Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

2

EIS-0429: Department of Energy Loan Guarantee for Indiana Integrated Gasification Combined Cycle, Rockport, IN  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the environmental impacts of a coal-to-substitute natural gas facility proposed to be built in Rockport, IN by Indiana Gasification. The facility would utilize Illinois Basin coal. Other products would be marketable sulfuric acid, argon, and electric power.

3

EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

4

Gasification Product Improvement Facility (GPIF). Final report  

SciTech Connect

The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

NONE

1995-09-01T23:59:59.000Z

5

Biomass Gasification Research Facility Final Report  

SciTech Connect

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature of the vapor phase components of the conveyed sample gas. In addition, to minimize adsorption or chemical changes in the syngas components prior to analysis, the temperature of the transported stream is maintained as hot as is practical, while still being cooled only as much necessary prior to entering the analyzer(s). The successful transport of the sample gas stream to the analyzer(s) is accomplished through the managed combination of four basic gas conditioning methods that are applied as specifically called for by the process conditions, the gas constituent concentrations, the analyzer requirements, and the objectives of the syngas analyses: 1) removing entrained particulate matter from the sample stream; 2) maintaining the temperature of the sample gas stream; 3) lowering the pressure of the sample gas stream to decrease the vapor pressures of all the component vapor species in the sample stream; and 4) diluting the gas stream with a metered, inert gas, such as nitrogen. Proof-of-concept field demonstrations of the sampling approach were conducted for gasification process streams from a black liquor gasifier, and from the gasification of biomass and coal feedstocks at GTI抯 Flex-Fuel Test Facility. In addition to the descriptions and data included in this Final Report, GTI produced a Special Topical Report, Design and Protocol for Monitoring Gaseous Species in Thermochemical Processes, that explains and describes in detail the objectives, principles, design, hardware, installation, operation and representative data produced during this successful developmental effort. Although the specific analyzers used under Cooperative Agreement DE-FC36-02GO12024 were referenced in the Topical Report and this Final Report, the sampling interface design they present is generic enough to adapt to other analyzers that may be more appropriate to alternate process streams or facilities.

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30T23:59:59.000Z

6

EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

7

Biomass Gasification Research Facility Final Report  

SciTech Connect

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-02GO12024 and DE-FC36-03GO13175) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. The primary objectives of Cooperative Agreement DE-FC36-02GO12024 were the selection, acquisition, and application of a suite of gas analyzers capable of providing near real-time gas analyses to suitably conditioned syngas streams. A review was conducted of sampling options, available analysis technologies, and commercially available analyzers, that could be successfully applied to the challenging task of on-line syngas characterization. The majority of thermochemical process streams comprise multicomponent gas mixtures that, prior to crucial, sequential cleanup procedures, include high concentrations of condensable species, multiple contaminants, and are often produced at high temperatures and pressures. Consequently, GTI engaged in a concurrent effort under Cooperative Agreement DE-FC36-03GO13175 to develop the means to deliver suitably prepared, continuous streams of extracted syngas to a variety of on-line gas analyzers. The review of candidate analysis technology also addressed safety concerns associated with thermochemical process operation that constrain the location and configuration of potential gas analysis equipment. Initial analyzer costs, reliability, accuracy, and operating and maintenance costs were also considered prior to the assembly of suitable analyzers for this work. Initial tests at GTI抯 Flex-Fuel Test Facility (FFTF) in late 2004 and early 2005 successfully demonstrated the transport and subsequent analysis of a single depressurized, heat-traced syngas stream to a single analyzer (an Industrial Machine and Control Corporation (IMACC) Fourier-transform infrared spectrometer (FT-IR)) provided by GTI. In March 2005, our sampling approach was significantly expanded when this project participated in the U.S. DOE抯 Novel Gas Cleaning (NGC) project. Syngas sample streams from three process locations were transported to a distribution manifold for selectable analysis by the IMACC FT-IR, a Stanford Research Systems QMS300 Mass Spectrometer (SRS MS) obtained under this Cooperative Agreement, and a Varian micro gas chromatograph with thermal conductivity detector (?GC) provided by GTI. A syngas stream from a fourth process location was transported to an Agilent Model 5890 Series II gas chromatograph for highly sensitive gas analyses. The on-line analyses made possible by this sampling system verified the syngas cleaning achieved by the NGC process. In June 2005, GTI collaborated with Weyerhaeuser to characterize the ChemrecTM black liquor gasifier at Weyerhaeuser抯 New Bern, North Carolina pulp mill. Over a ten-day period, a broad range of process operating conditions were characterized with the IMACC FT-IR, the SRS MS, the Varian ?GC, and an integrated Gas Chromatograph, Mass Selective Detector, Flame Ionization Detector and Sulfur Chemiluminescence Detector (GC/MSD/FID/SCD) system acquired under this Cooperative Agreement from Wasson-ECE. In this field application, a single sample stream was extracted from this low-pressure, low-temperature process and successfully analyzed by these devices. In late 2005,

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30T23:59:59.000Z

8

Conceptual design report -- Gasification Product Improvement Facility (GPIF)  

SciTech Connect

The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

1994-09-01T23:59:59.000Z

9

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

10

Power Systems Development Facility Gasification Test Campaign TC20  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coal. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of the first demonstration of the Transport Gasifier following significant modifications of the gasifier configuration. This demonstration took place during test campaign TC20, occurring from August 8 to September 23, 2006. The modifications proved successful in increasing gasifier residence time and particulate collection efficiency, two parameters critical in broadening of the fuel operating envelope and advancing gasification technology. The gasification process operated for over 870 hours, providing the opportunity for additional testing of various gasification technologies, such as PCD failsafe evaluation and sensor development.

Southern Company Services

2006-09-30T23:59:59.000Z

11

Power Systems Development Facility Gasification Test Campaign TC16  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

Southern Company Services

2004-08-24T23:59:59.000Z

12

Power Systems Development Facility Gasification Test Campaing TC14  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details test campaign TC14 of the PSDF gasification process. TC14 began on February 16, 2004, and lasted until February 28, 2004, accumulating 214 hours of operation using Powder River Basin (PRB) subbituminous coal. The gasifier operating temperatures varied from 1760 to 1810 F at pressures from 188 to 212 psig during steady air blown operations and approximately 160 psig during oxygen blown operations.

Southern Company Services

2004-02-28T23:59:59.000Z

13

Power Systems Development Facility Gasification Test Campaing TC18  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

Southern Company Services

2005-08-31T23:59:59.000Z

14

Power Systems Development Facility Gasification Test Campaign TC17  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

Southern Company Services

2004-11-30T23:59:59.000Z

15

EIS-0429: Department of Energy Loan Guarantee for Indiana Integrated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Department of Energy Loan Guarantee for Indiana 9: Department of Energy Loan Guarantee for Indiana Integrated Gasification Combined Cycle, Rockport, IN EIS-0429: Department of Energy Loan Guarantee for Indiana Integrated Gasification Combined Cycle, Rockport, IN Summary This EIS evaluates the environmental impacts of a coal-to-substitute natural gas facility proposed to be built in Rockport, IN by Indiana Gasification. The facility would utilize Illinois Basin coal. Other products would be marketable sulfuric acid, argon, and electric power. Public Comment Opportunities None available at this time. Documents Available for Download June 22, 2012 EIS-0429: Amended Notice of Intent To Prepare the Environmental Impact Statement; Conduct Additional Public Scoping Meetings; and Issue a Notice of Floodplains and Wetlands Involvement

16

Power Systems Development Facility Gasification Test Campaign TC24  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

Southern Company Services

2008-03-30T23:59:59.000Z

17

Power Systems Development Facility Gasification Test Run TC08  

SciTech Connect

This report discusses Test Campaign TC08 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier in air- and oxygen-blown modes during TC08. Test Run TC08 was started on June 9, 2002 and completed on June 29. Both gasifier and PCD operations were stable during the test run with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen blown was smooth. The gasifier temperature was varied between 1,710 and 1,770 F at pressures from 125 to 240 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC08, 476 hours of solid circulation and 364 hours of coal feed were attained with 153 hours of pure oxygen feed. The gasifier and PCD operations were stable in both enriched air and 100 percent oxygen blown modes. The oxygen concentration was slowly increased during the first transition to full oxygen-blown operations. Subsequent transitions from air to oxygen blown could be completed in less than 15 minutes. Oxygen-blown operations produced the highest synthesis gas heating value to date, with a projected synthesis gas heating value averaging 175 Btu/scf. Carbon conversions averaged 93 percent, slightly lower than carbon conversions achieved during air-blown gasification.

Southern Company Services

2002-06-30T23:59:59.000Z

18

Alternate Energy Production, Cogeneration, and Small Hydro Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation aims to encourage the development of alternative energy, cogeneration, and small hydropower facilities. The statute requires utilities to enter into long-term contracts with these...

19

The SEI facility for fluid-bed wood gasification  

SciTech Connect

In mid 1985, construction was begun on the world's largest fluidized bed, wood gasification plant at the clay processing plant in Quincy, Fla. In March 1986, the plant was purchased by Southern Electric International (SEI). This paper describes how SEI coordinated the redesign of many of the plant systems and supervised the completion of construction and startup. In late 1986, the gasifier plant was sold. SEI remains involved as the operations and maintenance contractor on-site and is now responsible for design changes and equipment maintenance.

Bullpitt, W.S.; Rittenhouse, O.C. (Southern Electric International, Inc. North Atlanta, GA (US)); Masterson, L.D. (Southern Electric International Quincy, FL (US))

1989-09-01T23:59:59.000Z

20

Utility Generation and Clean Coal Technology (Indiana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Generation and Clean Coal Technology (Indiana) Utility Generation and Clean Coal Technology (Indiana) Utility Generation and Clean Coal Technology (Indiana) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Corporate Tax Incentive Industry Recruitment/Support Performance-Based Incentive Rebate Program Grant Program Provider Indiana Utility Regulatory Commission This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal gasification. The statute also supports the development of projects using renewable energy sources as well

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

PressurePressure Indiana Coal Characteristics  

E-Print Network (OSTI)

TimeTime PressurePressure 路 Indiana Coal Characteristics 路 Indiana Coals for Coke 路 Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana 路 Coal Slurry Ponds Evaluation 路 Site Selection for Coal Gasification 路 Coal-To-Liquids Study, CTL

Fern谩ndez-Juricic, Esteban

22

NETL: Gasification Systems - Power Systems Development Facility (PSDF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Systems Development Facility (PSDF) Power Systems Development Facility (PSDF) Project No.: DE-FC21-90MC25140 Power Systems Development Facility (PSDF) Project ID: DE-FC21-90MC25140 NETL Contact: Morgan Mosser (304) 285-4723 Organization: Southern Company Services, Inc. - Birmingham, AL Project Timeline: Start: 09/14/1990 End: 01/31/2009 Power Systems Development Facility The objectives of the work at the Power Systems Development Facility (PSDF) are two-fold; development of the Transport Gasifier for a wide range of US coals from high sodium lignite to Midwestern bituminous and provide a test platform to test various critical components that are likely to appear in future advanced coal-based power facilities producing power and fuels such as hydrogen with zero emissions. With regard to the development of the

23

Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques  

SciTech Connect

Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of $0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

Deng, Yangyang; Parajuli, Prem B.

2011-08-10T23:59:59.000Z

24

PINTEX Data: Numeric results from the Polarized Internal Target Experiments (PINTEX) at the Indiana University Cyclotron Facility  

DOE Data Explorer (OSTI)

The PINTEX group studied proton-proton and proton-deuteron scattering and reactions between 100 and 500 MeV at the Indiana University Cyclotron Facility (IUCF). More than a dozen experiments made use of electron-cooled polarized proton or deuteron beams, orbiting in the 'Indiana Cooler' storage ring, and of a polarized atomic-beam target of hydrogen or deuterium in the path of the stored beam. The collaboration involved researchers from several midwestern universities, as well as a number of European institutions. The PINTEX program ended when the Indiana Cooler was shut down in August 2002. The website contains links to some of the numerical results, descriptions of experiments, and a complete list of publications resulting from PINTEX.

Meyer, H.O.

25

Power Systems Development Facility Gasification Test Run TC11  

SciTech Connect

This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

Southern Company Services

2003-04-30T23:59:59.000Z

26

Power Systems Development Facility Gasification Test Run TC09  

SciTech Connect

This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

Southern Company Services

2002-09-30T23:59:59.000Z

27

Power Systems Development Facility Gasification Test Run TC10  

SciTech Connect

This report discusses Test Campaign TC10 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC10 in air- (mainly for transitions and problematic operations) and oxygen-blown mode. Test Run TC10 was started on November 16, 2002, and completed on December 18, 2002. During oxygen-blown operations, gasifier temperatures varied between 1,675 and 1,825 F at pressures from 150 to 180 psig. After initial adjustments were made to reduce the feed rate, operations with the new fluidized coal feeder were stable with about half of the total coalfeed rate through the new feeder. However, the new fluidized-bed coal feeder proved to be difficult to control at low feed rates. Later the coal mills and original coal feeder experienced difficulties due to a high moisture content in the coal from heavy rains. Additional operational difficulties were experienced when several of the pressure sensing taps in the gasifier plugged. As the run progressed, modifications to the mills (to address processing the wet coal) resulted in a much larger feed size. This eventually resulted in the accumulation of large particles in the circulating solids causing operational instabilities in the standpipe and loop seal. Despite problems with the coal mills, coal feeder, pressure tap nozzles and the standpipe, the gasifier did experience short periods of stability during oxygenblown operations. During these periods, the syngas quality was high. During TC10, the gasifier gasified over 609 tons of Powder River Basin subbituminous coal and accumulated a total of 416 hours of coal feed, over 293 hours of which were in oxygen-blown operation. No sorbent was used during the run.

Southern Company Services

2002-12-30T23:59:59.000Z

28

Kinetics Of Carbon Gasification  

Science Journals Connector (OSTI)

Kinetics Of Carbon Gasification ... The steam朿arbon reaction, which is the essential reaction of the gasification processes of carbon-based feed stocks (e.g., coal and biomass), produces synthesis gas (H2 + CO), a synthetically flexible, environmentally benign energy source. ... Coal Gasification in CO2 and Steam:? Development of a Steam Injection Facility for High-Pressure Wire-Mesh Reactors ...

C. W. Zielke; Everett. Gorin

1957-03-01T23:59:59.000Z

29

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier: Commercial Gasifiers Gasifier: Commercial Gasifiers Gasifiers and Impact of Coal Rank and Coal Properties The available commercial gasification technologies are often optimized for a particular rank of coal or coal properties, and in some cases, certain ranks of coal might be unsuitable for utilization in a given gasification technology. On the other hand, there is considerable flexibility in most of the common gasifiers; this is highlighted by the following table, which provides an overview of the level of experience for the various commercially available gasifiers by manufacturer for each coal type. This experience will only continue to expand as more gasification facilities come online and more demonstrations are completed. SOLID FUEL GASIFICATION EXPERIENCE1 High Ash Coals

30

Utility Power Plant Construction (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This statute requires a certificate of necessity from the Indiana Utility Regulatory Commission for the construction, purchase, or lease of an electricity generation facility by a public utility.

31

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992  

SciTech Connect

This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

Not Available

1992-12-01T23:59:59.000Z

32

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, April 1--June 30, 1992  

SciTech Connect

This quarterly technical progress report summarizes work completed during the Seventh Quarter of the First Budget Period, April 1 through June 30, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion will include the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams. Combustion Gas Turbine; Fuel Cell and associated gas treatment; and Externally Fired Gas Turbine/Water Augmented Gas Turbine. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

Not Available

1992-12-01T23:59:59.000Z

33

Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996  

SciTech Connect

The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

NONE

1996-12-31T23:59:59.000Z

34

Utility Regulation (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation (Indiana) Regulation (Indiana) Utility Regulation (Indiana) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Generating Facility Rate-Making Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control any equipment for the production, transmission, delivery, or furnishing of heat, light,

35

Indiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Indiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Indiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Indiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Indiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Indiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

36

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Partner Test Sites Major Partner Test Sites Gasification Systems Technologies - Major Partner Test Sites Major Partner Test Sites Once a technology is ready to be tested at pilot or commercial scale, the cost of building a test facility becomes significant -- often beyond the funding provided for any one project. It then becomes critical to test the technology at a pre-existing facility willing to test experimental technologies. Not surprisingly, most commercial facilities are hesitant to interfere with their operations to experiment, but others, with a view towards the future, welcome promising technologies. Below is a list of major partner test sites that actively host DOE supported research activities. Many of the test sites were built with DOE support, but many were not. Some are commercial, and were designed to perform experimental work. All play an important role in developing technologies with minimal expense to the project, and to the U.S. taxpayer.

37

Eminent Domain (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Indiana) (Indiana) Eminent Domain (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Siting and Permitting Provider Indiana Association of Cities and Towns Utilities, corporations, and gas storage facilities may invoke the law of eminent domain in certain circumstances, as provided for in this

38

Hazardous Waste Management (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) < Back Eligibility Agricultural Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Environmental Management The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental Management is tasked regulating hazardous waste management facilities and practices. Provisions pertaining to permitting, site approval, construction, reporting, transportation, and remediation practices and fees are discussed in these

39

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Background Gasification Background Challenges for Gasification The widespread market penetration of gasification continues to face some challenges. Over the years, gasification challenges related to gasifier and supporting unit availability, operability, and maintainability have been addressed with substantial success, and new implementations of gasification will continue to improve in this area. At present, perhaps the most significant remaining challenge is the relatively high capital costs of gasification plants, particularly given the low capital investment required for NGCC-based power production combined with low natural gas prices currently being experienced in the domestic market. Accordingly, technology that can decrease capital costs of gasification systems and plant supporting systems will be most important towards further deployment of gasification.

40

Indiana I  

Gasoline and Diesel Fuel Update (EIA)

Indiana Indiana I n d i a n a 624,744 289,219 3.26 360 0.00 112 3.82 179,939 3.43 4,330 0.16 87,456 2.77 561,056 2.80 62. Summary Statistics for Natural Gas Indiana, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,333 1,336 1,348 1,347 1,367 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 174 192 107 249 360 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 174 192 107 249 360 Repressuring ................................................ NA NA NA NA NA Nonhydrocarbon Gases Removed ...............

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Current Gasification Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification 禄 Current Gasification 禄 Current Gasification Research Current Gasification Research Sponsored by the U.S. Department of Energy, the National Carbon Capture Center provides first-class facilities to test carbon capture technologies. Sponsored by the U.S. Department of Energy, the National Carbon Capture Center provides first-class facilities to test carbon capture technologies. With coal gasification now in modern commercial-scale applications, the U.S. Department of Energy's (DOE) Office of Fossil Energy has turned its attention to future gasification concepts that offer significant improvements in efficiency, fuel flexibility, economics and environmental sustainability. Fuel flexibility is especially important. Tomorrow's gasification plants conceivably could process a wide variety of low-cost feedstocks, handling

42

Coal Gasification  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically via the process of coal gasification with sequestration. DOE anticipates that coal...

43

Financing of Substitute Natural Gas Costs (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This statute encourages the development of local coal gasification facilities to produce substitute natural gas, calls on state energy utilities to enter into long-term contracts for the purchase...

44

Indiana State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Indiana Indiana State Regulations: Indiana State of Indiana The Indiana Department of Natural Resources (DNR) Division of Oil and Gas regulates petroleum exploration, production, and site abandonment activities, underground injection control, test hole drilling, and geophysical surveying operations. Otherwise, the Indiana Department of Environmental Management (IDEM) administers the major environmental protection laws. Contact Division of Oil and Gas (Indianapolis Central Office) 402 West Washington Street, Room 293 Indianapolis, IN 46204 (317) 232-4055 (phone) (317) 232-1550 (fax) (Division Contacts) Indiana Department of Environmental Management P.O. Box 6015 Indianapolis, IN 46206-6015 (317) 232-8603 (phone) (317) 233-6647 (fax) Disposal Practices and Applicable Regulations

45

Gasification Plant Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

coal gasification projects throughout the world. These databases track proposed gasification projects with approximate outputs greater than 100 megawatts electricity...

46

Gasification Plant Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Plant Databases News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

47

NETL: Coal Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Gasification Systems News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

48

Gasification Systems Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 Gasification Systems Project Portfolio News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International...

49

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen: SNG from Coal: Process & Commercialization Hydrogen: SNG from Coal: Process & Commercialization Weyburn Project The Great Plains Synfuels Plant (GPSP) has had the ability to capture CO2 through the Rectisol process for sequestration or sale as a byproduct. However, no viable market was found for the CO2 in the early years of operation, and the captured CO2 was simply discharged to the atmosphere. This changed in 2000, when the GPSP began selling CO2 emissions, becoming one of the first commercial coal facilities to have its CO2 sequestered. The program had begun in 1997, when EnCana (formerly PanCanadian Resources) sought a solution to declining production in their Weyburn Oil Fields. Dakota Gasification Company, owners of the GPSP, and EnCana made an agreement to sell CO2 for use in Enhanced Oil Recovery (EOR). DGC installed two large CO2 compressors and began shipping 105 million standard cubic feet per day of compressed CO2 (60% of the total CO2 produced at the plant) through a 205 mile pipeline from Beulah, North Dakota, to the Weyburn Oil Fields, located in Saskatchewan, Canada, for EOR. The pipeline was constructed and operated by a BEPC subsidiary. The CO2, about 95.5% pure and very dry, is injected into the mature fields where it has doubled the oil recovery rate of the field. In 2006, a third compressor was installed and an additional agreement was reached with Apache Canada Ltd. to supply CO2 for EOR to their nearby oilfields. The three compressors increased CO2 delivery to 160 million standard cubic feet (MMSCF; or 8,000 tonnes) per day. Through 2007, over 12 million tons of CO2 had been sold, and over the current expected lifetime of the program, an anticipated 20 million tons of CO2 will be stored.

50

EIS-0429: Notice of Intent to Prepare an Environmental Impact...  

Energy Savers (EERE)

Prepare an Environmental Impact Statement Construction and Startup of the Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, Indiana Federal Loan Guarantee...

51

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal: Alternatives/Supplements to Coal - Feedstock Flexibility Coal: Alternatives/Supplements to Coal - Feedstock Flexibility As important as coal is as a primary gasification feedstock, gasification technology offers the important ability to take a wide range of feedstocks and process them into syngas, from which a similarly diverse number of end products are possible. Gasifiers have been developed to suit all different ranks of coal, and other fossil fuels, petcoke and refinery streams, biomass including agricultural waste, and industrial and municipal waste. The flexibility stems from the ability of gasification to take any carbon and hydrogen containing feedstock and then thermochemically break down the feedstock to a gas containing simple compounds which are easy to process into several marketable products.

52

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Oxygen Commercial Technologies for Oxygen Production Gasification processes require an oxidant, most commonly oxygen; less frequently air or just steam may suffice as the gasification agent depending on the process. Oxygen-blown systems have the advantage of minimizing the size of the gasification reactor and its auxiliary process systems. However, the oxygen for the process must be separated from the atmosphere. Commercial large-scale air separation plants are based on cryogenic distillation technology, capable of supplying oxygen at high purity1 and pressure. This technology is well understood, having been in practice for over 75 years. Cryogenic air separation is recognized for its reliability, and it can be designed for high capacity (up to 5,000 tons per day).

53

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifipedia > Feedstock Flexibility > Refinery Streams Gasifipedia > Feedstock Flexibility > Refinery Streams Gasifipedia Coal: Feedstock Flexibility Refinery Streams Gasification is a known method for converting petroleum coke (petcoke) and other refinery waste streams and residuals (vacuum residual, visbreaker tar, and deasphalter pitch) into power, steam and hydrogen for use in the production of cleaner transportation fuels. The main requirement for a gasification feedstock is that it contains both hydrogen and carbon. Below is a table that shows the specifications for a typical refinery feedstock. Specifications for a typical refinery feedstock A number of factors have increased the interest in gasification applications in petroleum refinery operations: Coking capacity has increased with the shift to heavier, more sour crude oils being supplied to the refiners.

54

Pipeline Construction Guidelines (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Division of Pipeline Safety of the Indiana Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has...

55

Biomass Gasification and Methane Digester Property Tax Exemption  

Energy.gov (U.S. Department of Energy (DOE))

Michigan exempts certain energy production related farm facilities from real and personal property taxes. Among exempted property are certain methane digesters, biomass gasification equipment,...

56

Biomass Gasification Combined Cycle  

SciTech Connect

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01T23:59:59.000Z

57

NETL: Gasification Project Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Project Information Gasification Systems Reference Shelf - Project Information Active Projects | Archived Projects | All NETL Fact Sheets Feed Systems A Cost-Effective Oxygen Separation System Based on Open Gradient Magnetic Field by Polymer Beads [SC0010151] Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications [FE0012065] Dry Solids Pump Coal Feed Technology [FE0012062] Coal-CO2 Slurry Feeding System for Pressurized Gasifiers [FE0012500] National Carbon Capture Center at the Power Systems Development Facility [FE0000749] Modification of the Developmental Pressure Decoupled Advanced Coal (PDAC) Feeder [NT0000749] Recovery Act: Development of Ion-Transport Membrane Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems [DE-FC26-98FT40343]

58

Gasification characteristics of eastern oil shale  

SciTech Connect

The Institute of Gas Technology (IGT) is evaluating the gasification characteristics of Eastern oil shales as a part of a cooperative agreement between the US Department of Energy and HYCRUDE Corporation to expand the data base on moving-bed hydroretorting of Eastern oil shales. Gasification of shale fines will improve the overall resource utilization by producing synthesis gas or hydrogen needed for the hydroretorting of oil shale and the upgrading of shale oil. Gasification characteristics of an Indiana New Albany oil shale have been determined over temperature and pressure ranges of 1600 to 1900/sup 0/F and 15 to 500 psig, respectively. Carbon conversion of over 95% was achieved within 30 minutes at gasification conditions of 1800/sup 0/F and 15 psig in a hydrogen/steam gas mixture for the Indiana New Albany oil shale. This paper presents the results of the tests conducted in a laboratory-scale batch reactor to obtain reaction rate data and in a continuous mini-bench-scale unit to obtain product yield data. 2 refs., 7 figs., 4 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1986-11-01T23:59:59.000Z

59

The Role of Oxygen in Coal Gasification  

E-Print Network (OSTI)

Air Products supplies oxygen to a number of coal gasification and partial oxidation facilities worldwide. At the high operating pressures of these processes, economics favor the use of 90% and higher oxygen purities. The effect of inerts...

