Sample records for gases improve energy

  1. Improved correlations for retrograde gases 

    E-Print Network [OSTI]

    Crogh, Arne

    1996-01-01T23:59:59.000Z

    Three correlations for retrograde gases have been developed. First, a correlation was developed that relates the composition of a retrograde gas-condensate mixture at any depletion stage to the composition at its dew point ...

  2. Energy Efficiency and Greenhouse Gases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Mission The team establishes an energy conservation program, as deemed appropriate for LM operations...

  3. Greenhouse Gases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Greenhouse Gases Greenhouse Gases Executive Order 13514 requires Federal agencies to inventory and manage greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate...

  4. Higher Dimensional Coulomb Gases and Renormalized Energy Functionals

    E-Print Network [OSTI]

    -Louis Lions, Paris, F-75005 France & Courant Institute, New York University, 251 Mercer st, NY NY 10012, USAHigher Dimensional Coulomb Gases and Renormalized Energy Functionals N. Rougerie and S. Serfaty extract the next to leading order term in the ground state energy, beyond the mean-field limit. We show

  5. Finalize Historic National Program to Reduce Greenhouse Gases and Improve

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County, Minnesota: Energy ResourcesJumpFuel Economy

  6. Finite-size energy of non-interacting Fermi gases

    E-Print Network [OSTI]

    Martin Gebert

    2014-06-14T23:59:59.000Z

    We prove the asymptotics of the difference of the ground-state energies of two non-interacting $N$-particle Fermi gases on the half line of length $L$ in the thermodynamic limit up to order $1/L$. We are particularly interested in subdominant terms proportional to $1/L$, called finite-size energy. In the nineties Affleck and co-authors [Aff97, ZA97, AL94] claimed that the finite-size energy equals the decay exponent occuring in Anderson's orthogonality catastrophe. It turns out that the finite-size energy depends on the details of the thermodynamic limit and typically also includes a linear term in the scattering phase shift.

  7. Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRSJuly 2012| Department of

  8. Free Energies of Dilute Bose gases: upper bound

    E-Print Network [OSTI]

    Jun Yin

    2010-12-19T23:59:59.000Z

    We derive a upper bound on the free energy of a Bose gas system at density $\\rho$ and temperature $T$. In combination with the lower bound derived previously by Seiringer \\cite{RS1}, our result proves that in the low density limit, i.e., when $a^3\\rho\\ll 1$, where $a$ denotes the scattering length of the pair-interaction potential, the leading term of $\\Delta f$ the free energy difference per volume between interacting and ideal Bose gases is equal to $4\\pi a (2\\rho^2-[\\rho-\\rhoc]^2_+)$. Here, $\\rhoc(T)$ denotes the critical density for Bose-Einstein condensation (for the ideal gas), and $[\\cdot ]_+$ $=$ $\\max\\{\\cdot, 0\\}$ denotes the positive part.

  9. Managing Energy Efficiency Improvement 

    E-Print Network [OSTI]

    Almaguer, J.

    2006-01-01T23:59:59.000Z

    results has been the utilization of Six Sigma methodology to identify and seize opportunities to improve our performance and to better meet customer needs. Since its implementation in 1999, Six Sigma has proven to be a breakthrough process that can... take Dow to the next level of performance for all our key stakeholders. The Six Sigma methodology has been especially successful in improving energy efficiency and reducing energy costs and is the primary methodology used by technology center...

  10. Improved Combustion System for Energy Conservation in Industry 

    E-Print Network [OSTI]

    Thekdi, A. C.; Hemsath, K. H.

    1979-01-01T23:59:59.000Z

    IMPROVED COMBUSTION SYSTEM FOR ENERGY CONSERVATION IN INDUSTRY Arvind C. Thekdi and Klaus H. Hemsath Thermal Systems Technical Center Midland-Ross Corporation Toledo, Ohio INTRODUCTION U.S. industry consumes approximately 40 percent of all..., some consideration is given to the process changes and flue gas treatment at the furnace exhaust end to reduce the NO x concentration in flue gases. Midland-Ross, at present, is develop ing a process which can treat the flue gases from high...

  11. 2D Coulomb Gases and the Renormalized Energy

    E-Print Network [OSTI]

    Sandier, Etienne

    2012-01-01T23:59:59.000Z

    We study the statistical mechanics of classical two-dimensional "Coulomb gases" with general potential and arbitrary \\beta, the inverse of the temperature. Such ensembles also correspond to random matrix models in some particular cases. The formal limit case \\beta=\\infty corresponds to "weighted Fekete sets" and also falls within our analysis. It is known that in such a system points should be asymptotically distributed according to a macroscopic "equilibrium measure," and that a large deviations principle holds for this, as proven by Ben Arous and Zeitouni. By a suitable splitting of the Hamiltonian, we connect the problem to the "renormalized energy" W, a Coulombian interaction for points in the plane introduced in our prior work, which is expected to be a good way of measuring the disorder of an infinite configuration of points in the plane. By so doing, we are able to examine the situation at the microscopic scale, and obtain several new results: a next order asymptotic expansion of the partition function...

  12. Low-Value Waste Gases as an Energy Source 

    E-Print Network [OSTI]

    Waibel, R. T.

    1996-01-01T23:59:59.000Z

    Waste gases with potentially useful fuel value are generated at any number of points in refineries, chemical plants and other industrial and commercial sites. The higher quality streams have been utilized successfully in fuel systems for years...

  13. Low-Value Waste Gases as an Energy Source

    E-Print Network [OSTI]

    Waibel, R. T.

    Waste gases with potentially useful fuel value are generated at any number of points in refineries, chemical plants and other industrial and commercial sites. The higher quality streams have been utilized successfully in fuel systems for years...

  14. Biological sweetening of energy gases mimics in biotrickling filters Marc Fortuny a,c

    E-Print Network [OSTI]

    in energy-rich gases such as biogas from anaerobic digesters which may contain H2S concentrations exceeding: Hydrogen sulfide; Gas sweetening; Biotrickling filter; Desulfurization; Fuel gas; Biogas 1. Introduction

  15. Improved Dark Energy Constraints

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in graphene byI _Improved Dark

  16. Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network infrastructures are

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network as for their energy consumption. Renewable energy sources (e.g. solar, wind, tide, etc.) are emerging as a promising and the comparison of several energy-aware static routing and wavelength assignment (RWA) strategies for wavelength

  17. Improving energy storage devices | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage devices Improving energy storage devices Released: April 15, 2014 Lithium-sulfur batteries last longer with nanomaterial-packed cathode A new PNNL-developed...

  18. Energy and structure of dilute hard- and soft-sphere gases

    E-Print Network [OSTI]

    F. Mazzanti; A. Polls; A. Fabrocini

    2003-05-21T23:59:59.000Z

    The energy and structure of dilute hard- and soft-sphere Bose gases are systematically studied in the framework of several many-body approaches, as the variational correlated theory, the Bogoliubov model and the uniform limit approximation, valid in the weak interaction regime. When possible, the results are compared with the exact diffusion Monte Carlo ones. A Jastrow type correlation provides a good description of the systems, both hard- and soft-spheres, if the hypernetted chain energy functional is freely minimized and the resulting Euler equation is solved. The study of the soft-spheres potentials confirms the appearance of a dependence of the energy on the shape of the potential at gas paremeter values of $x \\sim 0.001$. For quantities other than the energy, such as the radial distribution functions and the momentum distributions, the dependence appears at any value of $x$. The occurrence of a maximum in the radial distribution function, in the momentum distribution and in the excitation spectrum is a natural effect of the correlations when $x$ increases. The asymptotic behaviors of the functions characterizing the structure of the systems are also investigated. The uniform limit approach results very easy to implement and provides a good description of the soft-sphere gas. Its reliability improves when the interaction weakens.

  19. Continuous Improvement Energy Projects Reduce Energy Consumption

    E-Print Network [OSTI]

    Niemeyer, E.

    2014-01-01T23:59:59.000Z

    Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity..., LA. May 20-23, 2014 A presentation of the paper “Continuous Improvement Energy Projects Reduce Energy Consumption” by Bruce Murray and Allison Myers ESL-IE-14-05-31 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans...

  20. Operational aspects of the desulfurization process of energy gases mimics in biotrickling filters5

    E-Print Network [OSTI]

    . Introduction Energy rich off-gases such as biogas are sometimes not used for electric power generation due impurities. H2S concentrations in biogas can range from 0.1 to 5 We dedicate this article to the memory/v (1000e20,000 ppmv), whereas the specifications for the maximum content of H2S in typical biogas

  1. Greenhouse Gases, Regulated Emissions, and Energy Use in Transportatio...

    Open Energy Info (EERE)

    and Energy Use in Transportation (GREET) Model AgencyCompany Organization: Argonne National Laboratory Focus Area: GHG Inventory Development Topics: Analysis Tools...

  2. Global Research Alliance on Agricultural Greenhouse Gases | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <Glacial EnergyEnergyGlobal Green

  3. Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | Open Energy Information ImpactsOpen(GREET)

  4. Conserving Energy by Recovering Heat from Hot Waste Gases

    E-Print Network [OSTI]

    Magnuson, E. E.

    1979-01-01T23:59:59.000Z

    supply, and 1150?1500 Cement kiln (wet process) 8oo~1100 isn't a shortage of energy then at least somewhat of a Copper reverberatory furnace 2000?~.'500 crisis? Diesel engine exhaust 1000?1200 Forge and billet.heating furnaces 1700?~ZOO... Temp. F aren't they really agreeing that there is going to be Ammonia oxidation process 1350?1475 an energy crisis? Steep price increases occur when Annealing furnace 1100?2000 Cement kiln (dry process) there are shortages, when demand exceeds...

  5. PPPL Wins Department of Energy Award For Reducing Greenhouse Gases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and4/26/11:Tel.:162Physics Lab Weekly

  6. PPPL wins Department of Energy award for reducing greenhouse gases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and4/26/11:Tel.:162Physics|station | Princeton

  7. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicy |EnvironmentalInformation TheModel

  8. BOC Lienhwa Industrial Gases BOCLH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: Jump to:ManagementBOC Group

  9. Sandia Energy - Nanoscale Effects on Heterojunction Electron Gases in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink Gallery MesaMonitoringNISAC

  10. EPA's Recent Advance Notice on Greenhouse Gases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM STAR CertifiedRed5101States |EPA's Recent

  11. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of Energy (DOE)...

  12. Managing Energy Efficiency Improvement

    E-Print Network [OSTI]

    Almaguer, J.

    2006-01-01T23:59:59.000Z

    efficiency opportunities as well as promote the use of energy efficient methodologies and technologies. If, as program results suggest, 15% to 20% of the gas that is now consumed at by plant operations can be saved through efficiencies, it would save $500...

  13. Conserving Energy by Recovering Heat from Hot Waste Gases 

    E-Print Network [OSTI]

    Magnuson, E. E.

    1979-01-01T23:59:59.000Z

    -04-08 Proceedings from the First Industrial Energy Technology Conference Houston, TX, April 22-25, 1979 the boiler, ductwork and a low tempera Fig. No. 21 ture boiler control valve; or all or part PRESENT WORTH FACTORS (PWF) LIFETIME goes through duct work.... 528 1.440 1. 317 low temperature exhaust or boiler control 3 2.723 2.487 2.283 2.106 1. 952 1. 742 valve is in the open or partly open posi 4 3.546 3.170 2.855 2.589 2.362 2.061 5 4.329 3.791 3.352 2.991 2.689 2.302 tion and the high...

  14. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helps Kaiser Aluminum Save Energy and Improve Productivity Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity This case study describes how a DOE energy...

  15. Gas turbine cycles with solid oxide fuel cells. Part 1: Improved gas turbine power plant efficiency by use of recycled exhaust gases and fuel cell technology

    SciTech Connect (OSTI)

    Harvey, S.P.; Richter, H.J. (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering)

    1994-12-01T23:59:59.000Z

    The energy conversion efficiency of the combustion process can be improved if immediate contact of fuel and oxygen is prevent4ed and an oxygen carrier is used. In a previous paper (Harvey et al., 1992), a gas turbine cycle was investigated in which part of the exhaust gases are recycled and used as oxygen-carrying components. For the optimized process, a theoretical thermal efficiency of 66.3% was achieved, based on the lower heating value (LHV) of the methane fuel. One means to further improve the exergetic efficiency of a power cycle is to utilize fuel cell technology. Solid oxide fuel cells (SOFC) have many features that make them attractive for utility and industrial applications. In this paper, the authors will therefore consider SOFC technology. In view of their high operating temperatures and the incomplete nature of the fuel oxidation process, fuel cells must be combined with conventional power generation technology to develop power plant configurations that are both functional and efficient. In this paper, the authors will show how monolithic SOFC (MSOFC) technology may be integrated into the previously described gas turbine cycle using recycled exhaust gases as oxygen carriers. An optimized cycle configuration will be presented based upon a detailed cycle analysis performance using Aspen Plus[trademark] process simulation software and a MSOFC fuel cell simulator developed by Argonne National Labs. The optimized cycle achieves a theoretical thermal efficiency of 77.7%, based on the LHV of the fuel.

  16. Steam Cracker Furnace Energy Improvements

    E-Print Network [OSTI]

    Gandler, T.

    & challenges in steam cracking ? Energy efficiency improvements Overview Baytown Olefins Plant Page 3 Baytown Complex ?One of world?s largest integrated, most technologically advanced petroleum/petrochemical complexes ?~3,400 acres along Houston Ship... wall temperatures Furnace tube hydrocarbon + steam 0 0.2 0.4 0.6 0.8 1 1.2 1 2 time C o k e l a y e r Page 8 Steam Cracker Furnace Energy Efficiency ? Overall energy efficiency of furnace depends on ? Run length or % of time...

  17. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    E-Print Network [OSTI]

    Marini, Kyle

    2011-01-01T23:59:59.000Z

    gases (GHG) or carbon footprint, and public education onand lowering the carbon footprint or GHG emissions forby reducing carbon footprint. • Compare buildings’ energy

  18. A New Technique for Studying the Fano Factor And the Mean Energy Per Ion Pair in Counting Gases

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Panksky, A.; Breskin, A.; Chechik, R.

    1996-04-01T23:59:59.000Z

    A new method is presented for deriving the Fano factor and the mean energy per ion pair in the ultrasoft x-ray energy range. It is based on counting electrons deposited by a photon in a low-pressure gas, and is applicable for all counting gases. The energy dependence of these parameters for several hydrocarbons and gas mixtures is presented.

  19. Energy Impacts of Productivity Improvements in Manufacturing 

    E-Print Network [OSTI]

    Mitrovic, B.; Muller, M. R.

    2002-01-01T23:59:59.000Z

    for potential improvements in energy use in concert with examination of waste streams and potential productivity improvements. The benefits of this new approach are substantial in particular with respect to productivity improvements. Such projects are much...

  20. Recent Progress in the Research on Ion and Electron Transport in Gases at Swarm Energies

    SciTech Connect (OSTI)

    Urquijo, Jaime de [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, P.O. Box 48-3, 62251, Cuernavaca, Mor. (Mexico)

    2004-12-01T23:59:59.000Z

    This paper deals with the presentation and discussion of recent research on the transport of electrons and ions in gases at low energies. Particular emphasis is placed on electron swarm experiments related with the negative differential conductivity of electrons in some gas mixtures, and with secondary ionisation processes due to the impact of metastables with neutrals (Penning ionisation). Ion transport is firstly addressed through some recent measurements on atomic and molecular systems for which both theory and experiment have reached a high degree of agreement, and also on those in which the ranges of the density-normalized electric field intensity E/N have been increased substantiality. Also, the recent advances on the application of transport theories dealing with inelastic collisions are presented, as well as some recent measurements of negative ions and charged clusters in gaseous mixtures, leading to the successful test of Blanc's law at low fields, to the experimental mobilities.

  1. USDA Renewable Energy Systems and Energy Efficiency Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    Agency, under the Rural Energy for America Program, is accepting applications for Renewable Energy Systems and Energy Efficiency Improvement grants of 20,000 or less to...

  2. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    E. and Galitsky, C. , 2004. Energy-efficiency improvementL. , 2008 , Energy-efficiency improvement opportunities forMasanet, E. , 2010. Energy-efficiency Improvement and Cost

  3. Rural Business Energy Efficiency Improvement Loan Program

    Broader source: Energy.gov [DOE]

    The Maryland Agricultural and Resource Based Industry Development Corporation (MARBIDCO) offers low interest loans for energy efficiency improvements to farms and rural businesses through the Rural...

  4. Austin Energy- Free Home Energy Improvements Program

    Broader source: Energy.gov [DOE]

    '''Austin Energy is not accepting applications for this program currently. Austin Energy hopes to offer the program again in the future. Contact the utility for additional information. '''

  5. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported.

  6. Method for compressing and heating a heating medium to be externally supplied to an engine while using the energy available in the hot exhaust gases of the engine

    SciTech Connect (OSTI)

    Carlquist, S. G.

    1985-06-04T23:59:59.000Z

    In a method for compressing and heating a heating medium to be externally supplied to an engine, while using the energy available in the hot exhaust gases of the engine, the exhaust gases are caused to expand in at least two expansion stages to emit energy for compressing the heating medium in at least two compression stages, heat is transmitted from the exhaust gases after the first expansion stage to the heating medium after the last compression stage, and the heating medium is thereafter supplied with additional heat in a heat-producing unit before it is led to the engine.

  7. Steam Cracker Furnace Energy Improvements 

    E-Print Network [OSTI]

    Gandler, T.

    2010-01-01T23:59:59.000Z

    The Southern Energy Efficiency Center (SEEC) was established to substantially increase the deployment of high-performance “beyond-code” buildings across the southern region of the U.S, funded by the U.S. Department of ...

  8. Evaluating Energy Efficiency Improvements in Manufacturing Processes

    E-Print Network [OSTI]

    Boyer, Edmond

    Evaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agenda

  9. Effect of residual gases in high vacuum on the energy-level alignment at noble metal/organic interfaces

    SciTech Connect (OSTI)

    Helander, M. G.; Wang, Z. B.; Lu, Z. H.

