Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Appendix D Short-Term Analysis of Refinery Costs and Supply  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Short-Term Analysis of Refinery Costs and Supply 9302 Appendix D Short-Term Analysis of Refinery Costs and Supply As a result of the new regulations issued by the U.S. Estimating Components of the Distillate Environmental Protection Agency (EPA) for ultra-low- Blend Pool sulfur diesel fuel (ULSD) the U.S. refining industry faces two major challenges: to meet the more stringent specifi- The initial step of the analysis was to analyze the poten- cations for diesel product, and to keep up with demand tial economics of producing ULSD for each refinery. by producing more diesel product from feedstocks of Using input and output data submitted to the Energy lower quality. Some refineries in the United States and Information Administration (E1A) by refiners, the cur-

2

Probabilistic Modeling and Evaluation of the Performance, Emissions, and Cost of Texaco Gasifier-  

E-Print Network (OSTI)

Probabilistic Modeling and Evaluation of the Performance, Emissions, and Cost of Texaco Gasifier.0 DOCUMENTATION OF THE PLANT PERFORMANCE SIMULATION MODEL IN ASPEN OF THE COAL-FUELED TEXACO-GASIFIER BASED IGCC to the Gasifier............................... 40 3.2.2 Gasification

Frey, H. Christopher

3

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

(83/3Q) (83/3Q) Short-Term Energy Outlook iuarterly Projections August 1983 Energy Information Administration Washington, D.C. 20585 t rt jrt- .ort- iort- iort- iort- nort- lort- '.ort- ort- Tt- .-m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term Term .-Term -Term xrm Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy -OJ.UUK Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

4

Short–term solar effects  

Science Journals Connector (OSTI)

...J. L. Culhane and J. C. R. Hunt Short-term solar effects Richard A. Harrison Space Science and Technology...OX11 0QX, UK Short-term transient events in the solar atmosphere, namely solar flares and coronal mass ejections, can have a direct...

2003-01-01T23:59:59.000Z

5

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA) Indexed Site

Chart Gallery for February 2015 Short-Term Energy Outlook U.S. Energy Information Administration Independent Statistics & Analysis 0 20 40 60 80 100 120 140 160 180 200 220 Jan...

6

PNNL Coal Gasifier Transportation Logistics  

SciTech Connect

This report provides Pacific Northwest National laboratory (PNNL) craftspeople with the necessary information and suggested configurations to transport PNNL’s coal gasifier from its current location at the InEnTec facility in Richland, Washington, to PNNL’s Laboratory Support Warehouse (LSW) for short-term storage. A method of securing the gasifier equipment is provided that complies with the tie-down requirements of the Federal Motor Carrier Safety Administration’s Cargo Securement Rules.

Reid, Douglas J.; Guzman, Anthony D.

2011-04-13T23:59:59.000Z

7

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook April 2003 Overview World Oil Markets. Crude oil prices fell sharply at the onset of war in Iraq, but the initial declines probably overshot levels that we consider to be generally consistent with fundamental factors in the world oil market. Thus, while near-term price averages are likely to be below our previous projections, the baseline outlook for crude oil prices (while generally lower) is not drastically different and includes an average for spot West Texas Intermediate (WTI) that is close to $30 per barrel in 2003 (Figure 1). The mix of uncertainties related to key oil production areas has changed since last month, as Venezuelan production has accelerated beyond previous estimates while Nigerian output has been reduced due to internal conflict.

8

Short Term Energy Outlook ,October 2002  

Gasoline and Diesel Fuel Update (EIA)

October 2002 October 2002 1 Short-Term Energy Outlook October 2002 Overview World Oil Markets: Continued high oil prices are the result of declining OECD commercial oil inventories, worries over a potential clash with Iraq, and OPEC's decision to leave production quotas unchanged at its September meeting. Solid growth in world oil demand this winter (and for 2003 as a whole) is likely to tighten world oil markets and reduce commercial oil inventories. The West Texas Intermediate (WTI) crude oil spot price averaged $29.75 in September, about $3.50 per barrel above the year-ago level and about $10 per barrel above a low point seen last January. Home Heating Costs Outlook: While fuel supplies should remain sufficient under normal weather

9

Short-Term Energy Outlook September 2013  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 1 September 2013 Short-Term Energy Outlook (STEO) Highlights Monthly average crude oil prices increased for the fourth consecutive month in August 2013, as...

10

Summary Short-Term Petroleum and Natural Gas Outlook  

Gasoline and Diesel Fuel Update (EIA)

Short-Term Petroleum and Natural Gas Outlook Short-Term Petroleum and Natural Gas Outlook 1/12/01 Click here to start Table of Contents Summary Short-Term Petroleum. and Natural Gas Outlook WTI Crude Oil Price: Base Case and 95% Confidence Interval Real and Nominal Crude Oil Prices OPEC Crude Oil Production 1999-2001 Total OECD Oil Stocks* U.S. Crude Oil Inventory Outlook U.S. Distillate Inventory Outlook Distillate Stocks Are Important Part of East Coast Winter Supply Retail Heating Oil and Diesel Fuel Prices Consumer Winter Heating Costs U.S. Total Gasoline Inventory Outlook Retail Motor Gasoline Prices* U.S. Propane Total Stocks Average Weekly Propane Spot Prices Current Natural Gas Spot Prices: Well Above the Recent Price Range Natural Gas Spot Prices: Base Case and 95% Confidence Interval Working Gas in Storage (Percentage Difference fron Previous 5-Year Average)

11

Short-Term Energy Outlook May 2014  

U.S. Energy Information Administration (EIA) Indexed Site

400 500 600 700 800 900 1000 October November December January February March U.S. Winter Heating Degree Days population-weighted 201112 201213 201314 201415 Source: Short-Term...

12

Short Term Energy Outlook, January 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

3 1 Short-Term Energy Outlook January 2003 Overview World Oil Markets. The oil market is vulnerable to a number of forces that could cause substantial price volatility over the...

13

Electricity storage for short term power system service (Smart...  

Open Energy Info (EERE)

Electricity storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service...

14

Advanced Gasifier Pilot Plant Concept Definition  

SciTech Connect

This report presents results from definition of a preferred commercial-scale advanced gasifier configuration and concept definition for a gasification pilot plant incorporating those preferred technologies. The preferred commercial gasifier configuration was established based on Cost Of Electricity estimates for an IGCC. Based on the gasifier configuration trade study results, a compact plug flow gasifier, with a dry solids pump, rapid-mix injector, CMC liner insert and partial quench system was selected as the preferred configuration. Preliminary systems analysis results indicate that this configuration could provide cost of product savings for electricity and hydrogen ranging from 15%-20% relative to existing gasifier technologies. This cost of product improvement draws upon the efficiency of the dry feed, rapid mix injector technology, low capital cost compact gasifier, and >99% gasifier availability due to long life injector and gasifier liner, with short replacement time. A pilot plant concept incorporating the technologies associated with the preferred configuration was defined, along with cost and schedule estimates for design, installation, and test operations. It was estimated that a 16,300 kg/day (18 TPD) pilot plant gasifier incorporating the advanced gasification technology and demonstrating 1,000 hours of hot-fire operation could be accomplished over a period of 33 months with a budget of $25.6 M.

Steve Fusselman; Alan Darby; Fred Widman

2005-08-31T23:59:59.000Z

15

DOE/EIA-0202(88/3Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Energy Information Administration Short-Term Energy Outlook Quarterly Projections July 1988 Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy . oi Lor L- . ; Short-Term : Short-Term : Short-Term : Short-Term : Short-Term : Short-Term ; Short-Term . Short-Term : Short-Term : Short-Term . Short-Term : Short-Term : Short-Term ; Short-Term : Short-Term . Short-Term : Short-Term : Short-Term : Short-Term : Short-Term . Short-Term : Short-Term : Short-Term ; Short-Term . Short-Term Ent, Energ,, Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Ene r F- Ou Out, Outlc Outloc Outloo. Outlook Outlook Outlook Outlool Outlook Outlook Outlook Outlool

16

DOE/EIA-0202(87/3Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Energy Information Administration Short-Term Energy Outlook Quarterly Projections July 1987 aergy i . Energy ' Energy Energy Energy i Energy i . Energy . Energy Energy Energy . Energy . Energy Energy Energy Energy i Energy . Energy . Energy Energy Energy Energy . Energy "nergy ; Short-Term : Short-Term . Short-Term : Short-Term : Short-Term ; Short-Term : Short-Term ; Short-Term : Short-Term : Short-Term ; Short-Term ; Short-Term ; Short-Term : Short-Term : Short-Term ; Short-Term ; Short-Term ; Short-Term ; Short-Term : Short-Term : Short-Term ; Short-Term : Short-Term ; Short-Term ; Short-Term ; Short-T'- Ent. Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energv Ene1" F- Ou Out, Outlc Outloc.

17

DOE/EIA-0202(88/2Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Energy Information Administration Short-Term Energy Outlook Quarterly Projections April 1988 aergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy E nergy Energy Energy Energy Energy '? nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook '"""look Short-Terni Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

18

Short-Term Energy Outlook Figures  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Statistics & Analysis" Independent Statistics & Analysis" ,"U.S. Energy Information Administration" ,"Short-Term Energy Outlook Figures, December 2013" ,"U.S. Prices" ,,"West Texas Intermediate (WTI) Crude Oil Price" ,,"U.S. Gasoline and Crude Oil Prices" ,,"U.S. Diesel Fuel and Crude Oil Prices" ,,"Henry Hub Natural Gas Price" ,,"U.S. Natural Gas Prices" ,"World Liquid Fuels" ,,"World Liquid Fuels Production and Consumption Balance" ,,"Estimated Unplanned Crude Oil Production Outages Among OPEC Producers" ,,"Estimated Unplanned Crude Oil Production Disruptions Among non-OPEC Producers" ,,"World Liquid Fuels Consumption" ,,"World Liquid Fuels Consumption Growth"

19

August 2012 Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

August 2012 1 August 2012 1 August 2012 Short-Term Energy Outlook Highlights  EIA projects that the Brent crude oil spot price will average about $103 per barrel during the second half of 2012, about $3.50 per barrel higher than in last month's Outlook. The forecast Brent crude oil spot price falls to an average of $100 per barrel in 2013. The projected West Texas Intermediate (WTI) crude oil spot price discount to Brent crude oil narrows from about $14 in the third quarter of 2012 to $9 by late 2013. These price forecasts assume that world oil-consumption-weighted real gross domestic product (GDP), which increased by 3.0 percent in 2011, grows by 2.8 percent in 2012 and 2.9

20

Short-Term Energy Outlook June 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 June 2013 Short-Term Energy Outlook (STEO) Highlights * After increasing to $119 per barrel in early February 2013, the Brent crude oil spot price fell to a low of $97 per barrel in mid-April and then recovered to an average of $103 per barrel in May. EIA expects that the Brent crude oil spot price will average $102 per barrel over the second half of 2013, and $100 per barrel in 2014. * EIA expects the price of regular gasoline will average $3.53 per gallon over the summer driving season (April through September). The annual average regular gasoline retail price is projected to decline from $3.63 per gallon in 2012 to $3.49 per gallon in 2013 and to $3.37 per gallon in 2014. Energy price forecasts are highly uncertain, and the current values of

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Short Term Energy Outlook, February 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook February 2003 Overview World Oil Markets. World oil markets will likely remain tight through most of 2003, as petroleum inventories and global spare production capacity continue to dwindle amid blasts of cold weather and constrained output from Venezuela. OPEC efforts to increase output to make up for lower Venezuela output has reduced global spare production capacity to only 2 million barrels per day, leaving little room to make up for unexpected supply or demand surprises. Meanwhile, the average West Texas Intermediate (WTI) crude oil price increased by $3.50 to $33 per barrel from December to January (Figure 1). For the year 2003, WTI oil prices are expected to remain over $30 per barrel, even though Venezuelan output appears to be moving toward normal sooner than expected. Also,

22

Berkeley Lab: Nearby Short-Term Accommodations  

NLE Websites -- All DOE Office Websites (Extended Search)

Accommodations Accommodations Visitor Information Maps and Directions to the Lab Offsite Shuttle Bus Service Bay Area Mass Transit Information Site Access Parking Permits and Gate Passes UC Berkeley Campus Map Nearby Short-Term Accommodations Guest House Berkeley Lab Guest House - The Berkeley Lab guest house is conveniently located on the Lawrence Berkeley National Laboratory campus and features 57 tastefully appointed guest rooms, many with spectacular views of the San Francisco bay, skyline, and City of Berkeley. The guest house is only a few minutes away from the University of California Berkeley Campus and the dynamic Berkeley community itself. It is available to visiting researchers and those conducting business with the University. The Faculty Club * U.C. Campus

23

Short Term Energy Outlook ,November 2002  

Gasoline and Diesel Fuel Update (EIA)

November 2002 November 2002 1 Short-Term Energy Outlook November 2002 Overview World Oil Markets: During the past 3-4 months, OPEC 10 production has risen more quickly than projected, thus reducing upward pressure on prices. More specifically, while the West Texas Intermediate (WTI) crude oil spot price averaged $28.84 in October, about $6.70 per barrel above the year-ago level (Figure 1), the WTI average price for fourth quarter 2002 is now projected to soften to $28.20, which is about $2 per barrel below our fourth-quarter projection from last month. Meanwhile, OECD inventory levels, which are now approaching 5 -year lows, should begin to rise over the next few months as additional supplies reach markets, and return to the middle of their observed range by spring.

24

Short-Term Energy Outlook July 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 July 2013 Short-Term Energy Outlook (STEO) Highlights  The U.S. Energy Information Administration (EIA) expects that the Brent crude oil spot price will average $102 per barrel over the second half of 2013, and $100 per barrel in 2014. This forecast assumes there are no disruptions to energy markets arising from the recent unrest in Egypt. After increasing to $119 per barrel in early February 2013, the Brent crude oil spot price fell to a low of $97 per barrel in mid-April and then recovered to an average of $103 per barrel in May and June, about the same as its average over the same two-month period last year.  The discount of West Texas Intermediate (WTI) crude oil to Brent crude oil, which averaged $18 per barrel in 2012 and increased to a monthly average of more than $20 per barrel in

25

Short Term Energy Outlook, March 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook March 2003 Overview World Oil Markets. February crude oil prices moved higher than expected pushed by fears of a war in Iraq, low inventories, slow recovery in Venezuelan exports, continued cold weather and sharply higher natural gas prices in the United States. West Texas Intermediate prices averaged close to $36 for the month (Figure 1), a level not seen since October 1990. Oil inventories continued lower through the month resulting in a cumulative reduction in total commercial stocks of 101 million barrels since September 30, 2002, the beginning of the heating season. Total OECD inventories reached an estimated 2,424 million barrels at the end of February, which would be the lowest level since

26

Short-Term Energy Outlook- May 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook May 2003 Overview World Oil Markets. The April 24 meeting of the Organization of Petroleum Exporting Countries (OPEC) raised official quotas for members (excluding Iraq) by 0.9 million barrels per day from the previous (suspended) quota to 25.4 million barrels per day. OPEC members also sought tighter compliance with quotas, calling for production cuts of 2 million barrels per day from April levels. We expect these measures to result in an average total OPEC (including Iraq) crude oil production rate of about 26.7 million barrels per day in the second and third quarters. This production level is not significantly different from our base case assumptions in last month's report. Individual OPEC country shares of these output levels will depend upon the speed with which

27

Short Term Energy Outlook, December 2002  

Gasoline and Diesel Fuel Update (EIA)

December 2002 December 2002 1 Short-Term Energy Outlook December 2002 Overview World Oil Markets: Average crude oil prices fell by about $2.50 per barrel between October and November in response to continued high production levels from OPEC 10 countries (Figure 1). However, by the end of November oil prices had risen to end-October levels as concerns over the situations in Iraq and Venezuela pushed prices up. Oil inventories, which are currently in the lower portion of the previous 5-year range, are poised to rise to more comfortable levels soon if OPEC output continues at or above current levels. OPEC is considering cutbacks from current levels. Heating Fuels Update. As in October, weather was m uch colder than normal in November, boosting

28

Short-term energy outlook quarterly projections. Third quarter 1997  

SciTech Connect

This document presents the 1997 third quarter short term energy projections. Information is presented for fossil fuels and renewable energy.

NONE

1997-07-01T23:59:59.000Z

29

Short-term energy outlook quarterly projections. First quarter 1994  

SciTech Connect

The Energy Information Administration (EIA) prepares quarterly, short- term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets.

Not Available

1994-02-07T23:59:59.000Z

30

Short-Term Test Results: Multifamily Home Energy Efficiency Retrofit  

SciTech Connect

Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. The Bay Ridge project is comprised of a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). The base scope has been applied to the entire complex, except for one 12-unit building which underwent the DER scope. Findings from the implementation, commissioning, and short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach. Despite being a moderate rehab instead of a gut rehab, the Bay Ridge DER is currently projected to achieve energy savings ? 50% compared to pre-retrofit, and the short-term testing supports this estimate.

Lyons, J.

2013-01-01T23:59:59.000Z

31

PWR GASIFIER PEER REVIEW FINAL REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

PWR GASIFIER PEER REVIEW REPORT PWR GASIFIER PEER REVIEW REPORT 2/21/06 Background Pratt and Whitney Rocketdyne (PWR) signed a cooperative agreement with DOE on 9/30/04 to develop a novel gasifier concept, which is expected to improve the availability and efficiency of gasification-based power plants, and to reduce plant capital and operations costs. On 12/21/05, PWR submitted a proposal to continue development of their gasifier into the next phase. On January 24, 2006, a peer review was performed to review the work that PWR has done to date, their technical approach for future development, and to assess the potential benefit of the PWR gasifier and feed system technologies over state-of-the art coal gasification. The peer reviewers also evaluated a DOE analysis of the PWR refractory, and a DOE system study comparing the

32

Energy Information Administration/Short-Term Energy Outlook - April 2005  

Gasoline and Diesel Fuel Update (EIA)

April 2005 April 2005 1 Short-Term Energy Outlook April 2005 2005 Summer Motor Gasoline Outlook (Figure 1) Gasoline prices in 2005 are projected to remain high, at an expected average of $2.28 per gallon for the April to September summer season, 38 cents above last summer. Similar high motor gasoline prices are expected through 2006. Monthly average prices are projected to peak at about $2.35 per gallon in May. Summer diesel fuel prices are expected to average $2.24 per gallon. As in 2004, the primary factor behind these price increases is crude oil costs. WTI, for example, is projected to average 37 cents per gallon higher than last summer. High world oil demand will continue to support crude oil prices and increase competition for

33

January 2013 Short-Term Energy Outlook (STEO)  

Gasoline and Diesel Fuel Update (EIA)

(STEO) (STEO)  This edition of the Short-Term Energy Outlook is the first to include forecasts for 2014.  EIA expects that the Brent crude oil spot price, which averaged $112 per barrel in 2012, will fall to an average of $105 per barrel in 2013 and $99 per barrel in 2014. The projected discount of West Texas Intermediate (WTI) crude oil to Brent, which averaged $18 per barrel in 2012, falls to an average of $16 per barrel in 2013 and $8 per barrel in 2014, as planned new pipeline capacity lowers the cost of moving Mid-continent crude oil to the Gulf Coast refining centers.  EIA expects that falling crude prices will help national average regular gasoline retail prices

34

DOE/EIA-0202(87/2Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Energy Information Administration Short-Term Energy Outlook Quarterly Projections April 1987 . m erm Term t-Term rt-Term jrt-Term ort-Term iort-Term ion-Term ion-Term lort-Term lort-Term ort-Term ort-Term Tt-Term ".-Term -Term Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

35

Short-term energy outlook. Quarterly projections, Third quarter 1994  

SciTech Connect

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202). The feature article for this issue is Demand, Supply and Price Outlook for Reformulated Gasoline, 1995.

Not Available

1994-08-02T23:59:59.000Z

36

QIP Short Term Course Application of Renewable  

E-Print Network (OSTI)

mitigation and credit · PV modules/arrays · Batteries · Hybrid systems (wind, hydro etc.) · Life cycle cost Delhi - 110016, India Course contents · Fundamentals of solar radiation · Solar cell material · CO2

Kumar, M. Jagadesh

37

DOE/EIA-0202(84/1Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Short-Term Energy Outlook Quarterly Projections February 1984 Published: March 1984 Energy Information Administration Washington, D.C. t rt jrt- .ort- iort- iort- .iort- iort- lort- Short-Term' Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

38

NETL: Gasifipedia - Entrained Flow Gasifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Entrained Flow Gasifiers Entrained Flow Gasifiers Uhde - Prenflo PRENFLO(tm) is a pressurized (>40 bar), entrained-flow gasification technology first demonstrated in the late 1980s, and currently offered by Uhde (Krupp Koppers merged with Uhde in 1997). Notably, PRENFLO(tm) is the gasification technology used at the world's largest solid feedstock-based gasifier at ELCOGAS's Puertollano IGCC plant in Spain (which is fueled with a 50%/50% mix of petcoke and coal). PRENFLO(tm) is offered in two varieties, the PRENFLO(tm) PSG (with steam generation) depicted in Figures 1 & 2, and PRENFLO(tm) PDQ (direct quench) as depicted in Figures 3 & 4. The gasifier conditions and feed characteristics are similar, but PRENFLO(tm) PSG includes an integrated waste heat boiler and uses compressed recirculated quench gas as illustrated in Figure 2, resulting in relatively low moisture raw syngas at relatively high exit temperature. PRENFLO(tm) PDQ uses direct quench, resulting in considerably lower raw syngas exit temperature (200-250°C) which is saturated. Uhde notes that PDQ has lower investment cost and shorter construction and supply schedule than PSG, though this would be at the performance expense of somewhat lower thermal efficiency and slightly higher concentration of CO2 in raw syngas.

39

Short-term energy outlook annual supplement, 1993  

SciTech Connect

The Short-Term Energy Outlook Annual Supplement (supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

NONE

1993-08-06T23:59:59.000Z

40

Primal-Dual Interior Point Method Applied to the Short Term Hydroelectric Scheduling Including a  

E-Print Network (OSTI)

Primal-Dual Interior Point Method Applied to the Short Term Hydroelectric Scheduling Including that minimizes losses in the transmission and costs in the generation of a hydroelectric power system, formulated such perturbing parameter. Keywords-- Hydroelectric power system, Network flow, Predispatch, Primal-dual interior

Oliveira, Aurélio R. L.

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE/EIA-0202(88/1Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

8/1Q) 8/1Q) Energy Information Administration Short-Term Energy Outlook Quarterly Projections January 1988 .m erm Term t-Term rt-Term jrt-Term ort-Term ion-Term ion-Term tort-Term jort-Term ion-Term ort-Term ore-Term rt-Term 't-Term -Term Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy "^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook ~">Mook Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

42

Generic gasifier modelling : evaluating model by gasifier type.  

E-Print Network (OSTI)

?? There are many different types of gasifiers used for commercial or research purposes. These gasifier varieties differ in a number of ways, such as… (more)

Visagie, Johannes Petrus

2009-01-01T23:59:59.000Z

43

Energy Information Administration/Short-Term Energy Outlook - August 2005  

Gasoline and Diesel Fuel Update (EIA)

5 5 1 Short-Term Energy Outlook August 2005 Short-Term Energy Outlook - Regional Enhancements Starting with this edition of the Short-Term Energy Outlook (STEO), EIA is introducing regional projections (the scope of which will vary by fuel) of energy prices, consumption, and production. The addition of regional data and forecasts will allow us to examine regional fuel demands and prices, regional fuel inventory trends, the interaction between regional electricity demand shifts, and regional electric generating capacity. This edition of STEO includes regional projections for heating oil, propane, and gasoline prices and natural gas and electricity demand and prices. Over the next 2 months, we will include additional regional

44

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

8 per MMBtu during the last 2 months of 2003 and increase to $4.36 in January 2004 (Short-Term Energy Outlook, November 2003). Prices have fallen in the past few months as mild weather and reduced industrial demand have allowed record storage refill rates. As of October 31, 2003, working gas levels had reached 3,155 Bcf, which is about 3 percent higher than the 5-year average and the first time since October 2002 that stocks exceeded the year-earlier levels. With the improved storage situation, wellhead prices during the current heating season (November through March) are expected to be about 12 percent less than last winter ($4.12 vs. $4.68 per MMBtu). However, prices in the residential sector will likely be about 8 percent higher than last winter, as accumulated natural gas utility costs through 2003 are recovered in higher household delivery charges. Overall in 2003, wellhead prices are expected to average $4.76 per MMBtu, which is nearly $2 more than the 2002 annual average and the largest year-to-year increase on record. For 2004, wellhead prices are projected to drop by nearly $0.90 per MMBtu, or about 18 percent, to $3.88 per MMBtu as the overall supply situation improves.

45

Short-term CO? abatement in the European power sector  

E-Print Network (OSTI)

This paper focuses on the possibilities for short term abatement in response to a CO2 price through fuel switching in the European power sector. The model E-Simulate is used to simulate the electricity generation in Europe ...

Delarue, Erik D.

2008-01-01T23:59:59.000Z

46

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

spring, averaging 4.89 per MMBtu in March, 4.92 in April, and 4.84 in May (Short-Term Energy Outlook, March 2004). Spot prices averaged 5.90 per MMBtu in January but fell to...

47

A model for short term electric load forecasting  

E-Print Network (OSTI)

A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE, III Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Electrical Engineering A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE& III Approved as to style and content by: (Chairman of Committee) (Head Depart t) (Member) ;(Me r (Member) (Member) May 1975 ABSTRACT...

Tigue, John Robert

1975-01-01T23:59:59.000Z

48

DOE/EIA-0202(84/2QH Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

2QH 2QH Short-Term Energy Outlook Quarterly Projections May 1984 Published: June 1984 Energy Information Administration Washington, D.C. t rt jrt .ort lort .iort .iort- iort- iort- '.ort- ort- .m .erm Term Term Term Term Term Term Term Term Term Term Term Term i-Term rTerm -Term xrm uergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Tern Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

49

DOE/EIA-0202(85/2Q) Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Short-Term Energy Outlook amm Quarterly Projections April 1985 Published: May 1985 Energy Information Administration Washington, D C t rt jrt .ort lort .iort iort iort lort '.ort ort .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term xrm nergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

50

Refractory for Black Liquor Gasifiers  

SciTech Connect

The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

William L. Headrick Jr; Alireza Rezaie

2003-12-01T23:59:59.000Z

51

Refractory for Black Liquor Gasifiers  

SciTech Connect

The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected or developed that reacted with the gasifier environment to form protective surfaces in-situ; and were functionally-graded to give the best combination of thermal, mechanical and physical properties and chemical stability; and are relatively inexpensive, reliable repair materials. Material development was divided into 2 tasks: Task 1 was development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO2 and SiC. Task 2 was finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei

2005-12-01T23:59:59.000Z

52

REFRACTORY FOR BLACK LIQUOR GASIFIERS  

SciTech Connect

The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

William L. Headrick Jr.; Alireza Rezaie

2003-12-01T23:59:59.000Z

53

Refractory for Black Liquor Gasifiers  

SciTech Connect

The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

William L. Headrick Jr; Alireza Rezaie

2003-08-01T23:59:59.000Z

54

Refractory for Black Liquor Gasifiers  

SciTech Connect

The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

Robert E. Moore; William L. Headrick; Alireza Rezaie

2003-03-31T23:59:59.000Z

55

Status and evaluation of hybrid electric vehicle batteries for short term applications. Final report  

SciTech Connect

The objective of this task is to compile information regarding batteries which could be use for electric cars or hybrid vehicles in the short term. More specifically, this study applies lead-acid batteries and nickel-cadmium battery technologies which are more developed than the advanced batteries which are presently being investigated under USABC contracts and therefore more accessible in production efficiency and economies of scale. Moreover, the development of these batteries has advanced the state-of-the-art not only in terms of performance and energy density but also in cost reduction. The survey of lead-acid battery development took the biggest part of the effort, since they are considered more apt to be used in the short-term. Companies pursuing the advancement of lead-acid batteries were not necessarily the major automobile battery manufacturers. Innovation is found more in small or new companies. Other battery systems for short-term are discussed in the last part of this report. We will review the various technologies investigated, their status and prognosis for success in the short term.

Himy, A. [Westinghouse Electric Co., Pittsburgh, PA (United States). Machinery Technology Div.

1995-07-01T23:59:59.000Z

56

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Summary from the Short-Term Energy Outlook Summary from the Short-Term Energy Outlook EIA Home > Natural Gas > Natural Gas Weekly Update Natural Gas Summary from the Short-Term Energy Outlook This summary is based on the most recent Short-Term Energy Outlook released May 6, 2002. EIA projects that natural gas wellhead prices will average $2.73 per MMBtu in 2002 compared with about $4.00 per MMBtu last year (Short-Term Energy Outlook, May 2002). This projection reflects the sharp increases in spot and near-term futures prices in recent weeks. Average wellhead prices have risen 38 percent from $2.14 per MMBtu in February to an estimated $2.96 in April. Spot prices at the Henry Hub have increased to an even greater extent, rising more than $1.50 per MMBtu since early February. The upward price trend reflects a number of influences, such as unusual weather patterns that have led to increased gas consumption, and tensions in the Middle East and rising crude oil prices. Other factors contributing to the recent price surge include the strengthening economy, the increased capacity and planned new capacity of gas-burning power plants, and concerns about the decline in gas-directed drilling.

57

Short-Term Energy Outlook Annual Supplement 1995  

Gasoline and Diesel Fuel Update (EIA)

5) 5) Distribution Category UC-950 Short-Term Energy Outlook Annual Supplement 1995 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/ Short-Term Energy Outlook Annual Supplement 1995 ii Contacts Contacts The Short-Term Energy Outlook Annual Supplement is prepared by the Energy Information Administration (EIA), Office of Energy Markets and End Use (EMEU). General questions concerning the content of the report may be directed to W. Calvin Kilgore (202/586-1617),

58

Short-Term Energy Outlook, Annual Supplement 1994  

Gasoline and Diesel Fuel Update (EIA)

4) 4) Distribution Category UC-950 Short-Term Energy Outlook Annual Supplement 1994 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/ Short-Term Energy Outlook Annual Supplement 1994 ii Contacts Contacts The Short-Term Energy Outlook Annual Supplement is prepared by the Energy Information Administration (EIA), Office of Energy Markets and End Use (EMEU). General questions concerning the content of the report may be directed to W. Calvin Kilgore (202/586-1617),

59

Electricity storage for short term power system service (Smart Grid  

Open Energy Info (EERE)

storage for short term power system service (Smart Grid storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

NETL: Gasifier Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

that the gasifier effectively handles low-rank coals (e.g., Powder River Basin lignite), which account for half of the worldwide coal reserves but are often considered...

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Analysis of the causes of failure in high chrome oxide refractory materials from slagging gasifiers  

SciTech Connect

High Cr2O3 refractory materials are used to line the hot face of slagging gasifiers. Gasifiers are reaction chambers that convert water, oxygen, and a carbon feedstock into CO, H2, and methane at temperatures as high as 1575oC and pressures up to 1000 psi. Ash in the carbon feedstock liquefies, erodes and corrodes the gasifier’s refractory liner, contributing to liner failure within a few months to two years. The failure of a refractory liner decreases a gasifier’s on-line availability and causes costly system downtime and repairs. Many factors contribute to refractory lining failure, including slag penetration and corrosion, thermal cycling, gasifier environment, and mechanical loads. The results of refractory post-mortem failure analysis and how observations relate to gasifier service life will be discussed.

Bennett, J.P.; Kwong, K.-S.; Powell, C.A.; Thomas, H.; Krabbe, R.A.

2006-03-01T23:59:59.000Z

62

DOE/EIA-0202(87/4Q) Energy Information Administration Short-Term  

Gasoline and Diesel Fuel Update (EIA)

4Q) 4Q) Energy Information Administration Short-Term Energy Outlook Quarterly Projections October 1987 i- rt- jrt ort lort lort lort- iort- lort- ort- ort Tt- " t- . m erm Perm -Term -Term -Term -Term ,-Term -Term -Term -Term -Term -Term -Term -Term -Term -Term 71 e rrn TT1 "1 Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy "nergy -cry Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook ""'tlook Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

63

ANALYSIS OF SHORT-TERM SOLAR RADIATION DATA Gayathri Vijayakumar  

E-Print Network (OSTI)

and short- term radiation data. 1. INTRODUCTION Analyses to predict long-term performances of solar energy commonly used in these analyses and are readily available; (e.g., hourly data for 239 US locations for 30, TN, Madison, WI, Seattle, WA, Salt Lake City, UT, and Sterling, VA. One year of ISIS data, from

Wisconsin at Madison, University of

64

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks  

E-Print Network (OSTI)

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

Cerpa, Alberto E.

65

Short term forecasting of solar radiation based on satellite data  

E-Print Network (OSTI)

Short term forecasting of solar radiation based on satellite data Elke Lorenz, Annette Hammer University, D-26111 Oldenburg Forecasting of solar irradiance will become a major issue in the future integration of solar energy resources into existing energy supply structures. Fluctuations of solar irradiance

Heinemann, Detlev

66

Short-term production and synoptic influences on atmospheric 7  

E-Print Network (OSTI)

Short-term production and synoptic influences on atmospheric 7 Be concentrations Ilya G. Usoskin,1; published 21 March 2009. [1] Variations of the cosmogenic radionuclide 7 Be in the global atmosphere the variations in the 7 Be concentration in the atmosphere for the period from 1 January to 28 February 2005

67

Management and Conservation Short-Term Impacts of Wind Energy  

E-Print Network (OSTI)

Management and Conservation Short-Term Impacts of Wind Energy Development on Greater Sage associated with wind energy development on greater sage-grouse populations. We hypothesized that greater sage-grouse nest, brood, and adult survival would decrease with increasing proximity to wind energy infrastructure

Beck, Jeffrey L.

68

Short-Term Energy Outlook: Quarterly projections. Fourth quarter 1993  

SciTech Connect

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the fourth quarter of 1993 through the fourth quarter of 1994. Values for the third quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications.

Not Available

1993-11-05T23:59:59.000Z

69

Record of Decision for BPA Short-Term Marketing and Operating Arrangements (1/31/96)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Federal Register / Vol. 61, No. 21 / Wednesday, January 31, 1996 / Notices Bonneville Power Administration Notice of Availability of Record of Decision for Short-Term Marketing and Operating Arrangements AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE). ACTION: Notice of Availability of Record of Decision (ROD). SUMMARY: BPA has decided to enter into short-term marketing and operational arrangements in order to participate continuously in the open electric power market. These arrangements would enable BPA to achieve the best reliability and expected economic outcome, as well as to best meet its environmental responsibilities, given diverse market conditions. This decision would support power cost control, enhance BPA competitiveness, and provide public benefits. The

70

NETL: Gasification Systems - Development of Prototype Commercial Gasifier  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Prototype Commercial Gasifier Sensor Development of Prototype Commercial Gasifier Sensor Project No.: DE-FE0008350 Gas Technology Institute (GTI) is developing a reliable, practical, and cost effective means to monitor coal gasifier flame characteristics using an optical flame sensor. This project builds on GTI's sensor technology developed under the "Real Time Flame Monitoring of Gasifier Burner and Injectors" DE-FC26-02NT41585 and is focused on the sensor hardware modifications needed to; provide gasifier operators with real time temperature data, improve reliability of the sensor system. Long term (six months) testing will be performed to determine sensor accuracy and reliability. An evaluation will be performed to determine the commercial viability of the sensor system.

71

Energy Information Administration/Short-Term Energy Outlook - October 2005  

Gasoline and Diesel Fuel Update (EIA)

5 5 1 October 2005 Short-Term Energy Outlook and Winter Fuels Outlook October 12, 2005 Release (Next Update: November 8, 2005) Overview Warnings from previous Outlooks about the potential adverse impacts of an active hurricane season on domestic energy supply and prices are unfortunately being reflected in the challenging realities brought about by Hurricanes Katrina and Rita. The impact of the hurricanes on oil and natural gas production, oil refining, natural gas processing, and pipeline systems have further strained already-tight natural gas and petroleum product markets on the eve of the 2005-2006 heating season (October through March). This combined Short-Term Energy and Winter Fuels Outlook provides a current view of domestic energy supply and

72

Short-Term Energy and Winter Fuels Outlook October 2013  

Gasoline and Diesel Fuel Update (EIA)

and Winter Fuels Outlook October 2013 1 and Winter Fuels Outlook October 2013 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas and propane will increase by 13% and 9%, respectively, this winter heating season (October 1 through March 31) compared with last winter. Projected U.S. household expenditures are 2% higher for electricity and 2% lower for heating oil this winter. Although EIA expects average expenditures for households that heat with natural gas will be significantly higher than last winter, spending for gas heat will still be lower than the previous 5-year average (see EIA Short-Term Energy and Winter Fuels Outlook slideshow).  Brent crude oil spot prices fell from a recent peak of $117 per barrel in early September to

73

KBR transport gasifier  

SciTech Connect

The KBR Transport Gasifier is an advanced circulating fluidized bed reactor designed to operate at higher circulation rates, velocities and riser densities than a conventional circulating fluidized bed and is based on KBR's extensive fluid bed catalytic cracking experience. The KBR Transport Gasifier is currently being tested at the Power Systems Development Facility (PSDF), an engineering scale demonstration of advanced coal-fired power systems and high temperature, high-pressure gas filtration systems. The KBR Transport Gasifier was operated for three years as a pressurized combustor until coal gasification testing began in September 1999. Through September 2005, the Transport Gasifier has achieved over 7,700 hours of coal gasification. A total of 6,320 hours of gasification were with Powder River Basin coal and 750 hours were with North Dakota lignite. Additional hours were devoted to bituminous coals from Utah, Illinois, Indiana and Alabama. Most testing occurred in air blown gasification mode. It has also been tested for a total of 1,722 hours in oxygen-blown mode. The gasifier has operated at temperatures from 1,500 to 1,950{sup o}F and at pressures of up to 250 psig with coal rates of 2,500 to 5,000 pounds per hour, yielding commercially projected turbine inlet syngas heating values of up to 147 Btu/SCF in air-blown gasification and up to 298 Btu/SCF in oxygen-blown gasification. Carbon conversion has been as high as 98%. 7 refs., 8 figs., 1 tab.

NONE

2005-07-01T23:59:59.000Z

74

Short-term energy outlook: Quarterly projections, second quarter 1997  

SciTech Connect

The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for publication in January, April, July, and October in the Outlook. The forecast period for this issue of the Outlook extends from the second quarter of 1997 through the fourth quarter of 1998. Values for the first quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the second quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the Short-Term Integrated Forecasting System (STIFS). 34 figs., 19 tabs.

NONE

1997-04-01T23:59:59.000Z

75

Energy Information Administration/Short-Term Energy Outlook - January 2005  

Gasoline and Diesel Fuel Update (EIA)

January 2005 January 2005 1 Short-Term Energy Outlook January 2005 Winter Fuels Update (Figure 1) Consumer prices for heating fuels are relatively unchanged since the December Outlook, leaving projections for household heating fuel expenditures about the same as previously projected, despite continued warm weather in the middle of the heating season. Heating oil expenditures by typical Northeastern households are expected to average 30 percent above last winter's levels, with residential fuel oil prices averaging $1.82 per gallon for the October-to-March period. Expenditures for propane-heated households are expected to increase about 20 percent this winter.

76

Energy Information Administration/Short-Term Energy Outlook - February 2005  

Gasoline and Diesel Fuel Update (EIA)

February 2005 February 2005 1 Short-Term Energy Outlook February 2005 Winter Fuels Update (Figure 1) Despite some cold weather during the second half of January, expected average consumer prices for heating fuels this heating season are little changed since the January Outlook, leaving projections for household heating fuel expenditures about the same as previously reported. Heating oil expenditures by typical Northeastern households are expected to average 32 percent above last winter's levels, with residential fuel oil prices averaging $1.82 per gallon for the October-to-March period. Expenditures for propane-heated households are expected to increase about

77

Conditional Reliability Modeling of Short-term River Basin Management  

E-Print Network (OSTI)

CONDITIONAL RELIABILITY MODELING OF SHORT-TERM RIVER BASIN MANAGEMENT ASCE Texas Section Spring Meeting 2003 By: A.Andr?s Salazar, Ph.D. Freese and Nichols, Inc. and Ralph A. Wurbs, P.E., Ph.D. Texas A&M University 2 TEXAS WATER AVAILABITY MODEL...-88Year Storage (x 1000 ac-ft) Periods without shortage = 657 out of 672 (97.8%) What is the probability of satisfying demand when reservoir falls below 100,000 ac-ft? 9 CONDITIONAL RELIABILITY Statistical analysis of small sequences. Simulation 1...

Salazar, A.; Wurbs, R. A.