Klosek, J.; Smith, A. R.; Solomon, J.

60

Entrainment Coal Gasification Modeling  

Science Journals Connector (OSTI)

Entrainment Coal Gasification Modeling ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ...

C. Y. Wen; T. Z. Chaung

1979-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

GASIFICATION SYSTEMS GASIFICATION SYSTEMS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREFACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any

62

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Usage in Coal to Electrical Applications Usage in Coal to Electrical Applications The Integrated Gasification Combined Cycle (IGCC) application of gasification offers some water-saving advantages over other technologies for producing electricity from coal. Regions with limited water resources, typical of many parts of the western United States, could conserve resources by meeting increasing electricity demand with IGCC generation. Many of these areas have good coal resources and a need for new generating capacity. Water use in a thermoelectric power plant is described by two separate terms: water withdrawal and water consumption. Water withdrawal is the amount of water taken into the plant from an outside source. Water consumption refers to the portion of the withdrawn water that is not returned directly to the outside source - for example, water lost to evaporative cooling.

63

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2: CO2 Capture: Impacts on IGCC Plant Designs CO2: CO2 Capture: Impacts on IGCC Plant Designs Specific Impacts on IGCC Plant Designs from CO2 Capture In foregoing discussion, results of NETL's comprehensive study comparing the performance and cost of various fossil fuel-based power generation technologies with and without CO2 capture were reviewed. Of particular interest in that study was the companion set of integrated gasification combined cycle (IGCC) designs, using GE's gasification technology, which can be used to illustrate the design changes needed for CO2 capture. Current Technology - IGCC Plant Design Figure 1 shows a simplified block flow diagram (BFD) of a market-ready IGCC design without CO2 capture. As shown, the IGCC plant consists of the following processing islands, of which a more detailed description of each can be found in the cited NETL referenced report: 1

64

Gasification system  

DOE Patents (OSTI)

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1985-01-01T23:59:59.000Z

65

Gasification system  

DOE Patents (OSTI)

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1983-01-01T23:59:59.000Z

66

NIPSCO (Gas) - Business Energy Efficiency Rebate Program (Indiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NIPSCO (Gas) - Business Energy Efficiency Rebate Program (Indiana) NIPSCO (Gas) - Business Energy Efficiency Rebate Program (Indiana) NIPSCO (Gas) - Business Energy Efficiency Rebate Program (Indiana) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Construction Commercial Weatherization Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Varies NIPSCO, in partnership with Franklin Energy Services, LLC, provides a range of incentive options for its business, government and non-profit customers. Both prescriptive and custom rebates are available to customers who undertake eligible energy efficiency projects at facilities. Retrofit projects consist of the retrofit or replacement of existing equipment or

67

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Conditioning Conditioning Sulfur Recovery and Tail Gas Treating Sulfur is a component of coal and other gasification feed stocks. Sulfur compounds need to be removed in most gasification applications due to environmental regulations or to avoid catalyst poisoning. Whether it is electricity, liquid fuels, or some other product being output, sulfur emissions are regulated, and sulfur removal is important for this reason, along with the prevention of downstream component fouling. In addition to these constraints, recovering saleable sulfur is an important economic benefit for a gasification plant. To illustrate the previous point, in 2011 8.1 million tons of elemental sulfur was produced, with the majority of this coming from petroleum refining, natural gas processing and coking plants. Total shipments were valued at $1.6 billion, with the average mine or plant price of $200 per ton, up from $70.48 in 2010. The United States currently imports sulfur (36% of consumption, mostly from Canada), meaning the market can support more domestic sulfur production.

68

Oil and Gas (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

69

2007 gasification technologies conference papers  

SciTech Connect

Sessions covered: gasification industry roundtable; the gasification market in China; gasification for power generation; the gasification challenge: carbon capture and use storage; industrial and polygeneration applications; gasification advantage in refinery applications; addressing plant performance; reliability and availability; gasification's contribution to supplementing gaseous and liquid fuels supplies; biomass gasification for fuel and power markets; and advances in technology-research and development

NONE

2007-07-01T23:59:59.000Z

70

Soil and Water Conservation (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Association of Soil and Water Conservation Districts is an association of the 92 soil and water conservation districts, each representing one of the 92 Indiana counties.

71

Storing Syngas Lowers the Carbon Price for Profitable Coal Gasification  

Science Journals Connector (OSTI)

There are currently eight gasification facilities operating worldwide producing about 1.7 GW of electricity from coal or petcoke feedstock (10), and in all of these facilities, the syngas is used immediately after it is produced. ...

Adam Newcomer; Jay Apt

2007-10-17T23:59:59.000Z

72

Modeling, Optimization and Economic Evaluation of Residual Biomass Gasification  

E-Print Network (OSTI)

Gasification is a thermo-chemical process which transforms biomass into valuable synthesis gas. Integrated with a biorefinery it can address the facility抯 residue handling challenges and input demands. A number of feedstock, technology, oxidizer...

Georgeson, Adam

2012-02-14T23:59:59.000Z

73

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Cleanup: Syngas Contaminant Removal and Conditioning Syngas Cleanup: Syngas Contaminant Removal and Conditioning Acid Gas Removal (AGR) Acid gases produced in gasification processes mainly consist of hydrogen sulfide (H2S), carbonyl sulfide (COS), and carbon dioxide (CO2). Syngas exiting the particulate removal and gas conditioning systems, typically near ambient temperature at 100掳F, needs to be cleaned of the sulfur-bearing acid gases to meet either environmental emissions regulations, or to protect downstream catalysts for chemical processing applications. For integrated gasification combined cycle (IGCC) applications, environmental regulations require that the sulfur content of the product syngas be reduced to less than 30 parts per million by volume (ppmv) in order to meet the stack gas emission target of less than 4 ppmv sulfur dioxide (SO2)1. In IGCC applications, where selective catalytic reduction (SCR) is required to lower NOx emissions to less than 10 ppmv, syngas sulfur content may have to be lowered to 10 to 20 ppmv in order to prevent ammonium bisulfate fouling of the heat recovery steam generator's (HRSG) cold end tubes. For fuels production or chemical production, the downstream synthesis catalyst sulfur tolerance dictates the sulfur removal level, which can be less than 0.1 ppmv.

74

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Power: Typical IGCC Configuration Power: Typical IGCC Configuration Major Commercial Examples of IGCC Plants While there are many coal gasification plants in the world co-producing electricity, chemicals and/or steam, the following are four notable, commercial-size IGCC plants currently in operation solely for producing electricity from coal and/or coke. Tampa Electric, Polk County 250 MW GE Gasifier Wabash, West Terre Haute 265 MW CoP E-Gas(tm) Gasifier Nuon, Buggenum 250 MW Shell Gasifier Elcogas, Puertollano 300 MW Prenflo Gasifier All of the plants began operation prior to 2000 and employ high temperature entrained-flow gasification technology. GE (formerly Texaco-Chevron) and ConocoPhillips (CoP) are slurry feed gasifiers, while Shell and Prenflo are dry feed gasifiers. None of these plants currently capture carbon dioxide (CO2). A simplified process flow diagram of the 250-MW Tampa Electric IGCC plant is shown in Figure 1 to illustrate the overall arrangement of an operating commercial scale IGCC plant. The Tampa Electric plant is equipped with both radiant and convective coolers for heat recovery, generating high pressure (HP) steam.

75

Gasification characteristics and kinetics for an eastern oil shale  

SciTech Connect

Gasification tests of Indiana New Albany oil shale fines have been conducted. Thermobalance test results indicate that over 95% of the organic carbon in the shale can be gasified at 1700{degree}F and 135 psig with 30 minutes residence time under a synthesis gas atmosphere and at 1800{degree}F and 15 psig with 30 minutes residence time under a hydrogen/steam atmosphere. A simple kinetic expression for hydrogen/steam gasification weight loss has been developed. Weight loss has been described as the sum of the weight loss from two independent, simultaneous reaction paths: a rapid (<2 minutes) first order reaction and a slower gasification reaction that can be expressed in terms of the steam/carbon reaction. Work is in progress to study the gasification of other Eastern shales and improve the kinetic description of weight loss.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1987-04-01T23:59:59.000Z

76

Indiana | OpenEI  

Open Energy Info (EERE)

Indiana Indiana Dataset Summary Description Abstract: Annual average wind resource potential for the state of Indiana at a 50 meter height. Purpose: Provide information on the wind resource development potential within the state of Indiana. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a UTM zone 16 datum WGS 84 projection system. Source National Renewable Energy Laboratory (NREL) Date Released March 31st, 2004 (10 years ago) Date Updated March 02nd, 2009 (5 years ago) Keywords GIS Indiana NREL shapefile wind Data application/zip icon Shapefile (zip, 2.7 MiB)

77

Northwestern Indiana Regional Planning Commission (Indiana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwestern Indiana Regional Planning Commission (Indiana) Northwestern Indiana Regional Planning Commission (Indiana) Northwestern Indiana Regional Planning Commission (Indiana) < Back Eligibility State/Provincial Govt Industrial Construction Local Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Siting and Permitting Provider Northwestern Indiana Regional Planning Commission NIRPC is a regional council of local governments serving the citizens of Lake, Porter, and LaPorte counties in Northwest Indiana. NIRPC provides a forum that enables the citizens of Northwest Indiana to address regional issues relating to transportation, the environment and community, and economic development. NIRPC, as a recipient of federal funds, is subject to

78

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture R&D Capture R&D DOE/NETL's pre-combustion CO2 control technology portfolio of R&D projects is examining various CO2 capture technologies, and supports identification of developmental pathways linking advanced fossil fuel conversion and CO2 capture. The Program's CO2 capture activity is being conducted in close coordination with that of advanced, higher-efficiency power generation and fossil fuel conversion technologies such as gasification. Links to the projects can be found here. Finally, an exhaustive and periodically updated report on CO2 capture R&D sponsored by NETL is available: DOE/NETL Advanced CO2 Capture R&D Program: Technology Update (also referred to as the CO2 Handbook). Carbon Dioxide CO2 Capture Commercial CO2 Uses & Carbon Dioxide Enhanced Oil Recovery

79

Central Indiana Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Central Indiana Ethanol LLC Jump to: navigation, search Name: Central Indiana Ethanol LLC Place: Marion, Indiana Zip: 46952 Product: Ethanol producer developina a 151 mlpa plant in...

80

INDIANA UNIVERSITY William Sherman Senior Technology Advisor...  

NLE Websites -- All DOE Office Websites (Extended Search)

INDIANA UNIVERSITY William Sherman Senior Technology Advisor, Indiana University William Sherman is a senior technical advisor at Indiana University. He is the scientific...

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Save Energy Now Indiana | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Indiana Save Energy Now Indiana Map highlighting Indiana The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program)...

82

FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)  

SciTech Connect

The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project was conducted by the Energy & Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy (DOE). The goal of the project was to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined-cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuel(s) at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consisted of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing information on high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. A preliminary assessment of feedstock availability within Indiana and Illinois was conducted. Feedstocks evaluated included those with potential tipping fees to offset processing cost: sewage sludge, municipal solid waste, used railroad ties, urban wood waste (UWW), and used tires/tire-derived fuel. Agricultural residues and dedicated energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge was selected as the primary feedstock for consideration at the Wabash River Plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary into the second stage of the gasifier. A high-pressure feed pump and fuel dispersion nozzles were tested for their ability to cross the pressure boundary and adequately disperse the sludge into the second stage of the gasifier. These results suggest that it is technically feasible to get the sludge dispersed to an appropriate size into the second stage of the gasifier although the recycle syngas pressure needed to disperse the sludge would be higher than originally desired. A preliminary design was prepared for a sludge-receiving, storage, and high-pressure feeding system at the Wabash River Plant. The installed capital costs were estimated at approximately $9.7 million, within an accuracy of {+-}10%. An economic analysis using DOE's IGCC Model, Version 3 spreadsheet indicates that in order to justify the additional capital cost of the system, Global Energy would have to receive a tipping fee of $12.40 per wet ton of municipal sludge delivered. This is based on operation with petroleum coke as the primary fuel. Similarly, with coal as the primary fuel, a minimum tipping of $16.70 would be required. The availability of delivered sludge from Indianapolis, Indiana, in this tipping-fee range is unlikely; however, given the higher treatment costs associated with sludge treatment in Chicago, Illinois, delivery of sludge from Chicago, given adequate rail access, might be economically viable.

Michael L. Swanson; Mark A. Musich; Darren D. Schmidt; Joseph K. Schultz

2003-02-01T23:59:59.000Z

83

Water Resource Management (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

Water may be used in reasonable amounts for beneficial purposes, which are defined by the state of Indiana to include power generation and energy conversion. This section describes other...

84

Water Pollution Control (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management and the Water Pollution Control Board are tasked with the prevention of pollution in the waters of the state. The Board may adopt rules and...

85

Gasification Research BIOENERGY PROGRAM  

E-Print Network (OSTI)

Gasification Research BIOENERGY PROGRAM Description Researchers inthe@tamu.edu Skid-mounted gasifier: 1.8 tons-per-day pilot unit Gasification of cotton gin trash The new Texas A

86

Gasification: redefining clean energy  

SciTech Connect

This booklet gives a comprehensive overview of how gasification is redefining clean energy, now and in the future. It informs the general public about gasification in a straight-forward, non-technical manner.

NONE

2008-05-15T23:59:59.000Z

87

Current Gasification Research  

Energy.gov (U.S. Department of Energy (DOE))

With coal gasification now in modern commercial-scale applications, the U.S. Department of Energy's (DOE) Office of Fossil Energy has turned its attention to future gasification concepts that offer...

88

Gasification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification Gasification Gasification The Wabash River Clean Coal Power Plant The Wabash River Clean Coal Power Plant Gasification Technology R&D Coal gasification offers one of the most versatile and clean ways to convert coal into electricity, hydrogen, and other valuable energy products. Coal gasification electric power plants are now operating commercially in the United States and in other nations, and many experts predict that coal gasification will be at the heart of future generations of clean coal technology plants. Rather than burning coal directly, gasification (a thermo-chemical process) breaks down coal - or virtually any carbon-based feedstock - into its basic chemical constituents. In a modern gasifier, coal is typically exposed to steam and carefully controlled amounts of air or oxygen under high

89

Coal gasification development intensifies  

Science Journals Connector (OSTI)

Coal gasification development intensifies ... Three almost simultaneous developments in coal gasification, although widely divergent in purpose and geography, rapidly are accelerating the technology's movement into an era of commercial exploitation. ... A plant to be built in the California desert will be the first commercialsize coal gasification power plant in the U.S. In West Germany, synthesis gas from a coal gasification demonstration plant is now being used as a chemical feedstock, preliminary to scaleup of the process to commercial size. ...

1980-02-25T23:59:59.000Z

90

Gasification Systems Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan Project Portfolio Project...

91

Gasification Systems Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan Project...

92

2010 Worldwide Gasification Database  

DOE Data Explorer (OSTI)

The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

93

Indiana/Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives < Indiana Jump to: navigation, search Contents 1 Financial Incentive Programs for Indiana 2 Rules, Regulations and Policies for Indiana Download All Financial Incentives and Policies for Indiana CSV (rows 1 - 165) Financial Incentive Programs for Indiana Download Financial Incentives for Indiana CSV (rows 1 - 86) Incentive Incentive Type Active Alternative Fuel Transportation Grant Program (Indiana) State Grant Program No Alternative Power & Energy Grant Program (Indiana) State Grant Program No Bartholomew County REMC - Residential Energy Efficiency Rebate Program (Indiana) Utility Rebate Program Yes Biodiesel Tax Credits (Indiana) Corporate Tax Credit No Biomass Feasibility Study Grant Program (Indiana) State Grant Program No

94

Gasification characteristics and kinetics for an Eastern oil shale  

SciTech Connect

Gasification reactivity of an Eastern oil shale was studied in a three-year research project under a cooperative agreement between the Department of Energy, Morgantown Energy Technology Center, and HYCRUDE Corp. to expand the data base on the hydroretorting of Eastern oil shales. Gasification tests were conducted with the Indiana New Albany oil shale during the first year of the program. A total of six Eastern oil shales are planned to be tested during the program. A laboratory thermobalance and a 2-inch diameter fluidized bed were used to conduct gasification tests with Indiana New Albany oil shale. Temperature and pressure ranges used were 1600 to 1900/sup 0/F and 15 to 500 psig, respectively. Fifteen thermobalance tests were made in hydrogen/steam and synthesis gas/steam mixtures. Six fluidized-bed tests were made in the same synthesis gas/steam mixture. Carbon conversions as high as 95% were achieved. Thermobalance test results and a kinetic description of weight loss during hydrogen/steam gasification are presented. 14 refs., 6 figs., 4 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1987-01-01T23:59:59.000Z

95

Demonstration of Black Liquor Gasification at Big Island  

SciTech Connect

This Final Technical Report provides an account of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific LLC's Big Island, VA facility. This report covers the period from May 5, 2000 through November 30, 2006.

Robert DeCarrera

2007-04-14T23:59:59.000Z

96

Materials of Gasification  

SciTech Connect

The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

None

2005-09-15T23:59:59.000Z

97

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... Steam朇oal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... Steam朇oal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

98

NETL: Gasification Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Gasification Systems > Reference Shelf > Archived Projects Home > Technologies > Coal & Power Systems > Gasification Systems > Reference Shelf > Archived Projects Gasification Systems Reference Shelf - Archived Projects Archived Projects | Active Projects | All NETL Fact Sheets Feed Systems Reaction-Driven Ion Transport Membranes Gasifier Optimization and Plant Supporting Systems Coal/Biomass Gasification at Colorado School of Mines Co-Production of Electricity and Hydrogen Using a Novel Iron-Based Catalyst Co-Production of Substitute Natural Gas/Electricity via Catalytic Coal Gasification Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals Hybrid Combustion-Gasification Chemical Looping Coal Power Technology Development

99

Indiana Energy Energy Challenges  

E-Print Network (OSTI)

Indiana Energy Conference Energy Challenges And Opportunities November 5, 2013 颅 9:00 a.m. 颅 5:00 p spectrum of business sectors including: Energy Community Manufacturing Policymakers Finance Engineering of Energy & Water: A Well of Opportunity Our water and energy systems are inextricably linked. Energy

Ginzel, Matthew

100

2007 gasification technologies workshop papers  

SciTech Connect

Topics covered in this workshop are fundamentals of gasification, carbon capture, reviews of financial and regulatory incentives, coal to liquids, and focus on gasification in the Western US.

NONE

2007-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

in IGCC Projects in IGCC Projects The Great Plains Synfuels Plant has long been gasifying coal to produce synthetic natural gas and ammonia, and capturing CO2 which is pipelined to Canada for EOR in the Weyburn oil field. Several new IGCC-based projects in the United States will be greatly expanding the scope of CO2 capture and use/storage. Kemper County Energy Facility Mississippi Power's Kemper County facility is in late stages of construction. It will be a lignite-fuel IGCC plant, generating a net 524 MW of power from syngas, while capturing over 65% of CO2 generated. The CO2 will be sent by pipeline to depleted oil fields in Mississippi for enhanced oil recovery operations. Hydrogen Energy California (HECA) Project HECA will be a 300MW net, coal and petroleum coke-fueled IGCC polygeneration plant (producing hydrogen for both power generation and fertilizer manufacture). Ninety percent of the CO2 produced will be captured and transported to Elk Hills Oil Field for EOR, enabling recovery of 5 million additional barrels of domestic oil per year.

102

Downdraft gasification of biomass.  

E-Print Network (OSTI)

??The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with (more)

Milligan, Jimmy B.

1994-01-01T23:59:59.000Z

103

Coal Gasification Systems Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

104

A Texas project illustrates the benefits of integrated gasification  

SciTech Connect

Gasification can be an attractive option for converting a variety of petroleum feedstocks to chemicals. Natural gas is commonly sued to produce acetic acid, isocyanates, plastics, and fibers. But low-cost, bottom-of-the-barrel feeds, such as vacuum resid, petroleum coke, and asphaltenes, also can be used. In any case, gasification products include synthesis gas, carbon monoxide, hydrogen, steam, carbon dioxide, and power. The more a gasification facility is integrated with utilities and other non-core operations of a production complex, the more economical the products are for all consumers. The paper discusses gasification of natural gas, light hydrocarbons (ethane, propanes, and butanes), and heavy hydrocarbons (distillates, heavy residues, asphalts, coals, petroleum coke). The paper then describes a Texas City Gasification Project, which gasifies methane to produce carbon monoxide, hydrogen, and alcohol. The plant is integrated with a cogeneration plant. Economics are discussed.

Philcox, J. [Praxair Inc., Houston, TX (United States); Fenner, G.W. [Praxair Inc., Tonawanda, NY (United States)

1997-07-14T23:59:59.000Z

105

Coal Gasification in Australia  

Science Journals Connector (OSTI)

... P. S. Andrews gave a full account of the Federal project for the pressure gasification of non-coking coals for the combined purpose of town's gas ' and the ... of town's gas ' and the production of synthetic liquid fuel. Work on the gasification of brown coal in. Victoria was commenced in 1931 by the technical staff of ...

1955-06-11T23:59:59.000Z

106

Gasification: A Cornerstone Technology  

ScienceCinema (OSTI)

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2010-01-08T23:59:59.000Z

107

Gasification: A Cornerstone Technology  

SciTech Connect

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2008-03-26T23:59:59.000Z

108

Incentives boost coal gasification  

SciTech Connect

Higher energy prices are making technologies to gasify the USA's vast coal reserves attractive again. The article traces the development of coal gasification technology in the USA. IGCC and industrial gasification projects are now both eligible for a 20% investment tax credit and federal loan guarantees can cover up to 80% of construction costs. 4 photos.

Hess, G.

2006-01-16T23:59:59.000Z

109

Fluidized-bed gasification of an eastern oil shale  

SciTech Connect

The current conceptual HYTORT process design for the hydroretorting of oil shales employs moving-bed retorts that utilize shale particles larger than 3 mm. Work at the Institute of Gas Technology (IGT) is in progress to investigate the potential of high-temperature (1100 to 1300 K) fluidized-bed gasification of shale fines (<3 mm size) using steam and oxygen as a technique for more complete utilization of the resource. Synthesis gas produced from fines gasification can be used for making some of the hydrogen needed in the HYTORT process. After completing laboratory-scale batch and continuous gasification tests with several Eastern oil shales, two tests with Indiana New Albany shale were conducted in a 0.2 m diameter fluidized-bed gasification process development unit (PDU). A conceptual gasifier design for 95% carbon conversion was completed. Gasification of 20% of the mined shale can produce the hydrogen required by the HYTORT reactor to retort 80% of the remaining shale. 12 refs., 1 fig., 5 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1987-01-01T23:59:59.000Z

110

EIS-0429: Amended Notice of Intent To Prepare the Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Involvement Department of Energy Proposed Federal Loan Guarantee for the Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN, and CO2 Pipeline DOE...

111

EIS-0429: Scoping Meeting Transcript, 12/3/2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1232009 EIS-0429: Scoping Meeting Transcript, 1232009 Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline Public Scoping Meeting - 12...

112

Gasification kinetics of six eastern shales in steam and synthesis gas atmospheres  

SciTech Connect

Gasification reactivities have been determined for six Eastern shales with conversions described by a model incorporating fast and slow gasification reactions. A simple model, based on Indiana New Albany shale, was developed to describe the fast and slow weight loss as well as the slow sulfur and organic carbon gasification rates. The slow sulfur and organic carbon reactions are described by rate equations that are first order in sulfur and organic carbon and include the steam pressure. Terms in the organic carbon rate expression account for hydrogen and carbon monoxide inhibition of the steam-carbon reaction. The fraction of shale species lost by fast and slow gasification and the rate of slow sulfur gasification are similar (and assumed to be equal) for the six Eastern shales studied. Eastern shale organic carbon reactivities are different and have been described with different kinetic parameters in the slow organic carbon gasification rate equation. The kinetic expressions developed for Eastern shale gasification are valid in steam and steam; synthesis gas mixtures and for residence times of more than 3 minutes. Gasification is described for temperature and pressure ranges of 1144 to 1311 K and 0.20 to 3.55 MPa, respectively.

Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (USA))

1989-03-01T23:59:59.000Z

113

2006 gasification technologies conference papers  

SciTech Connect

Sessions covered: business overview, industry trends and new developments; gasification projects progress reports; industrial applications and opportunities; Canadian oil sands; China/Asia gasification markets - status and projects; carbon management with gasification technologies; gasification economics and performance issues addressed; and research and development, and new technologies initiatives.

