline-Like Fuel Effects on Advanced

  7. Assessment of Summer 1997 Motor Gasoline Price Increase

    Reports and Publications (EIA)

    1998-01-01

    Assesses the 1997 late summer gasoline market and some of the important issues surrounding that event.

  8. Gasoline Ultra Fuel Efficient Vehicle Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Fuel Efficient Vehicle Program Update Gasoline Ultra Fuel Efficient Vehicle Program Update Discusses hardware and system development activities to achieve in-vehicle fuel economy and emissions performance improvements compared to a production baseline vehicle. deer12_confer.pdf (1.38 MB) More Documents & Publications Gasoline Ultra Fuel Efficient Vehicle Gasoline Ultra Fuel Efficient Vehicle Gasoline Ultra Fuel Efficient Vehicle

  9. DOE's Gasoline/Diesel PM Split Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline/Diesel PM Split Study DOE's Gasoline/Diesel PM Split Study 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_fujita.pdf (187.6 KB) More Documents & Publications DOE's Gasoline/Diesel PM Split Study DOE's Gasoline/Diesel PM Split Study Weekend/Weekday Ozone Study in the South Coast Air Basin

  10. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net Inputs of Motor Gasoline Blending Components Net Inputs of RBOB Blending Components Net Inputs of CBOB Blending Components Net Inputs of GTAB Blending Components Net Inputs of All Other Blending Components Net Inputs of Fuel Ethanol Net Production - Finished Motor Gasoline Net Production - Finished Motor Gasoline (Excl.

  11. Insights into Spring 2008 Gasoline Prices

    Reports and Publications (EIA)

    2008-01-01

    Gasoline prices rose rapidly in spring 2007 due a variety of factors, including refinery outages and lower than expected imports. This report explores those factors and looks at the implications for 2008.

  12. Inquiry into August 2003 Gasoline Price Spike

    Reports and Publications (EIA)

    2003-01-01

    U.S. Secretary of Energy Spencer Abraham requested that the Energy Information Administration conduct an inquiry into the causes of the price increases of gasoline in July and August of 2003.

  13. Reformulated Gasoline Market Affected Refiners Differently, 1995

    Reports and Publications (EIA)

    1996-01-01

    This article focuses on the costs of producing reformulated gasoline (RFG) as experienced by different types of refiners and on how these refiners fared this past summer, given the prices for RFG at the refinery gate.

  14. Gasoline prices show sharp increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline saw its sharpest increase this year at 3.54 a gallon on Monday. That's up 18.1 cents from a week ago, based on ...

  15. Gasoline prices show sharp increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline saw its sharpest increase this year at 3.54 a gallon on Monday. That's up 18.1 cents from a week ago, based on the ...

  16. Summer 2003 Motor Gasoline Outlook.doc

    Gasoline and Diesel Fuel Update (EIA)

    3 1 Short-Term Energy Outlook April 2003 Summer 2003 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2003), high crude oil costs and other factors are expected to yield average retail motor gasoline prices higher than those of last year. Current crude oil prices reflect a substantial uncertainty premium due to concerns about the current conflict in the Persian Gulf, lingering questions about whether Venezuelan oil production will recover to near pre-strike

  17. Chemistry Impacts in Gasoline HCCI

    SciTech Connect (OSTI)

    Szybist, James P; Bunting, Bruce G

    2006-09-01

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its

  18. Alternative Fuels Data Center: Ethanol Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15

  19. Trends in motor gasolines: 1942-1981

    SciTech Connect (OSTI)

    Shelton, E M; Whisman, M L; Woodward, P W

    1982-06-01

    Trends in motor gasolines for the years of 1942 through 1981 have been evaluated based upon data contained in surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. The surveys have been conducted in cooperation with the American Petroleum Institute (API) since 1948. Various companies from throughout the country obtain samples from retail outlets, analyze the samples by the American Society for Testing and Materials (ASTM) procedures, and report data to the Bartlesville center for compilation, tabulation, calculation, analysis and publication. A typical motor gasoline report covers 2400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots, and tables of test results from about a dozen different tests. From these data in 77 semiannual surveys, a summary report has thus been assembled that shows trends in motor gasolines throughout the entire era of winter 1942 to 1943 to the present. Trends of physical properties including octane numbers, antiknock ratings, distillation temperatures, Reid vapor pressure, sulfur and lead content are tabulated, plotted and discussed in the current report. Also included are trend effects of technological advances and the interactions of engine design, societal and political events and prices upon motor gasoline evolution during the 40 year period.

  20. U.S. average gasoline prices falling to near $2 in December

    U.S. Energy Information Administration (EIA) Indexed Site

    In its new forecast, the U.S. Energy Information Administration said high gasoline production, cheaper winter-grade gasoline, and lower gasoline demand following this summer's peak ...

  1. Motor gasolines, winter 1981-1982

    SciTech Connect (OSTI)

    Shelton, E M

    1982-07-01

    Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

  2. Oxy-gasoline torch. Innovative technology summary report

    SciTech Connect (OSTI)

    1998-12-01

    Under the deactivation and decommissioning (D and D) Implementation Plan of the US Department of Energy`s (DOE) Fernald Environmental Management Project (FEMP), non-recyclable process components and debris that are removed from buildings undergoing D and D are disposed of in an on-site disposal facility (OSDF). Critical to the design and operation of the FEMP`s OSDF are provisions to protect against subsidence of the OSDF`s cap. Subsidence of the cap could occur if void spaces within the OSDF were to collapse under the overburden of debris and the OSDF cap. Subsidence may create significant depressions in the OSDF`s cap in which rainwater could collect and eventually seep into the OSDF. To minimize voids in the FEMP`s OSDF, large metallic components are cut into smaller segments that can be arranged more compactly when placed in the OSDF. Component segmentation using an oxy-acetylene cutting torch was the baseline approach used by the FEMP`s D and D contractor on Plant 1, Babcock and Wilcox (B and W) Services, Inc., for the dismantlement and size-reduction of large metal components. Although this technology has performed satisfactorily, improvements are sought in the areas of productivity, airborne contamination, safety, and cost. This demonstration investigated the feasibility of using an oxy-gasoline torch as an alternative to the baseline oxy-acetylene torch for segmenting D and D components. This report provides a comparative analysis of the cost and performance of the baseline oxy-acetylene torch currently used by B and W Services, Inc., and the innovative oxy-gasoline torch.

  3. Alternative Fuels Data Center: Biodiesel Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Blends to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blends on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blends on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blends on Google Bookmark Alternative Fuels Data Center: Biodiesel Blends on Delicious Rank Alternative Fuels Data Center: Biodiesel Blends on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blends on AddThis.com... More in this section... Biodiesel Basics

  4. The oxidation of a gasoline surrogate in the negative temperature coefficient region

    SciTech Connect (OSTI)

    Lenhert, David B.; Miller, David L.; Cernansky, Nicholas P.; Owens, Kevin G.

    2009-03-15

    This experimental study investigated the preignition reactivity behavior of a gasoline surrogate in a pressurized flow reactor over the low and intermediate temperature regime (600-800 K) at elevated pressure (8 atm). The surrogate mixture, a volumetric blend of 4.6% 1-pentene, 31.8% toluene, 14.0% n-heptane, and 49.6% 2,2,4-trimethyl-pentane (iso-octane), was shown to reproduce the low and intermediate temperature reactivity of full boiling range fuels in a previous study. Each of the surrogate components were examined individually to identify the major intermediate species in order to improve existing kinetic models, where appropriate, and to provide a basis for examining constituent interactions in the surrogate mixture. n-Heptane and 1-pentene started reacting at 630 K and 640 K, respectively, and both fuels exhibited a strong negative temperature coefficient (NTC) behavior starting at 700 and 710 K, respectively. Iso-octane showed a small level of reactivity at 630 K and a weak NTC behavior starting at 665 K. Neat toluene was unreactive at these temperatures. The surrogate started reacting at 630 K and exhibited a strong NTC behavior starting at 693 K. The extent of fuel consumption varied for each of the surrogate constituents and was related to their general autoignition behavior. Most of the intermediates identified during the surrogate oxidation were species observed during the oxidation of the neat constituents; however, the surrogate mixture did exhibit a significant increase in intermediates associated with iso-octane oxidation, but not from n-heptane. While neat toluene was unreactive at these temperatures, in the mixture it reacted with the radical pool generated by the other surrogate components, forming benzaldehyde, benzene, phenol, and ethyl-benzene. The observed n-heptane, iso-octane, and surrogate oxidation behavior was compared to predictions using existing kinetic models. The n-heptane model reasonably predicted the disappearance of the fuel

  5. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect (OSTI)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  6. Ethanol-blended Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle

  7. Motor Gasoline Market Spring 2007 and Implications for Spring 2008

    Reports and Publications (EIA)

    2008-01-01

    This report focuses on the major factors that drove the widening difference between wholesale gasoline and crude oil prices in 2007 and explores how those factors might impact gasoline prices in 2008.

  8. U.S. summer gasoline prices dive this year

    U.S. Energy Information Administration (EIA) Indexed Site

    Cheaper gasoline along with a stronger economy will encourage more driving. As a result, gasoline demand is forecast to reach a record high of nearly 9.5 million barrels per day ...

  9. Combustion and Emissions Performance of Dual-Fuel Gasoline and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline ...

  10. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...

    Broader source: Energy.gov (indexed) [DOE]

    35: Average Annual Gasoline Pump Price, 1929-2013 fotw835web.xlsx (21.31 KB) More Documents & Publications Fact 915: March 7, 2016 Average Historical Annual Gasoline Pump Price, ...

  11. DOE's Gasoline/Diesel PM Split Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications DOE's GasolineDiesel PM Split Study DOE's GasolineDiesel PM Split Study Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel ...

  12. ,"New York City Gasoline and Diesel Retail Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York City Gasoline and Diesel Retail ... 4:27:10 PM" "Back to Contents","Data 1: New York City Gasoline and Diesel Retail ...

  13. U.S. gasoline price falls under $3 (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    November 3, 2014 U.S. gasoline price falls under 3 (long version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon ...

  14. U.S. gasoline price falls under $3 (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 U.S. gasoline price falls under 3 (short version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon on Monday. ...

  15. What Drives U.S. Gasoline Prices?

    U.S. Energy Information Administration (EIA) Indexed Site

    What Drives U.S. Gasoline Prices? October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | What Drives U.S. Gasoline Prices? i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  16. Gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $3.29 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.49 a gallon, up 6-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.08 a gallon, down 9-tenths of a penny. This is Amerine Woodyard, with

  17. Gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    19, 2014 Gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $3.67 a gallon on Monday. That's down 3-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 4.02 a gallon, down 7-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.44 a gallon, up 2-tenths of a penny.