    2011-10-31T23:59:59.000Z

    The energy-level alignment at metal/organic interfaces has traditionally been studied using ultraviolet photoelectron spectroscopy (UPS) in ultra-high vacuum (UHV). However, since most devices are fabricated in high vacuum (HV), these studies do not accurately reflect the interfaces in real devices. We demonstrate, using UPS measurements of samples prepared in HV and UHV and current-voltage measurements of devices prepared in HV, that the small amounts of residual gases that are adsorbed on the surface of clean Cu, Ag, and Au (i.e., the noble metals) in HV can significantly alter the energy-level alignment at metal/organic interfaces.

  10. Improving Energy Efficiency of Auxiliaries

    SciTech Connect (OSTI)

    Carl T. Vuk

    2001-12-12T23:59:59.000Z

    The summaries of this report are: Economics Ultimately Dictates Direction; Electric Auxiliaries Provide Solid Benefits. The Impact on Vehicle Architecture Will be Important; Integrated Generators With Combined With Turbo Generators Can Meet the Electrical Demands of Electric Auxiliaries; Implementation Will Follow Automotive 42V Transition; Availability of Low Cost Hardware Will Slow Implementation; Industry Leadership and Cooperation Needed; Standards and Safety Protocols Will be Important. Government Can Play an Important Role in Expediting: Funding Technical Development; Incentives for Improving Fuel Economy; Developing Standards, Allowing Economy of Scale; and Providing Safety Guidelines.

  11. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    of Policy Instruments for Energy-Efficiency Improvements inand Graus, W. , 2007. Energy Efficiency Improvement and Costimplementation of energy-efficiency and greenhouse gas

  12. Tax Deduction for Home Energy Audits and Energy Efficiency Improvements

    Broader source: Energy.gov [DOE]

    In July 2008, Missouri enacted legislation allowing homeowners to take an income tax deduction of the cost of home energy audits and associated energy efficiency improvements. The tax deduction is...

  13. Free cooling and high-energy tails of granular gases with variable restitution coefficient

    E-Print Network [OSTI]

    Ricardo J. Alonso; Bertrand Lods

    2010-05-31T23:59:59.000Z

    We prove the so-called generalized Haff's law yielding the optimal algebraic cooling rate of the temperature of a granular gas described by the homogeneous Boltzmann equation for inelastic interactions with non constant restitution coefficient. Our analysis is carried through a careful study of the infinite system of moments of the solution to the Boltzmann equation for granular gases and precise Lp estimates in the selfsimilar variables. In the process, we generalize several results on the Boltzmann collision operator obtained recently for homogeneous granular gases with constant restitution coefficient to a broader class of physical restitution coefficients that depend on the collision impact velocity. This generalization leads to the so-called L1-exponential tails theorem. for this model.

  14. USDA Renewable Energy Systems and Energy Efficiency Improvement Grants

    Broader source: Energy.gov [DOE]

    USDA's Rural Business Cooperative-Service Agency, under the Rural Energy for America Program, is accepting applications for Renewable Energy Systems and Energy Efficiency Improvement grants of $20,000 or less to establish programs to assist agricultural producers and rural small businesses with evaluating the potential to incorporate renewable energy technologies into their operations.

  15. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

  16. Opportunities for Energy Efficiency Improvements in the U.S....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Improvements in the U.S. Electricity Transmission and Distribution System Opportunities for Energy Efficiency Improvements in the U.S. Electricity Transmission...

  17. Apply: Funding Opportunity - Advancing Solutions to Improve Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency...

  18. Continuous Energy Improvement in Motor Driven Systems - A Guidebook...

    Energy Savers [EERE]

    Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry This guidebook...

  19. Erosion-Resistant Nanocoatings for Improved Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines...

  20. Improving Risk Assessment to Support State Energy Infrastructure...

    Energy Savers [EERE]

    Improving Risk Assessment to Support State Energy Infrastructure Decision Making Improving Risk Assessment to Support State Energy Infrastructure Decision Making May 22, 2015 -...

  1. Improved Biomass Cooking Stoves | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT PowerImagine Energy Inc JumpImproved

  2. Improved Calculation of Thermal Fission Energy

    E-Print Network [OSTI]

    Ma, X B; Wang, L Z; Chen, Y X; Cao, J

    2013-01-01T23:59:59.000Z

    Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.

  3. Quantifying Energy Savings by Improving Boiler Operation

    E-Print Network [OSTI]

    Carpenter, K.; Kissock, J. K.

    2005-01-01T23:59:59.000Z

    Dayton, OH ABSTRACT On/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify energy savings from switching to modulation control mode and reducing excess air in natural gas fired boilers... the accuracy of the methods. INTRODUCTION In our experience, common opportunities for improving boiler efficiency include switching from on/off to modulation control and reducing excess air. The decision about whether to pursue these opportunities...

  4. Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation

    DOE Patents [OSTI]

    Calamur, Narasimhan (Lemont, IL); Carrera, Martin E. (Naperville, IL); Devlin, David J. (Los Alamos, NM); Archuleta, Tom (Espanola, NM)

    2000-01-01T23:59:59.000Z

    The present invention relates to an improved method and apparatus for separating one or more condensable compounds from a mixture of two or more gases of differing volatilities by capillary fractionation in a membrane-type apparatus, and a method of forming porous structures therefor. More particularly, the invention includes methods of forming and using an apparatus consisting, at least in part, of a porous structure having capillary-type passages extending between a plurality of small openings on the first side and larger openings on a second side of the structure, the passages being adapted to permit a condensed liquid to flow therethrough substantially by capillary forces, whereby vapors from the mixture are condensed, at least in part, and substantially in and adjacent to the openings on the first side, and are caused to flow in a condensed liquid state, substantially in the absence of vapor, from the openings on the first side to the openings on the second side.

  5. Tax Credits for Home Energy Improvements (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    This fact sheet is an overview of the Department of Energy's tax credits for home energy improvements.

  6. Voluntary Reporting of Greenhouse Gases

    Reports and Publications (EIA)

    2011-01-01T23:59:59.000Z

    The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

  7. Energy efficiency improvements in Chinese compressed air systems

    E-Print Network [OSTI]

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

    2008-01-01T23:59:59.000Z

    Air Systems, Paper #071 Energy efficiency improvements into increase industrial energy efficiency. As a result, morein use. Over time, energy efficiency decreases and the cost

  8. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    the case to building owners for energy efficiency. Developoperation with energy efficiency in building systems. X X XBuildings: A Roadmap to Improved Energy Efficiency 11-Sept-

  9. Energy curable compositions having improved cure speeds

    DOE Patents [OSTI]

    Halm, Leo W. (Blaine, MN)

    1993-01-01T23:59:59.000Z

    A composition and method provide improved physical properties and cure speed of polyurethane precursors, with or without free radical polymerizable monomers or oligomers present, by use of a two component catalyst system. The resin blend can be activated with a latent organometallic catalyst combined with an organic peroxide which can be a hydroperoxide or an acyl peroxide to decrease the cure time while increasing the break energy and tangent modulus of the system.

  10. Improved energy recovery from geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1981-01-01T23:59:59.000Z

    The behavior of a liquid-dominated geothermal reservoir in response to production from different horizons is studied using numerical simulation methods. The Olkaria geothermal field in Kenya is used as an example where a two-phase vapor-dominated zone overlies the main liquid-dominated reservoir. The possibility of improving energy recovery from vapor-dominated reservoirs by tapping deeper horizons is considered.

  11. Energy curable compositions having improved cure speeds

    DOE Patents [OSTI]

    Halm, L.W.

    1993-05-18T23:59:59.000Z

    The composition and method provide improved physical properties and cure speed of polyurethane precursors, with or without free radical polymerizable monomers or oligomers present, by use of a two component catalyst system. The resin blend can be activated with a latent organometallic catalyst combined with an organic peroxide which can be a hydroperoxide or an acyl peroxide to decrease the cure time while increasing the break energy and tangent modulus of the system.

  12. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  13. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

  14. Energy conversion device with improved seal

    DOE Patents [OSTI]

    Miller, Gerald R. (Salt Lake City, UT); Virkar, Anil V. (Midvale, UT)

    1980-01-01T23:59:59.000Z

    An energy conversion device comprising an improved sealing member adapted to seal a cation-permeable casing to the remainder of the device. The sealing member comprises a metal substrate which (i) bears a nonconductive and corrosion resistant coating on the major surface to which said casing is sealed, and (ii) is corrugated so as to render it flexible, thereby allowing said member to move relative to said casing without cracking the seal therebetween. Corrugations may be circumferential, radial, or both radial and circumferential so as to form dimples. The corrugated member may be in form of a bellows or in a substantially flat form, such as a disc.

  15. Improving Project Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRSJuly 2012|| DepartmentImproving Project

  16. Improving Access to Foundational Energy Performance Data

    SciTech Connect (OSTI)

    Studer, D.; Livingood, W.; Torcellini, P.

    2014-08-01T23:59:59.000Z

    Access to foundational energy performance data is key to improving the efficiency of the built environment. However, stakeholders often lack access to what they perceive as credible energy performance data. Therefore, even if a stakeholder determines that a product would increase efficiency, they often have difficulty convincing their management to move forward. Even when credible data do exist, such data are not always sufficient to support detailed energy performance analyses, or the development of robust business cases. One reason for this is that the data parameters that are provided are generally based on the respective industry norms. Thus, for mature industries with extensive testing standards, the data made available are often quite detailed. But for emerging technologies, or for industries with less well-developed testing standards, available data are generally insufficient to support robust analysis. However, even for mature technologies, there is no guarantee that the data being supplied are the same data needed to accurately evaluate a product?s energy performance. To address these challenges, the U.S. Department of Energy funded development of a free, publically accessible Web-based portal, the Technology Performance Exchange(TM), to facilitate the transparent identification, storage, and sharing of foundational energy performance data. The Technology Performance Exchange identifies the intrinsic, technology-specific parameters necessary for a user to perform a credible energy analysis and includes a robust database to store these data. End users can leverage stored data to evaluate the site-specific performance of various technologies, support financial analyses with greater confidence, and make better informed procurement decisions.

  17. Energy Efficiency Improvement in the Petroleum Refining Industry

    E-Print Network [OSTI]

    Worrell, Ernst; Galitsky, Christina

    2005-01-01T23:59:59.000Z

    U.S. Department of Energy, Washington, DC. Worrell, E. andC. Galitsky. 2005. Energy Efficiency Improvement and CostPetroleum Refineries. An ENERGY STAR® Guide for Energy and

  18. Improving Design Methods for Fixed-Foundation Offshore Wind Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems October 1, 2013 - 3:10pm...

  19. Sandia National Laboratories: value energy-efficient improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    value energy-efficient improvements PV Value Tool Featured at Washington D.C. Roundtable On April 1, 2014, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable...

  20. Case Study - The Challenge: Improving Ventilation System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Energy Efficiency in a Textile Plant Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant This case study examines how...

  1. Better Buildings Challenge is Expanding, Improving Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    the Energy Department's (DOE) Better Buildings Challenge is making America more sustainable by transforming how organizations improve energy performance at facilities...

  2. Low-Pressure Solubility of Gases in Liquid Water | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) WindLow Voltage Cables

  3. Improving Energy Efficiency through Commissioning: Getting Started with

    E-Print Network [OSTI]

    buildings saw whole-building energy savings of 30% or more [1]. It can also reduce risk by helping to ensure Improving Energy Efficiency through Mathew October 2013 Environmental Energy Technologies Division

  4. Improved correlations for retrograde gases

    E-Print Network [OSTI]

    Crogh, Arne

    1996-01-01T23:59:59.000Z

    for the Niemstschik et al. Correlation. Initial Gas Gravity is 0. 92. Worst case, 42. 3 % absolute average error. . . . . . . . . . . . . . . . 2. 10 Measured versus Calculated Composition for New Correlation. Initial Gas 16 16 17 17 20 20 Gravity is 0. 96.... Best case, 0. 5 % absolute average error. . . . 2. 11 Measured versus Calculated Composition for New Correlation. Initial Gas Gravity is 0. 93. Worst case, 35. 6 % absolute average error. . . . . 3. 1 Calculated and Measured C7+ Molecular...

  5. FACT SHEET: SOLAR AND LED ENERGY ACCESS PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    billion people current lacking access to modern energy - simultaneously alleviating poverty, improving human health, and reducing emissions of greenhouse gases. The Solar and...

  6. Energy Department Invests Over $10 Million to Improve Grid Reliability...

    Energy Savers [EERE]

    10 Million to Improve Grid Reliability and Resiliency Energy Department Invests Over 10 Million to Improve Grid Reliability and Resiliency June 11, 2014 - 6:20pm Addthis NEWS...

  7. Options for Improving the Energy Efficiency of Intermodal Freight Trains

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Options for Improving the Energy Efficiency of Intermodal Freight Trains Yung-Cheng (Rex) Lai and improves energy efficiency, despite the additional weight penalty and consequent increase in bearing, that intermodal cars are loaded to maximize energy-efficient operation. Two trains may have identical slot uti

  8. Energy Productivity Improvement in Petrochemical Plants

    E-Print Network [OSTI]

    Robinson, A. M.

    1984-01-01T23:59:59.000Z

    Energy Management and Conservation have become mutually inclusive in operation of today's petrochemical plants. This presentation shows how the efficient conversion and distribution of energy and the efficient energy utilization by the various...

  9. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Thermoelectric (TE) HVAC Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE)...

  10. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric (TE) HVAC Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC...

  11. Have You Seen Energy Efficiency Improvements in Your Neighborhood...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This week, Erin shared the results of a major energy efficiency retrofit at her local library. Efficiency improvements over several years include installing 250 solar panels on...

  12. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    SciTech Connect (OSTI)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01T23:59:59.000Z

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden, the United Arab Emirates, the United Kingdom, and the United States. More information on SEAD is available from its website at http://www.superefficient.org/.

  13. Measuring Energy Efficiency Improvements in Industrial Battery Chargers

    E-Print Network [OSTI]

    Matley, R.

    Measuring Energy Efficiency Improvements in Industrial Battery Chargers Ryan Matley, Sr. Program Manager, Pacific Gas and Electric Company, San Francisco, CA ABSTRACT Industrial battery chargers have provided the energy requirements... to 100 GWh per year. There are three areas of energy losses in the battery and charger system: ? Power Conversion Efficiency (energy out of charger vs. energy into charger) ? Charge Return (energy out of battery vs. energy into battery): some...

  14. Memorandum of Understanding on Improving the Energy Efficiency...

    Office of Environmental Management (EM)

    Memorandum of Understanding on Improving the Energy Efficiency of Products and Buildings between the U.S. Environmental Protection Agency and the U.S. Department of Energy, dated...

  15. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    LBNL-pend TV Energy Consumption Trends and Energy-EfficiencyTrends and Energy Consumption ..TV Technology Trends and Energy Consumption. 1.2.3. Factors

  16. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption”, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

  17. Ionization Cluster Size Distributions Created by Low Energy Electrons and Alpha Particles in Nanometric Track Segment in Gases

    E-Print Network [OSTI]

    Bantsar, Aliaksandr

    2012-01-01T23:59:59.000Z

    The interaction of ionizing radiation with nanometric targets is a field of interest for many branches of science such as: radiology, oncology, radiation protection and nanoelectronics. A new experimental technique known as nanodosimetry has been developed for the qualitative as well as quantitative description of these types of interactions. The work presented here is a contribution to this development, namely by further improvement of the new experimental technique called the Jet Counter, originally developed at the Andrzej So{\\l}tan Institute for Nuclear Studies. The Jet Counter is a unique device in the world for studying the interaction of low energy electrons with nanometer targets in the range 2-10 nm (in unit density). The basic experimental result is the frequency distribution of ionization cluster size produced by ionizing particles in a gaseous (nitrogen or propane) nanometric track segment. The first experimental data on the frequency distribution of ionization cluster size produced by low energy ...

  18. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Technology and Energy Management” Zement-Kalk-Gips 47 : 630-and Bezant, K.W. , 1990. “Energy Management in the UK Cementpotential for improved energy management practices exists.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    2005). Guidelines for Energy Management. Washington, D.C.Caffal, C. (1995). Energy Management in Industry. Centre forfor improving your energy management practices. Resources

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Raising Awareness Awareness of energy efficiency createdExternal Recognition Awareness of energy efficiency createdout energy audits, improving motivation and awareness in all

  1. Neutral beamline with improved ion energy recovery

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN); Haselton, Halsey H. (Knoxville, TN); Stirling, William L. (Oak Ridge, TN); Whealton, John H. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  2. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption”, Energy Efficiency inTV Shipments on Energy Consumption.. 22 Figure 3-1.Estimates of Annual Energy Consumption in 3D mode of 3D TVs

  3. Ajo Improvement Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights, Washington: EnergyAjo

  4. Fort Payne Improvement Auth | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForked Deer ElectricFort

  5. Web Improvement Strategy | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idahothe NewUtility-ScaleWeatherstrippingWeb

  6. Solar Forecast Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,SmartEnergyEnergy Resource LibrarySolar

  7. Improve Operations & Maintenance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:DepartmentDepartment of Energy Implementing AgreementSmartPhoto of

  8. Secretary's Improvement Award | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository |Complex"Department ofEnergyAward of

  9. Reedy Creek Improvement Dist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,JumpReactionEnergyRedwood Electric CoopReedy

  10. Strategic Energy Management and Continuous Improvement Resouces |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafelyVirtualStephanie Price Stephanie

  11. Efficiency Improvement Pathway | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroup Report |ofMTechnological solutions are

  12. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL)

    1986-01-01T23:59:59.000Z

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  13. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.

    1986-08-19T23:59:59.000Z

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  14. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL)

    1986-01-01T23:59:59.000Z

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  15. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26T23:59:59.000Z

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  16. Master Plan For Improving Energy Efficiency

    E-Print Network [OSTI]

    Johnson, W. H.

    Presidential Executive Order 12003, dated July 1977, directed all government owned or leased facilities to develop and execute a 10-year Energy Conservation Plan. With facilities in seven states totaling 15 million square feet, the Albuquerque...

  17. Energy Impacts of Productivity Improvements in Manufacturing

    E-Print Network [OSTI]

    Mitrovic, B.; Muller, M. R.

    The complexity of industrial processes and the need to consider the interaction of various systems has led in many cases to the maturing of the “energy audit” in to a more sophisticated “industrial assessment.” The assessment team typically looks...