NONE

2006-07-01T23:59:59.000Z

114

Beluga Coal Gasification - ISER  

SciTech Connect

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31T23:59:59.000Z

115

A Stoichiometric Analysis of Coal Gasification  

Science Journals Connector (OSTI)

A Stoichiometric Analysis of Coal Gasification ... Gasification of New Zealand Coals: A Comparative Simulation Study ... Gasification of New Zealand Coals: A Comparative Simulation Study ...

James Wei

1979-07-01T23:59:59.000Z

116

NETL: Gasification Systems Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Shelf Shelf Gasification Systems Reference Shelf TABLE OF CONTENTS Brochures Conferences and Workshops Gasification Systems Projects National Map Gasification Systems Projects and Performers Gasification Systems Project Portfolio Gasifipedia Multi-phase Flow with Interphase eXchange (MFIX) Patents Program Presentations Project Information Projects Summary Table by State Solicitations Systems and Industry Analyses Studies Technical Presentations & Papers Technology Readiness Assessment (Comprehensive Report | Overview Report) Video, Images & Photos Gasification Plant Databases CD Icon Request Gasification Technologies Information on a CD. Gasification RSS Feed Subscribe to the Gasification RSS Feed to follow website updates. LinkedIn DOE Gasification Program Group Subscribe to the LinkedIn DOE Gasification Program group for more information and discussion.

117

17 - Fluidized bed gasification  

Science Journals Connector (OSTI)

Abstract: The chapter describes the state-of-the-art of fluidized bed gasification of solid fuels, starting from the key role played by hydrodynamics, and its strong correlation with physical and chemical phenomena of the process and operating performance parameters of the reactor. The possible configurations of fluidized bed gasification plants are also assessed, and an analysis of the main methods for syngas cleaning is reported. Finally, the chapter describes some of the most interesting commercial experiences. The analysis indicates that the gasification of biomass and also of municipal and industrial solid wastes appear to be the most interesting sectors for the industrial development and utilization of fluidized bed gasifiers.

U. Arena

2013-01-01T23:59:59.000Z

118

Gasification Technologie: Opportunities & Challenges  

SciTech Connect

This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

Breault, R.

2012-01-01T23:59:59.000Z

119

Microsoft Word - indiana.doc  

Gasoline and Diesel Fuel Update (EIA)

Indiana Indiana NERC Region(s) ....................................................................................................... RFC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 27,638 13 Electric Utilities ...................................................................................................... 23,008 8 Independent Power Producers & Combined Heat and Power ................................ 4,630 23 Net Generation (megawatthours) ........................................................................... 125,180,739 11

120

INDIANA UNIVERSITY Adam W. Herbert  

E-Print Network (OSTI)

for the Indiana Genomics Initiative, our goal is to double research activity in the School of Medicine and signifi with the great strides we are making on the various aspects of the Indiana Genomics Initiative, creates critical of the nation's leaders in genomics research, our goal is to become one of the top five cancer centers

Indiana University

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Microsoft Word - indiana.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Indiana NERC Region(s) ....................................................................................................... RFC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 27,638 13 Electric Utilities ...................................................................................................... 23,008 8 Independent Power Producers & Combined Heat and Power ................................ 4,630 23 Net Generation (megawatthours) ........................................................................... 125,180,739 11

122

Gasification 聟 Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Clearwater Clean Coal Conference, Clearwater, Florida, June 5 to 9, 2011 Clearwater Clean Coal Conference, Clearwater, Florida, June 5 to 9, 2011 Gasification Technologies Advances for Future Energy Plants Jenny B. Tennant Technology Manager - Gasification 2 Gasification Program Goal "Federal support of scientific R&D is critical to our economic competitiveness" Dr. Steven Chu, Secretary of Energy November 2010 The goal of the Gasification Program is to reduce the cost of electricity, while increasing power plant availability and efficiency, and maintaining the highest environmental standards 3 Oxygen Membrane - APCI - 25% capital cost reduction - 5.0% COE reduction Warm Gas Cleaning - RTI in combination with H 2 /CO 2 Membrane - Eltron - 2.9 % pt efficiency increase - 12% COE decrease Oxygen CO 2 H 2 rich stream Water Gas Shift*

123

NETL: Gasification Systems - Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Shelf > Solicitations Shelf > Solicitations Gasification Systems Solicitations All NETL Solicitations / Funding Opportunity Announcements (FOA) Gasification RSS Feed NETL RSS Feeds: List of available NETL RSS feeds. Business & Solicitations RSS: Subscribe to this to be notified of all NETL solicitations or FOA postings. Gasification RSS: Subscribe to this to be notified of Gasification news, solicitations and FOA postings. Business Alert Notification System Official notification is available through the Business Alert Notification System. *These notifications are provided as a courtesy and there may be a delay between the opportunity announcement and the arrival of the alert. SOLICITATION TITLE / AWARDS ANNOUNCEMENT PROJECT PAGE(S) 12.11.13: Fossil Energy's Request for Information DE-FOA-0001054; titled "Novel Crosscutting Research and Development to Support Advanced Energy Systems." Application due date is January 15, 2014. Applications and/or instructions can be found with this Funding Opportunity Announcement on FedConnect.

124

Gasification 聟 Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

th th Annual International Colloquium on Environmentally Preferred Advanced Power Generation, Costa Mesa, CA, February 7, 2012 An Overview of U.S. DOE's Gasification Systems Program Jenny B. Tennant Technology Manager - Gasification 2 Gasification Program Goal "Federal support of scientific R&D is critical to our economic competitiveness" Dr. Steven Chu, Secretary of Energy November 2010 The goal of the Gasification Program is to reduce the cost of electricity, while increasing power plant availability and efficiency, and maintaining the highest environmental standards 3 U.S. Coal Resources Low rank: lignite and sub-bituminous coal - About 50% of the U.S. coal reserves - Nearly 50% of U.S. coal production - Lower sulfur Bituminous coal

125

Coal gasification: Belgian first  

Science Journals Connector (OSTI)

... hope for Europe's coal production came with the announcement this month that the first gasification of coal at depths of nearly 1,000 metres would take place this May in ... of energy.

Jasper Becker

1982-03-04T23:59:59.000Z

126

Co-gasification Reactivity of Coal and Woody Biomass in High-Temperature Gasification  

Science Journals Connector (OSTI)

(20) Although the total pressure was 0.5 MPa and lower than the usual conditions of the gasifier, it has been confirmed that the total pressure has little influence on the gasification rate of char when the partial pressure of the gasifying agent is the same and the total pressure is less than 2 MPa. ... While the pyrolysis and the char gasification were tested separately in the above experiments, raw samples of coals, cedar bark, and the mixtures were gasified with carbon dioxide at high temperature using the PDTF facility in this section, the same as the reductor in the air-blown two-stage entrained flow coal gasifier. ...

Shiro Kajitani; Yan Zhang; Satoshi Umemoto; Masami Ashizawa; Saburo Hara

2009-09-24T23:59:59.000Z

127

Gasification of Canola Meal and Factors Affecting Gasification Process  

Science Journals Connector (OSTI)

Non-catalytic gasification of canola meal for the production of ... in order to study the effects of different gasification parameters on gas composition, H2/CO ratio, gas yield, syngas yield, lower heating value...

Ashwini Tilay; Ramin Azargohar; Regan Gerspacher; Ajay Dalai

2014-03-01T23:59:59.000Z

128

Nature Preserves (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana) Indiana) Nature Preserves (Indiana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Natural Resources Certain areas are established as nature preserves within the state of Indiana, and development is limited in these areas. The Indiana Department

129

Solid Waste Management (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Management (Indiana) Solid Waste Management (Indiana) Solid Waste Management (Indiana) < Back Eligibility Agricultural Commercial Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Indiana Program Type Environmental Regulations Provider Association of Indiana Solid Wastes Districts Inc. The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of Environmental Management and the Indiana Solid Waste Management Board are tasked with planning and adopting rules and regulations governing solid waste management practices. Provisions pertaining to landfill management and expansion, permitting,

130

Better Buildings Neighborhood Program: Indianapolis, Indiana  

NLE Websites -- All DOE Office Websites (Extended Search)

Indianapolis, Indianapolis, Indiana to someone by E-mail Share Better Buildings Neighborhood Program: Indianapolis, Indiana on Facebook Tweet about Better Buildings Neighborhood Program: Indianapolis, Indiana on Twitter Bookmark Better Buildings Neighborhood Program: Indianapolis, Indiana on Google Bookmark Better Buildings Neighborhood Program: Indianapolis, Indiana on Delicious Rank Better Buildings Neighborhood Program: Indianapolis, Indiana on Digg Find More places to share Better Buildings Neighborhood Program: Indianapolis, Indiana on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC

131

Alternative Fuels Data Center: Indiana Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Indiana Information to Indiana Information to someone by E-mail Share Alternative Fuels Data Center: Indiana Information on Facebook Tweet about Alternative Fuels Data Center: Indiana Information on Twitter Bookmark Alternative Fuels Data Center: Indiana Information on Google Bookmark Alternative Fuels Data Center: Indiana Information on Delicious Rank Alternative Fuels Data Center: Indiana Information on Digg Find More places to share Alternative Fuels Data Center: Indiana Information on AddThis.com... Indiana Information This state page compiles information related to alternative fuels and advanced vehicles in Indiana and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

132

Status of Coal Gasification: 1977  

Science Journals Connector (OSTI)

High-pressure technology is important to coal gasification for several reasons. When the end product ... of high pressures in all types of coal gasification reduces the pressure drop throughout the equipment,...

F. C. Schora; W. G. Bair

1979-01-01T23:59:59.000Z

133

Gasification of selected woody plants  

Science Journals Connector (OSTI)

The article contains laboratory data comparing the rate of gasification of five types of woody plants梑eech, ... oak, willow, poplar and rose. The gasification rate was determined thermogravimetrically. Carbon di...

Buryan Petr

2014-07-01T23:59:59.000Z

134

Indiana Michigan Power Co (Indiana) | Open Energy Information  

Open Energy Info (EERE)

Indiana) Indiana) Jump to: navigation, search Name Indiana Michigan Power Co Place Indiana Utility Id 9324 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COGEN/SPP - Cogeneration and/or Small Power Production Service CS-IRP2 - Contract Service Interruptible Power Industrial Cogeneration and/or Small Power Production - Standard Meter Industrial Cogeneration and/or Small Power Production - TOD Industrial ECLS - 100 watt HPS Lighting ECLS - 100 watt HPS - Overhead Circuitry Lighting ECLS - 100 watt HPS - Post-Top Lighting ECLS - 100 watt HPS - Underground Circuitry Lighting

135

Indiana's 4th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Indiana Clean Energy Indiana Office of Energy Defense Development Indiana Soybean Alliance Indianapolis Power Light Megawatt Energy Systems Simon Property Group Solarvest...

136

Chapter 5 - Gasification Processes  

Science Journals Connector (OSTI)

Publisher Summary There is a broad range of reactor types that are used in the practical realization of the gasification process. For most purposes, these reactor types can be grouped into one of three categories: moving-bed gasifiers, fluid-bed gasifiers, and entrained-flow gasifiers. Moving-bed processes are the oldest processes, and two processes in particular, the producer gas process and the water gas process, have played an important role in the production of synthesis gas from coal and coke. In moving bed processes, there are the sasol-lurgi dry bottom process, British Gas/Lurgi (BGL) slagging gasifier, that are detailed in the chapter along with their applications. Following this, fluid-bed processes are discussed in which the blast has two functions: that of blast as a reactant and that of the fluidizing medium for the bed. The best known fluid-bed gasifiers that have no tar problem are regenerators of catalytic cracking units that often operate under reducing, that is, gasification conditions that can be found in many refineries. HRL process, BHEL gasifier, circulating fluidized-bed (CFB) processes, the KBR transport gasifier, agglomerating fluid-bed processes, the Pratt & Whitney Rocketdyne (PWR) gasifier, the GEE gasification process, the Shell Gasification Process (SGP), Lurgi s Multi-Purpose Gasification process (MPG), etc. are the various processes discussed in the chapter.

Christopher Higman; Maarten van der Burgt

2008-01-01T23:59:59.000Z

137

Coal Gasification Report.indb  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Coal Integrated Coal Gasification Combined Cycle: Market Penetration Recommendations and Strategies Produced for the Department of Energy (DOE)/ National Energy Technology Laboratory (NETL) and the Gasification Technologies Council (GTC) September 2004 Coal-Based Integrated Gasification Combined Cycle: Market Penetration Strategies and Recommendations Final Report Study Performed by:

138

Biomass Gasification in Supercritical Water  

Science Journals Connector (OSTI)

Biomass Gasification in Supercritical Water ... A packed bed of carbon within the reactor catalyzed the gasification of these organic vapors in the water; consequently, the water effluent of the reactor was clean. ... A method for removing plugs from the reactor was developed and employed during an 8-h gasification run involving potato wastes. ...

Michael Jerry Antal, Jr.; Stephen Glen Allen; Deborah Schulman; Xiaodong Xu; Robert J. Divilio

2000-10-14T23:59:59.000Z

139

FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)  

SciTech Connect

The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project is being conducted by the Energy and Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy. The goal of the project is to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuels at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consists of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal at up to 30% on a Btu basis, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing prior art with respect to high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. Activities and results thus far include the following. Several potential alternative fuels have been obtained for evaluation and testing as potential feedstocks, including sewage sludge, used railroad ties, urban wood waste, municipal solid waste, and used waste tires/tire-derived fuel. Only fuels with potential tipping fees were considered; potential energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge has been selected as one of the primary feedstocks for consideration at the Wabash plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary. High-temperature drop-tube furnace tests were conducted to determine if explosive fragmentation of high-moisture sludge droplets could be expected, but showed that these droplets underwent a shrinking and densification process that implies that the sludge will have to be well dispersed when injected into the gasifier. Fuel dispersion nozzles have been obtained for measuring how well the sludge can be dispersed in the second stage of the gasifier. Future work will include leasing a Schwing America pump to test pumping sewage sludge against 400 psig. In addition, sludge dispersion testing will be completed using two different dispersion nozzles to determine their ability to generate sludge particles small enough to be entrained out of the E-Gas entrained-flow gasifier.

Michael L. Swanson; Mark A. Musich; Darren D. Schmidt

2001-11-01T23:59:59.000Z

140

Recovery Act State Memos Indiana  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Indiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Benchmarking Biomass Gasification Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

142

GASIFICATION FOR DISTRIBUTED GENERATION  

SciTech Connect

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

143

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

144

Gasification of black liquor  

DOE Patents (OSTI)

A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

Kohl, Arthur L. (Woodland Hills, CA)

1987-07-28T23:59:59.000Z

145

NETL: Gasification - National Carbon Capture Center at the Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Gasification National Carbon Capture Center at the Power Systems Development Facility National Carbon Capture Center Participants The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. The PSDF now houses the National Carbon Capture Center (NCCC) to address the nation's need for cost-effective, commercially viable CO2 capture options for flue gas from pulverized coal power plants and syngas from coal gasification power plants. The NCCC focuses national efforts on reducing greenhouse gas emissions through technological innovation, and serve as a neutral test center for emerging carbon capture technologies. PSDF-NCCC Background

146

Clean Coal Technology (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

147

NETL: 2010 World Gasification Database Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Gasification Systems > 2010 World Gasification Database Home > Technologies > Coal & Power Systems > Gasification Systems > 2010 World Gasification Database Gasification Systems 2010 Worldwide Gasification Database Archive DOE/NETL 2010 Worldwide Gasification Database Worldwide Gasification Database Analysis The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

148

Indiana 50 M Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

Indiana 50 M Wind Resource Indiana 50 M Wind Resource Metadata also available as Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: AWS TrueWind/NREL Publication_Date: March, 2004 Title: Indiana 50 M Wind Resource Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

149

Fuel alcohol opportunities for Indiana  

SciTech Connect

Prepared at the request of US Senator Birch Bayh, Chairman of the National Alcohol Fuels Commission, this study may be best utilized as a guidebook and resource manual to foster the development of a statewide fuel alcohol plan. It examines sectors in Indiana which will impact or be impacted upon by the fuel alcohol industry. The study describes fuel alcohol technologies that could be pertinent to Indiana and also looks closely at how such a fuel alcohol industry may affect the economic and policy development of the State. Finally, the study presents options for Indiana, taking into account the national context of the developing fuel alcohol industry which, unlike many others, will be highly decentralized and more under the control of the lifeblood of our society - the agricultural community.

None

1980-08-01T23:59:59.000Z

150

Integrated Gasification Combined Cycle Based on Pressurized Fluidized Bed Gasification  

Science Journals Connector (OSTI)

Enviropower Inc. has developed a modern power plant concept based on an integrated pressurized fluidized bed gasification and gas turbine combined cycle (IGCC)....

Kari Salo; J. G. Patel

1997-01-01T23:59:59.000Z

151

NETL: Gasifipedia - Gasification in Detail  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamentals Fundamentals Gasification is a partial oxidation process. The term partial oxidation is a relative term which simply means that less oxygen is used in gasification than would be required for combustion (i.e., burning or complete oxidation) of the same amount of fuel. Gasification typically uses only 25 to 40 percent of the theoretical oxidant (either pure oxygen or air) to generate enough heat to gasify the remaining unoxidized fuel, producing syngas. The major combustible products of gasification are carbon monoxide (CO) and hydrogen (H2), with only a minor amount of the carbon completely oxidized to carbon dioxide (CO2) and water. The heat released by partial oxidation provides most of the energy needed to break up the chemical bonds in the feedstock, to drive the other endothermic gasification reactions, and to increase the temperature of the final gasification products.

152

EIS-0072: Great Plains Gasification Project, Mercer County, North Dakota  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Fossil Energy prepared this EIS to evaluate the impacts of a project to construct a 125 million cubic feet per day coal gasification facility located in Mercer County, North Dakota. The Office of Fossil Energy adopted three environmental impact evaluation documents prepared by other Federal agencies to develop this EIS.

153

Pioneering Gasification Plants | Department of Energy  

Energy Savers (EERE)

lighting street lights fueled by "town gas," frequently the product of early forms of coal gasification. Gasification of fuel also provided fuel for steel mills, and toward the...

154

Catalytic Coal Gasification Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Coal Gasification Process Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas Opportunity Research is active on the patent pending technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Reducing pollution emitted by coal and waste power plants in an economically viable manner and building power plants that co-generate fuels and chemicals during times of low electricity demand are pressing goals for the energy industry. One way to achieve these goals in an economically viable manner is through the use of a catalytic gasifier that

155

The Complete Gasification of Coal  

Science Journals Connector (OSTI)

... plant designed by C. B. Tully, and operated at Bedford, for the complete gasification of coal. Altogether, since 1919, about two hundred such plants have been erected ...

J. S. G. THOMAS

1923-06-09T23:59:59.000Z

156

Economic Improvement Districts (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improvement Districts (Indiana) Improvement Districts (Indiana) Economic Improvement Districts (Indiana) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Bond Program Industry Recruitment/Support Provider Indiana Economic Development Corporation A legislative body may adopt an ordinance establishing an economic improvement district and an Economic Improvement Board to manage development in a respective district. The Board can choose to issue revenue

157

Forestry Policies (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana) Indiana) Forestry Policies (Indiana) < Back Eligibility Commercial Agricultural Program Info State Indiana Program Type Environmental Regulations Provider Department of Natural Resources Indiana's forests are managed by the Department of Natural Resources, Division of Forestry. The Department issued in 2008 the State's Strategic Plan: http://www.in.gov/dnr/forestry/files/fo-Forestry-Strategic-Plan-2008-201... The State DNR has also issued the resource inventory document "Woody Biomass Feedstock for the Bioenergy and Bioproducts Industries": http://www.in.gov/dnr/forestry/files/fo-WoodyBiomass_final.pdf The DNR has summarized its harvesting guidelines in the document "Harvesting Biomass: A Guide to Best Management Practices", focused on

158

Industrial Development (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Indiana) (Indiana) Industrial Development (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1981 State Indiana Program Type Corporate Tax Incentive Enterprise Zone Provider Indiana Economic Development Corporation An economically distressed county can apply for designation as a community

159

Indiana University Department of Telecommunications  

E-Print Network (OSTI)

Indiana University Department of Telecommunications Syllabus T311 颅 Media History Section #4059 paper about an important event in telecommunications history that happened on (or near) their date in telecommunications history, addressing technology, policy and regulation, content, social effects, and economic

Indiana University

160

Indiana University Department of Telecommunications  

E-Print Network (OSTI)

Indiana University Department of Telecommunications Syllabus S451 颅 Honors Seminar in Media and Society Topic: Telecommunications Effects: Memory and Attitudes Section #4455 Fall, 2001 Lectures: TTh 11 the assigned reading(s) could be applied to students' own interests in telecommunications. Students must attend

Indiana University

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: Gasification - Request Gasification Systems Information on a CD  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Gasification Systems Request Gasification Systems Information on a CD Please fill in the form below to receive the CDs of your choice. * Denotes required field Requestor Contact Information Requested By (Agency/Company): First Name: * Last Name: * Address: * PO Box: City: * State: * Zip: * Country: Email: * Phone: CD Request Select CD(s):* Gasification Systems Project Portfolio Gasification Technologies Training Course Special Instructions: Submit Request Reset Contacts Program Contact: Jenny Tennant (304) 285-4830 jenny.tennant@netl.doe.gov Close Contacts Disclaimer Disclaimer of Liability: This system is made available by an agency of the United States Government. Neither the United States Government, the Department of Energy, the National Energy Technology Laboratory, nor any of

162

EnerDel Expanding Battery Manufacturing in Indiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnerDel Expanding Battery Manufacturing in Indiana EnerDel Expanding Battery Manufacturing in Indiana EnerDel Expanding Battery Manufacturing in Indiana October 5, 2010 - 2:00pm Addthis EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel Lindsay Gsell What are the key facts? EnerDel uses $118 in Recovery Act funding to expand fourth manufacturing facility Company has seen 55 percent increased in full-time salaried staffing "We really do like Indiana as an operating environment because it's pro business," says Jeff Seidel. And for Mt. Comfort, Ind., that's good news. Seidel is the CFO of Ener1, the parent company of EnerDel, which makes

163

NETL: Gasification Systems - Gasifier Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Program Gasification Systems Program Gasification is used to convert a solid feedstock, such as coal, petcoke, or biomass, into a gaseous form, referred to as synthesis gas or syngas, which is primarily hydrogen and carbon monoxide. Pollutants can be captured and disposed of or converted to useful products more easily with gasification-based technologies compared to conventional combustion of solid feedstocks. Gasification can generate clean power, and by adding steam to the syngas and performing water-gas-shift to convert the carbon monoxide to carbon dioxide (CO2), additional hydrogen can be produced. The hydrogen and CO2 are separated-the hydrogen is used to make power and the CO2 is sent to storage, converted to useful products or used for enhanced oil recovery (see Gasification Systems Program Research and Development Areas figure). In addition to efficiently producing electric power, a wide range of transportation fuels and chemicals can be produced from the cleaned syngas, thereby providing the flexibility needed to capitalize on the changing economic market. As a result, gasification provides a flexible technology option for using domestically available resources while meeting future environmental emission standards. Furthermore, polygeneration plants that produce multiple products are uniquely possible with gasification technologies.

164

Gasification of Coal and Oil  

Science Journals Connector (OSTI)

... , said the Gas Council is spending 120,000 this year on research into coal gasification, and the National Coal Board and the Central Electricity Generating Board 680,000 and ... coal utilization. The Gas Council is spending about 230,000 on research into the gasification of oil under a programme intended to contribute also to the improvement of the economics ...

1960-02-13T23:59:59.000Z

165

Underground Gasification of Coal Reported  

Science Journals Connector (OSTI)

Underground Gasification of Coal Reported ... RESULTS of a first step taken toward determining the feasibility of the underground gasification of coal were reported recently to the Interstate Oil Compact Commission by Milton H. Fies, manager of coal operations for the Alabama Power Co. ...

1947-05-12T23:59:59.000Z

166

Indiana's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Indiana. Indiana. US Recovery Act Smart Grid Projects in Indiana's 7th congressional district Indianapolis Power and Light Company Smart Grid Project Registered Energy Companies in Indiana's 7th congressional district Clean Wave Ventures Corporate Systems Engineering EnerDel Government of Indiana Indiana Office of Energy Defense Development Indiana Soybean Alliance Indianapolis Power Light Simon Property Group Utility Companies in Indiana's 7th congressional district Indianapolis Power & Light Co Retrieved from "http://en.openei.org/w/index.php?title=Indiana%27s_7th_congressional_district&oldid=188396" Categories: Places Stubs Congressional Districts What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

167

Modelling coal gasification  

Science Journals Connector (OSTI)

Coal gasification processes in a slurry-feed-type entrained-flow gasifier are studied. Novel simulation methods as well as numerical results are presented. We use the vorticity-stream function method to study the characteristics of gas flow and a scalar potential function is introduced to model the mass source terms. The random trajectory model is employed to describe the behaviour of slurry-coal droplets. Very detailed results regarding the impact of the O2/coal ratio on the distribution of velocity, temperature and concentration are obtained. Simulation results show that the methods are feasible and can be used to study a two-phase reacting flow efficiently.