  18. Gasoline prices continue to fall (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to fall (long version) The U.S. average retail price for regular gasoline decreased for the second week in a row to $3.71 a gallon on Monday. That's down 4.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 4.05 a gallon, down 2 cents from a week ago. Prices were lowest in the Rocky Mountain States at 3.47 a gallon, down 7-tenths of a penny

  19. Gasoline prices continue to fall (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to fall (long version) The U.S. average retail price for regular gasoline fell to $3.61 a gallon on Monday. That's down 3.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.93 a gallon, down 1.7 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.43 a gallon, down 4.6

  20. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    , 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.48 a gallon on Monday. That's up 3 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.71 a gallon, up 5.6 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.23 a gallon, up 1.8 cents. This is Marcela Rourk, with EIA, in Washington.

  1. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    March 10, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.51 a gallon on Monday. That's up 3.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.76 a gallon, up 4.7 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.25 a gallon, up 2 ½ cents.

  2. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.55 a gallon on Monday. That's up 3½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.81 a gallon, up 5½ cents from a week ago. Prices were lowest in the Gulf Coast region at 3.28 a gallon, up 3.1 cents. This is Marcela Rourk, with EIA, in Washington.

  3. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    14, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.65 a gallon on Monday. That's up 5½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.98 a gallon, up 9.7 cents from a week ago. Prices were lowest in the Rocky Mountain states at 3.44 a gallon, down 8-tenths of a penny

  4. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    21, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.68 a gallon on Monday. That's up 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 4.03 a gallon, up a nickel from a week ago. Prices were lowest in the Rocky Mountain states at 3.45 a gallon, up 8-tenths of a penny

  5. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    24, 2014 Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.44 a gallon on Monday. That's up 6.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.65 a gallon, up 8 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.21 a gallon, up

  6. Gasoline prices continue to rise (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to rise (long version) The U.S. average retail price for regular gasoline rose to $3.67 a gallon on Monday. That's up 7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.95 a gallon, up 1.4 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.39 a gallon, up 2.8 cents. The Midwest region boasted the highest weekly increase at 18.8 cents with

  7. Gasoline prices inch down (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices inch down (long version) The U.S. average retail price for regular gasoline fell to $3.68 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.96 a gallon, down 4.2 cents from a week ago and marking the first dip below the 4 dollar mark since mid-February. Prices were lowest in the Rocky Mountain States at 3.47 a gallon, remaining unchanged

  8. NAFTA and gasoline: Canada, U. S. , Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-03-31

    The North American Free Trade Agreement has become a hotly debated topic all over the world, but especially in the countries involved: Mexico, United States, and Canada. Comments made by high ranking officials imply there are differences to reconcile before the agreement is passed. Toward seeing these countries in trio, this issue compares gasoline markets and some energy perspectives. The purpose of this article is to contribute to understanding of the three countries through their petroleum industry structure. Gasoline consumption and retail delivery infrastructure are compared and contrasted to illustrate the differences among the NAFTA countries.

  9. Motor Gasoline Market Model documentation report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The purpose of this report is to define the objectives of the Motor Gasoline Market Model (MGMM), describe its basic approach and to provide detail on model functions. This report is intended as a reference document for model analysts, users, and the general public. The MGMM performs a short-term (6- to 9-month) forecast of demand and price for motor gasoline in the US market; it also calculates end of month stock levels. The model is used to analyze certain market behavior assumptions or shocks and to determine the effect on market price, demand and stock level.

  10. Note on the structural stability of gasoline demand and the welfare economics of gasoline taxation

    SciTech Connect (OSTI)

    Kwast, M.L.

    1980-04-01

    A partial adjustment model is used to investigate how the 1973 to 1974 oil embargo affected the structural stability of gasoline demand and to compute the welfare effects of higher gasoline taxes. A variety of statistical tests are used to demonstrate the structural stability of gasoline demand in spite of higher prices. A case study demonstrates only modest price elasticity in response to increased taxes. Higher excise taxes are felt to be justified, however, as an efficient source of revenue even though their effect on demand is limited. 17 references, 4 tables. (DCK)

  11. Fact #565: April 6, 2009 Household Gasoline Expenditures by Income |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: April 6, 2009 Household Gasoline Expenditures by Income Fact #565: April 6, 2009 Household Gasoline Expenditures by Income In the annual Consumer Expenditure Survey, household incomes are grouped into five equal parts called quintiles (each quintile is 20%). Households in the second and third quintiles consistently have a higher share of spending on gasoline each year than households in the other quintiles. Household Gasoline Expenditures by Income Quintile Bar graph

  12. National Survey of E85 and Gasoline Prices

    SciTech Connect (OSTI)

    Bergeron, P.

    2008-10-01

    Study compares the prices of E85 and regular gasoline nationally and regionally over time for one year.

  13. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Euro VI Emissions | Department of Energy Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions 3-cylindery gasoline direct injection engines offer similar value in CO2 reduction capability (Euros/% CO2 reduction) at a significantly lower on-cost. deer09_kirwan.pdf (1.32 MB) More Documents & Publications Gasoline Ultra Fuel Efficient Vehicle Reducing

  14. Why Do Motor Gasoline Prices Vary Regionally? California Case Study

    Reports and Publications (EIA)

    1998-01-01

    Analysis of the difference between the retail gasoline prices in California and the average U.S. retail prices.

  15. DOE Gasoline Price Watch Website and Hotline | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline Price Watch Website and Hotline DOE Gasoline Price Watch Website and Hotline April 20, 2006 - 12:26pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today is reminding consumers about the Department of Energy's (DOE) gasoline price reporting system. Consumers can report activity at local gasoline filling stations that they believe may constitute "gouging" or "price fixing" by visiting gaswatch.energy.gov/. "There are many legitimate factors

  16. Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000

    Gasoline and Diesel Fuel Update (EIA)

    Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 Tancred Lidderdale and Aileen Bohn (1) Contents * Summary * Introduction * Reformulated Gasoline Demand * Oxygenate Demand * Logistics o Interstate Movements and Storage o Local Distribution o Phase 2 RFG Logistics o Possible Opt-Ins to the RFG Program o State Low Sulfur, Low RVP Gasoline Initiatives o NAAQS o Tier 2 Gasoline * RFG Production Options o Toxic Air Pollutants (TAP) Reduction o Nitrogen Oxides (NOx) Reduction o

  17. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  18. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  19. Path to High Efficiency Gasoline Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine deer10_johansson.pdf (4.97 MB) More Documents & Publications Partially Premixed Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control Advanced Lean-Burn DI Spark Ignition Fuels Research

  20. Gasoline price shows small increase (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    shows small increase (Short version) The U.S. average retail price for regular gasoline rose to $3.32 a gallon on Monday. That's up 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  1. Gasoline price shows small increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Short version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices rose 4/10 of a cent to $3.30 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration.

  2. Gasoline price up this week (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline rose to $3.36 a gallon on Monday. That's up 4.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  3. Gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    (short version) The U.S. average retail price for regular gasoline fell to $3.65 a gallon on Monday. That's down 3 1/2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  4. Gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.50 a gallon on Monday. That's down 8.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  5. Gasoline prices continue to fall (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    (short version) The U.S. average retail price for regular gasoline fell to $3.54 a gallon on Monday. That's down 6.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  6. Gasoline prices continue to fall (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    (short version) The U.S. average retail price for regular gasoline decreased for the second week in a row to $3.71 a gallon on Monday. That's down 4.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  7. Gasoline prices continue to fall (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.70 a gallon on Monday. That's down 1.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  8. Gasoline prices continue to fall (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.61 a gallon on Monday. That's down 3.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  9. Gasoline prices continue to fall (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.52 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  10. Gasoline prices fall slightly (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell slightly to $3.49 a gallon on Monday. That's down 4-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  11. Gasoline prices inch down (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline rose slightly to $3.66 a gallon on Monday. That's up nine tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  12. Gasoline prices inch down (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.68 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  13. Gasoline prices inch down slightly (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell slightly to $3.54 a gallon on Monday. That's down 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  14. Gasoline prices up this week (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline rose to $3.61 a gallon on Monday. That's up 7.3 cents from a week ago and up 25.4 cents from two weeks ago, based on the weekly price survey by the U.S. Energy Information Administration.

  15. Gasoline prices up this week (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline rose to $3.75 a gallon on Monday. That's up almost 14 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  16. Gasoline prices up this week (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline rose to $3.78 a gallon on Monday. That's up 3.7 cents from a week ago and up almost 43 cents from 4 weeks ago, based on the weekly price survey by the U.S. Energy Information Administration.

  17. Price changes in the gasoline market: Are Midwestern gasoline prices downward sticky?

    SciTech Connect (OSTI)

    1999-03-01

    This report examines a recurring question about gasoline markets: why, especially in times of high price volatility, do retail gasoline prices seem to rise quickly but fall back more slowly? Do gasoline prices actually rise faster than they fall, or does this just appear to be the case because people tend to pay more attention to prices when they`re rising? This question is more complex than it might appear to be initially, and it has been addressed by numerous analysts in government, academia and industry. The question is very important, because perceived problems with retail gasoline pricing have been used in arguments for government regulation of prices. The phenomenon of prices at different market levels tending to move differently relative to each other depending on direction is known as price asymmetry. This report summarizes the previous work on gasoline price asymmetry and provides a method for testing for asymmetry in a wide variety of situations. The major finding of this paper is that there is some amount of asymmetry and pattern asymmetry, especially at the retail level, in the Midwestern states that are the focus of the analysis. Nevertheless, both the amount asymmetry and pattern asymmetry are relatively small. In addition, much of the pattern asymmetry detected in this and previous studies could be a statistical artifact caused by the time lags between price changes at different points in the gasoline distribution system. In other words, retail gasoline prices do sometimes rise faster than they fall, but this is largely a lagged market response to an upward shock in the underlying wholesale gasoline or crude oil prices, followed by a return toward the previous baseline. After consistent time lags are factored out, most apparent asymmetry disappears.

  18. Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint

    SciTech Connect (OSTI)

    He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

    2011-02-01

    The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

  19. U.S. gasoline consumption highest in 8 years

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. gasoline consumption highest in 8 years U.S. gasoline consumption this year is expected to be at the highest level since the record fuel demand seen back in 2007 as lower gasoline prices and more people finding jobs means more sales at the gasoline pump. In its new monthly forecast, the U.S. Energy Information Administration said gasoline consumption increased by 2.7% during the first eight months of 2015 and should rise by an average of 190,000 barrels per day this year to 9.1 million

  20. South Texas Blending | Open Energy Information

    Open Energy Info (EERE)

    search Name: South Texas Blending Place: Laredo, Texas Zip: 78045 Product: Biodiesel producer based in Texas. References: South Texas Blending1 This article is a stub....