  18. ARPA-E: Improving Military Energy Security

    SciTech Connect (OSTI)

    Willson, Bryan; Mahvi, Allison; Stepien, Tom; Wasco, Mick

    2014-02-24T23:59:59.000Z

    The U.S. military has a vested interest in advancing microgrid technologies that can power forward operating bases. These technologies could not only help the military significantly reduce its energy demand both at home and abroad, but also they could reduce the number of fuel-supply convoys required on the battlefield and the number of troops killed in fuel-supply convoy attacks. This video highlights two ARPA-E projects that have formed strategic partnerships with the military to enable these microgrids at forward operating bases. Georgia Tech is developing an innovative absorption heat pump that utilizes exhaust heat to provide heating and cooling, which could cut the amount of energy used to heat and cool forward operating bases by 50%. Primus Power is developing a low-cost, energy-dense storage system that could store enough energy to operate a base for several days in the event of a disruption.

  19. Improving the Energy Performance of Data Centers

    E-Print Network [OSTI]

    Horvath, A; Shehabi, Arman

    2008-01-01T23:59:59.000Z

    three different cooling systems in data centers. The firstDX) cooling systems found in older data centers. Thecooling systems’ annual energy use, normalized by floor area, for each modeled data center

  20. ARPA-E: Improving Military Energy Security

    ScienceCinema (OSTI)

    Willson, Bryan; Mahvi, Allison; Stepien, Tom; Wasco, Mick

    2014-03-13T23:59:59.000Z

    The U.S. military has a vested interest in advancing microgrid technologies that can power forward operating bases. These technologies could not only help the military significantly reduce its energy demand both at home and abroad, but also they could reduce the number of fuel-supply convoys required on the battlefield and the number of troops killed in fuel-supply convoy attacks. This video highlights two ARPA-E projects that have formed strategic partnerships with the military to enable these microgrids at forward operating bases. Georgia Tech is developing an innovative absorption heat pump that utilizes exhaust heat to provide heating and cooling, which could cut the amount of energy used to heat and cool forward operating bases by 50%. Primus Power is developing a low-cost, energy-dense storage system that could store enough energy to operate a base for several days in the event of a disruption.

  1. Improving the Energy Efficiency of the MANTIS Kernel

    E-Print Network [OSTI]

    Sreenan, Cormac J.

    Improving the Energy Efficiency of the MANTIS Kernel Cormac Duffy1 , Utz Roedig2 , John Herbert1. The event-based TinyOS is more energy efficient than the multi-threaded MANTIS system. However, MANTIS, timeliness can be traded for energy efficiency by choosing the appropriate operating system. In this paper we

  2. Improving Energy Efficiency and Security for Disk Systems

    E-Print Network [OSTI]

    Qin, Xiao

    Improving Energy Efficiency and Security for Disk Systems Shu Yin1 , Mohammed I. Alghamdi2 been focused on data security and energy efficiency, most of the existing approaches have concentrated optimization with security services to enhance the security of energy-efficient large- scale storage systems

  3. Energy Efficient Implementation of Parallel CMOS Multipliers with Improved Compressors

    E-Print Network [OSTI]

    California at Davis, University of

    Energy Efficient Implementation of Parallel CMOS Multipliers with Improved Compressors Dursun Baran targets. In addition, novel 3:2 and 4:2 compressors are pre- sented to save energy at the same target delay. The proposed compressors provide up to 20% energy reduction depending on the target delay at 65nm

  4. Improved Multi-processor Scheduling for Flow Time and Energy

    E-Print Network [OSTI]

    Wong, Prudence W.H.

    . To Prudence W. H. Wong October 29, 2009 Abstract Energy usage has been an important concern in recent research energy usage is dynamic speed scaling (see, e.g., [8, 14, 24, 28]) where the processor can vary its speedImproved Multi-processor Scheduling for Flow Time and Energy Tak-Wah Lam Lap-Kei Lee Isaac K. K

  5. Proposed Renovations for Lansing Chapman Rink Energy Efficiency Improvements

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    Benson 1 Proposed Renovations for Lansing Chapman Rink Energy Efficiency Improvements A Luce.3%, energy used by 21.9%, and CO2 emissions by 29.3%. The full renovation project has a net present value, it is this design that also creates unnecessary and wasteful energy use and carbon emissions. With these two

  6. Audit Procedures for Improving Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & TechnologyAudit Procedures for Improving Residential Building Energy Efficiency This report analyses in thermal envelopes. The report was submitted by HNEI to the U.S. Department of Energy Office of Electricity

  7. Finalize Historic National Program to Reduce Greenhouse Gases...

    Open Energy Info (EERE)

    Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Finalize...

  8. Improved diagnostic model for estimating wind energy

    SciTech Connect (OSTI)

    Endlich, R.M.; Lee, J.D.

    1983-03-01T23:59:59.000Z

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  9. Wind Forecasting Improvement Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008 TBD-0075 -In theWide

  10. Improving Project Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P.Department of EnergyLessons

  11. HUD Home Improvements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopmentHEADQUARTERSOutreach & CollaborationFactofa

  12. Continuous Energy Improvement in Motor Driven Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013 Sanyo: NoticeContinuing ProgressContinuous Energy

  13. Agricultural Improvement Loan Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof Energy and

  14. How to Improve Productivity with Energy-Efficient Motors

    E-Print Network [OSTI]

    Curley, J. P.

    1983-01-01T23:59:59.000Z

    productivity is to reduce costs, particularly those which are rising faster than others such as electricity. Today's new energy efficient motors reduce the kilowatts consumed, thus reducing electric bills and improving productivity. This paper will discuss...

  15. Outphasing Energy Recovery Amplifier With Resistance Compression for Improved Efficiency

    E-Print Network [OSTI]

    Godoy, Philip Andrew

    We describe a new outphasing energy recovery amplifier (OPERA) which replaces the isolation resistor in the conventional matched combiner with a resistance-compressed rectifier for improved efficiency. The rectifier recovers ...

  16. Improved Combustion System for Energy Conservation in Industry

    E-Print Network [OSTI]

    Thekdi, A. C.; Hemsath, K. H.

    1979-01-01T23:59:59.000Z

    into the furnace. This paper describes various types of burners, their applications, and field test results which illustrate that a properly designed and applied combustion system can reduce the energy consumption and improve the productivity by reducing...

  17. Improvable upper bounds to the piezoelectric polaron ground state energy

    E-Print Network [OSTI]

    A. V. Soldatov

    2014-12-31T23:59:59.000Z

    It was shown that an infinite sequence of improving non-increasing upper bounds to the ground state energy (GSE) of a slow-moving piezoeletric polaron can be devised.

  18. Butler Rural Electric Cooperative- Energy Efficiency Improvement Loan Program

    Broader source: Energy.gov [DOE]

    Butler Rural Electric Cooperative, Inc. provides low interest loans (3.5%) for members to make energy efficiency improvements in eligible homes. There is a $15 application fee for all loans plus...

  19. Improving Building Energy System Performance by Continuous Commissioning

    E-Print Network [OSTI]

    Turner, W. D.; Liu, M.; Claridge, D. E.; Haberl, J. S.

    1996-01-01T23:59:59.000Z

    data. The first buildings to undergo a continuous commissioning process were in the Texas LoanSTAR program [Liu, et al, 1994, Claridge, et al, 1994]. These buildings had been retrofitted with various energy efficiency improvements, and measured hourly...

  20. Pee Dee Electric Cooperative- Energy Efficient Home Improvement Loan Program

    Broader source: Energy.gov [DOE]

    Pee Dee Electric Cooperative offers financing for members through the Energy Efficient Home Improvement Loan Program. Loans of up to $5,000, with repayment periods up to 72 months, can be used for...

  1. Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements

    E-Print Network [OSTI]

    Borgeson, Merrian

    2014-01-01T23:59:59.000Z

    Efficiency an d Renewable Energy Improvements Environmentalfunded by the National Renewable Energy Laboratory (NREL)energy efficiency and renewable energy improvements can

  2. Energy Department Announces Distributed Wind Competitiveness Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog EnergyFuels |

  3. Improving Energy Efficiency for Energy Harvesting Embedded Systems*

    E-Print Network [OSTI]

    Qiu, Qinru

    Qiu {yage, yzhan158, qiqiu}@syr.edu EECS department, Syracuse University, New York, 13210, USAImproving Energy Efficiency for Energy Harvesting Embedded Systems* Yang Ge, Yukan Zhang and Qinru ABSTRACT While the energy harvesting system (EHS) supplies green energy to the embedded system, it also

  4. Improving Project Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P.Department of

  5. Improved Organic Photovoltaics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpactControl -Innovation

  6. Abuse Tolerance Improvement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic26-OPAMATTENDEEES:ofDepartmentAbsorption2009

  7. Abuse Tolerance Improvement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic26-OPAMATTENDEEES:ofDepartmentAbsorption200910 DOE

  8. Abuse Tolerance Improvement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic26-OPAMATTENDEEES:ofDepartmentAbsorption200910 DOE09 DOE

  9. Abuse Tolerance Improvements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic26-OPAMATTENDEEES:ofDepartmentAbsorption200910 DOE09

  10. Energy Efficiency Improvements of U.S. Olefins Crackers

    E-Print Network [OSTI]

    Benton, J.

    2013-01-01T23:59:59.000Z

    ESL-IE-13-05-18 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 8 Energy Efficiency Initiatives ? Energy ?Best Practices? Deep-Drills ? Driven by Technology Center; business-wide approach...1 Energy Efficiency Improvements of U.S. Olefins Crackers Jim Benton Energy Efficiency Leader - Hydrocarbons Dow Chemical Company ESL-IE-13-05-18 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21...

  11. Potentials and policy implications of energy and material efficiency improvement

    SciTech Connect (OSTI)

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01T23:59:59.000Z

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  12. Energy Department Announces $9 Million to Improve Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 - 4:24pm Addthis As part of the Obama Administration's effort to double energy productivity by 2030 and reduce carbon emissions in commercial buildings, the Energy Department...

  13. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    China Estimates of global and country-specific energy saving potentials will be based on the above TV market forecast

  14. Case Studies—Financing Energy Improvements on Utility Bills

    Broader source: Energy.gov [DOE]

    Hosted by Technical Assistance Program (TAP), the State and Local Energy Efficiency Action Network (SEE Action), and Lawrence Berkeley National Laboratory's Electricity Market and Policy Group, this webinar was the second of a two-part webinar series focused on the new report, Financing Energy Improvements on Utility Bills: Market Updates and Key Program Design Considerations for Policymakers and Administrators.

  15. Novel Spark Plugs Improve Energy Efficiency of Compressed Natural

    E-Print Network [OSTI]

    Novel Spark Plugs Improve Energy Efficiency of Compressed Natural Gas Engines Energy Innovations use affects climate change. Vehicles operating on compressed natural gas reduce petroleum fuel use, the vast majority of compressed natural gas (CNG) engines are used in transit buses serving the public

  16. Application of Industrial Heat Improving energy efficiency of

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    compared with Residential Heat Pumps High energy efficiency = high coefficient of performance (COP) (eApplication of Industrial Heat Pumps Improving energy ­ efficiency of industrial processes . H.J. Laue Information Centre on Heat Pumps and Refrigeration IZW e.V. #12;2 Welcome Achema Congress 2012

  17. Controlling the Internet to Improve Energy Efficiency Dr. Lachlan Andrew

    E-Print Network [OSTI]

    Huang, Jianwei

    Controlling the Internet to Improve Energy Efficiency by Dr. Lachlan Andrew Centre for Advanced, and energy-efficient networking. He is an editor of IEEE/ACM Trans. Networking, and an area editor Internet Architectures Swinburne University of Technology Australia THE CHINESE UNIVERSITY OF HONG KONG

  18. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01T23:59:59.000Z

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  19. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    SciTech Connect (OSTI)

    Lawrence Berkeley National Laboratory; Marini, Kyle; Ghatikar, Girish; Diamond, Richard

    2011-02-01T23:59:59.000Z

    Federal agencies are taking many steps to improve the sustainability of their operations, including improving the energy efficiency of their buildings, promoting recycling and reuse of materials, encouraging carpooling and alternative transit schemes, and installing low flow water fixture units are just a few of the common examples. However, an often overlooked means of energy savings is to provide feedback to building users about their energy use through information dashboards connected to a building?s energy information system. An Energy Information System (EIS), broadly defined, is a package of performance monitoring software, data acquisition hardware, and communication systems that is used to collect, store, analyze, and display energy information. At a minimum, the EIS provides the whole-building energy-use information (Granderson 2009a). We define a ?dashboard? as a display and visualization tool that utilizes the EIS data and technology to provide critical information to users. This information can lead to actions resulting in energy savings, comfort improvements, efficient operations, and more. The tools to report analyzed information have existed in the information technology as business intelligence (Few 2006). The dashboard is distinguished from the EIS as a whole, which includes additional hardware and software components to collect and storage data, and analysis for resources and energy management (Granderson 2009b). EIS can be used for a variety of uses, including benchmarking, base-lining, anomaly detection, off-hours energy use evaluation, load shape optimization, energy rate analysis, retrofit and retro-commissioning savings (Granderson 2009a). The use of these EIS features depends on the specific users. For example, federal and other building managers may use anomaly detection to identify energy waste in a specific building, or to benchmark energy use in similar buildings to identify energy saving potential and reduce operational cost. There are several vendors of EIS technology that provide information on energy and other environmental variables in buildings.

  20. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    Energy Efficiency of New Televisions”. October. http://mappingandbenchmarking.iea-4e.org/shared_files/110/download 2010b Australia

  1. DOE Launches EnergySmart Hospitals to Promote Improved Energy...

    Energy Savers [EERE]

    in meeting the challenge of increasing energy efficiency while delivering quality patient care, operating cost-effectively, and maintaining healthy healing and work environments....

  2. Vortex structures and zero-energy states in the BCS-to-BEC evolution of p-wave resonant Fermi gases

    SciTech Connect (OSTI)

    Mizushima, T.; Machida, K. [Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2010-05-15T23:59:59.000Z

    Multiply quantized vortices in the BCS-to-BEC (Bose-Einstein condensation) evolution of p-wave resonant Fermi gases are investigated theoretically. The vortex structure and the low-energy quasiparticle states are discussed, based on the self-consistent calculations of the Bogoliubov-de Gennes and gap equations. We reveal the direct relation between the macroscopic structure of vortices, such as particle densities, and the low-lying quasiparticle state. In addition, the net angular momentum for multiply quantized vortices with a vorticity {kappa} is found to be expressed by a simple equation, which reflects the chirality of the Cooper pairing. Hence, the observation of the particle density depletion and the measurement of the angular momentum will provide the information on the core-bound state and p-wave superfluidity. Moreover, the details on the zero energy Majorana state are discussed in the vicinity of the BCS-to-BEC evolution. It is demonstrated numerically that the zero energy Majorana state appears in the weak coupling BCS limit only when the vortex winding number is odd. The {kappa} branches of the core-bound states for a vortex state with vorticity {kappa} exist; however, only one of them can be the zero energy. This zero energy state vanishes at the BCS-BEC topological phase transition because of interference between the core-bound and edge-bound states.

  3. Coalition of World Energy Ministers Commit to Improvements in Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" |EnergysoilEfficiency, Renewable Energy,

  4. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    size on the market, which could also increase average energymarket will somewhat offset the increases in energy consumption that would otherwise be expected from increasing sales and screen sizes.

  5. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmilyofEnergy Advising Services

  6. Light Collection in Liquid Noble Gases

    SciTech Connect (OSTI)

    McKinsey, Dan [Yale University

    2013-05-29T23:59:59.000Z

    Liquid noble gases are increasingly used as active detector materials in particle and nuclear physics. Applications include calorimeters and neutrino oscillation experiments as well as searches for neutrinoless double beta decay, direct dark matter, muon electron conversion, and the neutron electric dipole moment. One of the great advantages of liquid noble gases is their copious production of ultraviolet scintillation light, which contains information about event energy and particle type. I will review the scintillation properties of the various liquid noble gases and the means used to collect their scintillation light, including recent advances in photomultiplier technology and wavelength shifters.

  7. Improvement of the Lost Foam Casting Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost Foam Casting Process Improvement of

  8. Improving Efficiency of Tube Drawing Bench | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost Foam CastingStratificationImproving

  9. Improving Fatigue Performance of AHSS Welds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling and Improving Fan

  10. Study of dust particle charging in weakly ionized inert gases taking into account the nonlocality of the electron energy distribution function

    SciTech Connect (OSTI)

    Filippov, A. V., E-mail: fav@triniti.ru; Dyatko, N. A. [Troitsk Institute for Innovation and Fusion Research, Russian State Research Center (Russian Federation); Kostenko, A. S. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2014-11-15T23:59:59.000Z

    The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup ?1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocality is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.

  11. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    SciTech Connect (OSTI)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06T23:59:59.000Z

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  12. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of Energy 3 BTOWebinar Energy 101Productivity |

  13. Improving the Energy Efficiency of Existing Windows | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P.Department ofMaking | Department of Energy Alice

  14. Coalition of World Energy Ministers Commit to Improvements in Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. Cash 6-1ClayChange: Effects onofCoal

  15. NEVADA SPARKS RESIDENTS TO IMPROVE ENERGY FITNESS | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctoberNETLForeign Travel RequestNEVADA

  16. Improving the Contribution of Economic Models in Evaluating Industrial Energy Efficiency Improvements 

    E-Print Network [OSTI]

    Laitner, J. A.

    2007-01-01T23:59:59.000Z

    Traditional representation of improved end-use efficiency in the manufacturing sector has tended to assume “a net cost” perspective. In other words, the assumption for many models is that any change within the energy end-use patterns must imply a...

  17. Voluntary reporting of greenhouse gases, 1995

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  18. Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements

    E-Print Network [OSTI]

    Borgeson, Merrian

    2014-01-01T23:59:59.000Z

    for Energy Efficiency an d Renewable Energy Improvementsfunded by the National Renewable Energy Laboratory (NREL)energy efficiency and renewable energy improvements can

  19. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect (OSTI)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15T23:59:59.000Z

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  20. Improving Energy Efficiency and Creating Jobs Through Weatherization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost Foam

  1. Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers to

  2. Innovative Approaches to Improving Engine Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIANManagement1, 2010|

  3. Adjustable Nonlinear Springs to Improve Efficiency of Vibration Energy Harvesters

    E-Print Network [OSTI]

    S. Boisseau; G. Despesse; B. Ahmed Seddik

    2015-06-01T23:59:59.000Z

    Vibration Energy Harvesting is an emerging technology aimed at turning mechanical energy from vibrations into electricity to power microsystems of the future. Most of present vibration energy harvesters are based on a mass spring structure introducing a resonance phenomenon that allows to increase the output power compared to non-resonant systems, but limits the working frequency bandwidth. Therefore, they are not able to harvest energy when ambient vibrations' frequencies shift. To follow shifts of ambient vibration frequencies and to increase the frequency band where energy can be harvested, one solution consists in using nonlinear springs. We present in this paper a model of adjustable nonlinear springs (H-shaped springs) and their benefits to improve velocity-damped vibration energy harvesters' (VEH) output powers. A simulation on a real vibration source proves that the output power can be higher in nonlinear devices compared to linear systems (up to +48%).