Xiang Jun Liu; Wu Rong Zhang; Tae Jun Park

2001-01-01T23:59:59.000Z

168

PNNL Coal Gasification Research  

SciTech Connect

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28T23:59:59.000Z

169

Power Systems Development Facility  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

Southern Company Services

2009-01-31T23:59:59.000Z

170

Categorical Exclusion Determinations: Indiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Indiana Categorical Exclusion Determinations: Indiana Location Categorical Exclusion Determinations issued for actions in Indiana. DOCUMENTS AVAILABLE FOR DOWNLOAD September 13, 2013 CX-010989: Categorical Exclusion Determination High Temperature DC-Bus Capacitors Cost Reduction and Performance Improvements CX(s) Applied: B3.6, B5.15 Date: 09/13/2013 Location(s): Indiana Offices(s): National Energy Technology Laboratory September 13, 2013 CX-010997: Categorical Exclusion Determination High Performance DC-Bus Capacitors CX(s) Applied: B3.6, B5.15 Date: 09/13/2013 Location(s): New York, Indiana Offices(s): National Energy Technology Laboratory August 7, 2013 CX-010809: Categorical Exclusion Determination New Mechanistic Models of Creep-Fatigue Interactions for Gas Turbine

171

Utility Easements (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Easements (Indiana) Utility Easements (Indiana) Utility Easements (Indiana) < Back Eligibility Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Siting and Permitting Provider Indiana Department of Natural Resources A permit is required from the Indiana Department of Natural Resources for the construction of a utility upon a state park, a state forest, a state game preserve, land acquired by the state and set aside as a scenic or historic place, or the portion of a public highway passing through one of the aforementioned types of places

172

Clean Cities: Greater Indiana Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Indiana Clean Cities Coalition Indiana Clean Cities Coalition The Greater Indiana Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Greater Indiana Clean Cities coalition Contact Information Kellie L. Walsh 317-985-4380 kellie@greaterindiana.com Coalition Website Clean Cities Coordinator Kellie L. Walsh Photo of Kellie L. Walsh Kellie Walsh has been the executive director for the Greater Indiana Clean Cities Coalition since 2002. In that time, she has assisted coalition stakeholders in securing over $14 million in federal and state funds to implement alternative fuel projects in both the public and private sectors. Walsh has been recognized by Senator Richard G. Lugar and Indiana's Lt. Governor Becky Skillman for her work in alternative fuels, especially

173

Hybrid Combustion-Gasification Chemical Looping  

SciTech Connect

For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

2009-01-07T23:59:59.000Z

174

Chapter 2 - Black Liquor Gasification  

Science Journals Connector (OSTI)

Black liquor gasification (BLG) is being considered primarily as an option for production of biofuels in recent years due to the focus on the transport sector抯 high oil dependence and climate impact. BLG may be performed either at low temperatures or at high temperatures, based on whether the process is conducted above or below the melting temperature range of the spent pulping chemicals. The development of various BLG technologies桽CA-Billerud process, the Copeland recovery process, Weyerhaeuser抯 process, the St. Regis hydropyrolysis process, the Texaco process, VTT抯 circulating fluidized bed BLG process, Babcock and Wilcox抯 bubbling fluidized bed gasification process, NSP process (Ny Sodahus Process), DARS (Direct Alkali Recovery System) process, BLG with direct causticization, Manufacturing and Technology Conversion International fluidized bed gasification, Chemrec gasification, catalytic hydrothermal gasification of black liquor梚s discussed in this chapter. The two main technologies under development are pressurized gasification and atmospheric gasification, being commercialized by Chemrec AB and ThermoChem Recovery International, respectively.

Pratima Bajpai

2014-01-01T23:59:59.000Z

175

Pyrolytic Gasification | Open Energy Information  

Open Energy Info (EERE)

Pyrolytic Gasification Pyrolytic Gasification Jump to: navigation, search Name Pyrolytic Gasification Sector Biomass References Balboa Pacific Corp[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

176

Decatur, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

district.12 Registered Energy Companies in Decatur, Indiana Mid States Tool and Machine Inc References US Census Bureau Incorporated place and minor civil division...

177

Indiana Underground Natural Gas Storage - All Operators  

Annual Energy Outlook 2012 (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

178

State of Indiana/GICC Alternative Fuels Implementation Plan ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

State of IndianaGICC Alternative Fuels Implementation Plan State of IndianaGICC Alternative Fuels Implementation Plan 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

179

NETL: Gasification Systems Program Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Program Contacts Gasification Systems Program Contacts Jenny Tennant Gasification Technology Manager U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 Phone: (304) 285-4830 Email: Jenny.Tennant@netl.doe.gov Pete Rozelle Division of Advanced Energy System - Program Manager, Office of Fossil Energy U.S. Department of Energy FE-221/Germantown Building 1000 Independence Avenue, S.W. Washington, DC 20585-1209 Phone: (301) 903-2338 Email: Peter.Rozelle@hq.doe.gov Heather Quedenfeld Gasification Division Director U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 Phone: (412) 386-5781 Email: Heather.Quedenfeld@netl.doe.gov Kristin Gerdes Performance Division

180

AVESTAR庐 - Training - Gasification Process Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Process Operations Gasification Process Operations This course is designed as a familiarization course to increase understanding of the gasification with CO2 capture process. During the training, participants will startup and shutdown the simulated unit in an integrated manner and will be exposed to simple and complex unit malfunctions in the control room and in the field. Course objectives are as follows: Introduce trainees to gasification and CO2 capture process systems and major components and how they dynamically interact Familiarize trainees with the Human Machine Interface (HMI) and plant control and how safe and efficient operation of the unit can be affected by plant problems Provide the trainees with hands-on operating experiences in plant operations using the HMI

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

182

Gasification Systems 2013 Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy in 2013 selected ten projects that will focus on reducing the cost of gasification with carbon capture for producing electric power, fuels, and chemicals. The projects will...

183

Coal gasification vessel  

DOE Patents (OSTI)

A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

Loo, Billy W. (Oakland, CA)

1982-01-01T23:59:59.000Z

184

Textile Drying Via Wood Gasification  

E-Print Network (OSTI)

TEXTILE DRYING VIA WOOD GASIFICATION Thomas F. ;McGowan, Anthony D. Jape Georgia Institute of Technology Atlanta, Georgia ABSTRACT This project was carried out to investigate the possibility of using wood gas as a direct replacement... for dryers. In addition to the experimental program described above, the DOE grant covered two other major areas. A survey of the textile industry was made to assess the market for gasification equip ment. The major findings were that a large amount...

McGowan, T. F.; Jape, A. D.

1983-01-01T23:59:59.000Z

185

Design of the Small Angle Neutron Scattering instrument at the Indiana University Low Energy Neutron Source| Applications to the study of nanostructured materials.  

E-Print Network (OSTI)

?? The Low Energy Neutron Source (LENS) located at the Indiana University Cyclotron Facility (IUCF) is a prototypical long-pulse accelerator-based neutron source. The Small Angle (more)

Remmes, Nicholas B.

2008-01-01T23:59:59.000Z

186

NETL: Gasifipedia - What is Gasification?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Background Gasification Background Drivers for Gasification Technology The need for low-cost power produced in an environmentally sound way is certain, even if the future of regulations limiting the emission and/or encouraging the capture of CO2, and the price and availability of natural gas and oil are not. Gasification is not only capable of efficiently producing electric power, but a wide range of liquids and/or high-value chemicals (including diesel and gasoline for transportation) can be produced from cleaned syngas, providing the flexibility to capitalize on a range of dynamic changes to either domestic energy markets or global economic conditions. Polygeneration-plants that produce multiple products-is uniquely possible with gasification technologies. Continued advances in gasification-based technology will enable the conversion of our nation's abundant coal reserves into energy resources (power and liquid fuels), chemicals, and fertilizers needed to displace the use of imported oil and, thereby, help mitigate its high price and security supply concerns and to support U.S. economic competitiveness with unprecedented environmental performance.

187

EIS-0428: Department of Energy Loan Guarantee for Mississippi Integrated Gasification Combined Cycle, Moss Point, Mississippi  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the environmental impacts of a petroleum coke-to-substitute natural gas facility proposed to be built by Mississippi Gasification. The facility would be designed to produce 120 million standard cubic feet of gas per day. Other products would be marketable sulfuric acid, carbon dioxide, argon, and electric power.

188

Indiana Brings Alternative Fuels to the Forefront  

Office of Energy Efficiency and Renewable Energy (EERE)

With the support of $10.1 million from EERE (including funds from the American Recovery and Reinvestment Act), more than matched by $13.6 million from partner organizations, Indiana Clean Cities and the Indiana Office of Energy Development have put more than 350 alternative fuel vehicles on the road and deployed 121 alternative fueling stations.

189

Categorical Exclusion Determinations: Indiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 28, 2011 July 28, 2011 CX-006328: Categorical Exclusion Determination Indiana-City-Muncie CX(s) Applied: A9, A11, B1.32, B2.5, B5.1 Date: 07/28/2011 Location(s): Muncie, Indiana Office(s): Energy Efficiency and Renewable Energy July 27, 2011 CX-006329: Categorical Exclusion Determination Indiana-City-South Bend CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 07/27/2011 Location(s): South Bend, Indiana Office(s): Energy Efficiency and Renewable Energy June 24, 2011 CX-006081: Categorical Exclusion Determination Brookston Wind Turbine Study CX(s) Applied: B3.1 Date: 06/24/2011 Location(s): Brookston, Indiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 28, 2011 CX-005655: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Schwan?s Home Service

190

Energy Incentive Programs, Indiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Indiana Energy Incentive Programs, Indiana October 29, 2013 - 11:29am Addthis Updated February 2013 Indiana utilities budgeted nearly $95 million in 2011 across their various programs (including those directed at residential and low-income customers) to promote customer energy efficiency. What public-purpose-funded energy efficiency programs are available in my state? Indiana has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Duke Energy offers the Smart $aver Incentive Program for rebates on high-efficiency lighting, pumping systems, air-conditioning units (including heat pumps), and even chiller tune-ups. These incentives are prescriptive, based on the efficiency and capacity of equipment.

191

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network (OSTI)

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

192

Underground Coal Gasification in the USSR  

Science Journals Connector (OSTI)

By accomplishing in a single operation the extraction of coal and its conversion into a gaseous fuel, underground gasification makes it possible to avoid the heavy capital investments required for coal gasification

1983-01-01T23:59:59.000Z

193

June 2007 gasification technologies workshop papers  

SciTech Connect

Topics covered in this workshop are fundamentals of gasification, carbon capture and sequestration, reviews of financial and regulatory incentives, co-production, and focus on gasification in the Western US.

NONE

2007-06-15T23:59:59.000Z

194

Transport and Other Effects in Coal Gasification  

Science Journals Connector (OSTI)

The paper summarizes the kinetics of coal char gasification excepted surface reactions (mechanisms). The following subjects controlling coal char gasification are treated: Coal as the raw material ... of particle...

K. J. H黷tinger

1988-01-01T23:59:59.000Z

195

Integrated Coal Gasification Power Plant Credit (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

196

Fermilab, Indiana University Horn Optimization for nuSTORM  

E-Print Network (OSTI)

Fermilab, Indiana University Horn Optimization for nuSTORM HPTW 05/21/2014 Fermilab, Indiana University Ao Liu* A. Bross, D. Neuffer Fermilab, Indiana University *www.frankliuao.com/research.html #12;Fermilab, Indiana University WHO WE ARE, WHAT WE DO nuSTORM Overview 5/23/2014 Ao Liu 1 #12;Fermilab

McDonald, Kirk

197

Biothermal gasification of biomass  

SciTech Connect

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01T23:59:59.000Z

198

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

SciTech Connect

The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

Samuel S. Tam

2002-05-01T23:59:59.000Z

199

Gasification of Glucose in Supercritical Water  

Science Journals Connector (OSTI)

Gasification of Glucose in Supercritical Water ... Gasification of 0.6 M glucose in supercritical water was investigated at a temperature range from 480 to 750 癈 and 28 MPa with a reactor residence time of 10?50 s. ... Carbon gasification efficiency reached 100% at 700 癈. ...

In-Gu Lee; Mi-Sun Kim; Son-Ki Ihm

2002-01-31T23:59:59.000Z

200

Alternative Fuels Data Center: Indiana Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Indiana Laws and Indiana Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Indiana. Your Clean Cities coordinator at

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternative Fuels Data Center: Indiana Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Indiana Points of Indiana Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Indiana Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Indiana Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Indiana Points of Contact on Google Bookmark Alternative Fuels Data Center: Indiana Points of Contact on Delicious Rank Alternative Fuels Data Center: Indiana Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Indiana Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Points of Contact The following people or agencies can help you find more information about Indiana's clean transportation laws, incentives, and funding opportunities.

202

Technical analysis of advanced wastewater-treatment systems for coal-gasification plants  

SciTech Connect

This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

Not Available

1981-03-31T23:59:59.000Z

203

NETL: Gasification Systems - Gas Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation Separation Ion-Transport Membrane Oxygen Separation Modules Ion-Transport Membrane Oxygen Separation Modules Gas separation unit operations represent major cost elements in gasification plants. The gas separation technology being supported in the DOE program promises significant reduction in cost of electricity, improved thermal efficiency, and superior environmental performance. Gasification-based energy conversion systems rely on two gas separation processes: (1) separation of oxygen from air for feed to oxygen-blown gasifiers; and (2) post-gasification separation of hydrogen from carbon dioxide following (or along with) the shifting of gas composition when carbon dioxide capture is required or hydrogen is the desired product. Research efforts include development of advanced gas separation

204

Categorical Exclusion Determinations: Indiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 16, 2010 September 16, 2010 CX-003912: Categorical Exclusion Determination Indiana-County-Elkhart CX(s) Applied: B5.1 Date: 09/16/2010 Location(s): Elkhart County, Indiana Office(s): Energy Efficiency and Renewable Energy September 7, 2010 CX-003781: Categorical Exclusion Determination Advanced Spark Ignited Engine Development for Combined Heat and Power Application CX(s) Applied: A9, A11, B2.2, B3.6, B5.1 Date: 09/07/2010 Location(s): Columbus, Indiana Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 1, 2010 CX-003675: Categorical Exclusion Determination Oxy-combustion Oxygen Transport Membrane Development CX(s) Applied: B3.6 Date: 09/01/2010 Location(s): Indianapolis, Indiana Office(s): Fossil Energy, National Energy Technology Laboratory

205

Coal gasification 2006: roadmap to commercialization  

SciTech Connect

Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

NONE

2006-05-15T23:59:59.000Z

206

Coal Gasification for Power Generation, 3. edition  

SciTech Connect

The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

NONE

2007-11-15T23:59:59.000Z

207

Application of the integrated gasification combined cycle technology and BGL gasification design for power generation  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology promises to be the power generation technology of choice in the late 1990s and beyond. Based on the principle that almost any fuel can be burned more cleanly and efficiently if first turned into a gas, an IGCC plant extracts more electricity from a ton of coal by burning it as a gas in a turbine rather than as a solid in a boiler. Accordingly, coal gasification is the process of converting coal to a clean-burning synthetic gas. IGCC technology is the integration of the coal-gasification plant with a conventional combined-cycle plant to produce electricity. The benefits of this technology merger are many and result in a highly efficient and environmentally superior energy production facility. The lGCC technology holds significant implications for Asia-Pacific countries and for other parts of the world. High-growth regions require additional baseload capacity. Current low prices for natural gas and minimal emissions that result from its use for power generation favor its selection as the fuel source for new power generation capacity. However, fluctuations in fuel price and fuel availability are undermining the industry`s confidence in planning future capacity based upon gas-fueled generation. With the world`s vast coal reserves, there is a continuing effort to provide coal-fueled power generation technologies that use coal cleanly and efficiently. The lGCC technology accomplishes this objective. This chapter provides a summary of the status of lGCC technology and lGCC projects known to date. It also will present a technical overview of the British Gas/Lurgi (BGL) technology, one of the leading and most promising coal gasifier designs.

Edmonds, R.F. Jr.; Hulkowich, G.J.

1993-12-31T23:59:59.000Z

208

Grant Lights Up Indiana Tech Athletic Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant Lights Up Indiana Tech Athletic Center Grant Lights Up Indiana Tech Athletic Center Grant Lights Up Indiana Tech Athletic Center July 20, 2010 - 2:46pm Addthis Lighting units in the Schaefer Center's Kline Court, where Indiana Tech芒聙聶s basketball and volleyball teams compete, will be retrofitted with LEDs. | Photo courtesy of Indiana Tech Lighting units in the Schaefer Center's Kline Court, where Indiana Tech's basketball and volleyball teams compete, will be retrofitted with LEDs. | Photo courtesy of Indiana Tech The Indiana Institute of Technology, otherwise known as Indiana Tech, is committed to developing a fully sustainable campus. Now, a $47,000 Energy Efficiency and Conservation Block Grant (EECBG) is moving the Fort Wayne, Ind. university one step closer to its goal. Ninety-six lighting units in the Schaefer Center, the school's main

209

Gasdynamic lasers utilizing carbon gasification  

Science Journals Connector (OSTI)

A theoretical investigation was made of the influence of the processes of carbon gasification by combustion products and oxidants on the chemical composition of the active medium and the energy characteristics of a gasdynamic CO2 laser. Conditions were found under which the stored energy of the active medium was greater than 100 J/g.

A S Biryukov; V M Marchenko; A M Prokhorov

1985-01-01T23:59:59.000Z

210

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...been operated as a "pure" gasifier but to supply power gas for...was the air-blown Winkler gasifier pro-ducing power gas at Leuna...fines, additional gasification medium (air or oxygen-steam) is...partial pressure of steam in a gasifier blown with oxygen and steam...

Arthur M. Squires

1974-04-19T23:59:59.000Z

211

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...appreciably larger sizes than coal to other...they grew to a size to fall upon an...air-blown Winkler gasifier pro-ducing power...additional gasification medium (air or oxygen-steam...provide "pure" gasifier Test revamp Develop larger sizes Develop pressure...

Arthur M. Squires

1974-04-19T23:59:59.000Z

212

A study on ultra heavy oil gasification technology  

SciTech Connect

Raising the thermal efficiency of a thermal power plant is an important issue from viewpoints of effective energy utilization and environmental protection. In view of raising the thermal efficiency, a gas turbine combined cycle power generation is considered to be very effective. The thermal efficiency of the latest LNG combined cycle power plant has been raised by more than 50%. On the other hand, the diversification of fuels to ensure supply stability is also an important issue, particularly in Japan where natural resources are scarce. Because of excellent handling characteristics petroleum and LNG which produces clean combustion are used in many sectors, and so the demand for such fuels is expected to grow. However, the availability of such fuels is limited, and supplies will be exhausted in the near future. The development of a highly efficient and environment-friendly gas turbine combined cycle using ultra heavy oil such as Orimulsion{trademark} (trademark of BITOR) is thus a significant step towards resolving these two issues. Chubu Electric Power Co, Inc., the Central Research Institute of Electric Power Industry (CRIEPI), and Mitsubishi Heavy Industries, Ltd. (MHI) conducted a collaboration from 1994 to 1998 with the objective of developing an ultra heavy oil integrated gasification combined cycle (IGCC). Construction of the ultra heavy oil gasification testing facility (fuel capacity:2.4t/d) was completed in 1995, and Orimulsion{trademark} gasification tests were carried out in 1995 and 1996. In 1997, the hot dedusting facility with ceramic filter and the water scrubber used as a preprocessor of a wet desulfurization process were installed. Gasification and clean up the syngs tests were carried out on Orimulsion{trademark}, Asmulsion{trademark} (trademark of Nisseki Mitsubishi K.K.), and residue oil in 1997 and 1998. The results of the collaboration effort are described below.

Kidoguchi, Kazuhiro; Ashizawa, Masami; Taki, Masato; Ishimura, Masato; Takeno, Keiji

2000-07-01T23:59:59.000Z

213

Characterization of Filter Elements for Service in a Coal Gasification Environment  

SciTech Connect

The Power Systems Development Facility (PSDF) is a joint Department of Energy/Industry sponsored engineering-scale facility for testing advanced coal-based power generation technologies. High temperature, high pressure gas cleaning is critical to many of these advanced technologies. Barrier filter elements that can operate continuously for nearly 9000 hours are required for a successful gas cleaning system for use in commercial power generation. Since late 1999, the Kellogg Brown & Root Transport reactor at the PSDF has been operated in gasification mode. This paper describes the test results for filter elements operating in the Siemens-Westinghouse particle collection device (PCD) with the Transport reactor in gasification mode. Operating conditions in the PCD have varied during gasification operation as described elsewhere in these proceedings (Martin et al, 2002).

Spain, J.D.

2002-09-19T23:59:59.000Z

214

Vectren Energy Delivery of Indiana (Electric) - Commercial New Construction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Indiana (Electric) - Commercial New Vectren Energy Delivery of Indiana (Electric) - Commercial New Construction Rebates (Indiana) Vectren Energy Delivery of Indiana (Electric) - Commercial New Construction Rebates (Indiana) < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Custom/HVAC Systems: $100,000 or 50% of the total project cost Incentive cannot buy down project below 1.5 years payback. Program Info State Indiana Program Type Utility Rebate Program Rebate Amount HVAC Systems (New Construction): $0.12/kWh reduced

215

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

216

October 2005 Gasification-Based Fuels and Electricity Production from  

E-Print Network (OSTI)

October 2005 Gasification-Based Fuels and Electricity Production from Biomass, without......................................................................... 9 3.1.1 Biomass Gasification, and production cost estimates for gasification-based thermochemical conversion of switchgrass into Fischer

217

Catalytic gasification of tars from a dumping site  

Science Journals Connector (OSTI)

The work deals with catalytic gasification, pyrolysis and non-catalytic gasification of tar from an industrial dumping site. ... were carried out in a vertical stainless steel gasification reactor at 800牥C. Crus...

Luk釟 Ga歱arovi?; Luk釟 妘g醨

2013-10-01T23:59:59.000Z

218

Pioneering Gasification Plants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification 禄 Pioneering Gasification 禄 Pioneering Gasification Plants Pioneering Gasification Plants In the 1800s, lamplighters made their rounds in the streets of many of America's largest cities lighting street lights fueled by "town gas," frequently the product of early forms of coal gasification. Gasification of fuel also provided fuel for steel mills, and toward the end of the 19th Century, electric power. These early gasifiers were called "gas producers," and the gas that they generated was called "producer gas." During the early 20th Century, improvements in the availability of petroleum and natural gas products, along with the extension of the infrastructure associated with these products, led to their widespread use, which replaced coal-based producer gas in the energy market.

219

NETL: Coal/Biomass Feed and Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

220

NETL: Gasification Systems Video, Images & Photos  

NLE Websites -- All DOE Office Websites (Extended Search)

Video, Images, Photos Video, Images, Photos Gasification Systems Reference Shelf - Video, Images & Photos The following was established to show a variety of Gasification Technologies: Gasfication powerplant photo Gasification: A Cornerstone Technology (Mar 2008) Movie Icon Windows Media Video (WMV-26MB) [ view | download ] NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants. Proposed APS Advanced Hydrogasification Process Proposed APS Advanced Hydrogasification Process* TRDU and Hot-Gas Vessel in the EERC Gasification Tower Transport reactor development unit

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gasification world database 2007. Current industry status  

SciTech Connect

Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

NONE

2007-10-15T23:59:59.000Z

222

Alternative Fuels Data Center: Indiana Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives Listed below are the summaries of all current Indiana laws, incentives, regulations, funding opportunities, and other initiatives related to

223

Alternative Fuels Data Center: Indiana Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for EVs The list below contains summaries of all Indiana laws and incentives related to EVs.

224

Alternative Fuels Data Center: Indiana Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Exemptions The list below contains summaries of all Indiana laws and incentives

225

Alternative Fuels Data Center: Indiana Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Other The list below contains summaries of all Indiana laws and incentives

226

Alternative Fuels Data Center: Indiana Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Biodiesel The list below contains summaries of all Indiana laws and incentives

227

Energy Secretary Chu Trip to Kokomo, Indiana Cancelled | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kokomo, Indiana Cancelled Energy Secretary Chu Trip to Kokomo, Indiana Cancelled July 16, 2010 - 12:00am Addthis Washington D.C. - The event today on Friday, July 16 with Energy...

228

Alternative Fuels Data Center: Indiana Laws and Incentives for Rebates  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rebates to someone by E-mail Rebates to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Rebates on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Rebates on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Rebates on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Rebates on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Rebates on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Rebates The list below contains summaries of all Indiana laws and incentives

229

Alternative Fuels Data Center: Indiana Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Other The list below contains summaries of all Indiana laws and incentives

230

Alternative Fuels Data Center: Indiana Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Other The list below contains summaries of all Indiana laws and incentives

231

Alternative Fuels Data Center: Indiana Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Grants The list below contains summaries of all Indiana laws and incentives

232

Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Ethanol The list below contains summaries of all Indiana laws and incentives

233

Alternative Fuels Data Center: Indiana Laws and Incentives for NEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NEVs to someone by E-mail NEVs to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for NEVs on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for NEVs on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for NEVs on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for NEVs on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for NEVs on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for NEVs The list below contains summaries of all Indiana laws and incentives

234

Alternative Fuels Data Center: Indiana Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Other The list below contains summaries of all Indiana laws and incentives

235

Indiana's 3rd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Companies in Indiana's 3rd congressional district NuFuels LLC Ultra Soy of America DBA USA Biofuels Utility Companies in Indiana's 3rd congressional district City of Auburn,...

236

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion...

237

Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol...  

Energy Savers (EERE)

Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of...