  1. Low-Level Ethanol Fuel Blends

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    This fact sheet addresses: (a) why Clean Cities promotes ethanol blends; (b) how these blends affect emissions; (c) fuel performance and availability; and (d) cost, incentives, and regulations.

  2. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Imports & Exports Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether),

  3. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Inputs & Utilization Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether),

  4. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Total Stocks Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether), butane, and

  5. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Supply Estimates Definitions Key Terms Definition All Other Motor Gasoline Blending Components Naphthas (e.g. straight-run gasoline, alkylate, reformate, benzene, toluene, xylene) used for blending or compounding into finished motor gasoline. Includes receipts and inputs of Gasoline Treated as Blendstock (GTAB). Excludes conventional blendstock for oxygenate blending (CBOB), reformulated blendstock for oxygenate blending, oxygenates (e.g. fuel ethanol and methyl tertiary butyl ether),

  6. CREATING THE NORTHEAST GASOLINE SUPPLY RESERVE

    Broader source: Energy.gov [DOE]

    In 2012, Superstorm Sandy made landfall in the northeastern United States and caused heavy damage to two refineries and left more than 40 terminals in New York Harbor closed due to water damage and loss of power. This left some New York gas stations without fuel for as long as 30 days. As part of the Obama Administration’s ongoing response to the storm, the Department of Energy created the first federal regional refined product reserve, the Northeast Gasoline Supply Reserve.

  7. Reformulated gasoline deal with Venezuela draws heat

    SciTech Connect (OSTI)

    Begley, R.

    1994-04-06

    A fight is brewing in Congress over a deal to let Venezuela off the hook in complying with the Clean Air Act reformulated gasoline rule. When Venezuela threatened to call for a GATT panel to challenge the rule as a trade barrier, the Clinton Administration negotiated to alter the rule, a deal that members of Congress are characterizing as {open_quotes}secret{close_quotes} and {open_quotes}back door.{close_quotes}

  8. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Gasoline/Diesel PM Split Study Eric M. Fujita, David E. Campbell, William P. Arnott, Barbara Zielinska and Judith C. Chow Division of Atmospheric Sciences Desert Research Institute Reno, NV Douglas R. Lawson National Renewable Energy Laboratory Golden, CO 9 th Diesel Engine Emission Reduction (DEER) Workshop Newport, RI August 24-28, 2003 1 Acknowledgments Sponsor DOE's Office of FreedomCAR and Vehicle Technologies Dr. James Eberhardt Additional Support U.S. Environmental Protection Agency

  9. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline/Diesel PM Split Study Douglas R. Lawson, National Renewable Energy Laboratory, Golden, CO Peter Gabele (retired), U.S. Environmental Protection Agency, Research Triangle Park, NC Richard Snow, BKI, Inc., Research Triangle Park, NC Nigel Clark, W. Scott Wayne, Ralph D. Nine, West Virginia University, Morgantown, WV Eric M. Fujita, Barbara Zielinska, William P. Arnott, David E. Campbell, John W. Walker, Hans Moosmüller, Desert Research Institute, Reno, NV Jamie Schauer, Charles

  10. European Lean Gasoline Direct Injection Vehicle Benchmark

    SciTech Connect (OSTI)

    Chambon, Paul H; Huff, Shean P; Edwards, Kevin Dean; Norman, Kevin M; Prikhodko, Vitaly Y; Thomas, John F

    2011-01-01

    Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

  11. Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; Hensley, Jesse; Snowden-Swan, Lesley J.; Humbird, David; Schaidle, Joshua; Biddy, Mary

    2015-10-28

    This paper describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas via indirect gasification, gas clean-up via reforming of tars and other hydrocarbons, catalytic conversion of syngas to methanol, methanol dehydration to dimethyl ether (DME), and the homologation of DME over a zeolite catalyst to high-octane gasoline-range hydrocarbon products. The current process configuration has similarities to conventional methanol-to-gasoline (MTG) technologies, but there are key distinctions, specifically regarding the product slate, catalysts, and reactor conditions. A techno-economicmore » analysis is performed to investigate the production of high-octane gasoline blendstock. The design features a processing daily capacity of 2000 tonnes (2205 short tons) of dry biomass. The process yields 271 liters of liquid fuel per dry tonne of biomass (65 gal/dry ton), for an annual fuel production rate of 178 million liters (47 MM gal) at 90% on-stream time. The estimated total capital investment for an nth-plant is $438 million. The resulting minimum fuel selling price (MFSP) is $0.86 per liter or $3.25 per gallon in 2011 US dollars. A rigorous sensitivity analysis captures uncertainties in costs and plant performance. Sustainability metrics for the conversion process are quantified and assessed. The potential premium value of the high-octane gasoline blendstock is examined and found to be at least as competitive as fossil-derived blendstocks. A simple blending strategy is proposed to demonstrate the potential for blending the biomass-derived blendstock with petroleum-derived intermediates. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.« less

  12. Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates

    SciTech Connect (OSTI)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; Hensley, Jesse; Snowden-Swan, Lesley J.; Humbird, David; Schaidle, Joshua; Biddy, Mary

    2015-10-28

    This paper describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas via indirect gasification, gas clean-up via reforming of tars and other hydrocarbons, catalytic conversion of syngas to methanol, methanol dehydration to dimethyl ether (DME), and the homologation of DME over a zeolite catalyst to high-octane gasoline-range hydrocarbon products. The current process configuration has similarities to conventional methanol-to-gasoline (MTG) technologies, but there are key distinctions, specifically regarding the product slate, catalysts, and reactor conditions. A techno-economic analysis is performed to investigate the production of high-octane gasoline blendstock. The design features a processing daily capacity of 2000 tonnes (2205 short tons) of dry biomass. The process yields 271 liters of liquid fuel per dry tonne of biomass (65 gal/dry ton), for an annual fuel production rate of 178 million liters (47 MM gal) at 90% on-stream time. The estimated total capital investment for an nth-plant is $438 million. The resulting minimum fuel selling price (MFSP) is $0.86 per liter or $3.25 per gallon in 2011 US dollars. A rigorous sensitivity analysis captures uncertainties in costs and plant performance. Sustainability metrics for the conversion process are quantified and assessed. The potential premium value of the high-octane gasoline blendstock is examined and found to be at least as competitive as fossil-derived blendstocks. A simple blending strategy is proposed to demonstrate the potential for blending the biomass-derived blendstock with petroleum-derived intermediates. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.

  13. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    Diesel Fuel Pump Components History WHAT WE PAY FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) May-02 1.305 5.1 11.3 36.9 46.6 Jun-02 1.286 6.6 11.2 37.5 44.7 Jul-02 1.299 5.3 12.1 37.1 45.5 Aug-02 1.328 8.6 7.8 36.3 47.4 Sep-02 1.411 12.0 7.5 34.2 46.3 Oct-02 1.462 11.4 10.9 33 44.8 Nov-02 1.420 12.0 12.8 33.9 41.2 Dec-02 1.429 12.7 9.3 33.7 44.3 Jan-03 1.488 10.7

  14. Raman Scattering Sensor for Control of the Acid Alkylation Process in Gasoline Production

    SciTech Connect (OSTI)

    Uibel, Rory, H.; Smith, Lee M.; Benner, Robert, E.

    2006-04-19

    Gasoline refineries utilize a process called acid alkylation to increase the octane rating of blended gasoline, and this is the single most expensive process in the refinery. For process efficiency and safety reasons, the sulfuric acid can only be used while it is in the concentration range of 98 to 86 %. The conventional technique to monitor the acid concentration is time consuming and is typically conducted only a few times per day. This results in running higher acid concentrations than they would like to ensure that the process proceeds uninterrupted. Maintaining an excessively high acid concentration costs the refineries millions of dollars each year. Using SBIR funding, Process Instruments Inc. has developed an inline sensor for real time monitoring of acid concentrations in gasoline refinery alkylation units. Real time data was then collected over time from the instrument and its responses were matched up with the laboratory analysis. A model was then developed to correlate the laboratory acid values to the Raman signal that is transmitted back to the instrument from the process stream. The instrument was then used to demonstrate that it could create real-time predictions of the acid concentrations. The results from this test showed that the instrument could accurately predict the acid concentrations to within ~0.15% acid strength, and this level of prediction proved to be similar or better then the laboratory analysis. By utilizing a sensor for process monitoring the most economic acid concentrations can be maintained. A single smaller refinery (50,000 barrels/day) estimates that they should save over $120,000/year, with larger refineries saving considerably more.

  15. Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction

    SciTech Connect (OSTI)

    Andile B. Mzinyati

    2007-09-15

    The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

  16. Vehicle Technologies Office Merit Review 2014: Low-Temperature Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion (LTGC) Engine Research | Department of Energy Low-Temperature Gasoline Combustion (LTGC) Engine Research Vehicle Technologies Office Merit Review 2014: Low-Temperature Gasoline Combustion (LTGC) Engine Research Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-temperature gasoline combustion engine research. ace004_dec_2014_o.pdf (1.5 MB) More

  17. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace065_rinkevich_2011_o.pdf (512.16 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2015: Advanced Gasoline Turbocharged

  18. Energy Department Announces First Regional Gasoline Reserve to Strengthen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Resiliency | Department of Energy First Regional Gasoline Reserve to Strengthen Fuel Resiliency Energy Department Announces First Regional Gasoline Reserve to Strengthen Fuel Resiliency May 2, 2014 - 10:29am Addthis News Media Contact 202-586-4940 WASHINGTON - As part of the Obama Administration's response to Superstorm Sandy, Energy Secretary Ernest Moniz today announced the creation of the first federal regional refined petroleum product reserve containing gasoline. Based on the

  19. Vehicle Technologies Office Merit Review 2015: Low-Temperature Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion (LTGC) Engine Research | Department of Energy Low-Temperature Gasoline Combustion (LTGC) Engine Research Vehicle Technologies Office Merit Review 2015: Low-Temperature Gasoline Combustion (LTGC) Engine Research Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-temperature gasoline combustion engine research. ace004_dec_2015_o.pdf (1.46 MB) More

  20. Comparing the Powertrain Energy Densities of Electric and Gasoline Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne National Laboratory Comparing the Powertrain Energy Densities of Electric and Gasoline Vehicles Title Comparing the Powertrain Energy Densities of Electric and Gasoline Vehicles Publication Type Conference Paper Year of Publication 2016 Authors Vijayagopal, R, Gallagher, K, Lee, D, Rousseau, A Conference Name SAE 2016 World Congress and Exhibition Date Published 04052016 Other Numbers SAE Paper No. 2016-01-0903 Keywords batteries, electric vehicles, EVs, fuel economy, gasoline,

  1. ,"U.S. Reformulated, Average Refiner Gasoline Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...www.eia.govdnavpetpetprirefmg2cnusepm0rdpgalm.htm" ,"Source:","Energy Information ... Reformulated Gasoline Retail Sales by Refiners (Dollars per ...