  4. Energy Department Announces $9 Million to Improve Energy Efficiency of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog EnergyFuels | DepartmentHotels, Hospitals,

  5. Improving TLB Energy for Java Applications Chinnakrishnan S. Ballapuram

    E-Print Network [OSTI]

    Lee, Hsien-Hsin "Sean"

    Improving TLB Energy for Java Applications on JVM Chinnakrishnan S. Ballapuram School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia 30332­0250 chinnak@ece.gatech.edu Hsien-Hsin S. Lee School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta

  6. Improved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets

    E-Print Network [OSTI]

    for cryogenic refrigeration plants needed to maintain the magnets' temperature near absolute zero, direct costsImproved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets Robert D. Woolley for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum

  7. Improving energy efficiency at the Phelps Dodge Hidalgo smelter

    SciTech Connect (OSTI)

    Chen, W.J.; Partelpoeg, E.H.; Davenport, W.G. (Phelps Dodge Univ. of Arizona, AZ (US))

    1988-09-01T23:59:59.000Z

    With the objective of increasing energy efficiencies in a flash furnace, an Arizona-based 500 ton-per-day oxygen plant was disassembled and relocated to the Phelps Dodge Hidalgo smelter in New Mexico. As projected by computer modeling, the expected effects of oxygen enrichment on the furnace heat balance were realized and improvements to boiler operation attained.

  8. Improving EM&V for Energy Efficiency Programs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01T23:59:59.000Z

    This fact sheet describes the objectives of the U.S. Department of Energy Uniform Methods Project to bring consistency to energy savings calculations in U.S. energy efficiency programs. The U.S. Department of Energy (DOE) is developing a framework and a set of protocols for determining gross energy savings from energy efficiency measures and programs. The protocols represent a refinement of the body of knowledge supporting energy efficiency evaluation, measurement, and verification (EM&V) activities. They have been written by technical experts within the field and reviewed by industry experts. Current EM&V practice allows for multiple methods for calculating energy savings. These methods were developed to meet the needs of energy efficiency program administrators and regulators. Although they served their original objectives well, they have resulted in inconsistent and incomparable savings results - even for identical measures. The goal of the Uniform Methods Project is to strengthen the credibility of energy savings determinations by improving EM&V, increasing the consistency and transparency of how energy savings are determined.

  9. The 2001 Power Plant Improvement Initiative | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001 Power Plant Improvement Initiative The

  10. Improved Magnesium Molding Process (Thixomolding) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy PetroleumEnergyImplementingImprove

  11. Improved Methods for Making Intermetallic Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy PetroleumEnergyImplementingImproveMethods for Making

  12. Sandia Energy - Wind Energy Manufacturing Lab Helps Engineers Improve

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWater Power PersonnelH2FIRSTWindWind

  13. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect (OSTI)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29T23:59:59.000Z

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  14. Good Samaritan Hospital`s energy efficiency improvements

    SciTech Connect (OSTI)

    Sterrett, R.; Dobberpuhl, W.; Gernet, B.; O`Brien, T.

    1995-06-01T23:59:59.000Z

    Arizona Public Service (APS) encourages its customers to use energy wisely by providing incentives to install energy efficient systems. APS provided an incentive to the Good Samaritan Hospital, located in Phoenix, Arizona, to install a Waste Heat Recovery Unit and an Economizer Cooling System to improve the performance of the hospital`s central plant. Waste heat recovered from the boilers stacks is used to preheat combustion air and boiler feed water. The Economizer Cooling System uses a plate and frame heat exchanger to cool the hospital with cold water produced by the cooling tower rather than an electrical chiller. To determine the effectiveness of these two systems APS initiated a project to monitor their performance. Alternative Energy Systems Consulting, Inc. (AESC) has installed instrumentation to monitor the performance of the above systems and will document their energy savings and effectiveness at reducing energy costs.

  15. Technologies and Policies to Improve Energy Efficiency in Industry

    SciTech Connect (OSTI)

    Price, Lynn; Price, Lynn

    2008-03-01T23:59:59.000Z

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  16. Steam Production from Waste Stack Gases in a Carbon Black Plant

    E-Print Network [OSTI]

    Istre, R. I.

    1981-01-01T23:59:59.000Z

    gases to produce steam has two very important rewards - energy conservation and pollution abatement. Energy conservation is achieved by using waste gases in place of fuel oil to produce the steam required by the various plants. Pollution abatement is due...

  17. Solvent dehydration system cuts energy use, improves dewaxed oil yield

    SciTech Connect (OSTI)

    Scalise, J.M.; Button, H.O.; Graves, D.C.

    1984-08-27T23:59:59.000Z

    A recent development can be applied in solvent dewaxing plants to reduce energy requirements, simplify operations, reduce maintenance, improve oil yields, and offer capacity gains. Known as the Nofsinger Solvent Dehydration System, this development is being successfully utilized by Ashland Oil Inc. in its Catlettsburg, Ky., refinery to achieve several of these goals. A net savings of approximately $490,000/year was calculated at design throughput. This yields a return on investment of approximately 20% without consideration of any yield effects. Improvements in yield were not included because simultaneous design changes in the unit did not permit Ashland to quantify any yield savings that may have occurred.

  18. The Development of Improved Energy Efficient Housing for Thailand Utilizing Renewable Energy Technology

    E-Print Network [OSTI]

    Rasisuttha, S.; Haberl, J.

    SimBuild 2004, IBPSA-USA National Conference, Boulder, CO, August 4-6th, 2004, p. 1 THE DEVELOPMENT OF IMPROVED ENERGY EFFICIENT 1 HOUSING FOR THAILAND UTILIZING RENEWABLE ENERGY TECHNOLOGY 2 3... The paper reports on the results of research to reduce energy consumption in residential buildings in a hot and humid climate region (Thailand) using efficient architectural building components, energy efficient building systems, and renewable energy...

  19. Energy efficiency and the environment: Innovative ways to improve air quality in the Los Angeles Basin

    SciTech Connect (OSTI)

    Ritschard, R.

    1993-02-01T23:59:59.000Z

    This paper focuses on novel, innovative approaches for reducing or delaying the production of photochemical smog in the Los Angeles Basin. These approaches include modifying the surface characteristics of the basin by increasing surface albedo and an extensive tree-planting program. The changes in surface conditions are designed to reduce the basin air temperatures, especially during the summer months, which will result in two possible effects. First, a decrease in temperature would lead to a reduction in energy use with an associated decline in emissions of nitrogen oxides (NO{sub x}) and a lowering of evaporative emission of reactive organic gases. Reductions in these smog precursors could improve the air quality of the basin without imposing additional emissions regulations. The second effect is associated with the possible causal relationship between air temperature and smog formation (i.e., lower temperatures and lower incidence of smog). Since this approach to mitigating air emissions is broad, the studies to date have concentrated on how changes in surface characteristics affect the meteorological conditions of the basin and on how these meteorological changes subsequently affect smog production. A geographic information system database of key surface characteristics (i.e., vegetative cover, albedo, moisture availability, and roughness) was compiled, and these characteristics were evaluated using prognostic meteorological models. The results of two- and three-dimensional meteorological simulations will be presented and discussed in this paper.

  20. Energy efficiency and the environment: Innovative ways to improve air quality in the Los Angeles Basin

    SciTech Connect (OSTI)

    Ritschard, R.

    1993-02-01T23:59:59.000Z

    This paper focuses on novel, innovative approaches for reducing or delaying the production of photochemical smog in the Los Angeles Basin. These approaches include modifying the surface characteristics of the basin by increasing surface albedo and an extensive tree-planting program. The changes in surface conditions are designed to reduce the basin air temperatures, especially during the summer months, which will result in two possible effects. First, a decrease in temperature would lead to a reduction in energy use with an associated decline in emissions of nitrogen oxides (NO[sub x]) and a lowering of evaporative emission of reactive organic gases. Reductions in these smog precursors could improve the air quality of the basin without imposing additional emissions regulations. The second effect is associated with the possible causal relationship between air temperature and smog formation (i.e., lower temperatures and lower incidence of smog). Since this approach to mitigating air emissions is broad, the studies to date have concentrated on how changes in surface characteristics affect the meteorological conditions of the basin and on how these meteorological changes subsequently affect smog production. A geographic information system database of key surface characteristics (i.e., vegetative cover, albedo, moisture availability, and roughness) was compiled, and these characteristics were evaluated using prognostic meteorological models. The results of two- and three-dimensional meteorological simulations will be presented and discussed in this paper.

  1. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    2000. “Potentials for Energy Efficiency Improvement in theBenefits of Industrial Energy Efficiency Measures,” EnergyC. , and Price, L. , 2008. Energy Efficiency Improvement

  2. A Supply-Demand Model Based Scalable Energy Management System for Improved Energy

    E-Print Network [OSTI]

    Bhunia, Swarup

    energy generation and consumption parameters. The system uses economics inspired supply-demand modelA Supply-Demand Model Based Scalable Energy Management System for Improved Energy Utilization Western Reserve University, *Cleveland State University, +Rockwell Automation, Cleveland, OR, USA Email

  3. How ambient intelligence will improve habitability and energy efficiency in buildings

    E-Print Network [OSTI]

    Arens, Edward A; Federspiel, C.; Wang, D.; Huizenga, C.

    2005-01-01T23:59:59.000Z

    improvements to building energy efficiency and the well-Habitability and Energy Efficiency in Buildings. ” PublishedHabitability and Energy Efficiency in Buildings. ” Published

  4. Strategies to improve energy efficiency in semiconductor manufacturing

    SciTech Connect (OSTI)

    Robertson, C.; Stein, J; Harris, J.; Cherniack, M.

    1997-07-01T23:59:59.000Z

    The global semiconductor industry is growing at an astounding rate. In the next few years, the industry is expected to invest some $169 billion to build more than 36 million square feet of clean room floor space. Electric loads in these new plants are expected to total more than 5,000 MW and 40,000 GWH per year. This paper summarizes the results of studies to identify opportunities for improved energy efficiency in the semiconductor industry. The genesis of this work came about as the authors observed the rapid growth of the semiconductor industry in the Pacific Northwest. Industry observers report that some $20 billion in new facilities could be build in the Northwest in the nest few years, with a combined electric load in excess of 500 to 600 MW. The research results reported in this paper have been supported in part by the Bonneville Power Administration, the Northwest Power Planning Council, the Oregon Office of Energy, New England Electric System and the Conservation Law Foundation of New England. With their support the authors interviewed numerous industry participants, reviewed key literature, and met extensively with industry engineering firms. manufacturers, vendors and suppliers of manufacturing equipment and materials, and others with interests in this industry. Significant opportunities to improve energy efficiency in the semiconductor industry have been reported to us; perhaps 50 percent or greater aggregate improvement appears possible. Equally significant market barriers constrain the industry from achieving these savings. Yet, because of his industry's concentration, competitiveness, and existing research consortia such as SEMATECH, the authors believe the substantial market barriers to energy efficiency can be addressed with carefully formulated strategies to demonstrate, document and communicate the business and technical case for advanced energy efficiency, including potential benefits in finance, manufacturing and corporate environmental performance. This paper describes how the industry plans research and development investments, examines energy use intensities, summarizes key market barriers which constrain energy efficient design, identifies interests in the industry that may be changing energy efficiency perceptions, lists activities to move energy efficiency to a higher priority, gives examples of energy efficiency opportunities, and reviews activities planned by a coalition of Northwest interests to accelerate the adoption of energy efficient design strategies.

  5. Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance

    SciTech Connect (OSTI)

    Not Available

    2005-04-01T23:59:59.000Z

    In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

  6. Improving Energy Efficiency by Developing Components for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling and Heating Based on

  7. Improving Energy Efficiency by Developing Components for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling and Heating Based

  8. Improving Energy Efficiency by Developing Components for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling and Heating BasedCooling

  9. Improving Energy Efficiency by Developing Components for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling and Heating

  10. Improving Energy Efficiency by Developing Components for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling and HeatingCooling and

  11. Improving Energy Efficiency by Developing Components for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling and HeatingCooling

  12. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    SciTech Connect (OSTI)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08T23:59:59.000Z

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  13. Continuous cryopump with a method for removal of solidified gases

    DOE Patents [OSTI]

    Carlson, L.W.; Herman, H.

    1988-05-05T23:59:59.000Z

    An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases adsorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel. 4 figs.

  14. Improving the energy efficiency of refrigerators in India

    SciTech Connect (OSTI)

    Sand, J.R.; Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Bohman, R.H. [Consulting Engineer, Cedar Rapids, IA (United States)

    1995-04-01T23:59:59.000Z

    Five state-of-the-art, production refrigerators from different manufacturers in India were subjected to a variety of appliance rating and performance evaluation test procedures in an engineering laboratory. Cabinet heat loss, compressor calorimeter, high-ambient pull-down, and closed-door energy consumption tests were performed on each unit to assess the current status of commercially available Indian refrigerators and refrigerator component efficiencies. Daily energy consumption tests were performed at nominal line voltages and at 85% and 115% of nominal voltage to assess the effect of grid voltage variations. These test results were also used to indicate opportunities for effective improvements in energy efficiency. A widely distributed ``generic`` computer model capable of simulating single-door refrigerators with a small interior freezer section was used to estimate cabinet heat loss rates and closed door energy consumption values from basic cabinet and refrigeration circuit inputs. This work helped verify the model`s accuracy and potential value as a tool for evaluating the energy impact of proposed design options. Significant differences ranging from 30 to 90% were seen in the measured performance criterion for these ``comparable`` refrigerators suggesting opportunities for improvements in individual product designs. Modeled cabinet heat loadings differed from experimentally extrapolated values in a range from 2--29%, and daily energy consumption values estimated by the model differed from laboratory data by as little as 3% or as much as 25%, which indicates that refinement of the model may be needed for this single-door refrigerator type. Additional comparisons of experimentally measured performance criteria such as % compressor run times and compressor cycling rates to modeled results are given. The computer model is used to evaluate the energy saving impact of several modest changes to the basic Indian refrigerator design.

  15. Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness

    E-Print Network [OSTI]

    Glaser, C.

    /Process Changes Buildings and Grounds Non-Energy Related Cost Savings Alternate Fuels The University City Science Center examines and critiques every audit report generated by the EADCs to ensure high quality work. They also periodically accompany the EADC...INDUSTRIAL ENERGY AUDITING: AN OPPORTUNITY FOR IMPROVING ENERGY EFFICIENCY AND INDUSTRIAL COMPETITIVENESS CHARLES GLASER, PROGRAM MANAGER, IMPLEMENTATION AND DEPLOYMENT DIVISION OFFICE OF INDUSTRIAL TECHNOLOGIES, U.S. DEPARTMENT OF ENERGY...

  16. Granular gases under extreme driving

    E-Print Network [OSTI]

    W. Kang; J. Machta; E. Ben-Naim

    2010-08-06T23:59:59.000Z

    We study inelastic gases in two dimensions using event-driven molecular dynamics simulations. Our focus is the nature of the stationary state attained by rare injection of large amounts of energy to balance the dissipation due to collisions. We find that under such extreme driving, with the injection rate much smaller than the collision rate, the velocity distribution has a power-law high energy tail. The numerically measured exponent characterizing this tail is in excellent agreement with predictions of kinetic theory over a wide range of system parameters. We conclude that driving by rare but powerful energy injection leads to a well-mixed gas and constitutes an alternative mechanism for agitating granular matter. In this distinct nonequilibrium steady-state, energy cascades from large to small scales. Our simulations also show that when the injection rate is comparable with the collision rate, the velocity distribution has a stretched exponential tail.

  17. Improved value for the silicon free exciton binding energy

    SciTech Connect (OSTI)

    Green, Martin A., E-mail: m.green@unsw.edu.au [Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, Australia 2052 (Australia)

    2013-11-15T23:59:59.000Z

    The free exciton binding energy is a key parameter in silicon material and device physics. In particular, it provides the necessary link between the energy threshold for valence to conduction band optical absorption and the bandgap determining electronic properties. The long accepted low temperature binding energy value of 14.7 ± 0.4 meV is reassessed taking advantage of developments subsequent to its original determination, leading to the conclusion that this value is definitely an underestimate. Using three largely independent experimental data sets, an improved low temperature value of 15.01 ± 0.06 meV is deduced, in good agreement with the most comprehensive theoretical calculations to date.

  18. Chapter 46. Ultracold Quantum Gases Ultracold Quantum Gases

    E-Print Network [OSTI]

    of strongly interacting Fermi gases is important for the modeling of neutron stars. Cold atomic gases allow potential of the gas. Away from resonance another length scale comes into play, the scattering length a

  19. A Total Quality Management (TQM) Approach for Energy Savings Through Employee Awareness and Building Upgrades to Improve Energy Efficiency

    E-Print Network [OSTI]

    Stewart, D. H.

    . The partnership between the employees and management is critical for an energy-efficient program to succeed. The informed team of"Energy Partners" can track energy use and develop programs which will reduce energy waste, improve the environment and improve...A TOTAL QUALIn' MANAGEMENT (TQM) APPROACH FOR ENERGY SAVINGS THROUGH EMPLOYEE AWARENESS AND BUILDING UPGRADES TO IMPROVE ENERGY EFFICIENCY Daniel H. Stewart, Principal Engineer, Facilities Department, Rh6oe-Poulenc. Inc., Cranbury, NJ...