238

NETL: Gasification Systems - Gas Cleaning  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleaning Cleaning Chemicals from Coal Complex Chemicals from Coal Complex (Eastman Company) Novel gas cleaning and conditioning are crucial technologies for achieving near-zero emissions, while meeting gasification system performance and cost targets. DOE's Gasification Systems program supports technology development in the area of gas cleaning and conditioning, including advanced sorbents and solvents, particulate filters, and other novel gas-cleaning approaches that remove and convert gas contaminants into benign and marketable by-products. To avoid the cost and efficiency penalties associated with cooling the gas stream to temperatures at which conventional gas clean-up systems operate, novel processes are being developed that operate at mild to high temperatures and incorporate multi-contaminant control to

239

Underground coal gasification using oxygen and steam  

SciTech Connect

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

240

Chapter 2 - Chemistry of Gasification  

Science Journals Connector (OSTI)

The gasification of any carbonaceous or hydrocarbonaceous material is, essentially, the conversion of the carbon constituents by any one of a variety of chemical processes to produce combustible gases. The process includes a series of reaction steps that convert the feedstock into synthesis gas (syngas, carbon monoxide, CO, plus hydrogen, H2) and other gaseous products. This conversion is generally accomplished by introducing a gasifying agent (air, oxygen, and/or steam) into a reactor vessel containing the feedstock where the temperature, pressure, and flow pattern (moving bed, fluidized, or entrained bed) are controlled. The gaseous products other than carbon monoxide and hydrogen and the proportions of these product gases (such as carbon dioxide, CO2, methane, CH4, water vapor, H2O, hydrogen sulfide, H2S, and sulfur dioxide, SO2) depends on the: (1) type of feedstock, (2) the chemical composition of the feedstock, (3) the gasifying agent or gasifying medium, as well as (4) the thermodynamics and chemistry of the gasification reactions as controlled by the process operating parameters. In addition, the kinetic rates and extents of conversion for the several chemical reactions that are a part of the gasification process are variable and are typically functions of: (1) temperature, (2) pressure, and (3) reactor configuration, and (4) the gas composition of the product gases and whether or not these gases influence the outcome of the reaction. It is the purpose of this chapter to present descriptions of the various reactions involved in gasification of carbonaceous and hydrocarbonaceous feedstocks as well as the various thermodynamic aspects of these reactions which dictate the process parameters used to produce the various gases.

James G. Speight

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EMERY BIOMASS GASIFICATION POWER SYSTEM  

SciTech Connect

Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

Benjamin Phillips; Scott Hassett; Harry Gatley

2002-11-27T23:59:59.000Z

242

Indiana Michigan Power Co | Open Energy Information  

Open Energy Info (EERE)

Indiana Michigan Power Co Indiana Michigan Power Co Place Ohio Service Territory Indiana, Michigan Website www.indianamichiganpower. Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 9324 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules

243

Indiana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon 禄 Indiana/Wind Resources < Indiana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Indiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

244

Categorical Exclusion Determinations: Indiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 13, 2010 May 13, 2010 CX-002282: Categorical Exclusion Determination Purdue Solar Energy Utilization Laboratory CX(s) Applied: B3.6 Date: 05/13/2010 Location(s): West Lafayette, Indiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 12, 2010 CX-002281: Categorical Exclusion Determination Ball State University Ground Source Geothermal District Heating and Cooling System CX(s) Applied: B2.2, A9, B5.1 Date: 05/12/2010 Location(s): Muncie, Indiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 11, 2010 CX-002217: Categorical Exclusion Determination Lawrence Energy Efficiency Retrofits CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Lawrence, Indiana Office(s): Energy Efficiency and Renewable Energy May 3, 2010 CX-002169: Categorical Exclusion Determination

245

South Central Indiana REMC | Open Energy Information  

Open Energy Info (EERE)

South Central Indiana REMC South Central Indiana REMC Place Indiana Utility Id 12929 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100w HPS Acorn Luminaire decorative 14 Washington Style Post Lighting 400w HPS Cobrahead Luminaire 30' WOOD POLE Lighting 400w HPS Cobrahead Luminaire 40' WOOD POLE. Lighting 400w HPS Cobrahead Luminaire on 30' Fiberglass or Aluminium POLE Lighting AREA LIGHTING High Pressure Sodium 100W Lighting AREA LIGHTING Metal Halide 100W Lighting Commercial and Industrial Off-Peak Rate - CI-TOU (optional rate) Commercial

246

Government of Indiana | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Government of Indiana Place Indianapolis, Indiana Zip 46204 2797 Product Government of Indiana. Coordinates 39.76691掳, -86.149964掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.76691,"lon":-86.149964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

NETL: Gasifipedia - Gasification in Detail  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Gasifiers Commercial Gasifiers Types of Gasifiers Although there are various types of gasifers (gasification reactors), different in design and operational characteristics, there are three main gasifier classifications into which most of the commercially available gasifiers fall. These categories are as follows: Fixed-bed gasifiers (also referred as moving-bed gasifiers) Entrained-flow gasifiers Fluidized-bed gasifiers Commercial gasifiers of GE Energy, ConocoPhillips E-Gas(tm) and Shell SCGP are examples of entrained-flow types. Fixed-or moving-bed gasifiers include that of Lurgi and British Gas Lurgi (BGL). Fluidized-bed gasifiers include the catalytic gasifier technology being commercialized by Great Point Energy, the Winkler gasifier, and the KBR transport gasifiers. For more specific information on these gasifiers, follow the links for the bulleted gasifier types above. NOTE: Although specific gasifiers named above are described in detail throughout this website, it is realized that other gasification technologies exist. The gasifiers discussed herein were not preferentially chosen by NETL.

248

PSYCHOLOGY AT INDIANA UNIVERSITY: A CENTENNIAL REVIEW AND COMPENDIUM  

E-Print Network (OSTI)

PSYCHOLOGY AT INDIANA UNIVERSITY: A CENTENNIAL REVIEW AND COMPENDIUM 1888 1988 #12;#12;#12;William Lowe Bryan in 1903 #12;PSYCHOLOGY AT INDIANA UNIVERSITY: A CENTENNIAL REVIEW AND COMPENDIUM edited by Eliot Hearst and James H. Capshew INDIANA UNIVERSITY DEPARTMENT OF PSYCHOLOGY, 1988 #12;#12;Copyright

Indiana University

249

Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Indiana: Energy Resources Indiana: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

250

State Environmental Protection Hierarchy (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Environmental Protection Hierarchy (Indiana) State Environmental Protection Hierarchy (Indiana) State Environmental Protection Hierarchy (Indiana) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Environmental Management This chapter recognizes two categories of approaches to environmental protection: clean manufacturing, which consists of reducing, avoiding, or eliminating harmful environmental impacts and pollutants; and waste

251

Natural, Scenic, and Recreational River System (Indiana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural, Scenic, and Recreational River System (Indiana) Natural, Scenic, and Recreational River System (Indiana) Natural, Scenic, and Recreational River System (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Natural Resources

252

Surface Coal Mining and Reclamation (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Coal Mining and Reclamation (Indiana) Surface Coal Mining and Reclamation (Indiana) Surface Coal Mining and Reclamation (Indiana) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Program Info State Indiana Program Type Environmental Regulations Provider Department of Natural Resources The Indiana Department of Natural Resources implements and enforces the federal Surface Mining Control and Reclamation Act of 1977, as well as a statewide program to protect society and the environment from the adverse effects of mining operations, and regulates coal mining operations to

253

Regulation of Tall Structures (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation of Tall Structures (Indiana) Regulation of Tall Structures (Indiana) Regulation of Tall Structures (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State Indiana Program Type Siting and Permitting Provider Indiana Department of Transporation A permit from the Department of Transportation is required for the construction or alteration of any structure higher than 200 feet above

254

Improved catalysts for carbon and coal gasification  

DOE Patents (OSTI)

This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

McKee, D.W.; Spiro, C.L.; Kosky, P.G.

1984-05-25T23:59:59.000Z

255

Crop Conditions Indiana Horticultral Society Summer Meeting  

E-Print Network (OSTI)

in Peaches Shoot Positioning and Canopy Management Wine Grape Summer Workshop Blueberry IPM Workshop harvest has started in southern and central areas. Fruit size and quality are reported to be excellent increase berry size. Grapes are bloom- ing in southern and central areas. Indiana Horticultural Society

Ginzel, Matthew

256

DOE Hydrogen Analysis Repository: Biomass Integrated Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Integrated Gasification Combined-Cycle Power Systems Biomass Integrated Gasification Combined-Cycle Power Systems Project Summary Full Title: Cost and Performance Analysis of Biomass-Based Integrated Gasification Combined-Cycle (BIGCC) Power Systems Project ID: 106 Principal Investigator: Margaret Mann Brief Description: This project examines the cost and performance potential of three biomass-based integrated gasification combined cycle (IGCC) systems--high-pressure air blown, low-pressure air blown, and low-pressure indirectly heated. Purpose Examine the cost and performance potential of three biomass-based integrated gasification combined cycle (IGCC) systems - a high pressure air-blown, a low pressure indirectly heated, and a low pressure air-blown. Performer Principal Investigator: Margaret Mann

257

Alternative Fuels Data Center: Indiana Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Tax Incentives

258

Alternative Fuels Data Center: Indiana Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Idle Reduction

259

Alternative Fuels Data Center: Indiana Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Driving / Idling

260

Indiana Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Recovery Act State Memo Indiana Recovery Act State Memo Indiana Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Indiana are supporting a broad range of clean energy projects from advanced battery manufacturing and alternative fuels and vehicles to energy efficiency and the smart grid. Through these investments, Indiana's businesses, universities, nonprofits, and local governments are creating quality jobs today and positioning Indiana to play an important role in the new energy economy of the future. Indiana Recovery Act State Memo More Documents & Publications Louisiana Recovery Act State Memo Colorado Recovery Act State Memo California

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alternative Fuels Data Center: Indiana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Propane (LPG)

262

Indiana's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

5th congressional district: Energy Resources 5th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Indiana. US Recovery Act Smart Grid Projects in Indiana's 5th congressional district Indianapolis Power and Light Company Smart Grid Project Midwest Independent Transmission System Operator Smart Grid Project Registered Energy Companies in Indiana's 5th congressional district Central Indiana Ethanol LLC Clean Wave Ventures Corporate Systems Engineering E Biofuels LLC EnerDel Government of Indiana Indiana Office of Energy Defense Development Indiana Soybean Alliance Indianapolis Power Light National Renewables Cooperative Organization NRCO Simon Property Group

263

NETL: Gasification Systems - Gasifier Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Opt & Plant Supporting Systems Gasifier Opt & Plant Supporting Systems Gasification Systems Gasifier Optimization and Plant Supporting Systems The gasifier is the core system component in the gasification process. It determines both the primary requirements for raw material inputs and the product gas composition. The gasifier is generally a high temperature/pressure vessel where oxygen (or air) and steam are directly contacted with a fuel, such as coal, causing a series of chemical reactions to occur that result in production of a fuel gas. This fuel gas (also referred to either as synthesis gas or syngas) consists primarily of hydrogen, carbon monoxide, and carbon dioxide. Minor constituents present in the feedstock are converted to such products as hydrogen sulfide, ammonia, and ash/slag (mineral residues from coal). These products can be separated and captured for use or safe disposal. After cleaning to remove contaminants, the syngas consists mainly of carbon monoxide and hydrogen. According to the Department of Energy's vision for coal gasification, at this point steam may be added and the syngas sent through a water-gas shift (WGS) reactor to convert the carbon monoxide to nothing but carbon dioxide and additional hydrogen. After a gas separation process, the carbon dioxide is ready for utilization (such as for Enhanced Oil Recovery) or safe storage, and the hydrogen can be fired in a gas-turbine/steam-turbine generator set to produce electricity with stack emissions containing no greenhouse gases. Alternately, syngas or hydrogen can be used to produce highly-valued fuels and chemicals. Co-production of combinations of these products and electricity is also possible.

264

A Generalized Pyrolysis Model for Simulating Charring, Intumescent, Smoldering, and Noncharring Gasification  

E-Print Network (OSTI)

on Nonflaming Transient Gasification of PMMA and PE duringT. , & Werner, K. , 揥ood Gasification at Fire Level HeatConcentration on Nonflaming Gasification Rates and Evolved

Lautenberger, Chris; Fernandez-Pello, Carlos

2006-01-01T23:59:59.000Z

265

The Development of a Hydrothermal Method for Slurry Feedstock Preparation for Gasification Technology  

E-Print Network (OSTI)

Higman, C. and M. Burgt, Gasification . 2003: Elsevier/Gulfand N.P. Cheremisinoff, Gasification technologies: a primerbiomass (part 3): gasification technologies. Bioresource

He, Wei

2011-01-01T23:59:59.000Z

266

E-Print Network 3.0 - advanced coal-gasification technical Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification to Produce SNG (Beulah, North Dakota, USA) (Source:DakotaGasification Petcoke... Source: NETL, 2009 12;12 Dakota Coal Gasification ... Source: Center for...

267

Fluidized bed catalytic coal gasification process  

DOE Patents (OSTI)

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

1984-01-01T23:59:59.000Z

268

Mississippi Ethanol Gasification Project, Final Scientific / Technical Report  

SciTech Connect

The Mississippi Ethanol (ME) Project is a comprehensive effort to develop the conversion of biomass to ethanol utilizing a proprietary gasification reactor technology developed by Mississippi Ethanol, LLC. Tasks were split between operation of a 1/10 scale unit at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) of Mississippi State University (MSU) and the construction, development, and operation of a full scale pilot unit located at the ME facility in Winona, Mississippi. In addition to characterization of the ME reactor gasification system, other areas considered critical to the operational and economic viability of the overall ME concept were evaluated. These areas include syngas cleanup, biological conversion of syngas to alcohol, and effects of gasification scale factors. Characterization of run data from the Pre-Pilot and Pilot Units has allowed development of the factors necessary for scale-up from the small unit to the larger unit. This scale range is approximately a factor of 10. Particulate and tar sampling gave order of magnitude values for preliminary design calculations. In addition, sampling values collected downstream of the ash removal system show significant reductions in observed loadings. These loading values indicate that acceptable particulate and tar loading rates could be attained with standard equipment additions to the existing configurations. Overall operation both the Pre-Pilot and Pilot Units proceeded very well. The Pilot Unit was operated as a system, from wood receiving to gas flaring, several times and these runs were used to address possible production-scale concerns. Among these, a pressure feed system was developed to allow feed of material against gasifier system pressure with little or no purge requirements. Similarly, a water wash system, with continuous ash collection, was developed, installed, and tested. Development of a biological system for alcohol production was conducted at Mississippi State University with much progress. However, the current state of biological technology is not deemed to be ready commercially. A preliminary estimate of capital and operating costs of a 12000 gallon per day gasification/biological facility was developed for comparison purposes. In addition, during the biological organism screening and testing, some possible alternative products were identified. One such possibility is the biological production of bio-diesel. Additional research is necessary for further evaluation of all of the biological concepts.

Pearson, Larry, E.

2007-04-30T23:59:59.000Z

269

Indiana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 87,254 89,244 91,822 94,240 97,911 101,106 1990-2013

270

Carmel, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Indiana: Energy Resources Indiana: Energy Resources (Redirected from Carmel, IN) Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.978371掳, -86.1180435掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.978371,"lon":-86.1180435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Muncie, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Muncie, Indiana: Energy Resources Muncie, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.1933767掳, -85.3863599掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1933767,"lon":-85.3863599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Indiana Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Gross Withdrawals NA NA NA NA NA NA 1991-2013 From Gas Wells NA NA NA NA NA NA 1991-2013

273

Indiana Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Volumes Delivered to Consumers

274

Clermont, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clermont, Indiana: Energy Resources Clermont, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8097656掳, -86.3224925掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8097656,"lon":-86.3224925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Indiana Soybean Alliance | Open Energy Information  

Open Energy Info (EERE)

Soybean Alliance Soybean Alliance Jump to: navigation, search Name Indiana Soybean Alliance Place Indianapolis, Indiana Zip IN 46278-1755 Product Conduct soybean promotion, research, consumer information, producer information, industry information programs, and market development activities relating to soybean Coordinates 39.76691掳, -86.149964掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.76691,"lon":-86.149964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Whitestown, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Whitestown, Indiana: Energy Resources Whitestown, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9972626掳, -86.3458296掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9972626,"lon":-86.3458296,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Jeffersonville, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jeffersonville, Indiana: Energy Resources Jeffersonville, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.2775702掳, -85.7371847掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.2775702,"lon":-85.7371847,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Indiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

279

Duke Energy Indiana Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Duke Energy Indiana Inc Place Indiana Utility Id 15470 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png AL - 100 watt HPS - Bollard Lighting AL - 100 watt HPS - Cobra Lighting AL - 100 watt HPS - Cobra Lighting AL - 100 watt HPS - Post Top Lighting

280

Ulen, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ulen, Indiana: Energy Resources Ulen, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0630964掳, -86.4644453掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0630964,"lon":-86.4644453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Indiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 89,244 91,822 94,240 97,911 101,106 102,341 1990-2013

282

Monroe, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Indiana: Energy Resources Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7450468掳, -84.9369111掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7450468,"lon":-84.9369111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Homecroft, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Homecroft, Indiana: Energy Resources Homecroft, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6700453掳, -86.1313751掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6700453,"lon":-86.1313751,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,294 114,937 114,274 111,271 111,313 110,749 1988-2012

285

Speedway, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Speedway, Indiana: Energy Resources Speedway, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8022653掳, -86.2672127掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8022653,"lon":-86.2672127,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Southport, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Indiana: Energy Resources Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.659568掳, -86.1166掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.659568,"lon":-86.1166,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Berne, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Berne, Indiana: Energy Resources Berne, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6578242掳, -84.9519115掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6578242,"lon":-84.9519115,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

289

Clarksville, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Indiana: Energy Resources Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.2967362掳, -85.759963掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.2967362,"lon":-85.759963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Indiana Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Municipal Power Agency Municipal Power Agency Place Indiana Utility Id 9234 Utility Location Yes Ownership A NERC Location RFC NERC RFC Yes RTO PJM Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Indiana_Municipal_Power_Agency&oldid=41086

291

Wynnedale, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wynnedale, Indiana: Energy Resources Wynnedale, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8311531掳, -86.1974886掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8311531,"lon":-86.1974886,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Cumberland, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cumberland, Indiana: Energy Resources Cumberland, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7761534掳, -85.9572036掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7761534,"lon":-85.9572036,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Zionsville, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Zionsville, Indiana: Energy Resources Zionsville, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9508733掳, -86.261937掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9508733,"lon":-86.261937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Indiana Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Volumes Delivered to Consumers

295

Indiana Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

296

Economic Development for a Growing Economy Tax Credit (Indiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Development for a Growing Economy Tax Credit (Indiana) Economic Development for a Growing Economy Tax Credit (Indiana) Economic Development for a Growing Economy Tax Credit (Indiana) < Back Eligibility Commercial Agricultural Industrial Construction Retail Supplier Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Corporate Tax Incentive Provider Indiana Economic Development Corporation The Economic Development for a Growing Economy Tax Credit is awarded to businesses with projects that result in net new jobs. The tax credit must be a major factor in the company's decision to move forward with the project in Indiana. The refundable tax credit is calculated as a percentage of the expected increased tax withholdings generated from the new jobs. The

297

Water Rights: Surface Water (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Water (Indiana) Surface Water (Indiana) Water Rights: Surface Water (Indiana) < Back Eligibility Agricultural Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Natural Resources The Indiana Department of Natural Resources regulates the use and diversion of surface waters. An entity that creates additional stream volumes by releases from impoundments built and financed by the entity for the entity's purpose may use the increased flowage at all times. Any entity may be required to report the volume of water used. Diversion of water out of

298

Water Rights: Ground Water (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water (Indiana) Ground Water (Indiana) Water Rights: Ground Water (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Natural Resources It is the policy of the state to provide for the conservation of groundwater resources and limit groundwater waste. The Indiana Department of Natural Resources may designate restricted use areas and limit groundwater withdrawals by existing users in those areas, thus making groundwater use greater than 100,000 gallons per day subject to permitting

299

Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Production / Quality to someone by E-mail Fuel Production / Quality to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Production / Quality on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Production / Quality on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Production / Quality on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Production / Quality on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Production / Quality on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Production / Quality on AddThis.com... More in this section... Federal State Advanced Search

300

Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Dealer to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: Indiana Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Fueling / TSE Infrastructure Owner on

302

Alternative Fuels Data Center: Indiana Laws and Incentives for Aftermarket  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Conversions to someone by E-mail Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Aftermarket Conversions on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Aftermarket Conversions on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Aftermarket Conversions on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Aftermarket Conversions on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Aftermarket Conversions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

303

Leasing of State Property (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leasing of State Property (Indiana) Leasing of State Property (Indiana) Leasing of State Property (Indiana) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Leasing Program Siting and Permitting Provider Indiana Department of Natural Resources This legislation authorizes the Indiana Department of Natural Resources to lease public lands. State-owned land that is under the management and control of the department may be leased to a local governmental unit or a

304

South Central Indiana REMC - Residential Energy Efficiency Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Central Indiana REMC - Residential Energy Efficiency Loan South Central Indiana REMC - Residential Energy Efficiency Loan Program South Central Indiana REMC - Residential Energy Efficiency Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heat Pumps Solar Water Heating Maximum Rebate $10,000 Program Info State Indiana Program Type Utility Loan Program Rebate Amount $2,000 - $10,000 Provider South Central Indiana Rural Electric Membership Corporation South Central Indiana REMC offers a 6.0% interest loan for residential customers interested in making energy efficiency improvements to participating homes. The loan can be used for a variety of energy efficient

305

Hoosier Business Investment Tax Credit (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hoosier Business Investment Tax Credit (Indiana) Hoosier Business Investment Tax Credit (Indiana) Hoosier Business Investment Tax Credit (Indiana) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Retail Supplier Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Corporate Tax Incentive Provider Indiana Economic Development Corporation The Hoosier Business Investment (HBI) Tax Credit provides incentive to businesses to support jobs creation, capital investment and to improve the standard of living for Indiana residents. The non-refundable corporate income tax credits are calculated as a percentage of the eligible capital investment to support the project. The credit may be certified annually,

306

Vectren Energy Delivery of Indiana (Gas) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Indiana (Gas) - Residential Energy Vectren Energy Delivery of Indiana (Gas) - Residential Energy Efficiency Rebates Vectren Energy Delivery of Indiana (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Attic Insulation: 40% of cost, up to $450 Wall/Ceiling Insulation: 40% of cost, up to $450 Duct Sealing: Total cost, up to $400 Boilers: $300 Furnace: $150 - $275 Programmable Thermostat: $20 Provider Vectren Energy Delivery of Indiana Vectren Energy Delivery offers its residential natural gas customers in Indiana rebates for the installation of certain high efficiency natural gas

307

Alternative Fuels Data Center: Indiana Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com... More in this section...

308

Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Purchaser to someone by E-mail Purchaser to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Purchaser on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Purchaser on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Purchaser on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Purchaser on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Purchaser on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Purchaser on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

309

Alternative Fuels Data Center: Indiana Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

310

Alternative Fuels Data Center: Indiana Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

311

Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

312

Alternative Fuels Data Center: Indiana Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

313

Alternative Fuels Data Center: Indiana Laws and Incentives for Registration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Registration / Licensing to someone by E-mail Registration / Licensing to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Registration / Licensing on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Registration / Licensing on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Registration / Licensing on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Registration / Licensing on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Registration / Licensing on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Registration / Licensing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

314

Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

315

The Gasification of Ponderosa Pine Charcoal  

Science Journals Connector (OSTI)

The gasification of wood chars with CO2 and steam is an important process step in the conversion of biomass to fuel and synthesis gases. Wood fuels can be gasified in a wide variety of sizes, shapes and densities...

Richard Edrich; Timothy Bradley

1985-01-01T23:59:59.000Z

316

Catalysts for carbon and coal gasification  

DOE Patents (OSTI)

Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

McKee, Douglas W. (Burnt Hills, NY); Spiro, Clifford L. (Scotia, NY); Kosky, Philip G. (Schenectady, NY)

1985-01-01T23:59:59.000Z

317

A New Approach to Carbon Gasification  

Science Journals Connector (OSTI)

... carbon monoxide plus hydrogen respectively, under the usual conditions of temperature and pressure applying in gasification practice, the rates of reaction measured by the number of gm. moles of product ...

J. D. BLACKWOOD; F. K. McTAGGART

1959-08-08T23:59:59.000Z

318

Biomass Gasification in Dual Fluidized Bed Gasifier  

Science Journals Connector (OSTI)

The dual fluidized bed gasification technology is prospective because it produces high...2...dilution even when air is used to generate the required endothermic heat via in situ combustion. This study is devoted ...

Toshiyuki Suda; Takahiro Murakami

2007-01-01T23:59:59.000Z

319

Underground Coal Gasification at Tennessee Colony  

E-Print Network (OSTI)

The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet...

Garrard, C. W.

1979-01-01T23:59:59.000Z

320

Partial Gasification for CO2Emissions Reduction  

Science Journals Connector (OSTI)

The chemical reaction during partial gasification of coal follows the form (Nag and Raha, 1994) which is based on the Amagat model for ideal gas mixtures: (9.1) ...

Nirmal V. Gnanapragasam; Bale V. Reddy; Marc A. Rosen

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Potassium Retention in Updraft Gasification of Wood  

Science Journals Connector (OSTI)

Wood gasifiers are equipment used for a controlled combustion of wood in limited supply of air as the oxidizing medium to generate a combustible product gas. ... Other oxidizing media, such as oxygen and steam, or a combination of any two media can be used in the gasification process. ... The zone where high rates of char combustion and gasification occur is about 15 mm wide above the grate, as determined in a similar-sized gasifier by Di Blasi. ...