2003-01-01T23:59:59.000Z

78

NETL: Gasifipedia - Entrained Flow Gasifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Siemens Gasifier Siemens Gasifier (source: Siemens) Siemens Gasifiers Siemens gasification technology was originally developed by Deutsches Brennstoffinstitut (DBI) in Freiberg, Germany for the gasification of pulverized local brown coal and other solid feedstocks in 1975. The Noell group acquired the technology in 1991 and developed it further to handle liquid residues and wastes. The gasifier also operated under the name of Babcock Borsig and Future Energy before being acquired by Siemens in 2006. Operation The Siemens gasifier is a dry-feed, pressurized, entrained-flow reactor, which can be supplied with either a refractory lining for low ash feedstocks or with a cooling screen in the gasification section of the gasifier. The cooling screen consists of a gas-tight membrane wall

79

Improving thermocouple service life in slagging gasifiers  

SciTech Connect

The measurement of temperature within slagging gasifiers for long periods of time is difficult/impossible because of sensor failure or blockage of inputs used to monitor gasifier temperature. One of the most common means of temperature measurement in a gasifier is physically, through the use of thermocouples in a gasifier sidewall. These units can fail during startup, standby, or during the first 40-90 days of gasifier service. Failure can be caused by a number of issues; including thermocouple design, construction, placement in the gasifier, gasifier operation, and molten slag attack of the materials used in a thermocouple assembly. Lack of temperature control in a gasifier can lead to improper preheating, slag buildup on gasifier sidewalls, slag attack of gasifier refractories used to line a gasifier, or changes in desired gas output from a gasifier. A general outline of thermocouple failure issues and attempts by the Albany Research Center to improve the service life of thermocouples will be discussed.

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Thomas, Hugh; Krabbe, Rick

2005-01-01T23:59:59.000Z

80

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

63 and $2.72 per MMBtu during the months through October without the wide variations that occurred over the spring and early summer months (Short-Term Energy Outlook, August 2002). Prices are expected to be less variable unless unusually hot weather in late summer results in gas being diverted from storage to meet the added cooling demand, or colder-than-normal weather for October results in an unexpected drawdown of storage stocks. Overall in 2002, wellhead prices are expected to average about $2.73 per MMBtu compared with $4.00 in 2001. Prices during the upcoming heating season (November through March), assuming normal weather, are expected to average close to $3.12 per MMBtu, which is about $0.75 higher than last winter's price but only about 10-15 percent higher than current prices.

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Information Administration/Short-Term Energy Outlook - June 2005  

Gasoline and Diesel Fuel Update (EIA)

5 5 1 Short-Term Energy Outlook June 2005 2005 Summer Motor Fuels Outlook Update (Figure 1) In May, while West Texas Intermediate (WTI) crude oil prices oscillated from the low $50s range to $47 and back again, retail gasoline prices declined steadily from about $2.24 per gallon at the beginning of the month to $2.10 on May 30. On June 6, average retail prices were $2.12 per gallon. Pump gasoline prices for the summer (April-September) are now projected to average $2.17 per gallon, similar to last month's projection but still about 26 cents per gallon above the year-ago level. Crude oil prices are expected to remain high enough to keep monthly average gasoline prices above $2.00 per gallon through 2006. The

82

Microsoft Word - Alcoa_short-term_amendments_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Mark Miller Account Executive, Long-term Sales and Purchases - PT-5 Proposed Action: Short-term Additional Amendments to the Alcoa Power Sales Agreement Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): A2 - Clarifying or administrative contract actions Location: Portland, OR and Ferndale, WA Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to execute one or more additional amendments to its existing 2009 Power Sales Agreement (Agreement) with Alcoa, Inc. (Alcoa) to further extend the Agreement's Initial Period provisions. The current date for expiration of these provisions under the most recent amendment (Amendment Number 2) is July 31, 2012.

83

Energy Information Administration/Short-Term Energy Outlook - April 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 1 April 2006 Short-Term Energy Outlook and Summer Fuels Outlook April 11, 2006 Release Contents Overview Global Petroleum Markets U.S. Petroleum Markets Motor Gasoline Diesel Fuel Natural Gas Markets Electricity Markets Coal Markets Overview Continued steady world oil demand growth, combined with only modest increases in world spare oil production capacity and the continuing risks of geopolitical instability, are expected to keep crude oil prices high through 2006. The price of West Texas Intermediate (WTI) crude oil is projected to average $65 per barrel in 2006 and $61 in 2007 (Figure 1. West Texas Intermediate Crude Oil Price). Retail regular gasoline prices are projected to average $2.50 per gallon in 2006 and $2.40 in

84

Energy Information Administration/Short-Term Energy Outlook - May 2005  

Gasoline and Diesel Fuel Update (EIA)

5 5 1 Short-Term Energy Outlook May 2005 2005 Summer Motor Gasoline Outlook Update (Figure 1) A considerable break in the expected strength of near-term crude oil prices has resulted in a lower forecast for retail gasoline prices this spring. Gasoline prices may well have seen their peak for the year, barring sharp disruptions in crude oil supply or refinery operations. Pump prices for the summer (April-September) are now projected to average $2.17 per gallon, still high by historical standards but well below the $2.28 anticipated last month. Our projection has been revised downward from the last Outlook as crude oil prices fell from the high $50s per barrel to the low $50s. However, oil prices remain high enough to keep expected

85

Energy Information Administration/Short-Term Energy Outlook - July 2005  

Gasoline and Diesel Fuel Update (EIA)

July 2005 July 2005 1 Short-Term Energy Outlook July 2005 2005 Summer Motor Fuels Outlook Update (Figure 1) Retail regular-grade gasoline prices moved up from about $2.12 per gallon at the beginning of June to $2.33 on July 11. Gasoline pump prices for the summer (April-September) are now projected to average $2.25 per gallon, 8 cents per gallon higher than last month's projection and about 35 cents per gallon above the year-ago level. Crude oil prices are expected to remain high enough to keep quarterly average gasoline prices above $2.20 per gallon through 2006. The projected average for retail diesel this summer is $2.33 per gallon, up about 56 cents per gallon from last summer. Nationally, annual average diesel fuel prices

86

An analysis of the causes of failure in high chrome oxide refractory materials from slagging gasifiers  

SciTech Connect

High Cr2O3 refractory materials are used to line the hot face of slagging gasifiers. Gasifiers are reaction chambers that convert water, oxygen, and a carbon feedstock into CO, H2, and methane at temperatures as high as 1575DGC and pressures up to 1000 psi. Ash in the carbon feedstock liquefies, erodes and corrodes the gasifier's refractory liner, contributing to liner failure within a few months to two years. The failure of a refractory liner decreases a gasifier's on-line availability and causes costly system downtime and repairs. Many factors contribute to refractory lining failure, including slag penetration and corrosion, thermal cycling, gasifier environment, and mechanical loads. The results of refractory post-mortem failure analysis and how observations relate to gasifier service life will be discussed.

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Thomas, Hugh; Krabbe, Rick

2006-01-01T23:59:59.000Z

87

Fixed Bed Biomass Gasifier  

SciTech Connect

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

88

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

in September and range between $4.37 and $4.58 per MMBtu in the last 3 months of 2003 (Short-Term Energy Outlook, September 2003). Spot prices at the Henry Hub have fallen somewhat from the unusually high levels that prevailed in the first half of the year and most of July, as mild summer weather in many areas of the country has reduced cooling demand and allowed record storage refill rates. As of September 5, working gas levels were only 5.5 percent below the 5-year average and, barring any disruptions, are on target to reach 3 Tcf by the end of October. However, gas prices remain high-wellhead prices this summer are estimated to be 60 to 70 percent higher than levels last summer. Overall in 2003, wellhead prices are expected to average $4.84 per MMBtu, which is nearly $2 more than the 2002 annual average and the largest year-to-year increase on record. For 2004, assuming normal weather, wellhead prices are projected to drop by about $1 per MMBtu, or almost 20 percent, to $3.89 per MMBtu, as the overall supply situation improves.

89

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

5.57 per MMBtu in January 2004 and $5.40 in February, and then decrease to $4.77 in March as the heating season winds down (Short-Term Energy Outlook, January 2004). Spot prices were quite variable in December, with prices at the Henry Hub starting the month at around $5.00 per MMBtu, spiking to roughly $7.00 in the middle of the month, then falling to $5.50 toward the end of the month as warmer-than-normal weather eased demand. Spot prices will likely remain well above $5.00 over the next few months if normal or colder weather prevails, especially with oil prices remaining at relatively high levels. (Oil prices this winter are expected to average $31.35 per barrel (19 cents higher than last winter's average), or 5.41 per MMBtu.) Natural gas storage levels were 8 percent above average as of January 2, which could place downward pressure on prices if warm temperatures and weak heating demand occur later this winter, just as rising prices are possible if the weather becomes colder. Overall in 2004, natural gas wellhead prices are expected to average $4.73 per MMBtu, while spot prices will average nearly $5.00. In 2005, natural gas spot prices are projected to fall to an average of $4.83 per MMBtu under the assumption that domestic and imported supply can continue to grow by about 1-1.5 percent per year.

90

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Now that the heating season has ended, natural gas wellhead prices have fallen from the exceptionally high levels seen in February and early March. Nevertheless, they still remain historically and unseasonably high, hovering around $5.00 per MMBtu. EIA projects that natural gas wellhead prices will remain above $5.00 per MMBtu in April and then decrease to $4.36 in May and $4.26 in June (Short-Term Energy Outlook, April 2003). Wellhead prices for the 2002-2003 heating season (November through March) averaged $4.44 per MMBtu, or $2.08 more than last winter's price. Overall in 2003, wellhead prices are projected to increase about $1.53 per MMBtu over the 2002 level to $4.40 per MMBtu. This projection is based on the expectation of lower volumes of natural gas in underground storage compared with last year and continued increases in demand over 2002 levels. Cold temperatures this past winter led to a record drawdown of storage stocks. By the end of March, estimated working gas stocks were 676 Bcf (prior estimates were 696 Bcf), which is the lowest end-of-March level in EIA records and 44 percent below the previous 5-year average. In 2004, continued tightness of domestic natural gas supply and high demand levels are expected to keep the average wellhead price near the 2003 level.

91

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

4.20 per MMBtu through January 2003 and then increase to $4.61 in February and $4.23 in March (Short-Term Energy Outlook, released January 8, 2003). Wellhead prices for the overall heating season (November through March), assuming normal weather, are expected to average about $4.10 per MMBtu, or $1.74 more than last winter's levels, while prices to residential customers are expected to average $8.51 per MMBtu compared with $7.14 last winter. Natural gas prices were higher than expected in November and December as below-normal temperatures throughout much of the nation increased heating demand, placing upward pressure on gas prices. Spot prices at the Henry Hub climbed above $5.00 per MMBtu in the second week of December and stayed near or above this threshold through the end of the month. Overall in 2002, wellhead prices are expected to average $2.90 per MMBtu compared with $4.00 in 2001. In 2003, average wellhead prices are projected to increase about $1.00 per MMBtu over the 2002 level to $3.90 per MMBtu, owing to expectations of higher demand levels than in 2002 and lower storage levels for most of the year compared with 2002 levels.

92

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

the rest of the winter and the first part of spring, with prices averaging $5.19 per MMBtu through March and $4.58 in April (Short-Term Energy Outlook, February 2004). Wellhead prices for the current heating season (November 2003 through March 2004) are expected to average $4.99 per MMBtu, or about 7 percent higher than last winter's level. Spot prices at the Henry Hub averaged $5.90 per MMBtu in January as cold temperatures (6 percent colder than normal nationally and 19 percent colder than normal in the Northeast) kept natural gas prices and heating demand high. Despite the severe weather, natural gas storage stocks were 3 percent above average as of January 30 and spot prices in early February have moved down somewhat. Overall in 2004, spot prices are expected to average about $4.90 per MMBtu and wellhead prices are expected to average $4.63 per MMBtu, declining moderately from the 2003 levels. In 2005, natural gas spot prices are projected to average about $5.00 per MMBtu, under the assumption that domestic and imported supply can continue to grow by about 1 percent per year.

93

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

this summer and continue at elevated levels through the rest of 2003 (Short-Term Energy Outlook, June 2003). Natural gas wellhead prices are expected to average $5.40 per MMBtu in June and remain above $5.13 through December 2003. Spot prices at the Henry Hub have stayed well above $5.00 per MMBtu on a monthly basis since the beginning of the year and have been above $6.00 for the first 10 days of June. The low level of underground storage is the principal reason for these unusually high prices. As of June 6, 2003, working gas stocks were 1,324 Bcf, which is about 35 percent below year-earlier levels and 25 percent below the 5-year average. Natural gas prices are likely to stay high as long as above-normal storage injection demand competes with industrial and power sector demand for gas. Overall in 2003, wellhead prices are projected to increase about $2.33 per MMBtu (the largest U.S. annual wellhead price increase on record) over the 2002 level to a record annual high of about $5.20 per MMBtu. For 2004, prices are projected to ease only moderately, as supplies are expected to remain tight.

94

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

range from $2.91 to $3.19 per MMBtu through December 2002 and then increase to $3.53 in January 2003, the peak demand month of the heating season (Short-Term Energy Outlook, October 2002). Natural gas prices climbed sharply in late September as hurricanes Isidore and Lili caused production shut downs in the Gulf of Mexico. However, this price surge is expected to be short-lived, unless the weather in October is unusually cold or if additional storm activity in the Gulf curbs production further. Overall in 2002, wellhead prices are expected to average about $2.76 per MMBtu compared with $4.00 in 2001. Prices during the upcoming heating season (November through March), assuming normal weather, are expected to average $3.32 per MMBtu, which is about $0.96 higher than last winter's price. Prices to residential customers during the heating season are expected to average $7.55 per MMBtu compared with $7.14 last winter.

95

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

prices will remain relatively high during the storage refill season (April through October) and the rest of 2004. Wellhead prices are expected to average $4.87 per MMBtu in April and May, $4.71 from June through October, and $5.12 for November and December (Short-Term Energy Outlook, April 2004). Spot prices during the storage refill months will likely average $5.23 per MMBtu, virtually the same as the average price ($5.22) this past heating season. Overall in 2004, spot prices are expected to average $5.31 per MMBtu, slightly less than the 2003 price ($5.35), while wellhead prices will average about $4.90. In 2005, natural gas spot prices will likely average about $5.25 per MMBtu, under the assumption that domestic supply can continue to grow by about 1 percent per year. Total available supply (including imports and storage inventories) is expected to increase to 22.31 Tcf in 2004 compared with 21.78 Tcf in 2003. Storage stocks at the end of the traditional heating season (March 31) were about 6 percent less than the 5-year average but nearly 50 percent more than year-earlier levels.

96

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

average $2.83 per MMBtu in 2002 compared with about $4.00 last year (Short-Term Energy Outlook, June 2002). Average wellhead prices have increased by nearly 50 percent from $2.09 per MMBtu in February to an estimated $3.11 per MMBtu in May. Spot prices at the Henry Hub have also increased, rising more than $1.00 per MMBtu since early February. It is atypical to see higher spot gas prices in the cooling season than during the heating season, particularly when working gas in underground storage is at high levels, as it has been for the past several months. As of the end of May, working gas levels were more than 20 percent above the previous 5-year average for that month. Moreover, gas-directed drilling, while down sharply from summer 2001 levels, is still quite strong from a historical perspective. The gas rig count as of May 31 was up 22 percent from the recent low of 591 for the week ending April 5.

97

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

4.41 per MMBtu in December 2003, although spot prices are expected to average $5.38 (Short-Term Energy Outlook, December 2003). The average wellhead price is expected to increase moderately to $4.56 during the first three months of 2004. Natural gas prices were lower in November than previously expected but forward price expectations remain sensitive to weather conditions. Prices increased rapidly in futures trading in early December as some cold weather moved into the Eastern United States and reported withdrawals from gas storage were slightly larger than expected. Spot prices above $5 per MMBtu remain likely over the next few months if normal (or colder) weather prevails, especially with oil prices remaining at relatively high levels. Natural gas storage levels are still above average and hold the potential to push prices back down if warm temperatures and weak heating demand materialize later in the winter, just as upward spikes remain a strong possibility if the weather turns cold.

98

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

about $3.49 per MMBtu through December 2002 and then increase to $3.76 in January 2003, the peak demand month of the heating season (Short-Term Energy Outlook, released November 7, 2002). Natural gas prices were higher than expected in October as storms in the Gulf of Mexico in late September temporarily shut in some gas production, causing spot prices at the Henry Hub and elsewhere to rise above $4.00 per million Btu for most of October. In addition, early winter-like temperatures, particularly in the Midwest and Northeast, increased demand for natural gas, placing upward pressure on gas prices. Overall in 2002, wellhead prices are expected to average about $2.84 per MMBtu compared with $4.00 in 2001. Prices during the heating season (November through March), assuming normal weather, are expected to average $3.56 per MMBtu, which is about $1.20 higher than last winter's price. Prices to residential customers during the heating season are expected to average $7.81 per MMBtu compared with $7.14 last winter. In 2003, wellhead prices are projected to average $3.28 per MMBtu, or about $0.44 per MMBtu more than in 2002, owing to expectations of increasing economic growth, little or no change in the annual average crude oil price for 2003, and lower storage levels for most of 2003 compared with 2002 levels.

99

Natural Gas Summary from the Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

7 per MMBtu during the last 3 months of 2003 and increase to $4.32 in January 2004 (Short-Term Energy Outlook, October 2003). Prices have fallen somewhat from the unusually high levels that prevailed in the first half of the year and most of July, as mild summer weather and reduced industrial demand allowed record storage refill rates. As of October 3, 2003, working gas levels were only 1 percent below the 5-year average and, barring any disruptions, are on target to reach 3 Tcf by the end of October. With the improved storage situation, wellhead prices during the upcoming heating season (November through March), assuming normal weather, are expected to be about 13 percent less than last winter ($4.17 vs. $4.68 per MMBtu). But prices in the residential sector are projected to be about 9 percent higher than last winter, as the recent decline in wellhead prices is too recent and insufficient to offset the impact of the substantial spring-summer increase in wellhead prices on residential prices. Overall in 2003, wellhead prices are expected to average $4.75 per MMBtu, which is nearly $2 more than the 2002 annual average and the largest year-to-year increase on record. For 2004, wellhead prices are projected to drop by nearly $0.90 per MMBtu, or about 20 percent, to $3.86 per MMBtu as the overall supply situation improves.

100

Wind diesel design and the role of short term flywheel energy storage  

Science Journals Connector (OSTI)

Wind diesel hybrid systems can often provide a cost effective solution to electricity supply in many rural and grid remote applications. The potential market for such stand alone systems is vast. The sizing and design of these systems to suite a given application is non-trivial. Design principles for wind diesel systems are presented with stress placed on the role of short term energy storage. It is shown that flywheels are the most appropriate form of energy storage. A user-friendly software package to help engineers design wind diesel systems has been developed over the last three years with support from the CEC's JOULE programme. The modelling and software development was undertaken cooperatively by several EEC and EFTA countries. An brief introduction to the software, which models both logistic and dynamic aspects of system operation, is provided and there is a discussion of its validation.

D.G. Infield

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS  

SciTech Connect

The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

Gary M. Blythe; Richard McMillan

2002-03-04T23:59:59.000Z

102

SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS  

SciTech Connect

The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

Gary M. Blythe; Richard McMillan

2002-02-04T23:59:59.000Z

103

Improved refractories for slagging gasifiers in IGCC power systems  

SciTech Connect

Most gasifiers are operated for refining, chemical production, and power generation. They are also considered a possible future source of H2 for future power systems under consideration. A gasifier fulfills these roles by acting as a containment vessel to react carbon-containing raw materials with oxygen and water using fluidized-bed, moving-bed, or entrained-flow systems to produce CO and H2, along with other gaseous by-products including CO2, CH4, SOx, HS, and/or NOx. The gasification process provides the opportunity to produce energy more efficiently and with less environmental impact than more conventional combustion processes. Because of these advantages, gasification is viewed as one of the key processes in the U.S. Department of Energy?s vision of an advanced power system for the 21st Century. However, issues with both the reliability and the economics of gasifier operation will have to be resolved before gasification will be widely adopted by the power industry. Central to both enhanced reliability and economics is the development of materials with longer service lives in gasifier systems that can provide extended periods of continuous, trouble-free gasifier operation. The focus of the Advanced Refractories for Gasification project at the Albany Research Center (ARC) is to develop improved refractory liner materials capable of withstanding the harsh, high-temperature environment created by the gasification reaction. Current generation refractory liners in slagging gasifiers are typically replaced every 3 to 18 months at costs ranging up to $1,000,000 or more, depending upon the size of the gasification vessel. Compounding materials and installation costs are the lost-opportunity costs for the time that the gasifier is off-line for refractory repair/exchange. The goal of this project is to develop new refractory materials or to extend the service life of refractory liner materials currently used to at least 3 years. Post-mortem analyses of refractory brick removed from slagging commercial gasifiers and of laboratory produced refractory materials has indicated that slag corrosion and structural spalling are the primary causes of refractory failure. Historically, refractory materials with chrome oxide content as high as 90 pct have been found necessary to achieve the best refractory service life. To meet project goals, an improved high chrome oxide refractory material containing phosphate additions was developed at ARC, produced commercially, and is undergoing gasifier plant trials. Early laboratory tests on the high chrome oxide material suggested that phosphate additions could double the service life of currently available high chromium oxide refractories, translating into a potential savings of millions of dollars in annual gasifier operating costs, as well a significant increase in gasifier on-line availability. The ARC is also researching the potential of no-chrome/low-chrome oxide refractory materials for use in gasifiers. Some of the driving forces for no-chrome/low-chrome oxide refractories include the high cost and manufacturing difficulties of chrome oxide refractories and the fact that they have not met the performance requirements of commercial gasifiers. Development of no/low chrome oxide refractories is taking place through an examination of historical research, through the evaluation of thermodynamics, and through the evaluation of phase diagram information. This work has been followed by cup tests in the laboratory to evaluate slag/refractory interactions. Preliminary results of plant trials and the results of ARC efforts to develop no-chrome/low chrome refractory materials will be presented.

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Chinn, Richard E.

2004-01-01T23:59:59.000Z

104

Vehicle Technologies Office: Short-Term Lightweight Materials...  

Energy Savers (EERE)

face barriers in cost and manufacturing. Manufacturers also face issues with joining, corrosion, repair, and recycling when they combine aluminum with other materials. VTO has...

105

Methodological basis to decide short-term investments in distribution systems under uncertainty in performance-based regulatory frameworks  

Science Journals Connector (OSTI)

This paper presents new concepts and methodological tools to decide the investments that electric distribution utilities must perform under regulatory frameworks based on performance (Performance Based Regulation or PBR). The proposal is focused on short-term investments. In this work, the subject of hierarchical expansion planning and the basis for an investment decision methodology are presented. Furthermore, the uncertainties to be considered in the problem are indicated and uncertainty representation by means of Type-2 Fuzzy Numbers (T2-FN) is proposed due to the fact that T2-FN, besides modelling the uncertainties in quantitative form, can model uncertainties associated to expert knowledge of qualitative characteristics. System diagnosis and identification of problem areas are considered and it is proposed to classify these areas by using performance indices, then the possible short-term investments are analysed. Finally, a profit-cost and risk analysis for a high-priority investment classification are proposed.

Sergio Raul Rivera; Alberto Vargas

2007-01-01T23:59:59.000Z

106

Engineered refractories for slagging gasifiers  

SciTech Connect

The widespread commercial adaptation of slagging gasifier technology to produce power, liquid fuels, and/or chemicals from coal and other fossil-based feedstocks and from biomass, will depend in large measure on the technology's ability to prove itself both economic and reliable. Improvements in gasifier reliability, availability, and maintainability will in part depend on the development of improved structural materials with longer service life in this application. Current generation refractory materials used to line the gasifier vessel, and contain the gasification reaction, may last no more than three months in commercial applications. The downtime required for tear-out and replacement of these critical materials results in gasifier on-line availabilities that fall short of targeted goals. In this talk we will discuss the development of improved refractory materials engineered specifically for longer service life in this application, and present results from recent field trials in commercial systems.

Powell, Cynthia A.; Kwong, Kyei-sing; Bennett, James P.; Krabbe, Rick; Thomas, Hugh

2005-01-01T23:59:59.000Z

107

VPR RESEARCH BRIDGE PROGRAM Objective: Toprovide short-term,limitedfinancial support whenexternallyfundedresearchprogramshave  

E-Print Network (OSTI)

VPR RESEARCH BRIDGE PROGRAM Objective: Toprovide short-term,limitedfinancial support following: pastrecord of external funding,effortsunderwaytosecure external fundingbeyondthe bridge

Kihara, Daisuke

108

Integrating catalytic coal gasifiers with solid oxide fuel cells  

SciTech Connect

A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

2010-01-01T23:59:59.000Z

109

Hot-Gas Filter Testing with a Transport Reactor Gasifier  

SciTech Connect

Today, coal supplies over 55% of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being developed for advanced electric power generation is an integrated gasification combined cycle (IGCC) system that converts coal to a combustible gas, cleans the gas of pollutants, and combusts the gas in a gas turbine to generate electricity. The hot exhaust from the gas turbine is used to produce steam to generate more electricity from a steam turbine cycle. The utilization of advanced hot-gas particulate and sulfur control technologies together with the combined power generation cycles make IGCC one of the cleanest and most efficient ways available to generate electric power from coal. One of the strategic objectives for U.S. Department of Energy (DOE) IGCC research and development program is to develop and demonstrate advanced gasifiers and second-generation IGCC systems. Another objective is to develop advanced hot-gas cleanup and trace contaminant control technologies. One of the more recent gasification concepts to be investigated is that of the transport reactor gasifier, which functions as a circulating fluid-bed gasifier while operating in the pneumatic transport regime of solid particle flow. This gasifier concept provides excellent solid-gas contacting of relatively small particles to promote high gasification rates and also provides the highest coal throughput per unit cross-sectional area of any other gasifier, thereby reducing capital cost of the gasification island.

Swanson, M.L.; Hajicek, D.R.

2002-09-18T23:59:59.000Z

110

Process Engineering Division Texaco Gasifier IGCC Base Cases  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Division Engineering Division Texaco Gasifier IGCC Base Cases PED-IGCC-98-001 July 1998 Latest Revision June 2000 PREFACE This report presents the results of an analysis of three Texaco Gasifier IGCC Base Cases. The analyses were performed by W. Shelton and J. Lyons of EG&G. EXECUTIVE SUMMARY 1. Process Descriptions 1.1 Texaco Gasifier 1.2 Air Separation Plant (ASU) 1.3 Gas Cooling/Heat Recovery/Hydrolysis/Gas Saturation (Case 1 and Case 2) 1.4 Cold Gas Cleanup Unit (CGCU) (Case 1 and Case 2) 1.5 Fine Particulate Removal/ Chloride Guard Bed - Case 3 1.6 Transport Desulfurization HGCU - Case 3 1.7 Sulfuric Acid Plant - Case 3 1.8 Gas Turbine 1.9 Steam Cycle 1.10 Power Production 2. Simulation Development 3. Cost of Electricity Analysis

111

ASPECT OBJECTIVE SHORT TERM TARGET by 2015 (unless otherwise stated)  

E-Print Network (OSTI)

Reduction in landfill tax and waste sent to landfill. Undertake audit of waste to landfill and consult actions of the WMS by 2015 and long term actions by 2020. Less than 30% by 2020. Waste to landfill weight landfill tax. Determine the recycling rate and costs saved and consult to determine an appropriate target

Chittka, Lars

112

Short-term Wind Power Forecasting Using Advanced Statistical T.S. Nielsen1  

E-Print Network (OSTI)

Short-term Wind Power Forecasting Using Advanced Statistical Methods T.S. Nielsen1 , H. Madsen1 , H considered in the ANEMOS project for short-term fore- casting of wind power. The total procedure typically in for prediction of wind power or wind speed, estimating the uncertainty of the wind power forecast, and finally

Paris-Sud XI, Université de

113

Weather or Other Short-Term Closing Policy 6.15  

E-Print Network (OSTI)

Weather or Other Short-Term Closing Policy 6.15 Office of Human Resources Applies to: Faculty, staff, graduate associates, student employees, and students 1 1 This policy does not apply to Health State University ­ Office of Human Resources Page 1 of 1 Policy 6.15 Weather or Other Short-Term Closing

Howat, Ian M.

114

Short-term effects of salinity declines on juvenile hard clams, Mercenaria mercenaria.  

E-Print Network (OSTI)

be compounded or mitigated by other factors, such as other environmental conditions or handling effects. #12Short-term effects of salinity declines on juvenile hard clams, Mercenaria mercenaria. Final report to Florida Sea Grant, for a Program Development Award Project title: Short-term effects of rapid salinity

Florida, University of

115

Short-Term Audio-Visual Atoms for Generic Video Concept Classification  

E-Print Network (OSTI)

Short-Term Audio-Visual Atoms for Generic Video Concept Classification Wei Jiang1 Courtenay Cotton1 the challenging issue of joint audio-visual analysis of generic videos targeting at semantic concept de- tection. We propose to extract a novel representation, the Short-term Audio-Visual Atom (S-AVA), for improved

Ellis, Dan

116

Newporter Apartments: Deep Energy Retrofit Short-Term Results  

SciTech Connect

This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960's vintage low-rise multi-family apartment community (120 units in three buildings).

Gordon, A.; Howard, L.; Kunkle, R.; Lubliner, M.; Auer, D.; Clegg, Z.

2012-12-01T23:59:59.000Z

117

gasifier intro | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

final gasification products. O2MAF Coal Feed Chart Gasifier Gasification Introduction Fundamentals Reactions & Transformations Detailed Gasification Chemistry Thermodynamics...

118

Scenarios for a South African CSP Peaking System in the Short Term  

Science Journals Connector (OSTI)

Abstract The South African Integrated Resource Plan is a policy document, which by law allocates the energy resources that will be built to meet the future electricity needs of South Africa. The current Integrated Resource Plan indicates the electricity generation types that will be built from 2010 to 2030. It states that most of the future peak load will be met by Open Cycle Gas Turbines which operate using diesel and represents an allocation of 4,930 M W. Further, the Integrated Resource Plan does not identify CSP as a potential peaking solution and allocates 1,200 M W of capacity to CSP. This represents less than 2% of total capacity in 2030. This paper investigates the feasibility of utilizing CSP Plants as peaking plants in the short to medium term based on a proposition that under certain scenarios, a fleet of unsubsidized CSP peaking plants could drop the LCOE of the current Integrated Resource Plan. This is done by modeling a contemporary CSP tower system with Thermal Energy Storage. The Gemasolar CSP plant is used as the reference plant in order to obtain operating parameters. Our analysis suggests that at current fuels costs, diesel powered Open Cycle Gas Turbines produce electricity in excess of 5.08 ZAR/kWh (?0.63 US$/kWh), significantly above current CSP energy generating costs. This is the context that informed the undertaking of this study, to influence policy and provide technical evidence that CSP can guarantee and deliver energy at competitive costs in the short term. Two alternate scenarios show a lower LCOE for providing peak power. The most promising is a combined distributed CSP system wit h diesel powered Open Cycle Gas Turbine system as backup. The LCOE for this system is 2.78 ZAR (?0.34 $/kWh) or a drop of 45% when no fuel price inflation is considered. This system also increases security of supply due to a lower dependence on fuel prices.

C. Silinga; P. Gauché

2014-01-01T23:59:59.000Z

119

Microsoft PowerPoint - Arseneau_EIA_ShortTermDriversofEnergyPrices.ppt [Compatibility Mode]  

U.S. Energy Information Administration (EIA) Indexed Site

SHORT-TERM ENERGY PRICES: SHORT-TERM ENERGY PRICES: WHAT DRIVERS MATTER MOST? DAVID M. ARSENEAU FEDERAL RESERVE BOARD U.S. Energy Information Administration & Johns Hopkins University - SAIS FEDERAL RESERVE BOARD Johns Hopkins University SAIS 2010 Energy Conference Washington, D.C., U.S.A. A il 6 2010 April 6, 2010 BROAD COMMODITY PRICES SINCE 2000 Short-term Energy Prices: What Drivers Matters Most? BROAD COMMODITY PRICES SINCE 2000 April 6, 2010 Seminar: 2010 EIA/SAIS Energy Conference 2 A (GROSSLY OVERSIMPLIFIED) FRAMEWORK Short-term Energy Prices: What Drivers Matters Most? A (GROSSLY OVERSIMPLIFIED) FRAMEWORK ...  Two candidate explanations:  "Fundamentals"  Fundamentals  Trend price movements appear broadly interpretable through lens of fundamental market developments...

120

Short-Term Effects of Air Pollution on Wheeze in Asthmatic Children in Fresno, California  

E-Print Network (OSTI)

of winter air pollution on respira- tory health of asthmaticChildren’s Health Short-Term Effects of Air Pollution onEnvironmental Health Perspectives Effects of air pollution

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Spatiotemporal Model for Short-Term Predictions of Air Pollution Data  

Science Journals Connector (OSTI)

Recently, the interest of many environmental agencies is on short-term air pollution predictions referred at high spatial resolution. This ... be informed with visual and easy access to air-quality assessment. We...

Francesca Bruno; Lucia Paci

2014-01-01T23:59:59.000Z

122

A New Neuro-Based Method for Short Term Load Forecasting of Iran National Power System  

Science Journals Connector (OSTI)

This paper presents a new neuro-based method for short term load forecasting of Iran national power system (INPS). A MultiLayer Perceptron ( ... were selected through a peer investigation on historical data relea...

R. Barzamini; M. B. Menhaj; Sh. Kamalvand…

2005-01-01T23:59:59.000Z

123

Short-term irradiance variability: Preliminary estimation of station pair correlation as a function of distance  

E-Print Network (OSTI)

Review Short-term irradiance variability: Preliminary estimation of station pair correlation, 2010; SMUD, 2010; IEA, 2010). In a recently published article, Hoff and Perez (2010a,b) advanced

124

NETL: Gasification Systems - Gasifier Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Opt & Plant Supporting Systems Gasifier Opt & Plant Supporting Systems Gasification Systems Gasifier Optimization and Plant Supporting Systems The gasifier is the core system component in the gasification process. It determines both the primary requirements for raw material inputs and the product gas composition. The gasifier is generally a high temperature/pressure vessel where oxygen (or air) and steam are directly contacted with a fuel, such as coal, causing a series of chemical reactions to occur that result in production of a fuel gas. This fuel gas (also referred to either as synthesis gas or syngas) consists primarily of hydrogen, carbon monoxide, and carbon dioxide. Minor constituents present in the feedstock are converted to such products as hydrogen sulfide, ammonia, and ash/slag (mineral residues from coal). These products can be separated and captured for use or safe disposal. After cleaning to remove contaminants, the syngas consists mainly of carbon monoxide and hydrogen. According to the Department of Energy's vision for coal gasification, at this point steam may be added and the syngas sent through a water-gas shift (WGS) reactor to convert the carbon monoxide to nothing but carbon dioxide and additional hydrogen. After a gas separation process, the carbon dioxide is ready for utilization (such as for Enhanced Oil Recovery) or safe storage, and the hydrogen can be fired in a gas-turbine/steam-turbine generator set to produce electricity with stack emissions containing no greenhouse gases. Alternately, syngas or hydrogen can be used to produce highly-valued fuels and chemicals. Co-production of combinations of these products and electricity is also possible.

125

Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Description Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions like high temperature (1,200-1,600 °C), high pressure (up to 500 pounds per square inch gauge [psig]),

126

Method and apparatus for gasifying with a fluidized bed gasifier having integrated pretreating facilities  

DOE Patents (OSTI)

An integral gasifier including a pretreater section and a gasifier section separated by a distribution grid is defined by a single vessel. The pretreater section pretreats coal or other carbon-containing material to be gasified to prevent caking and agglomeration of the coal in the gasifier. The level of the coal bed of the pretreater section and thus the holding or residence time in said bed is selectively regulated by the amount of pretreated coal which is lifted up a lift pipe into the gasifier section. Thus, the holding time in the pretreater section can be varied according to the amount of pretreat necessary for the particular coal to be gasified.

Rice, Louis F. (Arcadia, CA)

1981-01-01T23:59:59.000Z

127

Daily prediction of short-term trends of crude oil prices using neural networks exploiting multimarket dynamics  

Science Journals Connector (OSTI)

This paper documents a systematic investigation on the predictability of short-term trends of crude oil prices on a daily basis. In stark contrast with longer-term predictions of crude oil prices, short-term pred...

Heping Pan; Imad Haidar; Siddhivinayak Kulkarni

2009-06-01T23:59:59.000Z

128

Business-driven short-term management of a hybrid IT infrastructure  

Science Journals Connector (OSTI)

We consider the problem of managing a hybrid computing infrastructure whose processing elements are comprised of in-house dedicated machines, virtual machines acquired on-demand from a cloud computing provider through short-term reservation contracts, and virtual machines made available by the remote peers of a best-effort peer-to-peer (P2P) grid. Each of these resources has different cost basis and associated quality of service guarantees. The applications that run in this hybrid infrastructure are characterized by a utility function: the utility gained with the completion of an application depends on the time taken to execute it. We take a business-driven approach to manage this infrastructure, aiming at maximizing the profit yielded, that is, the utility produced as a result of the applications that are run minus the cost of the computing resources that are used to run them. We propose a heuristic to be used by a contract planner agent that establishes the contracts with the cloud computing provider to balance the cost of running an application and the utility that is obtained with its execution, with the goal of producing a high overall profit. Our analytical results show that the simple heuristic proposed achieves very high relative efficiency in the use of the hybrid infrastructure. We also demonstrate that the ability to estimate the grid behaviour is an important condition for making contracts that allow such relative efficiency values to be achieved. On the other hand, our simulation results with realistic error predictions show only a modest improvement in the profit achieved by the simple heuristic proposed, when compared to a heuristic that does not consider the grid when planning contracts, but uses it, and another that is completely oblivious to the existence of the grid. This calls for the development of more accurate predictors for the availability of P2P grids, and more elaborated heuristics that can better deal with the several sources of non-determinism present in this hybrid infrastructure.

Paulo Ditarso Maciel Jr.; Francisco Brasileiro; Ricardo Araújo Santos; David Candeia; Raquel Lopes; Marcus Carvalho; Renato Miceli; Nazareno Andrade; Miranda Mowbray

2012-01-01T23:59:59.000Z

129

Design of a Pilot Plant Fluidized Bed Gasifier  

Science Journals Connector (OSTI)

This article presents the design principles for a biomass fluidized bed gasifier pilot plant. The fluidized bed gasifier has a nominal capacity of 400 kg ... most important parameters for the performance of the gasifier

K. Maniatis; V. Vassilatos; S. Kyritsis

1993-01-01T23:59:59.000Z

130

Sulfidation of coal gasifier heat exchanger alloys  

Science Journals Connector (OSTI)

Three steels, viz., INCOLOY* 800H, Fecralloy,† and AlSI 310, were exposed to a simulated low Btu coal gasifier product gas at 450 °C. Sulfidation...

S. R. J. Saunders; S. Schlierer

1986-03-01T23:59:59.000Z

131

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318  

Open Energy Info (EERE)

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) 06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-5-318 Triggers None specified Click "Edit With Form" above to add content 06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Error creating thumbnail: Page number not in range.

132

Short-term effects of Gamma Ray Bursts on oceanic photosynthesis  

E-Print Network (OSTI)

We continue our previous work on the potential short-term influence of a gamma ray bursts on Earth's biosphere, focusing on the only important short-term effect on life: the ultraviolet flash which occurs as a result of the retransmission of the {\\gamma} radiation through the atmosphere. Thus, in this work we calculate the ultraviolet irradiances penetrating the first hundred meters of the water column, for Jerlov's ocean water types I, II and III. Then we estimate the UV flash potential for photosynthesis inhibition, showing that it can be important in a considerable part of the water column with light enough for photosynthesis to be done, the so called photic zone.

Penate, Liuba; Cardenas, Rolando; Agusti, Susana

2010-01-01T23:59:59.000Z

133

Fuel-Flexible Microturbine and Gasifier System for Combined Heat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in...

134

Wood Chip Gasification in a Commercial Downdraft Gasifier  

Science Journals Connector (OSTI)

Fixed bed and moving bed gasifiers for the production of low Btu gas...1 After the war, the need for gasifiers dwindled although the Swedes continued their development...

Walter P. Walawender; S. M. Chern; L. T. Fan

1985-01-01T23:59:59.000Z

135

Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.  

E-Print Network (OSTI)

1 Next Generation Short-Term Forecasting of Wind Power ­ Overview of the ANEMOS Project. G outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced forecasts for the power system management and market integration of wind power. Keywords: Wind power, short

Boyer, Edmond

136

Ducklings Exhibit Substantial Energy-Saving Mechanisms as a Response to Short-Term Food Shortage  

E-Print Network (OSTI)

90 Ducklings Exhibit Substantial Energy-Saving Mechanisms as a Response to Short-Term Food Shortage platyrhyncos domesticus) exhibited any energy-saving mechanisms that could lessen the detrimental effects ex- hibited substantial energy-saving mechanisms as a response to diet restriction. After 5 d of diet

Bech, Claus

137

Longitudinal Analysis of Short term Bronchiolitis Air Pollution Association using Semi Parametric Models  

E-Print Network (OSTI)

pollution, semi parametric models. 1.1 Introduction Time-series studies of air pollution and health was an overestimation of the eect of air pollution on health. More recently, in a issue of Epidemiology, Ramsay et al1 Longitudinal Analysis of Short term Bronchiolitis Air Pollution Association using Semi Parametric

Mesbah, Mounir

138

Combination of Long Term and Short Term Forecasts, with Application to Tourism  

E-Print Network (OSTI)

Combination of Long Term and Short Term Forecasts, with Application to Tourism Demand Forecasting that are combined. As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we con- sider 33 source countries, as well as the aggregate. The novel

Abu-Mostafa, Yaser S.