  20. Where do California's greenhouse gases come from?

    ScienceCinema (OSTI)

    Fischer, Marc

    2013-05-29T23:59:59.000Z

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  1. Classroom HVAC: Improving ventilation and saving energy -- field study plan

    E-Print Network [OSTI]

    Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

    2004-01-01T23:59:59.000Z

    in this study. Classroom HVAC: Improving Ventilation andV8doc.sas.com/sashtml. Classroom HVAC: Improving VentilationBerkeley, CA 94720. Classroom HVAC: Improving Ventilation

  2. Durable, Low Cost, Improved Fuel Cell Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner About UsDurable, Low Cost, Improved Fuel

  3. Improving Risk Assessment to Support State Energy Infrastructure Decision

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRSJuly 2012|| DepartmentImprovingMaking |

  4. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-02-01T23:59:59.000Z

    The U.S. Department of Energy developed the K-12 Advanced Energy Retrofit Guide to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. We emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluation of the most promising retrofit measure for each building type. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings.

  5. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)

    SciTech Connect (OSTI)

    Hendron, B.

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive market segments.

  6. Fact Sheet: Improving Energy Efficiency for Server Rooms and Closets

    E-Print Network [OSTI]

    Cheung, Hoi Ying Iris

    2014-01-01T23:59:59.000Z

    of energy by reducing compressor cooling energy use. 14.of energy by reducing compressor cooling energy use. If you

  7. Improving Energy Efficiency of Compressed Air System Based on System Audit

    E-Print Network [OSTI]

    Shanghai, Hongbo Qin; McKane, Aimee

    2008-01-01T23:59:59.000Z

    plan, formulate energy efficiency goals and adopt energyGO-102004-1926 [3] Energy Efficiency and Market Potential ofImproving Energy Efficiency of Compressed Air System Based

  8. How does renewable energy drive community economic development, improve air quality & contribute to healthy families & communities?

    E-Print Network [OSTI]

    de Leon, Alex R.

    · How does renewable energy drive community economic development, improve air quality & contribute to healthy families & communities? · How does renewable energy revitalize agricultural communities, provide energy self-sufficiency & protect the environment? · How do renewable energy & sustainable food create

  9. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-01-01T23:59:59.000Z

    Canadian Industry Program for Energy Conservation (CIPEC). (2001a). Boilers and Heaters, Improving Energy Efficiency.Resources Canada, Office of Energy Efficiency. August.

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    E. Masanet (2005a). Energy Efficiency Improvement and CostA.R. Ganji (2005). Energy Efficiency Opportunities in FreshSummer Study on Energy Efficiency in Industry, American

  11. Riding the Clean Energy Wave: New Projects Aim to Improve Water...

    Broader source: Energy.gov (indexed) [DOE]

    Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices April 16, 2014 - 1:56pm...

  12. Improving ac motor efficiency with fuzzy logic energy optimizer

    SciTech Connect (OSTI)

    Spiegel, R.J.; Chappell, P.J.; Cleland, J.G.

    1994-08-01T23:59:59.000Z

    The paper discusses EPA's research program to develop fuzzy-logic-based energy optimizers for alternating-current (AC) induction motors driven by Adjustable Speed Drives (ASDs). The technical goals of the program are to increase the efficiency of ASD/motor combinations (especially when operating at off-rated torque/speed conditions), develop a generic controller for energy optimization that can be applied to a wide range of motors and ASDs regardless of size and application, and develop a controller for energy optimization that can eliminate the requirement for tachometer or encoder feedback, and still maintain the stability and response of closed-loop control. Electric motors use over 60% of the electrical power generated in the U.S. The U.S. population of approximately 1 billion motors use over 1700 billion kWh per year. Over 140 million new motors are sold each year. A review of the U.S. motor population reveals that 90% of the motors are less than 1 hp (fractional motors) in size, but use less than 10% of the electricity consumed by motors. More that 80% of the electricity used by motors is consumed by less than 1% of the motor population (motors greater than 20 hp). Thus, it is clear that large energy savings from improvement in motor efficiency could be achieved from a relatively small motor population.

  13. Using Public Participation to Improve MELs Energy Data Collection

    SciTech Connect (OSTI)

    Cheung, Iris (Hoi Ying) [Hoi Ying; Kloss, Margarita; Brown, Rich; Meier, Alan

    2014-03-11T23:59:59.000Z

    Miscellaneous Electric Loads (MELs) have proliferated in the last decade, and comprise an increasing share of building energy consumption. Because of the diversity of MELs and our lack of understanding about how people use them, large-scale data collection is needed to inform meaningful energy reduction strategies. Traditional methods of data collection, however, usually incur high labor and metering equipment expenses. As an alternative, this paper investigates the feasibility of crowdsourcing data collection to satisfy at least part of the data collection needs with acceptable accuracy. This study assessed the reliability and accuracy of crowdsourced data, by recruiting over 20 volunteers (from the 2012 Lawrence Berkeley Lab, Open House event) to test our crowdsourcing protocol. The protocol asked volunteers to perform the following tasks for three test products with increasing complexity - record power meter and product characteristics, identify all power settings available, and report the measured power. Based on our collected data and analysis, we concluded that volunteers performed reasonably well for devices with functionalities with which they are familiar, and might not produce highly accurate field measurements for complex devices. Accuracy will likely improve when participants are measuring the power used by devices in their home which they know how to operate, by providing more specific instructions including instructional videos. When integrated with existing programs such as the Home Energy Saver tool, crowdsourcing data collection from individual homeowners has the potential to generate a substantial amount of information about MELs energy use in homes.

  14. Using Public Participation to Improve MELs Energy Data Collection

    SciTech Connect (OSTI)

    Kloss, Margarita; Cheung, Iris [Hoi; Brown, Richard; Meier, Alan

    2014-08-11T23:59:59.000Z

    Miscellaneous and electronic loads (MELs) comprise an increasing share of building energy consumption. Large-scale data collection is needed to inform meaningful energy reduction strategies because of the diversity of MELs and our lack of understanding about how people use them. Traditional methods of data collection, however, usually incur high labor and metering equipment expenses. As an alternative, this paper investigates the feasibility of crowdsourcing data collection to satisfy at least part of the data collection needs with acceptable accuracy. We assessed the reliability and accuracy of crowd-sourced data by recruiting 18 volunteers and testing our crowdsourcing protocol. The protocol asked volunteers to perform measurement tasks for three MELs devices of increasing complexity 1) record power meter and MELs product characteristics, 2) identify and measure all power modes available, and 3) report the measured power. Volunteers performed reasonably well for devices with functionalities with which they were familiar, but many could not correctly identify all available power modes in complex devices. Accuracy may improve when participants measure the power used by familiar devices in their home, or by providing more specific instructions, e.g. videos. Furthermore, crowdsourcing data collection from individual homeowners has the potential to generate valuable information about MELs energy use in homes when integrated with existing programs such as Home Energy Saver and Building America.

  15. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    E-Print Network [OSTI]

    Kermeli, Katerina

    2013-01-01T23:59:59.000Z

    are realized when the boiler efficiency is improved, and the43 5.6.1 Boiler energy efficiencysystems. 5.6.1 Boiler energy efficiency measures The boiler

  16. Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings

    SciTech Connect (OSTI)

    Polly, B.; Kruis, N.; Roberts, D.

    2011-07-01T23:59:59.000Z

    This report describes the National Renewable Energy Laboratory's (NREL) methodology to assess and improve the accuracy of whole-building energy analysis for residential buildings.

  17. Biological Removal of Siloxanes from Landfill and Digester Gases

    E-Print Network [OSTI]

    Biological Removal of Siloxanes from Landfill and Digester Gases: Opportunities and Challenges S U) presents challenges for using landfill and digester gases as energy fuels because of the formation volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced

  18. Measurement of transient nonlinear refractive index in gases using xenon

    E-Print Network [OSTI]

    Milchberg, Howard

    Measurement of transient nonlinear refractive index in gases using xenon supercontinuum single measurement of ultrafast high field processes using modest energy lasers, with pump and probe pulses totaling) and instrument resolution. The ultrafast nonlinear Kerr effect in glass, and in Ar, N2, and N2O gases is measured

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    often used is that boiler efficiency can be increased by 1%gas by 1% increases boiler efficiency by 2.5%, although this2001a). Boilers and Heaters, Improving Energy Efficiency.

  20. Improving Energy Efficiency of GPU based General-Purpose Scientific Computing through

    E-Print Network [OSTI]

    Deng, Zhigang

    Improving Energy Efficiency of GPU based General-Purpose Scientific Computing through Automated challenge. In this paper, we propose a novel framework to improve the energy efficiency of GPU-based General configurations to improve the energy efficiency of any given GPGPU program. Through preliminary empirical

  1. Wireless Sensor Network for Improving the Energy Efficiency of Data Centers

    E-Print Network [OSTI]

    LBNL-6253E Wireless Sensor Network for Improving the Energy Efficiency of Data Centers Rod Mahdavi for Improving the Energy Efficiency of Data Centers Page i Disclaimer This document@lbl.gov www.lbl.gov #12;Wireless Sensor Network for Improving the Energy Efficiency

  2. Energy efficiency improvement and cost saving opportunities for petroleum refineries

    E-Print Network [OSTI]

    Worrell, Ernst; Galitsky, Christina

    2005-01-01T23:59:59.000Z

    Technologies, National Energy Technologies Laboratory, U.S.Department of Energy/Energy Information Administration, Washington, DC, June

  3. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    metering - Energy monitoring and management systems targetedconstruction - Energy monitoring and management systems forEnergy monitoring, assessment, and management systems -

  4. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    Energy Outlook, World Energy Demand and Economic Outlook.in a nearly constant cooling energy demand even in shoulderand reset Demand control ventilation Use energy efficient

  5. Northern Virginia Residents Improve Their Homes' Energy With...

    Energy Savers [EERE]

    Homes' Energy With A Funding Boost The Northern Virginia Home Energy Makeover Contest logo. The Local Energy Alliance Program (LEAP) awarded energy efficiency funding to three...

  6. Radiant energy receiver having improved coolant flow control means

    DOE Patents [OSTI]

    Hinterberger, H.

    1980-10-29T23:59:59.000Z

    An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

  7. Can We Improve Energy Efficiency of Secure Disk Systems without Modifying Security Mechanisms?

    E-Print Network [OSTI]

    Qin, Xiao

    Can We Improve Energy Efficiency of Secure Disk Systems without Modifying Security Mechanisms--Improving energy efficiency of security-aware storage systems is challenging, because security and energy security and energy efficiency is to profile encryption algorithms to decide if storage systems would

  8. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.

  9. Financing Home Energy and Renewable Energy Improvements with FHA PowerSaver Loans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01T23:59:59.000Z

    This fact sheet is a revision to the PowerSaver Loan Benefits fact sheet from April 2014. It describes how the U.S. Department of Housing and Urban Development (HUD) PowerSaver Loan Program offers borrowers low-cost FHA-insured loans to make energy-saving improvements to their homes.

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Inc. (1997). Guide to Energy Efficiency Opportunities in theE. Masanet (2005a). Energy Efficiency Improvement and CostA.R. Ganji (2005). Energy Efficiency Opportunities in Fresh

  11. The residential energy map : catalyzing energy efficiency through remote energy assessments and improved data access

    E-Print Network [OSTI]

    Howland, Alexis (Alexis Blair)

    2013-01-01T23:59:59.000Z

    Although energy efficiency has potential to be a significant energy resource in the United States, many energy efficiency projects continue to go unrealized. This is especially true in the residential sector, where efficiency ...

  12. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

  13. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    E-Print Network [OSTI]

    Marini, Kyle

    2011-01-01T23:59:59.000Z

    Web based enterprise energy and building automation systems.from an Analysis of Building Energy Information SystemG. , & Price, P. 2009b. Building Energy Information Systems:

  14. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01T23:59:59.000Z

    constructing a net zero-energy building to house the REECCountry Report on Building Energy Codes in India. Richland,2010. Mainstreaming Building Energy Efficiency Codes in

  15. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01T23:59:59.000Z

    Mainstreaming Building Energy Efficiency Codes in Developing2010. Transforming the Building Energy Efficiency Market inin crafting new building energy efficiency policies and

  16. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    communication on building energy efficiency policy in China.emitting country. Building energy efficiency has become antarget. One of the building energy efficiency policies the

  17. Using Dashboards to Improve Energy and Comfort in Federal Buildings

    E-Print Network [OSTI]

    Marini, Kyle

    2011-01-01T23:59:59.000Z

    can use the energy consumption data to better understand thein its software to view energy consumption data. These threeaccess to the energy consumption data of their individual

  18. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    Total Primary Energy Consumption World US China Californiaprimary energy consumption, compared to the world (39%), theFigure 3. Energy consumption by sector for the world, the

  19. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    consensus on energy efficient designs by climate and inestimates for an energy efficient alternative design can behighly energy efficient hospitals while the design community

  20. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    Develop and promote awareness of energy monitoring andand/or promote market awareness of energy monitoring andIncrease market awareness and utilization of existing energy

  1. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    Summary of energy & sustainability codes. • Analysis ofCoordinate energy and sustainability codes, standards andconsolidation of energy and sustainability codes, standards

  2. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    projects in Brazil, China, and India, Energy-efficiency caseLabor Energy Auxiliary material Capital Total Brazil China

  3. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01T23:59:59.000Z

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  4. Instantaneous and efficient surface wave excitation of a low pressure gas or gases

    DOE Patents [OSTI]

    Levy, Donald J. (Berkeley, CA); Berman, Samuel M. (San Francisco, CA)

    1988-01-01T23:59:59.000Z

    A system for instantaneously ionizing and continuously delivering energy in the form of surface waves to a low pressure gas or mixture of low pressure gases, comprising a source of rf energy, a discharge container, (such as a fluorescent lamp discharge tube), an rf shield, and a coupling device responsive to rf energy from the source to couple rf energy directly and efficiently to the gas or mixture of gases to ionize at least a portion of the gas or gases and to provide energy to the gas or gases in the form of surface waves. The majority of the rf power is transferred to the gas or gases near the inner surface of the discharge container to efficiently transfer rf energy as excitation energy for at least one of the gases. The most important use of the invention is to provide more efficient fluorescent and/or ultraviolet lamps.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01T23:59:59.000Z

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  6. A BEMS-Assisted Commissioning Tool to Improve the Energy Performance of HVAC Systems

    E-Print Network [OSTI]

    Choiniere, D.; Corsi, M.

    2003-01-01T23:59:59.000Z

    of process cost and manual effort on site, improved quality assurance process and the adoption of automated energy audit capabilities to improve overall building performance. This paper presents the concept for a new automated commissioning tool that verifies...

  7. Improving Energy Efficiency of Intermodal Trains Using Machine Vision and Operations Research Analysis

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Improving Energy Efficiency of Intermodal Trains Using Machine Vision and Operations Research th World Congress on Railway Research, Montreal (June 2006). #12;2 Improving Energy Efficiency is calculated using the Aerodynamic Subroutine of the Train Energy Model. Slot efficiency represents

  8. Control of pollutants in flue gases and fuel gases

    E-Print Network [OSTI]

    Laughlin, Robert B.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . 3-5 3.4 Emission

  9. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01T23:59:59.000Z

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  10. Environmental improvements resulting from the use of renewable energy sources and nonpolluting fuels and technologies with district heating and cooling

    SciTech Connect (OSTI)

    Kainlauri, E.O. [Iowa State Univ., Ames, IA (United States)

    1996-12-31T23:59:59.000Z

    The use of district heating and cooling (DHC) for a group of buildings or on a city-wide basis does by itself usually improve the local environmental conditions, regardless of the type of fuel used, as the DHC system replaces a larger number of individual units and is able to utilize anti-pollution and emission-cleaning devices at a central location. The DHC system may also be able to use several alternative choices for fuel, including renewable energy sources, depending on both economic and environmentally required conditions. The DHC systems are also safe and clean for the users, eliminating the need for fuel-burning equipment in their buildings. Solar energy is being utilized to a small degree in district heating systems, sometimes with the assistance of energy storage facilities, to reduce the amount of fuel needed to burn for the total system. The use of municipal and industrial waste as fuel helps reduce the amount of fossil fuel being burned and also reduces the areas of landfill needed to dispose wastes, but special care must be exercised to avoid releases of toxic gases into the atmosphere. This paper describes a few examples of the use of solar energy and energy storage in community-wide systems (Lyckebo in Sweden, Kerava in Finland), the use of natural gas in DHC (Lappenranta and Lahti in Finland), and applications of heat pump utilization in DHC (Uppsala wastewater and Stockholm preheat system in Sweden). Some projections are made of several alternative fuels derived from biomass, recycling, and other possible technologies in the future development of waste-handling and DHC systems. A brief discussion is included regarding the environmental concerns and legislative development in the US and elsewhere in the world.

  11. Renewable Energy Prediction for Improved Utilization and Efficiency in Datacenters and

    E-Print Network [OSTI]

    Simunic, Tajana

    Renewable Energy Prediction for Improved Utilization and Efficiency in Datacenters and Backbone requirements prevent easy integration with highly variable renewable energy sources. Short-term green energy of 11%. Their energy needs are supplied mainly by non-renewable, or brown energy sources, which

  12. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    A. T. de Almeida, 2002. Energy- efficient Motor Systems: Ain the current age, as energy-efficient technologies oftenCouncil for an Energy-Efficient Economy, Washington, D.C.

  13. The Role of Professional Risk in Implementing Industrial Energy Improvements

    E-Print Network [OSTI]

    Russell, C.

    2014-01-01T23:59:59.000Z

    2012-14 for the American Council for an Energy Efficient Economy. The intended reader is anyone who is interested in reconciling industrial energy management tasks with their business and career performance. Energy managers ensure that their facilities...

  14. Implementing and Sustaining Operator Led Energy Efficiency Improvements

    E-Print Network [OSTI]

    Hoyle, A.; Knight, N.; Rutkowski, M.

    2011-01-01T23:59:59.000Z

    , to significantly reduce energy consumption, the site must focus on a strategic approach which involves developing, implementing and sustaining a client specific program of energy optimization. We discuss ways of sustaining energy performance through operator led...

  15. Agent Technology to Improve Building Energy Efficiency and Occupant Comfort

    E-Print Network [OSTI]

    Zeiler, W.; van Houten, R.; Kamphuis, R.; Hommelberg, M.

    2006-01-01T23:59:59.000Z

    Global warming, caused largely by energy consumption, has become a major problem. During the last decades the introduction of energy saving technologies has strongly reduced energy consumption of buildings. Users' preferences and behavior have...