Joseph Olwa; Marcus 謍man; Pettersson Esbj鰎n; Dan Bostr鰉; Mackay Okure; Bj鰎n Kjellstr鰉

2013-10-14T23:59:59.000Z

322

Ohio River Greenway Development Commission (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio River Greenway Development Commission (Indiana) Ohio River Greenway Development Commission (Indiana) Ohio River Greenway Development Commission (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Environmental Regulations Siting and Permitting Provider Ohio River Greenway Commission

323

Electricity Suppliers' Service Area Assignments (Indiana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Suppliers' Service Area Assignments (Indiana) Electricity Suppliers&#039; Service Area Assignments (Indiana) Electricity Suppliers' Service Area Assignments (Indiana) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Siting and Permitting Provider Utility Regulatory Commission To promote efficiency and avoid waste and duplication, rural and

324

Labor and Safety: Mines and Mining Safety (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This section contains labor regulations pertaining specifically to coal mine workers. The law establishes the Indiana Mining Board. The Board's duties include: collecting and distributing...

325

,"Indiana Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

326

Indiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Indiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

327

Indiana's 6th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

NuFuels LLC Ultra Soy of America DBA USA Biofuels Retrieved from "http:en.openei.orgwindex.php?titleIndiana%27s6thcongressionaldistrict&oldid188...

328

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

312014 Next Release Date: 1302015 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Indiana Natural Gas Gross Withdrawals and Production Natural Gas Gross...

329

Environmental Enterprise: Carbon Sequestration using Texaco Gasification Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Enterprise: Carbon Sequestration using Texaco Carbon Sequestration using Texaco Gasification Process Gasification Process First National Conference on Carbon Sequestration First National Conference on Carbon Sequestration May 16, 2001 May 16, 2001 Jeff Seabright Jeff Seabright Texaco Inc. Texaco Inc. Presentation Highlights Presentation Highlights * * Texaco and climate change Texaco and climate change * * Introduction to gasification Introduction to gasification * * Environmental benefits of gasification Environmental benefits of gasification * * CO CO 2 2 capture & sequestration capture & sequestration * * Challenges going forward Challenges going forward Texaco's Climate Change Policy Texaco's Climate Change Policy * * Know enough to take action now Know enough to take action now

330

Fixed bed gasification studies on coal-feedlot biomass and coal-chicken litter biomass under batch mode operation  

E-Print Network (OSTI)

of the processes for energy conversion of biomass fuels is thermochemical gasification. For the current study, a laboratory scale, 10 kW[th], fixed-bed gasifier (reactor internal diameter 0.15 m, reactor height 0.30 m) facility was built at the Texas A...

Priyadarsan, Soyuz

2012-06-07T23:59:59.000Z

331

Effect of Microstructural Changes on Gasification Reactivity of Coal Chars during Low Temperature Gasification  

Science Journals Connector (OSTI)

Effect of Microstructural Changes on Gasification Reactivity of Coal Chars during Low Temperature Gasification ... Pocahontas No. 3, Illinois No. 6, and Beulah-Zap coal char samples were gasified in 1% O2 at 500 癈 or 600 癈 up to 90% (daf) conversion, and their structure were observed under a high-resolution transmission electron microscope (HRTEM). ...

Atul Sharma; Hayato Kadooka; Takashi Kyotani; Akira Tomita

2001-11-28T23:59:59.000Z

332

EIS-0432: Department of Energy Loan Guarantee for Medicine Bow Gasification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Department of Energy Loan Guarantee for Medicine Bow 2: Department of Energy Loan Guarantee for Medicine Bow Gasification and Liquefaction Coal-to-Liquids, Carbon County, Wyoming EIS-0432: Department of Energy Loan Guarantee for Medicine Bow Gasification and Liquefaction Coal-to-Liquids, Carbon County, Wyoming Summary DOE is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to Medicine Bow Fuel & Power LLC (MBFP), a wholly-owned subsidiary of DKRW Advanced Fuels LLC. MBFP submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 to support the construction and startup of the MBFP coal-to-liquids facility, a coal mine and associated coal handling facilities. Public Comment Opportunities No public comment opportunities available at this time.

333

State of Indiana/Greater IN Clean Cities Alternative Fuels Implementat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications State of IndianaGreater IN Clean Cities Alternative Fuels Implementation Plan State of IndianaGICC Alternative Fuels Implementation...

334

Kinetics of steam gasification of bituminous coals in terms of their use for underground coal gasification  

Science Journals Connector (OSTI)

Abstract The kinetics of steam gasification was examined for bituminous coals of a low coal rank. The examined coals can be the raw material for underground coal gasification. Measurements were carried out under isothermal conditions at a high pressure of 4燤Pa and temperatures of 800, 900, 950, and 1000牥C. Yields of gasification products such as carbon monoxide and carbon dioxide, hydrogen and methane were calculated based on the kinetic curves of formation reactions of these products. Also carbon conversion degrees are presented. Moreover, calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the coal gasification process. The parameters obtained during the examinations enable a preliminary assessment of coal for the process of underground coal gasification.

Stanis?aw Porada; Grzegorz Czerski; Tadeusz Dziok; Przemys?aw Grzywacz; Dorota Makowska

2015-01-01T23:59:59.000Z

335

NIPSCO - Existing Facility Retrofit Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NIPSCO - Existing Facility Retrofit Rebate Program NIPSCO - Existing Facility Retrofit Rebate Program NIPSCO - Existing Facility Retrofit Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Contact NIPSCO $500,000 per project per year $1,000,000 per applicant per year Program Info Expiration Date 12/31/2013 State Indiana Program Type Utility Rebate Program Rebate Amount Other Projects: $0.09/kWh in electricity reductions Energize Indiana Rebates: Varies widely Provider

336

World Gasification Database Now Available from DOE | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

World Gasification Database Now Available from DOE World Gasification Database Now Available from DOE World Gasification Database Now Available from DOE November 9, 2010 - 12:00pm Addthis Washington, DC - A database just released by the U.S. Department of Energy (DOE) documents the worldwide growth of gasification, the expected technology of choice for future coal-based plants that produce power, fuels, and/or chemicals with near-zero emissions. The 2010 Worldwide Gasification Database, a comprehensive collection of gasification plant data, describes the current world gasification industry and identifies near-term planned capacity additions. The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas

337

Utilization of char from biomass gasification in catalytic applications  

E-Print Network (OSTI)

Utilization of char from biomass gasification in catalytic applications Naomi Klinghoffer Submitted Utilization of char from biomass gasification in catalytic applications Naomi Klinghoffer Utilization takes place during catalytic decomposition. This thesis focuses on the utilization of char as a catalyst

338

John Shepard Wright Benefactor of Forestry in Indiana*  

E-Print Network (OSTI)

John Shepard Wright Benefactor of Forestry in Indiana* by W. C. Bramble Head, Department of Forestry and Conservation, 1958 颅 1973, Purdue University "John Shepard Wright was a quiet, scholarly man in the Proceedings of the Indiana Academy of Science for 1951. John S. Wright's interest in science and forestry

339

Hanna, Wyoming underground coal gasification data base. Volume 3. The Hanna II, Phase I field test  

SciTech Connect

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phase I was conducted during the spring and summer of 1975, at a site about 700 feet up dip (to the southwest) of the Hanna I test. The test was conducted in two stages - Phase IA and IB. Phase IA consisted of linking and gasification operations between Wells 1 and 3 and Phase IB of linking from the 1-3 gasification zone to Well 2, followed by a short period of gasification from Well 2 to Well 3 over a broad range of air injection rates, in order to determine system turndown capabilities and response times. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operational testing; (5) test operations summary; and (6) post-test activity. 7 refs., 11 figs., 8 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01T23:59:59.000Z

340

Thermochemical Conversion Research and Development: Gasification and Pyrolysis (Fact Sheet)  

SciTech Connect

Biomass gasification and pyrolysis research and development activities at the National Renewable Energy Laboratory and Pacific Northwest National Laboratory.

Not Available

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE - Office of Legacy Management -- University of Indiana - IN 06  

Office of Legacy Management (LM)

Indiana - IN 06 Indiana - IN 06 FUSRAP Considered Sites Site: UNIVERSITY OF INDIANA (IN.06) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bloomington , Indiana IN.06-1 Evaluation Year: 1987 IN.06-3 Site Operations: Conducted research and development operations using test quantities of radioactive material. IN.06-3 Site Disposition: Eliminated - Potential for contamination considered remote due to the limited scope of operations at the site IN.06-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium IN.06-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to UNIVERSITY OF INDIANA

342

Qualifying RPS State Export Markets (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana) Indiana) Qualifying RPS State Export Markets (Indiana) < Back Eligibility Developer Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Indiana as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance targets may be met by out-of-state generation. In addition to geographic

343

Apparatus for fixed bed coal gasification  

DOE Patents (OSTI)

An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

344

Plasma Treatments and Biomass Gasification  

Science Journals Connector (OSTI)

Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

J Luche; Q Falcoz; T Bastien; J P Leninger; K Arabi; O Aubry; A Khacef; J M Cormier; J L閐

2012-01-01T23:59:59.000Z

345

5 - Gasification reaction kinetics for synthetic liquid fuel production  

Science Journals Connector (OSTI)

Abstract The gasification process is a chemically and physically complex operation. This chapter presents a description of the chemistry of gasification reactions. It also discusses the assorted reactions involved in gasification and the various thermodynamic aspects of these reactions that dictate the process parameters used to produce the various gases.

J.G. Speight

2015-01-01T23:59:59.000Z

346

Short Communication Catalytic coal gasification: use of calcium versus potassium*  

E-Print Network (OSTI)

Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R on the gasification in air and 3.1 kPa steam of North Dakota lignitic chars prepared under slow and rapid pyrolysis of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis

347

The Public Perceptions of Underground Coal Gasification (UCG)  

E-Print Network (OSTI)

The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

Watson, Andrew

348

Gasification of woody biomass Tessa Jansen (s0140600)  

E-Print Network (OSTI)

1 Gasification of woody biomass Tessa Jansen (s0140600) University of Twente Internship at SINTEF costs. So I would be working on biomass gasification and perform thermo gravimetric analysis (TGA process and char reactivity has been investigated by performing multiple gasification, pyrolysis

Luding, Stefan

349

NETL: Gasification Systems - Projects by State with Congressional District  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects by State Projects by State Gasification Systems Projects by State with Congressional District State Performer Congressional District Alabama National Carbon Capture Center at the Power Systems Development Facility-Project List Modification of the Developmental Pressure Decoupled Advanced Coal (PDAC) Feeder Long-Term Refractory Durability Tests (Transport Gasifier) Long-Term Candle Filter Tests (Transport Gasifier) Water-Gas Shift Tests to Reduce Steam Use Southern Company Services, Inc. AL07 High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids Production Southern Research Institute AL07 California Dry Solids Pump Coal Feed Technology Aerojet Rocketdyne CA30 Colorado A Cost-Effective Oxygen Separation System Based on Open Gradient Magnetic Field by Polymer Beads ITN Energy Systems CO01

350

Biomass Gasification in Fluidized Bed:? Where To Locate the Dolomite To Improve Gasification?  

Science Journals Connector (OSTI)

Figure 5 Steam content in the flue gas vs relative amount of dolomite used for two different locations of the dolomite and for two gasifying agents; (a) gasification with H2O + O2 mixtures, GR = 0.86?1.16, ... Figure 6 Low heating value of the flue gas for two locations of the dolomite and for two gasifying agents; (a) gasification with H2O + O2 mixtures, GR = 0.86?1.16, ... Figure 7 Gas yield for two locations of the dolomite and for two gasifying agents; (a) gasification with H2O + O2 mixtures; GR = 0.86?1.16, ...

Jos Corella; Mar韆-Pilar Aznar; Javier Gil; Miguel A. Caballero

1999-10-28T23:59:59.000Z

351

The ENCOAL Mild Coal Gasification Project, A DOE Assessment  

SciTech Connect

This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective, the following goals were established for the ENCOAL{reg_sign} Project: Provide sufficient quantity of products for full-scale test burns; Develop data for the design of future commercial plants; Demonstrate plant and process performance; Provide capital and O&M cost data; and Support future LFC{trademark} technology licensing efforts. Each of these goals has been met and exceeded. The plant has been in operation for nearly 5 years, during which the LFC{trademark} process has been demonstrated and refined. Fuels were made, successfully burned, and a commercial-scale plant is now under contract for design and construction.

National Energy Technology Laboratory

2002-03-15T23:59:59.000Z

352

Process for fixed bed coal gasification  

DOE Patents (OSTI)

The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

353

Production of Hydrogen from Underground Coal Gasification  

DOE Patents (OSTI)

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07T23:59:59.000Z

354

Selection of Coal Gasification Parameters for Injection of Gasification Products Into a Blast Furnace  

Science Journals Connector (OSTI)

An analytical study was performed on the influence of blast parameters on the course of the processes in the volume of a blast furnace and smelting rates by injection of low-grade coal gasification products. It w...

I. G. Tovarovsky; A. E. Merkulov

2014-01-01T23:59:59.000Z

355

NIPSCO - New Facility Efficiency Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Facility Efficiency Rebate Program New Facility Efficiency Rebate Program NIPSCO - New Facility Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 100% of incremental measure cost 50% of total project cost $10,000 per project per year $20,000 per applicant per year Program Info Start Date 05/01/2012 Expiration Date 12/31/2013 State Indiana Program Type Utility Rebate Program Rebate Amount $0.45/kWh in electricity reductions Provider Northern Indiana Public Service Corporation Northern Indiana Public Service Corporation (NIPSCO) offers incentives to

356

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions,

357

Gas sales starting from Indiana`s fractured New Albany shale  

SciTech Connect

The Indiana Department of Natural Resources, Division of Oil and Gas issued 138 drilling permits from Dec. 1, 1994, through July 31, 1996, in 17 counties in a growing play for gas in Devonian New Albany shale in southern Indiana. The permits are active in the form of locations, drilling wells, wells in the completion process, and wells producing gas in the dewatering stage. Geologically in southwestern Indiana the New Albany shale exploration play is found in three provinces. These are the Wabash platform, the Terre Haute reef bank, and the Vincennes basin. Exploration permits issued on each of these geologic provinces are as follows: Wabash platform 103, Terra Haute reef bank 33, and Vincennes basin two. The authors feel that the quantity and effectiveness of communication of fracturing in the shale will control gas production and water production. A rule of thumb in a desorption reservoir is that the more water a shale well makes in the beginning the more gas it will make when dewatered.

Minihan, E.D.; Buzzard, R.D. [Minihan/Buzzard Consulting Geologists, Fort Worth, TX (United States)

1996-09-02T23:59:59.000Z

358

Special Improvement Districts for Redevelopment of Blighted Areas (Indiana)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Improvement Districts for Redevelopment of Blighted Areas Special Improvement Districts for Redevelopment of Blighted Areas (Indiana) Special Improvement Districts for Redevelopment of Blighted Areas (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Bond Program Enterprise Zone Siting and Permitting

359

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect

The U.S. Department of Energy憇 National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE憇 bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

2011-09-30T23:59:59.000Z

360

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect

The U.S. Department of Energy??s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE??s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Shawn Maghzi; Ramanathan Subramanian; George Rizeq; Surinder Singh; John McDermott; Boris Eiteneer; David Ladd; Arturo Vazquez; Denise Anderson; Noel Bates

2011-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Heavy metals behaviour in a gasification reactor  

Science Journals Connector (OSTI)

Sludge coming from cleaning processes of wastewater, Municipal Solid Waste (MSW), and Refuse Derived Fuel (RDF) can be exploited for producing energy because of their heating value. Cleaning the produced syngas is important because of environmental troubles, ... Keywords: heavy metals, syngas, thermodynamic, waste gasification

Martino Paolucci; Carlo Borgianni; Paolo De Filippis

2011-07-01T23:59:59.000Z

362

Biomass Gasification at The Evergreen State College  

E-Print Network (OSTI)

Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

363

World Gasification Database Now Available from DOE  

Energy.gov (U.S. Department of Energy (DOE))

A database just released by the U.S. Department of Energy documents the worldwide growth of gasification, the expected technology of choice for future coal-based plants that produce power, fuels, and/or chemicals with near-zero emissions.

364

Optimum Design of Coal Gasification Plants  

E-Print Network (OSTI)

This paper deals with the optimum design of heat recovery systems using the Texaco Coal Gasification Process (TCGP). TCGP uses an entrained type gasifier and produces hot gases at approximately 2500oF with high heat flux. This heat is removed...

Pohani, B. P.; Ray, H. P.; Wen, H.

1982-01-01T23:59:59.000Z

365

NETL: Gasification Systems and Industry Analyses Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Analyses Studies Analyses Studies Gasification Systems Reference Shelf 聳 Systems and Industry Analyses Studies Table of Contents Cost and Performance Baseline for Fossil Energy Power Plants Studies Gasification Systems Program's Systems and Industry Analyses Studies DOE/NETL possesses strong systems analysis and policy-support capabilities. Systems analysis in support of the Gasification Systems Program consists of conducting various energy analyses that provide input to decisions on issues such as national plans and programs, resource use, environmental and energy security policies, technology options for research and development programs, and paths to deployment of energy technology. Cost and Performance Baseline for Fossil Energy Power Plants Studies The Cost and Performance Baseline for Fossil Energy Power Plants studies establish up-to-date estimates for the cost and performance of combustion and gasification based power plants as well as options for co-generating synthetic natural gas and fuels, all with and without carbon dioxide capture and storage. Several ranks of coal are being assessed in process configurations that are based on technology that could be constructed today such that the plant could be operational in the 2010 - 2015 timeframe. The analyses were performed on a consistent technical and economic basis that accurately reflects current market conditions.

366

Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process  

SciTech Connect

The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

Rizzo, Jeffrey J. [Phillips66 Company, West Terre Haute, IN (United States)

2010-04-30T23:59:59.000Z

367

Town of Bainbridge, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bainbridge, Indiana (Utility Company) Bainbridge, Indiana (Utility Company) Jump to: navigation, search Name Town of Bainbridge Place Indiana Utility Id 1119 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rate Commercial Residential Electric Rate Residential Average Rates Residential: $0.0935/kWh Commercial: $0.1010/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Bainbridge,_Indiana_(Utility_Company)&oldid=411690"

368

Indiana Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Indiana Regions Indiana Regions National Science Bowl庐 (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl庐 U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Indiana Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Indiana Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

369

Town of Ladoga, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Ladoga, Indiana (Utility Company) Ladoga, Indiana (Utility Company) Jump to: navigation, search Name Ladoga Town of Place Indiana Utility Id 10568 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Power Public Street Lighting Lighting Residential Residential Security Lighting Lighting Average Rates Residential: $0.1190/kWh Commercial: $0.1150/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Ladoga,_Indiana_(Utility_Company)&oldid=411761

370

City of Rising Sun, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Rising Sun, Indiana (Utility Company) Rising Sun, Indiana (Utility Company) Jump to: navigation, search Name Rising Sun City of Place Indiana Utility Id 16068 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate A- Residential Residential Rate B- General Power Commercial Average Rates Residential: $0.0792/kWh Commercial: $0.0888/kWh Industrial: $0.1490/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Rising_Sun,_Indiana_(Utility_Company)&oldid=410165

371

City of Linton, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Linton, Indiana (Utility Company) Linton, Indiana (Utility Company) Jump to: navigation, search Name City of Linton Place Indiana Utility Id 11055 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Average Rates Residential: $0.0961/kWh Commercial: $0.0949/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Linton,_Indiana_(Utility_Company)&oldid=409868

372

Town of Dunreith, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Dunreith, Indiana (Utility Company) Dunreith, Indiana (Utility Company) Jump to: navigation, search Name Town of Dunreith Place Indiana Utility Id 5071 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1110/kWh Commercial: $0.1010/kWh Industrial: $0.1210/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Dunreith,_Indiana_(Utility_Company)&oldid=411719

373

Indiana Michigan Power - Commercial and Industrial Rebates Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Michigan Power - Commercial and Industrial Rebates Program Indiana Michigan Power - Commercial and Industrial Rebates Program Indiana Michigan Power - Commercial and Industrial Rebates Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom: $20,000 per customer account per 12 month period Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Custom: 100% of calculated incentives ($10,000 or less), 50% of calculated incentives ($10,000 - $30,000) T8's with Electronic Ballast: $4-$75/fixture T5's with Electronic Ballast: $2-$213/fixture T5 Fluorescent Lighting: $30-$75/fixture CFL's: $2 - $5 LED Signals: $30 - 50/signal Sensor: $30 T12 Delamping: $8

374

Vectren Energy Delivery of Indiana (Gas) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Indiana (Gas) - Commercial Energy Vectren Energy Delivery of Indiana (Gas) - Commercial Energy Efficiency Rebates Vectren Energy Delivery of Indiana (Gas) - Commercial Energy Efficiency Rebates < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Appliances & Electronics Water Heating Maximum Rebate Boilers: $5,000 Boiler Modulating Burner Control: $5,000 Infrared Heater: $700 Custom: Contact Vectren Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Boilers: $4/MMbtu Boiler Modulating Burner Control: up to $5000 Boiler Reset Control or Tune-Up: $250 Boiler Tune-up: $200 Furnace: $150 - $275 Tank Water Heater: $125 - $150 Tankless Water Heater: $150

375

Wabash River Heritage Corridor (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wabash River Heritage Corridor (Indiana) Wabash River Heritage Corridor (Indiana) Wabash River Heritage Corridor (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1991 State Indiana Program Type Siting and Permitting Provider Wabash River Heritage Corridor Commission The Wabash River Heritage Corridor, consisting of the Wabash River, the Little River, and the portage between the Little River and the Maumee

376

Town of Frankton, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Frankton, Indiana (Utility Company) Frankton, Indiana (Utility Company) Jump to: navigation, search Name Town of Frankton Place Indiana Utility Id 6735 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Residential Rate Residential Average Rates Residential: $0.0845/kWh Commercial: $0.0751/kWh Industrial: $0.0822/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Frankton,_Indiana_(Utility_Company)&oldid=41173

377

Town of Straughn, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Straughn, Indiana (Utility Company) Straughn, Indiana (Utility Company) Jump to: navigation, search Name Town of Straughn Place Indiana Utility Id 18250 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial: Three Phase Commercial Residential Residential Security Lighting Lighting Average Rates Residential: $0.0661/kWh Commercial: $0.0484/kWh Industrial: $0.1670/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Straughn,_Indiana_(Utility_Company)&oldid=411827

378

Indiana Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Indiana Regions Indiana Regions National Science Bowl庐 (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl庐 U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Indiana Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Indiana Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

379

Indiana College Provides Training for Green Jobs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana College Provides Training for Green Jobs Indiana College Provides Training for Green Jobs Indiana College Provides Training for Green Jobs December 4, 2009 - 5:48pm Addthis Ray Bonebrake teaches at Ivy Tech. | Photo courtesy Ivy Tech Ray Bonebrake teaches at Ivy Tech. | Photo courtesy Ivy Tech Joshua DeLung At a community college with locations across Indiana, a free weatherization training course gives students of diverse backgrounds a chance to hone their skills and jump into careers in the clean-energy economy. With the help of mentors and hands-on learning activities, students leave the course ready to compete for green jobs. "I think when you introduce them to some of the theories and practices that we're promoting, it's an awakening," instructor David Blais says. While the overarching goal of the program is to prepare contractors to be

380

Town of Veedersburg, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Veedersburg, Indiana (Utility Company) Veedersburg, Indiana (Utility Company) Jump to: navigation, search Name Town of Veedersburg Place Indiana Utility Id 19771 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Average Rates Residential: $0.0813/kWh Commercial: $0.0788/kWh Industrial: $0.0686/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Veedersburg,_Indiana_(Utility_Company)&oldid=411832

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Town of Montezuma, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Indiana (Utility Company) Indiana (Utility Company) Jump to: navigation, search Name Montezuma Town of Place Indiana Utility Id 12840 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 3-Phase Commercial Commercial Commercial In-Town Residential Residential Municipal Street Lighting Lighting Rural Residential Residential Average Rates Residential: $0.0857/kWh Commercial: $0.0915/kWh Industrial: $0.0802/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Montezuma,_Indiana_(Utility_Company)&oldid=41178

382

Town of Coatesville, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Coatesville, Indiana (Utility Company) Coatesville, Indiana (Utility Company) Jump to: navigation, search Name Town of Coatesville Place Indiana Utility Id 3815 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Power Residential Residential Average Rates Residential: $0.0783/kWh Commercial: $0.0874/kWh Industrial: $0.0887/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Coatesville,_Indiana_(Utility_Company)&oldid=411712

383

City of Waynetown, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Waynetown, Indiana (Utility Company) Waynetown, Indiana (Utility Company) Jump to: navigation, search Name City of Waynetown Place Indiana Utility Id 20226 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Security Lighting Lighting Three Phase Commercial Average Rates Residential: $0.0910/kWh Commercial: $0.0851/kWh Industrial: $0.0824/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Waynetown,_Indiana_(Utility_Company)&oldid=41040

384

Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

385

Indiana Natural Gas LNG Storage Withdrawals (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Indiana Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

386

Radiological Final Status Survey of the Hammond Depot, Hammond, Indiana  

SciTech Connect

ORISE conducted extensive scoping, characterization, and final status surveys of land areas and structures at the DNSC抯 Hammond Depot located in Hammond, Indiana in multiple phases during 2005, 2006 and 2007.

T.J. Vitkus

2008-04-07T23:59:59.000Z

387

Minimum Stream Flow and Water Sale Contracts (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Natural Resources Commission may provide certain minimum quantities of stream flow or sell water on a unit pricing basis for water supply purposes from the water supply storage in...

388

Indiana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

389

,"Indiana Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:03:47 PM" "Back to Contents","Data 1: Indiana...