139

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS  

E-Print Network (OSTI)

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS Hans. For the conventional power park, the power production of the wind turbines presents a fluctuating 'negative load PRODUCTION OF WIND TURBINES For the forecast of the power production of wind turbines two approaches may

Heinemann, Detlev

140

SHORT-TERM FORECASTING OF SOLAR RADIATION BASED ON SATELLITE DATA WITH STATISTICAL METHODS  

E-Print Network (OSTI)

by one blank line, and from the paper body by two blank lines. 1. INTRODUCTION Fluctuations of solarSHORT-TERM FORECASTING OF SOLAR RADIATION BASED ON SATELLITE DATA WITH STATISTICAL METHODS Annette Solar World Congress. This portion of the paper is the abstract. The abstract should not exceed 250

Heinemann, Detlev

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ethical Considerations for Short-term Experiences by Trainees in Global Health  

E-Print Network (OSTI)

-constrained health care set- tings, trainees from resource-replete environments may have inflated ideas aboutCOMMENTARY Ethical Considerations for Short-term Experiences by Trainees in Global Health John A. Crump, MB, ChB, DTM&H Jeremy Sugarman, MD, MPH, MA A CADEMIC GLOBAL HEALTH PROGRAMS ARE BURGEON- ing.1

Tipple, Brett

142

Managing Short-Term Electricity Contracts Under Uncertainty: A Minimax Approach  

E-Print Network (OSTI)

, the price of which follows supply and demand imbalances. Electricity prices, which were tightly controlled that occurred in the Midwest during the week of June 22, 1998, when the day-ahead electricity price departedManaging Short-Term Electricity Contracts Under Uncertainty: A Minimax Approach Samer Takriti

Ahmed, Shabbir

143

Business-Driven Short-Term Management of a Hybrid IT Infrastructure1  

E-Print Network (OSTI)

Business-Driven Short-Term Management of a Hybrid IT Infrastructure1 Paulo Ditarso Maciel Jr Abstract We consider the problem of managing a hybrid computing infrastructure whose processing elements and associated quality of service guarantees. The applications that run in this hybrid infrastructure are char

Cirne, Walfredo

144

Short-term Forecasting of Offshore Wind Farm Production Developments of the Anemos Project  

E-Print Network (OSTI)

Short-term Forecasting of Offshore Wind Farm Production ­ Developments of the Anemos Project J.a.brownsword@rl.ac.uk 6 Overspeed GmBH & Co.KG, 26129 Oldenburg, Germany Email: h.p.waldl@overspeed.de Key words: Offshore to the large dimensions of offshore wind farms, their electricity production must be known well in advance

Paris-Sud XI, Université de

145

Interference of a short-term exposure to nitrogen dioxide with allergic airways responses to allergenic  

E-Print Network (OSTI)

Interference of a short-term exposure to nitrogen dioxide with allergic airways responses, 4 (2002) 251-260" DOI : 10.1080/096293502900000113 #12;Abstract Nitrogen dioxide (NO2) is a common and may depend to concentration of pollutant. Keywords: Mouse model of asthma; nitrogen dioxide; air

Paris-Sud XI, Université de

146

Short Term Hourly Load Forecasting Using Abductive Networks R. E. Abdel-Aal  

E-Print Network (OSTI)

Short Term Hourly Load Forecasting Using Abductive Networks R. E. Abdel-Aal Center for Applied for this purpose. This paper proposes using the alternative technique of abductive networks, which offers with statistical and empirical models. Using hourly temperature and load data for five years, 24 dedicated models

Abdel-Aal, Radwan E.

147

Short-Term Throughput Maximization for Battery Limited Energy Harvesting Nodes  

E-Print Network (OSTI)

for energy recharge. Under the assumption of an increasing concave power-rate relationship, the short completion time of a given amount of data were found for an energy harvesting node under the assumptionShort-Term Throughput Maximization for Battery Limited Energy Harvesting Nodes Kaya Tutuncuoglu

Yener, Aylin

148

PRIMARY RESEARCH PAPER Short-term responses of decomposers to flow restoration  

E-Print Network (OSTI)

flow. Our results indicate that some aquatic ecosystem variables can return to a more natural statePRIMARY RESEARCH PAPER Short-term responses of decomposers to flow restoration in Fossil Creek projects, although numerous, rarely include complete sets of data before and after restoration

LeRoy, Carri J.

149

CANMET Gasifier Liner Coupon Material Test Report  

SciTech Connect

This report provides detailed test results consisting of test data and post-test inspections from Task 1 ''Cooled Liner Coupon Development and Test'' of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources--Advanced Gasification Systems Development (AGSD)''. The primary objective of this development and test program is to verify that ceramic matrix composite (CMC) liner materials planned for use in an advanced gasifier pilot plant will successfully withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) designed and fabricated the cooled liner test assembly article that was tested in a slagging gasifier at CANMET Energy Technology Center (CETC-O) in Ottawa, Ontario, Canada. The test program conducted in 2006 met the objective of operating the cooled liner test article at slagging conditions in a small scale coal gasifier at CETC-O for over the planned 100 hours. The test hardware was exposed to at least 30 high temperature excursions (including start-up and shut-down cycles) during the test program. The results of the testing has provided valuable information on gasifier startup and required cooling controls in steady state operation of future advanced gasifiers using similar liners. The test program also provided a significant amount of information in the areas of CMC materials and processing for improved capability in a gasifier environment and insight into CMC liner fabrication that will be essential for near-term advanced gasifier projects.

Mark Fitzsimmons; Dave Grimmett; Bryan McEnerney

2007-01-31T23:59:59.000Z

150

Preliminary Technical Results of World Bank Gasifier Monitorings  

Science Journals Connector (OSTI)

Through the World Bank/UNDP Gasifier Monitoring Programme, a number of gasification installations...

M. S. Mendis; H. E. M. Stassen; H. N. Stiles

1988-01-01T23:59:59.000Z

151

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Short-Term Energy Outlook Short-Term Energy Outlook Release Date: January 7, 2014 | Next Release Date: February 11, 2014 | Full Report | Text Only | All Tables | All Figures Glossary › FAQS › Overview STEO Report Highlights Prices Global Crude Oil and Liquid Fuels U.S. Crude Oil and Liquid Fuels Natural Gas Coal Electricity Renewables and CO2 Emissions U.S. Economic Assumptions Data Figures Tables Custom Table Builder Real Prices Viewer Forecast Changes (PDF) Special Analysis Price Uncertainty < Back to list of tables Working correctly. Table 1 : U.S. Energy Markets Summary Either scripts and active content are not permitted to run or Adobe Flash Player version ${version_major}.${version_minor}.${version_revision} or greater is not installed. Get Adobe Flash Player a Includes lease condensate.

152

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

NLE Websites -- All DOE Office Websites (Extended Search)

‹ Analysis & Projections ‹ Analysis & Projections Short-Term Energy Outlook Release Date: January 7, 2014 | Next Release Date: February 11, 2014 | Full Report | Text Only | All Tables | All Figures Glossary › FAQS › Overview STEO Report Highlights Prices Global Crude Oil and Liquid Fuels U.S. Crude Oil and Liquid Fuels Natural Gas Coal Electricity Renewables and CO2 Emissions U.S. Economic Assumptions Data Figures Tables Custom Table Builder Real Prices Viewer Forecast Changes (PDF) Special Analysis Price Uncertainty Highlights This edition of the Short-Term Energy Outlook is the first to include forecasts for 2015. After falling to the lowest monthly average of 2013 in November, U.S. regular gasoline retail prices increased slightly to reach an average of $3.28 per gallon (gal) during December. The annual average regular

153

Assessing the consistency between short-term global temperature trends in observations and climate model projections  

E-Print Network (OSTI)

Assessing the consistency between short-term global temperature trends in observations and climate model projections is a challenging problem. While climate models capture many processes governing short-term climate fluctuations, they are not expected to simulate the specific timing of these somewhat random phenomena - the occurrence of which may impact the realized trend. Therefore, to assess model performance, we develop distributions of projected temperature trends from a collection of climate models running the IPCC A1B emissions scenario. We evaluate where observed trends of length 5 to 15 years fall within the distribution of model trends of the same length. We find that current trends lie near the lower limits of the model distributions, with cumulative probability-of-occurrence values typically between 5 percent and 20 percent, and probabilities below 5 percent not uncommon. Our results indicate cause for concern regarding the consistency between climate model projections and observed climate behavior...

Michaels, Patrick J; Christy, John R; Herman, Chad S; Liljegren, Lucia M; Annan, James D

2013-01-01T23:59:59.000Z

154

Impact of short-term storage on frequency response under increasing wind penetration  

Science Journals Connector (OSTI)

Abstract In this paper, the effort is to study the impact of short-term storage technology in stabilizing the frequency response under increasing wind penetration. The frequency response is studied using Automatic Generation Control (AGC) module, and is quantified in terms of Control Performance Standards (CPS). The single area IEEE Reliability Test System (RTS) was chosen, and battery storage was integrated within the AGC. The battery proved to reduce the frequency deviations and provide good CPS scores with higher penetrations of wind. The results also discuss the ability of the short term storage to benefit the system by reducing the hourly regulation deployment and the cycling undergone by conventional units, by dint of their fast response; and sheds light on the economic implications of their benefits.

Venkat Krishnan; Trishna Das; James D. McCalley

2014-01-01T23:59:59.000Z

155

Session 4: "Short-Term Energy Prices - What Drivers Matter Most?"  

U.S. Energy Information Administration (EIA) Indexed Site

4: "Short-Term Energy Prices - What Drivers Matter Most?" 4: "Short-Term Energy Prices - What Drivers Matter Most?" Speakers: Howard K. Gruenspecht, EIA David M. Arseneau, Federal Reserve Board Guy F. Caruso, Center for Strategic and International Studies Christopher Ellsworth, Federal Energy Regulatory Commission Edward L. Morse, Credit Suisse Securities [Note: Recorders did not pick up introduction of panel (see biographies for details on the panelists) or introduction of session.] Howard: And this presentation could not be more timely, given current developments in oil and natural gas markets and the start of the traditional summer driving season. In discussions of rapidly rising oil prices leading to a peak of $147 per barrel in the summer of 2008, the factors that were traditionally the focus of EIA's

156

Short-term load forecasting using generalized regression and probabilistic neural networks in the electricity market  

SciTech Connect

For the economic and secure operation of power systems, a precise short-term load forecasting technique is essential. Modern load forecasting techniques - especially artificial neural network methods - are particularly attractive, as they have the ability to handle the non-linear relationships between load, weather temperature, and the factors affecting them directly. A test of two different ANN models on data from Australia's Victoria market is promising. (author)

Tripathi, M.M.; Upadhyay, K.G.; Singh, S.N.

2008-11-15T23:59:59.000Z

157

Integrating short-term demand response into long-term investment planning  

E-Print Network (OSTI)

discussions of the model in [79] and [80], and [81] for an application. 6 Developed by the Tennessee Valley Authority (TVA) and Oak Ridge National Laboratory (ORNL) of the United States of America [82]. EPRG No 1113 5 Planning (IRP) was developed.7... Integrating short-term demand response into long-term investment planning Cedric De Jonghe, Benjamin F. Hobbs and Ronnie Belmans 20 March 2011 CWPE 1132 & EPRG 1113 www.eprg.group.cam.ac.uk EP RG W...

De Jonghe, Cedric; Hobbs, Benjamin F.; Belmans, Ronnie

2011-03-20T23:59:59.000Z

158

DSM savings verification through short-term pre-and-post energy monitoring at 90 facilities  

SciTech Connect

This paper summarizes the DSM impact results obtained from short-term energy measurements performed at sites monitored as part of the Commercial, Industrial and Agricultural (CIA) Retrofit Incentives Evaluation Program sponsored by the Pacific Gas & Electric Company. The DSM measures include those typically found in these sectors; i.e., lighting, motors, irrigation pumps and HVAC modifications. The most important findings from the site measurements are the estimated annual energy and demand savings. Although there may be large differences of projected energy savings for individual sites, when viewed in the aggregate the total energy savings for the program were found to be fairly comparable to engineering estimates. This paper describes the lessons learned from attempting in-situ impact evaluations of DSM savings under both direct and custom rebate approaches. Impact parameters of interest include savings under both direct and custom rebate approaches. Impact parameters of interest include gross first-year savings and load shape impacts. The major method discussed in this paper is short-term before/after field monitoring of affected end-uses; however, the complete impact evaluation method also includes a billing analysis component and a hybrid statistical/engineering model component which relies, in part, on the short-term end-use data.

Misuriello, H.

1994-12-31T23:59:59.000Z

159

Short-term wind forecast for the safety management of complex areas during hazardous wind events  

Science Journals Connector (OSTI)

Abstract This paper describes the short-term wind forecast system realised in the framework of the European Project “Wind and Ports: The forecast of wind for the management and safety of port areas”. The project?s aim is to contribute improving the safety and accessibility to the harbour areas of the largest ports in the Northern Tyrrhenian Sea, which are frequently exposed to hazardous winds, in order to minimise the risks for users, structures, transport means, stored goods and boats within the ports. The short-term wind forecast system is based on a mixed statistical-numerical procedure, trained by means of local wind measurements and implemented into an operational chain for the real-time prediction of the maximum expected wind velocity corresponding to three forecast horizons (30, 60 and 90 min) and three non-exceeding probabilities (90%, 95%, and 99%). The local wind measurements used to train the forecast algorithms have been recorded from the 15 ultra-sonic anemometers installed in the Ports of Savona, La Spezia, and Livorno. This wind-monitoring network is used also to carry out the short-term forecast system a posteriori verification and validation.

M. Burlando; M. Pizzo; M.P. Repetto; G. Solari; P. De Gaetano; M. Tizzi

2014-01-01T23:59:59.000Z

160

Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint  

SciTech Connect

The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pages 41-52 Short-term effects of small dam removal on a freshwater mussel assemblage.  

E-Print Network (OSTI)

with appropriate planning, timing, and removal techniques, but additional monitoring is warrantePages 41-52 Short-term effects of small dam removal on a freshwater mussel assemblage. Ryan J 1053-637X EDITORIAL REVIEW BOARD #12;SHORT-TERM EFFECTS OF SMALL DAM REMOVAL ON A FRESHWATER MUSSEL

Kwak, Thomas J.

162

ORIGINAL PAPER Short-term effect of tillage intensity on N2O and CO2 emissions  

E-Print Network (OSTI)

ORIGINAL PAPER Short-term effect of tillage intensity on N2O and CO2 emissions Pascal Boeckx negative to positive. We studied the short-term effect of tillage intensity on N2O and CO2 emissions. We site, an intermediately aerated Luvisol in Belgium, were similar. Nitrous oxide and CO2 emissions were

Paris-Sud XI, Université de

163

Research of least squares support vector regression based on differential evolution algorithm in short-term load forecasting model  

Science Journals Connector (OSTI)

To improve the accuracy of short-term load forecasting a differential evolution algorithm (DE) based least squares support vector regression (LSSVR) method is proposed in this paper. Through optimizing the regularization parameter and kernel parameter of the LSSVR by DE a short-term load forecasting model which can take load affected factors such as meteorology weather and date types into account is built. The proposed LSSVR method is proved by implementing short-term load forecasting on the real historical data of Yangquan power system in China. The average forecasting error is less than 1.6% which shows better accuracy and stability than the traditional LSSVR and Support vector regression. The result of implementation of short-term load forecasting demonstrates that the hybrid model can be used in the short-term forecasting of the power system more efficiently.

2014-01-01T23:59:59.000Z

164

Slag-Refractory Interaction in Coal Gasifiers  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) has taken an integrated approach to address major technical issues in conversion of coal into clean-burning liquid fuel. The approach includes: 1) modeling of gasifier and slag flow, 2) experimental characterization of slag viscoelastic behavior as a function of temperature for representative slags and refractory-slag interactions, and 3) interplay of the modeling and experimental measurements to identify critical conditions beyond which refractory corrosion tends to increase sharply. Basic heat and mass balances were considered in the gasifier and flow models. Two new refractory spalling models were developed. An experimental design that encompassed the broad range of slag chemistries that were of interest to coal gasification was developed and implemented. Selected gasifier refractories were tested in a simulated gasifier environment in our laboratory to identify refractory degradation mechanisms. Preliminary results of the effort are summarized.

Sundaram, S. K.; Johnson, Kenneth I.; Williford, Ralph E.; Pilli, Siva Prasad; Matyas, Josef; Fluegel, Alexander; Cooley, Scott K.; Crum, Jarrod V.; Edmondson, Autumn B.

2007-10-13T23:59:59.000Z

165

Engineered refractoriers for slagging coal gasifiers  

SciTech Connect

The widespread commercial adaptation of slagging gasifier technology to produce power, fuel, and/or chemicals from coal will depend in large measure on the technology's ability to prove itself both economic and reliable. Improvements in gasifier reliability, availability, and maintainability will in part depend on the development of improved structural materials with longer service life in this application. Current generation refractory materials used to line the gasifier vessel, and contain the gasification reaction, often last no more than three to 18 months in commercial applications. The downtime required for tear-out and replacement of these critical materials results in gasifier on-line availabilities that fall short of targeted goals. In this talk we will discuss the development of improved refractory materials engineered specifically for longer service life in this application, with emphasis on the design of new refractories that contain little or no chrome.

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A; Krabbe, Rick; Thomas, Hugh

2005-01-01T23:59:59.000Z

166

The improvement of slagging gasifier refractories  

SciTech Connect

Refractories play a vital role in slagging gasifier on-line availability and profitability for the next clean power generation system. A recent survey of gasifier users by USDOE indicated that a longer service life of refractories is the highest need among gasifier operators. Currently, Cr2O3 based refractories, the best of commercially available materials for use in slagging gasifiers, last between 3 and 24 months. Researchers at Albany Research Center (ARC) have identified structural spalling, caused by slag penetration, as one of the major failure mechanisms of Cr2O3 refractories through postmortem analysis. New Cr2O3 refractories with phosphate additives have been developed by ARC to decrease slag penetration and thus structural spalling. Laboratory physical property tests indicated that ARC developed refractories are superior to other commercial bricks. One of the ARC developed phosphate containing refractories has been installed in a slagging gasifier. Preliminary results of the performance of this refractory in the gasifier will be reported along with research to develop non-chromia refractories.

Kwong, K.-S.; Bennett, J.P.; Powell, C.A.; Krabbe, R.A.

2006-03-01T23:59:59.000Z

167

Gasifiers optimized for fuel cell applications  

SciTech Connect

Conventional coal gasification carbonate fuel cell systems are typically configured as shown in Figure 1, where the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45--53% (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

Steinfeld, G.; Fruchtman, J.; Hauserman, W.B.; Lee, A.; Meyers, S.J.

1992-01-01T23:59:59.000Z

168

Gasifiers optimized for fuel cell applications  

SciTech Connect

Conventional coal gasification carbonate fuel cell systems are typically configured as shown in Figure 1, where the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45--53% (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

Steinfeld, G.; Fruchtman, J.; Hauserman, W.B.; Lee, A.; Meyers, S.J.

1992-12-01T23:59:59.000Z

169

Measuring Short-term Air Conditioner Demand Reductions for Operations and  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Short-term Air Conditioner Demand Reductions for Operations and Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement Title Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement Publication Type Report LBNL Report Number LBNL-5330E Year of Publication 2012 Authors Bode, Josh, Michael J. Sullivan, and Joseph H. Eto Pagination 120 Date Published 01/2012 Publisher LBNL City Berkeley Keywords consortium for electric reliability technology solutions (certs), electricity markets and policy group, energy analysis and environmental impacts department Abstract Several recent demonstrations and pilots have shown that air conditioner (AC) electric loads can be controlled during the summer cooling season to provide ancillary services and improve the stability and reliability of the electricity grid. A key issue for integration of air conditioner load control into grid operations is how to accurately measure shorter-term (e.g., ten's of minutes to a couple of hours) demand reductions from AC load curtailments for operations and settlement. This report presents a framework for assessing the accuracy of shorter-term AC load control demand reduction measurements. It also compares the accuracy of various alternatives for measuring AC reductions - including methods that rely on regression analysis, load matching and control groups - using feeder data, household data and AC end-use data. A practical approach is recommended for settlement that relies on set of tables, updated annually, with pre-calculated load reduction estimates. The tables allow users to look up the demand reduction per device based on the daily maximum temperature, geographic region and hour of day and simplify the settlement process.

170

Production of hybrid poplar under short-term, intensive culture in Western Colorado  

Science Journals Connector (OSTI)

An irrigated study was conducted at the Western Colorado Research Center at Fruita for 6 years to evaluate eight hybrid poplar clones under short-term, intensive culture. The eight clones included in the study were Populus nigra x P. maximowiczii (NM6), P. trichocarpa x P. deltoides (52225, OP367), and P. deltoides x P. nigra (Norway, Noreaster, Raverdaus, 14274, 14272). Data were collected for growth, aerial biomass yield, dry matter partitioning, carbon sequestration, and insect and disease infestation. OP367 and 52225 consistently had larger tree diameters than other hybrids for each of the 6 years. Averaged across clones, yield was 58.4 Mg ha?1. OP367 had the highest yield at 72.2 Mg ha?1 and 14274 had the lowest yield at 41.0 Mg ha?1. The yield of OP367 was 1.8 times greater than that of 14274. Carbon yield over the 6 years of testing was highest for OP367 at 33.4 Mg C ha?1 and lowest for 14274 at 18.8 Mg C ha?1. Of the eight clones tested, OP367 was the most adapted and productive clone in this short-term, intensive culture system in the arid environment of the Grand Valley of western Colorado as evidenced by its productive growth, yield, insect resistance, winterhardiness, and tree architecture. Several insect species infested the poplar clones over the course of the rotation. Best management practices for growers who produce hybrid poplar under short-term, intensive culture should include the following: (1) plant highly productive clones, (2) poplar clones with suitable tree architecture for production and market objectives should be used, (3) if carbon sequestration is an important production objective, plant a suitable clone, (4) some poplar clones develop chlorosis when planted in high pH soils and should be avoided, and (5) use poplar clones that have been shown to exhibit resistance to specific insect species.

C.H. Pearson; A.D. Halvorson; R.D. Moench; R.W. Hammon

2010-01-01T23:59:59.000Z

171

Dynamic Testing of Gasifier Refractory  

SciTech Connect

The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF has been completed. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Screening tests are in currently in progress. Detailed analysis of corrosion rates from the first tests is in progress.

Michael D. Mann; Devdutt Shukla; Xi Hong; John P. Hurley

2004-09-27T23:59:59.000Z

172

Short-term electricity dispatch optimization of Ertan hydropower plant based on data by field tests  

Science Journals Connector (OSTI)

A short-term electricity dispatch optimization program required by the Ertan hydropower plant is developed to maximize hydropower production. Three field tests in various operating heads were carried out in the period of May 2009 to March 2010. Based on data of five test conditions three operating zones for units in various operating heads were proposed. A short-term electricity dispatch optimization model was developed with physical and operational constraints. Unit commitment strategy was put forward for model solution in which unit statuses and output statuses were classified. The strategy aimed at formulating better unit commitment plan according to forecasted load demand ancillary service requirements and initial operating status. The model and the strategy were verified by real cases. The results show that the optimal load distribution among units at every interval can be easily solved by the genetic algorithm based on a fixed unit commitment plan. Schedules are developed with higher average generation efficiency. Units can also be scheduled to operate for a less time within the rough zone and the second feasible zone. The proposed method is already operational for dispatch engineers of the Ertan hydropower plant to determine half-hourly schedules in one day.

Chao Ma; Haijun Wang; Jijian Lian

2011-01-01T23:59:59.000Z

173

Establishing robust short-term distributions of load extremes of offshore wind turbines  

Science Journals Connector (OSTI)

Abstract A novel method with a rigorous theoretical foundation is proposed for establishing robust short-term distributions of load extremes of offshore wind turbines. Based on the wind turbine load time series, the proposed method begins with incorporating a declustering algorithm into the peaks over threshold (POT) method and searching for an optimum threshold level with the aid of a Mean Residual Life (MRL) plot. Then, the method of L-moments is utilized to estimate the parameters in the generalized Pareto distribution (GPD) of the largest values in all the selected clusters over the optimal threshold level. As an example of calculation, an optimal threshold level of the tower base fore-aft extreme bending moments of the National Renewable Energy Laboratory (NREL) 5-MW OC3-Hywind floating wind turbine has been obtained by utilizing the novel method. The short-term extreme response probability plots based on this optimal threshold level are compared with the probability plots based on the empirical and semi-empirical threshold levels, and the accuracy and efficiency of the proposed novel method are substantiated. Diagnostic plots are also included in this paper for validating the accuracy of the proposed novel method. The method has been further validated in another calculation example regarding an NREL 5-MW fixed-bottom monopile wind turbine.

Yingguang Wang; Yiqing Xia; Xiaojun Liu

2013-01-01T23:59:59.000Z

174

Simulation of biomass gasification in a dual fluidized bed gasifier  

Science Journals Connector (OSTI)

Biomass gasification with steam in a dual-fluidized bed gasifier (DFBG) was simulated with ASPEN Plus. ... that the content of char transferred from the gasifier to the combustor decreases from 22.5...2 concentra...

Jie He; Kristina Göransson; Ulf Söderlind…

2012-03-01T23:59:59.000Z

175

Leafy Biomass Gasifier for 15 kVA Diesel Genset  

Science Journals Connector (OSTI)

A 15 kVA diesel genset powered by a loose sugarcane leaves gasifier was successfully tested and long-term data ... 20-40 cm (water gage). The gasifier also produces char which is 2028% by ... . Tests conducted wi...

Anil K. Rajvanshi; Rajiv M. Jorapur

1993-01-01T23:59:59.000Z

176

Five-kilowatt wood gasifier technology: Evolution and field experience  

Science Journals Connector (OSTI)

Various elements of an efficient and reliable 5k W wood gasifier system developed over the last ten years ... sub-systems. Results from extensive testing of gasifier prototypes at two national centres are discuss...

S Dasappa; U Shrinivasa; B N Baliga; H S Mukunda

1989-12-01T23:59:59.000Z

177

Research on Short-term Load Forecasting of the Thermoelectric Boiler Based on a Dynamic RBF Neural Network  

E-Print Network (OSTI)

As thermal inertia is the key factor for the lag of thermoelectric utility regulation, it becomes very important to forecast its short-term load according to running parameters. In this paper, dynamic radial basis function (RBF) neural network...

Dai, W.; Zou, P.; Yan, C.

2006-01-01T23:59:59.000Z

178

Using a Self Organizing Map Neural Network for Short-Term Load Forecasting, Analysis of Different Input Data Patterns  

Science Journals Connector (OSTI)

This research uses a Self-Organizing Map neural network model (SOM) as a short-term forecasting method. The objective is to obtain the demand curve of certain hours of the next day. In order to validate the model...

C. Senabre; S. Valero; J. Aparicio

2010-01-01T23:59:59.000Z

179

Using futures prices to filter short-term volatility and recover a latent, long-term price series for oil  

E-Print Network (OSTI)

Oil prices are very volatile. But much of this volatility seems to reflect short-term,transitory factors that may have little or no influence on the price in the long run. Many major investment decisions should be guided ...

Herce, Miguel Angel

2006-01-01T23:59:59.000Z

180

Short term effects of commercial polychlorinated biphenyl (PCB) mixtures and individual PCB congeners in female Sprague-Dawley rats  

E-Print Network (OSTI)

SHORT TERM EFFECTS OF COMMERCIAL POLYCHLORINATED BIPHENYL (PCB) MIXTURFS AND INDIVIDUAL PCB CONGENERS IN FEMALE SPRAGUE-DAWLEY RATS A Thesis by YU-CHYU CHEN Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992 Major subject: Toxicology SHORT TERM EFFECTS OF COMMERCIAL POLYCHLORINATED BIPHENYL (PCB) MIXTURES AND INDIVIDUAL PCB CONGENERS IN FEMALE SPRAGUE-DAWLEY RATS A Thesis...

Chen, Yu-Chyu

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Process simulation of the transport gasifier  

Science Journals Connector (OSTI)

Abstract The transport gasifier manufactured by Kellogg, Brown and Root (KBR) is reportedly capable of economically converting low rank coal (e.g. lignite) to syngas for the production of synthetic chemicals, fuels and energy. However no process simulation of the KBR transport gasifier yet exists in the public domain literature. In this work three alternative process simulation models of the transport gasifier were developed using a commercial process simulator combined with Excel/VBA routines. The first model determined gasification products on the basis of minimum Gibbs energy. The second model used pseudo-equilibrium approach and the third model used kinetic expressions. The simulation models were validated with real process data. The pseudo-equilibrium model was best able to replicate the data with reasonable process assumptions.

Christopher J. Arthur; Muhammad Tajammal Munir; Brent R. Young; Wei Yu

2014-01-01T23:59:59.000Z

182

EVALUATING SHORT-TERM CLIMATE VARIABILITY IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS  

SciTech Connect

This literature study investigated methods and areas to deduce climate change and climate patterns, looking for short-term cycle phenomena and the means to interpret them. Many groups are actively engaged in intensive climate-related research. Ongoing research might be (overly) simplified into three categories: (1) historic data on weather that can be used for trend analysis and modeling; (2) detailed geological, biological (subfossil), and analytical (geochemical, radiocarbon, etc.) studies covering the last 10,000 years (about since last glaciation); and (3) geological, paleontological, and analytical (geochemical, radiometric, etc.) studies over millions of years. Of importance is our ultimate ability to join these various lines of inquiry into an effective means of interpretation. At this point, the process of integration is fraught with methodological troubles and misconceptions about what each group can contribute. This project has met its goals to the extent that it provided an opportunity to study resource materials and consider options for future effort toward the goal of understanding the natural climate variation that has shaped our current civilization. A further outcome of this project is a proposed methodology based on ''climate sections'' that provides spatial and temporal correlation within a region. The method would integrate cultural and climate data to establish the climate history of a region with increasing accuracy with progressive study and scientific advancement (e. g., better integration of regional and global models). The goal of this project is to better understand natural climatic variations in the recent past (last 5000 years). The information generated by this work is intended to provide better context within which to examine global climate change. The ongoing project will help to establish a basis upon which to interpret late Holocene short-term climate variability as evidenced in various studies in the northern Great Plains, northern hemisphere, and elsewhere. Finally these data can be integrated into a history of climate change and predictive climate models. This is not a small undertaking. The goals of researchers and the methods used vary considerably. The primary task of this project was literature research to (1) evaluate existing methodologies used in geologic climate change studies and evidence for short-term cycles produced by these methodologies and (2) evaluate late Holocene climate patterns and their interpretations.

Joseph H. Hartman

1999-09-01T23:59:59.000Z

183

Proportionalintegral-plus (PIP) control of the ALSTOM gasifier problem  

E-Print Network (OSTI)

469 Proportional­integral-plus (PIP) control of the ALSTOM gasifier problem C J Taylor, A P Mc the gasifier system of an integrated gasification combined cycle (IGCC) power plant. In particular of the gasifier is found to yield good control of the bench- mark, meeting most of the specified performance

Sengun, Mehmet Haluk

184

Ris0-R-833(EN) Cyclone Gasifier for Biomass  

E-Print Network (OSTI)

Ris0-R-833(EN) Cyclone Gasifier for Biomass Preliminary Investigations Poul Astrup Ris0 National Laboratory, Roskilde, Denmark July 1995 #12;#12;Cyclone Gasifier for Biomass Ris0-R-833(EN) Preliminary at the design of a 20 MW as fired slagging cyclone gasifier for biomass, it has been investigated how biomass

185

Handbook of biomass downdraft gasifier engine systems  

SciTech Connect

This handbook has been prepared by the Solar Energy Research Institute under the US Department of Energy /bold Solar Technical Information Program/. It is intended as a guide to the design, testing, operation, and manufacture of small-scale (less than 200 kW (270 hp)) gasifiers. A great deal of the information will be useful for all levels of biomass gasification. The handbook is meant to be a practical guide to gasifier systems, and a minimum amount of space is devoted to questions of more theoretical interest.

Reed, T B; Das, A

1988-03-01T23:59:59.000Z

186

Microsoft Word - Alcoa_short-term_amendments2_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mark Miller Mark Miller Account Executive, Long-term Sales and Purchases - PT-5 Proposed Action: Short-term Additional Amendments to the Alcoa Power Sales Agreement Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): A2 - Clarifying or administrative contract actions Location: Portland, OR and Ferndale, WA Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to execute one or more additional amendments to its existing 2009 Power Sales Agreement (Agreement) with Alcoa, Inc. (Alcoa) to further extend the Agreement's Initial Period provisions. The current date for expiration of these provisions under the most recent amendment (Amendment Number 4) is September 30, 2012. The current proposal involves executing one or more additional

187

DOBEIA-0202(83/4Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

DOBEIA-0202(83/4Q) DOBEIA-0202(83/4Q) Short-Term Energy Outlook Quarterly Projections November 1983 Energy Information Administration Washington, D.C. t rt jrt .ort lort .lort lort lort lort <.ort ort Tt- .-m .erm -Term -Term Term Term Term Term Term Term Term Term Term Term Term Term Term Nrm ,iergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short Short Short Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short Short Short Short Short-

188

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

‹ Analysis & Projections ‹ Analysis & Projections Short-Term Energy Outlook Release Date: December 10, 2013 | Next Release Date: January 7, 2014 | Full Report | Text Only | All Tables | All Figures Glossary › FAQS › Overview STEO Report Highlights Prices Global Crude Oil and Liquid Fuels U.S. Crude Oil and Liquid Fuels Natural Gas Coal Electricity Renewables and CO2 Emissions U.S. Economic Assumptions Data Figures Tables Custom Table Builder Real Prices Viewer Forecast Changes (PDF) Special Analysis Price Uncertainty Highlights After falling by more than 40 cents per gallon from the beginning of September through mid-November, weekly U.S. average regular gasoline retail prices increased by 8 cents per gallon to reach $3.27 per gallon on December 2, 2013, due in part to unplanned refinery maintenance and higher

189

DOE/EIA-0202(85/1Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Short-Term Energy Outlook Quarterly Projections January 1985 Published: February 1985 Energy Information Administration Washington, D.C. t rt jrt .ort lort lort lort nort lort *.ort ort Tt .m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term uergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short

190

DOE/EIA-0202(84/4Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

4Q) 4Q) Short-Term Energy Outlook Quarterly Projections October 1984 Published: November 1984 Energy Information Administration Washington, D.C. t rt jrt .ort lort iort lort iort lort \ort ort Tt .erm Term Term Term Term Term Term Term Term Term Term Term Term Term -Term -Term xrm nergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short Short- Short- Short Short Short Short Short Short

191

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Release Schedule Release Schedule Release Date. The Short-Term Energy Outlook (STEO) scheduling procedure calls for the release of the STEO on the first Tuesday following the first Thursday of each month. For example, since the first Thursday of July 2009 was July 2, under this plan, the July edition was released on Tuesday, July 7. If a Federal holiday falls on the Monday before the normal release date the release is delayed until Wednesday. There may be the occasional unusual delay in the release because of scheduling around other events, such as the annual EIA Conference in April 2009. Barring holidays or unusual rescheduling, the STEO will normally appear between the 6th and the 12th of the month. Any unforeseen scheduling adjustments will be posted here and/or on the STEO homepage.

192

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Special Analysis Special Analysis + EXPAND ALL Feature Articles Status of Libyan Loading Ports and Oil and Natural Gas Fields September 2013 PDF EIA Estimates of Crude Oil and Liquid Fuels Supply Disruptions September 2013 PDF 2013 Outlook for Gulf of Mexico Hurricane-Related Production Outages June 2013 PDF Summer 2013 Outlook for Residential Electric Bills June 2013 PDF Key drivers for EIA's short-term U.S. crude oil production outlook February 2013 PDF Constraints in New England likely to affect regional energy prices this winter January 2013 PDF Change in STEO Regional and U.S. Degree Day Calculations September 2012 PDF Changes to Electricity and Renewables Tables August 2012 PDF Brent Crude Oil Spot Price Forecast July 2012 PDF 2012 Outlook for Hurricane-Related Production Outages in the Gulf of Mexico June 2012 PDF

193

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

‹ Analysis & Projections ‹ Analysis & Projections Short-Term Energy Outlook Release Date: December 10, 2013 | Next Release Date: January 7, 2014 | Full Report | Text Only | All Tables | All Figures Glossary › FAQS › Overview STEO Report Highlights Prices Global Crude Oil and Liquid Fuels U.S. Crude Oil and Liquid Fuels Natural Gas Coal Electricity Renewables and CO2 Emissions U.S. Economic Assumptions Data Figures Tables Custom Table Builder Real Prices Viewer Forecast Changes (PDF) Special Analysis Price Uncertainty Custom Table Builder Frequency: Annual Monthly Quarterly Select a Year Range: 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 to 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

194

Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement  

NLE Websites -- All DOE Office Websites (Extended Search)

330E 330E Measuring Short-term Air Conditioner Demand Reductions for Operations and Settlement Josh Bode, Michael Sullivan, Joseph H. Eto January 2012 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or

195

QUARTER SHORT-TERM ENERGY OUTLOOK QUARTERLY PROJECTIONS ENERGY INFORMATION ADMINISTRATION  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) 1991 1 QUARTER SHORT-TERM ENERGY OUTLOOK QUARTERLY PROJECTIONS ENERGY INFORMATION ADMINISTRATION February 1991 This publication may be purchased from the Superintendent of Documents, U.S. Government Printing Office. Purchasing in formation for this or other Energy Information Administration (EIA) publications may be obtained from the Government Printing Office or ElA's National Energy Information Center. Questions on energy statistics should be directed to the Center by mail, telephone, or telecommunications device for the hearing impaired. Addresses, telephone numbers, and hours are as follows: National Energy Information Center, El-231 Energy Information Administration Forrestal Building, Room 1F-048 Washington, DC 20585 (202) 586-8800 Telecommunications Device for the

196

Miller's instability, microchaos and the short-term evolution of initially nearby orbits  

E-Print Network (OSTI)

We study the phase-space behaviour of nearby trajectories in integrable potentials. We show that the separation of nearby orbits initially diverges very fast, mimicking a nearly exponential behaviour, while at late times it grows linearly. This initial exponential phase, known as Miller's instability, is commonly found in N-body simulations, and has been attributed to short-term (microscopic) N-body chaos. However we show here analytically that the initial divergence is simply due to the shape of an orbit in phase-space. This result confirms previous suspicions that this transient phenomenon is not related to an instability in the sense of non-integrable behaviour in the dynamics of N-body systems.

Amina Helmi; Facundo Gomez

2007-10-02T23:59:59.000Z

197

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Market Prices and Uncertainty Report Market Prices and Uncertainty Report This is a regular monthly supplement to the EIA Short-Term Energy Outlook. Contact: James Preciado (James.Preciado@eia.gov) Full Report Crude Oil Prices: International crude oil benchmarks moved higher in November, showing their first month-over-month increase since August, while U.S. crude oil prices moved higher during the first week of December. The North Sea Brent front month futures price settled at $110.98 per barrel on December 5, an increase of $5.07 per barrel since its close on November 1 (Figure 1). The West Texas Intermediate (WTI) front month futures contract rose $2.77 per barrel compared to November 1, settling at $97.38 per barrel on December 5. Figure 1: Historical crude oil front month futures prices

198

Short-term Variations in the Galactic Environment of the Sun  

E-Print Network (OSTI)

The galactic environment of the Sun varies over short timescales as the Sun and interstellar clouds travel through space. Small variations in the dynamics, ionization, density, and magnetic field strength of the interstellar medium (ISM) surrounding the Sun yield pronounced changes in the heliosphere. We discuss essential information required to understand short-term variations in the galactic environment of the Sun, including the distribution and radiative transfer properties of nearby ISM, and variations in the boundary conditions of the heliosphere as the Sun traverses clouds. The most predictable transitions are when the Sun emerged from the Local Bubble interior and entered the cluster of local interstellar clouds flowing past the Sun, within the past 140,000 years, and again when the Sun entered the local interstellar cloud now surrounding and inside of the solar system, sometime during the past 44,000 years.