  16. What Improvements Have You Made for an Energy Efficiency Tax...

    Broader source: Energy.gov (indexed) [DOE]

    Addthis Related Articles Energy Tax Credits: Stay Warm and Save MORE Money Celebrate Energy Awareness Month and Get a Tax Credit What Will You be Buying for an Energy Tax...

  17. Joint Base Lewis-McChord Innovations in Facility Energy Improvements

    Broader source: Energy.gov [DOE]

    Presentation covers Innovations in Facility Energy Improvements and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  18. Energy Department Helps Cities, Counties Evaluate and Improve...

    Office of Environmental Management (EM)

    of energy usage to encourage businesses and communities to save energy and reduce pollution through efficiency upgrades while increasing the real estate valuation for high...

  19. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01T23:59:59.000Z

    Urban Building Energy Policy in India Christopher WilliamsUrban Building Energy Policy in India Christopher Williamsefficiency policies and programs in India are in an active

  20. Enabling States and Localities to Improve Energy Assurance and...

    Office of Environmental Management (EM)

    communities depend on a secure, reliable energy infrastructure that is also resilient. At the same time, our Nation's energy infrastructure - a complex network of interconnected...

  1. Potential Global Benefits of Improved Ceiling Fan Energy Efficiency

    E-Print Network [OSTI]

    Sathaye, Nakul

    2014-01-01T23:59:59.000Z

    Requirements for air-conditioning appliances and comfortLetschert. 2008. Future Air Conditioning Energy ConsumptionV. , 2007. Future Air Conditioning Energy Consumption in

  2. Case Study: Opportunities to Improve Energy Efficiency in Three...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case Study: Innovative Energy Efficiency Approaches in NOAA's...

  3. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    consumption. Improving boiler efficiency and capturingrule of thumb is that boiler efficiency can be increased byrecovery. Generally, boiler efficiency can be increased by

  4. Energy Department Announces Funding to Develop Improved Next...

    Energy Savers [EERE]

    Rating (SEER), the research is aimed at developing technologies or systems that improve partial load efficiency, as HVAC systems operate at partial load most of the time. The...

  5. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    Cold Storage Facilities. ? Proceedings of the 2005 ACEEE Summer Study on Energy efficiency in Industry,

  6. Energy efficiency improvements in Chinese compressed air systems

    E-Print Network [OSTI]

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

    2008-01-01T23:59:59.000Z

    electricity use in an industrial facility or enterprise. With the increasing energy shortage and global warming

  7. Fact Sheet: Improving Energy Efficiency for Server Rooms and Closets

    E-Print Network [OSTI]

    Environmental Energy Technologies Division September 2012 #12;DISCLAIMER This document was prepared program and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies for a significant share of the building's energy use (in some cases, over half!). Servers, data storage arrays

  8. Potential Global Benefits of Improved Ceiling Fan Energy Efficiency

    E-Print Network [OSTI]

    Sathaye, Nakul

    2014-01-01T23:59:59.000Z

    energy savings forecasts Annual Electricity Savings (TWh) Cumulative Electricity Savings (TWh) Year Australia Brazil Canada China

  9. Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants

    E-Print Network [OSTI]

    Clark, F.

    2008-01-01T23:59:59.000Z

    Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants Fred Clark Energy/GHG Advisor BP Aromatics & Acetyls Naperville, Illinois BP is the world?s leading producer of purified terephthalic acid...

  10. Significant Improvement in Energy Efficiency in Manufacturing at Rohm and Haas’ Kankakee, Illinois, Plant 

    E-Print Network [OSTI]

    Brinkley, T.

    2007-01-01T23:59:59.000Z

    Significant improvement in energy efficiency was achieved at Rohm and Haas’ Kankakee, Illinois facility last year through the combined efforts of all plant personnel. In total, a 24% reduction in energy requirements per pound of product produced...

  11. Significant Improvement in Energy Efficiency in Manufacturing at Rohm and Haas’ Kankakee, Illinois, Plant

    E-Print Network [OSTI]

    Brinkley, T.

    2007-01-01T23:59:59.000Z

    Significant improvement in energy efficiency was achieved at Rohm and Haas’ Kankakee, Illinois facility last year through the combined efforts of all plant personnel. In total, a 24% reduction in energy requirements per pound of product produced...

  12. Economic and Policy Factors Affecting Energy Efficiency Improvements in the U. S. Paper Industry

    E-Print Network [OSTI]

    Freund, S. H.

    1984-01-01T23:59:59.000Z

    The U.S. pulp, paper and paperboard industry has made significant improvements over the past eleven years in the energy efficiency of its operations. The industry is firmly committed to: increased utilization of important renewable domestic energy...

  13. Nanofilm Coatings Improve Battery Performance - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck PlatooningJefferson7593Energy Storage Energy Storage

  14. Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)

    SciTech Connect (OSTI)

    Hendron, R.; Leach, M.; Bonnema, E.; Shekhar, D.; Pless, S.

    2013-09-01T23:59:59.000Z

    The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations are applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.

  15. Improving the Contribution of Economic Models in Evaluating Industrial Energy Efficiency Improvements

    E-Print Network [OSTI]

    Laitner, J. A.

    2007-01-01T23:59:59.000Z

    for energy policy assessments compared to those which more properly reflect a trade-off between new capital investment and end-use energy savings – as both capital and energy are used to satisfy a specific industrial service demand. The paper builds on a...

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01T23:59:59.000Z

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  17. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01T23:59:59.000Z

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  18. Method of producing pyrolysis gases from carbon-containing materials

    DOE Patents [OSTI]

    Mudge, Lyle K. (Richland, WA); Brown, Michael D. (West Richland, WA); Wilcox, Wayne A. (Kennewick, WA); Baker, Eddie G. (Richland, WA)

    1989-01-01T23:59:59.000Z

    A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

  19. Measuring Energy Efficiency Improvements in Industrial Battery Chargers 

    E-Print Network [OSTI]

    Matley, R.

    2009-01-01T23:59:59.000Z

    Industrial battery chargers have provided the energy requirements for motive power in industrial facilities for decades. Their reliable and durable performance, combined with their low energy consumption relative to other industrial processes, has...

  20. Improved Building Energy Consumption with the Help of Modern ICT

    E-Print Network [OSTI]

    Pietilainen, J.

    2003-01-01T23:59:59.000Z

    Kyoto process and the global combat against climate change will require more intensive energy saving efforts especially in all developed countries. Key for the success in building sector is the energy efficiency of the existing building stock...

  1. Energy Department Employees Strive to Cut Costs, Improve Efficiency

    Broader source: Energy.gov [DOE]

    Here at the Energy Department, we are working every day to help develop a clean energy economy, create good jobs, and make sure America is competitive on the global stage.

  2. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01T23:59:59.000Z

    Energy Efficiency and Sustainable Development: Potential for US-India Collaboration in Buildings, Industry and the Smart

  3. improving energy efficiency in the built environment is now seen as a growing

    E-Print Network [OSTI]

    Kotchen, Matthew J.

    improving energy efficiency in the built environment is now seen as a growing policy priority the 1973 oil embargo. Codes by state but they generally establish a minimum energy efficiency stan- dard.S. Department of Energy to establish building code energy efficiency targets by January 1, 2014. it also

  4. Improving Charging Efficiency with Workload Scheduling in Energy Harvesting Embedded Systems

    E-Print Network [OSTI]

    Qiu, Qinru

    University Syracuse, New York, 13244, USA {yzhan158, yage, qiqiu}@syr.edu ABSTRACT In energy harvestingImproving Charging Efficiency with Workload Scheduling in Energy Harvesting Embedded Systems Yukan in the electrical energy storage (EES) bank. How much energy can be stored is affected by many factors including

  5. Improved quantum Monte Carlo calculation of the ground-state energy of the hydrogen molecule

    E-Print Network [OSTI]

    Anderson, James B.

    variational energies. The accuracy of the new Monte Carlo energy is approximately equal to that of recentImproved quantum Monte Carlo calculation of the ground-state energy of the hydrogen molecule Bin Carlo calculation of the nonrelativistic ground-state energy of the hydrogen molecule, without the use

  6. Uncertainty Estimation Improves Energy Measurement and Verification Procedures

    SciTech Connect (OSTI)

    Walter, Travis; Price, Phillip N.; Sohn, Michael D.

    2014-05-14T23:59:59.000Z

    Implementing energy conservation measures in buildings can reduce energy costs and environmental impacts, but such measures cost money to implement so intelligent investment strategies require the ability to quantify the energy savings by comparing actual energy used to how much energy would have been used in absence of the conservation measures (known as the baseline energy use). Methods exist for predicting baseline energy use, but a limitation of most statistical methods reported in the literature is inadequate quantification of the uncertainty in baseline energy use predictions. However, estimation of uncertainty is essential for weighing the risks of investing in retrofits. Most commercial buildings have, or soon will have, electricity meters capable of providing data at short time intervals. These data provide new opportunities to quantify uncertainty in baseline predictions, and to do so after shorter measurement durations than are traditionally used. In this paper, we show that uncertainty estimation provides greater measurement and verification (M&V) information and helps to overcome some of the difficulties with deciding how much data is needed to develop baseline models and to confirm energy savings. We also show that cross-validation is an effective method for computing uncertainty. In so doing, we extend a simple regression-based method of predicting energy use using short-interval meter data. We demonstrate the methods by predicting energy use in 17 real commercial buildings. We discuss the benefits of uncertainty estimates which can provide actionable decision making information for investing in energy conservation measures.

  7. Efficiency improvement of a ground coupled heat pump system from energy management

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Efficiency improvement of a ground coupled heat pump system from energy management N. Pardo a,*, Á coupled heat pump Energy efficiency Numerical simulation a b s t r a c t The installed capacity of an air to improve the efficiency of a ground coupled heat pump air conditioning system by adapting its produced

  8. High Electric Demand Days: Clean Energy Strategies for Improving Air Quality

    Broader source: Energy.gov [DOE]

    This presentation by Art Diem of the State and Local Capacity Building Branch in the U.S. Environmental Protection Agency was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  9. New Videos to Help Improve Energy Literacy Throughout the Nation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Today, the Office of Energy Efficiency and Renewable Energy (EERE) released the first four videos in a series highlighting each of the seven essential principles presented in the DOE Energy Literacy Framework. EERE also released the Spanish-language version of the Get Current coloring book, which is part of an ongoing effort to expand educational resources for the growing Spanish-speaking population in the United States.

  10. Improving Energy and Process Efficiencies: A Case Study

    E-Print Network [OSTI]

    Spriggs, H. D.; Smith, W. R.

    of energy forms (power vs. fuel), and ? Reduce operating costs. It allows the parties to become business partners and to address directly the requirements 145 ESL-IE-96-04-20 Proceedings from the Eighteenth Industrial Energy Technology Conference..., Houston, TX, April 17-18, 1996 for competitiveness: creating excellent process technologies and controlling costs. ENERGY AND PROCESS TECHNOLOGY PARTNERSHIPS These business requirements combined with new methods for integrated process design provide...

  11. Nanocrystalline Separation Membrane for Improved Hydrogen Flux - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck PlatooningJefferson7593 LECTIJHESInnovationAmesInnovation

  12. Costs and benefits of energy efficiency improvements in ceiling fans

    SciTech Connect (OSTI)

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division] [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15T23:59:59.000Z

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  13. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    comfort model enhancementvalidation, climate system efficiency parameters and system trade off, and powertrain mode operation changes to further vehicle energy saving while...

  14. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop distributed HVAC components to supplement the central HVAC system to reduce the energy required by current compressed gas air conditioners by at least one-third....

  15. Improving Energy Efficiency and Creating Jobs Through Weatherization...

    Energy Savers [EERE]

    tons of carbon emissions, supporting the President's goals of doubling energy productivity and reducing carbon pollution. To put that into perspective for you, 85 million...

  16. The 2001 Power Plant Improvement Initiative | Department of Energy

    Office of Environmental Management (EM)

    transferred 95 million from previously appropriated funding for the 1986-93 Clean Coal Technology Program. On February 6, 2001, the Energy Department issued a solicitation...

  17. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    Energy Efficiency and CO2 Emissions. Paris: IEA. KEMA, withrelated carbon dioxide (CO2) emissions. Many studies andconcurrently reducing CO2 emissions. With the support of

  18. Department of Energy Offers $17 Million Conditional Commitment to Improve

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclearof a Second EarlyNevadaAcross

  19. Department of Energy Report and Agency Improvement Plan

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclearof a SecondSupportAdvanced

  20. Better Buildings Challenge is Expanding, Improving Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2, 2015Energyon23264Compare energy use by theTrack

  1. Guidance Document CompressedGases

    E-Print Network [OSTI]

    electricity. Oxygen by itself does not burn, but it will support or accelerate combustion of flammable the regulator is completely closed. 3. When possible use flammable and reactive gases in a fume hood. Certain

  2. Improve Indoor Air Quality, Energy Consumption and Building Performance: Leveraging Technology to Improve All Three

    E-Print Network [OSTI]

    Wiser, D.

    2011-01-01T23:59:59.000Z

    in the most efficient way possible. However, maintaining optimum indoor air quality often seems to be in conflict with minimizing operating and energy costs. Conventional wisdom says the best IAQ strategy involves increasing ventilation rates. But outdoor air...

  3. U.S. Department of Energy and International Association of Lighting Designers Partner to Improve Energy Efficiency in Lighting Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and the International Association of Lighting Designers (IALD) signed a Memorandum of Understanding (MOU) in November 2008 to work cooperatively toward improving the efficient use of energy by lighting equipment and systems. The MOU emphasizes the importance of minimizing the impact of energy use on the environment in support of DOE SSL programs on lighting quality.

  4. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01T23:59:59.000Z

    development of training for local level administrators, especially inspectors, and the development of curriculum to train construction professionals in building energyEnergy Conservation in Buildings Code (ECBC), remains voluntary throughout most of India while local-level agencies work towards implementation capacity development.

  5. Energy codes and the building design process: Opportunities for improvement

    SciTech Connect (OSTI)

    Sandahl, L.J.; Shankle, D.L.; Rigler, E.J.

    1994-05-01T23:59:59.000Z

    The Energy Policy Act (EPAct), passed by Congress in 1992, requires states to adopt building energy codes for new commercial buildings that meet or exceed the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) and Illuminating Engineers Society of North America (IES) Standard 90.1-1989 by October 24, 1994. In response to EPAct many states will be adopting a state-wide energy code for the first time. Understanding the role of stakeholders in the building design process is key to the successful implementation of these codes. In 1993, the Pacific Northwest Laboratory (PNL) conducted a survey of architects and designers to determine how much they know about energy codes, to what extent energy-efficiency concerns influence the design process, and how they convey information about energy-efficient designs and products to their clients. Findings of the PNL survey, together with related information from a survey by the American Institute of Architects (AIA) and other reports, are presented in this report. This information may be helpful for state and utility energy program managers and others who will be involved in promoting the adoption and implementation of state energy codes that meet the requirements of EPAct.

  6. Improvements and Applications of the Methodology for Potential Energy Savings Estimation from Retro-commissioning/Retrofit Measures 

    E-Print Network [OSTI]

    Liu, Jingjing

    2010-03-24T23:59:59.000Z

    This thesis has improved Baltazar's methodology for potential energy savings estimation from retro-commissioning/retrofits measures. Important improvements and discussions are made on optimization parameters, limits on ...

  7. Proposed Training Plan to Improve Building Energy Efficiency in Vietnam

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd

    2013-01-01T23:59:59.000Z

    Vietnam has experienced fast growth in energy consumption in the past decade, with annual growth rate of over 12 percent. This is accompanied by the fast increase in commercial energy use, driven by rapid industrialization, expansion of motorized transport, and increasing energy use in residential and commercial buildings. Meanwhile, Vietnam is experiencing rapid urbanization at a rate of 3.4 percent per year; and the majority of the growth centered in and near major cities such as Hanoi and Ho Chi Minh City. This has resulted in a construction boom in Vietnam.

  8. Coronary Stents Improved by Novel Alloy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControlsEnergy Copy of FINAL

  9. Case Study: Opportunities to Improve Energy Efficiency in Three Federal

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom:EnergyJoshua DeLungEnvironmentalData

  10. EECBG Success Story: Lighting Retrofit Improving Visibility, Saving Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannah River SiteDepartment of Energy MembersDepartment|

  11. Energy Savings Through Improved Mechanical Systems and Building Envelope

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy ActEnergyContracts EnergyHVAC

  12. Energy Performance Certification of Buildings: A Policy Tool to Improve

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to:EnergEnergy

  13. DOE Adopts Rules to Improve Energy Efficiency Enforcement | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartment of EnergyandJointEnergy

  14. Energy Upgrades to Alabama Trauma Center Help Improve Patient Care |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | DocumentsElementsHolidayDepartment

  15. Have You Seen Energy Efficiency Improvements in Your Neighborhood? |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing the OfficeHarrisThis

  16. Improving Department of Energy Capabilities for Mitigating Beyond Design

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:DepartmentDepartment of Energy ImplementingBasis Events |

  17. Improving Energy Efficiency and Creating Jobs Through Weatherization |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:DepartmentDepartment of Energy ImplementingBasis Events |Department

  18. Improving Fuel Economy When the Weather's Cold | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:DepartmentDepartment of Energy ImplementingBasis EventsMake sure

  19. 2012 Quality Assurance Improvement Project Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |2 National Energy AssuranceMo-alloys for

  20. The Challenge: Improving the Energy Efficiency of Buildings Across the

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001 Power PlantAPRIL

  1. Negative Electrodes Improve Safety in Lithium Cells and Batteries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at 2:00Department ofofBonneville

  2. Sandia Energy - Experiment for Improved Modeling of Trailing-Edge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy CouncilEnergyShedding Noise

  3. Better Buildings Challenge is Expanding, Improving Energy Efficiency

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRAM-04-07 Audit Report:Field Experiment | DepartmentBestBBSC

  4. Monitoring, Verification and Reporting: Improving Compliance Within Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen PolymersModular EnergyGTZ

  5. Miamisburg Mound Community Improvement Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| Open Energy InformationGardens,Springs,Miamisburg

  6. Enabling States and Localities to Improve Energy Assurance and Resiliency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroupJuneThis76Planning (September 2010) |

  7. Energy Department Offers Funding to Improve the Electric Grid | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014Compliance RatesGeothermal Development withof

  8. NMS 74-1 Environmental Improvement General Provisions | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEF AdvisorsState

  9. Sandia Energy - Improved Method to Measure Glare and Reflected Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPowerHighlights -Igal Brener Home

  10. Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverview | Department of Energy ThisofDepartmentDepartment

  11. Integrated Surface Engineering for Improving Energy Efficiency | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry Research U.S. Department ofof Energy

  12. Air-Quality Improvement Tax Incentives | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2Partners in theLoraDepartment of EnergySavings

  13. Could TEG Improve Your Car's Efficiency? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    wasted. Even the most efficient drivers are at the mercy of their vehicles' internal combustion engines, which lose an average of 60 percent of their energy as heat from the...