390

Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

391

Fishing in Indiana FNR-IDNR-102-W  

E-Print Network (OSTI)

. Hispanic, Asian, and Native American anglers each represented approximately 1% of anglers in Indiana school and having completed some college education. The average household income of anglers ranged from

392

Curriculum Support Maps for the Study of Indiana Coal  

E-Print Network (OSTI)

": lignite, subbituminous, bituminous, and anthracite. Indiana coals are bituminous and composed of 55 to 79 nearly 17 billion tons is recoverable. These reserves could last another 585 years at the current rate

Polly, David

393

Indiana College Provides Training for Green Jobs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana College Provides Training for Green Jobs Indiana College Provides Training for Green Jobs Indiana College Provides Training for Green Jobs December 4, 2009 - 5:48pm Addthis Ray Bonebrake teaches at Ivy Tech. | Photo courtesy Ivy Tech Ray Bonebrake teaches at Ivy Tech. | Photo courtesy Ivy Tech Joshua DeLung At a community college with locations across Indiana, a free weatherization training course gives students of diverse backgrounds a chance to hone their skills and jump into careers in the clean-energy economy. With the help of mentors and hands-on learning activities, students leave the course ready to compete for green jobs. "I think when you introduce them to some of the theories and practices that we're promoting, it's an awakening," instructor David Blais says. While the overarching goal of the program is to prepare contractors to be

394

Indiana/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Indiana/Wind Resources/Full Version Indiana/Wind Resources/Full Version < Indiana鈥 | Wind Resources Jump to: navigation, search Print PDF Indiana Wind Resources IndianaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

395

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

396

Coal properties and system operating parameters for underground coal gasification  

SciTech Connect

Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

Yang, L. [China University of Mining & Technology, Xuzhou (China)

2008-07-01T23:59:59.000Z

397

NETL: Gasification Systems - Evaluation of the Benefits of Advanced Dry  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Evaluation of the Benefits of Advanced Dry Feed System for Low Rank Coal Project Number: DE-FE0007902 General Electric Company (GE) is evaluating and demonstrating the benefits of novel dry feed technologies to effectively, reliably, and economically provide feeding of low-cost, low-rank coals into commercial Integrated Gasification Combined Cycle (IGCC) systems. GE is completing comparative techno-economic studies of two IGCC power plant cases, one without and one with advanced dry feed technologies. A common basis of design is being developed so that overall assumptions and methodologies are common in the two cases for both technical and economic areas. The baseline case, without advanced dry feed technologies, will use operational data from the Eastman Chemical Company Kingsport gasification facility in combination with DOE/NETL's Cost and Performance Baseline Low-Rank Coal to Electricity IGCC study for both cost and performance comparisons. Advanced dry feed technologies, based upon the Posimetric庐 pump currently under development by GE, will be developed to match the proposed plant conditions and configuration, and will be analyzed to provide comparative performance and cost information to the baseline plant case. The scope of this analysis will cover the feed system from the raw coal silo up to, and including, the gasifier injector. Test data from previous and current testing will be summarized in a report to support the assumptions used to evaluate the advanced technologies and the potential value for future applications. This study focuses primarily on IGCC systems with 90 percent carbon capture, utilization, and storage (CCUS), but the dry feed system will be applicable to all IGCC power generating plants, as well as other industries requiring pressurized syngas.

398

NETL: Gasification - Development of Ion-Transport Membrane Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Recovery Act: Development of Ion-Transport Membrane Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems Air Products and Chemicals, Inc. Project Number: FC26-98FT40343 Project Description Air Products and Chemicals, Inc. is developing, scaling-up, and demonstrating a novel air separation technology for large-scale production of oxygen (O2) at costs that are approximately one-third lower than conventional cryogenic plants. An Ion Transport Membrane (ITM) Oxygen plant co-produces power and oxygen. A phased technology RD&D effort is underway to demonstrate all necessary technical and economic requirements for scale-up and industrial commercialization. The ITM Oxygen production technology is a radically different approach to producing high-quality tonnage oxygen and to enhance the performance of integrated gasification combined cycle and other advanced power generation systems. Instead of cooling air to cryogenic temperatures, oxygen is extracted from air at temperatures synergistic with power production operations. Process engineering and economic evaluations of integrated gasification combined cycle (IGCC) power plants comparing ITM Oxygen with a state-of-the-art cryogenic air separation unit are aimed to show that the installed capital cost of the air separation unit and the installed capital of IGCC facility are significantly lower compared to conventional technologies, while improving power plant output and efficiency. The use of low-cost oxygen in combustion processes would provide cost-effective emission reduction and carbon management opportunities. ITM Oxygen is an enabling module for future plants for producing coal derived shifted synthesis gas (a mixture of hydrogen [H2] and carbon dioxide [CO2]) ultimately for producing clean energy and fuels. Oxygen-intensive industries such as steel, glass, non-ferrous metallurgy, refineries, and pulp and paper may also realize cost and productivity benefits as a result of employing ITM Oxygen.

399

Economic Development and Pollution Control (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes possible financing avenues for pollution control facilities that may mitigate or reduce pollution, or treat substances in processed materials that may cause pollution....

400

Gasification of Organosolv-lignin Over Charcoal Supported Noble Metal Salt Catalysts in Supercritical Water  

Science Journals Connector (OSTI)

Charcoal supported metal salt catalysts showed activities for the lignin gasification at 673燢, especially the catalysts without chloride anion showed the complete gasification. The order of activity for the gasification

Aritomo Yamaguchi; Norihito Hiyoshi; Osamu Sato; Masayuki Shirai

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fixed Bed Counter Current Gasification of Mesquite and Juniper Biomass Using Air-steam as Oxidizer  

E-Print Network (OSTI)

Thermal gasification of biomass is being considered as one of the most promising technologies for converting biomass into gaseous fuel. Here we present results of gasification, using an adiabatic bed gasifier with air, steam as gasification medium...

Chen, Wei 1981-

2012-11-27T23:59:59.000Z

402

Storing syngas lowers the carbon price for profitable coal gasification  

SciTech Connect

Integrated gasification combined cycle (IGCC) electric power generation systems with carbon capture and sequestration have desirable environmental qualities but are not profitable when the carbon dioxide price is less than approximately $50 per metric ton. We examine whether an IGCC facility that operates its gasifier continuously but stores the syngas and produces electricity only when daily prices are high may be profitable at significantly lower CO{sub 2} prices. Using a probabilistic analysis, we have calculated the plant-level return on investment (ROI) and the value of syngas storage for IGCC facilities located in the U.S. Midwest using a range of storage configurations. Adding a second turbine to use the stored syngas to generate electricity at peak hours and implementing 12 h of above-ground high-pressure syngas storage significantly increases the ROI and net present value. Storage lowers the carbon price at which IGCC enters the U.S. generation mix by approximately 25%. 36 refs., 7 figs., 1 tab.

Adam Newcomer; Jay Apt [Carnegie Mellon University, Pittsburgh, PA (USA). Carnegie Mellon Electricity Industry Center

2007-12-15T23:59:59.000Z

403

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions, water discharges, and solid

404

Advanced Biomass Gasification Technologies Inc ABGT | Open Energy  

Open Energy Info (EERE)

Gasification Technologies Inc ABGT Gasification Technologies Inc ABGT Jump to: navigation, search Name Advanced Biomass Gasification Technologies Inc. (ABGT) Place New York, New York Zip 10036 Product Company set up by UTEK specifically for its sale to Xethanol, holding the exclusive license for microgasification technology developed at the Energy and Environmental Research Center (EERC) at the University of North Dakota. References Advanced Biomass Gasification Technologies Inc. (ABGT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Biomass Gasification Technologies Inc. (ABGT) is a company located in New York, New York . References 鈫 "Advanced Biomass Gasification Technologies Inc. (ABGT)"

405

How Coal Gasification Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification 禄 How Coal Gasification 禄 How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work The heart of a gasification-based system is the gasifier. A gasifier converts hydrocarbon feedstock into gaseous components by applying heat under pressure in the presence of steam. A gasifier differs from a combustor in that the amount of air or oxygen available inside the gasifier is carefully controlled so that only a relatively small portion of the fuel burns completely. This "partial oxidation" process provides the heat. Rather than burning, most of the carbon-containing feedstock is chemically broken apart by the gasifier's heat and pressure, setting into motion chemical reactions that produce "syngas." Syngas is primarily hydrogen and carbon monoxide, but can include

406

Integrated Gasification Combined Cycle Dynamic Model: H2S Absorption/Stripping, Water?Gas Shift Reactors, and CO2 Absorption/Stripping  

Science Journals Connector (OSTI)

Integrated Gasification Combined Cycle Dynamic Model: H2S Absorption/Stripping, Water?Gas Shift Reactors, and CO2 Absorption/Stripping ... Future chemical plants may be required to have much higher flexibility and agility than existing process facilities in order to be able to handle new hybrid combinations of power and chemical units. ...

Patrick J. Robinson; William L. Luyben

2010-04-26T23:59:59.000Z

407

Method for increasing steam decomposition in a coal gasification process  

DOE Patents (OSTI)

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, Marvin W. (Fairview, WV)

1988-01-01T23:59:59.000Z

408

Method for increasing steam decomposition in a coal gasification process  

DOE Patents (OSTI)

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, M.W.

1987-03-23T23:59:59.000Z

409

E-Print Network 3.0 - adiabatic fixed-bed gasification Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

State University ABSTRACT Gasification is a globally emerging technology in commercial markets... of the most developed and versatile gasification technologies is based upon...

410

NETL: 2013 Gasification Systems Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf > Project Portfolio Reference Shelf > Project Portfolio Gasification Systems 2013 Gasification Systems Project Portfolio Gasifier Optimization Gas Separation Gas Separation Gasifier Optimization Gasifier Optimization Gas Cleaning Gasifier Optimization Gas Cleaning Gas Separation U.S. Economic Competitiveness Gas Separation Gasifier Optimization U.S. Economic Competitiveness Gasifier Optimization U.S. Economic Competitiveness Gas Cleaning Gasifier Optimization Gas Cleaning Gasifier Optimization Gas Separation U.S. Economic Competitiveness Gas Separation U.S. Economic Competitiveness U.S. Economic Competitiveness Gas Cleaning Gas Cleaning Gas Separation Gas Cleaning Gas Separation Global Environmental Benefits Gas Separation Global Environmental Benefits Global Environmental Benefits Gas Cleaning Gas Separation Systems Analyses Global Environmental Benefits Gas Separation Systems Analyses Global Environmental Benefits Systems Analyses Global Environmental Benefits Gas Cleaning Systems Analyses Gas Cleaning Gas Separation Systems Analyses Systems Analyses Gas Cleaning Systems Analyses Systems Analyses Systems Analyses

411

Fluidized bed gasification of extracted coal  

DOE Patents (OSTI)

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

1986-01-01T23:59:59.000Z

412

Gasification performance of switchgrass pretreated with torrefaction and densification  

SciTech Connect

The purpose of this study was to investigate gasification performance of four switchgrass pretreatments (torrefaction at 230 and 270 癈, densification, and combined torrefaction and densification) and three gasification temperatures (700, 800 and 900 癈). Gasification was performed in a fixed-bed externally heated reactor with air as an oxidizing agent. Switchgrass pretreatment and gasification temperature had significant effects on gasification performance such as gas yields, syngas lower heating value (LHV), and carbon conversion and cold gas efficiencies. With an increase in the gasification temperature, yields of H2 and CO, syngas LHV, and gasifier efficiencies increased whereas CH4, CO2 and N2 yields decreased. Among all switchgrass pretreatments, gasification performance of switchgrass with combined torrefaction and densification was the best followed by that of densified, raw and torrefied switchgrass. Gasification of combined torrefied and densified switchgrass resulted in the highest yields of H2 (0.03 kg/kg biomass) and CO (0.72 kg/kg biomass), highest syngas LHV (5.08 MJ m-3), CCE (92.53%), and CGE (68.40%) at the gasification temperature of 900 癈.

Jaya Shankar Tumuluru; Various

2014-08-01T23:59:59.000Z

413

EIS-0383: Southern Company's Orlando Gasification Project, Orlando, FL  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes DOE's decision to provide cost-shared funding for construction, design, and operation of a new gasification plant in Orlando, Florida.

414

Upgrading of Pitch Produced by Mild Gasification of Subbituminous Cal  

Science Journals Connector (OSTI)

Upgrading of Pitch Produced by Mild Gasification of Subbituminous Cal ... Structural Characterization of Coal Tar Pitches Obtained by Heat Treatment under Different Conditions ...

Robert L. McCormick; Mahesh C. Jha

1994-03-01T23:59:59.000Z

415

Underground coal gasification : overview of an economic and environmental evaluation.  

E-Print Network (OSTI)

??This paper examines an overview of the economic and environmental aspects of Underground Coal Gasification (UCG) as a viable option to the above ground Surface (more)

Kitaka, Richard Herbertson

2012-01-01T23:59:59.000Z

416

Fluidized bed injection assembly for coal gasification  

DOE Patents (OSTI)

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

417

Coal Gasification in a Transport Reactor  

Science Journals Connector (OSTI)

These simulations were used to compare the response of coals gasified to those combusted substoichiometrically, to evaluate the optimum operating conditions and to predict the performance in larger-scale units with less heat loss. ... Entrained-flow gasifiers use high temperatures (1350?1550 癈) and gasify coals in 2?3 s. ... Kinetic studies were carried out to elucidate the mechanisms of steam and CO2 gasification of char and the interactions of these gasifying agents. ...

Lawrence J. Shadle; Esmail R. Monazam; Michael L. Swanson

2001-05-25T23:59:59.000Z

418

Black liquor gasification. Phase 2 final report  

SciTech Connect

The experimental work included 23 bench-scale tests in a 6-in.-diameter gasifier and two extended runs in a 33-in.-ID pilot-scale unit. The two pilot-scale runs included 26 test periods, each evaluated separately. The engineering analysis work consisted primarily of the correlation of test results and the development of a computer model describing the gasification process. 4 refs., 13 figs., 23 tabs.

Kohl, A.L.; Barclay, K.M.; Stewart, A.E.; Estes, G.R.

1984-11-28T23:59:59.000Z

419

Improved Refractory Materials for Slagging Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Fac Fac ts Materials Science contact Bryan Morreale Focus Area Leader (Acting) Materials Science Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15326 412-386-5929 bryan.morreale@netl.doe.gov Partner Harbison-Walker Refractories Company Improved Refractory Materials for Slagging Gasification Systems Advances in technology are often directly linked to materials development. For

420

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network (OSTI)

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS). (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A feasibility study for underground coal gasification at Krabi Mine, Thailand  

SciTech Connect

A study to evaluate the technical, economical, and environmental feasibility of underground coal gasification (UCG) in the Krabi Mine, Thailand, was conducted by the Energy and Environmental Research Center (EERC) in cooperation with B.C. Technologies (BCT) and the Electricity Generating Authority of Thailand (EGAT). The selected coal resource was found suitable to fuel a UCG facility producing 460,000 MJ/h (436 million Btu/h) of 100--125 Btu/scf gas for 20 years. The raw UCG gas could be produced for a selling price of $1.94/MMBtu. The UCG facility would require a total investment of $13.8 million for installed capital equipment, and annual operating expenses for the facility would be $7.0 million. The UCG gas could be either cofired in a power plant currently under construction or power a 40 MW simple-cycle gas turbine or a 60 MW combined-cycle power plant.

Solc, J.; Steadman, E.N. [Energy and Environmental Research Center, Grand Forks, ND (United States); Boysen, J.E. [BC Technologies, Laramie, WY (United States)

1998-12-31T23:59:59.000Z

422

Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Indiana laws and incentives

423

Alternative Fuels Data Center: Indiana Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Natural Gas The list below contains summaries of all Indiana laws and incentives

424

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level - Indiana  

NLE Websites -- All DOE Office Websites (Extended Search)

Indiana Indiana September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN INDIANA BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN INDIANA Indiana Summary Indiana has a commercial energy code based on the 1992 Model Energy Code. Since Indiana's code is an older code, DOE selected Standard 90.1-1999 as the baseline standard for the analysis. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Indiana. The analysis of the impact of Standard 90.1-

425

Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Taxes  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Taxes to someone by E-mail Fuel Taxes to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Taxes on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Taxes on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Taxes on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Taxes on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Taxes on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Taxes on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Fuel Taxes The list below contains summaries of all Indiana laws and incentives

426

GASIFICATION TEST RUN TC06  

SciTech Connect

This report discusses test campaign TC06 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC06. Test run TC06 was started on July 4, 2001, and completed on September 24, 2001, with an interruption in service between July 25, 2001, and August 19, 2001, due to a filter element failure in the PCD caused by abnormal operating conditions while tuning the main air compressor. The reactor temperature was varied between 1,725 and 1,825 F at pressures from 190 to 230 psig. In TC06, 1,214 hours of solid circulation and 1,025 hours of coal feed were attained with 797 hours of coal feed after the filter element failure. Both reactor and PCD operations were stable during the test run with a stable baseline pressure drop. Due to its length and stability, the TC06 test run provided valuable data necessary to analyze long-term reactor operations and to identify necessary modifications to improve equipment and process performance as well as progressing the goal of many thousands of hours of filter element exposure.

Southern Company Services, Inc.

2003-08-01T23:59:59.000Z

427

Town of Argos, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Argos, Indiana (Utility Company) Argos, Indiana (Utility Company) Jump to: navigation, search Name Town of Argos Place Indiana Utility Id 789 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Industrial Power Industrial Large Power Industrial Residential Residential Security Lights 175 W Lighting Security Lights 400 W Lighting Street Lights 1000 W Lighting Street Lights 1500 W Lighting Street Lights 175 W Lighting

428

City of Rensselaer, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Rensselaer, Indiana (Utility Company) Rensselaer, Indiana (Utility Company) Jump to: navigation, search Name City of Rensselaer Place Indiana Utility Id 15860 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Capacity Power Service Industrial Commercial Service: Single Phase Commercial Commercial Service: Three Phase Commercial Commercial Service: Two Phase Commercial Large Power Service Industrial Municipal Service: Electric Rate Commercial Municipal Service: Street Lighting Lighting

429

DOE Solar Decathlon: News Blog 禄 Kentucky/Indiana  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky/Indiana Kentucky/Indiana Below you will find Solar Decathlon news from the Kentucky/Indiana archive, sorted by date. Affordability and Market Appeal Contest Winners Announced! Thursday, October 10, 2013 Solar Decathlon At an awards ceremony this morning, winners of the U.S. Department of Energy Solar Decathlon 2013 Affordability and Market Appeal contests took center stage by demonstrating that innovative, energy-efficient houses can be cost-effective and appealing to a variety of target markets. Photo of Richard Anderson and Robert Best at a desk looking at paperwork. The Affordability Contest juror, Richard Anderson, left, speaks with Robert Best from Stanford University during the Affordability Contest walkthrough. (Credit: Eric Grigorian/U.S. Department of Energy Solar Decathlon)

430

Johnson County REMC - Commercial Energy Efficiency Rebate Program (Indiana)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Johnson County REMC - Commercial Energy Efficiency Rebate Program Johnson County REMC - Commercial Energy Efficiency Rebate Program (Indiana) Johnson County REMC - Commercial Energy Efficiency Rebate Program (Indiana) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Pre-approval required for payments greater than $1,000 Program Info State Indiana Program Type Utility Rebate Program Rebate Amount T5/T8 Lamps with Electronic Ballasts: $8 - $18 T8 Lamps: $0.75/lamp High Bay Fluorescent Fixtures with Electronic Ballasts: $50 - $125 Hardwired/Modular CFL Fixtures: $8 - $25 Ceramic Metal Halide Accent/Directional Lighting: $20 - $50 Pulse Start Metal Halide Fixtures: $25 - $65

431

City of Covington, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Indiana Indiana Utility Id 4429 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Commercial Power Commercial Residential Residential Security Light: Monthly Lighting Security Light: Yearly Lighting Average Rates Residential: $0.0893/kWh Commercial: $0.0873/kWh Industrial: $0.0854/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Covington,_Indiana_(Utility_Company)&oldid=409489

432

Town of Winamac, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Winamac, Indiana (Utility Company) Winamac, Indiana (Utility Company) Jump to: navigation, search Name Town of Winamac Place Indiana Utility Id 20792 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate C: Single-Phase Commercial Rate C: Three-Phase Commercial Rate CP: Commercial Power Service Commercial Rate LP: Primary Service Phase II Industrial Rate LP: Primary Service Phase II - With Transformer Ownership Industrial Rate LP: Secondary Service Phase II Rate LP: Secondary Service Phase II - With Transformer Ownership Industrial

433

Town of Paoli, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Paoli, Indiana (Utility Company) Paoli, Indiana (Utility Company) Jump to: navigation, search Name Town of Paoli Place Indiana Utility Id 14435 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial: Electric Cooking Range Commercial Commercial: Electric Water Heater Commercial Commercial: Electric Water Heater and Electric Cooking Range Commercial Municipal Commercial Power Commercial Residential Residential Residential: Electric Cooking Range(Separate Meter) Residential Residential: Electric Water Heater and Electric Cooking Range Residential

434

City of Troy, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Troy, Indiana (Utility Company) Troy, Indiana (Utility Company) Jump to: navigation, search Name City of Troy Place Indiana Utility Id 19227 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule A: Residential Residential Schedule A:Commercial Commercial Schedule B: General Power Commercial Schedule C: Large Industrial Industrial Average Rates Residential: $0.1110/kWh Commercial: $0.1160/kWh Industrial: $0.1160/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

435

Town of Ferdinand, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Indiana (Utility Company) Indiana (Utility Company) Jump to: navigation, search Name Town of Ferdinand Place Indiana Utility Id 6276 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Dusk to Dawn Lighting- 175 W Mercury Vapor/100 W HPS Lighting Industrial Charge Industrial Large Industrial Industrial Public Street Lighting- 100 W HPS Lighting Public Street Lighting- 175 W Mercury Vapor Lighting Public Street Lighting- 250 W Decorative HPS Lighting Public Street Lighting- 250 W Mercury Vapor Lighting

436

Town of Kingsford Heights, Indiana (Utility Company) | Open Energy  

Open Energy Info (EERE)

Kingsford Heights, Indiana (Utility Company) Kingsford Heights, Indiana (Utility Company) Jump to: navigation, search Name Town of Kingsford Heights Place Indiana Utility Id 10330 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Churches, Schools, Commercial and Small Power Service Commercial General Power Service Rate C- Demand Metered Commercial General Power Service Rate C- Non Demand Metered Commercial General Service Rate M- Demand Metered Commercial General Service Rate M- Non Demand Metered Commercial

437

City of Auburn, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Auburn, Indiana (Utility Company) Auburn, Indiana (Utility Company) Jump to: navigation, search Name City of Auburn Place Auburn, Indiana Utility Id 994 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. City of Auburn, IN Smart Grid Project was awarded $2,075,080 Recovery Act Funding with a total project value of $4,150,160. Utility Rate Schedules Grid-background.png Private Outdoor Lighting- 100 watt sodium vapor lamp Lighting Private Outdoor Lighting- 175 watt mercury vapor lamp Lighting Private Outdoor Lighting- 250 watt mercury vapor lamp Lighting

438

City of Tell City, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Tell City, Indiana (Utility Company) Tell City, Indiana (Utility Company) Jump to: navigation, search Name Tell City City of Place Indiana Utility Id 18538 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule ED-E1: Economic Development Rider Industrial Schedule ED-E: Economic Development Rider Industrial Schedule ED-F1: Economic Development Rider Industrial Schedule ED-F: Economic Development Rider Industrial Security Light Service: HPS Vapor, 100 Watts Lighting Security Light Service: HPS Vapor, 100 Watts, Flood Lighting

439

Town of Rockville, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Rockville, Indiana (Utility Company) Rockville, Indiana (Utility Company) Jump to: navigation, search Name Town of Rockville Place Indiana Utility Id 16219 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial General Power Service Commercial Municipal Lighting Service Lighting Municipal Power Service Commercial Residential Electric Heat Service Residential Residential Single-Phase Service Residential Residential Water Heater Service Residential Security Lighting Service Lighting Average Rates

440

Town of Spiceland, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Spiceland, Indiana (Utility Company) Spiceland, Indiana (Utility Company) Jump to: navigation, search Name Town of Spiceland Place Indiana Utility Id 17790 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Service Commercial Residential Residential Residential- Water Heater Service (30 to 74 gallon capacity) Residential Residential- Water Heater Service (30 to 74 gallon capacity) Residential Residential- Water Heater Service (75 gallons or greater capacity) Residential Residential- Water Heater Service (75 gallons or greater capacity)

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

City of Hagerstown, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hagerstown, Indiana (Utility Company) Hagerstown, Indiana (Utility Company) Jump to: navigation, search Name Hagerstown City of Place Indiana Utility Id 7907 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png C Commercial Commercial C Commercial Space Heating CI Commercial Industrial Primary Voltage (2400 to 12470 volts) Industrial CI Commercial Industrial Secondary Voltage (480 volts or lower) Industrial CI Commercial Industrial Space Heating Industrial R Residential Residential

442

City of Richmond, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Richmond, Indiana (Utility Company) Richmond, Indiana (Utility Company) Jump to: navigation, search Name City of Richmond Place Indiana Utility Id 15989 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cogeneration Industrial Commercial Lighting Lighting Electric Heating Schools Commercial General Electric Heating Commercial General Power Commercial Industrial Service Industrial

443

City of Mishawaka, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Indiana (Utility Company) Indiana (Utility Company) Jump to: navigation, search Name City of Mishawaka Place Indiana Utility Id 12674 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Power Service Commercial Commerical(10kW or more) Commercial Commerical(less than 10kW) Commercial Electric Heating Commercial Municipal Electric Service Commercial Outdoor lighting- 1,000 watt mercury vapor lamp Lighting Outdoor lighting- 100 watt sodium lamp Lighting Outdoor lighting- 175 watt mercury vapor lamp Lighting