Priscilla C. Frisch; Jonathan D. Slavin

2006-01-17T23:59:59.000Z

199

Short-term ecological effects of an offshore wind farm in the Dutch coastal zone;  

Science Journals Connector (OSTI)

The number of offshore wind farms is increasing rapidly, leading to questions about the environmental impact of such farms. In the Netherlands, an extensive monitoring programme is being executed at the first offshore wind farm (Offshore Windfarm Egmond aan Zee, OWEZ). This letter compiles the short-term (two years) results on a large number of faunal groups obtained so far. Impacts were expected from the new hard substratum, the moving rotor blades, possible underwater noise and the exclusion of fisheries. The results indicate no short-term effects on the benthos in the sandy area between the generators, while the new hard substratum of the monopiles and the scouring protection led to the establishment of new species and new fauna communities. Bivalve recruitment was not impacted by the OWEZ wind farm. Species composition of recruits in OWEZ and the surrounding reference areas is correlated with mud content of the sediment and water depth irrespective the presence of OWEZ. Recruit abundances in OWEZ were correlated with mud content, most likely to be attributed not to the presence of the farm but to the absence of fisheries. The fish community was highly dynamic both in time and space. So far, only minor effects upon fish assemblages especially near the monopiles have been observed. Some fish species, such as cod, seem to find shelter inside the farm. More porpoise clicks were recorded inside the farm than in the reference areas outside the farm. Several bird species seem to avoid the park while others are indifferent or are even attracted. The effects of the wind farm on a highly variable ecosystem are described. Overall, the OWEZ wind farm acts as a new type of habitat with a higher biodiversity of benthic organisms, a possibly increased use of the area by the benthos, fish, marine mammals and some bird species and a decreased use by several other bird species.

H J Lindeboom; H J Kouwenhoven; M J N Bergman; S Bouma; S Brasseur; R Daan; R C Fijn; D de Haan; S Dirksen; R van Hal; R Hille Ris Lambers; R ter Hofstede; K L Krijgsveld; M Leopold; M Scheidat

2011-01-01T23:59:59.000Z

200

A field study evaluation of short-term refined Gaussian dispersion models  

SciTech Connect

A tracer study was conducted at the Duke Forest Site in Chapel Hill, North Carolina in January, 1995 to evaluate the ability of three short-term refined Gaussian dispersion models to predict the fate of volume source emissions under field study conditions. Study participants included the American Petroleum Institute (API), the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), the University of North Carolina at Chapel Hill (UNC), and private consulting firms. The models evaluated were Industrial Source Complex--Short Term versions 2 and 3 (ISC2, ISC3) and the American Meteorological Society (AMS) Environmental Protection Agency (EPA) Regulatory Model Improvement Committee (AERMIC) model, AERMOD. All three models are based on the steady-state Gaussian plume dispersion equation, which predicts concentrations at downwind receptor locations when integrated over the distance between the source and receptor. Chemicals were released at known rates and measurements were taken at various points in the study field using Tedlar bag point sampling and open-path Fourier Transform infrared (OP-FTIR) monitoring. The study found that ISC and AERMOD underpredicted the measured concentrations for each dataset collected in the field study. ISC and AERMOD each underpredicted the OPFTIR dataset by a factor of approximately 1.6. ISC underpredicted the Tedlar{reg_sign} dataset by approximately 2.1, while AERMOD underpredicted by a factor of approximately 2.6. Regardless of source configuration or measurement technique used, under-prediction with respect to the measured concentration was consistently observed. This indicates that safety factors or other corrections may be necessary in predicting contaminant concentrations over the distances examined in this study, i.e., in the near field of less than 200 meters.

Piper, A.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Application of Ensemble Sensitivity Analysis to Observation Targeting for Short-term Wind Speed Forecasting  

SciTech Connect

The operators of electrical grids, sometimes referred to as Balancing Authorities (BA), typically make critical decisions on how to most reliably and economically balance electrical load and generation in time frames ranging from a few minutes to six hours ahead. At higher levels of wind power generation, there is an increasing need to improve the accuracy of 0- to 6-hour ahead wind power forecasts. Forecasts on this time scale have typically been strongly dependent on short-term trends indicated by the time series of power production and meteorological data from a wind farm. Additional input information is often available from the output of Numerical Weather Prediction (NWP) models and occasionally from off-site meteorological towers in the region surrounding the wind generation facility. A widely proposed approach to improve short-term forecasts is the deployment of off-site meteorological towers at locations upstream from the wind generation facility in order to sense approaching wind perturbations. While conceptually appealing, it turns out that, in practice, it is often very difficult to derive significant benefit in forecast performance from this approach. The difficulty is rooted in the fact that the type, scale, and amplitude of the processes controlling wind variability at a site change from day to day if not from hour to hour. Thus, a location that provides some useful forecast information for one time may not be a useful predictor a few hours later. Indeed, some processes that cause significant changes in wind power production operate predominantly in the vertical direction and thus cannot be monitored by employing a network of sensors at off-site locations. Hence, it is very challenging to determine the type of sensors and deployment locations to get the most benefit for a specific short-term forecast application. Two tools recently developed in the meteorological research community have the potential to help determine the locations and parameters to measure in order to get the maximum positive impact on forecast performance for a particular site and short-term look-ahead period. Both tools rely on the use of NWP models to assess the sensitivity of a forecast for a particular location to measurements made at a prior time (i.e. the look-ahead period) at points surrounding the target location. The fundamental hypothesis is that points and variables with high sensitivity are good candidates for measurements since information at those points are likely to have the most impact on the forecast for the desired parameter, location and look-ahead period. One approach is called the adjoint method (Errico and Vukicevic, 1992; Errico, 1997) and the other newer approach is known as Ensemble Sensitivity Analysis (ESA; Ancell and Hakim 2007; Torn and Hakim 2008). Both approaches have been tested on large-scale atmospheric prediction problems (e.g. forecasting pressure or precipitation over a relatively large region 24 hours ahead) but neither has been applied to mesoscale space-time scales of winds or any other variables near the surface of the earth. A number of factors suggest that ESA is better suited for short-term wind forecasting applications. One of the most significant advantages of this approach is that it is not necessary to linearize the mathematical representation of the processes in the underlying atmospheric model as required by the adjoint approach. Such a linearization may be especially problematic for the application of short-term forecasting of boundary layer winds in complex terrain since non-linear shifts in the structure of boundary layer due to atmospheric stability changes are a critical part of the wind power production forecast problem. The specific objective of work described in this paper is to test the ESA as a tool to identify measurement locations and variables that have the greatest positive impact on the accuracy of wind forecasts in the 0- to 6-hour look-ahead periods for the wind generation area of California's Tehachapi Pass during the warm (high generation) season. The paper is organized

Zack, J; Natenberg, E; Young, S; Manobianco, J; Kamath, C

2010-02-21T23:59:59.000Z

202

How Much Does That Incinerator Cost?  

E-Print Network (OSTI)

Biosecurity on poultry farms includes proper disposal of dead carcasses. In many cases, that means using an incinerator. Calculating the cost of an incinerator means considering long and short-term expenses and the cost of fuel. This publication...

Mukhtar, Saqib; Nash, Catherine; Harman, Wyatte; Padia, Reema

2008-07-25T23:59:59.000Z

203

Utilization of Partially Gasified Coal for Mercury Removal  

SciTech Connect

In this project, General Electric Energy and Environmental Research Corporation (EER) developed a novel mercury (Hg) control technology in which the sorbent for gas-phase Hg removal is produced from coal in a gasification process in-situ at a coal burning plant. The main objective of this project was to obtain technical information necessary for moving the technology from pilot-scale testing to a full-scale demonstration. A pilot-scale gasifier was used to generate sorbents from both bituminous and subbituminous coals. Once the conditions for optimizing sorbent surface area were identified, sorbents with the highest surface area were tested in a pilot-scale combustion tunnel for their effectiveness in removing Hg from coal-based flue gas. It was determined that the highest surface area sorbents generated from the gasifier process ({approx}600 m{sup 2}/g) had about 70%-85% of the reactivity of activated carbon at the same injection rate (lb/ACF), but were effective in removing 70% mercury at injection rates about 50% higher than that of commercially available activated carbon. In addition, mercury removal rates of up to 95% were demonstrated at higher sorbent injection rates. Overall, the results of the pilot-scale tests achieved the program goals, which were to achieve at least 70% Hg removal from baseline emissions levels at 25% or less of the cost of activated carbon injection.

Chris Samuelson; Peter Maly; David Moyeda

2008-09-09T23:59:59.000Z

204

Cost and Performance Baseline for Low-Rank Coal Fossil Energy Plants - Cases S-1A and S-1B Rosebud PRB-Fired Shell Gasifier without and with CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost and Performance of PC and IGCC Plants Cost and Performance of PC and IGCC Plants for a Range of Carbon Dioxide Capture Revision 1 - September 19, 2013 Original - May 27, 2011 DOE/NETL-2011/1498 Carbon Dioxide Capture Sensitivity Analysis Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

205

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

STEO Archives STEO Archives Previous Short-Term Energy Outlook reports are available in the original Adobe Acrobat PDF file with text, charts, and tables, or just the monthly data tables in an Excel file. + EXPAND ALL 2013 STEO Issues Release Date Full PDF Report Excel Data File Energy Price Volatility and Forecast Uncertainty December 2013 12/10/2013 dec13.pdf dec13_base.xlsx dec13_uncertainty.pdf November 2013 11/13/2013 nov13.pdf nov13_base.xlsx nov13_uncertainty.pdf October 2013 10/08/2013 oct13.pdf oct13_base.xlsx oct13_uncertainty.pdf September 2013 09/10/2013 sep13.pdf sep13_base.xlsx sep13_uncertainty.pdf August 2013 08/06/2013 aug13.pdf aug13_base.xlsx aug13_uncertainty.pdf July 2013 07/09/2013 jul13.pdf jul13_base.xlsx jul13_uncertainty.pdf

206

Comparison of observed and predicted short-term tracer gas concentrations in the atmosphere  

SciTech Connect

The Savannah River Laboratory is in the process of conducting a series of atmospheric tracer studies. The inert gas sulfurhexafluoride is released from a height of 62 m for 15 min and concentrations in air are measured on sampling arcs up to 30 km downwind of the release point. Maximum 15 min. air concentrations from 14 of these tracer tests have been compared with the ground-level, centerline air concentration predicted with a Gaussian plume atmospheric transport model using eight different sets of atmospheric dispersion parameters. Preliminary analysis of the results from these comparisons indicates that the dispersion parameters developed at Juelich, West Germany, based on tracers released from a height of 50 m, give the best overall agreement between the predicted and observed values. The median value of the ratio of predicted to observed air concentrations for this set of parameters is 1.3, and the correlation coefficient between the log of the predictions and the log of the observations is 0.72. For the commonly used Pasquill-Gifford dispersion parameters, the values of these same statistics are 4.4 and 0.68, respectively. The Gaussian plume model is widely used to predict air concentrations resulting from short-term radionuclide release to the atmosphere. The results of comparisons such as these must be considered whenever the Gaussian model is used for such purposes. 22 references, 3 tables.

Cotter, S.J.; Miller, C.W.; Lin, W.C.T.

1985-01-01T23:59:59.000Z

207

Short term performance comparisons between a solar thermosyphon water heater and two numerical models  

SciTech Connect

An experimental study of a solar thermosyphon domestic water heater was conducted in the indoor solar simulator facility at Colorado State University (Bickford, 1994). The system consisted of a closed-loop collector circuit filled with propylene glycol and water solution and a horizontal storage tank with an annular tank-in-tank heat exchanger. Short-term irradiated tests with and without timed draws were performed to assess overall performance and monitor collector flow rate, storage tank stratification, and heat exchanger temperature distribution. The measured performance was compared with the ``standard`` thermosyphon model in TRNSYS 13.1 (transient system simulation program). A revised TRNSYS model was developed by Graham Morrison at the University of New South Wales, Australia. The revised model specifically addressed the horizontal tank, closed-loop configuration. The standard TRNSYS version predicted solar gain within 17% of the measured values and differed dramatically from experimental collector temperatures, closed-loop flow rate, and tank stratification. This is not surprising since this model does not include the tank and tank heat exchanger. The revised TRNSYS model agreed more closely with experimental results. It predicted closed-loop flow at 8% lower than observed flow and collector temperature rise that was higher than the observed flow by approximately the same amount, resulting in extremely accurate prediction of collector output energy. Losses from the storage tank and piping were significantly underpredicted in both models, however.

Bickford, C.; Hittle, D.C. [Colorado State Univ., Fort Collins, CO (United States). Solar Energy Applications Lab.

1995-11-01T23:59:59.000Z

208

A hybrid short-term load forecasting with a new data preprocessing framework  

Science Journals Connector (OSTI)

Abstract This paper proposes a hybrid load forecasting framework with a new data preprocessing algorithm to enhance the accuracy of prediction. Bayesian neural network (BNN) is used to predict the load. A discrete wavelet transform (DWT) decomposes the load components into proper levels of resolution determined by an entropy-based criterion. Time series and regression analysis are used to select the best set of inputs among the input candidates. A correlation analysis together with a neural network provides an estimation of the predictions for the forecasting outputs. A standardization procedure is proposed to take into account the correlation estimations of the outputs with their associated input series. The preprocessing algorithm uses the input selection, wavelet decomposition and the proposed standardization to provide the most appropriate inputs for BNNs. Genetic Algorithm (GA) is then used to optimize the weighting coefficients of different forecast components and minimize the forecast error. The performance and accuracy of the proposed short-term load forecasting (STLF) method is evaluated using New England load data. Our results show a significant improvement in the forecast accuracy when compared to the existing state-of-the-art forecasting techniques.

M. Ghayekhloo; M.B. Menhaj; M. Ghofrani

2015-01-01T23:59:59.000Z

209

Short-term production optimization of offshore oil and gas production using nonlinear model predictive control  

Science Journals Connector (OSTI)

The topic of this paper is the application of nonlinear model predictive control (NMPC) for optimizing control of an offshore oil and gas production facility. Of particular interest is the use of NMPC for direct short-term production optimization, where two methods for (one-layer) production optimization in NMPC are investigated. The first method is the unreachable setpoints method where an unreachable setpoint is used in order to maximize oil production. The ideas from this method are combined with the exact penalty function for soft constraints in a second method, named infeasible soft-constraints. Both methods can be implemented within standard NMPC software tools. The case-study first looks into the use of NMPC for ‘conventional’ pressure control, where disturbance rejection of time-varying disturbances (caused, e.g., by the ‘slugging’ phenomenon) is an issue. Then the above two methods for production optimization are employed, where both methods find the economically optimal operating point. Two different types of reservoir models are studied, using rate-independent and rate-dependent gas/oil ratios. These models lead to different types of optimums. The relative merits of the two methods for production optimization, and advantages of the two one-layer approaches compared to a two-layer structure, are discussed.

Anders Willersrud; Lars Imsland; Svein Olav Hauger; Pål Kittilsen

2013-01-01T23:59:59.000Z

210

Daily/Hourly Hydrosystem Operation : How the Columbia River System Responds to Short-Term Needs.  

SciTech Connect

The System Operation Review, being conducted by the Bonneville Power Administration, the US Army Corps of Engineers, and the US Bureau of Reclamation, is analyzing current and potential future operations of the Columbia River System. One goal of the System Operations Review is to develop a new System Operation Strategy. The strategy will be designed to balance the many regionally and nationally important uses of the Columbia River system. Short-term operations address the dynamics that affect the Northwest hydro system and its multiple uses. Demands for electrical power and natural streamflows change constantly and thus are not precisely predictable. Other uses of the hydro system have constantly changing needs, too, many of which can interfere with other uses. Project operators must address various river needs, physical limitations, weather, and streamflow conditions while maintaining the stability of the electric system and keeping your lights on. It takes staffing around the clock to manage the hour-to-hour changes that occur and the challenges that face project operators all the time.

Columbia River System Operation Review (U.S.)

1994-02-01T23:59:59.000Z

211

Changes in mechanical properties of irradiated Zircaloy-2 fuel cladding due to short term annealing  

Science Journals Connector (OSTI)

Zirconium-lined fuel cladding tubes irradiated to 2.7 × 1025n/m2 (E > 1MeV) in a BWR, which had experienced recrystallized annealing in the final process in their manufacture, were heat treated at 500–700°C for 5–600 s to simulate short term dry-out. Tensile tests, hardness measurements, fatigue tests and X-ray analyses were made on those specimens. The irradiation hardening in hardness at room temperature and ultimate tensile strength at 343°C recovered to approximately 80% of that after heat treatment at 600–700°C for less than 15 s. Fatigue life and half value width of X-ray analysis recovered to these of unirradiated cladding tube after annealing for 15 s at 600°C. These recovery rates were faster than those on cold worked and stress relieved zirconium alloys. An equation to predict the remaining fraction of hardening was proposed by using the regression analysis on tensile strength and hardness values.

Tadahiko Torimaru; Takayoshi Yasuda; Masafumi Nakatsuka

1996-01-01T23:59:59.000Z

212

Development of short-term forecast quality for new offshore wind farms  

Science Journals Connector (OSTI)

As the rapid wind power build-out continues, a large number of new wind farms will come online but forecasters and forecasting algorithms have little experience with them. This is a problem for statistical short term forecasts, which must be trained on a long record of historical power production – exactly what is missing for a new farm. Focus of the study was to analyse development of the offshore wind power forecast (WPF) quality from beginning of operation up to one year of operational experience. This paper represents a case study using data of the first German offshore wind farm "alpha ventus" and first German commercial offshore wind farm "Baltic1". The work was carried out with measured data from meteorological measurement mast FINO1, measured power from wind farms and numerical weather prediction (NWP) from the German Weather Service (DWD). This study facilitates to decide the length of needed time series and selection of forecast method to get a reliable WPF on a weekly time axis. Weekly development of WPF quality for day-ahead WPF via different models is presented. The models are physical model; physical model extended with a statistical correction (MOS) and artificial neural network (ANN) as a pure statistical model. Selforganizing map (SOM) is investigated for a better understanding of uncertainties of forecast error.

M Kurt; B Lange

2014-01-01T23:59:59.000Z

213

Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)  

Reports and Publications (EIA)

The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

1998-01-01T23:59:59.000Z

214

The influence of feedstock drying on the performance and economics of a biomass gasifier–engine CHP system  

Science Journals Connector (OSTI)

The need to dry biomass feedstocks before they can be gasified can place a large energy and capital cost burden on small-to-medium scale biomass gasification plants for the production of heat and power. Drying may not always be unavoidable, but as biomass moisture content to the gasifier increases, the quality of the product gas deteriorates along with the overall performance of the whole system. This system modelling study addresses the influence of feedstock moisture content both before and after drying on the performance and cost of a biomass gasifier–engine system for combined heat and power at a given scale and feedstock cost. The scale range considered 0.5–3.0 MWe. The system comprises an updraft gasifier with external thermal and catalytic tar cracking reactors, gas clean-up and a spark-ignition gas engine. A spreadsheet-based system model is constructed, with individual worksheets corresponding to sub-models of system components, and a number of drying technology options and modes of operation are examined. Wherever possible, data supplied by manufacturers or taken from real systems is used in the construction of the sub-models, particularly in the derivation of cost functions.

J.G. Brammer; A.V. Bridgwater

2002-01-01T23:59:59.000Z

215

In Situ Catalytic Ceramic Candle Filtration for Tar Reforming and Particulate Abatement in a Fluidized-Bed Biomass Gasifier  

Science Journals Connector (OSTI)

In Situ Catalytic Ceramic Candle Filtration for Tar Reforming and Particulate Abatement in a Fluidized-Bed Biomass Gasifier ... In fact, the complications resulting from the requirement to obtain a tar-free product often contribute significantly to the overall investment and operating costs of small- to medium-scale gasification units. ...

Sergio Rapagnà; Katia Gallucci; Manuela Di Marcello; Pier Ugo Foscolo; Manfred Nacken; Steffen Heidenreich

2009-06-23T23:59:59.000Z

216

CANMET Gasifier Liner Coupon Material Test Plan  

SciTech Connect

The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

Mark Fitzsimmons; Alan Darby; Fred Widman

2005-10-30T23:59:59.000Z

217

Short-Term Fates of High Sulfur Inputs in Northern California Vineyard Soils  

SciTech Connect

The widespread application of elemental sulfur (S{sup 0}) to vineyards may have ecosystem effects at multiple scales. We evaluated the short-term fates of applied S{sup 0} in a Napa Valley vineyard; we determined changes in soil sulfur (S) speciation (measured by X-ray absorption near-edge structure (XANES) spectroscopy), soil pH, extractable sulfate (SO{sub 4}{sup 2-}), and total S to evaluate changes in acidity and soil S within the vineyard over time. Surface soil samples were collected immediately prior to and following two applications of S{sup 0} (6.7 kg S{sup 0} ha{sup -1}), with weekly collections in the 2 weeks between applications and following the last application. XANES spectra indicated that the majority of soil S persists in the +6 oxidation state and that S{sup 0} oxidizes within 7 days following application. Soil pH and extractable SO{sub 4}{sup 2-} measurements taken at 30 min after S{sup 0} application revealed generation of acidity and an increase in extractable SO{sub 4}{sup 2-}, but by 12 days after application, soil pH increased to approximately pre-application levels. These data suggest that the major consequence of reactive S applications in vineyards may be the accumulation of soil SO{sub 4}{sup 2-} and organic S during the growing season, which can be mobilized during storm events during the dormant (wet) season. In spatially-extensive winegrowing regions where these applications are made by hundreds of individual farmers each year, it will be important to understand the long-term implications of this perturbation to the regional S cycle.

E Hinckley; S Fendorf; P Matson

2011-12-31T23:59:59.000Z

218

Comparative effects of sodium channel blockers in short term rat whole embryo culture  

SciTech Connect

This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.

Nilsson, Mats F, E-mail: Mats.Nilsson@farmbio.uu.se [Department of Pharmaceutical Biosciences, Uppsala University (Sweden); Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma [AstraZeneca R and D Södertälje (Sweden); Cebers, Gvido [AstraZeneca R and D, iMed, 141 Portland Street, Cambridge, MA 02139 (United States); Hellmold, Heike; Gustafson, Anne-Lee [AstraZeneca R and D Södertälje (Sweden); Webster, William S [Department of Anatomy and Histology, University of Sydney (Australia)

2013-10-15T23:59:59.000Z

219

The effect of a large resuspension event in Southern Lake Michigan on the short-term cycling of organic contaminants  

E-Print Network (OSTI)

1 The effect of a large resuspension event in Southern Lake Michigan on the short-term cycling intensive campaigns before and after the resuspension event and 2) settling sediment collected using a time from increased gas-phase deposition due to the resuspension event was 8 kg for PCBs and 2200 kg

NOAA Great Lakes Environmental Research Laboratory, Episodic Events

220

The Effect of a Large Resuspension Event in Southern Lake Michigan on the Short-term Cycling of Organic Contaminants  

E-Print Network (OSTI)

The Effect of a Large Resuspension Event in Southern Lake Michigan on the Short-term Cycling and after a major resuspension event. It was found that major resuspension events result in a large flux of that occurred in the month of March after a series of intense storms induced a large- scale resuspension event

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cloud tracking with optical flow for short-term solar forecasting Philip Wood-Bradley, Jos Zapata, John Pye  

E-Print Network (OSTI)

Cloud tracking with optical flow for short-term solar forecasting Philip Wood-Bradley, José Zapata: John Pye ­ john.pye@anu.edu.au 1. Abstract A method for tracking and predicting cloud movement using apart with a size of 640 by 480 pixels, were processed to determine the time taken for clouds to reach

222

Volume 29, Issue 2 On the short-term influence of oil price changes on stock markets in gcc  

E-Print Network (OSTI)

Volume 29, Issue 2 On the short-term influence of oil price changes on stock markets Rouen & LEO Abstract This paper examines the short-run relationships between oil prices and GCC stock to oil price shocks. To account for the fact that stock markets may respond nonlinearly to oil price

Paris-Sud XI, Université de

223

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 24, NO. 1, MARCH 2009 125 Short-Term Prediction of Wind Farm Power  

E-Print Network (OSTI)

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 24, NO. 1, MARCH 2009 125 Short-Term Prediction of Wind Farm Power: A Data Mining Approach Andrew Kusiak, Member, IEEE, Haiyang Zheng, and Zhe Song, Student Member, IEEE Abstract--This paper examines time series models for predicting the power of a wind

Kusiak, Andrew

224

High Statistics Study of Nearby Type 1a Supernovae. QUEST Camera Short Term Maintenance: Final Technical Report  

SciTech Connect

The Quest Camera was installed at the Palomar Obervatory in California. The camera was used to carry out a survey of low redshift Type 1a supernovae.The purpose of this DOE grant was to perform short term maintenance on the QUEST camera.

Baltay, Charles

2012-10-16T23:59:59.000Z

225

Evaluating the status of the Texaco gasifier  

SciTech Connect

Conclusions after a series of runs at steady state conditions in the pilot plant are: (1) Western Kentucky No. 9 coal (either run-of-mine or washed) can be gasified without pretreatment; (2) other coking bituminous coal may also be able to be gasified without pretreatment; (3) pretreatment is not required to achieve satisfactory ash agglomeration; (4) balanced ash agglomeration with satisfactory removal of the agglomerates has been achieved and stable operation of ash agglomeration is possible during periods of short upset; (5) solutions appear to have been found for prevention of clinkering and sintering by alternative venturi design, modification in the oxygen feed system and increasing the superficial velocity of the gas; (6) under certain circumstances fines recycle has been achieved with stable operation and fluidization; (7) the process can be operated at pressures up to 60 psig without adversely affecting other process parameters; (8) a wide range of operating conditions can be used while maintaining system operability; and (9) in a single test water cooling of the cyclone appears to prevent ash deposition on the cooled surfaces which confirms the experience of Westinghouse with ash deposition prevention in their fluidized bed gasifier. 11 references, 12 tables.

Perry, H.

1981-01-01T23:59:59.000Z

226

Implications of geographic diversity for short-term variability and predictability of solar power.  

E-Print Network (OSTI)

and evaluation of renewable energy policies, is an advisorevaluation of renewable energy policies,and on the costs,provides policy analysis on renewable energy in the United

Mills, Andrew

2013-01-01T23:59:59.000Z

227

Softwood gasification in a small scale downdraft gasifier.  

E-Print Network (OSTI)

??This thesis is a performance evaluation of a small scale, 11 kilowatt electric, kWe, downdraft gasifier made by Ankur Scientific. According to the US Department… (more)

Purdon, Michael Joseph

2010-01-01T23:59:59.000Z

228

Biomass Domestic Cooking Gasifier Stove for Use in Rural Areas of Developing Countries  

Science Journals Connector (OSTI)

An experimental “Biomass Domestic Gasifier Cooking Stove” (BDGCS) system is described here. A gasifier produces gas from biomass wastes such as...

Gao Xiansheng

1993-01-01T23:59:59.000Z

229

Simulation of Short-term Wind Speed Forecast Errors using a Multi-variate ARMA(1,1) Time-series Model.  

E-Print Network (OSTI)

?? The short-term (1 to 48 hours) predictability of wind power production from wind power plants in a power system is critical to the value… (more)

Boone, Andrew

2005-01-01T23:59:59.000Z

230

Design of gasifiers to optimize fuel cell systems. Final report, September 1990--September 1993  

SciTech Connect

Pursuing the key national goal of clean and efficient utilization of the abundant domestic coal resources for power generation, this study was conducted to evaluate the potential of optimizing the integrated catalytic gasification/carbonate fuel cell power generation system. ERC in close collaboration with Fluor Daniel (providing engineering design and costing), conducted a detailed system configuration study to evaluate various catalytic gasification/carbonate fuel cell power plant configurations and compare them to present day, as well as emerging, alternate coal-based power plant technologies to assess their competitive position. A Topical Report (1992) was submitted documenting this effort, and the three catalytic gasification case studies are summarized in Appendix A. Results of this study indicate that system efficiencies approaching 55% (HHV) can be achieved by integrating low temperature catalytic gasification with high efficiency carbonate fuel cells. Thermal balance in the gasifier is achieved without oxygen by recycling hydrogen from the fuel cell anode exhaust. A small amount of air is added to the gasifier to minimize hydrogen recycle. In order to validate the assumptions made in the case configurations, experimental studies were performed to determine the reactivity of Illinois No. 6 coal with the gasification catalysts. The reactivity of the catalyzed coal has significant bearing on gasifier sizing and hence system cost and efficiency.

Not Available

1993-08-01T23:59:59.000Z

231

Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review  

SciTech Connect

Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. This report briefly introduces the IGCC process, the gasification process, and the main types and operating conditions of entrained flow gasifiers used in IGCC plants. This report also discusses the effects of coal ash and slag properties on slag flow and its qualities required for the entrained flow gasifier. Finally this report will identify the key operating conditions affecting slag flow behaviors, including temperature, oxygen/coal ratio, and flux agents.

Wang,Ping; Massoudi, Mehrdad

2011-01-01T23:59:59.000Z

232

Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier  

E-Print Network (OSTI)

Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier DOE Hydrogen Program Contractors biomass #12;Approach Outline Gasifier Pilot Plant· Develop subsystems for the hydrogen production system and pyrolysis occur simultaneously in a single reactor · Exothermic combustion provides heat · Endothermic

233

Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields  

Gasoline and Diesel Fuel Update (EIA)

Short-Term Energy Outlook Supplement: Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields Tuesday, September 10, 2013, 10:00AM EST Overview During July and August 2013, protests at major oil loading ports in the central-eastern region of Libya forced the complete or partial shut-in of oil fields linked to the ports. As a result of protests at ports and at some oil fields, crude oil production fell to 1.0 million barrels per day (bbl/d) in July and 600,000 bbl/d in August, although the production level at the end of August was far lower. At the end of August, an armed group blocked pipelines that connect the El Sharara and El Feel (Elephant) fields to the Zawiya and Mellitah export terminals, respectively, forcing the shutdown of those fields. El Sharara had been

234

An Improved Adaptive Exponential Smoothing Model for Short-term Travel Time Forecasting of Urban Arterial Street  

Science Journals Connector (OSTI)

Short-term forecasting of travel time is essential for the success of intelligent transportation system. In this paper, we review the state-of-art of short-term traffic forecasting models and outline their basic ideas, related works, advantages and disadvantages of each model. An improved adaptive exponential smoothing (IAES) model is also proposed to overcome the drawbacks of the previous adaptive exponential smoothing model. Then, comparing experiments are carried out under normal traffic condition and abnormal traffic condition to evaluate the performance of four main branches of forecasting models on direct travel time data obtained by license plate matching (LPM). The results of experiments show each model seems to have its own strength and weakness. The forecasting performance of IASE is superior to other models in shorter forecasting horizon (one and two step forecasting) and the IASE is capable of dealing with all kind of traffic conditions.

Zhi-Peng LI; Hong YU; Yun-Cai LIU; Fu-Qiang LIU

2008-01-01T23:59:59.000Z

235

Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The South Italy case  

Science Journals Connector (OSTI)

Abstract Accurate and robust short-term load forecasting plays a significant role in electric power operations. This paper proposes a variant of genetic programming, improved by incorporating semantic awareness in algorithm, to address a short term load forecasting problem. The objective is to automatically generate models that could effectively and reliably predict energy consumption. The presented results, obtained considering a particularly interesting case of the South Italy area, show that the proposed approach outperforms state of the art methods. Hence, the proposed approach reveals appropriate for the problem of forecasting electricity consumption. This study, besides providing an important contribution to the energy load forecasting, confirms the suitability of genetic programming improved with semantic methods in addressing complex real-life applications.

Mauro Castelli; Leonardo Vanneschi; Matteo De Felice

2015-01-01T23:59:59.000Z

236

Methodology for Analyzing Energy and Demand Savings From Energy Services Performance Contract Using Short-Term Data  

E-Print Network (OSTI)

METHODOLOGY FOR ANALYZING ENERGY AND DEMAND SAVINGS FROM ENERGY SERVICES PERFORMANCE CONTRACT USING SHORT-TERM DATA Zi Liu, Jeff Haberl, Soolyeon Cho Energy Systems Laboratory Texas A&M University System College Station, TX 77843 Bobby... Contract, and includes the methodology developed to calculate the electricity and demand use savings based on different data sources including hourly data from permanently installed logger, hourly data from portable loggers, and weekly manual readings...

Liu, Z.; Haberl, J. S.; Cho, S.; Lynn, B.; Cook, M.

2006-01-01T23:59:59.000Z

237

Process for electrochemically gasifying coal using electromagnetism  

DOE Patents (OSTI)

A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

Botts, Thomas E. (Markham, VA); Powell, James R. (Shoreham, NY)

1987-01-01T23:59:59.000Z

238

Improved Lining Material for Gasifiers Could Lead to Wider  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improved Lining Material for Gasifiers Could Lead to Wider Improved Lining Material for Gasifiers Could Lead to Wider Commercialization of Clean and Efficient Energy Technology Improved Lining Material for Gasifiers Could Lead to Wider Commercialization of Clean and Efficient Energy Technology November 16, 2009 - 12:00pm Addthis Refractories removed from adjacent positions in a slagging gasifier. The NETL refractory (right) has approximately 50 percent more material remaining after the test. Refractories removed from adjacent positions in a slagging gasifier. The NETL refractory (right) has approximately 50 percent more material remaining after the test. Washington, DC - A new improved-performance refractory lining material developed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been successfully tested and could lead to greatly

239

Improved Lining Material for Gasifiers Could Lead to Wider  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improved Lining Material for Gasifiers Could Lead to Wider Improved Lining Material for Gasifiers Could Lead to Wider Commercialization of Clean and Efficient Energy Technology Improved Lining Material for Gasifiers Could Lead to Wider Commercialization of Clean and Efficient Energy Technology November 16, 2009 - 12:00pm Addthis Refractories removed from adjacent positions in a slagging gasifier. The NETL refractory (right) has approximately 50 percent more material remaining after the test. Refractories removed from adjacent positions in a slagging gasifier. The NETL refractory (right) has approximately 50 percent more material remaining after the test. Washington, DC - A new improved-performance refractory lining material developed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been successfully tested and could lead to greatly

240

Short-term resource scheduling of a renewable energy based micro grid  

Science Journals Connector (OSTI)

Abstract In recent years due to the decreasing fossil fuel reserves and the increasing social stress, complex power networks have no other choices except to seek for alternative energy sources to eliminate the environmental issues caused by the traditional power systems. Thus, the scheduling of energy sources in a complex Micro-Grid (MG) comprising Micro Turbine (MT), Photo Voltaic (PV), Fuel Cell (FC), battery units and Wind Turbine (WT) has been investigated in this paper. Furthermore, a multi-objective framework is presented to simultaneously handle the two objective functions including minimization of total operation cost and minimization of emission. In this regard, Normal Boundary intersection (NBI) technique is employed to solve the proposed multi-objective problem and generate the Pareto set. Besides, a fuzzy satisfying method is used for decision making process. Afterward, the results obtained from the presented method are compared to the ones derived from other methods. Finally, it is verified that the proposed solution method results in better solutions for operation cost, emission and the execution time.

Maziar Izadbakhsh; Majid Gandomkar; Alireza Rezvani; Abdollah Ahmadi

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Modular High-Temperature Gas-Cooled Reactor short term thermal response to flow and reactivity transients  

SciTech Connect

The analyses reported here have been conducted at the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission's (NRC's) Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described.

Cleveland, J.C.

1988-01-01T23:59:59.000Z

242

Short-term methods for estimating the chronic toxicity of effluents and receiving water to freshwater organisms. Third edition  

SciTech Connect

This manual describes four short-term (four- to seven-day) methods for estimating the chronic toxicity of effluents and receiving waters to three freshwater species: The fathead minnow, Pimephales promelas, a daphnid, Ceriodaphnia dubia, and a green alga, Selenastrum capricornutum. The methods include single and multiple concentration static renewal and non-renewal toxicity tests for effluents and receiving waters. Also included are guidelines on laboratory safety, quality assurance, facilities, equipment and supplies; dilution water; effluent and receiving water sample collection, preservation, shipping, and holding; test conditions; toxicity test data analysis; report preparation; and organism culturing, holding, and handling.

Lewis, P.A.; Klemm, D.J.; Lazorchak, J.M.; Norberg-King, T.J.; Peltier, W.H.

1994-07-01T23:59:59.000Z

243

Methodology for predicting long-term fuel-cell performance from short-term testing. Final technical report  

SciTech Connect

The objective of this program was to develop a methodology for predicting long-term fuel cell performance from short-term testing, utilizing a perturbation testing technique. The technique applies small changes of predetermined levels in a predetermined sequence to the operating variables such that the decay mechanisms are not altered. This technique was tested on the phosphoric acid fuel cell (PAFC), because this technology is approaching a mature stage. The initial series of perturbation tests appear to be reasonably successful and a methodology is now available for further refinements. The progress made during the study is detailed.

Patel, D.; Farooque, M.; Maru, H.; Ware, C.

1981-08-01T23:59:59.000Z

244

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Real Prices Viewer Real Prices Viewer Real Petroleum Prices are computed by dividing the nominal price in a given month by the ratio of the Consumer Price Index (CPI) in that month to the CPI in some "base" period. The Real Petroleum Prices spreadsheet and charts are updated every month so that the current month is the base period in the monthly price series. Consequently, all real prices are expressed in "current" dollars and any current month price may be compared directly with any past or projected real prices. Download all real and nominal price series to an Excel Spreadsheet (Excel xlsx file) Data Sources History Imported Crude Oil Price (refiner average imported crude oil acquisition cost) 1968 - Present: EIA Petroleum Marketing Monthly Motor Gasoline Regular Grade Retail Price (including taxes)

245

Down-flow moving-bed gasifier with catalyst recycle  

DOE Patents (OSTI)

The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction. 1 fig.

Halow, J.S.

1999-04-20T23:59:59.000Z

246

Solid Oxide Fuel Cell System Utilizing Syngas from Coal Gasifiers  

Science Journals Connector (OSTI)

Solid Oxide Fuel Cell System Utilizing Syngas from Coal Gasifiers ... The oxidizer is expected to be similar in design to a HRSG duct firing burner (at the inlet of a HRSG). ...

Hossein Ghezel-Ayagh; Stephen Jolly; Dilip Patel; David Stauffer

2013-01-10T23:59:59.000Z

247

Coal/biomass gasifier lab tests are a success  

Science Journals Connector (OSTI)

Coal/biomass gasifier lab tests are a success ... The process produces a medium-Btu gas from a mixture of coal, municipal solid waste, and dewatered sewage sludge. ...

1980-02-25T23:59:59.000Z

248

Down-flow moving-bed gasifier with catalyst recycle  

DOE Patents (OSTI)

The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.

Halow, John S. (Waynesburg, PA)

1999-01-01T23:59:59.000Z

249

Results From a Transparent Open-Core Downdraft Gasifier  

Science Journals Connector (OSTI)

A transparent quartz reactor has allowed observations on the process of gasification of biomass within an open-core gasifier. This has enabled the individual stages in ... and quantitatively described. Results ac...

J. B. Milligan; G. D. Evans…

1993-01-01T23:59:59.000Z

250

Slagging Gasifier Refractories: A New Pathway to Longer Refractory Life  

Science Journals Connector (OSTI)

Solid fuel slagging gasification to convert coal or petroleum coke feedstocks into syngas has rapidly evolved over the last 25 years. The gasifier is a high temperature, high pressure reaction...

Mark Schnake

2013-01-01T23:59:59.000Z

251

Short-term improvements in public health from global-climate policies on fossil-fuel combustion: an interim report  

Science Journals Connector (OSTI)

SummaryBackground Most public-health assessments of climate-control policies have focused on long-term impacts of global change. Our interdisciplinary working group assesses likely short-term impacts on public health. Methods We combined models of energy consumption, carbon emissions, and associated atmospheric particulate-matter (PM) concentration under two different forecasts: business-as-usual (BAU); and a hypothetical climate-policy scenario, where developed and developing countries undertake significant reductions in carbon emissions. Findings We predict that by 2020, 700?000 avoidable deaths (90% CI 385000–1034000) will occur annually as a result of additional PM exposure under the BAU forecasts when compared with the climate-policy scenario. From 2000 to 2020, the cumulative impact on public health related to the difference in PM exposure could total 8 million deaths globally (90% CI 4.4–11.9 million). In the USA alone, the avoidable number of annual deaths from PM exposure in 2020 (without climate-change-control policy) would equal in magnitude deaths associated with human immunodeficiency diseases or all liver diseases in 1995. Interpretation The mortality estimates are indicative of the magnitude of the likely health benefits of the climate-policy scenario examined and are not precise predictions of avoidable death. While characterised by considerable uncertainty, the short-term public-health impacts of reduced PM exposures associated with greenhouse-gas reductions are likely to be substantial even under the most conservative set of assumptions.

Devra Lee Davis

1997-01-01T23:59:59.000Z

252

Short Term Load Forecasting with Fuzzy Logic Systems for power system planning and reliability?A Review  

Science Journals Connector (OSTI)

Load forecasting is very essential to the operation of Electricity companies. It enhances the energy efficient and reliable operation of power system. Forecasting of load demand data forms an important component in planning generation schedules in a power system. The purpose of this paper is to identify issues and better method for load foecasting. In this paper we focus on fuzzy logic system based short term load forecasting. It serves as overview of the state of the art in the intelligent techniques employed for load forecasting in power system planning and reliability. Literature review has been conducted and fuzzy logic method has been summarized to highlight advantages and disadvantages of this technique. The proposed technique for implementing fuzzy logic based forecasting is by Identification of the specific day and by using maximum and minimum temperature for that day and finally listing the maximum temperature and peak load for that day. The results show that Load forecasting where there are considerable changes in temperature parameter is better dealt with Fuzzy Logic system method as compared to other short term forecasting techniques.

R. M. Holmukhe; Mrs. Sunita Dhumale; Mr. P. S. Chaudhari; Mr. P. P. Kulkarni

2010-01-01T23:59:59.000Z

253

Short?term non?poissonian temporal clustering of magnitude 4+ earthquakes in california and western nevada  

Science Journals Connector (OSTI)

The M4+ mainshocks throughout California and western Nevada from 1932 to 2004 show non?Poissonian temporal clustering over time periods of a few days. The short?term clustering is independent of the distance between earthquakeepicenters. It implies that some of the M4+ mainshocks are mutually triggered by some unknown regional cause. In southern California more short?term clustering is found for M4+ earthquakes east of the San Andreas Fault. In central California most M4+ mainshocks at Long Valley CA have occurred within 10 days of M4+ mainshocks around the San Francisco Bay area. The clustering implies predictable behavior in the occurrences of M4+ mainshocks. We propose a hidden Markov model (HMM) as an earthquake forecast method for the region. Our HMM assumes a hidden sequence of interevent time states associated with observations of earthquake occurrences (times locations and magnitudes) with transition probabilities between states determined with the Baum?Welch algorithm and the past earthquake data. Given the seismic history up to the latest earthquake the probability of another earthquake within the next few days is estimated. Tests of our HMM with two three and four temporal states show some modest success. We plan to extend the model to forecast magnitude and spatial parameters.

2006-01-01T23:59:59.000Z

254

ENHANCEMENT OF STRUCTURAL FOAM MATERIALS BY INCORPORATION OF GASIFIER SLAG  

SciTech Connect

As advanced gasification technology is increasingly adopted as an energy source, disposal of the resulting slag will become a problem. We have shown that gasifier slag can be incorporated into foamed glass, which is currently being manufactured as an abrasive and as an insulating material. The slag we add to foamed glass does not simply act as filler, but improves the mechanical properties of the product. Incorporation of gasifier slag can make foamed glass stronger and more abrasion resistant.

Olin Perry Norton; Ronald A. Palmer; W. Gene Ramsey

2006-03-15T23:59:59.000Z

255

A Comparison of Soil Sensitivity to Acidification Based on Laboratory-Determined Short-Term Acid Buffering Capacity and the Skokloster Classification  

Science Journals Connector (OSTI)

The sensitivity of mineral soils to anthropogenically-induced acidification may be assessed using the Skokloster classification or by considering the short-term acid buffering capacity (STABC). The Skokloster ...

Mark E. Hodson; Simon J. Langan…

1998-01-01T23:59:59.000Z

256

A Comparison of Soil Sensitivity to Acidification Based on Laboratory-Determined Short-Term Acid Buffering Capacity and the Skokloster Classification  

Science Journals Connector (OSTI)

The sensitivity of mineral soils to anthropogenically-induced acidification may be assessed using the Skokloster classification or by considering the short-term acid buffering capacity (STABC). The Skokloster ...

Mark E. Hodson; Simon J. Langan; David G. Lumsdon

1998-07-01T23:59:59.000Z

257

Real Time Flame Monitoring of Gasifier and Injectors  

SciTech Connect

This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or failed gasifier injectors. The sensor developed under previous tasks was used to assess the spectroscopic characteristics of the gasifier flame. The obtained spectral data were successfully translated into flame temperature measurements. It was also demonstrated that the reduced spectral data could be very well correlated with very important gasification process parameters such as the air/fuel and water/fuel ratio. Any of these parameters (temperature, air/fuel, and water/fuel) is sufficient to assess burner wear; however, the tested sensor was capable of monitoring all three of them plus the flame shape as functions of burner wear. This will likely be a very powerful tool which should enable significant improvements in gasifier efficiency, reliability, and availability. The sensor technology was presented to the projectâ??s industrial partner (ConocoPhillips). The partner expressed its strong interest in continuing to participate in the field validation phase of GTI's Flame Monitor Project. Finally the sensor was tested in the PWR (Pratt & Whitney Rocketdyne) gasification plant located at GTIâ??s research campus and at the ConocoPhillips industrial scale gasifier at Wabash River Indiana. The field trials of the GTI Gasifier sensor modified to withstand high temperature and pressure corrosive atmosphere of the industrial entrain flow gasifier. The project team successfully demonstrated the Gasifier Sensor system ability to monitor gasifier interior temperature maintaining unobstructed optical access for in excess of six week without any maintenance. The sensor examination upon completion of the trial revealed that the system did not sustain any damage and required minor cleanup of the optics.

Zelepouga, Serguei; Saveliev, Alexei

2011-12-31T23:59:59.000Z

258

REAL TIME FLAME MONITORING OF GASIFIER BURNER AND INJECTORS  

SciTech Connect

This report is submitted to the United States Department of Energy in partial fulfillment of the contractual requirements for Phase I of the project titled, ''Real Time Flame Monitoring of Gasifier Burner and Injectors'', under co-operative agreement number DE-FS26-02NT41585. The project is composed of three one-year budget periods. The work in each year is divided into separate Tasks to facilitate project management, orderly completion of all project objectives, budget control, and critical path application of personnel and equipment. This Topical Report presents results of the Task 1 and 2 work. The 2 D optical sensor was developed to monitor selected UV and visible wavelengths to collect accurate flame characterization information regarding mixing, flame shape, and flame rich/lean characteristic. Flame richness, for example, was determined using OH and CH intensity peaks in the 300 to 500 nanometer range of the UV and visible spectrum. The laboratory burner was operated over a wide range of air to fuel ratio conditions from fuel rich to fuel lean. The sooty oxygen enriched air flames were established to test the sensor ability to characterize flame structures with substantial presence of hot solid particles emitting strong ''black body radiation''. The knowledge gained in these experiments will be very important when the sensor is used for gasifier flame analyses. It is expected that the sensor when installed on the Global Energy gasifier will be exposed to complex radiation patterns. The measured energy will be a combination of spectra emitted by the combusting gases, hot solid particulates, and hot walls of the gasifier chamber. The ability to separate flame emissions from the ''black body emissions'' will allow the sensor to accurately determine flame location relative to the gasifier walls and the injectors, as well as to analyze the flame's structure and condition. Ultimately, this information should enable the gasification processes to be monitored and controlled and as a result increase durability and efficiency of the gasifier. To accomplish goals set for Task 2 GTI will utilize the CANMET Coal Gasification Research facility. The Entrained Coal Gasifier Burner Test Stand has been designed and is currently under construction in the CANMET Energy Technology Center (CETC), the research and technology arm of Natural Resources Canada (NRCan). This Gasifier Burner Stand (GBS) is a scaled-down mock-up of a working gasifier combustion system that can provide the flexible platform needed in the second year of the project to test the flame sensor. The GBS will be capable of simulating combustion and gasification processes occurring in commercial gasifiers, such as Texaco, Shell, and Wabash River.

James Servaites; Serguei Zelepouga; David Rue

2003-10-01T23:59:59.000Z

259

Techno-Economic Analysis of Lignite Fuelled IGCC with CO2 Capture: Comparing Fluidized Bed and Entrained Flow Gasifiers  

Science Journals Connector (OSTI)

For shell gasifier case, North Dakota lignite coal is milled ... wt.%, and fed into the Shell gasifier via lock-hopper pressurization using N2...as transport gas. The lignite coal is gasified in the presence of medium

Guangjian Liu; Zhen Wu; Haiying Zhang

2013-01-01T23:59:59.000Z

260

Effects of the Secondary Oxygen Injection on the Performance of a Staged-Entrained Flow Coal Gasifier  

Science Journals Connector (OSTI)

In a staged entrained flow coal-slurry gasifier, the secondary oxygen was injected into the gasifier in order to protect the refractory in ... model, simulations were conducted for the staged gasifier at differen...

Cai Chunrong; WU Yuxin; Zhang Jiansheng…

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Short-term cascaded hydroelectric system scheduling based on chaotic particle swarm optimization using improved logistic map  

Science Journals Connector (OSTI)

In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.

Yaoyao He; Shanlin Yang; Qifa Xu

2013-01-01T23:59:59.000Z

262

Visualization of short-term heart period variability with network tools as a method for quantifying autonomic drive  

E-Print Network (OSTI)

Signals from heart transplant recipients can be considered to be a natural source of information for a better understanding of the impact of the autonomic nervous system on the complexity of heart rate variability. Beat-to-beat heart rate variability can be represented as a network of increments between subsequent $RR$-intervals, which makes possible the visualization of short-term heart period fluctuations. A network is constructed of vertices representing increments between subsequent $RR$-intervals, and edges which connect adjacent $RR$-increments. Two modes of visualization of such a network are proposed. The method described is applied to nocturnal Holter signals recorded from healthy young people and from cardiac transplant recipients. Additionally, the analysis is performed on surrogate data: shuffled RR-intervals (to display short-range dependence), and shuffled phases of the Fourier Transform of RR-intervals (to filter out linear dependences). Important nonlinear properties of autonomic nocturnal reg...

Makowiec, Danuta; Kaczkowska, Agnieszka; Graff, Grzegorz; Wejer, Dorota; Wdowczyk, Joanna; Zarczynska-Buchowiecka, Marta; Gruchala, Marcin; Struzik, Zbigniew R

2014-01-01T23:59:59.000Z

263

Modeling of short-term mechanism of arterial pressure control in the cardiovascular system: Object-oriented and acausal approach  

Science Journals Connector (OSTI)

Abstract This letter introduces an alternative approach to modeling the cardiovascular system with a short-term control mechanism published in Computers in Biology and Medicine, Vol. 47 (2014), pp. 104–112. We recommend using abstract components on a distinct physical level, separating the model into hydraulic components, subsystems of the cardiovascular system and individual subsystems of the control mechanism and scenario. We recommend utilizing an acausal modeling feature of Modelica language, which allows model variables to be expressed declaratively. Furthermore, the Modelica tool identifies which are the dependent and independent variables upon compilation. An example of our approach is introduced on several elementary components representing the hydraulic resistance to fluid flow and the elastic response of the vessel, among others. The introduced model implementation can be more reusable and understandable for the general scientific community.

TomᚠKulhánek; Ji?í Kofránek; Marek Mateják

2014-01-01T23:59:59.000Z

264

Microstructural evolution of delta ferrite in SAVE12 steel under heat treatment and short-term creep  

SciTech Connect

This research focused on the formation and microstructural evolution of delta ferrite phase in SAVE12 steel. The formation of delta ferrite was due to the high content of ferrite forming alloy elements such as Cr, W, and Ta. This was interpreted through either JMatPro-4.1 computer program or Cr{sub eq} calculations. Delta ferrite was found in bamboo-like shape and contained large amount of MX phase. It was surrounded by Laves phases before creep or aging treatment. Annealing treatments were performed under temperatures from 1050 Degree-Sign C to 1100 Degree-Sign C and various time periods to study its dissolution kinetics. The result showed that most of the delta ferrite can be dissolved by annealing in single phase austenitic region. Dissolution process of delta ferrite may largely depend on dissolution kinetic factors, rather than on thermodynamic factors. Precipitation behavior during short-term (1100 h) creep was investigated at temperature of 600 Degree-Sign C under a stress of 180 MPa. The results demonstrated that delta ferrite became preferential nucleation sites for Laves phase at the early stage of creep. Laves phase on the boundary around delta ferrite showed relatively slower growth and coarsening rate than that inside delta ferrite. - Highlights: Black-Right-Pointing-Pointer Delta ferrite is systematically studied under heat treatment and short-term creep. Black-Right-Pointing-Pointer Delta ferrite contains large number of MX phase and is surrounded by Laves phases before creep or aging treatment. Black-Right-Pointing-Pointer Formation of delta ferrite is interpreted by theoretical and empirical methods. Black-Right-Pointing-Pointer Most of the delta ferrite is dissolved by annealing in single phase austenitic region. Black-Right-Pointing-Pointer Delta ferrite becomes preferential nucleation sites for Laves phase at the early stage of creep.

Li, Shengzhi, E-mail: lishengzhi@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)] [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Eliniyaz, Zumrat; Zhang, Lanting; Sun, Feng [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)] [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shen, Yinzhong [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)] [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shan, Aidang, E-mail: adshan@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)] [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

2012-11-15T23:59:59.000Z

265

Effects of various uranium leaching procedures on soil: Short-term vegetation growth and physiology. Progress report, April 1994  

SciTech Connect

Significant volumes of soil containing elevated levels of uranium exist in the eastern United States. The contamination resulted from the development of the nuclear industry in the United States requiring a large variety of uranium products. The contaminated soil poses a collection and disposal problem of a magnitude that justifies the development of decontamination methods. Consequently, the Department of Energy (DOE) Office of Technology Development formed the Uranium Soils Integrated Demonstration (USID) program to address the problem. The fundamental goal of the USID task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than what can be done using current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics and without generating waste that is difficult to manage and/or dispose of. However, procedures developed for removing uranium from contaminated soil have involved harsh chemical treatments that affect the physicochemical properties of the soil. The questions are (1) are the changes in soil properties severe enough to destroy the soil`s capacity to support and sustain vegetation growth and survival? and (2) what amendments might be made to the leached soil to return it to a reasonable vegetation production capacity? This study examines the vegetation-support capacity of soil that had been chemically leached to remove uranium. The approach is to conduct short-term germination and phytotoxicity tests for evaluating soils after they are subjected to various leaching procedures followed by longer term pot studies on successfully leached soils that show the greatest capacity to support plant growth. This report details the results from germination and short-term phytotoxicity testing of soils that underwent a variety of leaching procedures at the bench scale at ORNL and at the pilot plant at Fernald.

Edwards, N.T.

1994-08-01T23:59:59.000Z

266

Improved Refractory Materials for Slagging Gasifiers in IGCC Power Systems  

SciTech Connect

Gasifiers are the heart of Integrated Gasification Combined Cycle (IGCC) power system currently being developed as part of the DOE's Vision 21 Fossil Fuel Power Plant. A gasification chamber is a high pressure/high temperature reaction vessel used to contain a mixture of O2, H2O, and coal (or other carbon containing materials) while it is converted into thermal energy and chemicals (H2, CO, and CH4). IGCC systems are expected to play a dominant role in meeting the Nation's future energy needs. Gasifiers are also used to produce chemicals that serve as feedstock for other industrial processes, and are considered a potential source of H2 in applications such as fuel cells. A distinct advantage of gasifiers is their ability to meet or exceed current and anticipated future environmental emission regulations. Also, because gasification systems are part of a closed circuit, gasifiers are considered process ready to capture CO2 emissions for reuse or processing should that become necessary or economically feasible in the future. The service life of refractory liners for gasifiers has been identified by users as a critical barrier to IGC

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Krabbe, Rick; Thomas, Hugh

2005-01-01T23:59:59.000Z

267

Slag-Refractory Interaction in Slagging Coal Gasifiers  

SciTech Connect

The combustion chamber of slagging coal gasifiers is lined with refractories to protect the stainless steel shell of the gasifier from elevated temperatures and corrosive attack of the coal slag. Refractories composed primarily of Cr2O3 have been found most resistant to slag corrosion, but they continue to fail performance requirements. Post-mortem analysis of high-chromia refractory bricks collected from commercial gasifiers suggests that slag penetration and subsequent spalling of refractory are the cause of significantly shorter service life of gasifier refractories. Laboratory tests were conducted to determine the penetration depth of three slags representative of a wide variety of coals in the United States into chromia-alumina and two high-chromia refractories. Variables tested were refractory-slag combinations and two partial pressures of O2. Slag penetration depths were measured from spliced images of each refractory. Samples heated to 1470°C for 2 hrs had maximum penetration depths ranging from 1.99±0.15 mm to at least 21.6 mm. Aurex 95P, a high-chromia refractory containing 3.3% phosphorous pentoxide (P2O5), showed the least slag penetration of all refractories tested. P2O5 likely reacts with the slags to increase their viscosity and restrict molten slag penetration. Experimental data on the slag-refractory interaction will be incorporated into mathematical model that will be used to 1) identify critical conditions at which refractory corrosion sharply increases, and 2) predict the service life of a gasifier refractory.

Matyas, Josef; Sundaram, S. K.; Hicks, Brent J.; Edmondson, Autumn B.; Arrigoni, Benjamin M.

2008-03-03T23:59:59.000Z

268

Modeling of Time Varying Slag Flow in Coal Gasifiers  

SciTech Connect

There is considerable interest within government agencies and the energy industries across the globe to further advance the clean and economical conversion of coal into liquid fuels to reduce our dependency on imported oil. To date, advances in these areas have been largely based on experimental work. Although there are some detailed systems level performance models, little work has been done on numerical modeling of the component level processes. If accurate models are developed, then significant R&D time might be saved, new insights into the process might be gained, and some good predictions of process or performance can be made. One such area is the characterization of slag deposition and flow on the gasifier walls. Understanding slag rheology and slag-refractory interactions is critical to design and operation of gasifiers with extended refractory lifetimes and also to better control of operating parameters so that the overall gasifier performance with extended service life can be optimized. In the present work, the literature on slag flow modeling was reviewed and a model similar to Seggiani’s was developed to simulate the time varying slag accumulation and flow on the walls of a Prenflo coal gasifier. This model was further extended and modified to simulate a refractory wall gasifier including heat transfer through the refractory wall with flowing slag in contact with the refractory. The model was used to simulate temperature dependent slag flow using rheology data from our experimental slag testing program. These modeling results as well as experimental validation are presented.

Pilli, Siva Prasad; Johnson, Kenneth I.; Williford, Ralph E.; Sundaram, S. K.; Korolev, Vladimir N.; Crum, Jarrod V.

2008-08-30T23:59:59.000Z

269

Characteristics of air-blown gasification in a pebble bed gasifier  

Science Journals Connector (OSTI)

High temperature air-blown gasification is a new concept to utilize the waste heat from gasifier that is called multi-staged enthalpy extraction ... study, we have constructed a pebble bed gasifier and operated i...

Young Chan Choi; Jae Goo Lee; Jae Ho Kim…

2006-05-01T23:59:59.000Z

270

A mini cogeneration station constructed on the basis of a inverted gasifier  

Science Journals Connector (OSTI)

The basic process circuit of a mini cogeneration station constructed on the basis of an internal combustion engine and a inverted gasifier operating on coal fuel is developed. The optimal mode of gasifier operati...

A. M. Dubinin; E. V. Cherepanova; V. G. Tuponogov; O. A. Obozhin

2010-06-01T23:59:59.000Z

271

Internal tar/CH4 reforming in a biomass dual fluidised bed gasifier  

Science Journals Connector (OSTI)

An internal reformer is developed for in situ catalytic reforming of tar and methane (CH4) in allothermal gasifiers. The study has been performed in the ... 150 kW dual fluidised bed (DFB) biomass gasifier at Mid...

Kristina Göransson; Ulf Söderlind; Till Henschel…

2014-10-01T23:59:59.000Z

272

High-Temperature Stress Relaxation Cracking and Stress Rupture Observed in a Coke Gasifier Failure  

Science Journals Connector (OSTI)

This article discusses the high-temperature metal degradation mechanisms that occurred in the failure of a nine-story tall coke gasifier, located in a refinery power plant. Cracking of gasifier internals, bulging...

Daniel J. Benac; Douglas B. Olson…

2011-06-01T23:59:59.000Z

273

Numerical analysis of the flow field inside an entrained-flow gasifier  

Science Journals Connector (OSTI)

The flow field of an entrained-flow gasifier was numerically simulated to describe coal gasification ... inlet velocity, extension in burner length and gasifier geometry. The calculation results showed that the ....

Young Chan Choi; Xiang Yang Li; Tae Jun Park…

2001-05-01T23:59:59.000Z

274

Development of Catalytic Tar Decomposition in an Internally Circulating Fluidized-Bed Gasifier  

Science Journals Connector (OSTI)

Biomass gasification in an Internally Circulating Fluidized-bed Gasifier (ICFG) using Ni/Ah03 as tar ... as catalyst in a lab-scale fluidized bed gasifier with catalyst fixed bed. The new catalyst...

Xianbin Xiao; Due Dung Le; Kayoko Morishita…

2010-01-01T23:59:59.000Z

275

Simulation Analysis of Biomass Gasification in an Autothermal Gasifier Using Aspen Plus  

Science Journals Connector (OSTI)

Based on simulation, biomass gasification in an autothermal gasifier is analyzed, the effects of the equivalence ... The results indicate that the temperature in the gasifier increases when the ER increases, whil...

Zhongbin Fu; Yaning Zhang; Hui Liu; Bo Zhang…

2013-01-01T23:59:59.000Z

276

Experimental studies of 1 ton/day coal slurry feed type oxygen blown, entrained flow gasifier  

Science Journals Connector (OSTI)

Experimental Studies of a 1 Ton/Day coal slurry feed type oxygen blown, entrained flow gasifier have been performed with the slurry concentration and gasifier temperature at 65% and above 1,300...2.../coal feed r...

Young-Chan Choi; Tae-Jun Park; Jae-Ho Kim…

2001-07-01T23:59:59.000Z

277

Gasification and its emission characteristics for dried sewage sludge utilizing a fluidized bed gasifier  

Science Journals Connector (OSTI)

The effects of these parameters were, therefore, investigated through a series of experiments with a fluidized bed gasifier.

Seong-Wan Kang; Jong-In Dong; Jong-Min Kim…

2011-10-01T23:59:59.000Z

278

Alkali attack on a mullite refractory in the Grand Forks Energy Technology Center slagging gasifier  

Science Journals Connector (OSTI)

A mullite refractory lining in the Grand Forks Energy Technology Center slagging gasifier cracked and spoiled after intermittent exposure to...

C. R. Kennedy

1981-06-01T23:59:59.000Z

279

Coal-CO2 Slurry Feeding System for Pressurized Gasifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Coal-CO2 Slurry Feeding System for Pressurized Gasifiers Massachusetts Institute of Technology Project Number: FE0012500 Project Description This project will develop and assess a slurry feeding system based on a suspension of coal in liquid CO2 that can be pumped into a high-pressure gasifier. The advantages of this solution are that CO2 has a low heat capacity, a low heat of vaporization and low viscosity. Thus, the liquid CO2 imposes a much smaller thermal load on the gasifier relative to a water slurry, and has the potential to improve the efficiency and economics of integrated gasification combined cycle (IGCC) power plants with carbon capture and dramatically reduce greenhouse gas emissions from coal fired power plants. Project Details

280

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network (OSTI)

OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOROF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOR F Iis fed into a hydro-gasifier reactor. One such process was

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Appendix D: Coal Gasifier Control: A Process Engineering Approach 208 DD.. CCOOAALL GGAASSIIFFIIEERR CCOONNTTRROOLL  

E-Print Network (OSTI)

Appendix D: Coal Gasifier Control: A Process Engineering Approach 208 DD.. CCOOAALL 24 June 1998 Coventry University #12;Appendix D: Coal Gasifier Control: A Process Engineering Approach 209 Coal Gasifier Control: A Process Engineering Approach B N Asmar, W E Jones and J A Wilson

Skogestad, Sigurd

282

Scaling up biomass gasifier use: an application-specific approach  

Science Journals Connector (OSTI)

Biomass energy accounts for about 11% of the global primary energy supply, and it is estimated that about 2 billion people worldwide depend on biomass for their energy needs. Yet, most of the use of biomass is in a primitive and inefficient manner, primarily in developing countries, leading to a host of adverse implications on human health, environment, workplace conditions, and social well being. Therefore, the utilization of biomass in a clean and efficient manner to deliver modern energy services to the world's poor remains an imperative for the development community. One possible approach to do this is through the use of biomass gasifiers. Although significant efforts have been directed towards developing and deploying biomass gasifiers in many countries, scaling up their dissemination remains an elusive goal. Based on an examination of biomass gasifier development, demonstration, and deployment efforts in India—a country with more than two decades of experiences in biomass gasifier development and dissemination, this article identifies a number of barriers that have hindered widespread deployment of biomass gasifier-based energy systems. It also suggests a possible approach for moving forward, which involves a focus on specific application areas that satisfy a set of criteria that are critical to deployment of biomass gasifiers, and then tailoring the scaling up strategy to the characteristics of the user groups for that application. Our technical, financial, economic and institutional analysis suggests an initial focus on four categories of applications—small and medium enterprises, the informal sector, biomass-processing industries, and some rural areas—may be particularly feasible and fruitful.

Debyani Ghosh; Ambuj D Sagar; V.V.N. Kishore

2006-01-01T23:59:59.000Z

283

Low-Chrome/Chrome Free Refractories for Slagging Gasifiers  

SciTech Connect

Gasifiers are containment vessels used to react carbon-containing materials with oxygen and water, producing syngas (CO and H2) that is used in chemical and power production. It is also a potential source of H2 in a future hydrogen economy. Air cooled slagging gasifiers are one type of gasifier, operating at temperatures from 1275-1575º C and at pressures of 400 psi or higher. They typically use coal or petroleum coke as the carbon source, materials which contain ash impurities that liquefy at the gasification temperatures, producing liquid slag in quantities of 100 or more tons/day, depending on the carbon fed rate and the percent ash present in the feedstock. The molten slag is corrosive to refractory linings, causing chemical dissolution and spalling. The refractory lining is composed of chrome oxide, alumina, and zirconia; and is replaced every 3-24 months. Gasifier users would like greater on-line availability and reliability of gasifier liners, something that has impacted gasifier acceptance by industry. Research is underway at NETL to improve refractory service life and to develop a no-chrome or low-chrome oxide alternative refractory liner. Over 250 samples of no- or low-chrome oxide compositions have been evaluated for slag interactions by cup testing; with potential candidates for further studies including those with ZrO2, Al2O3, and MgO materials. The development of improved liner materials is necessary if technologies such as IGCC and DOE’s Near Zero Emissions Advanced Fossil Fuel Power Plant are to be successful and move forward in the marketplace.

Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Thomas, H.; Petty, A.V., Jr.

2007-01-01T23:59:59.000Z

284

Simple Dynamic Gasifier Model That Runs in Aspen Dynamics  

SciTech Connect

Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.

Robinson, P.J.; Luyben, W.L. [Lehigh University, Bethlehem, PA (United States). Dept. of Chemical Engineering

2008-10-15T23:59:59.000Z

285

Real Time Flame Monitoring of Gasifier Burner and Injectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Real Time Flame Monitoring of Gasifier Real Time Flame Monitoring of Gasifier Burner and Injectors Background The Gasification Technologies Program at the National Energy Technology Laboratory (NETL) supports research and development (R&D) in the area of gasification-a process whereby carbon-based materials (feedstocks) such as coal are converted into synthesis gas (syngas), which is separated into hydrogen (H 2 ) and carbon dioxide (CO 2 ) gas streams in a combustion turbine-generator as a way to generate clean electricity while

286

Method of operating a two-stage coal gasifier  

DOE Patents (OSTI)

A method of operating an entrained flow coal gasifier (10) via a two-stage gasification process. A portion of the coal (18) to be gasified is combusted in a combustion zone (30) with near stoichiometric air to generate combustion products. The combustion products are conveyed from the combustion zone into a reduction zone (32) wherein additional coal is injected into the combustion products to react with the combustion products to form a combustible gas. The additional coal is injected into the reduction zone as a mixture (60) consisting of coal and steam, preferably with a coal-to-steam weight ratio of approximately ten to one.

Tanca, Michael C. (Tariffville, CT)

1982-01-01T23:59:59.000Z

287

Effect of short-term material balances on the projected uranium measurement uncertainties for the gas centrifuge enrichment plant  

SciTech Connect

A program is under way to design an effective International Atomic Energy Agency (IAEA) safeguards system that could be applied to the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). This system would integrate nuclear material accountability with containment and surveillance. Uncertainties in material balances due to errors in the measurements of the declared uranium streams have been projected on a yearly basis for GCEP under such a system in a previous study. Because of the large uranium flows, the projected balance uncertainties were, in some cases, greater than the IAEA goal quantity of 75 kg of U-235 contained in low-enriched uranium. Therefore, it was decided to investigate the benefits of material balance periods of less than a year in order to improve the sensitivity and timeliness of the nuclear material accountability system. An analysis has been made of projected uranium measurement uncertainties for various short-term material balance periods. To simplify this analysis, only a material balance around the process area is considered and only the major UF/sub 6/ stream measurements are included. That is, storage areas are not considered and uranium waste streams are ignored. It is also assumed that variations in the cascade inventory are negligible compared to other terms in the balance so that the results obtained in this study are independent of the absolute cascade inventory. This study is intended to provide information that will serve as the basis for the future design of a dynamic materials accounting component of the IAEA safeguards system for GCEP.

Younkin, J.M.; Rushton, J.E.

1980-02-05T23:59:59.000Z

288

A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection  

Science Journals Connector (OSTI)

Abstract In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken’s embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg–Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques.

Sajjad Kouhi; Farshid Keynia; Sajad Najafi Ravadanegh

2014-01-01T23:59:59.000Z

289

Global transcriptional analysis of short-term hepatic stress responses in Atlantic salmon (Salmo salar) exposed to depleted uranium  

Science Journals Connector (OSTI)

Abstract Potential environmental hazards of radionuclides are often studied at the individual level. Sufficient toxicogenomics data at the molecular/cellular level for understanding the effects and modes of toxic action (MoAs) of radionuclide is still lacking. The current article introduces transcriptomic data generated from a recent ecotoxicological study, with the aims to characterize the MoAs of a metallic radionuclide, deplete uranium (DU) in an ecologically and commercially important fish species, Atlantic salmon (Salmo salar). Salmon were exposed to three concentrations (0.25, 0.5 and 1.0 mg/L) of DU for 48 h. Short-term global transcriptional responses were studied using Agilent custom-designed high density 60,000-feature (60 k) salmonid oligonucleotide microarrays (oligoarray). The microarray datasets deposited at Gene Expression Omnibus (GEO ID: GSE58824) were associated with a recently published study by Song et al. (2014) in BMC Genomics. The authors describe the experimental data herein to build a platform for better understanding the toxic mechanisms and ecological hazard of radionuclides such as DU in fish.

You Song; Brit Salbu; Hans-Christian Teien; Lene Sørlie Heier; Bjørn Olav Rosseland; Tore Høgåsen; Knut Erik Tollefsen

2014-01-01T23:59:59.000Z

290

Chapter 6 - Incorporating Short-Term Stored Energy Resource into MISO Energy and Ancillary Service Market and Development of Performance-Based Regulation Payment  

Science Journals Connector (OSTI)

Abstract This chapter analyzes various approaches to incorporate short-term stored energy resources (SERs) into MISO co-optimized energy and ancillary service market. Based on analysis, the best approach is to utilize short-term storage energy resources for regulating reserve with the real-time energy dispatch of the \\{SERs\\} to be set in such a way that the maximum regulating reserve on \\{SERs\\} can be cleared. It also introduces the implementation of market based regulation performance payment. The purpose of the enhancement is to provide fair compensation for resources such as \\{SERs\\} that can provide fast and accurate responses.

Yonghong Chen; Marc Keyser; Matthew H. Tackett; Ryan Leonard; Joe Gardner

2015-01-01T23:59:59.000Z

291

Simulation of Pressurized Ash Agglomerating Fluidized Bed Gasifier Using ASPEN PLUS  

Science Journals Connector (OSTI)

The fluidized bed gasification is an effective means to convert small sized crushed coal into fuel or synthesis gas. ... Initially, the AFB gasifier was heated to 1073–1273 K by diesel oil; meanwhile the pressure was elevated to the required operating pressure, and then coal was fed into the gasifier by a screw feeder, while the gasifying agents as fluidizing medium were introduced from the jet orifice, annulus tube, and conical distributor at the bottom of the AFB gasifier. ... The particles are spherical, and any particle size reductions caused by friction among particles and particles with the walls of the gasifier are neglected. ...

Zheyu Liu; Yitian Fang; Shuping Deng; Jiejie Huang; Jiantao Zhao; Zhonghu Cheng

2011-12-28T23:59:59.000Z

292

High Tar Reduction in a Two-Stage Gasifier  

Science Journals Connector (OSTI)

High Tar Reduction in a Two-Stage Gasifier ... At small- and medium-scale production up to 10 MWe, the gasification of biomass for use in a gas engine or gas turbine can give a significantly higher efficiency of electricity production than that of biomass in traditional steam cycle technology. ...

Peder Brandt; Elfinn Larsen; Ulrik Henriksen

2000-07-17T23:59:59.000Z

293

High-Resolution Simulations of Coal Injection in A Gasifier  

Science Journals Connector (OSTI)

High-Resolution Simulations of Coal Injection in A Gasifier ... The shrinkage of the coal particles because of devolatilization and drying was ignored, and a single mean particle size was used. ... Simulations with three different grid resolutions were conducted (denoted by coarse, medium, and fine). ...

Tingwen Li; Aytekin Gel; Madhava Syamlal; Chris Guenther; Sreekanth Pannala

2010-07-15T23:59:59.000Z

294

Gasification of rice husk in a cyclone gasifier  

Science Journals Connector (OSTI)

The experimental results of air gasification of rice husk in the cyclone gasifier were presented at the fuel rate of...3 to 3.11 MJ/Nm3 and the cold gas efficiency decreases from 64% to 31%. However, the tar cont...

Shaozeng Sun; Yijun Zhao; Fengming Su; Feng Ling

2009-03-01T23:59:59.000Z

295

Slag Penetration into Refractory Lining of Slagging Coal Gasifier  

SciTech Connect

The impurities in coal are converted into molten slag typically containing SiO2, FeO, CaO, and Al2O3 when coal feedstock is burned in slagging gasifiers. The slag flows down the gasifier sidewalls, dissolves, and penetrates and reacts with the refractory lining that protects the stainless steel shell of the gasifier from elevated temperatures (1300–1600°C). Refractories composed primarily of Cr2O3 have been found most resistant to slag corrosion, but they continue to fail performance requirements because of low resistance to spalling. Post-mortem analysis of high-chromia refractory bricks collected from commercial gasifiers suggests that the spalling is affected by the depth of slag penetration that is in turn affected by the wettability and interconnected porosity of the refractory as well as the slag viscosity. Laboratory tests were conducted to measure the viscosity of slags (Wyoming Powder River Basin [PRB], Pocahontas #3, and Pittsburgh #8), their contact angle on refractories (chromia-alumina [Aurex 75SR] and high-chromia [Serv 95 and Aurex 95P]), and the apparent porosity of selected refractories. In addition, the depth of slag penetration as a function of time and temperature was determined for various refractory-slag combinations. The results of laboratory tests were used to develop a refractory material that has high resistance to penetration by molten slag and thus has a potential to have a substantially longer service life than the materials currently being used.

Matyas, Josef; Sundaram, S. K.; Rodriguez, Carmen P.; Edmondson, Autumn B.; Arrigoni, Benjamin M.

2008-10-25T23:59:59.000Z

296

Low inlet gas velocity high throughput biomass gasifier  

DOE Patents (OSTI)

The present invention discloses a novel method of operating a gasifier for production of fuel gas from carbonaceous fuels. The process disclosed enables operating in an entrained mode using inlet gas velocities of less than 7 feet per second, feedstock throughputs exceeding 4000 lbs/ft.sup.2 -hr, and pressures below 100 psia.

Feldmann, Herman F. (Worthington, OH); Paisley, Mark A. (Upper Arlington, OH)

1989-01-01T23:59:59.000Z

297

Corrosion resistant refractory ceramics for slagging gasifier environment  

SciTech Connect

Integrated gasification combined cycle power systems are the most efficient and economical power generation systems with a relatively low environmental impact. The gasification process requires the optimal design of gasifiers with extremely corrosion resistant refractory lining. The majority of the refractory materials tested for gasifier lining applications cannot resist the action of slagging corrosive environment combined with high operation temperatures as high as 1600?C and possible thermal shocks and thermal expansion mismatch between the lining and the slag. Silicon carbide-based ceramics and some zirconia- and zircon-based ceramics manufactured by Ceramic Protection Corporation (CPC) have been tested in a simulated coal-fired slagging gasifier environment at a temperature of 1500?C. Crucible ceramic samples have been examined after exposure to the slag at high temperature. Microstructure studies of the ceramic zone contacted with the slag have been carried out. The highest performance, i.e. the absence of corrosion damage and thermal cracking after testing, was observed for silicon carbide-based ceramics ABSC formed by silicon carbide grains with an optimized particle size distribution bonded by the aluminosilicate crystalline-glassy matrix. Dense zirconia and alumina-zirconia and slightly porous zircon ceramics demonstrated comparatively lower performance due to their lower corrosion resistance and greater thermal cracking. ABSC ceramics can be manufactured as thick-walled large components and may be considered as a promising material for gasifier refractory applications. Similar ceramics, but with finer grain sizes, may also be recommended for thermocouple protection.

Medvedovski, E. (Ceramic Protection Corp., Calgary, Alberta, Canada); Chinn, Richard E.

2004-01-01T23:59:59.000Z

298

Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier  

Science Journals Connector (OSTI)

Abstract Air-blown gasification of woody biomass was investigated in a pilot-scale bubbling fluidized bed gasifier. Air was used as the gasifying agent as well as a fluidizing gas. Fuel was fed into the top of the gasifier and air was introduced from the bottom through a distributor. In order to control the composition of the product gas, the amounts of feedstock and gasifying agent being fed into the gasifier were varied, and the temperature distribution in the gasifier and the composition of the syngas were monitored. It was shown that the distribution of the reaction zones in the gasifier could be controlled by the air injection rate, and the composition of the syngas by the equivalence ratio of the reactants. Although the obtained syngas had a low caloric value, its heating value is adequate for power generation using a syngas engine.

Young Doo Kim; Chang Won Yang; Beom Jong Kim; Kwang Su Kim; Jeung Woo Lee; Ji Hong Moon; Won Yang; Tae U Yu; Uen Do Lee

2013-01-01T23:59:59.000Z

299

Apolipoprotein E Genotype-Dependent Paradoxical Short-Term Effects of {sup 56}Fe Irradiation on the Brain  

SciTech Connect

Purpose: In humans, apolipoprotein E (apoE) is encoded by three major alleles ({epsilon}2, {epsilon}3, and {epsilon}4) and, compared to apoE3, apoE4 increases the risk of developing Alzheimer disease and cognitive impairments following various environmental challenges. Exposure to irradiation, including that of {sup 56}Fe, during space missions poses a significant risk to the central nervous system, and apoE isoform might modulate this risk. Methods and Materials: We investigated whether apoE isoform modulates hippocampus-dependent cognitive performance starting 2 weeks after {sup 56}Fe irradiation. Changes in reactive oxygen species (ROS) can affect cognition and are induced by irradiation. Therefore, after cognitive testing, we assessed hippocampal ROS levels in ex vivo brain slices, using the ROS-sensitive fluorescent probe, dihydroethidium (DHE). Brain levels of 3-nitrotyrosine (3-NT), CuZn superoxide dismutase (CuZnSOD), extracellular SOD, and apoE were assessed using Western blotting analysis. Results: In the water maze, spatial memory retention was impaired by irradiation in apoE2 and apoE4 mice but enhanced by irradiation in apoE3 mice. Irradiation reduced DHE-oxidation levels in the enclosed blade of the dentate gyrus and levels of 3-NT and CuZnSOD in apoE2 but not apoE3 or apoE4 mice. Finally, irradiation increased apoE levels in apoE3 but not apoE2 or apoE4 mice. Conclusions: The short-term effects of {sup 56}Fe irradiation on hippocampal ROS levels and hippocampus-dependent spatial memory retention are apoE isoform-dependent.

Haley, Gwendolen E. [Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR (United States) [Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR (United States); Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR (United States); Villasana, Laura; Dayger, Catherine; Davis, Matthew J. [Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR (United States)] [Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR (United States); Raber, Jacob, E-mail: raberj@ohsu.edu [Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR (United States) [Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR (United States); Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR (United States); Department of Neurology, Oregon Health and Science University, Portland, OR (United States)

2012-11-01T23:59:59.000Z

300

Seismic Activity of the Earth, the Cosmological Vectorial Potential And Method of a Short-term Earthquakes Forecasting  

E-Print Network (OSTI)

To the foundation of a principally new short-term forecasting method there has been laid down a theory of surrounding us world's creation and of physical vacuum as a result of interaction of byuons - discrete objects. The definition of the byuon contains the cosmological vector-potential A_g - a novel fundamental vector constant. This theory predicts a new anisotropic interaction of nature objects with the physical vacuum. A peculiar "tap" to gain new energy (giving rise to an earthquake) are elementary particles because their masses are proportional to the modulus of some summary potential A_sum that contains potentials of all known fields. The value of A_sum cannot be larger than the modulus of A_g. In accordance with the experimental results a new force associated with A_sum ejects substance from the area of the weakened A_sum along a conical formation with the opening of 100 +- 10 and the axis directed along the vector A_sum. This vector has the following coordinates in the second equatorial coordinate system: right ascension alpha = 293 +- 10, declination delta = 36 +- 10. Nearly 100% probability of an earthquake (earthquakes of 6 points strong and more by the Richter scale) arises when in the process of the earth rotation the zenith vector of a seismically dangerous region and/or the vectorial potential of Earth's magnetic fields are in a certain way oriented relative to the vector A_g. In the work, basic models and standard mechanisms of earthquakes are briefly considered, results of processing of information on the earthquakes in the context of global spatial anisotropy caused by the existence of the vector A_g, are presented, and an analysis of them is given.

Yu. A. Baurov; Yu. A. Baurov; Yu. A. Baurov Jr.; A. A. Spitalnaya; A. A. Abramyan; V. A. Solodovnikov

2008-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored research project whose overarching goals are to improve the accuracy of short-term wind energy forecasts, and to demonstrate the economic value of these improvements.

302

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 An Analytical Framework for Short-Term Resource  

E-Print Network (OSTI)

markets, strategic behavior, capacity gaming. I. INTRODUCTION HE electric system is said to be reliable markets, is capacity. Since sellers need not offer all their capacity to serve the demand, they may engage An Analytical Framework for Short-Term Resource Adequacy in Competitive Electricity Markets Pablo A. Ruiz

303

Estimation of original gas in place from short-term shut-in pressure data for commingled tight gas reservoirs with no crossflow  

E-Print Network (OSTI)

gas production (GP) under these circumstances. This research studies different empirical methods to estimate the original gas in place (OGIP) for one-layer or commingled two-layer tight gas reservoirs without crossflow, from short-term (72-hour) shut...

Khuong, Chan Hung

2012-06-07T23:59:59.000Z

304

Modelling of long-term and short-term mechanisms of arterial pressure control in the cardiovascular system: An object-oriented approach  

Science Journals Connector (OSTI)

A mathematical model that provides an overall description of both the short- and long-term mechanisms of arterial pressure regulation is presented. Short-term control is exerted through the baroreceptor reflex while renal elimination plays a role in ... Keywords: Cardiovascular system, DYMOLA simulation environment, MODELICA programming language, Object-oriented modelling, Pressure control

J. Fernandez De Canete, J. Luque, J. Barbancho, V. Munoz

2014-04-01T23:59:59.000Z

305

Active disturbance rejection control for the ALSTOM gasifier benchmark problem  

Science Journals Connector (OSTI)

A new control solution based on a unique active disturbance rejection control (ADRC) paradigm is proposed for the ALSTOM gasifier control problem. In the new control method, the disturbances, including unknown dynamics and external disturbances to the system, are treated as an augmented state that is estimated and then eliminated in real-time. A first-order ADRC scheme for the ALSTOM gasifier is designed. The simulation results show that the new control method is superior to the PI solution by Simm and Xue in terms of the integral of the absolute error of gas pressure disturbance tests at 0% load, the no-overshoot peak value of the gas temperature and the short time for the bed mass to return to the set point during a ramping test, and the ability to reject large coal quality disturbances.

Chun-E Huang; Donghai Li; Yali Xue

2013-01-01T23:59:59.000Z

306

Photoconversion of gasified organic materials into biologically-degradable plastics  

DOE Patents (OSTI)

A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

Weaver, P.F.; Pinching Maness.

1993-10-05T23:59:59.000Z

307

Photoconversion of gasified organic materials into biologically-degradable plastics  

DOE Patents (OSTI)

A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

Weaver, Paul F. (Golden, CO); Maness, Pin-Ching (Golden, CO)

1993-01-01T23:59:59.000Z

308

Advanced coal gasifier designs using large-scale simulations  

SciTech Connect

Porting of the legacy code MFIX to a high performance computer (HPC) and the use of high resolution simulations for the design of a coal gasifier are described here. MFIX is based on a continuum multiphase flow model that considers gas and solids to form interpenetrating continua. Low resolution simulations of a commercial scale gasifier with a validated MFIX model revealed interesting physical phenomena with implications on the gasifier design, which prompted the study reported here. To be predictive, the simulations need to model the spatiotemporal variations in gas and solids volume fractions, velocities, temperatures with any associated phase change and chemical reactions. These processes occur at various time- and length-scales requiring very high spatial resolution and large number of iterations with small time-steps. We were able to perform perhaps the largest known simulations of gas-solids reacting flows, providing detailed information about the gas-solids flow structure and the pressure, temperature and species distribution in the gasifier. One key finding is the new features of the coal jet trajectory revealed with the high spatial resolution, which provides information on the accuracy of the lower resolution simulations. Methodologies for effectively combining high and low resolution simulations for design studies must be developed. From a computational science perspective, we found that global communication has to be reduced to achieve scalability to 1000s of cores, hybrid parallelization is required to effectively utilize the multicore chips, and the wait time in the batch queue significantly increases the actual time-to-solution. From our experience, development is required in the following areas: efficient solvers for heterogeneous, massively parallel systems; data analysis tools to extract information from large data sets; and programming environments for easily porting legacy codes to HPC.

Syamlal, M [National Energy Technology Laboratory (NETL); Guenther, Chris [National Energy Technology Laboratory (NETL); Gel, Aytekin [Aeolus Research Inc.; Pannala, Sreekanth [ORNL

2009-01-01T23:59:59.000Z

309

Modelling of a downdraft gasifier fed by agricultural residues  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Development of software for downdraft gasification simulation. Black-Right-Pointing-Pointer Prediction of the syngas concentration. Black-Right-Pointing-Pointer Prediction of the syngas heating value. Black-Right-Pointing-Pointer Investigation of the temperature effect in reduction zone in syngas concentration. - Abstract: A non-stoichiometric model for a downdraft gasifier was developed in order to simulate the overall gasification process. Mass and energy balances of the gasifier were calculated and the composition of produced syngas was predicted. The capacity of the modeled gasifier was assumed to be 0.5 MW, with an Equivalence Ratio (EQ) of 0.45. The model incorporates the chemical reactions and species involved, while it starts by selecting all species containing C, H, and O, or any other dominant elements. Olive wood, miscanthus and cardoon were tested in the formulated model for a temperature range of 800-1200 Degree-Sign C, in order to examine the syngas composition and the moisture impact on the supplied fuel. Model results were then used in order to design an olive wood gasification reactor.

Antonopoulos, I.-S., E-mail: jantonop@aix.meng.auth.gr [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124, Thessaloniki (Greece); Karagiannidis, A.; Gkouletsos, A.; Perkoulidis, G. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124, Thessaloniki (Greece)

2012-04-15T23:59:59.000Z

310

Combined goal gasifier and fuel cell system and method  

DOE Patents (OSTI)

A molten carbonate fuel cell is combined with a catalytic coal or coal char gasifier for providing the reactant gases comprising hydrogen, carbon monoxide and carbon dioxide used in the operation of the fuel cell. These reactant gases are stripped of sulfur compounds and particulate material and are then separated in discrete gas streams for conveyance to appropriate electrodes in the fuel cell. The gasifier is arranged to receive the reaction products generated at the anode of the fuel cell by the electricity-producing electrochemical reaction therein. These reaction products from the anode are formed primarily of high temperature steam and carbon dioxide to provide the steam, the atmosphere and the heat necessary to endothermically pyrolyze the coal or char in the presence of a catalyst. The reaction products generated at the cathode are substantially formed of carbon dioxide which is used to heat air being admixed with the carbon dioxide stream from the gasifier for providing the oxygen required for the reaction in the fuel cell and for driving an expansion device for energy recovery. A portion of this carbon dioxide from the cathode may be recycled into the fuel cell with the air-carbon dioxide mixture.

Gmeindl, Frank D. (Morgantown, WV); Geisbrecht, Rodney A. (New Alexandria, PA)

1990-01-01T23:59:59.000Z

311

Hydrogen Production from Biomass via Indirect Gasification: The Impact of NREL Process Development Unit Gasifier Correlations  

SciTech Connect

This report describes a set of updated gasifier correlations developed by NREL to predict biomass gasification products and Minimum Hydrogen Selling Price.

Kinchin, C. M.; Bain, R. L.

2009-05-01T23:59:59.000Z

312

Co-Gasification of Wood and Lignite in a Dual Fluidized Bed Gasifier  

Science Journals Connector (OSTI)

Mixts. of coal and biomass were co-gasified in a jetting, ash-agglomerating, fluidized-bed, pilot scale-sized gasifier to provide steady-state operating data for numerical simulation verification. ... Downstream cleaning of gas by catalytic cracking and/or scrubbing is complex and/or expensive for small to medium gasification plants, so conversion of tar within the gasifier is preferred. ... Kern, S.; Pfeifer, C.; Hofbauer, H. Gasification of lignite in a dual fluidized bed gasifier - Influence of bed material particle size and the amount of steam. ...

Stefan Kern; Christoph Pfeifer; Hermann Hofbauer

2013-01-15T23:59:59.000Z

313

Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet summarizing project that will develop and demonstrate a prototype microturbine CHP fueled by synthesis gas & integrated with a biomass gasifier

314

Synthetic Fuel from Biomass: The AVSA Dual Fluid Bed Combustor — Gasifier Project  

Science Journals Connector (OSTI)

The AVSA project covers completely the generation of synthesis gas from wood waste: feed collection, sizing, drying and transportation as well as gasifier design.

A. Bary; H. A. Masson; P. Debaud

1982-01-01T23:59:59.000Z

315

Permeabilities of coal-biomass mixtures for high pressure gasifier feeds.  

E-Print Network (OSTI)

??Complete measurements of permeability on coal-biomass mixtures as a potential feedstock to gasifiers to reduce net carbon emissions were performed. Permeability is measured under anticipated… (more)

Belvalkar, Rohan

2012-01-01T23:59:59.000Z

316

Thermocouple protection systems for longer service life in slagging gasifier environments  

SciTech Connect

To ensure reliable and efficient operation, gasifier operators would like to be able to continuously monitor system temperature. In many slagging gasifiers, temperature measurement is accomplished by several thermocouples embedded at various locations in the gasifier wall. Unfortunately, these thermocouple devices are very susceptible to early failure, either as the result of mechanical stresses or exposure to the harsh slagging environment, making long-term continuous temperature monitoring difficult. At the Albany Research Center, we are developing strategies to improve the ceramic protection assembly that is used to shield the thermocouple wires from direct exposure to the gasifier atmosphere. In this talk we will describe this multi-component ceramic protection system and present test results, which indicate that, the protection system should provide longer device service life in slagging gasifier environments.

Kwong, Kyei-Sing; Chinn, Richard E.; Iverson, Larissa A.; Bennett, James P.; Dogan, Cynthia P.

2003-01-01T23:59:59.000Z

317

BWRSAR (Boiling Water Reactor Severe Accident Response) calculations of reactor vessel debris pours for Peach Bottom short-term station blackout  

SciTech Connect

This paper describes recent analyses performed by the BWR Severe Accident Technology (BWRSAT) Program at Oak Ridge National Laboratory to estimate the release of debris from the reactor vessel for the unmitigated short-term station blackout accident sequence. Calculations were performed with the BWR Severe Accident Response (BWRSAR) code and are based upon consideration of the Peach Bottom Atomic Power Station. The modeling strategies employed within BWRSAR for debris relocation within the reactor vessel are briefly discussed and the calculated events of the accident sequence, including details of the calculated debris pours, are presented. 4 refs., 13 figs., 3 tabs.

Hodge, S.A.; Ott, L.J.

1988-01-01T23:59:59.000Z

318

Short-term methods for estimating the chronic toxicity of effluents and receiving water to marine and estuarine organisms. Second edition  

SciTech Connect

This manual describes six short-term (one hour to nine days) estuarine and marine methods for measuring the chronic toxicity of effluents and receiving waters to five species; the sheepshead minnow, Cyprinodon variegatus; the inland silverside, Menidia beryllina; the mysid, Mysidopsis bahia; the sea urchin, Arbacia punctualata; and the red macroalga, Champia parvula. The methods include single and multiple concentration static renewal and static nonrenewal toxicity tests for effluents and receiving waters. Also included are guidelines on laboratory safety, quality assurance, facilities, and equipment and supplies; dilution water; effluent and receiving water sample collection, preservation, shipping, and holding; test conditions; toxicity test data analysis; report preparation; and organism culturing, holding, and handling.

Klemm, D.J.; Morrison, G.E.; Norberg-King, T.J.; Peltier, W.H.; Heber, M.A.

1994-07-01T23:59:59.000Z

319

Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory  

SciTech Connect

This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years.

S. L. Claggett

1999-12-01T23:59:59.000Z

320

Field Trial Results of an Improved Refractory Material for Slagging Gasifiers  

SciTech Connect

Gasifiers are used commercially to react a carbon feedstock with water and oxygen under reducing conditions; producing chemicals used as feedstock for other processes, fuel for power plants, and/or steam used in other processes. A gasifier acts as a high temperature, high pressure reaction chamber, typically operating between 1250-1575°C, and with pressures between 300-1000 psi. Ash that originates from mineral impurities in the carbon feedstock becomes a by-product of gasification. In a slagging gasifier it melts, forming a liquid which flows down the gasifier sidewall; penetrating and wearing away the refractory liner by corrosive dissolution, abrasive wear, or by other processes such as spalling. The refractory liner must withstand the severe service environment, protecting the steel shell against corrosive gases, temperature, and material wear. Users have identified refractory service life as the most important limitation to sustained on-line availability of gasifiers, limiting gasifier acceptance and use by industry. The National Energy Technology Laboratory in Albany, OR, has developed and patented (US Patent # 6,815,386) a phosphate containing high chrome oxide refractory for use in slagging gasifiers. In cooperation with ANH Refractories Company, this refractory material has been commercially produced and is undergoing field tests in commercial gasifiers. An analysis of data from these field tests indicates that the phosphate containing refractory results in an improved service life over other refractory materials currently used as gasifier liners. Results from the post-mortem analysis of the field trial in relation to the failure mechanisms in a slagging gasifier will be presented.

Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Petty, A.V., Jr.; Thomas, H.; Prior, H.D. (ANH Refractories, West Mifflin, PA); Schnake, M. (Harbison Walker, Fulton, MO)

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Process for gasifying carbonaceous material from a recycled condensate slurry  

DOE Patents (OSTI)

Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

Forney, Albert J. (Coraopolis, PA); Haynes, William P. (Pittsburgh, PA)

1981-01-01T23:59:59.000Z

322

Air-flow regulation system for a coal gasifier  

DOE Patents (OSTI)

An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

Fasching, George E. (Morgantown, WV)

1984-01-01T23:59:59.000Z

323

Development of improved performance refractory liner materials for slagging gasifiers  

SciTech Connect

Refractory liners for slagging gasifiers used in power generation, chemical production, or as a possible future source of hydrogen for a hydrogen based economy, suffer from a short service life. These liner materials are made of high Cr2O3 and lower levels of Al2O3 and/or ZrO2. As a working face lining in the gasifier, refractories are exposed to molten slags at elevated temperature that originate from ash in the carbon feedstock, including coal and/or petroleum coke. The molten slag causes refractory failure by corrosion dissolution and by spalling. The Albany Research Center is working to improve the performance of Cr2O3 refractories and to develop refractories without Cr2O3 or with Cr2O3 content under 30 wt pct. Research on high Cr2O3 materials has resulted in an improved refractory with phosphate additions that is undergoing field testing. Results to date of field trials, along with research direction on refractories with no or low Cr2O3, will be discussed.

Kwong, Kyei-Sing; Bennett, James P.; Powell, Cynthia; Thomas, Hugh; Krabbe, Rick

2005-01-01T23:59:59.000Z

324

Gasifier feed: Tailor-made from Illinois coals. Final technical report, September 1, 1991--December 31, 1992  

SciTech Connect

The main purpose of this project was to produce a feedstock from preparation plant fines from an Illinois (IL) coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high-sulfur content and high-Btu value of IL coals are Particularly advantageous in such a gasifier; preliminary-calculations indicate that the increased cost of removing sulfur from the gas from a high-sulfur coal is more than offset b the increased revenue from the sale of the elemental sulfur; additionally the high-Btu IL coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is--higher not only because of the hither Btu value of the coal but also because IL coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for IL coal as compared to approximately 45% for most western coals. During the contract extension, additional coal testing was completed confirming the fact that coal concentrates can be made from plant waste under a variety of flotation conditions 33 tests were conducted, yielding an average of 13326 Btu with 9.6% ash while recovering 86.0%-Of the energy value.

Ehrlinger, H.P. III [Illinois State Geological Survey, Champaign, IL (United States); Lytle, J.M.; Frost, R.R.; Lizzio, A.A.; Kohlenberger, L.B.; Brewer, K.K. [Illinois State Geological Survey, Champaign, IL (United States)]|[DESTEC Energy (United States)]|[Williams Technologies, Inc. (United States)]|[Illinois Coal Association (United States)

1992-12-31T23:59:59.000Z

325

An Integrated Approach to Coal Gasifier Testing, Modeling, and Process Optimization  

SciTech Connect

Gasification is an important method of converting coal into clean burning fuels and high-value industrial chemicals. However, gasifier reliability can be severely limited by rapid degradation of the refractory lining in hot-wall gasifiers. The Pacific Northwest National Laboratory (PNNL) is performing multidisciplinary research to provide the experimental data and the engineering models needed to control gasifier operation for extended refractory life. Our experimental program includes prediction of slag viscosity using empirical viscosity models encompassing US coals, characterization of selected slag-refractory interaction including transport of slag/refractory components at the slag-refractory interface, and measurement of slag penetration into refractories as a function of time and temperature. The experimental data is used in slag flow, slag penetration, and refractory damage models to predict the operating temperature limits for increased refractory life. A simplified entrained flow gasifier model is also being developed to simulate one-dimensional axial flow with average axial velocity, coal devolatilization, and combustion kinetics. Combining the slag flow, refractory degradation, and gasifier models will provide a powerful tool to predict the coal and oxidant feed rates and control the gasifier operation to balance coal conversion efficiency with increased refractory life. A research scale gasifier has also been constructed at PNNL to provide syngas for coal conversion and carbon sequestration research, and also valuable datasets on operating conditions for validating the modeling results.

Sundaram, S. K.; Johnson, Kenneth I.; Matyas, Josef; Williford, Ralph E.; Pilli, Siva Prasad; Korolev, Vladimir N.

2009-10-01T23:59:59.000Z

326

Development of a novel 2-stage entrained flow coal dry powder gasifier  

Science Journals Connector (OSTI)

Abstract Coal-fired gasifiers are the key technology for clean power generation and coal chemical process. This paper presents a 2-stage entrained flow dry powder gasifier in which coal is entrained into the lower chamber burner with oxygen and steam to raise the temperature of the crude gas up to 1700 °C. The lower chamber is linked to the upper gasification chamber through a middle throat, where additional coal and steam is fed to cool down the slag to less than 900 °C for deslagging from the lower chamber bottom. Various coals have been characterized and gasified with this 2-stage entrained flow dry powder gasifier and comparisons made with single stage gasifiers. The results show that the 2-stage gasifier is suitable for a broad range of coal varieties and gives carbon conversion up to 98.9% with cold syngas efficiency of 83.2% at a pressure of 3.0 MPa, while the oxygen and coal consumption are lower than with the single stage gasifier.

Shisen Xu; Yongqiang Ren; Baomin Wang; Yue Xu; Liang Chen; Xiaolong Wang; Tiancun Xiao

2014-01-01T23:59:59.000Z

327

Superheater Tube Corrosion in Wood Gasifier Ash Deposits  

SciTech Connect

The upper operating temperature of tubes in heat exchangers/steam generators is strongly influenced by the degradation that can occur because of the reaction of the exchanger/generator tubing with the deposits that accumulate on the surface of the tubes. In fact, severe corrosion has been observed in some biomass fired systems, particularly with elevated potassium and chlorine concentrations in the deposits. Wood gasifiers have recently been and are currently being constructed at several sites in North America. In these systems, the syngas is burned to produce steam and the performance of the heat exchanger tubes under ash deposits is of great concern. As temperatures of the heat exchangers are increased in an effort to increase their operating efficiency, the performance of the tubes is of greater interest. The corrosion behavior of alloy steel tubes as a function of temperature has been investigated by exposing samples of selected alloys to ash collected from the steam generator fired by syngas produced in wood gasifiers. This study compares corrosion rates from laboratory exposures of synthesis gas and ash at 500 C and 600 C. This study investigated the material performance of four ferritic steels and one austenitic steel exposed to conditions expected on the fireside of a wood gasifier. The purpose of this study was to identify an effective method for determining material performance for samples exposed to both the process gas and the fly ash that is typically observed within the steam generator for times up to 1000 hours. Mass changes were measured for all of the samples, but this information can be misleading concerning material performance due to the difficulty in sufficiently cleaning the samples after exposure in the ash. Therefore, small cross sections of the samples were collected and imaged using optical microscopy. Oxide thicknesses were measured along with metal losses. The metal loss information provides a clear indication of material performance. The metal loss rates for the ferritic steels at 500 C were almost half of those observed at 600 C and the rates decreased with increasing exposure time. It was also reported that the metal loss rates generally decrease with increasing chromium concentration.

Bestor, Michael A [ORNL] [ORNL; Keiser, James R [ORNL] [ORNL; Meisner, Roberta A [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)] [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

2011-01-01T23:59:59.000Z

328

Liquid CO{sub 2}/Coal Slurry for Feeding Low Rank Coal to Gasifiers  

SciTech Connect

This study investigates the practicality of using a liquid CO{sub 2}/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO{sub 2} has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO{sub 2} is much lower than water. This means it should take less energy to pump liquid CO{sub 2} through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO{sub 2} is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO{sub 2} is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO{sub 2} slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO{sub 2} has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO{sub 2} over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO{sub 2}/coal slurry properties. This low-rank coal study extends the existing knowledge base to evaluate the liquid CO{sub 2}/coal slurry concept on an E-Gas™-based IGCC plant with full 90% CO{sub 2} capture. The overall objective is to determine if this technology could be used to reduce the cost and improve the efficiency of IGCC plants. The study goes beyond the systems-level analyses and initial lab work that formed the bases of previous studies and includes the following tasks: performing laboratory tests to quantify slurry properties; developing an engineering design of a liquid CO{sub 2} slurry preparation and feed system; conducting a full IGCC plant techno-economic analysis for Powder River Basin (PRB) coal and North Dakota lignite in both water and liquid CO{sub 2} slurries; and identifying a technology development plan to continue the due diligence to conduct a comprehensive evaluation of this technology. The initial task included rheology tests and slurry data analyses that would increase the knowledge and understanding of maximum solids loading capability for both PRB and lignite. Higher coal concentrations have been verified in liquid CO{sub 2} over water slurries, and a coal concentration of 75% by weight in liquid CO{sub 2} has been estimated to be achievable in a commercial application. In addition, lower slurry viscosities have been verified in liquid CO{sub 2} at the same solids loading, where the liquid CO{sub 2}/coal slurry viscosity has been measured to be about a factor of 10 lower than the comparable water slurry and estimated to be less than 100 centipoise in a commercial application. In the following task, an engineering design of a liquid CO{sub 2}/coal slurry preparation and mixing system has been developed for both a batch and continuous system. The capital cost of the design has also been estimated so that it could be used in the economic analysis. An industry search and survey has been conducted to determine if essential components required to construct the feed system are available from commercial sources or if targeted R&D efforts are required. The search and survey concluded that commercial sources are available for selected components that comprise both the batch and continuous type systems. During normal operation, the fuel exits the bottom of the coal silo and is fed to a rod mill fo

Marasigan, Jose; Goldstein, Harvey; Dooher, John

2013-09-30T23:59:59.000Z

329

Two-stage fixed-bed gasifier with selectable middle gas off-take point  

DOE Patents (OSTI)

A two-stage fixed bed coal gasifier wherein an annular region is in registry with a gasification zone underlying a devolatilization zone for extracting a side stream of high temperature substantially tar-free gas from the gasifier. A vertically displaceable skirt means is positioned within the gasifier to define the lower portion of the annular region so that vertical displacement of the skirt means positions the inlet into the annular region in a selected location within or in close proximity to the gasification zone for providing a positive control over the composition of the side stream gas.

Strickland, Larry D. (Morgantown, WV); Bissett, Larry A. (Morgantown, WV)

1992-01-01T23:59:59.000Z

330

Gasification Characteristics of Hydrothermal Carbonized Biomass in an Updraft Pilot-Scale Gasifier  

Science Journals Connector (OSTI)

Gasification Characteristics of Hydrothermal Carbonized Biomass in an Updraft Pilot-Scale Gasifier ... At elevated temperatures near 200–250 °C at or above the saturation pressure, the process is carried out in a medium of water with a residence time varying between 3 and 8 h. ... When the gasification experiments were performed in a pilot-scale gasifier and air preheated to 900 °C was used as the gasifying medium, the H2, CO2, and hydrocarbon contents decreased with the ER value and the CO content increased. ...

Duleeka Sandamali Gunarathne; Andreas Mueller; Sabine Fleck; Thomas Kolb; Jan Karol Chmielewski; Weihong Yang; Wlodzimierz Blasiak

2014-02-20T23:59:59.000Z

331

2 - Types of gasifier for synthetic liquid fuel production: design and technology  

Science Journals Connector (OSTI)

Abstract There are many successful commercial coal gasifiers. The basic form and concept details, the design of the gasifier internals, and the operation of commercial coal gasifiers are closely guarded as proprietary information. In fact, the production of gas from carbonaceous feedstocks has been an expanding area of technology. This chapter will present the different categories of gasification reactors as they apply to various types of feedstocks. Within each category there are several commonly known processes, some of which are in current use and some of which are in lesser use.

J.G. Speight

2015-01-01T23:59:59.000Z

332

Modelling of High-Chromia Refractory Spalling in Slagging Coal Gasifiers  

SciTech Connect

The economic viability of converting coal into clean burning liquid fuels in slagging coal gasifiers is compromised by the limited service lifetime of hot-face refractories. One of the most severe refractory degradation mechanisms is spalling, which can occur by either volume expansion phenomena (compressive stresses) or by volume shrinkage phenomena (tensile stresses). A volume shrinkage model is benchmarked to high-chromia refractory material properties and performance under gasifier operating conditions. The model is found to be appropriate for first order estimates of gasifier refractory lifetime when the apparent diffusivity of volatized Cr in the refractory includes the effects of slag-filled pores and cracks.

Williford, Rick E.; Johnson, Kenneth I.; Sundaram, S. K.

2008-10-31T23:59:59.000Z

333

Real Time Flame Monitoring of Gasifier Burner and Injectors  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Gasification Technologies contacts Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Jenny tennant Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4830 jenny.tennant@netl.doe.gov David Rue Principal Investigator Gas Technology Institute 1700 South Mount Prospect Road Des Plaines, IL 60018 847-768-0508 david.rue@gastechnology.org Real Time Flame moniToRing oF gasiFieR BuRneR and injecToRs Description Combustion scientists and engineers have studied radiant emissions of various flames for many years. For some time, technologists have understood the rich potential for

334

Grate assembly for fixed-bed coal gasifier  

DOE Patents (OSTI)

A grate assembly for a coal gasifier of a moving-bed or fixed-bed type is provided for crushing agglomerates of solid material such as clinkers, tailoring the radial distribution of reactant gases entering the gasification reaction zone, and control of the radial distribution of downwardly moving solid velocities in the gasification and combustion zone. The clinker crushing is provided by pinching clinkers between vertically oriented stationary bars and angled bars supported on the upper surface of a rotating conical grate. The distribution of the reactant gases is provided by the selective positioning of horizontally oriented passageways extending through the grate. The radial distribution of the solids is provided by mounting a vertically and generally radially extending scoop mechanism on the upper surface of the grate near the apex thereof.

Notestein, John E. (Morgantown, WV)

1993-01-01T23:59:59.000Z

335

Effect of Short-Term Resuspension Events on the Oxidation of Cadmium, Lead, and Zinc Sulfide Phases in Anoxic Estuarine Sediments  

Science Journals Connector (OSTI)

Effect of Short-Term Resuspension Events on the Oxidation of Cadmium, Lead, and Zinc Sulfide Phases in Anoxic Estuarine Sediments ... Simulated resuspension experiments were performed for periods of 0?24 h on the three unmodified sediments as well as on preparations of the model metal sulfide phases, CdS, FeS, PbS, or ZnS (70 ?mol), that were resuspended for 24 h in seawater in both the absence and the presence of each sediment (1 g dry wt). ... For experiments where the model sulfides were resuspended in seawater (24 h) in the presence of sediments or added following the resuspension of sedi ments in seawater but prior to AVS analysis, recoveries of CdS and ZnS were generally 5?13% lower than in the absence of sediment (Table 2). ...

Stuart L. Simpson; Simon C. Apte; Graeme E. Batley

2000-09-15T23:59:59.000Z

336

Modelling of long-term and short-term mechanisms of arterial pressure control in the cardiovascular system: An object-oriented approach  

Science Journals Connector (OSTI)

Abstract A mathematical model that provides an overall description of both the short- and long-term mechanisms of arterial pressure regulation is presented. Short-term control is exerted through the baroreceptor reflex while renal elimination plays a role in long-term control. Both mechanisms operate in an integrated way over the compartmental model of the cardiovascular system. The whole system was modelled in MODELICA, which uses a hierarchical object-oriented modelling strategy, under the DYMOLA simulation environment. The performance of the controlled system was analysed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data, demonstrating the effectiveness of both regulation mechanisms under physiological and pathological conditions.

J. Fernandez de Canete; J. Luque; J. Barbancho; V. Munoz

2014-01-01T23:59:59.000Z

337

Biomass heat pipe reformer—design and performance of an indirectly heated steam gasifier  

Science Journals Connector (OSTI)

Indirectly heated dual fluidized bed (DFB) gasifiers are a promising option for the production ... syngas, in particular in the small- and medium-scale range. The application of so-called ... pipes solves the key...

Jürgen Karl

2014-03-01T23:59:59.000Z

338

Gasification of waste wood and bark in a dual fluidized bed steam gasifier  

Science Journals Connector (OSTI)

Now the enlargement of the range of feedstocks for those gasifiers is investigated. A further development towards the ... waste can be converted into producer gas with medium calorific value, which is a further i...

Veronika Wilk; Hannes Kitzler; Stefan Koppatz…

2011-07-01T23:59:59.000Z

339

Alkali Separation in Steam Injected Cyclone Wood Powder Gasifier for Gas Turbine Application  

Science Journals Connector (OSTI)

Cyclone gasification of wood powder at atmospheric pressure has been studied. The cyclone gasifier works as a particle separator as well ... cyclone with air or air/steam as transport medium. The effects of stoch...

C. Fredriksson; B. Kjellström

1997-01-01T23:59:59.000Z

340

Toxicological characterization of the process stream from an experimental low Btu coal gasifier  

Science Journals Connector (OSTI)

Samples were obtained from selected positions in the process stream of an experimental low Btu gasifier using a five-stage multicyclone train and...Salmonella mammalian microsome mutagenicity assay) and forin vit...

J. M. Benson; J. O. Hill; C. E. Mitchell…

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Modeling of particle trajectories of coal size and density fractions in a gasifier.  

E-Print Network (OSTI)

??A computational model of a generic commercial two-stage entrained-flow up-flow coal gasifier has been used in the present work to aid the researchers of the… (more)

Slezak, Andrew A.

2008-01-01T23:59:59.000Z

342

Characteristics of Air-blown Gasification for Woods in a Fixed-bed Downdraft Gasifier  

Science Journals Connector (OSTI)

An experimental investigation of a fixed-bed, downdraft air-blown gasifier has been carried out using wooden cubes...3 made of Lauan wood. The reactor is a cylinder with an internal diameter of 200 mm and a heigh...

Chih-Lun Hsi; Tzong-Yuan Wang; Chiu-Hao Liu…

2007-01-01T23:59:59.000Z

343

The Influence Factor Analyses of Non-stable Combustion in the Ignition Process of Gasifier  

Science Journals Connector (OSTI)

The pulverized coal gasification technology is large-scale carried out in China for more than 10 years, and more and more coal gasification technology, such as SCGP, GSP, GE, indigenous gasifier, have been widely...

Kuang Jian-ping; Zhang Shi-cheng; Jie Tao…

2013-01-01T23:59:59.000Z

344

Preliminary observations of the thermodynamic predictions of Fe-Cr-Ni alloys in coal gasifier environments  

Science Journals Connector (OSTI)

The construction of thermodynamic stability diagrams for the Fe-Cr-Ni systems is discussed. The constructed diagrams are used to predict materials behavior at coal gasifier oxygen and sulfur pote...

B. A. Gordon; V. Nagarajan

1979-04-01T23:59:59.000Z

345

Biomass gasification using a horizontal entrained-flow gasifier and catalytic processing of the product gas.  

E-Print Network (OSTI)

??A novel study on biomass-air gasification using a horizontal entrained-flow gasifier and catalytic processing of the product gas has been conducted. The study was designed… (more)

Legonda, Isack Amos

2012-01-01T23:59:59.000Z

346

Mutagenicity of potential effluents from an experimental low btu coal gasifier  

Science Journals Connector (OSTI)

Potential waste effluents produced by an experimental low Btu coal gasifier were assessed for mutagenic activity inSalmonella...strain TA98. Cyclone dust, tar and water effluents were mutagenic, but only followin...

J. M. Benson; C. E. Mitchell; R. E. Royer…

1982-09-01T23:59:59.000Z

347

An update on field test results for an engineered refractory for slagging gasifiers  

SciTech Connect

The widespread commercial adaptation of slagging gasifier technology to produce power, fuel, and/or chemicals from coal will depend in large measure on the technology’s ability to prove itself both economic and reliable. Improvements in gasifier reliability, availability, and maintainability will in part depend on the development of improved performance structural materials with longer service life in this application. Current generation refractory materials used to line the air-cooled, slagging gasifier vessel, and contain the gasification reaction, often last no more than three to 18 months in commercial applications. The downtime required for tear-out and replacement of these critical materials contributes to gasifier on-line availabilities that fall short of targeted goals. In this talk we will discuss the development of an improved refractory material engineered by the NETL for longer service life in this application, and provide an update on recent field test results.

Dogan, O.N.; Alman, D.E.; Jablonski, P.D.; Hawk, J.A.

2006-05-01T23:59:59.000Z

348

Design and Operation of a Circulating Fluidized Bed Gasifier for Wood Powders  

Science Journals Connector (OSTI)

This paper introduces a circulating fluidized bed gasifier (CFBG) with a diameter of 410mm,...2...h for wood powders. The CFBG has been operated in Press Wood Products factory, utilizing its wastes, for more than...

Xu Bingyan; Wu Jiagzhi; Luo Zengfen…

1993-01-01T23:59:59.000Z

349

Experimental Study on Ash-Returned Reactor of CFB Atmospheric Air Gasifier  

Science Journals Connector (OSTI)

In an attempt to improve the gasification efficiency and decrease the carbon content in fly ash of atmospheric air CFB gasifiers, an innovatory equipment by name ash-returned ... ash, and hence the coal conversio...

Zhang Shihong; Tian Luning; Zhou Xianrong…

2010-01-01T23:59:59.000Z

350

Thermodynamic predictions of the behavior of Fe-Cr-Al alloys in coal gasifier environments  

Science Journals Connector (OSTI)

The construction of thermodynamic stability diagrams for the Fe-Cr-Al system is discussed. The constructed diagrams are used to predict materials behavior at coal gasifier oxygen and sulfur potentials. Experiment...

B. A. Gordon; W. Worrell; V. Nagarajan

1979-02-01T23:59:59.000Z

351

Option valuation of flexible investments : the case of a coal gasifier  

E-Print Network (OSTI)

This paper examines the use of contingent claim analysis to evaluate the option of retrofitting a coal gasifier on an existing gas-fired power plant in order to take advantage of changes in the relative prices of natural ...

Herbelot, Olivier

1994-01-01T23:59:59.000Z

352

Crystallization of Synthetic Coal?Petcoke Slag Mixtures Simulating Those Encountered in Entrained Bed Slagging Gasifiers  

Science Journals Connector (OSTI)

Crystallization of Synthetic Coal?Petcoke Slag Mixtures Simulating Those Encountered in Entrained Bed Slagging Gasifiers† ... Commercial entrained bed slagging gasifiers use a carbon feedstock of coal, petcoke, or combinations of them to produce CO and H2. ... A hot-stage confocal scanning laser microscope (CSLM) was used to analyze the kinetic behavior of slag crystallization for a range of synthetic coal?petcoke mixtures. ...

Jinichiro Nakano; Seetharaman Sridhar; Tyler Moss; James Bennett; Kyei-Sing Kwong

2009-04-07T23:59:59.000Z

353

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

in an entrained bed gasifier. Due to the limited oxygenof power in an Integrated Gasifier Combined Cycle (IGCC). In

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

354

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

(STEO) (STEO) Highlights * Crude oil prices increased during the first three weeks of July 2013 as world oil markets tightened in the face of seasonal increases in world consumption, unexpected supply disruptions, and heightened uncertainty over the security of supply with the renewed unrest in Egypt. The U.S. Energy Information Administration (EIA) expects that the Brent crude oil spot price, which averaged $108 per barrel over the first half of 2013, will average $104 per barrel over the second half of 2013, and $100 per barrel in 2014. * The discount of West Texas Intermediate (WTI) crude oil to Brent crude oil, which averaged $18 per barrel in 2012 and increased to a monthly average of $21 per barrel in February 2013, closed below $1.50 per barrel on July 19, 2013, and averaged $3 per barrel for the

355

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

(STEO) (STEO) Highlights  After falling by more than 40 cents per gallon from the beginning of September through mid-November, weekly U.S. average regular gasoline retail prices increased by 8 cents per gallon to reach $3.27 per gallon on December 2, 2013, due in part to unplanned refinery maintenance and higher crude oil prices. The annual average regular gasoline retail price, which was $3.63 per gallon in 2012, is expected to average $3.50 per gallon in 2013 and $3.43 per gallon in 2014.  The North Sea Brent crude oil spot price averaged near $110 per barrel for the fifth consecutive month in November. EIA expects the Brent crude oil price to average $108 per barrel in December and decline gradually to $104 per barrel in 2014. Projected West Texas

356

Short–term solar effects  

Science Journals Connector (OSTI)

...the SOHO Large Angle Spectroscopic Coronagraph (LASCO) (Brueckner et al. 1995) on 14 July 2000. A coronagraph makes use of...international cooperation between ESA and NASA. References Brueckner, G. E. (and 14 others) 1995 The Large Angle Spectroscopic...

2003-01-01T23:59:59.000Z

357

Short-Term Energy Outlook  

Annual Energy Outlook 2012 (EIA)

Administration databases supporting the following reports: Petroleum Marketing Monthly , DOEEIA-0380; 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 2013 2014 2015 Supply...

358

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA) Indexed Site

Administration databases supporting the following reports: Petroleum Marketing Monthly , DOEEIA-0380; Prices are not adjusted for inflation. (b) Average self-service cash price....

359

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

capacity slightly more than doubled in 2013. EIA expects that utility-scale solar capacity will about double again between the end of 2013 and the end of 2015; about two-thirds...

360

Short-Term Energy Outlook  

Annual Energy Outlook 2012 (EIA)

in customer-sited distributed generation installations, utility-scale solar capacity doubled in 2013. EIA expects that utility-scale solar capacity will increase by 96%...

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ANNOUNCEMENT Short-Term Course  

E-Print Network (OSTI)

and environmental degradation. Indiscriminate extraction and lavish consumption of fossil fuels have led, stringent regulations for fuel consumption, and exhaust emissions, including those for PM (Particulate Matter) and NOx are evolving. Under these circumstances, diesel engines would continue to be attractive

Srivastava, Kumar Vaibhav

362

Short-Term Energy Outlook  

Annual Energy Outlook 2012 (EIA)

in 2015 comes from Annex VI to the International Convention for the Prevention of Pollution from Ships (MARPOL Annex VI), which is an international agreement that generally...

363

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

consumption comes from Annex VI to the International Convention for the Prevention of Pollution from Ships (MARPOL Annex VI), which is an international agreement that generally...

364

New England Wind Forum: Cost Trends  

Wind Powering America (EERE)

Cost Trends Cost Trends Figure 1: Cost of Energy and Cumulative Domestic Capacity This graph shows how the cumulative domestic wind capacity (MW) has increased since 1980, while the cost of energy from wind power has declined by a factor of approximately 20 times during the same period but has increased slightly since 2001. Click on the image to view a larger version. This graph shows how the cumulative domestic wind capacity (MW) has increased since 1980, while the cost of energy from wind power has declined by a factor of approximately 20 times during the same period but has increased slightly since 2001. View a larger version of the graph. Overall, the wind industry is experiencing long-term decreases in the cost to produce wind-generated electricity (Figure 1), despite recent short-term increases in upfront equipment costs. Even in the short term, however, the effect of increases in up-front capital costs on the cost of energy from wind power projects has been dampened by improvements in energy capture from the wind and decreases in operating and maintenance costs.

365

Dynamic modeling of a single-stage downward firing, entrained flow gasifier  

SciTech Connect

The gasifier is the heart of the integrated gasification combined cycle (IGCC), a technology that has emerged as an attractive alternative to conventional coal-fired power plant technology due to its higher efficiency and cleaner environmental performance especially with the option of CO{sub 2} capture and sequestration. Understanding the optimal performance of the gasifier is therefore paramount for the efficient operation of IGCC power plants. Numerous gasifier models of varying complexity have been developed to study the various aspects of gasifier performance. These range from simple one-dimensional (1D) process-type models to rigorous higher order 2-3D models based on computational fluid dynamics (CFD). Whereas high-fidelity CFD models can accurately predict most key aspects of gasifier performance, they are computationally expensive and typically take hours to days to execute on high-performance computers. Therefore, faster 1D partial differential equation (PDE)-based models are required for use in dynamic simulation studies, control system analysis, and training applications. A number of 1D gasifier models can be found in the literature, but most are steady-state models that have limited application in the practical operation of the gasifier. As a result, 1D PDE-based dynamic models are needed to further study and predict gasifier performance under a wide variety of process conditions and disturbances. In the current study, a 1D transient model of a single-stage downward-fired GE/Texaco-type entrained-flow gasifier has been developed. The model comprises mass, momentum and energy balances for the gas and solid phases. The model considers the initial gasification processes of water evaporation and coal devolatilization. In addition, the key heterogeneous and homogeneous chemical reactions have been modeled. The resulting time-dependent PDE model is solved using the well-known method of lines approach in Aspen Custom Modeler®, whereby the PDEs in the spatial domain are discretized and the resulting differential algebraic equations (DAEs) are then integrated over time using a dynamic integrator. The dynamic response results of the gasifier performance parameters to certain disturbances commonly encountered during practical operation are presented. These disturbances include ramp and step changes to input variables such as coal flow rate, oxygen-to-coal ratio and water-to-coal ratio among others. Comparison of model predictions to available dynamic data will also be discussed.

Kasule, J., Turton, R., Bhattacharyya, D., Zitney, S.

2012-01-01T23:59:59.000Z

366

CFD modeling of entrained-flow coal gasifiers with improved physical and chemical sub-models  

SciTech Connect

Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. While the turbulent multiphase reacting flow inside entrained-flow gasifiers has been modeled through computational fluid dynamic (CFD), the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented here include a moisture vaporization model with consideration of high mass transfer rate, a coal devolatilization model with more species to represent coal volatiles and heating rate effect on volatile yield, and careful selection of global gas phase reaction kinetics. The enhanced CFD model is applied to simulate two typical oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for systemwide design and optimization.

Ma, J.; Zitney, S.

2012-01-01T23:59:59.000Z

367

Ash level meter for a fixed-bed coal gasifier  

DOE Patents (OSTI)

An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

Fasching, George E. (Morgantown, WV)

1984-01-01T23:59:59.000Z

368

Isolated thermocouple amplifier system for stirred fixed-bed gasifier  

DOE Patents (OSTI)

A sensing system is provided for determining the bed temperature profile of the bed of a stirred, fixed-bed gasifier including a plurality of temperature sensors for sensing the bed temperature at different levels, a transmitter for transmitting data based on the outputs of the sensors to a remote operator's station, and a battery-based power supply. The system includes an isolation amplifier system comprising a plurality of isolation amplifier circuits for amplifying the outputs of the individual sensors. The isolation amplifier circuits each comprise an isolation operational amplifier connected to a sensor; a first "flying capacitor" circuit for, in operation, controlling the application of power from the power supply to the isolation amplifier; an output sample and hold circuit connected to the transmitter; a second "flying capacitor" circuit for, in operation, controlling the transfer of the output of the isolation amplifier to the sample and hold circuit; and a timing and control circuit for activating the first and second capacitor circuits in a predetermined timed sequence.

Fasching, George E. (Morgantown, WV)

1992-01-01T23:59:59.000Z

369

Gasifier feed: Tailor-made from Illinois coals. Interim final technical report, September 1, 1991--August 31, 1992  

SciTech Connect

The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals. Destec Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technologies, Inc., will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handleability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals.

Ehrlinger, H.P. III; Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. [Illinois State Geological Survey, Champaign, IL (United States)

1992-12-31T23:59:59.000Z

370

An integrated approach to coal gasifier testing, modeling, and process optimization  

SciTech Connect

Gasification is an important method of converting coal into clean-burning fuels and high-value industrial chemicals. However, gasifier reliability can be severely limited by rapid degradation of the refractory lining in hot-wall gasifiers. This paper describes an integrated approach to provide the experimental data and engineering models needed to better understand how to control gasifier operation for extended refractory life. The experimental program includes slag viscosity testing and measurement of slag penetration into refractories as a function of time and temperature. The experimental data is used in slag flow, slag penetration, and refractory damage models to predict the limits on operating temperature for increased refractory life. A simplified entrained flow gasifier model is also described to simulate one-dimensional axial flow with average axial velocity, coal devolatilization, and combustion kinetics. The goal of this experimental and model program is to predict coal and oxidant feed rates and to control the gasifier operation to balance coal conversion efficiency with increased refractory life. 26 refs., 7 figs., 3 tabs.

S.K. Sundaram; K.I. Johnson; J. Matyas; R.E. Williford; S.P. Pilli; V.N. Korolev [Pacific Northwest National Laboratory, Richland, WA (United States)

2009-09-15T23:59:59.000Z

371

Biomass Gasification with Steam and Oxygen Mixtures at Pilot Scale and with Catalytic Gas Upgrading. Part I: Performance of the Gasifier  

Science Journals Connector (OSTI)

Biomass gasification with steam + O2...mixtures is studied at small pilot plant (10–20 kg/h) scale. The gasifier used is a turbulent fluidized bed of ... tested till date. Product distribution from the gasifier, ...

M. P. Aznar; J. Corella; J. Gil…

1997-01-01T23:59:59.000Z

372

INFRARED OBSERVATIONS OF THE MILLISECOND PULSAR BINARY J1023+0038: EVIDENCE FOR THE SHORT-TERM NATURE OF ITS INTERACTING PHASE IN 2000-2001  

SciTech Connect

We report our multi-band infrared (IR) imaging of the transitional millisecond pulsar system J1023+0038, a rare pulsar binary known to have an accretion disk in 2000-2001. The observations were carried out with ground-based and space telescopes from near-IR to far-IR wavelengths. We detected the source in near-IR JH bands and Spitzer 3.6 and 4.5 {mu}m mid-IR channels. Combined with the previously reported optical spectrum of the source, the IR emission is found to arise from the companion star, with no excess emission detected in the wavelength range. Because our near-IR fluxes are nearly equal to those obtained by the 2MASS all-sky survey in 2000 February, the result indicates that the binary did not contain the accretion disk at the time, whose existence would have raised the near-IR fluxes to twice larger values. Our observations have thus established the short-term nature of the interacting phase seen in 2000-2001: the accretion disk existed for at most 2.5 yr. The binary was not detected by the WISE all-sky survey carried out in 2010 at its 12 and 22 {mu}m bands and our Herschel far-IR imaging at 70 and 160 {mu}m. Depending on the assumed properties of the dust, the resulting flux upper limits provide a constraint of <3 Multiplication-Sign 10{sup 22}-3 Multiplication-Sign 10{sup 25} g on the mass of the dust grains that possibly exist as the remnants of the previously seen accretion disk.

Wang, Xuebing; Wang, Zhongxiang [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)] [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Morrell, Nidia [Las Campanas Observatory, Observatories of the Carnegie Institution of Washington, La Serena (Chile)] [Las Campanas Observatory, Observatories of the Carnegie Institution of Washington, La Serena (Chile)

2013-02-20T23:59:59.000Z

373

Advanced chemistry-transport modeling and observing systems allow daily air quality observations, short-term forecasts, and real-time analyses of air quality at the global and  

E-Print Network (OSTI)

Advanced chemistry-transport modeling and observing systems allow daily air quality observations, short-term forecasts, and real-time analyses of air quality at the global and European scales control measures that could be taken for managing such episodes, European-scale air quality forecasting

Paris-Sud XI, Université de

374

Development Of An Acoustice Sensor For On-Line Gas Temperature Measurement In Gasifiers  

SciTech Connect

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. This report describes all of the activities conducted during the project and reports the findings of each activity in detail. The investigation of potential sound generation and coupling methods led to the selection of a reflected shock method which has been developed into a functioning prototype device. The principles of operation of this device and its performance characteristics are described in the report. Modeling of the attenuation of sound by suspended particles and by interaction of the sound pulses with the high temperature syngas inside the gasifier was conducted and the predictions of those models were used to determine the required sound pulse intensity to allow the sound pulses to be detected after passage through the gasifier environment. These modeling results are presented in this report. A study of the likely spatial and temporal variability of gas composition inside the gasifier was performed and the results of that study was used to predict the impact of that variability on the accuracy of the acoustic temperature method. These results are reported here. A design for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated into the prototype sensor. This port rodding mechanism operated flawlessly during the field testing, but because these tests were performed in a region of the gasifier that experiences little slagging, the effectiveness of the rodding mechanism in dealing with highly slagging conditions was not fully demonstrated. This report describes the design and operation of the automated Gasifier Acoustic Pyrometer (autoGAP) which was tested at the Wabash River facility. The results of the tests are reported and analyzed in detail. All of the objectives of the project have been achieved. A field prototype acoustic pyrometer sensor has been successfully tested at the Wabash River gasifier plant. Acoustic signals were propagated through the gases inside the gasifier and were detected by the receiver unit, the times of flight of these sound pulses were measured and these propagation times were converted into temperatures which agreed very well with thermocouple measurements m

Peter Ariessohn; Hans Hornung

2006-10-01T23:59:59.000Z

375

Analysis and control of the METC fluid bed gasifier. Quarterly report, April 1995--June 1995  

SciTech Connect

This document summarizes work performed for the period 4/1/95 to 7/31/95 on contract no. DE-FG21-94MC31384 (Work accomplished during the period 10/1/94 to 3/31/94 was summarized in the previous technical progress report included in the appendix of this report). In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Tasks accomplished during the present reporting period include: (1) Completion of a literature survey on Fluid Bed Gasifier control, (2) Observation of the FBG during the week of July 17 to July 21, and (3) Suggested improvements to the control of FBG backpressure and MGCR pressure.

NONE

1995-06-01T23:59:59.000Z

376

Effect of steam injection location on syngas obtained from an air–steam gasifier  

Science Journals Connector (OSTI)

Abstract For a fluidized-bed gasifier, reaction conditions vary along the height of the reactor. Hence, the steam injection location may have a considerable effect on the syngas quality. The objective of this study was to investigate the effects of steam injection location and steam-to-biomass ratio (SBR) on the syngas quality generated from an air–steam gasification of switchgrass in a 2–5 kg/h autothermal fluidized-bed gasifier. Steam injection locations of 51, 152, and 254 mm above the distributor plate and \\{SBRs\\} of 0.1, 0.2, and 0.3 were selected. Results showed that the syngas H2 and CO yields were significantly influenced by the steam injection location (p gasifier efficiencies (cold gas efficiency of 67%, hot gas efficiency of 72%, and carbon conversion efficiency of 96%) were at the steam injection location of 254 mm and SBR of 0.2.

Ashokkumar M. Sharma; Ajay Kumar; Raymond L. Huhnke

2014-01-01T23:59:59.000Z

377

CFD modeling of commercial-scale entrained-flow coal gasifiers  

SciTech Connect

Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. Computational fluid dynamics (CFD) has been used to model the turbulent multiphase reacting flow inside commercial-scale entrained-flow coal gasifiers. Due to the complexity of the physical and chemical processes involved, the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented in this paper include a moisture vaporization model with consideration of high mass transfer rate and a coal devolatilization model with more species to represent coal volatiles and the heating rate effect on volatile yield. The global gas phase reaction kinetics is also carefully selected. To predict a reasonable peak temperature of the coal/O{sub 2} flame inside an entrained-flow gasifier, the reserve reaction of H{sub 2} oxidation is included in the gas phase reaction model. The enhanced CFD model is applied to simulate two typical commercial-scale oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for system-wide design and optimization.

Ma, J.; Zitney, S.

2012-01-01T23:59:59.000Z

378

Three-Dimensional Temperature Distribution of Impinging Flames in an Opposed Multiburner Gasifier  

Science Journals Connector (OSTI)

The overall temperature of the gasifier rises with the increase of oxygen to carbon ratio, and the high temperature region which ranges from 1700 to 2200 K remains in the axis of the gasifier steadily and remains a safe distance from the refractory wall, which makes the temperature of the refractory wall below 1550 K and makes the participating medium maintain a stable condition for gasification. ... Compared with diesel, the CWS contains a mass of solid particles with greater inertia and larger size, and the calorific capacity is lower due to the water in the CWS. ...

Yan Gong; Qinghua Guo; Qinfeng Liang; Zhijie Zhou; Guangsuo Yu

2012-05-17T23:59:59.000Z

379

Uncertainty analysis of an IGCC system with single-stage entrained-flow gasifier  

SciTech Connect

Integrated Gasification Combined Cycle (IGCC) systems using coal gasification is an attractive option for future energy plants. Consequenty, understanding the system operation and optimizing gasifier performance in the presence of uncertain operating conditions is essential to extract the maximum benefits from the system. This work focuses on conducting such a study using an IGCC process simulation and a high-fidelity gasifier simulation coupled with stochastic simulation and multi-objective optimization capabilities. Coal gasifiers are the necessary basis of IGCC systems, and hence effective modeling and uncertainty analysis of the gasification process constitutes an important element of overall IGCC process design and operation. In this work, an Aspen Plus{reg_sign} steady-state process model of an IGCC system with carbon capture enables us to conduct simulation studies so that the effect of gasification variability on the whole process can be understood. The IGCC plant design consists of an single-stage entrained-flow gasifier, a physical solvent-based acid gas removal process for carbon capture, two model-7FB combustion turbine generators, two heat recovery steam generators, and one steam turbine generator in a multi-shaft 2x2x1 configuration. In the Aspen Plus process simulation, the gasifier is represented as a simplified lumped-parameter, restricted-equilibrium reactor model. In this work, we also make use of a distributed-parameter FLUENT{reg_sign} computational fluid dynamics (CFD) model to characterize the uncertainty for the entrained-flow gasifier. The CFD-based gasifer model is much more comprehensive, predictive, and hence better suited to understand the effects of uncertainty. The possible uncertain parameters of the gasifier model are identified. This includes input coal composition as well as mass flow rates of coal, slurry water, and oxidant. Using a selected number of random (Monte Carlo) samples for the different parameters, the CFD model is simulated to observe the variations in the output variables (such as syngas composition, gas and ash flow rates etc.). The same samples are then used to conduct simulations using the Aspen Plus IGCC model. The simulation results for the high-fidelity CFD-based gasifier model and the Aspen Plus equilibrium reactor model for selected uncertain parameters are then used to perform the estimation. Defining the ratio of CFD based results to the Aspen Plus result as the uncertainty factor (UF), the work quantifies the extent of uncertainty and then uses uniform* distribution to characterize the uncertainty factor distribution. The characterization and quantification of uncertainty is then used to conduct stochastic simulation of the IGCC system in Aspen Plus. The CAPE-OPEN compliant stochastic simulation capability allows one to conduct a rigorous analysis and generate the feasible space for the operation of the IGCC system. The stochastic simulation results can later be used to conduct multi-objective optimization of the gasifier using a set of identified decision variables. The CAPE-OPEN compliant multi-objective capability in Aspen Plus can be used to conduct the analysis. Since the analysis is based on the uncertainty modeling studies of the gasifier, the optimization accounts for possible uncertainties in the operation of the system. The results for the optimized IGCC system and the gasifier, obtained from the stochastic simulation results, are expected to be more rigorous and hence closer to those obtained from CFD-based rigorous modeling.

Shastri, Y.; Diwekar, U.; Zitney, S.

2008-01-01T23:59:59.000Z

380

Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char  

SciTech Connect

In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivity than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.

Jing Gu; Shiyong Wu; Youqing Wu; Ye Li; Jinsheng Gao [East China University of Science and Technology, Shanghai (China). Department of Chemical Engineering for Energy Resources and Key Laboratory of Coal Gasification of Ministry of Education

2008-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Results with a bench scale downdraft biomass gasifier for agricultural and forestry residues  

Science Journals Connector (OSTI)

A small scale fixed bed downdraft gasifier system to be fed with agricultural and forestry residues has been designed and constructed. The downdraft gasifier has four consecutive reaction zones from the top to the bottom, namely drying, pyrolysis, oxidation and reduction zones. Both the biomass fuel and the gases move in the same direction. A throat has been incorporated into the design to achieve gasification with lower tar production. The experimental system consists of the downdraft gasifier and the gas cleaning unit made up by a cyclone, a scrubber and a filter box. A pilot burner is utilized for initial ignition of the biomass fuel. The product gases are combusted in the flare built up as part of the gasification system. The gasification medium is air. The air to fuel ratio is adjusted to produce a gas with acceptably high heating value and low pollutants. Within this frame, different types of biomass, namely wood chips, barks, olive pomace and hazelnut shells are to be processed. The developed downdraft gasifier appears to handle the investigated biomass sources in a technically and environmentally feasible manner. This paper summarizes selected design related issues along with the results obtained with wood chips and hazelnut shells.

Hayati Olgun; Sibel Ozdogan; Guzide Yinesor

2011-01-01T23:59:59.000Z

382

Mathematical Model of Lump Coal Falling in the Freeboard Zone of the COREX Melter Gasifier  

Science Journals Connector (OSTI)

Mathematical Model of Lump Coal Falling in the Freeboard Zone of the COREX Melter Gasifier ... Subrata and Ashok(2) studied the combustion of coal char in the raceway of the moving bed by a two-dimensional mathematical model, considering the gas and solid as continuous medium and the interaction between gas and solid. ...

Xunliang Liu; Gang Pan; Gan Wang; Zhi Wen

2011-11-03T23:59:59.000Z

383

Modeling of an Opposed Multiburner Gasifier with a Reduced-Order Model  

Science Journals Connector (OSTI)

Modeling of an Opposed Multiburner Gasifier with a Reduced-Order Model ... (3) Heating, combustion, and gasification of fine particles (20, 40, and 60 ?m) mainly happens in the JZ and IZ, while most of the particles with medium diameter (80 and 100 ?m) are heated and converted in the IZ and the beginning of the IFZ. ...

Chao Li; Zhenghua Dai; Zhonghua Sun; Fuchen Wang

2013-03-25T23:59:59.000Z

384

Molten Slag Flow and Phase Transformation Behaviors in a Slagging Entrained-Flow Coal Gasifier  

Science Journals Connector (OSTI)

Molten Slag Flow and Phase Transformation Behaviors in a Slagging Entrained-Flow Coal Gasifier ... (14) The radiative heat-transfer equation for an absorbing, emitting, and scattering medium at position r in the direction s is where a and ?s represent the absorption and scattering coefficient, respectively. ...

Jianjun Ni; Zhijie Zhou; Guangsuo Yu; Qinfeng Liang; Fuchen Wang

2010-10-20T23:59:59.000Z

385

Tar Reduction by Primary Measures in an Autothermal Air-Blown Fluidized Bed Biomass Gasifier  

Science Journals Connector (OSTI)

mean size (?m) ... When some calcined dolomite (CaO·MgO) is used in the bed of a biomass gasifier of fluidized bed type the raw gas produced is cleaner than when only silica sand is used in it as fluidizing medium. ...

Manuel Campoy; Alberto Go?mez-Barea; Diego Fuentes-Cano; Pedro Ollero

2010-10-01T23:59:59.000Z

386

A simple self-adaptive Differential Evolution algorithm with application on the ALSTOM gasifier  

Science Journals Connector (OSTI)

Differential Evolution (DE) has gathered a reputation for being a powerful yet simple global optimiser with continually outperforming many of the already existing stochastic and direct search global optimisation techniques. It is however well established ... Keywords: Differential Evolution, Evolutionary computing, Gasifier control, Multivariable control

Amin Nobakhti; Hong Wang

2008-01-01T23:59:59.000Z

387

Gasifier system identification for biomass power plants using response surface method  

Science Journals Connector (OSTI)

Biomass in the form of wood has been used by human as a source of energy for a long period of time. Recently, the use of renewable energy sources has been widely experienced in domestic, commercial, and industrial appliances. This has resulted in a greater ... Keywords: biomass, gasifier System, identification, modelling, response surface method

J. Satonsaowapak; T. Ratniyomchai; T. Kulworawanichpong; P. Pao-La-Or; B. Marungsri; A. Oonsivilai

2010-02-01T23:59:59.000Z

388

Modeling and Simulation of an Open Core Down-Draft Moving Bed Rice Husk Gasifier  

Science Journals Connector (OSTI)

Recently we developed a new type of open core moving bed rice husk gasifier for small scale application. Here, we...T rate of the rice husk was varied in the range of 50-300 kg/m2.h. and the air velocity from 50 ...

R. K. Manurung; A. A. C. M. Beenackers

1993-01-01T23:59:59.000Z

389

Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers  

SciTech Connect

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations were awarded by the Department of Energy to allow Enertechnix to conduct extended testing of the sensor at the Wabash River facility. In February, 2008 the sensor was installed on the gasifier in preparation for a long-term test. During the initial testing of the sensor a stainless steel tube on the sensor failed and allowed syngas to escape. The syngas self-ignited and the ensuing small fire damaged some of the components on the sensor. There was no damage to the gasifier or other equipment and no injuries resulted from this incident. Two meetings were held to identify the root causes of the incident-one at Wabash River and one at Enertechnix. A list of recommended improvements that would have addressed the causes of the incident was created and presented to the Department of Energy on May 2, 2008. However, the DOE decided not to pursue these improvements and terminated the project. This report describes all of the activities conducted during the project and reports the findings of each activity in detail. The investigation of potential sound generation and coupling methods led to the selection of a reflected shock method which has been developed into a functioning prototype device. The principles of operation of this device and its performance characteristics are described in the report. Modeling of the attenuation of sound by suspended particles and by interaction of the sound pulses with the high temperature syngas inside the gasifier was conducted and the predictions of those models were used to determine the required sound pulse intensity to allow the sound pulses to be detected after passage through the gasifier environment. These modeling results are presented in this report. A study of the likely spatial and temporal variability of gas composition inside the gasifier was performed and the results of that study was used to predict the impact of that variability on the accuracy of the acoustic temperature method. These results are reported here. A design for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated i

Peter Ariessohn

2008-06-30T23:59:59.000Z

390

Influence from fuel type on the performance of an air-blown cyclone gasifier  

Science Journals Connector (OSTI)

Abstract Entrained flow gasification of biomass using the cyclone principle has been proposed in combination with a gas engine as a method for combined heat and power production in small to medium scale (gasifier also has the potential to operate using ash rich fuels since the reactor temperature is lower than the ash melting temperature and the ash can be separated after being collected at the bottom of the cyclone. The purpose of this work was to assess the fuel flexibility of cyclone gasification by performing tests with five different types of fuels; torrefied spruce, peat, rice husk, bark and wood. All of the fuels were dried to below 15% moisture content and milled to a powder with a maximum particle size of around 1 mm. The experiments were carried out in a 500 kWth pilot gasifier with a 3-step gas cleaning process consisting of a multi-cyclone for removal of coarse particles, a bio-scrubber for tar removal and a wet electrostatic precipitator for removal of fine particles and droplets from the oil scrubber (aerosols). The lower heating value (LHV) of the clean producer gas was 4.09, 4.54, 4.84 and 4.57 MJ/Nm3 for peat, rice husk, bark and wood, respectively, at a fuel load of 400 kW and an equivalence ratio of 0.27. Torrefied fuel was gasified at an equivalence ratio of 0.2 which resulted in a LHV of 5.75 MJ/Nm3 which can be compared to 5.50 MJ/Nm3 for wood powder that was gasified at the same equivalence ratio. A particle sampling system was designed in order to collect ultrafine particles upstream and downstream the gasifier cleaning device. The results revealed that the gas cleaning successfully removed >99.9% of the particulate matter smaller than 1 ?m.

M. Risberg; O.G.W. Öhrman; B.R. Gebart; P.T. Nilsson; A. Gudmundsson; M. Sanati

2014-01-01T23:59:59.000Z

391

Dynamic Modeling of the Coproduction of Liquid Fuels and Electricity from a Hybrid Solar Gasifier with Various Fuel Blends  

Science Journals Connector (OSTI)

(19) Such a process could also offer important synergies with CO2 geo-sequestration pipeline networks, which are anticipated to be introduced in the medium-term. ... (14) The hybrid vortex gasifier and co-reforming reactor are assumed to be sized to achieve a sufficiently long residence time for 100% conversion of the coal and 99% of the input natural gas to syngas. ... The size of the energetic and GHG emissions performance improvements possible is limited by the gasifier’s turn-down and turn-up capacity. ...

Ashok A. Kaniyal; Philip J. van Eyk; Graham J. Nathan

2013-05-03T23:59:59.000Z

392

Calcined Dolomite, Magnesite, and Calcite for Cleaning Hot Gas from a Fluidized Bed Biomass Gasifier with Steam:? Life and Usefulness  

Science Journals Connector (OSTI)

Calcined Dolomite, Magnesite, and Calcite for Cleaning Hot Gas from a Fluidized Bed Biomass Gasifier with Steam:? Life and Usefulness ... About the temperature effect, at low (800 °C) and medium (840 °C) temperatures, the calcite is soon deactivated. ...

Jesús Delgado; María P. Aznar; José Corella

1996-10-08T23:59:59.000Z

393

Carbon dioxide recovery from an integrated coal gasifier, combined cycle plant using membrane separation and a CO2 gas turbine  

Science Journals Connector (OSTI)

A scheme is described for electricity production based on coal gasification with recovery of carbon dioxide. In this scheme, coal is gasified into a coal gas, consisting mainly of hydrogen and carbon monoxide. A ...

Chris Hendriks

1994-01-01T23:59:59.000Z

394

Electrochemical mass transfer modeling of a complex two phase heat transfer problem: Case of a prototype slagging gasifier  

Science Journals Connector (OSTI)

The local and averaged forced-convective heat transfer coefficients were estimated from measured local and averaged mass transfer coefficients in a model slagging-gasifier hearth pool using the Chilton-Colburn an...

A. A. Wragg; N. P. Simpson; M. A. Patrick…

2008-04-01T23:59:59.000Z

395

Comparative Study of Gasification Performance between Bituminous Coal and Petroleum Coke in the Industrial Opposed Multiburner Entrained Flow Gasifier  

Science Journals Connector (OSTI)

SUMMARY : Co-gasification performance of coal and petroleum coke (petcoke) blends in a pilot-scale pressurized entrained-flow gasifier was studied exptl. ... Two different coals, including a subbituminous coal (Coal A) and a bituminous coal (Coal B), individually blended with a petcoke in the gasifier were considered. ... results suggested that, when the petcoke was mixed with Coal A over 70%, the slagging problem, which could shorten the operational period due to high ash content in the coal, was improved. ...

Zhonghua Sun; Zhenghua Dai; Zhijie Zhou; Jianliang Xu; Guangsuo Yu

2012-09-27T23:59:59.000Z

396

Development of Model-Based Controls for GE's Gasifier and Syngas Cooler  

NLE Websites -- All DOE Office Websites (Extended Search)

Model-Based Controls Model-Based Controls for GE's Gasifier and Syngas Cooler Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced sensor and control technologies that can function under the extreme operating conditions often found in advanced power systems, particularly

397

Operating Experience with a Large Fluidized-Bed Gasifier of Woodwaste  

E-Print Network (OSTI)

OPERATING EXPERIENCE WITH A LARGE FLUIDIZED-BED GASIFIER OF WOODWASTE Robin F.W. Guard Omnifuel Gasification Systems Toronto, Ontario ABSTRACT The town of Hearst in northern Ontario is the lo cation of many forest product industries. One... Houston, TX, April 4-7, 1982 energy recovery systems before choosing gasification. The main reason for the choice was the need to be able to distribute the energy to four existing boilers in different locations, all working on natural gas. A secondary...

Guard, R. F. W.

1982-01-01T23:59:59.000Z

398

Performance and gas cleanup criterion for a cotton gin waste fluidized-bed gasifier  

E-Print Network (OSTI)

, The greatest thermal efficiency appeared to occur near 760'C, well below the expected ash fusion temperature. The gasification reaction was operated with no supplemental heat for most of the experiments. The most prominent problem with the gasifier... of gasif1cation process which has not only been of interest to the Texas ASM biomass energy research team but also of personal interest to myself. I appreciate Or. R. G. Anthony for his encouragement and guidance 1n the chemical engineering aspects...

Craig, Joe David

2012-06-07T23:59:59.000Z

399

Analysis and optimized design of airlocks for fluidized bed gasifier fuel feed systems  

E-Print Network (OSTI)

into the bottom center of a fluidized bed. A feed hopper with a feeder assembly, two pressure sealing rotary valves and an injector feeder were used, Problems experienced included uneven metering of the trash into the gasifier. In a report prepared... of cotton gin trash and the fact that feeding this material will be without preprocessing, the decision was made to study devices that provide mechanical pressure seals. Three concepts were chosen, lock hopper with door valves, lock hopper with knife gate...

Nuboer, Benito Frans

1991-01-01T23:59:59.000Z

400

System Modeling of ORNL s 20 MW(t) Wood-fired Gasifying Boiler  

SciTech Connect

We present an overview of the new 20 MW(t) wood-fired steam plant currently under construction by Johnson Controls, Inc. at the Oak Ridge National Laboratory in Tennessee. The new plant will utilize a low-temperature air-blown gasifier system developed by the Nexterra Systems Corporation to generate low-heating value syngas (producer gas), which will then be burned in a staged combustion chamber to produce heat for the boiler. This is considered a showcase project for demonstrating the benefits of clean, bio-based energy, and thus there is considerable interest in monitoring and modeling the energy efficiency and environmental footprint of this technology relative to conventional steam generation with petroleum-based fuels. In preparation for system startup in 2012, we are developing steady-state and dynamic models of the major process components, including the gasifiers and combustor. These tools are intended to assist in tracking and optimizing system performance and for carrying out future conceptual studies of process changes that might improve the overall energy efficiency and sustainability. In this paper we describe the status of our steady-state gasifier and combustor models and illustrate preliminary results from limited parametric studies.

Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL; Wiggins, Gavin [ORNL; Hao, Ye [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Application of multiple swirl burners in pilot-scale entrained bed gasifier for short residence time  

Science Journals Connector (OSTI)

Abstract The design concept of an entrained bed gasifier is presented. A 3 t/d-scale gasification system was constructed based on this concept. Syngas residence time in the gasifier was set to 2 s, relatively shorter than that of commercial gasifiers, to verify the possibility of complete gasification reaction within a short residence time. A series of gasification tests were conducted under high pressures and high temperatures. Performance data of the gasification experiment using multiple swirl burners showed that the carbon conversion and cold gas efficiency were higher than 98% and 72%, respectively. This high performance seemed to be attributable to the effects of rigorous mixing of oxygen and pulverized coal by the strong swirl flow and the relatively uniform oxygen concentration by the swirling plug flow. Syngas composition of the experimental result well agreed with that of the equilibrium state. This project demonstrated the feasibility of complete gasification reaction within a short residence time for low-rank coal of high reactivity.

Jin-Wook Lee; Yongseung Yun; Seok-Woo Chung; Suk-Hwan Kang; Jae-Hong Ryu; Gyoo-Tae Kim; Yong-Jeon Kim

2014-01-01T23:59:59.000Z

402

Microscopic characteristics of solid particles in opposed multi-burner gasifier  

Science Journals Connector (OSTI)

Abstract The microscopic characteristics of solid particles have important influence on the formation of fluid slag, coarse slag and fine slag during entrained-flow gasification process. Based on the bench-scale opposed multi-burner (OMB) gasifier, solid particles were sampled at different axial distances along the gasifier chamber under typical operating conditions (oxygen and carbon atomic ratio at 1.0). The microscopic characteristics of solid particles were studied by using N2 adsorption-desorption and scanning electron microscopy (SEM) methods. The results show that the solid particles are comprised mainly of porous irregular particle and spherical particle, and few solid particles generated at burner plane perform as dense irregular and hollow shape. As the gasification reaction proceeds along the axis of gasifier, the surface structure of particles becomes rougher, and the pore structure increases. The isotherms of particle samples are all type II, and the particle samples consist of continuous and complete system of pores. The hysteresis loops are H3-type, and there are a large amount of fractured pores. BET surface area and pore volume increase with increasing distance from the burner plane, and average pore diameter gradually reduces, and larger changes occur in the vicinity of the burner plane. The mesopores less than 10 nm vary apparently and increase with increasing distances from the burner plane, while the pores larger than 10 nm are almost unchanged.

Li-jun SUN; Yan GONG; Qing-hua GUO; Guang-suo YU

2014-01-01T23:59:59.000Z

403

Experimental study on particle characteristics in an opposed multi-burner gasifier  

Science Journals Connector (OSTI)

Abstract Based on the bench-scale opposed multi-burner (OMB) coal-water slurry (CWS) gasifier, temperature distributions of particles at different spatial regions, reactivity characteristics of particles and their interactions were studied with a variety of visualization techniques. The particles in gasifier are mainly classified to five types, and the principles of transformation between them are concluded as: low temperature particle without wake (LTP) could transform to low temperature particle with high temperature wake (LTP-HTW) when contacted with high temperature flame, then transform to LTP as reactions terminate and the particles become non-reactive; low temperature particle with low temperature wake (LTP-LTW) would transform to LTP-HTW when transfer to high temperature regions; as LTP-HTW adhere to the refractory wall, their wakes vanish and particles transform to high temperature particle without wake (HTP); high temperature particle with high temperature wake (HTP-HTW) could finally transform to HTP after the end of reactions. Particle groups with irregular shapes, flake-shaped and hollowed spherical structure are the forms of existence for larger size particles in gasifier.

Yan Gong; Guangsuo Yu; Qinghua Guo; Zhijie Zhou; Fuchen Wang; Yongdi Liu

2014-01-01T23:59:59.000Z

404

Startup Costs  

Directives, Delegations, and Requirements

This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

1997-03-28T23:59:59.000Z

405

On the modeling of a single-stage, entrained-flow gasifier using Aspen Custom Modeler (ACM)  

SciTech Connect

Coal-fired gasifiers are the centerpiece of integrated gasification combined cycle (IGCC) power plants. The gasifier produces synthesis gas that is subsequently converted into electricity through combustion in a gas turbine. Several mathematical models have been developed to study the physical and chemical processes taking place inside the gasifier. Such models range from simple one-dimensional (1D) steady-state models to sophisticated dynamic 3D computational fluid dynamics (CFD) models that incorporate turbulence effects in the reactor. The practical operation of the gasifier is dynamic in nature but most 1D and some higher-dimensional models are often steady state. On the other hand, many higher order CFD-based models are dynamic in nature, but are too computationally expensive to be used directly in operability and controllability dynamic studies. They are also difficult to incorporate in the framework of process simulation software such as Aspen Plus Dynamics. Thus lower-dimensional dynamic models are still useful in these types of studies. In the current study, a 1D dynamic model for a single-stage, downward-firing, entrained-flow GE-type gasifier is developed using Aspen Custom Modeler{reg_sign} (ACM), which is a commercial equation-based simulator for creating, editing, and re-using models of process units. The gasifier model is based on mass, momentum, and energy balances for the solid and gas phases. The physical and chemical reactions considered in the model are drying, devolatilization/pyrolysis, gasification, combustion, and the homogeneous gas phase reactions. The dynamic gasifier model is being developed for use in a plant-wide dynamic model of an IGCC power plant. For dynamic simulation, the resulting highly nonlinear system of partial differential algebraic equations (PDAE) is solved in ACM using the well-known Method of Lines (MoL) approach. The MoL discretizes the space domain and leaves the time domain continuous, thereby converting the PDAE to a differential algebraic equation (DAE) system with respect to time. The DAE system is solved using a variable-step implicit Euler integrator. For steady-state simulations, the set of nonlinear algebraic equations are solved using a Newton-type method. In this presentation, preliminary results from the steady-state non-isothermal gasifier model will be reported. Comparisons of the results from the gasifier model to available pilot plant data, industrial gasifier data, and other published models will be made. Sensitivity studies will be presented for different types of coal and operating conditions.

Kasule, J.; Turton, R.; Bhattacharyya, D.; Zitney, S.

2010-01-01T23:59:59.000Z

406

Quasi-experimental study on the effectiveness of psychoanalysis, long-term and short-term psychotherapy on psychiatric symptoms, work ability and functional capacity during a 5-year follow-up  

Science Journals Connector (OSTI)

Background Psychotherapy is apparently an insufficient treatment for some patients with mood or anxiety disorder. In this study the effectiveness of short-term and long-term psychotherapies was compared with that of psychoanalysis. Methods A total of 326 psychiatric outpatients with mood or anxiety disorder were randomly assigned to solution-focused therapy, short-term psychodynamic and long-term psychodynamic psychotherapies. Additionally, 41 patients suitable for psychoanalysis were included in the study. The patients were followed from the start of the treatment and assessed 9 times during a 5-year follow-up. The primary outcome measures on symptoms were the Beck Depression Inventory, the Hamilton Depression and Anxiety Rating Scales, and the Symptom Check List, anxiety scale. Primary work ability and functional capacity measures were the Work Ability Index, the Work-subscale of the Social Adjustment Scale, and the Perceived Psychological Functioning Scale. Results A reduction in psychiatric symptoms and improvement in work ability and functional capacity was noted in all treatment groups during the 5-year follow-up. The short-term therapies were more effective than psychoanalysis during the first year, whereas the long-term therapy was more effective after 3 years of follow-up. Psychoanalysis was most effective at the 5-year follow-up, which also marked the end of the psychoanalysis. Conclusions Psychotherapy gives faster benefits than psychoanalysis, but in the long run psychoanalysis seems to be more effective. Results from trials, among patients suitable for psychoanalysis and with longer follow-up, are needed before firm conclusions about the relative effectiveness of psychoanalysis and psychotherapy in the treatment of mood and anxiety disorders can be drawn.

Paul Knekt; Olavi Lindfors; Maarit A. Laaksonen; Camilla Renlund; Peija Haaramo; Tommi Härkänen; Esa Virtala

2011-01-01T23:59:59.000Z

407

A one-dimensional transient model of a single-stage, downward-firing entrained-flow gasifier  

SciTech Connect

The integrated gasification combined cycle (IGCC) technology has emerged as an attractive alternative to conventional coal-fired power plant technology due to its higher efficiency and cleaner environmental performance especially with the option of CO{sub 2} capture and sequestration. The core unit of this technology is the gasifier whose optimal performance must be understood for efficient operation of IGCC power plants. This need has led a number of researchers to develop gasifier models of varying complexities. Whereas high-fidelity CFD models can accurately predict most key aspects of gasifier performance, they are computationally expensive and typically take hours to days to execute on high-performance computers. Therefore, faster one-dimensional (1D) partial differential equation (PDE)-based models are required for use in dynamic simulation studies, control system analysis, and training applications. A number of 1D gasifier models can be found in the literature, but most are steady-state and have limited application in the practical operation of the gasifier. As a result, 1D PDE-based dynamic models are needed to further study and predict gasifier performance under a wide variety of process conditions and disturbances. In the present study, a 1D transient model of a single-stage downward flow GE/Texaco-type gasifier has been developed. The model comprises mass, momentum and energy balances for the gas and solid phases. The model considers the initial gasification processes of water evaporation and coal devolatilization. In addition, the key heterogeneous and homogeneous chemical reactions have been modeled. The resulting time-dependent PDE model is solved using the well-known method of lines approach in Aspen Custom Modeler®, whereby the PDEs are discretized in the spatial domain and the resulting differential algebraic equations (DAEs) are then solved to obtain the transient response. The transient response of various gasifier performance parameters to certain disturbances commonly encountered in the real world operation of commercial IGCC plants will be presented. These disturbances include ramp and step changes in input variables such as coal flow rate, oxygen-to-coal ratio and water-to-coal ratio, among others. Comparison of gasifier model predictions to available dynamic data will also be discussed.

Kasule, J.; Turton, R.; Bhattacharyya, D.; Zitney, S.

2012-01-01T23:59:59.000Z

408

Design, Fabrication and Testing of an Infrared Ratio Pyrometer System for the Measurement of Gasifier Reaction Chamber Temperature  

SciTech Connect

Texaco was awarded contract DE-FC26-99FT40684 from the U.S. DOE to design, build, bench test and field test an infrared ratio pyrometer system for measuring gasifier temperature. The award occurred in two phases. Phase 1, which involved designing, building and bench testing, was completed in September 2000, and the Phase 1 report was issued in March 2001. Phase 2 was completed in 2005, and the results of the field test are contained in this final report. Two test campaigns were made. In the first one, the pyrometer was sighted into the gasifier. It performed well for a brief period of time and then experienced difficulties in keeping the sight tube open due to a slag accumulation which developed around the opening of the sight tube in the gasifier wall. In the second test campaign, the pyrometer was sighted into the top of the radiant syngas cooler through an unused soot blower lance. The pyrometer experienced no more problems with slag occlusions, and the readings were continuous and consistent. However, the pyrometer readings were 800 to 900 F lower than the gasifier thermocouple readings, which is consistent with computer simulations of the temperature distribution inside the radiant syngas cooler. In addition, the pyrometer readings were too sluggish to use for control purposes. Additional funds beyond what were available in this contract would be required to develop a solution that would allow the pyrometer to be used to measure the temperature inside the gasifier.

Tom Leininger

2005-03-31T23:59:59.000Z

409

Performance characteristic of a tubular carbon-based fuel cell short stack coupled with a dry carbon gasifier  

Science Journals Connector (OSTI)

Abstract A carbon gasified carbon-based fuel cell (CFC) short stack was fabricated and investigated for generating effective carbon fuel cell reactions. Anode-supported tubular CFC cells with a 45 cm2 active electrode area were used to manufacture the CFC short stack, which was coupled with a dry gasifier induced by a reverse Boudouard reaction. Activated carbon (BET area 1800 m2/g) powder was mixed with K2CO3 powder (5 wt.%) and used to fill a dry gasifier as a solid carbon fuel, and pure CO2 gas was supplied to the gasifier. The CO fuel generated by the reverse Boudouard reaction in the dry gasifier increased the performance of the CFC short stack. The tubular CFC short stack showed a maximum power of 29.4 W at 800 °C. It was operated under a range of operating conditions by changing the operating temperature, flow rate of the pure CO2 and the thermal cycle operation. The results indicate that the fabricated tubular CFC is a promising power generation system candidate for many practical applications, such as residential power generation (RPG) and stationary power systems.

Tak-Hyoung Lim; Sun-Kyung Kim; Ui-Jin Yun; Jong-Won Lee; Seung-Bok Lee; Seok-Joo Park; Rak-Hyun Song

2014-01-01T23:59:59.000Z

410

Air gasification of Malaysia agricultural waste in a fluidised bed gasifier  

Science Journals Connector (OSTI)

Hydrogen production from agricultural waste has been investigated experimentally using a bench-scale fluidised bed gasifier with 60 mm diameter and 425 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures (800â??900°C), fluidisation ratio (2.0â??3.33 m/s), static bed height (10â??30 mm) and equivalence ratio (0.16â??0.46) were analysed. Increasing temperatures favoured hydrogen yield and composition (up to 67 mol %) but only minor effects for other parameters. As conclusion, agricultural wastes are potential candidates as an alternative renewable energy source to fossil fuels.

Wan Ab Karim Ghani Wan Azlina; Reza A. Moghadam; Mohamad Amran Mohd Salleh; Azil Bahari Alias

2011-01-01T23:59:59.000Z

411

Characterization of medium-temperature Sasol–Lurgi gasifier coal tar pitch  

Science Journals Connector (OSTI)

Medium-temperature gasifier pitch (MTP) is only partly soluble in acetonitrile, methanol and ethanol. Single-stage pitch extraction with a large quantity of methanol yielded two liquid phases containing 76 wt.% and 27 wt.% pitch respectively. The pitch fractions recovered from these two phases featured similar aromaticity indices. However, the pitch from the pitch-rich phase had a higher average molar mass and gave an improved carbon yield at 1000 °C. Analysis of the methanol-insoluble pitch fraction showed that methanol extraction at reflux temperatures effectively removed boronic acid model compounds from pitch samples spiked with the same.

Gedion Papole; Walter W. Focke; Ncholu Manyala

2012-01-01T23:59:59.000Z

412

Pollutant Emissions and Energy Efficiency of Chinese Gasifier Cooking Stoves and Implications for Future Intervention Studies  

Science Journals Connector (OSTI)

Pollutant Emissions and Energy Efficiency of Chinese Gasifier Cooking Stoves and Implications for Future Intervention Studies ... Medium power stove operation emitted nearly twice as much PM2.5 as was emitted during high power stove operation, and the lighting phase of a cooking event contributed 45% and 34% of total PM2.5 emissions (combined lighting and cooking). ... A smaller pot was used with stoves A and B (500g) compared with stoves C and D (675g), but both sizes could hold at least 5 L of water. ...

Ellison M. Carter; Ming Shan; Xudong Yang; Jiarong Li; Jill Baumgartner

2014-05-02T23:59:59.000Z

413

Tar Reforming in Model Gasifier Effluents: Transition Metal/Rare Earth Oxide Catalysts  

Science Journals Connector (OSTI)

Tar Reforming in Model Gasifier Effluents: Transition Metal/Rare Earth Oxide Catalysts ... So in this work we investigated the action of transition metal oxides (TMOs) other than Ni (e.g., Fe, Mn) mixed with REOs for tar reforming, at a medium temperature range (923–1073 K) and under conditions where direct reforming would dominate. ... The heated gas mixture passed through a 1/2” stainless steel tube containing 0.2–1 g of catalyst (40–60 mesh size) diluted with mullite and positioned between beds of ?-Al2O3. ...

Rui Li; Amitava Roy; Joseph Bridges; Kerry M. Dooley

2014-04-24T23:59:59.000Z

414

High-Pressure Gasification of Coal Water Ethanol Slurry in an Entrained Flow Gasifier for Bioethanol Application  

Science Journals Connector (OSTI)

In comparison to CWS gasification, gasification with CWES showed a higher performance, such as composition of hydrogen and carbon monoxide, carbon conversion, cold gas efficiency, and total flow rate of syngas. ... As for the preparation of CWS and CWES, viscosity of 2000 cP or under was maintained while maintaining the maximum coal content, so that the coal particles could be atomized when the slurry was injected into the burner. ... The gasifier was preheated to approximately 1100 °C using a LPG burner, and after feeding CWS or CWES into the gasifier, syngas starts to be produced, whereby pressurization proceeds. ...

Jong-Soo Bae; Dong-Wook Lee; Se-Joon Park; Young-Joo Lee; Jai-Chang Hong; Ho Won Ra; Choon Han; Young-Chan Choi

2012-08-10T23:59:59.000Z

415

Subpilot scale gasifier evaluation of ceramic cross flow filter. Final report, February 1, 1988--December 31, 1992  

SciTech Connect

The operating characteristics, performance and durability of a hot gas cross flow filter system were evaluated at the Texaco 15 tpd, entrained-bed gasifier pilot plant facility that is located at their Montebello Research Facilities (MRL) in California. A candle filter unit was also tested for comparative purposes. A wide range of operating test conditions were experienced. This report summarizes the results of eleven different test runs that occurred from April 1989 through August 1992. Differences between filter operation on the entrained gasifier and prior experience on fluid bed combustion are discussed.

Lippert, T.E.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.; Meyer, J.H.

1993-08-01T23:59:59.000Z

416

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations – the Southern Study Area  

SciTech Connect

This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP)--Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute – 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 – 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 – 3 hours.

Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

2014-04-30T23:59:59.000Z

417

Gasification behavior of carbon residue in bed solids of black liquor gasifier  

SciTech Connect

Steam gasification of carbon residue in bed solids of a low-temperature black liquor gasifier was studied using a thermogravimetric system at 3 bar. Complete gasification of the carbon residue, which remained unreactive at 600 C, was achieved in about 10 min as the temperature increased to 800 C. The rate of gasification and its temperature dependence were evaluated from the non-isothermal experiment results. Effects of particle size and adding H{sub 2} and CO to the gasification agent were also studied. The rate of steam gasification could be taken as zero order in carbon until 80% of carbon was gasified, and for the rest of the gasification process the rate appeared to be first order in carbon. The maximum rate of carbon conversion was around 0.003/s and the activation energy was estimated to be in the range of 230-300 kJ/mol. The particle size did not show significant effect on the rate of gasification. Hydrogen and carbon monoxide appeared to retard the onset of the gasification process. (author)

Preto, Fernando; Zhang, Xiaojie (Frank); Wang, Jinsheng [CANMET Energy Technology Centre, Natural Resources (Canada)

2008-07-15T23:59:59.000Z

418

Development of an entrained flow gasifier model for process optimization study  

SciTech Connect

Coal gasification is a versatile process to convert a solid fuel in syngas, which can be further converted and separated in hydrogen, which is a valuable and environmentally acceptable energy carrier. Different technologies (fixed beds, fluidized beds, entrained flow reactors) are used, operating under different conditions of temperature, pressure, and residence time. Process studies should be performed for defining the best plant configurations and operating conditions. Although 'gasification models' can be found in the literature simulating equilibrium reactors, a more detailed approach is required for process analysis and optimization procedures. In this work, a gasifier model is developed by using AspenPlus as a tool to be implemented in a comprehensive process model for the production of hydrogen via coal gasification. It is developed as a multizonal model by interconnecting each step of gasification (preheating, devolatilization, combustion, gasification, quench) according to the reactor configuration, that is in entrained flow reactor. The model removes the hypothesis of equilibrium by introducing the kinetics of all steps and solves the heat balance by relating the gasification temperature to the operating conditions. The model allows to predict the syngas composition as well as quantity the heat recovery (for calculating the plant efficiency), 'byproducts', and residual char. Finally, in view of future works, the development of a 'gasifier model' instead of a 'gasification model' will allow different reactor configurations to be compared.

Biagini, E.; Bardi, A.; Pannocchia, G.; Tognotti, L. [Consorzio Pisa Ric, Pisa (Italy). Div Energia Ambiente

2009-10-15T23:59:59.000Z

419

Basic refractory and slag management for petcoke carbon feedstock in gasifiers  

DOE Patents (OSTI)

The disclosure provides methods of operating a slagging gasifier using a carbon feedstock having a relatively high V.sub.2O.sub.5 to SiO.sub.2 ratio, such as petcoke. The disclosure generates a combined chemical composition in the feed mixture having less than 25 wt. % SiO.sub.2, greater than 20 wt. % V.sub.2O.sub.5, and greater than 20 wt. % CaO. The method takes advantage of a novel recognition that increased levels of SiO.sub.2 tend to decrease dissolution of the V.sub.2O.sub.3 which forms under the reducing conditions of the gasifier, and utilizes the CaO additive to establish a chemical phase equilibria comprised of lower melting compounds. The method further provides for control based on the presence of Al.sub.2O.sub.3 and FeO, and provides for a total combined chemical composition of greater than about 5 wt. % MgO for use with refractory linings comprised of MgO based refractory brick.

Kwong, Kyei-Sing; Bennett, James P; Nakano, Jinichiro

2014-04-22T23:59:59.000Z

420

Process modeling and thermodynamic analysis of Lurgi fixed-bed coal gasifier in an SNG plant  

Science Journals Connector (OSTI)

Abstract This paper presents a comprehensive steady state kinetic model of a commercial-scale pressurized Lurgi fixed-bed dry bottom coal gasifier. The model is developed using the simulator Aspen Plus. Five sequential modules: drying zone, pyrolysis zone, gasification zone, combustion zone and overall heat recovery unit, are considered in the main process model. A non-linear programming (NLP) model is employed to estimate the pyrolysis products, which include char, coal gas and high-weight hydrocarbons/distillable liquids (tar, phenol, naphtha and oil). To accelerate solution convergence, an external FORTRAN subroutine is used to simulate the kinetics of the combustion and gasification processes which are formulated in terms of a series of continuous stirred-tank reactors. The model is validated with industrial data. The effects of two key operating parameters, namely oxygen/coal mass ratio and steam/coal mass ratio, on the thermodynamic efficiencies of the Lurgi gasifier and the gasification system as a whole are investigated via extensive simulation studies.

Chang He; Xiao Feng; Khim Hoong Chu

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cost Containment  

Science Journals Connector (OSTI)

Cost containment in health care involves a wide ... , the growth rate of expenditure or certain costs of health care services. These measures include ... patient education, etc. The reasons for increased cost ...

2008-01-01T23:59:59.000Z

422

Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier  

Science Journals Connector (OSTI)

Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ... Plastic waste treatment technologies, apart from chemical recycling, constitute a growing social problem, such as the loss of natural resources, the depletion of landfill space, and the environmental pollution. ...

Yupeng Du; Qi Yang; Abdallah S. Berrouk; Chaohe Yang; Ahmed S. Al Shoaibi

2014-11-06T23:59:59.000Z

423

A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis  

Science Journals Connector (OSTI)

Abstract The existing biomass gasifier systems have several technical challenges, which need to be addressed. They are reduction of impurities in the gas, increasing the reliability of the system, easy in operation and maintenance. It is also essential to have a simple design of gasifier system for power generation, which can work even in remote locations. A dual fired downdraft gasifier system was designed to produce clean gas from biomass fuel, used for electricity generation. This system is proposed to overcome a number of technical challenges. The system is equipped with dry gas cleaning and indirect gas cooling equipment. The dry gas cleaning system completely eliminates wet scrubbers that require large quantities of water. It also helps to do away with the disposal issues with the polluted water. With the improved gasifier system, the tar level in the raw gas is less than 100 mg Nm?3.Cold gas efficiency has improved to 89% by complete gasification of biomass and recycling of waste heat into the reactor. Several parameters, which are considered in the design and development of the reactors, are presented in detail with their performance indicators.

P. Raman; N.K. Ram; Ruchi Gupta

2013-01-01T23:59:59.000Z

424

September 2012 Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights  Brent crude oil spot prices have increased at a relatively steady pace from their 2012 low of $89 per barrel on June 25 to their recent high of $117 per barrel on August 23 because of the seasonal tightening of oil markets and continuing unexpected production outages. EIA expects Brent crude oil prices to fall from recent highs over the rest of 2012, averaging $111 per barrel over the last 4 months of 2012 and $103 per barrel in 2013. West Texas Intermediate (WTI) crude oil spot prices rose by a more modest $17 per barrel between June 25 and August 23, as the WTI discount to Brent crude oil widened from $10 per barrel to $22 per barrel. EIA expects WTI spot prices to average

425

Short-Term World Oil Price Forecast  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: This graph shows monthly average spot West Texas Intermediate crude oil prices. Spot WTI crude oil prices peaked last fall as anticipated boosts to world supply from OPEC and other sources did not show up in actual stocks data. So where do we see crude oil prices going from here? Crude oil prices are expected to be about $28-$30 per barrel for the rest of this year, but note the uncertainty bands on this projection. They give an indication of how difficult it is to know what these prices are going to do. Also, EIA does not forecast volatility. This relatively flat forecast could be correct on average, with wide swings around the base line. Let's explore why we think prices will likely remain high, by looking at an important market barometer - inventories - which measures the

426

APPLICATION FORM Short term course on  

E-Print Network (OSTI)

Engineering Indian Institute of Technology, Kanpur Kanpur208016 Phone : +91(512)2597945 / 2597253 Fax : +91 Indian Institute of Technology, Kanpur #12;WORKSHOP OBJECTIVE ACES course is designed to familiarize differential equations; Classification of errors. 5) Methods for solving elliptical PDEs. Point

Srivastava, Kumar Vaibhav

427

Short-Term Farm Credit in Texas.  

E-Print Network (OSTI)

.. 27.1 ............................................... For automob~les.. 7.8 For other purposes. ............................................. 4.5 Production: 1 60.6 A noticeable feature of this table is the relatively high percentage of loans...

Lee, Virgil P.

1927-01-01T23:59:59.000Z

428

Short-term pilot cooling tower tests  

SciTech Connect

Two major problems are associated with the use of cooled geothermal water as coolant for the 5 MW(e) pilot plant at Raft River. They are: (1) a scaling potential owing to the chemical species present in solution, and (2) the corrosive nature of the geothermal water. Tests were conducted to obtain data so that methods can be devised to either reduce or eliminate effects from these problems. Data show that scaling can be prevented, but only by using a high concentration of dispersant. Pitting data, however, are not as conclusive and seem to indicate that pitting control cannot be realized, but this result cannot be substantiated without additional experimentation. Results also demonstrate that chromate can be removed by using either chemical destruction or ion exchange. Whichever method is used, EPA discharge limits for both chromate and zinc can be achieved. A preliminary economic analysis is presented.

Suciu, D.F.; Miller, R.L.

1980-01-01T23:59:59.000Z

429

Short-Term Energy Outlook January 2014  

Gasoline and Diesel Fuel Update (EIA)

Administration databases supporting the following reports: Petroleum Marketing Monthly , DOEEIA-0380; Prices are not adjusted for inflation. (b) Average self-service cash price....

430

Short-Term Energy Outlook February 2014  

Gasoline and Diesel Fuel Update (EIA)

Administration databases supporting the following reports: Petroleum Marketing Monthly , DOEEIA-0380; 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 2013 2014 2015 Supply...

431

Short-Term Energy Outlook April 2014  

Gasoline and Diesel Fuel Update (EIA)

Administration databases supporting the following reports: Petroleum Marketing Monthly , DOEEIA-0380; 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 2013 2014 2015 Supply...

432

Short-Term Energy Outlook September 2014  

Gasoline and Diesel Fuel Update (EIA)

Administration databases supporting the following reports: Petroleum Marketing Monthly , DOEEIA-0380; 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 2013 2014 2015 Supply...

433

Short-Term Energy Outlook March 2014  

Annual Energy Outlook 2012 (EIA)

Administration databases supporting the following reports: Petroleum Marketing Monthly , DOEEIA-0380; 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 2013 2014 2015 Supply...

434

Short term accommodation and Bed and Breakfasts  

E-Print Network (OSTI)

hotels in central London. *Premier Inn County Hall Belvedere Road London SE1 7PB Website: http.indianymca.org Journey's ­ Kings Cross 54 ­ 58 Caledonian Road Kings Cross London N1 9DP Tel: 020 7833 3893 http.dovercastlehostel.com Ashlee House 261 ­ 265 Grays Inn Road Kings Cross London WC1X 8QT Tel: 020 7833 9400 Fax: 020 7833 9677

Kühn, Reimer

435

Short-Term Energy Outlook September 2013  

Annual Energy Outlook 2012 (EIA)

the 2014 renewable fuel standards are identical to those for 2013. U.S. Energy-Related Carbon Dioxide Emissions. EIA estimates that carbon dioxide emissions from fossil fuels...

436

Comfort control for short-term occupancy  

E-Print Network (OSTI)

to a thermostat-controlled fan-coil unit i n each room. TheThe t y p i c a l fan-coil and w a l l units are i n this

Fountain, M.; Brager, G. S.; Arens, Edward A; Bauman, Fred; Benton, C.

1994-01-01T23:59:59.000Z

437

Umea University Education Short-Term Program  

E-Print Network (OSTI)

refrigerators, freezers and kitchen utensils that you can share. The housing with IHO includes: · Private room

Viglas, Anastasios

438

Short-Term Prediction of Lagrangian Trajectories  

Science Journals Connector (OSTI)

Lagrangian particles in a cluster are divided in two groups: observable and unobservable. The problem is to predict the unobservable particle positions given their initial positions and velocities based on observations of the observable ...

Leonid I. Piterbarg

2001-08-01T23:59:59.000Z

439

Short-Term Energy Outlook May 2014  

Gasoline and Diesel Fuel Update (EIA)

by the U.S. Supreme Court reversing a lower court opinion that vacated the Cross-State Air Pollution Rule (CSAPR). CSAPR will replace the Clean Air Interstate Rule (CAIR). The...

440

Online short-term solar power forecasting  

SciTech Connect

This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of around 35% is achieved by the ARX model compared to a proposed reference model. (author)

Bacher, Peder; Madsen, Henrik [Informatics and Mathematical Modelling, Richard Pedersens Plads, Technical University of Denmark, Building 321, DK-2800 Lyngby (Denmark); Nielsen, Henrik Aalborg [ENFOR A/S, Lyngsoe Alle 3, DK-2970 Hoersholm (Denmark)

2009-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Crystallization of synthetic coal-petcoke slag mixtures simulating those encountered in entrained bed slagging gasifiers  

SciTech Connect

Commercial entrained bed slagging gasifiers use a carbon feedstock of coal, petcoke, or combinations of them to produce CO and H{sub 2}. These carbon sources contain mineral impurities that liquefy during gasification and flow down the gasification sidewall, interacting with the refractory linear and solidifying in the cooler zones of the gasifier. Proper slag flow is critical to good gasifier operation. A hot-stage confocal scanning laser microscope (CSLM) was used to analyze the kinetic behavior of slag crystallization for a range of synthetic coal-petcoke mixtures. On the basis of the observed precipitation during cool down studies in the 1200-1700{sup o}C temperature range, a time-temperature-transformation (TTT) diagram was created. The crystallization studies were conducted with a CO/CO{sub 2} (=1.8) corresponding to a gasification PO{sub 2} of approximately 10-8 atm at 1500{sup o}C. Ash chemistries were chosen such that they correspond to coal-petcoke feedstock mixtures with coal ash amounts of 0, 10, 30, 50, 70, and 100% (by weight), with the balance being petcoke ash. The TTT diagram exhibited two crystallization areas, one above and one below 1350{sup o}C. At the nose of the higher temperature curves, karelianite (V{sub 2}O{sub 3}) crystallization occurred and was fastest for a 30% coal-petcoke ash mixture. The second nose was located below 1350{sup o}C and had spinel-type phases that formed at 1200{sup o}C, in which preferred atomic occupation at the octahedral and tetrahedral sites varied depending upon the ash composition. At 1200{sup o}C, an Al-rich spinel formed for 100% coal slag and a Fe-rich spinel formed in petcoke-enriched slags. The addition of petcoke ash to coal ash promoted crystallization in the slag, with additional crystalline phases, such as V-rich spinel, forming at the lower temperatures. These phases were not predicted using commercially available databases. 30 refs., 18 figs.

Jinichiro Nakano; Seetharaman Sridhar; Tyler Moss; James Bennett; Kyei-Sing Kwong [National Energy Technology Laboratory, Pittsburgh, PA (United States)

2009-09-15T23:59:59.000Z

442

A comparison between Miscanthus and bioethanol waste pellets and their performance in a downdraft gasifier  

Science Journals Connector (OSTI)

Pelletised biomass has been found to have excellent potential for their utilisation in small to medium sized energy systems because of its advantages over loose feedstock. The energy density is increased and so the space occupied in transportation is decreased and the amount of problematic dust or fines is also decreased. Furthermore, pellets provide a more uniform fuel, allowing easier feeding and improved performance in thermal conversion processes. The pellet manufacturing process, or pelletisation process, plays a major role on the quality of pellets produced. Changes to pelletisation parameters such as feedstock moisture content, die diameter, particle size (or screen size), addition of lubricants or binders can significantly alter the quality of the pellets and therefore the ease with which the pellets can be gasified in a downdraft gasification process. One important quality parameter that greatly affects the downdraft gasification process is the strength or durability of pellets. Durability can be defined as the ability of pellets to resist mechanical breakdown during transport or during feeding into an energy plant. Other important parameters that affect downdraft gasification are the ash content and composition of the pellets. The ash is derived from the minerals in the feedstock, the addition of binders or lubricants and also the pellet production method. Furthermore, gasification efficiency can be also affected by the process parameters such as air-to-fuel ratio, air or biomass feed rate and operating temperature. The current article compares the properties of three different types of pellets and their gasification performance. Two types of Miscanthusand a bioethanol production reside (distiller’s dried grains with solubles (DDGS)) were used to make the pellets. The pellets made were of similar size (6–8 mm) and ultimate analysis, so the paper focuseson the most important differences; these were durability, ash content and gasification parameters, expressed through the equivalence ratio which relates the actual air-to-fuel ratio with the calculated stoichiometric value. A series of experiments were conducted in a 50 kWth pilot scale downdraft gasifier with the equivalence ratio varied in the range 0.2–0.3. The quality of the gas produced and the gasifier performance were assessed in terms of the gas composition, yield, heating value, cold gas efficiency and carbon conversion efficiency.

Kyriakos X. Kallis; Giacomo A. Pellegrini Susini; John E. Oakey

2013-01-01T23:59:59.000Z

443

Impacts of Rising Construction and Equipment Costs on Energy Industries (released in AEO2007)  

Reports and Publications (EIA)

Costs related to the construction industry have been volatile in recent years. Some of the volatility may be related to higher energy prices. Prices for iron and steel, cement, and concrete -- commodities used heavily in the construction of new energy projects -- rose sharply from 2004 to 2006, and shortages have been reported. How such price fluctuations may affect the cost or pace of new development in the energy industries is not known with any certainty, and short-term changes in commodity prices are not accounted for in the 25-year projections in Annual Energy Outlook 2007. Most projects in the energy industries require long planning and construction lead times, which can lessen the impacts of short-term trends.

2007-01-01T23:59:59.000Z

444

Experimental–numerical design of a biomass bubbling fluidized bed gasifier for paper sludge energy recovery  

Science Journals Connector (OSTI)

This paper presents the application of a comprehensive approach to the design of small scale sustainable distributed generation systems with special focus on energy recovery from paper production process sludge. The methodology integrates a detailed fluid-dynamic analysis tool with preliminary experimental analysis on a laboratory scale to guide the design of a prototype bubbling fluidized bed gasifier in the 85 kW power range fitting with small and medium size paper production industries. Preliminary tests show stable operation even for this rather small power scale, and deviation from chemical equilibrium concentration in agreement with literature available data. Energy content in the sludge may be recovered along with a significant reduction of residual volume and mass. The concept may then be used to increase the overall sustainability of paper production.

S. Cordiner; G. De Simone; V. Mulone

2012-01-01T23:59:59.000Z

445

Electric co-generation units equipped with wood gasifier and Stirling engine  

SciTech Connect

The disposal of industrial waste such as oil sludges, waste plastic, lubricant oils, paper and wood poses serious problems due to the ever increasing amount of material to be disposed of and to the difficulty in finding new dumping sites. The interest in energy recovery technologies is accordingly on the increase. In particular, large amounts of waste wood are simply burned or thrown away causing considerable environmental damage. In this context the co-generation technique represents one of the possible solutions for efficient energy conversion. The present paper proposes the employment of a Stirling engine as prime mover in a co-generation set equipped with a wood gasifier. A Stirling engine prototype previously developed in a joint project with Mase Generators, an Italian manufacturer of fixed and portable electrogenerators, is illustrated and its design is described.

Bartolini, C.M.; Caresana, F.; Pelagalli, L.

1998-07-01T23:59:59.000Z

446

Multifractal detrended fluctuation analysis of combustion flames in four-burner impinging entrained-flow gasifier  

E-Print Network (OSTI)

On a laboratory-scale testing platform of impinging entrained-flow gasifier with four opposed burners, the flame images for diesel combustion and gasification process were measured with a single charge coupled device (CCD) camera. The two-dimensional multifractal detrended fluctuation analysis was employed to investigate the multifractal nature of the flame images. Sound power-law scaling in the annealed average of detrended fluctuations was unveiled when the order $q>0$ and the multifractal feature of flame images were confirmed. Further analyses identified two multifractal parameters, the minimum and maximum singularity $\\alpha_{\\min}$ and $\\alpha_{\\max}$, serving as characteristic parameters of the multifractal flames. These two characteristic multifractal parameters vary with respect to different experimental conditions.

Niu, Miao-Ren; Yan, Zhuo-Yong; Guo, Qing-Hua; Liang, Qin-Feng; Wang, Fu-Chen; Yu, Zun-Hong

2007-01-01T23:59:59.000Z

447

Endogenous and exogenous dynamics of pressure fluctuations in an impinging entrained-flow gasifier  

E-Print Network (OSTI)

On a laboratory-scale testing platform of impinging entrained-flow gasifier with two opposed burners, the pressure fluctuation signals were measured with a stainless steel water-cooled probe. Phenomenological investigations of the endogenous and exogenous dynamics in the fluctuations of pressure were carried out by performing the mean-variance analysis and separating the endogenous and exogenous components of the signals. Non-universal dynamics with power-law behaviors have been found not only in the original signals but also in their components. A new inequality was obtained showing that the exogenous exponent is smallest while the overall dynamic exponent is the largest. The results highlight that the dynamics of pressure fluctuations in the first fifteen minutes of the gasification process is driven dominantly by the ignition process. The method can be readily applied to the other multiphase systems like bubble column, fluidized bed, etc.

Niu, Miao-Ren; Zhou, Wei-Xing; Wang, Fu-Chen; Yu, Zun-Hong

2007-01-01T23:59:59.000Z

448

Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure  

DOE Patents (OSTI)

The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

Loth, John L. (Morgantown, WV); Smith, William C. (Morgantown, WV); Friggens, Gary R. (Morgantown, WV)

1982-01-01T23:59:59.000Z

449

Influence of mean gas residence time in the bubbling fluidised bed on the performance of a 100-kW dual fluidised bed steam gasifier  

Science Journals Connector (OSTI)

In this study, the influence of mean gas residence time in the bubbling fluidised bed, ? f..., on the performance of a pilot scale 100 kW dual fluidised bed gasifier was experimentally investigate...

W. L. Saw; S. S. Pang

2012-09-01T23:59:59.000Z

450

Influence of poly(acrylic acid) molar mass on the fracture properties of glass polyalkenoate cements based on waste gasifier slags  

Science Journals Connector (OSTI)

The failure behaviour of glass polyalkenoate cements was investigated using a linear elastic fracture mechanics (LEFM) approach. Cements were based on Drayton gasifier slag and four poly(acrylic acid)s...3 to 6.4...

A. Sullivan; R. Hill

451

Investigation of the Gasification Performance of Lignite Feedstock and the Injection Design of a Cross-Type Two-Stage Gasifier  

Science Journals Connector (OSTI)

Investigation of the Gasification Performance of Lignite Feedstock and the Injection Design of a Cross-Type Two-Stage Gasifier ... Compared to the other fossil-fuel resources such as crude oil and natural gas, coal has the largest reserves and least expensive price for producing electricity. ... Since the feedstock price per unit syngas energy is cheaper for lignites, gasifying lignites is attractive for electricity production. ...

Yau-Pin Chyou; Ming-Hong Chen; Yan-Tsan Luan; Ting Wang

2013-05-24T23:59:59.000Z

452

Cost Estimator  

Energy.gov (U.S. Department of Energy (DOE))

A successful candidate in this position will serve as a senior cost and schedule estimator who is responsible for preparing life-cycle cost and schedule estimates and analyses associated with the...

453

Operating Costs  

Directives, Delegations, and Requirements

This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

1997-03-28T23:59:59.000Z

454

Study of the effects of operating factors on the resulting producer gas of oil palm fronds gasification with a single throat downdraft gasifier  

Science Journals Connector (OSTI)

Abstract Malaysia has abundant but underutilized oil palm fronds. Although the gasification of biomass using preheated inlet air as a gasifying medium is considered an efficient and environmentally friendly method, previous studies were limited to certain types of biomass wastes and gasifier designs. Hence, the effects of preheating the gasifying air on oil palm fronds gasification in a single throat downdraft gasifier are presented in this paper. In addition, the effects of varying the flow rate of the gasifying air and the moisture content of the feedstock on the outputs of oil palm fronds gasification were studied. A response surface methodology was used for the design of the experiment and the analysis of the results. The results showed that preheating the gasifying air to 500 °C increased the concentrations of CO from 22.49 to 24.98%, that of CH4 from 1.98 to 2.87%, and that of H2 from 9.67 to 13.58% on dry basis in the producer gas at a 10% feedstock moisture content. Conversely, the dry basis concentrations of CO, CH4, and H2 decreased from 22.49, 1.98 and 9.67% to 12.01, 1.44 and 5.45%, respectively, as the moisture content increased from 10 to 20%. The airflow rate was also proven to significantly affect the quality of the resulting producer gas.

Fiseha M. Guangul; Shaharin A. Sulaiman; Anita Ramli

2014-01-01T23:59:59.000Z

455

Cost Shifting  

Science Journals Connector (OSTI)

Abstract Cost shifting exists when a provider raises prices for one set of buyers because it has lowered prices for some other buyer. In theory, cost shifting can take place only if providers have unexploited market power. The empirical evidence on the extent of cost shifting is mixed. Taken as a whole, the evidence does not support the claims that cost shifting is a large and pervasive feature of the US health-care markets. At most, one can argue that perhaps one-fifth of Medicare payment reductions have been passed on to private payers. The majority of the rigorous studies, however, have found no evidence of cost shifting.

M.A. Morrisey

2014-01-01T23:59:59.000Z

456

2017 Levelized Costs AEO 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

1 1 July 2012 Short-Term Energy Outlook Highlights * EIA projects the West Texas Intermediate (WTI) crude oil spot price to average about $88 per barrel over the second half of 2012 and the U.S. refiner acquisition cost (RAC) of crude oil to average $93 per barrel, both about $7 per barrel lower than last month's Outlook. EIA expects WTI and RAC crude oil prices to remain roughly at these second half levels in 2013. Beginning in this month's Outlook, EIA is also providing a forecast of Brent crude oil spot prices (see Brent Crude Oil Spot Price Added to Forecast), which are expected to average $106 per barrel for 2012 and $98 per barrel in 2013. These price forecasts assume that world oil-consumption-weighted real gross domestic product

457

Catalytic Air Gasification of Plastic Waste (Polypropylene) in Fluidized Bed. Part I:? Use of in-Gasifier Bed Additives  

Science Journals Connector (OSTI)

In this case, plastic waste was composed of a mixture of PE and PP (50 wt %) from the car industry. ... There are also some studies on the gasification of wastes containing PVC with steam13 and with [steam + O2].14 Besides, other technologies are appearing in this field such as the cogasification of waste tires and PET using the solar thermochemical process. ... Starting the working conditions for gasifying waste blends contg. ...

Jesús A. Sancho; María P. Aznar; José M. Toledo

2008-01-19T23:59:59.000Z

458

Numerical simulations for the coal/oxidant distribution effects between two-stages for multi opposite burners (MOB) gasifier  

Science Journals Connector (OSTI)

Abstract A 3D CFD model for two-stage entrained flow dry feed coal gasifier with multi opposite burners (MOB) has been developed in this paper. At each stage two opposite nozzles are impinging whereas the two other opposite nozzles are slightly tangential. Various numerical simulations were carried out in standard CFD software to investigate the impacts of coal and oxidant distributions between the two stages of the gasifier. Chemical process was described by Finite Rate/Eddy Dissipation model. Heterogeneous and homogeneous reactions were defined using the published kinetic data and realizable k–? turbulent model was used to solve the turbulence equations. Gas–solid interaction was defined by Euler–Lagrangian frame work. Different reaction mechanism were investigated first for the validation of the model from published experimental results. Then further investigations were made through the validated model for important parameters like species concentrations in syngas, char conversion, maximum inside temperature and syngas exit temperature. The analysis of the results from various simulated cases shows that coal/oxidant distribution between the stages has great influence on the overall performance of gasifier. The maximum char conversion was found 99.79% with coal 60% and oxygen 50% of upper level of injection. The minimum char conversion was observed 95.45% at 30% coal with 40% oxygen at same level. In general with oxygen and coal above or equal to 50% of total at upper injection level has shown an optimized performance.

Imran Nazir Unar; Lijun Wang; Abdul Ghani Pathan; Rasool Bux Mahar; Rundong Li; M. Aslam Uqaili

2014-01-01T23:59:59.000Z

459

cost savings  

National Nuclear Security Administration (NNSA)

reduced the amount of time involved in the annual chemical inventory for a cost savings of 18,282. Other presentations covered SRNS' award-winning employee suggestion...

460

BPA's Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

BPAsCosts Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates...

Note: This page contains sample records for the topic "gasifier costs short-term" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

462

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

463

Ash bed level control system for a fixed-bed coal gasifier  

DOE Patents (OSTI)

An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

Fasching, George E. (Morgantown, WV); Rotunda, John R. (Fairmont, WV)

1984-01-01T23:59:59.000Z

464

Regeneratively cooled coal combustor/gasifier with integral dry ash removal  

DOE Patents (OSTI)

A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

Beaufrere, Albert H. (Huntington, NY)

1983-10-04T23:59:59.000Z

465

Corrosion behavior of SiC under simulated slagging gasifier conditions  

SciTech Connect

Ceramic materials under scrutiny as candidates for structural components in severe environments include silicon carbide, silicon nitride, and alumina-based (corundum, mullite, spinel) materials. Interest is maintained in these materials because of their low densities, high strengths, retained strength at high temperatures, thermal shock resistance, and resistance to oxidation and corrosive attack. Although some work has been reported on the effects of oxidation and exposure to oxidizing combustion environments on the behavior of ceramic materials, many questions remain - in particular, concerning their behavior in the low-oxygen partial pressure (reducing) environments encountered in coal gasification. The anticipated active oxidation behavior in a low oxygen potential, non-slagging environment was not observed for the two silicon carbide materials under simulated slagging gasifier conditions. The oxidation reaction apparently was influence by the relatively high steam partial pressure. Specimens coated with acidic or basic slag compositions prior to exposure exhibited significant weight losses that were more substantial in the case of the basic slag-coated specimens. The viscosity of the fused slag at the reaction temperature is believed to have significant influence over the extent of reaction. Formation of a protective oxide scale is prevented, and reduction of iron oxide in the slag to metallic iron was followed by penetration of iron into subsurface pores in the underlying silicon carbide, forming iron-rich pockets.

Easler, T.E.; Poeppel, R.B.

1985-10-01T23:59:59.000Z

466

Simulation and experimental verification of a hydrodynamic model for a dual fluidized Bed gasifier  

Science Journals Connector (OSTI)

Abstract We propose a revised 2-D energy-minimization multi-scale (EMMS) model based on a two-fluid model to perform the hydrodynamic character analysis of a pilot-scale full-loop dual fluidized bed gasifier (DFBG), which consists of a riser, a cyclone with a down-comer, a bubbling fluidized bed (BFB), and a loop-seal. The EMMS model is used to analyze the interaction force between the gas and solid phases in the DFBG. For comparison, O'Brien & Syamlal's drag heterogeneous force coefficient correction is also analyzed. The instantaneous particle profiles are described by the calculated results. The local and overall flow characteristics are determined by the solids concentration under different fluidization conditions. The effects of the gas velocities in the riser and the recycle gas velocities in the U loop seal on the axial solids concentration and solids circulation profiles, as well as the flow heterogeneity in sub-zones of the riser are investigated. The numerical results are in good agreement with the experimental data, indicating that the EMMS model is appropriate to simulate the heterogeneous gas–solids two-phase flow in DFBG.

Xueyao Wang; Jing Lei; Xiang Xu; Zhengzhong Ma; Yunhan Xiao

2014-01-01T23:59:59.000Z

467

Development of Mercury and Hydrogen Chloride Emission Monitors for Coal Gasifiers  

SciTech Connect

The gas conditioning issues involved with coal gasification streams are very complex and do not have simple solutions. This is particularly true in view of the fact that the gas conditioning system must deal with tars, high moisture contents, and problems with NH{sub 3} without affecting low ppb levels of Hg, low levels (low ppm or less) of HCl, or the successful operation of conditioner components and analytical systems. Those issues are far from trivial. Trying to develop a non-chemical system for gas conditioning was very ambitious in view of the difficult sampling environment and unique problems associated with coal gasification streams. Although a great deal was learned regarding calibration, sample transport, instrumentation options, gas stream conditioning, and CEM design options, some challenging issues still remain. Sample transport is one area that is often not adequately considered. Because of the gas stream composition and elevated temperatures involved, special attention will need to be given to the choice of materials for the sample line and other plumbing components. When using gas stream oxidation, there will be sample transport regions under oxidizing as well as reducing conditions, and each of those regions will require different materials of construction for sample transport. The catalytic oxidation approach worked well for removal of tars and NH{sub 3} on a short term basis, but durability issues related to using the catalyst tube during extended testing periods still require study.

G. Norton; D. Eckels; C. Chriswell

2001-02-26T23:59:59.000Z

468

2017 Levelized Costs AEO 2012 Early Release  

Annual Energy Outlook 2012 (EIA)

July 1, respectively (Figure 11). U.S. Energy Information Administration | Short-Term Energy Outlook August 2013 8 Market-Derived Probabilities: The November 2013 RBOB futures...

469

Numerical Analysis of the Flow Characteristics and Heat and Mass Transfer of Falling-Water Films in an Industrial-Scale Dip Tube of a WSCC in an OMB Gasifier  

Science Journals Connector (OSTI)

A water-scrubbing cooling chamber (WSCC) is applied to an opposed multi-burner (OMB) gasifier(1-3) in which high-temperature syngas (with molten slag) is cooled, washed, and humidified, and the coarse particles are collected. ... On a lab.-scale testing platform of impinging entrained-flow gasifier with two opposed burners, the detailed measurements of gas concn. ...

Yifei Wang; Qiangqiang Guo; Bihua Fu; Jiangliang Xu; Guangsuo Yu; Fuchen Wang

2013-06-12T23:59:59.000Z

470

Gasification of lignite in a fixed bed reactor: Influence of particle size on performance of downdraft gasifier  

Science Journals Connector (OSTI)

Abstract In this work, an experimental study of the gasification of lignite with various particle sizes was carried out in a pilot-scale (10 kWe) downdraft type fixed bed gasifier. The main objective of the study was to investigate the feasibility of the lignite as a fuel for downdraft gasifier and to evaluate the effect of the particle size on gasifier performance. The influence of the particle size on fuel consumption rate, temperature profile in various zone, gas yield, gas composition and cold gas efficiency was studied. Six different particle sizes viz. 13–16 mm, 16–19 mm, 19–22 mm, 22–25 mm, 25–28 mm, 28–31 mm were selected for experimental work. With the increase in particle size, the reduction in fuel consumption rate was observed, whereas the producer gas production rate had increased. Th