  14. Georgia Interfaith Power and Light- Energy Improvement Grants (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia Interfaith Power and Light (GIPL) offers grants of up to $10,000 to congregations or faith-based communities, including faith-based schools. Grant funds may be used for energy conservation...

  15. Georgia Interfaith Power and Light- Energy Improvement Grants

    Broader source: Energy.gov [DOE]

    Applications are due by either May 15 or November 15 of each year, and materials are available on the program web site. Applicants must first have an energy audit through GIPL's Power Wise program.

  16. Steam Partnerships: Case Study of Improved Energy Efficiency

    E-Print Network [OSTI]

    Calogero, M. V.; Hess, R. E.; Leigh, N.

    where the highest percentage of utility costs are variable. A unique energy services alliance was recently structured and implemented with one of the largest health care linen service facilities in southern New York. The existing power plant was acquired...

  17. Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility

    E-Print Network [OSTI]

    Zhang, Endong, M. Eng. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

  18. Energy Management of Chiller Plant for Improved Efficiency and Operation

    E-Print Network [OSTI]

    Alexander, D. P.; Rice, L. S.

    while meeting the operational requirements of plant chillers. The chiller energy management is an integrated part of total energy management system including the boilers. A uniform display is used for boilers, chillers, compressors, etc. Specific... displayed and organized so that the plant is easily manageable. With the outdated equipment, a major control system failure could generate discomfort. Furthermore, more manual observation and adjustments were required to provide a trouble-free operation...

  19. LEDSGP/Transportation Toolkit/Strategies/Improve | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    7.1 summarizes the boiler efficiency measures, while Tablerule of thumb is that boiler efficiency can be increased by2001). Boilers and Heaters, Improving Energy Efficiency.

  1. Classroom HVAC: Improving ventilation and saving energy -- field study plan

    SciTech Connect (OSTI)

    Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

    2004-10-14T23:59:59.000Z

    The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

  2. Designing Building Systems to Save Energy and Improve Indoor Environments: A Practical Demonstration

    E-Print Network [OSTI]

    Commission through the Public Interest Energy Research (PIER) program as Element 6 consumption from switch to gas heating; 50,931 MBtu source energy reduction; and a combined school district and the building sector continue to seek improvement in energy efficiency. Designs achieving good IEQ can

  3. Improving the Energy Balance of Field-based Routing in Wireless Sensor Networks

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Improving the Energy Balance of Field-based Routing in Wireless Sensor Networks Goce Trajcevski of the network merge into a single path. These path merging effects decrease significantly the energy balance deployments. When multiple sources transmit infor- mation simultaneously, together with energy balancing

  4. Improved estimates of the total correlation energy in the ground state of the water molecule

    E-Print Network [OSTI]

    Anderson, James B.

    Improved estimates of the total correlation energy in the ground state of the water molecule Arne National Laboratory, Richland, Washington 99352 Received 1 October 1996; accepted 5 February 1997 Two new calculations of the electronic energy of the ground state of the water molecule yield energies lower than those

  5. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAESMissionMetal-OrganicCarbon Bearing

  6. BigHorn Home Improvement Center Energy Performance: Preprint

    SciTech Connect (OSTI)

    Deru, M.; Pless, S.; Torcellini, P.

    2006-04-01T23:59:59.000Z

    This is one of the nation's first commercial building projects to integrate extensive high-performance design into a retail space. The extensive use of natural light, combined with energy-efficient electrical lighting design, provides good illumination and excellent energy savings. The reduced lighting loads, management of solar gains, and cool climate allow natural ventilation to meet the cooling loads. A hydronic radiant floor system, gas-fired radiant heaters, and a transpired solar collector deliver heat. An 8.9-kW roof-integrated photovoltaic (PV) system offsets a portion of the electricity.

  7. Enabling States and Localities to Improve Energy Assurance and Resiliency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of Energy 3 BTO PeerDepartment of Energy

  8. Energy Department Announces Five Research Projects to Improve Mining

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of EnergyDepartment of EnergyEfficiency |

  9. On-Bill Financing for Energy Efficiency Improvements Toolkit | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide,(ONG-C2M2) |Department ofof

  10. Wireless Sensors Improve Data Center Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008 TBD-0075Department ofPatricia

  11. Improving Capital Assets Project Documentation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P.Department of EnergyLessons LearnedU.S.Memorandum from

  12. Improving Risk Assessment to Support State Energy Infrastructure Decision

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P.Department ofMaking | Department of Energy Alice Lippert

  13. EECBG Success Story: Energy Savings, Improved Comfort for West Virginia

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannah River Site forCommunity'

  14. Tools_for_Improving_Industry_Communications.pdf | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool of tomorrow today Tool

  15. How to Improve Productivity with Energy-Efficient Motors 

    E-Print Network [OSTI]

    Curley, J. P.

    1983-01-01T23:59:59.000Z

    by most Industries. The electrIc motor. Fig. 2 Electric motors have always been relatIvely efficIent, that Is they've really been qUite good at turning electrical energy Into mechanical ener gy. The average motor used by Industry Is a 25 HP unit... with a standard efficIency of about 89% which means that all but 11% of the kilowatts consumed by a motor perform useful work. It's precisely that 11%, the energy that' 5 lost I n the form of heat, that we've reduced. Reduced on the average by about...

  16. DOE Outlines Research Needed to Improve Solar Energy Technologies |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOEDepartment of Energy Outlines

  17. Interstate Grid Electrification Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15AmongPartnership for aDevelopmentDepartment2

  18. Interstate Grid Electrification Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15AmongPartnership for

  19. Grant Improves Comfort for Nevada City's Employees | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLogging Systems (December2009 Funding

  20. How Particle Physics Improves Your Life | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral Testimony of Secretary SamuelAs youBriefingParticle

  1. Secretary Chu Announces $256 Million Investment to Improve the Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository |Complex" at Los AlamosNeed forStorage Projects

  2. Strategy for Improvements in Cyber Security | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagementFacility inStatementDepartmentPrograms

  3. 2014 Quality Assurance Improvement Project Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)Department ofNow in its third year, theThis

  4. ANL Software Improves Wind Power Forecasting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA TrainingANDREW W. TUNNELL t: (205)This is

  5. Vehicle Component Heat Dissipation Improvements - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 - USAF Wind Power ProgramDeslippe,N A County

  6. Molecule Nanoweaver Improves Drug Delivery and Treatment Efficacy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'. WilliamEnergyMolecularMolecular-FrameInnovation

  7. Substrate CdTe Efficiency Improvements - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe to

  8. LEDSGP/Transportation Toolkit/Strategies/Improve | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii9969995°,I JumpJump

  9. India-Improving Walkability in Indian Cities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 Varnish cache serverDialogue, Advisory

  10. Improve Your Boiler's Combustion Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRSJuly 2012 |EnergyMotor OperationYour

  11. OpenEI:Projects/Datasets Improvements | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia Green FuelsperCivicVersionNeutral point of

  12. Baltimore Boy's Asthma Improved Through Retrofit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2, 2015 TheB2 March 5, 2014) TheBagdad Plant1

  13. Energy Savings, Improved Comfort for West Virginia County Government |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | Department of Energy HVACEnergyDepartment of

  14. Memorandum of Understanding on Improving the Energy Efficiency of Products

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstitute Regarding ProposedOnU.S DepartmentU.S.theand

  15. Improved Lithium-Loaded Liquid Scintillators for Neutron Detection - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpactControl - EnergyDetection System

  16. Sandia Energy - Study Could Help Improve Nuclear Waste Repositories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectson the CoverSandia LabsIntegrity

  17. Florida Solar Energy Center (Building America Partnership for Improved

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,andJump to:Incubation Center

  18. Secretary Chu Announces $256 Million Investment to Improve the Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy SmallImplementing J-F-1 SECTIONSec. 999SecretaryEfficiency of the

  19. Operating Experience Level 1, Improving Department of Energy Capabilities

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCO OCHCO OverviewFreedom ofDepartment offor Mitigating Beyond

  20. Improving energy efficiency: Strategies for supporting sustained market evolution in developing and transitioning countries

    SciTech Connect (OSTI)

    Meyers, S.

    1998-02-01T23:59:59.000Z

    This report presents a framework for considering market-oriented strategies for improving energy efficiency that recognize the conditions of developing and transitioning countries, and the need to strengthen the effectiveness of market forces in delivering greater energy efficiency. It discusses policies that build markets in general, such as economic and energy pricing reforms that encourage competition and increase incentives for market actors to improve the efficiency of their energy use, and measures that reduce the barriers to energy efficiency in specific markets such that improvement evolves in a dynamic, lasting manner. The report emphasizes how different policies and measures support one another and can create a synergy in which the whole is greater than the sum of the parts. In addressing this topic, it draws on the experience with market transformation energy efficiency programs in the US and other industrialized countries.

  1. Can combining economizers with improved filtration save energy and

    E-Print Network [OSTI]

    electricity demand in this rapidly growing economic sector. Widespread economizer implementation, however, has electricity demand. For example, in 2005, US data center operations required about 45 billion k center energy demand while providing a level of protection from particles of outdoor origin similar

  2. Analyzing capital allocation for energy efficiency improvements by commercial real estate investment managers

    E-Print Network [OSTI]

    Peterson, Kristian A

    2009-01-01T23:59:59.000Z

    Numerous studies have shown that retrofitting an office building with energy efficiency improvements can significantly reduce operating costs, yet many existing office buildings have not been retrofitted. The objective of ...

  3. Opportunities for Energy Efficiency Improvements in Oil Production in Kansas: A Case Study

    E-Print Network [OSTI]

    Egbert, R. I.; King, J. E.

    In 1993 investigators from the Center for Energy Studies at Wichita State University (WSU) and Meridian Corporation in Overland Park, Kansas began a study to investigate whether there were any technical modifications and/or improvements that could...

  4. Improvement of Ion-Beam Energy Resolution in a Solenoid-based Radioactive Nuclear Beam Facility

    E-Print Network [OSTI]

    Becchetti, Fred

    Improvement of Ion-Beam Energy Resolution in a Solenoid-based Radioactive Nuclear Beam Facility of Philosophy (Nuclear Engineering and Radiological Sciences) in The University of Michigan 2010 Doctoral

  5. New 3E Plus Computer Program- A Tool for Improving Industrial Energy Efficiency

    E-Print Network [OSTI]

    Brayman, N. J.

    The task of determining how much insulation is necessary in the US industrial and manufacturing sector to save money, use less energy, reduce plant emissions and improve process efficiency has been greatly simplified thanks to a software program...

  6. Approach for the Improvement of Energy Performance of a Stock of Buildings

    E-Print Network [OSTI]

    Vaezi-Nejad, H.; Bouillon, J.; Crozier, L.; Guyot, G.

    2003-01-01T23:59:59.000Z

    This paper summarizes the work performed by CSTB, ADEME and the Ministry of equipment in France to improve the energy performance of the ministry stock of buildings: 7 millions square meters, 10 000 buildings, wide range of different buildings...

  7. Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA, presented by Kristen Taddonio of the Commercial Buildings program in...

  8. Improvements to building energy usage modeling during early design stages and retrofits

    E-Print Network [OSTI]

    Mandelbaum, Andrew (Andrew Joseph)

    2014-01-01T23:59:59.000Z

    A variety of improvements to the MIT Design Advisor, a whole-building energy usage modeling tool intended for use during early design stages, are investigated. These include changes to the thermal mass temperature distribution ...

  9. Building Operator Certification: Improving Commercial Building Energy Efficiency Through Operator Training and Certification

    E-Print Network [OSTI]

    Putnam, C.; Mulak, A.

    2001-01-01T23:59:59.000Z

    Building Operator Certification (BOC) is a competency-based certification for building operators designed to improve the energy efficiency of commercial buildings. Operators earn certification by attending training sessions and completing project...

  10. City and County of Honolulu- Real Property Tax Exemption for Alternative Energy Improvements

    Broader source: Energy.gov [DOE]

    In September 2009, the Honolulu City Council unanimously passed Bill 58 to create a real property tax exemption for alternative energy improvements. This bill became effective October 1, 2009. The...

  11. Energy Savings and Comfort Improvements through Plant- and Operating mode Optimisation Demonstrated by Means of Project Examples

    E-Print Network [OSTI]

    Muller, C.

    More than 40 percent of Europe's primary energy is required for conditioning of buildings. By improving energy efficiency, approximately 30 percent of this energy could be saved. Energy counts for 35 percent of the operating cost and put...

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    turbulence of the hot combustion gases and the convective°F or 1100-1500°C). Combustion gas is then cut off and colda firetube boiler, hot combustion gases pass through long,

  13. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31T23:59:59.000Z

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this report is based on publicly-available reports, journal articles, and case studies from applications of technologies around the world.

  14. Industrial Energy Conservation by New Process Design and Efficiency Improvements

    E-Print Network [OSTI]

    Kusik, C. L.; Stickles, R. P.; Machacek, R. F.

    1983-01-01T23:59:59.000Z

    from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 Po'.,.lla4 E"*VY Potential Saving, t Totti To,.1 En., " r_-. C0!'1V?11Ional T-ehnotogy PrC)doK:1 __l~~=~1 l~~r;:~ 11:rr:U?Yr) AlumInum Imptovltd Hli...

  15. Overcoming Fuel Gas Containment Limitations to Energy Improvement

    E-Print Network [OSTI]

    Davis, J.

    2004-01-01T23:59:59.000Z

    turbine/heat recovery steam generator (HRSG)/STG combo • Expanded recovery capacity o New Gas Recovery Plant o New Pressure Swing Absorption (PSA) unit o New hydrogen compression equipment o New Ammonia Absorption Refrigeration (AARU) plant... (ULSD). And, just as an aside, the fuel, steam, and power balance being discussed in this section becomes an extremely valuable tool for designing new projects such as the ULSD unit. For example, a well- understood plant energy balance would help...

  16. Cellobiohydrolase I gene and improved variants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruaryMetal nanoparticles

  17. Energy Department Announces Funding to Develop Improved Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog EnergyFuels |Winners | Departmentand

  18. Energy Department Helps Cities, Counties Evaluate and Improve Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog2013 | DepartmentProjectsEnergy

  19. Lighting Retrofit Improving Visibility, Saving Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and Emissions Estimates |

  20. New Technologies Improve WIPP Fleet Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |

  1. Comments on: Wind Energy Manufacturing Lab Helps Engineers Improve Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE

  2. Computational Method for Improved Forewarning of Critical Events - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovationComputational Biology

  3. Clean Diesel Engine Component Improvement Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" |

  4. Durable Low Cost Improved Fuel Cell Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner About Us

  5. NEMS Freight Transportation Module Improvement Study - Energy Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - Events - Fermilab

  6. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, and Storage of Gases Print ALS users

  7. DOE Announces Competitive Improvement Project Awards | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGYAgreesofAmericas

  8. Energy Department Announces Funding to Develop Improved Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of EnergyDepartment ofHVAC Systems | Department of

  9. Energy Department Announces Funding to Improve Grid Resiliency and Climate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of EnergyDepartment ofHVAC Systems | Department

  10. Energy Department Announces Funding to Improve the Resiliency of the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of EnergyDepartment ofHVAC Systems |

  11. Continuous Energy Improvement in Motor Driven Systems - A Guidebook for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoalComplex(GC-72) | DepartmentEnergy the GeneralAbout

  12. Environmental Quality Improvement Act of 1970 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession0-02NationwideServices »EEnvironmental

  13. Environmental Quality Improvement Act of 1970 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof1-SCORECARD-09-21-11 Page 1 of 1Independent TechnicalQuality

  14. DOE Issues Notice of Proposed Rulemaking to Improve Energy Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million)Guidance

  15. DOE Launches New Website Aimed at Improving Industrial Energy Savings |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE Fits PrincetonHealthcareDepartment of

  16. Improving Project Management at the Department of Energy | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on Armed ServicesDepartment of linkofImportantProjects

  17. Mapping a Course to Improved Community Resilience | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your Next Road Trip Fuel EfficientManhattanMapping a

  18. Northern Virginia Residents Improve Their Homes' Energy With A Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletterEnergy Heating Oil Reserve »Boost |

  19. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department of Energy Erosion Control

  20. Chimeric enzymes with improved cellulase activities - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of theChemistryChicagoFuel Cell

  1. PNNL Study Helping Improve Wind Predictions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram49,PHEV1PIDepartment ofPNNL

  2. DOE Outlines Research Needed to Improve Solar Energy Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009) | DepartmentDepartmentDOE,

  3. DOE Requests Information to Improve Energy Efficiency Enforcement Process |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and PolicyCybersecurity Threats |ANDDepartment of

  4. 2010 Quality Assurance Improvement Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09Combustion2/2010New Fuel Cell0

  5. 2015 Quality Assurance Improvement Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015 Peer Review | Plenaries 20155

  6. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" | DepartmentCladding AttachmentDepartmentB2

  7. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" | DepartmentCladding AttachmentDepartmentB21

  8. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" | DepartmentCladding AttachmentDepartmentB213

  9. Improving Efficiency of Tube Drawing Bench | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRSJuly 2012| Department

  10. Improving Project Management at the Department of Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRSJuly 2012|| Department ofSecond

  11. Industrial Energy Efficiency Projects Improve Competitiveness and Protect

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJuneJobs | Department of

  12. Today's Forecast: Improved Wind Predictions | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances Tips: ShoppingAdministrationToday's

  13. Memorandum of Understanding on Improving the Energy Efficiency of Products

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MWMemo of-ofStates ofNationaland

  14. Energy Department Announces Five Research Projects to Improve Mining

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | DepartmentDepartment ofDepartment ofFuel Resiliency

  15. Energy Department Announces Funding to Improve Grid Resiliency and Climate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | DepartmentDepartment ofDepartment ofFuelResearch

  16. Highly Directional Antenna for Improved Communications - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundles to LivingPortal Highly

  17. Top Low- or No-Cost Improvements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe|of Energy Top 9 Things You Didn'tTopTop

  18. Evaluation of Abuse Tolerance Improvements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOEGoalsEvaluation Report:from the

  19. Improved Ex-Situ Mercury Remediation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpact ofVisiting20143101Efficiency

  20. Improved Grooving Tool for Tubing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpact

  1. Improved Martensitic Steel for High Temperature Applications - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpactControl -

  2. Improved Method to Measure Glare and Reflected Solar Irradiance - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpactControl -Innovation Portal

  3. Improved Reliability of Ballistic Weapons and Combustion Engines - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpactControl -InnovationInnovation

  4. Improved Semiconductor Electrode for Photo-electrochemistry - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpactControlInnovation Portal

  5. Improved, Defect-Free Electrode Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpactControlInnovationVehicles and

  6. Improvement of magnet performance for clean energy applications | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT

  7. The Challenge: Improving the Energy Efficiency of Buildings Across the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest(EAP)SummerTheGenerators =Nation |

  8. Home Energy Score: Analysis & Improvements to Date

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p aDepartmentUpdate2345

  9. Energy Department Announces Funding to Improve the Resiliency of the

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNF & HLWAdvancedand Lower Costs | Department

  10. ANL Software Improves Wind Power Forecasting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic Framework for8.pdfAL2008-07.pdf2ProgramAMWTPANDREW

  11. Desaturase Genes for improved Plant Seed Oils - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalToDepth Profile ofDeputy

  12. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    SciTech Connect (OSTI)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01T23:59:59.000Z

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.