444

Town of Centerville, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Indiana (Utility Company) Indiana (Utility Company) Jump to: navigation, search Name Town of Centerville Place Indiana Utility Id 3230 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Commercial Commercial City Residential Residential General Power Commercial Rural Commercial Commercial Rural Residential Residential Security Lights: 100 Watt Lamp Lighting Security Lights: 175 Watt Lamp Lighting Security Lights: 250 Watt Lamp Lighting Security Lights: 400 Watt Lamp Lighting Average Rates Residential: $0.0843/kWh

445

City of Columbia City, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Columbia City, Indiana (Utility Company) Columbia City, Indiana (Utility Company) Jump to: navigation, search Name City of Columbia City Place Indiana Utility Id 4007 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Industrial General Service- Large General Service-Small-All Electric- Both Phases Commercial General Service-Small-All Electric- Single Phase Commercial General Service-Small-All Electric- Three Phase Commercial General Service-Small-Both Phases Commercial

446

City of Scottsburg, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Scottsburg, Indiana (Utility Company) Scottsburg, Indiana (Utility Company) Jump to: navigation, search Name City of Scottsburg Place Indiana Utility Id 16830 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate Schedule C: Commercial Service, Single Phase Commercial Rate Schedule C: Commercial Service, Three Phase Commercial Rate Schedule GS: General Service Industrial Rate Schedule IES: Industrial Electric Service Industrial Rate Schedule R: Residential Service Residential Average Rates Residential: $0.0784/kWh

447

Town of Bargersville, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bargersville, Indiana (Utility Company) Bargersville, Indiana (Utility Company) Jump to: navigation, search Name Town of Bargersville Place Indiana Utility Id 1208 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Service Commercial Outdoor Lighting- 100 watt high pressure sodium Lighting Outdoor Lighting- 175 Watt Mercury Vapor Lighting Outdoor Lighting- 400 watt high pressure sodium Lighting Outdoor Lighting- 400 watt mercury vapor (directional) Lighting Outdoor Lighting- 400 watt mercury vapor (round) Lighting

448

Town of Knightstown, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Knightstown, Indiana (Utility Company) Knightstown, Indiana (Utility Company) Jump to: navigation, search Name Town of Knightstown Place Indiana Utility Id 10407 Utility Location Yes Ownership M NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CS Electric Commercial Service Commercial GS Electric General Service Commercial MS Electric Municipal Service Commercial RS Electric Residential Service Residential Average Rates Residential: $0.0864/kWh Commercial: $0.0945/kWh Industrial: $0.0922/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a"

449

Town of Chalmers, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Chalmers, Indiana (Utility Company) Chalmers, Indiana (Utility Company) Jump to: navigation, search Name Town of Chalmers Place Indiana Utility Id 3323 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Purpose Residential Rate - A: Inside Residential All Purpose Residential Rate - A: Outside Residential General Service Rate - GS Commercial Large Power Service Rate - LP Industrial Security Lighting Rate SL- Rate 1 Lighting Security Lighting Rate SL- Rate 2 Lighting Security Lighting Rate SL- Rate 3 Lighting

450

City of Auburn, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Indiana (Utility Company) Indiana (Utility Company) (Redirected from City of Auburn, IN) Jump to: navigation, search Name City of Auburn Place Auburn, Indiana Utility Id 994 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. City of Auburn, IN Smart Grid Project was awarded $2,075,080 Recovery Act Funding with a total project value of $4,150,160. Utility Rate Schedules Grid-background.png Private Outdoor Lighting- 100 watt sodium vapor lamp Lighting Private Outdoor Lighting- 175 watt mercury vapor lamp Lighting

451

Southeastern Indiana R E M C | Open Energy Information  

Open Energy Info (EERE)

Southeastern Indiana R E M C Southeastern Indiana R E M C Place Indiana Utility Id 17599 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Ornamental Lighting Service(100 W HPS) Lighting SCHEDULE A-5 Multi Phase NON-COMMERCIAL ELECTRIC SERVICE Residential SCHEDULE A-5 Single Phase NON-COMMERCIAL ELECTRIC SERVICE Residential SCHEDULE B-5 SMALL COMMERCIAL ELECTRIC SERVICE Multi Phase Commercial SCHEDULE B-5 SMALL COMMERCIAL ELECTRIC SERVICE Single Phase Commercial SCHEDULE BD-5 SMALL POWER MULTI-PHASE ELECTRIC SERVICE Commercial

452

City of Logansport, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Logansport, Indiana (Utility Company) Logansport, Indiana (Utility Company) Jump to: navigation, search Name City of Logansport Place Indiana Utility Id 11142 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Industrial Substation Service Industrial Large Industrial Service Industrial Large Power Service Industrial Outdoor Lighting- 100 watt high pressure sodium (metered) Lighting Outdoor Lighting- 100 watt high pressure sodium (unmetered) Lighting

453

Indiana Office of Energy Defense Development | Open Energy Information  

Open Energy Info (EERE)

Energy Defense Development Energy Defense Development Jump to: navigation, search Name Indiana Office of Energy & Defense Development Place Indianapolis, Indiana Zip 46204 Product String representation "The Indiana Off ... ity industries." is too long. Coordinates 39.76691掳, -86.149964掳 Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.76691,"lon":-86.149964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Town of Avilla, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Avilla, Indiana (Utility Company) Avilla, Indiana (Utility Company) Jump to: navigation, search Name Town of Avilla Place Indiana Utility Id 1028 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate LGS1: Large General Service, Secondary Industrial Rate LMS: Large Municipal Service Commercial Rate P1: Electric Power Service, Secondary Industrial Rate RS Residential Rate S: School Service Commercial Rate SGS: Small General Service Commercial Rate SMS: Small Municipal Service Commercial

455

City of Huntingburg, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Huntingburg, Indiana (Utility Company) Huntingburg, Indiana (Utility Company) Jump to: navigation, search Name Huntingburg City of Place Indiana Utility Id 9088 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial and Small Industrial Commercial Large Power Service Industrial Municipal Street Lighting- (250 W Security) Lighting Municipal Street Lighting- (Incandescent 2500 lumen) Lighting Municipal Street Lighting- (Incandescent 300 W) Lighting

456

Town of Etna Green, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Etna Green, Indiana (Utility Company) Etna Green, Indiana (Utility Company) Jump to: navigation, search Name Town of Etna Green Place Indiana Utility Id 5928 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 150 watt Hi-Pressure Sodium Lighting 1500 watt Quartz Lighting 175 watt Mercury Vapor Lighting 250 watt Hi-Pressure Sodium Lighting 400 watt Metal Halide Lighting General Service Rate Metered Demand - Single Phase Commercial General Service Rate Metered Demand - Three Phase Commercial General Service Rate for Non-residential "GS" - Single Phase Commercial

457

MotorWeek Video Transcript: Indiana's Biotown Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Indiana's BioTown Project Indiana's BioTown Project Davis:Much has been said about the environmental issues now facing American drivers: the needs to reduce greenhouse gases, to increase fuel economy and use alternative fuels, and reducing our dependence on foreign oil are all keys to a clean driving future. But it will take more than individual commitment to reach those goals; we need action on city, state and federal levels for any environmental efforts to truly make a difference. And one small town is doing just that, and in the process blazing a green trail for the rest of us to follow! Reynolds, Indiana is typical of many small farming communities found across the Midwest. This town of 500 people covers a square half-mile at the intersection of two state highways. A train goes by every couple of hours, and the USA Restaurant serves as

458

Town of Pendleton, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Pendleton, Indiana (Utility Company) Pendleton, Indiana (Utility Company) Jump to: navigation, search Name Pendleton Town of Place Indiana Utility Id 14659 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service: Single Phase Commercial Commercial Service: Three Phase Commercial Municipal Service: Single Phase Commercial Municipal Service: Three Phase Commercial Power Phase II Commercial Residential Service Residential Security Lighting Service: 150 Watt HPS Lamp Lighting Security Lighting Service: 175 Watt MV Lamp Lighting

459

City of Garrett, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Garrett, Indiana (Utility Company) Garrett, Indiana (Utility Company) Jump to: navigation, search Name City of Garrett Place Indiana Utility Id 6970 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Municipal Service Commercial Power Service Industrial Residential Residential Security Lighting Lighting Average Rates Residential: $0.0837/kWh Commercial: $0.0852/kWh Industrial: $0.0785/kWh References 鈫 "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

460

City of Greendale, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Greendale, Indiana (Utility Company) Greendale, Indiana (Utility Company) Jump to: navigation, search Name City of Greendale Place Indiana Utility Id 6907 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Flasher Signal Lighting Municipal street light service - 100 Watt Sodium Vapor Lighting Municipal street light service - 175 Watt Mercury Vapor Lighting Municipal street light service - 250 Watt Mercury Vapor Lighting Municipal street light service - 250 Watt Sodium Vapor Lighting

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

City of Anderson, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Anderson, Indiana (Utility Company) Anderson, Indiana (Utility Company) Jump to: navigation, search Name City of Anderson Place Indiana Utility Id 636 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Constant Load Commercial Constant Load- Industrial Industrial General Service- Single Phase Commercial General Service- Single Phase- Industrial Industrial General Service- Three Phase Commercial General Service- Three Phase- Industrial Industrial Large Power Commercial Large Power Industrial (Equipment Supplied by Customer) Industrial

462

City of Gas City, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City, Indiana (Utility Company) City, Indiana (Utility Company) Jump to: navigation, search Name City of Gas City Place Indiana Utility Id 6993 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Heat for Library or School Service Commercial Commercial and General Power Service Commercial Outdoor Lighting- 1000 W Lighting Outdoor Lighting- 175 W Lighting Outdoor Lighting- 400 W Lighting Public Street Lighting and Highway Lighting- 175 W Mercury Vapor/100 W HPS Lighting Public Street Lighting and Highway Lighting-400 W Mercury Vapor/250 W HPS

463

Town of South Whitley, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Whitley, Indiana (Utility Company) Whitley, Indiana (Utility Company) Jump to: navigation, search Name Town of South Whitley Place Indiana Utility Id 17589 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Industrial Service Industrial Residential Service Residential Security Lighting 100 W HPS Lighting Security Lighting 1000 W MV Lighting Security Lighting 175 W MV Lighting Security Lighting 400 W MV Lighting Average Rates Residential: $0.0667/kWh Commercial: $0.0616/kWh Industrial: $0.0622/kWh

464

City of Bluffton, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bluffton, Indiana (Utility Company) Bluffton, Indiana (Utility Company) Jump to: navigation, search Name City of Bluffton Place Indiana Utility Id 1896 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting Service: 175 Watt Mercury Vapor Lighting Outdoor Lighting Service: 250 Watt Mercury Vapor Lighting Rate CS- Commercial Service: Single Phase Commercial Rate CS- Commercial Service: Three Phase Commercial Rate GS- General Service Industrial Rate MS- Municipal Service Commercial Rate RS- Residential Service Residential

465

Paulding-Putman Elec Coop, Inc (Indiana) | Open Energy Information  

Open Energy Info (EERE)

Indiana) Indiana) Jump to: navigation, search Name Paulding-Putman Elec Coop, Inc Place Indiana Utility Id 14599 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Power Service-1 Industrial Industrial Service Power 2 Industrial Large Power Service Industrial Large Power Stand-by Service Industrial Outdoor & Street Light 100 W (Energy Only-Unmetered, Owned and Maintained by Member) Lighting Outdoor & Street Light 175 W (Energy Only-Unmetered; Owned and Maintained by Member) Lighting Outdoor & Street Light 400 W ( Energy Only-Unmetered, Owned and Maintained

466

Town of Pittsboro, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Pittsboro, Indiana (Utility Company) Pittsboro, Indiana (Utility Company) Jump to: navigation, search Name Town of Pittsboro Place Indiana Utility Id 15116 Utility Location Yes Ownership M NERC Location RFC NERC ERCOT Yes NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Power Commercial Residential Residential Security Lights: 1,000 Watt Fixture, Annual Lighting Security Lights: 1,000 Watt Fixture, Monthly Lighting Security Lights: 175 Watt Fixture, Annual Lighting Security Lights: 175 Watt Fixture, Monthly Lighting Security Lights: 400 Watt Fixture, Annual Lighting

467

Coordinated study of the Devonian black shale in the Illinois Basin: Illinois, Indiana, and western Kentucky. Final report  

SciTech Connect

An evaluation of the resource potential of the Devonian shales, called the Eastern Gas Shales Project (EGSP) was begun. A study of the stratigraphy, structure, composition, and gas content of the Devonian shale in the Illinois Basin was undertaken by the State Geological Surveys of Illinois, Indiana, and Kentucky, under contract to the U.S. DOE as a part of the EGSP. Certain additional data were also developed by other research organizations (including Monsanto Research Corporation-Mound Facility and Battelle-Columbus Laboratory) on cores taken from the Illinois Basin. This report, an overview of geological data on the Illinois basin and interpretations of this data resulting from the EGSP, highlights areas of potential interest as exploration targets for possible natural gas resources in the Devonian shale of the basin. The information in this report was compiled during the EGSP from open file data available at the three State Geological surveys and from new data developed on cores taken by the DOE from the basin specifically for the EGSP. The organically richest shale is found in southeastern Illinois and in most of the Indiana and Kentucky portions of the Illinois Basin. The organic-rich shales in the New Albany are thickest near the center of the basin in southeastern Illinois, southwestern Indiana, and adjacent parts of Kentucky portions of the Illinois Basin. The organic-rich shales in the New Albany are thickest near the center of the basin in southeastern Illinois, southwestern Indiana, and adjacent parts of Kentucky. Natural fractures in the shale may aid in collecting gas from a large volume of shale. These fractures may be more abundant and interconnected to a greater degree in the vicinity of major faults. Major faults along the Rough Creek Lineament and Wabash Valley Fault System cross the deeper part of the basin.

Lineback, J.A.

1980-12-31T23:59:59.000Z

468

1 - Gasification and synthetic liquid fuel production: an overview  

Science Journals Connector (OSTI)

Abstract This chapter discusses general considerations on gasification processes and synthetic liquid fuel production. It provides an overview of state-of-the-art gasification technologies, feedstocks and applications in power generation, and synthetic fuels production, together with some recent future trends in the field.

R. Luque; J.G. Speight

2015-01-01T23:59:59.000Z

469

Study on the Nitric Compounds during Coal Gasification  

Science Journals Connector (OSTI)

This investigation involved the formation and evolution of NO? HCN and NH3 during coal gasification. Since HCN and NH3 are the precursors of NOX, their summation are considered to show the characteristics of the precursors in this paper. The experiments ... Keywords: gasification, NOX precursors, particle size, agent

Jun Xiang; Qingsen Zhao; Song Hu; Lushi Sun; Sheng Su; Kai Xu; Tengfei Lu; Gang Chen

2009-10-01T23:59:59.000Z

470

Coal gasification for power generation. 2nd ed.  

SciTech Connect

The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

NONE

2006-10-15T23:59:59.000Z

471

Methods for sequestering carbon dioxide into alcohols via gasification fermentation  

DOE Patents (OSTI)

The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.

Gaddy, James L; Ko, Ching-Whan; Phillips, J. Randy; Slape, M. Sean

2013-11-26T23:59:59.000Z

472

Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge  

Science Journals Connector (OSTI)

Abstract The energetic conversion of biomass into syngas is considered as reliable energy source. In this context, biomass (miscanthus) and sewage sludge have been investigated. A simultaneous thermal analyzer and mass spectrometer was used for the characterization of samples and identified the volatiles evolved during the heating of the sample up to 1100牥C under combustion and gasification conditions. The TG and DTA results were discussed in argon, oxygen, steam and steam blended gas atmospheres. Different stages of pyrolysis, combustion and gasification of the samples have been examined. It was shown that the combustion and gasification of char were occurred in two different temperature zones. The DTA朚S profile of the sample gives information on combustion and gasification process of the samples (ignition, peak combustion and burnout temperatures) and gases released (H2, O2, CO and CO2). The results showed that the different processes were mainly dependent on temperature. The evolution of the gas species was consistent with the weight loss of the samples during pyrolysis, combustion and gasification process. The effect of the ambiences during pyrolysis, combustion and gasification of the samples were reported. The appropriate temperature range to the sludge and miscanthus gasification was evaluated. The kinetic parameters of the biomass and sewage sludge were estimated for TGA using two models based on first-order reactions with distributed activation energies. The presence of ash in the biomass char was more influential during the gasification process.

Kandasamy Jayaraman; Iskender G鰇alp

2015-01-01T23:59:59.000Z

473

Analysis of seismic waves generated by surface blasting at Indiana coal mines  

E-Print Network (OSTI)

Analysis of seismic waves generated by surface blasting at Indiana coal mines A project pursuant is to investigate the characteristics of mine blast seismic waves in southern Indiana. Coal mines are prevalent implications for understanding different seismic sources, earthquake structures in Indiana, and wave

Polly, David

474

Gasification of an Indonesian subbituminous coal in a pilot-scale coal gasification system  

Science Journals Connector (OSTI)

Indonesian Roto Middle subbituminous coal was gasified in a pilot-scale dry-feeding gasification system and the produced syngas was purified...2, and 58% CO2. Particulates in syngas were 99.8% removed by metal f...

Yongseung Yun; Seok Woo Chung

2007-07-01T23:59:59.000Z

475

Modern Devonian shale gas search starting in southwestern Indiana  

SciTech Connect

The New Albany shale of southwestern Indiana is a worthwhile exploration and exploitation objective. The technical ability to enhance natural fractures is available, the drilling depths are shallow, long term gas reserves are attractive, markets are available, drilling costs are reasonable, risks are very low, multiple drilling objectives are available, and the return on investment is good. Indiana Geological Survey records are well organized, accessible, and easy to use. The paper describes the New Albany shale play, play size, early exploration, geologic setting, completion techniques, and locating prime areas.

Minihan, E.D.; Buzzard, R.D. (Minihan/Buzzard Consulting Firm, Fort Worth, TX (United States))

1995-02-27T23:59:59.000Z

476

Wabash River Coal Gasification Repowering Project Final Technical Report  

Office of Scientific and Technical Information (OSTI)

Wabash River Coal Gasification Wabash River Coal Gasification Repowering Project Final Technical Report August 2000 Work Performed Under Cooperative Agreement DE-FC21-92MC29310 For: The U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory Morgantown, West Virginia Prepared by: The Men and Women of Wabash River Energy Ltd. For Further Information Contact: Roy A. Dowd, CHMM Environmental Supervisor Wabash River Coal Gasification Repowering Project 444 West Sandford Avenue West Terre Haute, IN 47885 LEGAL NOTICE/DISCLAIMER This report was prepared by the Wabash River Coal Gasification Repowering Project Joint Venture pursuant to a Cooperative Agreement partially funded by the U.S. Department of Energy, and neither the Wabash River Coal Gasification Repowering

477

Integration Strategy of Gasification Technology:? A Gateway to Future Refining  

Science Journals Connector (OSTI)

The historical evidence of the operation of a coal gasification plant goes as far back in time as 1878.1 The United State's first power plant based on coal gasification technology was installed in 1980.2 The concept of gasification has begun to attract much attention from the refining industry because of stringent environmental regulations on transportation fuel, slashing demands for fuel oils, and uncertainty in the availability of good crude oils. ... Therefore, it is a challenging task for refining industries to economically integrate gasification technology, and this is the major theme of the paper. ... Gasification is superior to many of the available power production and waste disposal technologies by addressing various issues together regarding environmental emissions, maintaining quality of refining products, and waste management. ...

Jhuma Sadhukhan; X. X. Zhu

2002-02-09T23:59:59.000Z

478

Key tests set for underground coal gasification  

SciTech Connect

Underground coal gasification (UCG) is about to undergo some tests. The tests will be conducted by Lawrence Livermore National Laboratory (LLNL) in a coal seam owned by Washington Irrigation and Development Co. A much-improved UCG system has been developed by Stephens and his associates at LLNL - the controlled retracting injection point (CRIP) method. Pritchard Corp., Kansas City, has done some conceptual process design and has further studied the feasibility of using the raw gas from a UCG burn as a feedstock for methanol synthesis and/or MTG gasoline. Each method was described. (DP)

Haggin, J.

1983-07-18T23:59:59.000Z

479

Begin at the Indiana Memorial Union (IMU). A  

E-Print Network (OSTI)

west towards the Sample Gates, where Kirkwood Avenue (also known as 5th Street) extends westward from Indiana Avenue. Walk down Kirkwood Avenue. The Monroe County Public Library (at Grant Street) offers. The annual Canopy of Lights downtown lighting ceremony is held on the square the Friday night after

Indiana University

480

This Publication is paid for in part by dues-paying members of the Indiana University Alumni Association Indiana University Department of Telecommunications  

E-Print Network (OSTI)

Association elecomment Indiana University Department of Telecommunications College of Arts & Sciences Alumni units, the Department of Telecommunications and RTS grew separately but in close parallel in or

Indiana University

Note: This page contains sample records for the topic "gasification facilities indiana" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Industrial market assessment of the products of mild gasification: Final report  

SciTech Connect

The goal of this study is to determine the best available conditions, in terms of market volumes and prices, for the products from a mild gasification facility. A process feasibility study will then have to determine the cost of building and operating a facility to make those products. The study is presented as a summary of the options available to a coal producer for creating added product value. For this reason, three specific coal mines owned by AMAX Inc. were chosen, and the options were analyzed from the viewpoint of increasing the total revenue derived from those coals. No specific mild gasification, or mild devolatilization technology was assumed during the assessment. The analysis considers only product prices, volumes, and specifications. It does not assign any intangible value or national benefit to substituting coal for oil or to producing a cleaner fuel. Although it would be desirable to conceive of a product slate which would be immune from energy price fluctuations, such a goal is probably unattainable and no particular emphasis was placed on it. 76 figs., 75 tabs.

Sinor, J.E.

1988-01-01T23:59:59.000Z

482

Chemical kinetics parameters of nuclear graphite gasification  

Science Journals Connector (OSTI)

This paper provides chemical kinetics parameters for the gasification of nuclear graphite grades of IG-110, IG-430, NBG-18 and NBG-25 and presents empirical correlations for their surface areas of free active sites as a function of mass. The kinetics parameters for the four elementary chemical reactions of gasification of these grades of nuclear graphite include the values and Gaussian distributions of the specific activation energies and the values of the pre-exponential rate coefficients for the adsorption of oxygen and desorption of CO and CO2 gases. The values of these parameters and the surface area of free active sites for IG-110 and NB-25, with fine and medium petroleum coke filler particles, are nearly the same, but slightly different from those of NBG-18 and IG-430, with medium and fine coal tar pitch coke filler particles. Recommended parameters are applicable to future safety analysis of high and very high temperature gas cooled reactors in the unlikely event of a massive air ingress accident.

Mohamed S. El-Genk; Jean-Michel P. Tournier

2013-01-01T23:59:59.000Z

483

Site clean up of coal gasification residues  

SciTech Connect

The coal gasification plant residues tested in this research consists of various particle sizes of rock, gravel, tar-sand agglomerates, fine sand and soil. Most of the soils particles were tar free. One of the fractions examined contained over 3000 ppM polyaromatic hydrocarbons (PAHs). The residues were subjected to high pressure water jet washing, float and sink tests, and soil washing. Subsequent PAH analyses found less than 1 ppM PAHs in the water jet washing water. Soils washed with pure water lowered PAH concentrations to 276 ppM; the use of surfactants decreased PAHs to 47, 200, and 240 ppM for different test conditions. In the 47 ppM test, the surfactant temperature had been increased to 80 C, suggesting that surfactant washing efficiency can be greatly improved by increasing the solution temperature. The coal tar particles were not extracted by the surfactants used. Coke and tar-sand agglomerates collected from the float and sink gravimetric separation were tested for heating value. The tar exhibited a very high heating value, while the coke had a heating value close to that of bituminous coal. These processes are believed to have the potential to clean up coal gasification plant residues at a fairly low cost, pending pilot-scale testing and a feasibility study.

Wilson, J.W.; Ding, Y. [Univ. of Missouri, Rolla, MO (United States)

1995-12-31T23:59:59.000Z

484

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

SciTech Connect

The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

Michael Swanson; Daniel Laudal

2008-03-31T23:59:59.000Z

485

Health-hazard evaluation report HETA 82-309-1630, Inland Steel, East Chicago, Indiana  

SciTech Connect

Environmental and breathing-zone samples were analyzed for polynuclear aromatic hydrocarbons (PAHs) and coal-tar-pitch volatiles at the Inland Steel Company, East Chicago, Indiana in November, 1982 and September, 1984. The evaluation was requested because of concern about employee exposures during maintenance of the coke battery precipitator at the number 2 facility. Four former employees were interviewed. The cyclohexane soluble fraction of coal-tar-pitch volatiles ranged from 0.232 to 0.668 mg/m/sup 3/. The OSHA standard is 0.15mg/m/sup 3/. Naphthalene concentrations up to 0.107mg/m/sup 3/ were detected. The OSHA standard for naphthalene is 50mg/m/sup 3/. Other PAHs detected included phenanthrene, fluorene and acenaphthene. The employees reported experiencing local skin, eye, ear, nose, and throat irritation while working on the coke battery precipitator in the past. Personal protective measures such as wearing safety boots, barrier creams on exposed skin surfaces, and showering and changing clothes before leaving the facility