  2. ,"U.S. Conventional, Average Refiner Gasoline Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...www.eia.govdnavpetpetprirefmg2cnusepm0udpgalm.htm" ,"Source:","Energy Information ... Conventional Gasoline Retail Sales by Refiners (Dollars per ...

  3. Design Case Summary: Production of Gasoline and Diesel from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Pyrolysis Design Case Cost targets for converting biomass to renewable gasoline and ... technologies and to determine where improvements need to take place in the future. ...

  4. Advantages of Oxygenates Fuels over Gasoline in Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  5. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Natural Gas Plants (Thousand Barrels)","East Coast (PADD 1) Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand ...

  6. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will describe preliminary emission results of gasolinediesel RCCI in a ...

  7. Reformulated Gasoline Use Under the 8-Hour Ozone Rule

    Reports and Publications (EIA)

    2002-01-01

    This paper focuses on the impact on gasoline price and supply when additional ozone non-attainment areas come under the new 8-hour ozone standard.

  8. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...

  9. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  10. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials 2002 ...

  11. Motor Gasoline Market Spring 2007 and Implications for Spring...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    began to decline, and with the transition from methyl tertiary butyl ether (MTBE) to ethanol completed and the end of the summer driving season drawing near, gasoline prices...

  12. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1997 Table 43....

  13. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) - Continued Geographic Area Month Premium All Grades Sales...

  14. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) - Continued Geographic Area Month Premium All Grades Sales...

  15. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Premium All...

  16. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Premium All...

  17. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1996 Table 43....

  18. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) Indexed Site

    at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration Petroleum Marketing Annual 1996 Table 31. Motor...

  19. Gasoline prices peak, expected to fall through end of 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices peak, expected to fall through end of 2016 It's all downhill for U.S. drivers at least far as the outlook for gasoline prices is concerned. Gasoline prices are expected to gradually fall through the end of this year. In its new monthly forecast, the U.S. Energy Information Administration said the retail price for regular-grade gasoline averaged $2.37 per gallon in June. That's down 43 cents from the same month last year. The average monthly pump price is expected to drop to $2.01

  20. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace063smith2013o.pdf More Documents & Publications Lean Gasoline System Development for Fuel ...

  1. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  2. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  3. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    250 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  4. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  5. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  6. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  7. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    134 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  8. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    134 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  9. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    220 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  10. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - - - - - - - - - - - See footnotes at end of table. 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 116 Energy Information...

  11. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy...

  12. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1999 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  13. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  14. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - - - W W - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

  15. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1995 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  16. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - - - 64.7 64.7 - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

  17. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    250 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  18. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    220 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  19. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  20. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  1. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  2. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  3. Method to blend separator powders

    SciTech Connect (OSTI)

    Guidotti, Ronald A.; Andazola, Arthur H.; Reinhardt, Frederick W.

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  4. EffectsIntermediateEthanolBlends.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EffectsIntermediateEthanolBlends.pdf EffectsIntermediateEthanolBlends.pdf EffectsIntermediateEthanolBlends.pdf EffectsIntermediateEthanolBlends.pdf (1.43 MB) More Documents & Publications Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009 Mid-Level Ethanol Blends Test Program Mid-Level Ethanol Blends

  5. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect (OSTI)

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance

  6. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    available motor gasoline blending components ( RBOB, CBOB, GTAB, and other), fuel ethanol, and certain other components and the corresponding data on production of finished...

  7. Gasoline-like Fuel Effects on High-load, Boosted HCCI Combustion Employing Negative Valve Overlap Strategy

    SciTech Connect (OSTI)

    Kalaskar, Vickey B; Szybist, James P; Splitter, Derek A

    2014-01-01

    In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences are investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.

  8. Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions

    SciTech Connect (OSTI)

    Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

    2010-06-01

    Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

  9. Process for producing gasoline of high octane number and particularly lead free gasoline, from olefininc c3-c4 cuts

    SciTech Connect (OSTI)

    Hellin, M.; Juguin, B.; Torck, B.; Vu, Q. D.

    1981-05-19

    Lead free gasoline of high octane number is obtained from C/sub 3/ and C/sub 4/ olefinic cuts as follows: propylene contained in the C/sub 3/ cut is oligomerized, at least 80% of the isobutene and less than 40% of the n-butenes of the C/sub 4/ cut are oligomerized to form an oligomerizate distilling in the gasoline range, which is separated from the unreacted C/sub 4/ hydrocarbons, the latter are subsequently alkylated to form a gasoline fraction which can be admixed with the oligomerizates of the Cnumber and the C/sub 4/ cuts to produce the desired high octane gasoline.

  10. Gasoline price shows small increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices rose 4/10 of a cent to $3.30 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the New England States, at 3.52 a gallon, down 1/10 of a penny from a week ago. Prices were lowest at 2.87 a gallon in the Rocky Mountain States, with the biggest regional price drop at close to 7 cents.

  11. Gasoline price up this week (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    up this week (long version) The U.S. average retail price for regular gasoline rose to $3.32 a gallon on Monday. That's up 1.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. For the first time since early December pump prices were highest in the West Coast at 3.50 a gallon, up 1.2 cents from a week ago. For the fourth week in a row, prices were lowest in the Rocky Mountain States at 2.88 a gallon, up 1.3 cents.

  12. Gasoline price up this week (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline rose to $3.36 a gallon on Monday. That's up 4.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. For the second week in a row, pump prices were highest in the West Coast at 3.55 a gallon, up 4.2 cents from a week ago. Prices were lowest in the Rocky Mountain States at 2.98 a gallon, up 10.1 cents marking the greatest regional increase this week.

  13. Gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    (long version) The U.S. average retail price for regular gasoline fell to $3.65 a gallon on Monday. That's down 3 1/2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.95 a gallon, down 1.7 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.48 a gallon, down 2.5 cents. This is Amerine Woodyard, with EIA, in Washington.

  14. Gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline fell to $3.50 a gallon on Monday. That's down 8.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.89 a gallon, down 5.6 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.31 a gallon, down 6 1/2 cents.

  15. Gasoline prices continue to fall (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    (long version) The U.S. average retail price for regular gasoline fell to $3.54 a gallon on Monday. That's down 6.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.89 a gallon, down 4 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.36 a gallon, down 7.1 cents.

  16. Gasoline prices continue to fall (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline fell to $3.52 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.80 a gallon, down 3.6 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.30 a gallon, down 2.9 cents.

  17. Gasoline prices fall slightly (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline fell slightly to $3.49 a gallon on Monday. That's down 4-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.88 a gallon, down 1.7 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.30 a gallon, down 1.7 cents.

  18. Gasoline prices inch down slightly (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline fell slightly to $3.54 a gallon on Monday. That's down 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.84 a gallon, down 5.2 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.32 a gallon, down 3.9 cents.

  19. Gasoline prices inch up (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline rose slightly to $3.66 a gallon on Monday. That's up nine tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.88 a gallon, down 1.1 cents from a week ago. Followed by prices in the Midwest at 3.87 a gallon, up 3 cents. Prices were lowest in the Gulf Coast States at 3.34 a gallon, down a tenth of a penny

  20. Gasoline prices rise again (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline rose to $3.78 a gallon on Monday. That's up 3.7 cents from a week ago and up almost 43 cents from 4 weeks ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region, breaking the 4 dollar mark, at 4.05 a gallon, up 8 cents from a week ago. Prices were lowest in the Rocky Mountain States at 3.47 a gallon, up 6.2 cents.

  1. Gasoline prices up this week (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline rose to $3.61 a gallon on Monday. That's up 7.3 cents from a week ago and up 25.4 cents from two weeks ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.87 a gallon, up almost 13 cents from a week ago. Prices were lowest in the Rocky Mountain States at 3.27 a gallon, up 13 cents.

  2. Gasoline prices up this week (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline rose to $3.75 a gallon on Monday. That's up almost 14 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.97 a gallon, up almost 11 cents from a week ago. Prices were lowest in the Rocky Mountain States at 3.41 a gallon, up 13.5 cents.

  3. Woody Biomass Converted to Gasoline by Five-Company Team | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Woody Biomass Converted to Gasoline by Five-Company Team Woody Biomass Converted to Gasoline by Five-Company Team October 22, 2015 - 10:50am Addthis A tanker picks up gasoline from the biorefinery. | Photo courtesy The Gas Technology Institute A tanker picks up gasoline from the biorefinery. | Photo courtesy The Gas Technology Institute A tanker picks up gasoline from the biorefinery. | Photo courtesy The Gas Technology Institute A tanker picks up gasoline from the biorefinery. |

  4. NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott; West, Brian H

    2011-10-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were

  5. NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott; West, Brian H

    2012-01-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were

  6. Short-Term Energy Outlook Model Documentation: Petroleum Products Supply Module

    Reports and Publications (EIA)

    2013-01-01

    The Petroleum Products Supply Module of the Short-Term Energy Outlook (STEO) model provides forecasts of petroleum refinery inputs (crude oil, unfinished oils, pentanes plus, liquefied petroleum gas, motor gasoline blending components, and aviation gasoline blending components) and refinery outputs (motor gasoline, jet fuel, distillate fuel, residual fuel, liquefied petroleum gas, and other petroleum products).

  7. A Comparison of Two Gasoline and Two Diesel Cars with Varying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control ...

  8. Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995

    Reports and Publications (EIA)

    1994-01-01

    Provisions of the Clean Air Act Amendments of 1990 designed to reduce ground-level ozone will increase the demand for reformulated motor gasoline in a number of U.S. metropolitan areas. This article discusses the effects of the new regulations on the motor gasoline market and the refining industry.