  13. Cool Colored Roofs to Save Energy and Improve Air Quality

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

    2005-08-23T23:59:59.000Z

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  14. C1000 Problem Set 4 (Draft 10/16/03; Menke) Frontiers of Science (C1000) Problem Set 4 on Energy Relevant to Green House Gases

    E-Print Network [OSTI]

    Menke, William

    .1 kilowatt) light bulb burning continuously? 3. Data for population and energy consumption for a total of 21 emissions represented by each of these countries or regions. C) What percentage of global consumption societies. Humans require energy derived from food consumption to sustain life. Our cells metabolize

  15. 2012 Jonathan G. Lange IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING

    E-Print Network [OSTI]

    Braun, Paul

    1 ©2012 Jonathan G. Lange #12;1 IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING ABSTRACT Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries

  16. UC Davis Research Supports Energy-Efficiency Improvements to California's Title 24 Codes

    E-Print Network [OSTI]

    California at Davis, University of

    for buildings. The new code improves upon the 2008 standards currently in place, increasing the energy efficiency of residential buildings by 25 percent and boosting energy savings in non-residential buildings sources with "smart" controls that automatically lower light levels when spaces are vacant or when enough

  17. Improving the Accuracy of Software-Based Energy Analysis for Residential Buildings (Presentation)

    SciTech Connect (OSTI)

    Polly, B.

    2011-09-01T23:59:59.000Z

    This presentation describes the basic components of software-based energy analysis for residential buildings, explores the concepts of 'error' and 'accuracy' when analysis predictions are compared to measured data, and explains how NREL is working to continuously improve the accuracy of energy analysis methods.

  18. Improvement of the Energy Resolution via an Optimized Digital Signal Processing in GERDA Phase I

    E-Print Network [OSTI]

    M. Agostini; M. Allardt; A. M. Bakalyarov; M. Balata; I. Barabanov; N. Barros; L. Baudis; C. Bauer; N. Becerici-Schmidt; E. Bellotti; S. Belogurov; S. T. Belyaev; G. Benato; A. Bettini; L. Bezrukov; T. Bode; D. Borowicz; V. Brudanin; R. Brugnera; D. Budjáš; A. Caldwell; C. Cattadori; A. Chernogorov; V. D'Andrea; E. V. Demidova; A. di Vacri; A. Domula; E. Doroshkevich; V. Egorov; R. Falkenstein; O. Fedorova; K. Freund; N. Frodyma; A. Gangapshev; A. Garfagnini; P. Grabmayr; V. Gurentsov; K. Gusev; A. Hegai; M. Heisel; S. Hemmer; G. Heusser; W. Hofmann; M. Hult; L. V. Inzhechik; J. Janicskó Csáthy; J. Jochum; M. Junker; V. Kazalov; T. Kihm; I. V. Kirpichnikov; A. Kirsch; A. Klimenko; K. T. Knöpfle; O. Kochetov; V. N. Kornoukhov; V. V. Kuzminov; M. Laubenstein; A. Lazzaro; V. I. Lebedev; B. Lehnert; H. Y. Liao; M. Lindner; I. Lippi; A. Lubashevskiy; B. Lubsandorzhiev; G. Lutter; C. Macolino; B. Majorovits; W. Maneschg; E. Medinaceli; M. Misiaszek; P. Moseev; I. Nemchenok; D. Palioselitis; K. Panas; L. Pandola; K. Pelczar; A. Pullia; S. Riboldi; N. Rumyantseva; C. Sada; M. Salathe; C. Schmitt; B. Schneider; S. Schönert; J. Schreiner; A. -K. Schütz; O. Schulz; B. Schwingenheuer; O. Selivanenko; M. Shirchenko; H. Simgen; A. Smolnikov; L. Stanco; M. Stepaniuk; C. A. Ur; L. Vanhoefer; A. A. Vasenko; A. Veresnikova; K. von Sturm; V. Wagner; M. Walter; A. Wegmann; T. Wester; H. Wilsenach; M. Wojcik; E. Yanovich; P. Zavarise; I. Zhitnikov; S. V. Zhukov; D. Zinatulina; K. Zuber; G. Zuzel

    2015-02-15T23:59:59.000Z

    An optimized digital shaping filter has been developed for the GERDA experiment which searches for neutrinoless double beta decay in 76Ge. The GERDA Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) at the 76Ge Q value for 0\

  19. A Hybrid Solid-State Storage Architecture for the Performance, Energy Consumption, and Lifetime Improvement

    E-Print Network [OSTI]

    Giles, C. Lee

    A Hybrid Solid-State Storage Architecture for the Performance, Energy Consumption, and Lifetime-place updating so that it significantly im- proves the usage efficiency of log pages by eliminating out- of results show that our proposed methods can substantially improve the perfor- mance, energy consumption

  20. ACHIEVING 800 KW CW BEAM POWER AND CONTINUING ENERGY IMPROVEMENTS IN CEBAF*

    E-Print Network [OSTI]

    ACHIEVING 800 KW CW BEAM POWER AND CONTINUING ENERGY IMPROVEMENTS IN CEBAF* C. E. Reece Thomas, CEBAF at Jefferson Lab has demonstrated its full capacity of sustained 800 kW beam power. All systems the energy reach of CEBAF, we began a program of processing all installed cryomodules. This processing has

  1. IMPROVING THE ENERGY EFFECTIVENESS OF DOMESTIC REFRIGERATORS BY THE APPLICATION OF REFRIGERANT MIXTURES*

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;IMPROVING THE ENERGY EFFECTIVENESS OF DOMESTIC REFRIGERATORS BY THE APPLICATION OF REFRIGERANT.S. and foreign literature on the use of a mixture of refrigerants rather than a single one in a refrigeration-evaporator refrigerator typical of domestic refrigerators showed an energy savings of 12 percent. By acceptance

  2. Funding Opportunity Webinar- Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of the DOE Funding Opportunity Announcement DE-FOA-0001168, "Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings," which seeks to fund the scale-up of promising solutions to the market barriers that hinder the growth of energy efficiency in the commercial building sector.

  3. Pipeline Strategy for Improving Optimal Energy Efficiency in Ultra-Low Voltage Design

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    Pipeline Strategy for Improving Optimal Energy Efficiency in Ultra-Low Voltage Design Mingoo Seok for the ultra low voltage regime. Based on an analytical model and simulations, we propose a pipelining technique that provides higher energy effi- ciency and performance than conventional approaches to ultra low

  4. Improving behavioral realism in hybrid energy-economy models using discrete choice

    E-Print Network [OSTI]

    Improving behavioral realism in hybrid energy-economy models using discrete choice studies Abstract Hybrid energy-economy models combine top-down and bottom-up approaches to explore behaviorally models to inform key behavioral parameters in CIMS, a hybrid model. The discrete choice models

  5. Improvement of the Energy Resolution via an Optimized Digital Signal Processing in GERDA Phase I

    E-Print Network [OSTI]

    Agostini, M; Bakalyarov, A M; Balata, M; Barabanov, I; Barros, N; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Borowicz, D; Brudanin, V; Brugnera, R; Budjáš, D; Caldwell, A; Cattadori, C; Chernogorov, A; D'Andrea, V; Demidova, E V; di Vacri, A; Domula, A; Doroshkevich, E; Egorov, V; Falkenstein, R; Fedorova, O; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Grabmayr, P; Gurentsov, V; Gusev, K; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Csáthy, J Janicskó; Jochum, J; Junker, M; Kazalov, V; Kihm, T; Kirpichnikov, I V; Kirsch, A; Klimenko, A; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Majorovits, B; Maneschg, W; Medinaceli, E; Misiaszek, M; Moseev, P; Nemchenok, I; Palioselitis, D; Panas, K; Pandola, L; Pelczar, K; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salathe, M; Schmitt, C; Schneider, B; Schönert, S; Schreiner, J; Schütz, A -K; Schulz, O; Schwingenheuer, B; Selivanenko, O; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Stepaniuk, M; Ur, C A; Vanhoefer, L; Vasenko, A A; Veresnikova, A; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wilsenach, H; Wojcik, M; Yanovich, E; Zavarise, P; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2015-01-01T23:59:59.000Z

    An optimized digital shaping filter has been developed for the GERDA experiment which searches for neutrinoless double beta decay in 76Ge. The GERDA Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) at the 76Ge Q value for 0\

  6. Improving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Department of Computer Science

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    and institutional campuses can significantly contribute to energy conservation. The rollout of smart grids of occupants, and is a micro-grid test-bed for the DoE sponsored Los Angeles Smart Grid Demonstration ProjectImproving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Saima Aman

  7. Saving Energy and Improving IAQ through Application of Advanced Air Cleaning Technologies

    E-Print Network [OSTI]

    Saving Energy and Improving IAQ through Application of Advanced Air Cleaning Technologies Table 1 equipment and people from particles. Criteria for Air Cleaning Reducing ventilation rates to save energy, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates

  8. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect (OSTI)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06T23:59:59.000Z

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  9. Chapter 22 Greenhouse Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMSStaffCeriumfor the 20122-19-1

  10. Method for removing acid gases from a gaseous stream

    DOE Patents [OSTI]

    Gorin, Everett (San Rafael, CA); Zielke, Clyde W. (McMurray, PA)

    1981-01-01T23:59:59.000Z

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  11. Separating hydrogen from coal gasification gases with alumina membranes

    SciTech Connect (OSTI)

    Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

    1991-01-01T23:59:59.000Z

    Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

  12. Protocol for Maximizing Energy Savings and Indoor Environmental Quality Improvements when Retrofitting Apartments

    SciTech Connect (OSTI)

    Noris, Federico; Delp, William W.; Vermeer, Kimberly; Adamkiewicz, Gary; Singer, Brett C.; Fisk, William J.

    2012-06-18T23:59:59.000Z

    The current focus on building energy retrofit provides an opportunity to simultaneously improve indoor environmental quality (IEQ). Toward this end, we developed a protocol for selecting packages of retrofits that both save energy and improve IEQ in apartments. The protocol specifies the methodology for selecting retrofits from a candidate list while addressing expected energy savings, IEQ impacts, and costs in an integrated manner. Interviews, inspections and measurements are specified to collect the needed input information. The protocol was applied to 17 apartments in three buildings in two different climates within California. Diagnostic measurements and surveys conducted before and after retrofit implementation indicate enhanced apartment performance.

  13. Improving government regulations: a guidebook for conservation and renewable energy

    SciTech Connect (OSTI)

    Neese, R. J.; Scheer, R. M.; Marasco, A. L.

    1981-04-01T23:59:59.000Z

    An integrated view of the Office of Conservation and Solar Energy (CS) policy making encompassing both administrative procedures and policy analysis is presented. Chapter One very briefly sketches each step in the development of a significant regulation, noting important requirements and participants. Chapter Two expands upon the Overview, providing the details of the process, the rationale and source of requirements, concurrence procedures, and advice on the timing and synchronization of steps. Chapter Three explains the types of analysis documents that may be required for a program. Regulatory Analyses, Environmental Impact Statements, Urban and Community Impact Analyses, and Regulatory Flexibility Analyses are all discussed. Specific information to be included in the documents and the circumstances under which the documents need to be prepared are explained. Chapter Four is a step-by-step discussion of how to do good analysis. Use of models and data bases is discussed. Policy objectives, alternatives, and decision making are explained. In Chapter five guidance is provided on identifying the public that would most likely be interested in the regulation, involving its constituents in a dialogue with CS, evaluating and handling comments, and engineering the final response. Chapter Six provides direction on planning the evaluation, monitoring the regulation's success once it has been promulgated, and allowing for constructive support or criticism from outside DOE. (MCW)

  14. Active Wake Redirection Control to Improve Energy Yield (Poster)

    SciTech Connect (OSTI)

    Churchfield, M. J.; Fleming, P.; DeGeorge, E.; Bulder, B; White, S. M.

    2014-10-01T23:59:59.000Z

    Wake effects can dramatically reduce the efficiency of waked turbines relative to the unwaked turbines. Wakes can be deflected, or 'redirected,' by applying yaw misalignment to the turbines. Yaw misalignment causes part of the rotor thrust vector to be pointed in the cross-stream direction, deflecting the flow and the wake. Yaw misalignment reduces power production, but the global increase in wind plant power due to decreased wake effect creates a net increase in power production. It is also a fairly simple control idea to implement at existing or new wind plants. We performed high-fidelity computational fluid dynamics simulations of the wake flow of the proposed Fishermen's Atlantic City Windfarm (FACW) that predict that under certain waking conditions, wake redirection can increase plant efficiency by 10%. This means that by applying wake redirection control, for a given watersheet area, a wind plant can either produce more power, or the same amount of power can be produced with a smaller watersheet area. With the power increase may come increased loads, though, due to the yaw misalignment. If misalignment is applied properly, or if layered with individual blade pitch control, though, the load increase can be mitigated. In this talk we will discuss the concept of wake redirection through yaw misalignment and present our CFD results of the FACW project. We will also discuss the implications of wake redirection control on annual energy production, and finally we will discuss plans to implement wake redirection control at FACW when it is operational.

  15. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    SciTech Connect (OSTI)

    Principal Investigator Kent Peaslee; Co-PIà ƒ  ¢Ã ‚  € à ‚  ™ s: Von Richards, Jeffrey Smith

    2012-07-31T23:59:59.000Z

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  16. Eddy covariance flux measurements of pollutant gases in urban Mexico City

    E-Print Network [OSTI]

    Velasco, Erik

    Eddy covariance (EC) flux measurements of the atmosphere/surface exchange of gases over an urban area are a direct way to improve and evaluate emissions inventories, and, in turn, to better understand urban atmospheric ...

  17. Single-Step Ironmaking from Ore to Improve Energy Efficiency

    SciTech Connect (OSTI)

    S.K. Kawatra; B. Anamerie; T.C. Eisele

    2005-10-01T23:59:59.000Z

    The pig iron nugget process was developed as an alternative to the traditional blast furnace process by Kobe Steel. The process aimed to produce pig iron nuggets, which have similar chemical and physical properties to blast furnace pig iron, in a single step. The pig iron nugget process utilizes coal instead of coke and self reducing and fluxing dried green balls instead of pellets and sinters. In this process the environmental emissions caused by coke and sinter production, and energy lost between pellet induration (heat hardening) and transportation to the blast furnace can be eliminated. The objectives of this research were to (1) produce pig iron nuggets in the laboratory, (2) characterize the pig iron nugget produced and compare them with blast furnace pig iron, (3) investigate the furnace temperature and residence time effects on the pig iron nugget production, and (4) optimize the operational furnace temperatures and residence times. The experiments involved heat treatment of self reducing and fluxing dried green balls at various furnace temperatures and residence times. Three chemically and physically different products were produced after the compete reduction of iron oxides to iron depending on the operational furnace temperatures and/or residence times. These products were direct reduced iron (DRI), transition direct reduced iron (TDRI), and pig iron nuggets. The increase in the carbon content of the system as a function of furnace temperature and/or residence time dictated the formation of these products. The direct reduced iron, transition direct reduced iron, and pig iron nuggets produced were analyzed for their chemical composition, degree of metallization, apparent density, microstructure and microhardness. In addition, the change in the carbon content of the system with the changing furnace temperature and/or residence time was detected by optical microscopy and Microhardness measurements. The sufficient carbon dissolution required for the production of pig iron nuggets was determined. It was determined that pig iron nuggets produced had a high apparent density (6.7-7.2 gr/cm3), highly metallized, slag free structure, high iron content (95-97%), high microhardness values (> 325 HVN) and microstructure similar to white cast iron. These properties made them a competitive alternative to blast furnace pig iron.

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    perpetuate less energy efficient designs. When a companytips for the energy efficient design of new labs andEnergy Guide. Energy efficient system design. The greatest

  19. Monte Carlo Simulation of Radiation in Gases with a NarrowBand Model

    E-Print Network [OSTI]

    Dufresne, Jean-Louis

    , France (\\Phi) now at the Institute of Energy and Power Plant Technology, TH Darmstadt, 64287 DarmstadtMonte Carlo Simulation of Radiation in Gases with a Narrow­Band Model and a Net is used for simulation of radiative heat transfers in non­gray gases. The proposed procedure is based

  20. Abstract--Airborne pollution and explosive gases threaten human health and occupational safety, therefore generating high

    E-Print Network [OSTI]

    Mason, Andrew

    Abstract--Airborne pollution and explosive gases threaten human health and occupational safety and a thumb-drive sized prototype system. I. INTRODUCTION xposure to air pollution consistently ranks among to occupational safety as energy demands rise. Airborne pollutants and explosive gases vary in both time and space