  9. U.S. gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices continue to decrease (short version) The U.S. average retail price for regular gasoline fell to $2.82 a gallon on Monday. That's down 7.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  10. U.S. gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices continue to decrease (short version) The U.S. average retail price for regular gasoline fell to $2.78 a gallon on Monday. That's down 4.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  11. U.S. gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices continue to decrease (short version) The U.S. average retail price for regular gasoline fell to $3.45 a gallon on Monday. That's down 1.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  12. U.S. gasoline prices continued to decreased (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. gasoline prices continued to decreased (short version) The U.S. average retail price for regular gasoline fell to $3.24 a gallon on Monday. That's down 3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  13. U.S. gasoline prices decrease (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2015 U.S. gasoline prices decrease (Short version) The U.S. average retail price for regular gasoline fell to $2.41 a gallon on Monday. That's down 3 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  14. U.S. gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 U.S. gasoline prices decrease (short version) The U.S. average retail price for regular gasoline fell to $3.30 a gallon on Monday. That's down a nickel and a half from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard

  15. U.S. gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices decrease (short version) The U.S. average retail price for regular gasoline fell to $3.64 a gallon on Monday. That's down 4.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  16. U.S. gasoline prices unchanged (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices decrease (short version) The U.S. average retail price for regular gasoline fell to $3.68 a gallon on Monday. That's down 2.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington

  17. U.S. Gasoline Price Continues to Increase (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline Price Continues to Increase (Short version) The U.S. average retail price for regular gasoline rose to $2.27 a gallon on Monday. That's up 8.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  18. U.S. Gasoline prices continue increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline prices continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.69 a gallon on Monday. That's up 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  19. U.S. gasoline continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. gasoline continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.33 a gallon on Monday. That's up 1- tenth of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  20. U.S. gasoline continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. gasoline continue to increase (short version) The U.S. average retail price for regular gasoline rose to $3.33 a gallon on Monday. That's up 6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  1. U.S. gasoline price continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price continue to decrease (short version) The U.S. average retail price for regular gasoline fell to $2.75 a gallon on Monday. That's down 5.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodyard, with EIA, in Washington.

  2. U.S. gasoline price continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline Price Increases (short version) The U.S. average retail price for regular gasoline rose to $2.72 a gallon on Monday. That's up 8.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  3. U.S. gasoline price continues to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price continues to decrease (short version) The U.S. average retail price for regular gasoline fell to $2.79 a gallon on Monday. That's down 8-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  4. U.S. gasoline price continues to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    1, 2016 U.S. gasoline price continues to decrease (short version) The U.S. average retail price for regular gasoline fell to $2.25 a gallon on Monday. That's down 3.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodydard

  5. U.S. gasoline price continues to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 U.S. gasoline price continue to decrease (short version) The U.S. average retail price for regular gasoline fell to $2.32 a gallon on Monday. That's down 4-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. This is Amerine Woodydard

  6. U.S. gasoline price continues to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price continues to increase (short version) The U.S. average retail price for regular gasoline rose to $2.19 a gallon on Monday. That's up 12.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  7. U.S. gasoline price continues to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price continues to increase (short version) The U.S. average retail price for regular gasoline rose to $2.33 a gallon on Monday. That's up 5.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  8. U.S. gasoline price continues to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price continues to increase (short version) The U.S. average retail price for regular gasoline rose to $2.47 a gallon on Monday. That's up 14.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  9. U.S. gasoline price decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price decrease (short version) The U.S. average retail price for regular gasoline dropped to $2.80 a gallon on Monday. That's down 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  10. U.S. gasoline price increases (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price increases (short version) The U.S. average retail price for regular gasoline rose to $2.83 a gallon on Monday. That's up 4.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  11. U.S. gasoline price increases this week (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price increases this week (short version) The U.S. average retail price for regular gasoline rose to $2.46 a gallon on Monday. That's up 4 tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  12. Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications

    Broader source: Energy.gov [DOE]

    Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

  13. DOE's Gasoline/Diesel PM Split Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Renewable Energy Laboratory 2004_deer_lawson.pdf (275.38 KB) More Documents & Publications DOE's Gasoline/Diesel PM Split Study DOE's Gasoline/Diesel PM Split Study Collaborative Lubricating Oil Study on Emissions (CLOSE) Project

  14. Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

    SciTech Connect (OSTI)

    Choi, Jae-Soon; Prikhodko, Vitaly Y; Partridge Jr, William P; Parks, II, James E; Norman, Kevin M; Huff, Shean P; Chambon, Paul H; Thomas, John F

    2010-01-01

    Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

  15. Assessment of Summer 1997 motor gasoline price increase

    SciTech Connect (OSTI)

    1998-05-01

    Gasoline markets in 1996 and 1997 provided several spectacular examples of petroleum market dynamics. The first occurred in spring 1996, when tight markets, following a long winter of high demand, resulted in rising crude oil prices just when gasoline prices exhibit their normal spring rise ahead of the summer driving season. Rising crude oil prices again pushed gasoline prices up at the end of 1996, but a warm winter and growing supplies weakened world crude oil markets, pushing down crude oil and gasoline prices during spring 1997. The 1996 and 1997 spring markets provided good examples of how crude oil prices can move gasoline prices both up and down, regardless of the state of the gasoline market in the United States. Both of these spring events were covered in prior Energy Information Administration (EIA) reports. As the summer of 1997 was coming to a close, consumers experienced yet another surge in gasoline prices. Unlike the previous increase in spring 1996, crude oil was not a factor. The late summer 1997 price increase was brought about by the supply/demand fundamentals in the gasoline markets, rather than the crude oil markets. The nature of the summer 1997 gasoline price increase raised questions regarding production and imports. Given very strong demand in July and August, the seemingly limited supply response required examination. In addition, the price increase that occurred on the West Coast during late summer exhibited behavior different than the increase east of the Rocky Mountains. Thus, the Petroleum Administration for Defense District (PADD) 5 region needed additional analysis (Appendix A). This report is a study of this late summer gasoline market and some of the important issues surrounding that event.

  16. New Analysis Methods Estimate a Critical Property of Ethanol Fuel Blends (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods developed at NREL disclose the impact of ethanol on gasoline blend heat of vaporization with potential for improved efficiency of spark-ignition engines. More stringent standards for fuel economy, regulation of greenhouse gas emissions, and the mandated increase in the use of renew- able fuel are driving research to improve the efficiency of spark ignition engines. When fuel properties such as octane number and evaporative cooling (heat of vaporization or HOV) are insufficient, they

  17. Intrinsically safe moisture blending system

    SciTech Connect (OSTI)

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  18. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    SciTech Connect (OSTI)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  19. West Coast (PADD 5) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas

  20. West Virginia Native Selected to Present at the Council for Chemical Research Me

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas

  1. Microsoft Word - Summer 2006 Motor Gasoline Prices.doc

    Gasoline and Diesel Fuel Update (EIA)

    1 STEO Supplement: Summer 2006 Motor Gasoline Prices This supplement to the July 2006 Short-Term Energy Outlook (STEO) examines the various factors that have contributed to this summer's high gasoline prices and discusses how they may continue to impact markets over the next several months. EIA's forecast of the retail price of regular gasoline for the summer 2006 driving season (April 1 through September 30) has been revised steadily upwards from $2.62 per gallon in the April STEO to $2.88 per

  2. Higher crude oil prices contribute to higher summer gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Higher crude oil prices contribute to higher summer gasoline prices The recent rise in crude oil prices will be passed on to consumers in the form of higher gasoline prices this summer but drivers will still find lower prices at the pump compared to what they paid last year. In its new monthly forecast, the U.S. Energy Information Administration said the retail price for regular-grade gasoline will average $2.27 per gallon this summer. That's 6 cents higher than previously forecast but still

  3. High Thermal Efficiency and Low Emissions with Supercritical Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection-Ignition in a Light Duty Engine | Department of Energy High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine A novel fuel injector has been developed and tested that addresses the technical challenges of LTC, HCCI, gasoline PPC, and RCCI by reducing complexity and cost. p-16_zoldak.pdf (698.09 KB) More Documents

  4. Consumer Choice of E85 Denatured Ethanol Fuel Blend: Price Sensitivity and Cost of Limited Fuel Availability

    SciTech Connect (OSTI)

    Liu, Changzheng; Greene, David

    2014-12-01

    The promotion of greater use of E85, a fuel blend of 85% denatured ethanol, by flex-fuel vehicle owners is an important means of complying with the Renewable Fuel Standard 2. A good understanding of factors affecting E85 demand is necessary for effective policies that promote E85 and for developing models that forecast E85 sales in the United States. In this paper, the sensitivity of aggregate E85 demand to E85 and gasoline prices is estimated, as is the relative availability of E85 versus gasoline. The econometric analysis uses recent data from Minnesota, North Dakota, and Iowa. The more recent data allow a better estimate of nonfleet demand and indicate that the market price elasticity of E85 choice is substantially higher than previously estimated.

  5. Consumer Choice of E85 Denatured Ethanol Fuel Blend: Price Sensitivity and Cost of Limited Fuel Availability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Changzheng; Greene, David

    2014-12-01

    The promotion of greater use of E85, a fuel blend of 85% denatured ethanol, by flex-fuel vehicle owners is an important means of complying with the Renewable Fuel Standard 2. A good understanding of factors affecting E85 demand is necessary for effective policies that promote E85 and for developing models that forecast E85 sales in the United States. In this paper, the sensitivity of aggregate E85 demand to E85 and gasoline prices is estimated, as is the relative availability of E85 versus gasoline. The econometric analysis uses recent data from Minnesota, North Dakota, and Iowa. The more recent data allowmore » a better estimate of nonfleet demand and indicate that the market price elasticity of E85 choice is substantially higher than previously estimated.« less

  6. U.S. gasoline prices decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    price for regular gasoline fell to 3.46 a gallon on Monday. That's down 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information...

  7. U.S. gasoline prices continue to decrease (short version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retail price for regular gasoline fell to 3.51 a gallon on Monday. That's down a penny from a week ago and down 13 cents from a month ago, based on the weekly price survey...

  8. U.S. gasoline prices continues to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    retail price for regular gasoline fell to 2.32 a gallon on Monday. That's down half a penny from a week ago, based on the weekly price survey by the U.S. Energy Information...

  9. U.S. gasoline prices decrease (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    price for regular gasoline fell to 2.45 a gallon on Monday. That's down 9-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information...

  10. Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump...

    Broader source: Energy.gov (indexed) [DOE]

    Average Historical Annual Gasoline Pump Price, 1929-2015 fotw915web.xlsx (24.76 KB) More Documents & Publications Fact 888: August 31, 2015 Historical Gas Prices - Dataset Fact ...

  11. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Summary Report ... (E0-E85), Subject 87A, except using a CE17a test fluid based on the scope of this program. ...

  12. EIA-878 Motor Gasoline Price Survey - Reference Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price Survey (EIA-878), prices are collected for the following gasoline grades as defined by octane rating and ethanol content (ranging from no ethanol through up to 10% ethanol). ...

  13. U.S. gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    continue to increase (short version) The U.S. average retail price for regular gasoline rose to 2.74 a gallon on Monday. That's up 5.3 cents from a week ago, based on the weekly...

  14. U.S. gasoline prices increase slightly (short version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short version) The U.S. average retail price for regular gasoline rose slightly to 3.55 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly...

  15. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    continue to increase (short version) The U.S. average retail price for regular gasoline rose to 2.49 a gallon on Monday. That's up 1.4 cents from a week ago, based on the weekly...

  16. U.S. gasoline prices increase slightly (short version)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    short version) The U.S. average retail price for regular gasoline rose slightly to 3.36 a gallon on Monday. That's up 6-tenths of a penny from a week ago, based on the weekly...

  17. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    short version) The U.S. average retail price for regular gasoline rose to 3.68 a gallon on Monday. That's up 4 12 cents from a week ago, based on the weekly price survey by the...

  18. U.S. gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline rose to 3.61 a gallon on Labor Day Monday. That's up 5.6 cents from a week ago, based on the weekly price survey...

  19. U.S. gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    continue to increase (short version) The U.S. average retail price for regular gasoline rose to 2.77 a gallon on Memorial Day Monday. That's up 3 cents from a week ago, based on...

  20. U.S. gasoline prices continue to increase (short version)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    continue to increase (short version) The U.S. average retail price for regular gasoline rose to 2.69 a gallon on Monday. That's up 2.7 cents from a week ago, based on the weekly...

  1. U.S. gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    increase (short version) The U.S. average retail price for regular gasoline rose to 2.66 a gallon on Monday. That's up 9.4 cents from a week ago, based on the weekly price survey...

  2. U.S. gasoline prices increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    short version) The U.S. average retail price for regular gasoline rose to 2.03 a gallon on Monday. That's up 8- tenths of a penny from a week ago, based on the weekly price survey...

  3. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    short version) The U.S. average retail price for regular gasoline rose to 3.29 a gallon on Monday. That's up 7.4 cents from a week ago, based on the weekly price survey by the...

  4. U.S. gasoline prices continue to increase (short version)

    Gasoline and Diesel Fuel Update (EIA)

    continue to increase (short version) The U.S. average retail price for regular gasoline rose to 2.78 a gallon on Monday. That's up 6- tenths of a penny from a week ago, based on...

  5. Gasoline Compression Ignition - Start of Injection Timing Sweep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us For more information, contact Greg Cunningham at (630) 252-8232 or media@anl.gov. Gasoline Compression Ignition - Start of Injection Timing Sweep (VERIFI) Share Topic...

  6. U.S. gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    April 6, 2015 U.S. gasoline prices decrease (long version) The U.S. average retail price ... Pump prices were highest in the West Coast states at 2.95 a gallon, down 4.6 cents from a ...

  7. U.S. gasoline prices show little movement (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    30, 2014 U.S. gasoline prices show little movement (long version) The U.S. average retail ... Pump prices were highest in the West Coast states at 4.04 a gallon, up 2 cents from a ...

  8. U.S. gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2015 U.S. gasoline prices continue to increase (long version) The U.S. average retail ... Pump prices were highest in the West Coast states at 3.18 a gallon, up 5.2 cents from a ...

  9. U.S. gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    26, 2015 U.S. gasoline prices continue to increase (long version) The U.S. average retail ... Pump prices were highest in the West Coast states at 3.49 a gallon, down 2.6 cents from a ...

  10. U.S. gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    June 1, 2015 U.S. gasoline prices continue to increase (long version) The U.S. average ... Pump prices were highest in the West Coast states at 3.44 a gallon, down 4.3 cents from a ...

  11. U.S. gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    0, 2015 U.S. gasoline prices decrease (long version) The U.S. average retail price for ... Pump prices were highest in the West Coast states at 3 a gallon, down 4.7 cents from a ...

  12. U.S. gasoline prices show little movement (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    August 4, 2014 U.S. gasoline prices decrease for fifth week in a row (long version) The ... Pump prices were highest in the West Coast states at 3.89 a gallon, down 3.1 cents from a ...

  13. U.S. gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    8, 2015 U.S. gasoline prices continue to increase (long version) The U.S. average retail ... Pump prices were highest in the West Coast states at 3.51 a gallon, up 6.9 cents from a ...

  14. U.S. gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    4, 2014 U.S. gasoline prices decrease (long version) The U.S. average retail price for ... Pump prices were highest in the West Coast states at 4 a gallon, down 3.6 cents from a ...

  15. U.S. gasoline prices continued to decreased (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2013 U.S. gasoline prices continued to decreased (long version) The U.S. average retail ... Pump prices were highest in the New England region at 3.51 a gallon, up 1.4 cents from a ...

  16. U.S. gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 U.S. gasoline prices decrease (long version) The U.S. average retail price for ... Pump prices were highest in the West Coast states at 3.61 a gallon, down 3 cents from a ...

  17. U.S. gasoline prices show little movement (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 U.S. gasoline prices decrease (long version) The U.S. average retail price for ... Pump prices were highest in the West Coast states at 4.04 a gallon, up a tenth of a penny ...

  18. U.S. gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    September 8, 2014 U.S. gasoline prices decrease (long version) The U.S. average retail ... Pump prices were highest in the West Coast states at 3.77 a gallon, down 2.3 cents from a ...

  19. U.S. gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    price for regular gasoline fell to 2.18 a gallon on Monday. That's down 5.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  20. U.S. gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    price for regular gasoline fell to 2.07 a gallon on Monday. That's down 1.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  1. U.S. gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    price for regular gasoline fell to 2.28 a gallon on Monday. That's down 6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  2. U.S. gasoline prices remain steady (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    average retail price for regular gasoline remained unchanged this week at 2.78 a gallon on Monday, based on the weekly price survey by the U.S. Energy Information Administration

  3. U.S. gasoline prices increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    price for regular gasoline rose to 2.14 a gallon on Monday. That's up 6.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  4. U.S. Aviation Gasoline Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    Product: Aviation Gasoline Kerosene-Type Jet Fuel Propane (Consumer Grade) Kerosene No. 1 Distillate No. 2 Distillate No. 2 Diesel Fuel No. 2 Diesel, Ultra Low-Sulfur No. 2 Diesel, ...

  5. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...% CO2 reduction) at a significantly lower on-cost. PDF icon deer09kirwan.pdf More Documents & Publications Gasoline Ultra Fuel Efficient Vehicle Reducing the Particulate Emission ...

  6. Fact #869: April 20, 2015 Gasoline Direct Injection Captures...

    Broader source: Energy.gov (indexed) [DOE]

    Gasoline Direct Injection Captures 38% Market Share in Just Seven Years from First Significant Use File fotw869web.xlsx More Documents & Publications Fact 905: December 28, 2015 ...

  7. Process for conversion of lignin to reformulated hydrocarbon gasoline

    SciTech Connect (OSTI)

    Shabtai, Joseph S.; Zmierczak, Wlodzimierz W.; Chornet, Esteban

    1999-09-28

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  8. U.S. gasoline prices unchanged (short version)

    Gasoline and Diesel Fuel Update (EIA)

    (short version) The U.S. average retail price for regular gasoline fell for the 5 th week in a row to 3.52 a gallon on Monday. That's down 2.4 cents from a week ago and...

  9. U.S. gasoline prices show little movement (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    1, 2014 U.S. gasoline prices decrease for third week in a row (long version) The U.S. ... This marks the first time since early April that prices have dipped below 3.60, based on ...

  10. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - 466.1 466.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

  11. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    253.2 2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  12. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - 532.1 532.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

  13. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    150.0 2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  14. U.S. gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to its lowest level since April 2009 to 2.04 a gallon on Monday. That's down 1.6 cents from a week ago, ...

  15. U.S. gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    decrease (short version) The U.S. average retail price for regular gasoline fell to its lowest level of the year at 3.21 a gallon on Monday. That's down 9.2 cents from a week ...

  16. U.S. gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    long version) The U.S. average retail price for regular gasoline fell to its lowest level since April 2009 to 2.04 a gallon on Monday. That's down 1.6 cents from a week ago, based ...

  17. Lean Gasoline System Development for Fuel Efficient Small Car...

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf (1.81 MB) More Documents & Publications Lean Gasoline System Development for ...

  18. Lean Gasoline System Development for Fuel Efficient Small Car...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063smith2012o.pdf (1.91 MB) More Documents & Publications Lean Gasoline System Development for ...

  19. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  20. Off-Highway Gasoline Consuption Estimation Models Used in the Federal Highway Administration Attribution Process: 2008 Updates

    SciTech Connect (OSTI)

    Hwang, Ho-Ling; Davis, Stacy Cagle

    2009-12-01

    This report is designed to document the analysis process and estimation models currently used by the Federal Highway Administration (FHWA) to estimate the off-highway gasoline consumption and public sector fuel consumption. An overview of the entire FHWA attribution process is provided along with specifics related to the latest update (2008) on the Off-Highway Gasoline Use Model and the Public Use of Gasoline Model. The Off-Highway Gasoline Use Model is made up of five individual modules, one for each of the off-highway categories: agricultural, industrial and commercial, construction, aviation, and marine. This 2008 update of the off-highway models was the second major update (the first model update was conducted during 2002-2003) after they were originally developed in mid-1990. The agricultural model methodology, specifically, underwent a significant revision because of changes in data availability since 2003. Some revision to the model was necessary due to removal of certain data elements used in the original estimation method. The revised agricultural model also made use of some newly available information, published by the data source agency in recent years. The other model methodologies were not drastically changed, though many data elements were updated to improve the accuracy of these models. Note that components in the Public Use of Gasoline Model were not updated in 2008. A major challenge in updating estimation methods applied by the public-use model is that they would have to rely on significant new data collection efforts. In addition, due to resource limitation, several components of the models (both off-highway and public-us models) that utilized regression modeling approaches were not recalibrated under the 2008 study. An investigation of the Environmental Protection Agency's NONROAD2005 model was also carried out under the 2008 model update. Results generated from the NONROAD2005 model were analyzed, examined, and compared, to the extent that is

  1. Reducing the Particulate Emission Numbers in DI Gasoline Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Particulate Emission Numbers in DI Gasoline Engines Reducing the Particulate Emission Numbers in DI Gasoline Engines Formation of droplets was minimized through optimization of fuel vaporization and distribution avoiding air/fuel zones richer than stoichiometric and temperatures that promote particle formation deer10_klindt.pdf (866.03 KB) More Documents & Publications Bosch Powertrain Technologies Vehicle Emissions Review - 2012 Ethanol Effects on Lean-Burn and

  2. Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chemistry during LNT Regeneration for a Lean Gasoline Engine Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-09_parks.pdf (507.29 KB) More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Emissions Control for Lean

  3. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrotreating and Hydrocracking: A Design Case | Department of Energy Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case The goal of the U.S. Department of Energy's Bioenergy Technologies Office (BETO) is to enable the development of biomass technologies. PNNL-23053.pdf (0 B) More Documents & Publications Design

  4. Restructuring: The Changing Face of Motor Gasoline Marketing

    Reports and Publications (EIA)

    2001-01-01

    This report reviews the U.S. motor gasoline marketing industry during the period 1990 to 1999, focusing on changes that occurred during the period. The report incorporates financial and operating data from the Energy Information Administration's Financial Reporting System (FRS), motor gasoline outlet counts collected by the National Petroleum News from the states, and U.S. Census Bureau salary and employment data published in County Business Patterns.

  5. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composition and Health Responses to Inhaled Emissions | Department of Energy and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_mcdonald.pdf (542.75 KB) More Documents & Publications The Effect of Changes in

  6. Short-Term Energy Outlook April 1999-Summer Gasoline Outlook

    Gasoline and Diesel Fuel Update (EIA)

    Summer Motor Gasoline Outlook This year's base case outlook for summer (April-September) motor gasoline markets may be summarized as follows: * Pump Prices: (average regular) projected to average about $1.13 per gallon this summer, up 9-10 cents from last year. The increase, while substantial, still leaves average prices low compared to pre-1998 history, especially in inflation-adjusted terms. * Supplies: expected to be adequate, overall. Beginning-of-season inventories were even with the 1998

  7. Gasoline and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Gasoline > Gasoline & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the

  8. Vehicle Technologies Office Merit Review 2016: Low-Temperature Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion (LTGC) Engine Research | Department of Energy Low-Temperature Gasoline Combustion (LTGC) Engine Research Vehicle Technologies Office Merit Review 2016: Low-Temperature Gasoline Combustion (LTGC) Engine Research Presentation given by Sandia National Laboratory (SNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Combustion Engines ace004_dec_2016_o_web.pdf (1.4 MB) More Documents &

  9. In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate and Semi-Volatile Organic Compound Materials | Department of Energy Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials 2002 DEER Conference Presentation: U.S. Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health 2002_deer_wallace.pdf (114.23 KB) More Documents

  10. Word Pro - S1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    unfinished oils, pentanes plus, and gasoline blending components. Does not include biofuels. Web Page: http:www.eia.govtotalenergydatamonthlysummary. Sources: Tables 1.4a ...

  11. Fuel Tables.indd

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Where shown, (s) Btu value less than 0.05. Notes: Motor gasoline estimates include fuel ethanol blended into motor gasoline. * Totals may not equal sum of components due to ...

  12. Mid-Level Ethanol Blends

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mid-Level Ethanol Blends Test Program DOE, NREL, and ORNL Team Presented by Keith Knoll Work supported by DOE/EERE Vehicle Technologies Program Annual Merit Review and Peer Evaluation meeting May 19, 2009 Kevin Stork Vehicle Technologies Program Shab Fardanesh and Joan Glickman Office of the Biomass Program This presentation does not contain any proprietary or classified information Project ID: ft_05_knoll Collaborators Kevin Stork DOE OVT Shab Fardanesh DOE OBP Joan Glickman DOE OBP Wendy Clark

  13. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center (OSTI)

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore » be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  14. Gasoline from natural gas by sulfur processing

    SciTech Connect (OSTI)

    Erekson, E.J.; Miao, F.Q.

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  15. Electrical impedance tomography of the 1995 OGI gasoline release

    SciTech Connect (OSTI)

    Daily, W.; Ramirez, A.

    1996-10-01

    Electrical impedance tomography (EIT) was used to image the plume resulting from a release of 378 liters (100 gallons) of gasoline into a sandy acquifer. Images were made in 5 planes before and 5 times during the release, to generate a detailed picture of the spatial as well as the temporal development of the plume as it spread at the water table. Information of the electrical impedance (both in phase and out of phase voltages) was used or several different frequencies to produce images. We observed little dispersion in the images either before or after the gasoline entered the acquifer. Likewise, despite some laboratory measurements of impedances, there was no evidence of a change in the reactance in the soil because of the gasoline.

  16. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009 Effects of Intermediate Ethanol Blends on Legacy Vehicles and ...

  17. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications Title A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition...

  18. Detailed HCCI Exhaust Speciation - ORNL Reference Fuel Blends...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HCCI Exhaust Speciation - ORNL Reference Fuel Blends Detailed HCCI Exhaust Speciation - ORNL Reference Fuel Blends *Accurately measure exhaust profile from an HCCI engine with a ...

  19. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  20. Macrophase Separation of Blends of Diblock Copolymers in Thin...

    Office of Scientific and Technical Information (OSTI)

    Macrophase Separation of Blends of Diblock Copolymers in Thin Films Citation Details In-Document Search Title: Macrophase Separation of Blends of Diblock Copolymers in Thin Films ...

  1. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect (OSTI)

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  2. Green emitting phosphors and blends thereof

    DOE Patents [OSTI]

    Setlur, Anant Achyut; Siclovan, Oltea Puica; Nammalwar, Prasanth Kumar; Sathyanarayan, Ramesh Rao; Porob, Digamber G.; Chandran, Ramachandran Gopi; Heward, William Jordan; Radkov, Emil Vergilov; Briel, Linda Jane Valyou

    2010-12-28

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  3. U.S. gasoline prices continues to decrease at lowest level since...

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 U.S. gasoline prices continues to decrease at lowest level since May 2009; 2 states with sub 2 prices (short version) The U.S. average retail price for regular gasoline ...

  4. U.S. gasoline prices fall below $3.50 (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices fall below 3.50 (short version) The U.S. average retail price for regular gasoline fell 3.3 cents from a week ago to 3.47 a gallon on Monday. This marks the first ...

  5. U.S. gasoline prices fall to lowest level since October 2009...

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 U.S. gasoline prices fall to lowest level since October 2009 (long version) The U.S. average retail price for regular gasoline fell to 2.55 a gallon on Monday. That's down ...

  6. U.S. gasoline prices fall to lowest level of the year (long version...

    U.S. Energy Information Administration (EIA) Indexed Site

    14, 2014 U.S. gasoline prices fall to lowest level of the year (long version) The U.S. average retail price for regular gasoline fell to its lowest level of the year at 3.21 a ...

  7. U.S. gasoline prices fall to lowest level since October 2009...

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices fall to lowest level since October 2009 (short version) The U.S. average retail price for regular gasoline fell to 2.55 a gallon on Monday. That's down 12 cents ...

  8. U.S. gasoline prices fall to lowest level since January 2011...

    U.S. Energy Information Administration (EIA) Indexed Site

    20, 2014 U.S. gasoline prices fall to lowest level since January 2011 (long version) The U.S. average retail price for regular gasoline fell to its lowest level since January 2011 ...

  9. U.S. gasoline prices fall to lowest level since February 2010...

    U.S. Energy Information Administration (EIA) Indexed Site

    8, 2014 U.S. gasoline prices fall to lowest level since February 2010 (long version) The U.S. average retail price for regular gasoline fell to 2.68 a gallon on Monday. That's ...

  10. U.S. gasoline prices fall to lowest level since January 2011...

    U.S. Energy Information Administration (EIA) Indexed Site

    0, 2014 U.S. gasoline prices fall to lowest level since January 2011 (short version) The U.S. average retail price for regular gasoline fell to its lowest level since January 2011 ...

  11. U.S. gasoline prices fall to lowest level since February 2010...

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices fall to lowest level since February 2010 (short version) The U.S. average retail price for regular gasoline fell to 2.68 a gallon on Monday. That's down 9.9 cents ...

  12. Motor Gasoline Consumption 2008 - Historical Perspective and Short-Term Projections

    Reports and Publications (EIA)

    2008-01-01

    This report reviews how gasoline markets relate to population, income, prices, and the growing role of ethanol. It also analyzes the structural shift in motor gasoline markets that took place in the late 1990s.

  13. Lower crude oil prices to help push down gasoline pricesLower...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower crude oil prices to help push down gasoline prices Falling crude oil prices should lead to lower U.S. retail gasoline prices this year compared to last year. The U.S. Energy ...

  14. U.S. gasoline prices continues to decrease; 2 states with sub...

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 U.S. gasoline prices continues to decrease; 2 states with sub 2 prices (long version) The U.S. average retail price for regular gasoline fell to 2.21 a gallon on Monday. ...

  15. Gasoline price forecast to stay below 3 dollar a gallon in 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline price forecast to stay below 3 a gallon in 2015 The national average pump price of gasoline is expected to stay below 3 per gallon during 2015. In its new monthly ...

  16. U.S. Gasoline Price Continues to Increase (Long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2015 U.S. Gasoline Price Continues to Increase (Long version) The U.S. average retail price for regular gasoline rose to $2.27 a gallon on Monday. That's up 8.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.62 a gallon, up 14.8 cents from a week ago. Prices were lowest in the Rocky Mountain states at 2 dollars a gallon, up 4.9 cents. This is Marcela Rourk, with EIA, in Washington.

  17. U.S. Gasoline prices continue to decrease (Long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    , 2014 U.S. Gasoline prices continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.69 a gallon on Monday. That's up 1.6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 4.01 a gallon, up 3-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast region at 3.44 a gallon, up half a penny

  18. U.S. average gasoline price up slightly

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. average gasoline price up slightly The U.S. average retail price for regular gasoline rose slightly to $3.65 a gallon on Monday. That's up a tenth of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.89 a gallon, down 4.4 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.34 a gallon, down 2.6 cents. Jonathan Cogan for EIA,

  19. U.S. gasoline continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 U.S. gasoline continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.33 a gallon on Monday. That's up 1- tenth of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the New England region at 3.56 a gallon, up 8-tenths of a penny from a week ago. Prices were lowest in the Rocky Mountain States and the Gulf Coast region at 3.12 a gallon, up 2 cents and up 6-tenths of

  20. U.S. gasoline continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    30, 2013 U.S. gasoline continue to increase (long version) The U.S. average retail price for regular gasoline rose to $3.33 a gallon on Monday. That's up 6 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the New England region at 3.55 a gallon, up 2.8 cents from a week ago. Prices were lowest in the Rocky Mountain States at 3.10 a gallon, up 4 1/2 cents from a week ago. This is Amerine Woodyard, with EIA, in

  1. U.S. gasoline price continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2015 U.S. gasoline price continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $2.75 a gallon on Monday. That's down 5.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.55 a gallon, down 5.9 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.44 a gallon, down 4.9 cents. This is Amerine Woodyard, with EIA, in Washington.

  2. U.S. gasoline price continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price increases ( (long version) The U.S. average retail price for regular gasoline rose to $2.72 a gallon on Monday. That's up 8.7 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.36 a gallon, up 2-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 2.34 a gallon.This is Amerine Woodyard

  3. U.S. gasoline price continues to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2015 U.S. gasoline price continues to decrease (long version) The U.S. average retail price for regular gasoline fell to $2.79 a gallon on Monday. That's down 8-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.30 a gallon, down 1.2 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.52

  4. U.S. gasoline price continues to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price continues to decrease (long version) The U.S. average retail price for regular gasoline fell to $2.16 a gallon on Monday. That's down 2.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.61 a gallon, down 5.6 cents from a week ago. Prices were lowest in the Gulf Coast states at 1.94 a gallon, down 3.6

  5. U.S. gasoline price continues to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price continues to decrease (long version) The U.S. average retail price for regular gasoline fell to $2.15 a gallon on Monday. That's down 9-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.57 a gallon, down 4.1 cents from a week ago. Prices were lowest in the Gulf Coast states at 1.93 a gallon, down 1.6

  6. U.S. gasoline price continues to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price continues to decrease (long version) The U.S. average retail price for regular gasoline fell to $2.15 a gallon on Monday. That's down a tenth of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.53 a gallon, down 3.9 cents from a week ago. Prices were lowest in the Gulf Coast states at 1.94 a gallon, up

  7. U.S. gasoline price continues to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline price continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $2.32 a gallon on Monday. That's down 4-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.79 a gallon, down 5.1 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.04 a gallon, up 2 cents. This is Amerine Woodydard

  8. U.S. gasoline price continues to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    February 9, 2015 U.S. gasoline price continues to increase (long version) The U.S. average retail price for regular gasoline rose to $2.19 a gallon on Monday. That's up 12.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.47 a gallon, up 14.6 cents from a week ago. Prices were lowest in the Rocky Mountain states at 1.95 a gallon, up 7.9

  9. U.S. gasoline price continues to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2015 U.S. gasoline price continues to increase (long version) The U.S. average retail price for regular gasoline rose to $2.33 a gallon on Monday. That's up 5.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.76 a gallon, up 13.6 cents from a week ago. Prices were lowest in the Rocky Mountain states at 2.04 a gallon, up 4.6 cents

  10. U.S. gasoline price decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    0, 2015 U.S. gasoline price decrease (long version) The U.S. average retail price for regular gasoline dropped to $2.80 a gallon on Monday. That's down 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.60 a gallon, up 1.5 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.49 a gallon, down 3.9 cents. This is Marlana Anderson, with EIA, in Washington. For more

  11. U.S. gasoline price increases (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2015 U.S. gasoline price increases (long version) The U.S. average retail price for regular gasoline rose to $2.83 a gallon on Monday. That's up 4.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.59 a gallon, up 29.2 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.53 a gallon, up 6-tenths of a penny

  12. U.S. gasoline price increases this week (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2015 U.S. gasoline price increases this week (long version) The U.S. average retail price for regular gasoline rose to $2.46 a gallon on Monday. That's up 4 tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.05 a gallon, down 6.9 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.19 a gallon, down 2.9 cents. This is Marlana Anderson, with EIA, in

  13. U.S. gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $2.25 a gallon on Monday. That's down 3.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.73 a gallon, down 2.8 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.05 a gallon, down 2.9

  14. U.S. gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2016 U.S. gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $2.18 a gallon on Monday. That's down 4.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.67 a gallon, down 5.1 cents from a week ago. Prices were lowest in the Gulf Coast states at 1.98 a gallon, down 2.7

  15. U.S. gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    15, 2014 U.S. gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $3.41 a gallon on Monday. That's down 4.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.74 a gallon, down 3.3 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.17 a gallon, down 5 cents. This is Marlana Anderson, with EIA, in Washington. For

  16. U.S. gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 U.S. gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $3.35 a gallon on Monday. That's down 5.5 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.68 a gallon, down 5.8 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.13 a gallon, down 4.6 cents. This is Marlana Anderson, with EIA, in Washington.

  17. U.S. gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    24, 2014 U.S. gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $2.82 a gallon on Monday. That's down 7.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.05 a gallon, down 6.6 cents from a week ago. Prices were lowest in the Gulf Coast region at 2.59 a gallon, down 8 cents. This is Marlana Anderson, with EIA, in Washington. For

  18. U.S. gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    , 2014 U.S. gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $2.78 a gallon on Monday. That's down 4.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.02 a gallon, down 3.2 cents from a week ago. Prices were lowest in the Gulf Coast region at 2.53 a gallon, down 6

  19. U.S. gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 U.S. gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $2.40 a gallon on Monday. That's down 15.1 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 2.70 a gallon, down 13.4 cents from a week ago. Prices were lowest in the Gulf Coast region at 2.18 a gallon, down 15.2 cents. This is Marlana Anderson, with EIA, in Washington.

  20. U.S. gasoline prices continue to decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    1, 2014 U.S. gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to $3.51 a gallon on Monday. That's down a penny from a week ago and down 13 cents from a month ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.87 a gallon, down 2.1 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.27 a gallon, down 3 ½ cents

  1. An Experimental Investigation of Low Octane Gasoline in Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Octane Gasoline in Diesel Engines An Experimental Investigation of Low Octane Gasoline in Diesel Engines Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_ciatti.pdf (1.34 MB) More Documents & Publications Use of Low Cetane Fuel to Enable Low Temperature Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control

  2. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    SciTech Connect (OSTI)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

    2012-03-30

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

  3. Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4: June 9, 2014 EPA Sulfur Standards for Gasoline Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline Sulfur naturally occurs in gasoline and diesel fuel, contributing to pollution when the fuel is burned. Beginning in 2004, standards were set on the amount of sulfur in gasoline (Tier 2 standards). Separate standards were set for different entities, such as large refiners, small refiners, importers, downstream wholesalers, etc. In March 2014, Tier 3 standards were finalized by

  4. Fact #890: September 14, 2015 Gasoline Prices Are Affected by Changes in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery Output - Dataset | Department of Energy 0: September 14, 2015 Gasoline Prices Are Affected by Changes in Refinery Output - Dataset Fact #890: September 14, 2015 Gasoline Prices Are Affected by Changes in Refinery Output - Dataset Excel file and dataset for Gasoline Prices Are Affected by Changes in Refinery Output fotw#890_web.xlsx (22.68 KB) More Documents & Publications Fact #858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest Decline since 2008 -

  5. Load Expansion with Diesel/Gasoline RCCI for Improved Engine Efficiency and Emissions

    Broader source: Energy.gov [DOE]

    This poster will describe preliminary emission results of gasoline/diesel RCCI in a medium-duty diesel engine.

  6. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  7. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    SciTech Connect (OSTI)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  8. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; Toops, Todd J.

    2016-04-05

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCRmore » approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher underfloor temperatures, NH3 oxidation over the SCR limited NH3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering

  9. Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2014-01-01

    A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

  10. Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine

    SciTech Connect (OSTI)

    Naik, C V; Pitz, W J; Sj?berg, M; Dec, J E; Orme, J; Curran, H J; Simmie, J M; Westbrook, C K

    2005-01-07

    Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1214 species and 5401 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation. Experimental data are available for both how the combustion phasing changes with fueling at a constant intake temperature, and also how the intake temperature has to be changed with pressure in order to maintain combustion phasing for a fixed equivalence ratio. Three different surrogate fuel mixtures are used for the modeling. Predictions are in reasonably good agreement with the engine data. In addition, the heat release rate is calculated and compared to the data from experiments. The model predicts less low-temperature heat release than that measured. It is found that the low temperature heat-release rate depends strongly on engine speed, reactions of RO{sub 2}+HO{sub 2}, fuel composition, and pressure boost.

  11. Energy and crude oil input requirements for the production of reformulated gasolines

    SciTech Connect (OSTI)

    Singh, M.; McNutt, B.

    1993-10-01

    The energy and crude oil requirements for the production of reformulated gasoline (RFG) are estimated. The scope of the study includes both the energy and crude oil embodied in the final product and the process energy required to manufacture the RFG and its components. The effects on energy and crude oil use of employing various oxygenates to meet the minimum oxygen-content level required by the Clean Air Act Amendments are evaluated. The analysis shows that production of RFG requires more total energy, but uses less crude oil, than that of conventional gasoline. The energy and crude oil use requirements of the different RFGs vary considerably. For the same emissions performance level, RFG with ethanol requires substantially more total energy and crude oil than does RFG with methyl tertiary butyl ether (MTBE) or ethyl tertiary butyl ether. A specific proposal by the US Environmental Protection Agency, designed to allow the use of ethanol in RFG, would increase the total energy required to produce RFG by 2% and the total crude oil required by 2.0 to 2.5% over the corresponding values for the base RFG with MTBE.

  12. Energy and crude oil input requirements for the production of reformulated gasolines

    SciTech Connect (OSTI)

    Singh, M.; McNutt, B.

    1993-11-01

    The energy and crude oil requirements for the production of reformulated gasolines (RFG) are estimated. Both the energy and crude oil embodied in the final product and the process energy required to manufacture the RFG and its components are included. The effects on energy and crude oil use of using various oxygenates to meet the minimum oxygen content level required by the Clean Air Act Amendments are evaluated. The analysis illustrates that production of RFG requires more total energy than that of conventional gasoline but uses less crude oil. The energy and crude oil use requirements of the different RFGs vary considerably. For the same emissions performance level, RFG with ethanol requires substantially more total energy and crude oil than RFG with MTBE or ETBE. A specific proposal by the EPA designed to allow the use of ethanol in RFG would increase the total energy required to produce RFG by 2% and the total crude oil required by 2.0 to 2.5% over that for the base RFG with MTBE.

  13. Gasoline prices continue to decrease nationally (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $3.58 a gallon on Monday. That's down 4.9 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  14. Gasoline prices fall for first time this year (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell for the first time this year to $3.76 a gallon on Monday. That's down 2 1/2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  15. Gasoline prices increase for first time since February (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    (short version) The U.S. average retail price for regular gasoline rose for the first time since February to $3.54 a gallon on Monday. That's up 1.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  16. Emissions Control for Lean Gasoline Engines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace033_toops_2011_o.pdf (1.28 MB) More Documents & Publications Pre-Competitive Catalysis Research: Fundamental Sulfation/Desulfation Studies of Lean NOx Traps CLEERS Coordination & Development of Catalyst Process Kinetic Data Emissions Control for Lean Gasoline Engines

  17. Comparing Scales of Environmental Effects from Gasoline and Ethanol Production

    SciTech Connect (OSTI)

    Parish, Esther S; Kline, Keith L; Dale, Virginia H; Efroymson, Rebecca Ann; McBride, Allen; Johnson, Timothy L; Hilliard, Michael R; Bielicki, Dr Jeffrey M

    2013-01-01

    Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the scales (i.e., spatial extent and temporal duration) of ethanol and gasoline production processes and environmental effects based on a literature review, and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.

  18. U.S. gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $2.03 a gallon on Monday. That's down 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration

  19. U.S. gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $2.00 a gallon on Monday. That's down 3.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration.

  20. U.S. gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    short version) The U.S. average retail price for regular gasoline fell to $1.91 a gallon on Monday. That's down 8.2 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration