National Library of Energy BETA

Sample records for gaseous diffusion plants

  1. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant - November 2013 Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - November 2013 November 5, 2013 Review of Preparedness for Severe Natural Phenomena Events...

  2. Paducah Gaseous Diffusion Plant Final Environmental Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Point of contact for more information: Robert Smith, Department of Energy-Paducah PDF icon Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and ...

  3. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Diffusion Plant (PORTS) contractor, Fluor-Babcock & Wilcox Portsmouth (FBP). ... 2013 Preliminary Notice of Violation, Fluor-B&W Portsmouth, LLC - July 8, 2014 ...

  4. EA-1927: Paducah Gaseous Diffusion Plant Potential Land and Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Diffusion Plant Potential Land and Facilities Transfers; McCracken County, Kentucky EA-1927: Paducah Gaseous Diffusion Plant Potential Land and Facilities Transfers; ...

  5. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant- January 2013

    Broader source: Energy.gov [DOE]

    Review of the Portsmouth Gaseous Diffusion Plant Work Planning and Control Activities Prior to Work Execution

  6. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant – November 2013

    Broader source: Energy.gov [DOE]

    Review of Preparedness for Severe Natural Phenomena Events at the Portsmouth Gaseous Diffusion Plant.

  7. DOE Seeks Deactivation Contractor for Paducah Gaseous Diffusion Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Deactivation Contractor for Paducah Gaseous Diffusion Plant DOE Seeks Deactivation Contractor for Paducah Gaseous Diffusion Plant August 9, 2013 - 5:30pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Task Proposal (RTP) for deactivation activities at the Paducah Gaseous Diffusion Plant (GDP) in Paducah, Kentucky. These services are required so that DOE can address the return

  8. DOE Seeks Proposals for Portsmouth Gaseous Diffusion Plant Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Contract | Department of Energy Proposals for Portsmouth Gaseous Diffusion Plant Technical Services Contract DOE Seeks Proposals for Portsmouth Gaseous Diffusion Plant Technical Services Contract June 19, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy today issued a Draft Request for Proposals (RFP) for an Environmental Technical Services acquisition at the Portsmouth Gaseous Diffusion Plant near Piketon, Ohio.

  9. Paducah Gaseous Diffusion Plant Transition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Diffusion Plant Transition Paducah Gaseous Diffusion Plant Transition GDP Shutdown Paducah site_map-USEC_lease.jpg The Energy Policy Act of 1992 transferred operational responsibility for the site's uranium enrichment operations to the United States Enrichment Corporation (USEC), originally a government corporation that became a publicly held company in 1998. USEC assumed responsibility for enrichment operations at the Paducah Gaseous Diffusion Plant (GDP) and leased property from DOE.

  10. DOE - Office of Legacy Management -- Portsmouth Gaseous Diffusion Plant -

    Office of Legacy Management (LM)

    026 Portsmouth Gaseous Diffusion Plant - 026 FUSRAP Considered Sites Site: Portsmouth Gaseous Diffusion Plant (026 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Portsmouth Gaseous Diffusion Plant (PGDP) is located in south central Ohio, approximately 20 miles north of Portsmouth, Ohio and 70 miles south of Columbus, Ohio.

  11. Paducah Gaseous Diffusion Plant - GW OU Northwest Plume | Department of

    Office of Environmental Management (EM)

    Energy Gaseous Diffusion Plant - GW OU Northwest Plume Paducah Gaseous Diffusion Plant - GW OU Northwest Plume January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Paducah Gaseous Diffusion Plant, KY Responsible DOE Office: Office of Environmental Management Plume Name: GW OU Northwest Plume Remediation Contractor: LATA Environmental Services of Kentucky, LLC PBS Number: PA-0040 Report Last Updated: 2014

  12. Paducah Gaseous Diffusion Plant - GW OU Northeast Plume | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paducah Gaseous Diffusion Plant - GW OU Northeast Plume January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, ...

  13. Paducah Gaseous Diffusion Plant Draft Paducah Environmental Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Draft Environmental Assessment (EA) for Potential Land and Facilities Transfers at the Paducah Gaseous Diffusion Plant in McCracken County, Kentucky. DOE is inviting comments on...

  14. DOE Announces Public Tours of Paducah Gaseous Diffusion Plant site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DOE Announces Public Tours of Paducah Gaseous Diffusion Plant site DOE Announces Public Tours of Paducah Gaseous Diffusion Plant site March 31, 2016 - 5:00pm Addthis PADUCAH, KY - The U.S. Department of Energy (DOE) has announced the opportunity for members of the community to participate in public tours of the Paducah Gaseous Diffusion Plant site starting monthly in April 2016. This will be the first time tours of the DOE site will be available to the public in its more

  15. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - April

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 | Department of Energy April 2013 Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - April 2013 April 2013 Review of the Integrated Safety Management System Phase I Verification Review at the Portsmouth Gaseous Diffusion Plant The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the U.S. Department of Energy (DOE) Portsmouth/Paducah Project Office (PPPO). The objective

  16. DOE Awards Contract for Paducah Gaseous Diffusion Plant Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support Services | Department of Energy Paducah Gaseous Diffusion Plant Infrastructure Support Services DOE Awards Contract for Paducah Gaseous Diffusion Plant Infrastructure Support Services June 17, 2015 - 5:45pm Addthis Media Contact: Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy (DOE) today announced the award of a contract to Swift & Staley, Inc. of Kevil, Kentucky, for the performance of infrastructure support services at the

  17. DOE Seeks Small Businesses for Portsmouth Gaseous Diffusion Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Support Services | Department of Energy Seeks Small Businesses for Portsmouth Gaseous Diffusion Plant Infrastructure Support Services DOE Seeks Small Businesses for Portsmouth Gaseous Diffusion Plant Infrastructure Support Services July 2, 2014 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564, bill.taylor@srs.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for Proposal (RFP) seeking eligible small businesses under North American

  18. Paducah Gaseous Diffusion Plant Compliance Order, September 10, 1997

    Office of Environmental Management (EM)

    Energy Southwest Plume Paducah Gaseous Diffusion Plant - GW OU Southwest Plume January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Paducah Gaseous Diffusion Plant, KY Responsible DOE Office: Office of Environmental Management Plume Name: GW OW Southwest Plume Remediation Contractor: LATA Environmental Services of Kentucky, LLC PBS Number: PA-0040 Report Last Updated: 2014 Contaminants Halogenated VOCs/SVOCs

  19. Portsmouth Gaseous Diffusion Plant Environmental report for 1990

    SciTech Connect (OSTI)

    Counce-Brown, D.

    1991-09-01

    This calendar year 1990 annual report on environmental surveillance of the US Department of Energy's (DOE's) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: the summary, discussion, and conclusions (Part 1) and the data presentation (Part 2). The objectives of this report are as follows: report 1990 monitoring data for the installation and its environs that may have been affected by operations on the plant site, provide reasonably detailed information about the plant site and plant operations, provide detailed information on input and assumptions used in all calculations, provide trend analyses (when appropriate) to indicate increases and decreases in environmental impact, and provide general information on plant quality assurance.

  20. Paducah Gaseous Diffusion Plant environmental report for 1992

    SciTech Connect (OSTI)

    Horak, C.M.

    1993-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP`s neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials.

  1. Paducah Gaseous Diffusion Plant Environmental report for 1990

    SciTech Connect (OSTI)

    Counce-Brown, D.

    1991-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Site Environmental Report for 1990, is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials.

  2. Federal Facility Agreement for the Paducah Gaseous Diffusion Plant Summary

    Office of Environmental Management (EM)

    Federal Facility Agreement for the Paducah Gaseous Diffusion Plant State Kentucky Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA/RCRA Scope Summary Ensure that the environmental impacts of activities at the Site are investigated and appropriate response actions are taken. Parties U.S. DOE; Kentucky Natural Resources and Environmental Protection Cabinet; U.S. EPA Date 2/01/1998 SCOPE * Ensure all releases of hazardous substances, pollutants, or contaminants are addressed to

  3. Paducah Gaseous Diffusion Plant Annual Site Environmental Report for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The purpose of this document is to summarize effluent monitoring and environmental surveillance results and compliance with environmental laws, regulations, and orders at the Paducah Gaseous Diffusion Plant (PGDP). Environmental monitoring at PGDP consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is direct measurement or the collection and analysis of samples of liquid and gaseous discharges to the environment. Environmental surveillance is direct measurement or the collection and analysis of samples of air, water, soil, foodstuff, biota, and other media. Environmental monitoring is performed to characterize and quantify contaminants, assess radiation exposures of members of the public, demonstrate compliance with applicable standards and permit requirements, and detect and assess the effects (if any) on the local environment. Multiple samples are collected throughout the year and are analyzed for radioactivity, chemical content, and various physical attributes.

  4. Portsmouth Gaseous Diffusion Plant annual site environmental report for 1993

    SciTech Connect (OSTI)

    Horak, C.M.

    1994-11-01

    This calendar year (CY) 1993 annual report on environmental monitoring of the US Department of Energy`s (DOE`s) Portsmouth Gaseous Diffusion Plant (Portsmouth) and its environs consists of three separate documents: a summary pamphlet for the general public; a more detail discussion and of compliance status, data, and environmental impacts (this document); and a volume of detailed data that is available on request. The objectives of this report are to report compliance status during 1993; provide information about the plant site and plant operations; report 1993 monitoring data for the installation and its environs that may have been affected by operations on the plant site; document information on input and assumptions used in calculations; provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on quality assurance for the environmental monitoring program.

  5. DOE Issues Final Request for Proposal for Paducah Gaseous Diffusion Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support Services | Department of Energy Paducah Gaseous Diffusion Plant Support Services DOE Issues Final Request for Proposal for Paducah Gaseous Diffusion Plant Support Services October 6, 2014 - 4:13pm Addthis Media Contact Bill Taylor, 803-952-8564, bill.taylor@srs.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Final Request for Proposal (RFP), for the performance of infrastructure support services at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. A

  6. Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant- May 2013

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Infrastructure Support Contract Paducah Gaseous Diffusion Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  7. Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant (GDP) Decommissioning

    Broader source: Energy.gov [DOE]

    The decommissioning of Gaseous Diffusion Plant facilities requires accurate, non-destructive assay (NDA) of residual enriched uranium in facility components for safeguards and nuclear criticality...

  8. Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant- March 2012

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Infrastructure Support Contract Paducah Gaseous Diffusion Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  9. Paducah Gaseous Diffusion Plant environmental report for 1989

    SciTech Connect (OSTI)

    Turner, J.W. )

    1990-10-01

    This two-part environmental report is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials. 36 refs.

  10. Seismic issues at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Fricke, K.E. )

    1989-11-01

    A seismic expert workshop was held at the Paducah Gaseous Diffusion Plant (PGDP) on March 13--15, 1989. the PGDP is operated by Martin Marietta Energy Systems, Inc. for the United States Department of Energy (DOE). During the last twenty years the design criteria for natural phenomenon hazards has steadily become more demanding at all of the DOE Oak Ridge Operations (ORO) sites. The purpose of the two-day workshop was to review the seismic vulnerability issues of the PGDP facilities. Participants to the workshop included recognized experts in the fields of seismic engineering, seismology and geosciences, and probabilistic analysis, along with engineers and other personnel from Energy Systems. A complete list of the workshop participants is included in the front of this report. 29 refs.

  11. Portsmouth Gaseous Diffusion Plant environmental report for 1989

    SciTech Connect (OSTI)

    Turner, J.W. )

    1990-10-01

    This calendar year 1989 annual report on environmental surveillance of the US Department of Energy's (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: the Summary, Discussion, and Conclusions (Part 1) and the Data Presentation (Part 2). The objectives of this report are the following: report 1989 monitoring data for the installation and its environs that may have been affected by operations on the plant site, provide reasonably detailed information about the plant site and plant operations, provide detailed information on input and assumptions used in all calculations, provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on plant quality assurance. Routine monitoring and sampling for radiation, radioactive materials, and chemical substances on and off the DOE site are used to document compliance with appropriate standards, to identify trends, to provide information for the public, and to contribute to general environmental knowledge. The surveillance program assists in fulfilling the DOE policy of protecting the public, employees, and environment from harm that could be caused by its activities and reducing negative environmental impacts to the greatest degree practicable. Environmental-monitoring information complements data on specific releases, trends, and summaries. 26 refs.

  12. IAEA verification experiment at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Gordon, D.M.; Subudhi, M.; Calvert, O.L.; Bonner, T.N.; Adams, J.G.; Cherry, R.C.; Whiting, N.E.

    1998-08-01

    In April 1996, the United States (US) added the Portsmouth Gaseous Diffusion Plant to the list of facilities eligible for the application of International Atomic Energy Agency (IAEA) safeguards. At that time, the US proposed that the IAEA carry out a Verification Experiment at the plant with respect to the downblending of about 13 metric tons of highly enriched uranium (HEU) in the form of UF{sub 6}. This material is part of the 226 metric tons of fissile material that President Clinton has declared to be excess to US national-security needs and which will be permanently withdrawn from the US nuclear stockpile. In September 1997, the IAEA agreed to carry out this experiment, and during the first three weeks of December 1997, the IAEA verified the design information concerning the downblending process. The plant has been subject to short-notice random inspections since December 17, 1997. This paper provides an overview of the Verification Experiment, the monitoring technologies used in the verification approach, and some of the experience gained to date.

  13. Innovative Decontamination Technology for Use in Gaseous Diffusion Plant Decommissioning

    SciTech Connect (OSTI)

    Peters, M.J.; Norton, C.J.; Fraikor, G.B.; Potter, G.L.; Chang, K.C.

    2006-07-01

    The results of bench scale tests demonstrated that TechXtract{sup R} RadPro{sup TM} technology (hereinafter referred to as RadPro{sup R}) can provide 100% coverage of complex mockup gaseous diffusion plant (GDP) equipment and can decontaminate uranium (U) deposits with 98% to 99.99% efficiency. Deployment tests demonstrated RadPro{sup R} can be applied as foam, mist/fog, or steam, and fully cover the internal surfaces of complex mockup equipment, including large piping. Decontamination tests demonstrated that two formulations of RadPro{sup R}, one with neutron attenuators and one without neutron attenuators, could remove up to 99.99% of uranyl fluoride deposits, one of the most difficult to remove deposits in GDP equipment. These results were supplemented by results from previous tests conducted in 1994 that showed RadPro{sup R} could remove >97% of U and Tc-99 contamination from actual GDP components. Operational use of RadPro{sup R} at other DOE and commercial facilities also support these data. (authors)

  14. Bioavailability study for the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Phipps, T.L.; Kszos, L.A.

    1996-08-01

    The overall purpose of this plan is to assess the bioavailability of metals in the continuous and intermittent outfalls. The results may be used to determine alternative metal limits that more appropriately measure the portion of metal present necessary for toxicity to aquatic life. These limits must remain protective of in-stream aquatic life; thus, the highest concentration of metal in the water will be determined concurrently with an assessment of acute or chronic toxicity on laboratory tests. Using the method developed by the Kentucky Division of Water (KDOW), biomonitoring results and chemical data will be used to recommend alternative metal limits for the outfalls of concern. The data will be used to meet the objectives of the study: (1) evaluate the toxicity of continuous outfalls and intermittent outfalls at Paducah Gaseous Diffusion Plant; (2) determine the mean ratio of dissolved to Total Recoverable metal for Cd, Cr, Cu, Pb, Ni, and Zn in the continuous and intermittent outfalls; (3) determine whether the concentration of total recoverable metal discharged causes toxicity to fathead minnows and /or Ceriodaphnia; and (4) determine alternative metal limits for each metal of concern (Cd, Cr, Cu, Pb, Ni, and Zn).

  15. Paducah Gaseous Diffusion Plant Northwest Plume interceptor system evaluation

    SciTech Connect (OSTI)

    Laase, A.D.; Clausen, J.L.

    1998-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 {micro}g/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields.

  16. DOE Releases Request for Information for Paducah Gaseous Diffusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information for Paducah Gaseous Diffusion Plant Deactivation & Remediation Services DOE Releases Request for Information for Paducah Gaseous Diffusion Plant Deactivation &...

  17. EA-1927: Paducah Gaseous Diffusion Plant Potential Land and Facilities Transfers; McCracken County, Kentucky

    Broader source: Energy.gov [DOE]

    DOE’s Portsmouth/Paducah Project Office prepared an EA that assesses the potential environmental impacts of the proposed transfer of land and facilities at the Paducah Gaseous Diffusion Plant from DOE to other entities for economic development.

  18. School science project ‘demystifies’ Portsmouth Gaseous Diffusion Plant Site

    Broader source: Energy.gov [DOE]

    LATHAM, Ohio — U.S. Department of Energy (DOE) officials from the Portsmouth Gaseous Diffusion Plant Site recently visited a group of local high school students to recognize their work on an...

  19. Portsmouth Gaseous Diffusion Plant Director's Final Findings and Orders, October 4, 1995

    Office of Environmental Management (EM)

    Portsmouth Gaseous Diffusion Plant Director's Final Findings and Orders, October 4, 1995 BEFORE THE OHIO ENVIRONMENTAL PROTECTION AGENCY In the Matter Of: United States Department of Energy : Director's Final Portsmouth Gaseous Diffusion Plant : Findings and Orders P.O. Box 700 : Piketon, Ohio 45661-0700 : Respondent It is hereby agreed by and among the parties hereto as follows: Table of Contents I. Jurisdiction II. Parties Bound III. Definitions IV. Findings of Fact V. Orders VI. Limitations

  20. D&D of the French High Enrichment Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    BEHAR, Christophe; GUIBERTEAU, Philippe; DUPERRET, Bernard; TAUZIN, Claude

    2003-02-27

    This paper describes the D&D program that is being implemented at France's High Enrichment Gaseous Diffusion Plant, which was designed to supply France's Military with Highly Enriched Uranium. This plant was definitively shut down in June 1996, following French President Jacques Chirac's decision to end production of Highly Enriched Uranium and dismantle the corresponding facilities.

  1. EA-1856: Conveyance of Land and Facilities at the Portsmouth Gaseous Diffusion Plant for Economic Development Purposes, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of conveyance of land and facilities at the Portsmouth Gaseous Diffusion Plant, in Piketon, Ohio, for economic development purposes.

  2. U.S., Ohio Approve Portsmouth Gaseous Diffusion Plant Site D&D Plans |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy , Ohio Approve Portsmouth Gaseous Diffusion Plant Site D&D Plans U.S., Ohio Approve Portsmouth Gaseous Diffusion Plant Site D&D Plans July 30, 2015 - 3:00pm Addthis The Portsmouth Site’s large process buildings and other facilities are shown here. The Portsmouth Site's large process buildings and other facilities are shown here. PIKETON, Ohio - The Ohio Environmental Protection Agency (Ohio EPA) and DOE have agreed to a plan to demolish the massive, iconic

  3. Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    Paducah, KY EM Project: On-Site Disposal Facility ETR Report Date: August 2008 ETR-16 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Disposal Facility(OSDF) at the Paducah Gaseous Diffusion Plant Why DOE-EM Did This Review The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that was placed on the National Priorities List. DOE is required to remediate the PGDP in accordance with the

  4. DOE Seeks Small Businesses for Paducah Gaseous Diffusion Plant Infrastructure Support Services

    Broader source: Energy.gov [DOE]

    Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for Proposal (RFP) seeking eligible small businesses under North American Industry Classification System (NAICS) Code 561210, Facilities Support Services, for the performance of infrastructure support services at the Paducah Gaseous Diffusion Plant (PGDP).

  5. Real Time Demonstration Project XRF Performance Evaluation Report for Paducah Gaseous Diffusion Plant AOC 492

    SciTech Connect (OSTI)

    Johnson, Robert L

    2008-04-03

    This activity was undertaken to demonstrate the applicability of market-available XRF instruments to quantify metal concentrations relative to background and risk-based action and no action levels in Paducah Gaseous Diffusion Plant (PGDP) soils. As such, the analysis below demonstrates the capabilities of the instruments relative to soil characterization applications at the PGDP.

  6. Environmental Restoration Site-Specific Plan for the Portsmouth Gaseous Diffusion Plant, FY 93

    SciTech Connect (OSTI)

    Not Available

    1993-01-15

    The purpose of this Site-Specific Plan (SSP) is to describe past, present, and future activities undertaken to implement Environmental Restoration and Waste Management goals at the Portsmouth Gaseous Diffusion Plant (PORTS). The SSP is presented in sections emphasizing Environmental Restoration description of activities, resources, and milestones.

  7. Energy Department Extends Contract for Cleanup of Portsmouth Gaseous Diffusion Plant

    Broader source: Energy.gov [DOE]

    LEXINGTON, Ky. – The U.S. Department of Energy (DOE) today announced that it has exercised its option to extend the contract for decontamination and decommissioning (D&D) of the Portsmouth Gaseous Diffusion Plant for a period of 30 months beyond the current expiration date of March 28, 2016.

  8. DOE Releases Request for Information for Paducah Gaseous Diffusion Plant Deactivation & Remediation Services

    Broader source: Energy.gov [DOE]

    Cincinnati -- The U.S. Department of Energy (DOE) today issued a Request for Information (RFI) seeking to solicit input via capability statements from interested parties with the specialized capabilities necessary to meet the requirements of the Draft Performance Work Statement (PWS) for the Paducah Gaseous Diffusion Plant Deactivation & Remediation project.

  9. DOE Awards Contract for Portsmouth Gaseous Diffusion Plant Infrastructure Support Services

    Broader source: Energy.gov [DOE]

    Cincinnati -- The U.S. Department of Energy (DOE) today announced the award of a contract to Portsmouth Mission Alliance, LLC of Idaho Falls, Idaho, for the performance of infrastructure support services at the Portsmouth Gaseous Diffusion Plant (PORTS or Portsmouth Site) near Piketon, Ohio.

  10. DOE - Office of Legacy Management -- Oak Ridge Gaseous Diffusion...

    Office of Legacy Management (LM)

    Oak Ridge Gaseous Diffusion Plant - TN 02 FUSRAP Considered Sites Site: Oak Ridge Gaseous Diffusion Plant (TN.02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site...

  11. DOE - Office of Legacy Management -- Paducah Gaseous Diffusion...

    Office of Legacy Management (LM)

    Paducah Gaseous Diffusion Plant - KY 01 FUSRAP Considered Sites Site: Paducah Gaseous Diffusion Plant (KY.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site...

  12. Long-range global warming impact of gaseous diffusion plant operation

    SciTech Connect (OSTI)

    Trowbridge, L.D.

    1992-09-01

    The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is on the Montreal Protocol list of materials scheduled for production curtailment, a substitute must be found. In addition to physical cooling properties, the gaseous diffusion application imposes the unique requirement of chemical inertness to fluorinating agents. This has narrowed the selection of a near-term substitute to two fully fluorinated material, FC-318 and FC-3110, which are likely to be strong, long-lived greenhouse gases. In this document, calculations are presented showing, for a number of plausible scenarios of diffusion plant operation and coolant replacement strategy, the future course of coolant use, greenhouse gas emissions (including coolant and power-related indirect CO{sub 2} emissions), and the consequent global temperature impacts of these scenarios.

  13. Detector for flow abnormalities in gaseous diffusion plant compressors

    DOE Patents [OSTI]

    Smith, S.F.; Castleberry, K.N.

    1998-06-16

    A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value. 6 figs.

  14. Detector for flow abnormalities in gaseous diffusion plant compressors

    DOE Patents [OSTI]

    Smith, Stephen F.; Castleberry, Kim N.

    1998-01-01

    A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value.

  15. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect (OSTI)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C.; Brock, W.R.; Denton, D.R.

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  16. Environmental Restoration Site-Specific Plan for the Paducah Gaseous Diffusion Plant, FY 93

    SciTech Connect (OSTI)

    Not Available

    1993-01-15

    This report provides an overview of the major Environmental Restoration (ER) concerns at Paducah Gaseous Diffusion Plant (PGDP). The identified solid waste management units at PGDP are listed. In the Department of Energy (DOE) Five Year Plan development process, one or more waste management units are addressed in a series of activity data sheets (ADSs) which identify planned scope, schedule, and cost objectives that are representative of the current state of planned technical development for individual or multiple sites.

  17. Site-specific earthquake response analysis for Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Davis, J.J.

    1993-08-01

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the US Department of Energy (DOE) and operated under contract by Martin Marietta Energy systems, Inc., is located southwest of Paducah, Kentucky. An aerial photograph and an oblique sketch of the plant are shown in Figures 1 and 2, respectively. The fenced portion of the plant consists of 748 acres. This plant was constructed in the 1950`s and is one of only two gaseous diffusion plants in operation in the United States; the other is located near Portsmouth, Ohio. The facilities at PGDP are currently being evaluated for safety in response to natural seismic hazards. Design and evaluation guidelines to evaluate the effects of earthquakes and other natural hazards on DOE facilities follow probabilistic hazard models that have been outlined by Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990) classify diffusion plants as ``moderate hazard`` facilities. The US Army Engineer Waterways Experiment Station (WES) was tasked to calculate the site response using site-specific design earthquake records developed by others and the results of previous geotechnical investigations. In all, six earthquake records at three hazard levels and four individual and one average soil columns were used.

  18. EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

  19. Replacement of chlorofluorocarbons (CFCs) at the DOE gaseous diffusion plants: An assessment of global impacts

    SciTech Connect (OSTI)

    Socolof, M.L.; Saylor, R.E.; McCold, L.N.

    1994-06-01

    The US Department of Energy (DOE) formerly operated two gaseous diffusion plants (GDPs) for enriching uranium and maintained a third shutdown GDP. These plants maintain a large inventory of dichlorotetrafluorethane (CFC-114), a cholorofluorocarbon (CFC), as a coolant. The paper evaluates the global impacts of four alternatives to modify GDP coolant system operations for a three-year period beginning in 1996. Interim modification of GDP coolant system operations has the potential to reduce stratospheric ozone depletion from GDP coolant releases while a permanent solution is studied.

  20. Nuclear criticality safety evaluation of large cylinder cleaning operations in X-705, Portsmouth Gaseous diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented.

  1. Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE evaluated the potential conveyance (lease, easement, and/or title transfer) of real property that may be determined to be excessed, underutilized or unneeded at the Paducah Gaseous Diffusion Plant (PGDP). After appropriate agency reviews, DOE could transfer PGDP real property to one or more entities for a range of economic development and/or recreational uses. DOE’s potential action is designed to reduce the footprint of the site and the cost for maintenance of the site, providing opportunities for beneficial reuse. DOE prepared this Draft Environmental Assessment (EA) to analyze the potential environmental consequences associated with potential land and facilities transfers.

  2. Paducah Gaseous Diffusion Plant Draft Paducah Environmental Assessment for Potential Land and Facilities Transfers

    Broader source: Energy.gov [DOE]

    DOE is evaluating the potential conveyance (lease, easement, and/or title transfer) of real property that may be determined to be excessed, underutilized or unneeded at the Paducah Gaseous Diffusion Plant (PGDP). After appropriate agency reviews, DOE could transfer PGDP real property to one or more entities for a range of economic development and/or recreational uses. DOEs potential action is designed to reduce the footprint of the site and the cost for maintenance of the site, providing opportunities for beneficial reuse. DOE prepared this Draft Environmental Assessment (EA) to analyze the potential environmental consequences associated with potential land and facilities transfers.

  3. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the

  4. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  5. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  6. The Blend Down Monitoring System Demonstration at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Benton, J.; Close, D.; Johnson, W., Jr.; Kerr, P.; March-Leuba, J.; Mastal, E.; Moss, C.; Powell, D.; Sumner, J.; Uckan, T.; Vines, R.; Wright, P.D.

    1999-07-25

    Agreements between the governments of the US and the Russian Federation for the US purchase of low enriched uranium (LEU) derived from highly enriched uranium (HEU) from dismantled Russian nuclear weapons calls for the establishment of transparency measures to provide confidence that nuclear nonproliferation goals are being met. To meet these transparency goals, the agreements call for the installation of nonintrusive US instruments to monitor the down blending of HEU to LEU. The Blend Down Monitoring System (BDMS) has been jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor {sup 235}U enrichments and mass flow rates at Russian blending facilities. Prior to its installation in Russian facilities, the BDMS was installed and operated in a UF{sub 6} flow loop in the Paducah Gaseous Diffusion Plant simulating flow and enrichment conditions expected in a typical down-blending facility. A Russian delegation to the US witnessed the equipment demonstration in June, 1998. To conduct the demonstration in the Paducah Gaseous Diffusion Plant (PGDP), the BDMS was required to meet stringent Nuclear Regulatory Commission licensing, safety and operational requirements. The Paducah demonstration was an important milestone in achieving the operational certification for the BDMS use in Russian facilities.

  7. Paducah Gaseous Diffusion Plant Annual Site Environmental Report summary for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    This report contains summaries of the environmental programs at Paducah Gaseous Diffusion Plant, environmental monitoring and the results, and the impact of operations on the environment and the public for 1993. The environmental monitoring program at Paducah includes effluent monitoring and environmental surveillance. Effluent monitoring is measurement of releases as they occur. Contaminants are released through either airborne emissions or liquids discharged from the plant. These releases occur as part of normal site operations, such as cooling water discharged from the uranium enrichment cascade operations or airborne releases from ventilation systems. In the event of system failure, this monitoring provides timely warning so that corrective action can be taken before releases reach an unsafe level. Environmental surveillance tracks the dispersion of materials into the environment after they have been released. This involves the collection of samples from various media, such as water, soil, vegetation, and food crops, and the analysis of these samples for certain radionuclides, chemicals, and metals.

  8. Portsmouth Gaseous Diffusion Plant Annual Site Environmental Report summary for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    This report contains summaries of the environmental programs at Paducah Gaseous Diffusion Plant, environmental monitoring and the results, and the impact of operations on the environment and the public for 1993. The environmental monitoring program at Paducah includes effluent monitoring and environmental surveillance. Effluent monitoring is measurement of releases as they occur. Contaminants are released through either airborne emissions or liquids discharged from the plant. These releases occur as part of normal site operations, such as cooling water discharged from the uranium enrichment cascade operations or airborne releases from ventilation systems. In the event of system failure, this monitoring provides timely warning so that corrective action can be taken before releases reach an unsafe level. Environmental surveillance tracks the dispersion of materials into the environment after they have been released. This involves the collection of samples from various media, such as water, soil, vegetation, and food crops, and the analysis of these samples for certain radionuclides, chemicals, and metals.

  9. A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Boyd, G.J.; Lewis, S.R.; Summitt, R.L.

    1991-12-31

    A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.

  10. Reassessment of liquefaction potential and estimation of earthquake- induced settlements at Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Yule, D.E.

    1996-04-01

    This report documents a reassessment of liquefaction potential and estimation of earthquake-induced settlements for the U.S. Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP), located southwest of Paducah, KY. The U.S. Army Engineer Waterways Experiment Station (WES) was authorized to conduct this study from FY91 to FY94 by the DOE, Oak Ridge Operations (ORO), Oak Ridge, TN, through Inter- Agency Agreement (IAG) No. DE-AI05-91OR21971. The study was conducted under the Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program.

  11. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    SciTech Connect (OSTI)

    Kszos, L.A.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.

  12. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant December 1992--December 1993

    SciTech Connect (OSTI)

    Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1995-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP for PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.

  13. Seismically-induced soil amplification at the DOE Paducah Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Sykora, D.W.; Haynes, M.E. . Geotechnical Lab.); Brock, W.R.; Hunt, R.J.; Shaffer, K.E. )

    1991-01-01

    A site-specific earthquake site response (soil amplification) study is being conducted for the Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP). This study is pursuant to an upgraded Final Safety Analysis Report in accordance with requirements specified by DOE. The seismic hazard at PGDP is dominated by the New Madrid Seismic Zone. Site-specific synthetic earthquake records developed by others were applied independently to four soil columns with heights above baserock of about 325 ft. The results for the 1000-year earthquake event indicate that the site period is between 1.0 and 1.5 sec. Incident shear waves are amplified at periods of motion greater than 0.15 sec. The peak free-field horizontal acceleration, occurring at very low periods, is 0.28 g. 13 refs., 13 figs.

  14. Local drainage analyses of the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm

    SciTech Connect (OSTI)

    Johnson, R.O.; Wang, J.C.; Lee, D.W.

    1993-11-01

    Local drainage analyses have been performed for the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm having an approximate 10,000-yr recurrence interval. This review discusses the methods utilized to accomplish the analyses in accordance with US Department of Energy (DOE) design and evaluation guidelines, and summarizes trends, results, generalizations, and uncertainties applicable to other DOE facilities. Results indicate that some culverts may be undersized, and that the storm sewer system cannot drain the influx of precipitation from the base of buildings. Roofs have not been designed to sustain ponding when the primary drainage system is clogged. Some underground tunnels, building entrances, and ground level air intakes may require waterproofing.

  15. Study of technetium uptake in vegetation in the vicinity of the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Acox, T.A.

    1982-01-01

    Technetium-99 was measured in vegetation and soil collected on and near the Portsmouth Gaseous Diffusion Plant to obtain an estimate of the soil-to-vegetation concentration factors. The concentration factors appear to be lognormally distributed with a geometric mean of 3.4 (Bq/kg dry wt. tissue per Bq/kg dry wt. soil) and a geometric standard deviation of 4.7. A dose commitment was calculated using a hypothetical 3.7 x 10/sup 10/ Bq Tc-99/year release and the actual CY-1981 concentration release of Tc-99. The radiological significance of Tc-99 in the terrestial food chain is substantially less than previously believed.

  16. K-25 Gaseous Diffusion Process Building | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Signature Facilities » K-25 Gaseous Diffusion Process Building K-25 Gaseous Diffusion Process Building K-25 Gaseous Diffusion Process Building New! K-25 Virtual Museum The K-25 plant, located on the southwestern end of the Oak Ridge reservation, used the gaseous diffusion method to separate uranium-235 from uranium-238. Based on the well-known principle that molecules of a lighter isotope would pass through a porous barrier more readily than molecules of a heavier one, gaseous diffusion

  17. Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

    1994-05-24

    The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky.

  18. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  19. Evaluation of aqueous degreasers versus chlorinated solvents at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Gunn, D.

    1988-10-31

    Spent chlorinated solvents are produced mainly as a result of degreasing operations at several Paducah Gaseous Diffusion Plant (PGDP) locations. This waste is a listed hazardous waste under Resource Conservation and Recovery Act (RCRA) regulations (40 CFR 261). In addition, some of the solvents become contaminated with uranium which classifies the waste as a mixed waste for which no disposal method is currently available. Due to health and environmental concerns and the desire to minimize mixed and hazardous waste generation, degreasing operations in the plant were delineated and alternate nonhazardous solvents were evaluated for their suitability for replacing the chlorinated solvents. Metal cleanliness testing of eight aqueous degreasers using ultrasonic cleaning and immersion with agitation, and vapor degreasing with trichloroethylene (TCE) and 1,1,1-trichloroethane (TC-ane) was performed. Soils such as dust, fingerprints, lube oil, water-soluble oil, silicone grease, and petroleum-based grease were removed from Monel, copper, mild steel, aluminum, and phosphor bronze. Cleanliness was determined by estimating the surface energy of metal coupons before and after cleaning. A Kepner-Tregoe (KT) decision analysis was utilized to determine the three best multipurpose degreasers for the plant. Additional testing was performed on the top three selected degreasers to evaluate corrosive effects of the cleaning solutions (general surface corrosion and pitting), and to determine the compatability of any residual contamination with process gases. Corrosion testing was performed in an electrochemical corrosion tester. Cleaned coupons were exposed to uranium hexafluoride, fluorine, and chlorine trifluoride. In addition, metal cleanliness testing was conducted to evaluate the cleaning efficiency of parts cleaned in the field.

  20. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1993 to December 1994

    SciTech Connect (OSTI)

    Kszos, L.A.

    1996-05-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate.

  1. Paducah Gaseous Diffusion Plant proposed pilot pump-and-treat project. Final report

    SciTech Connect (OSTI)

    Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Huff, D.D.; Jones, K.S.; Nickelson, M.D.; Rightmire, C.T.

    1994-01-01

    On March 23, 1992, R.C. Sleeman of the Department of Energy, Oak Ridge Operations Office requested that a Groundwater Corrective Actions Team be assembled to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at the Paducah Gaseous Diffusion Plant. In addition to other suggestions, the Team recommended that further characterization data be obtained for the plume. In the Fall of 1993 additional, temporary well points were installed so that groundwater samples from the shallow groundwater system and the Regional Gravel Aquifer (RGA) could be obtained to provide a three-dimensional view of groundwater contamination in the region of the plume. The results indicate that pure-phase DNAPL (trichloroethylene [TCE]) probably are present in the source area of the plume and extend in depth to the base of the RGA. Because the DNAPL likely will represent a source of a dissolved phase plume for decades it is essential that source containment take place. The Team recommends that although effective hydraulic containment can be achieved, other alternatives should be considered. For example, recent advances in emplacing low permeability barrier walls to depths of 100 to 150 ft make it possible to consider encirclement of the source of the Northwest plume.

  2. Replacement of chlorofluorocarbons at the DOE gaseous diffusion plants: An assessment of global impacts

    SciTech Connect (OSTI)

    Socolof, M.L.; McCold, L.N.; Saylor, R.E.

    1997-01-01

    Three gaseous diffusion plants (GDPs) for enriching uranium maintain a large inventory of chlorofluorocarbon-114 (CFC-114) as a coolant. To address the continued use of CFC-114, an ozone-depleting substance, the US Department of Energy (DOE) considered introducing perfluorocarbons (PFCs) by the end of 1995. These PFCs would not contribute to stratospheric ozone depletion but would be larger contributors to global warming than would CFC-114. The paper reports the results of an assessment of the global impacts of four alternatives for modifying GDP coolant system operations over a three-year period beginning in 1996. The overall contribution of GDP coolant releases to impacts on ozone depletion and global warming were quantified by parameters referred to as ozone-depletion impact and global-warming impact. The analysis showed that these parameters could be used as surrogates for predicting global impacts to all resources and could provide a framework for assessing environmental impacts of a permanent coolant replacement, eliminating the need for subsequent resource-specific analyses.

  3. Environmental Survey preliminary report, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy's (DOE) Oak Ridge Gaseous Diffusion Plant (ORGDP) conducted March 14 through 25, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental risk associated with ORGDP. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORGDP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during is on-site activities. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory (INEL). When completed, the results will be incorporated into the ORGDP Survey findings for in inclusion into the Environmental Survey Summary Report. 120 refs., 41 figs., 74 tabs.

  4. Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

  5. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Moore, G.K.

    1995-03-01

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.

  6. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. |; Doll, W.E.; Phillips, B.E.

    1994-09-01

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  7. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1

    SciTech Connect (OSTI)

    Becker, D.L.; Green, D.J.; Lindquist, M.R.

    1993-07-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

  8. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Becker, D.L.; Lindquist, M.R.

    1993-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF[sub 6]). Uranium hexafluoride enriched greater than 1.0 wt percent [sup 235]U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF[sub 6] cylinders/overpacks (Reference 3). Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF[sub 6] packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a tram of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the review is documented in Reference 4.

  9. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Becker, D.L.; Lindquist, M.R.

    1993-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched greater than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks (Reference 3). Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a tram of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the review is documented in Reference 4.

  10. DOE Issues Final Request for Proposal for Portsmouth Gaseous Diffusion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Support Services | Department of Energy Portsmouth Gaseous Diffusion Plant Support Services DOE Issues Final Request for Proposal for Portsmouth Gaseous Diffusion Plant Support Services December 9, 2014 - 3:37pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy today issued a Final Request for Proposal (RFP), for the continued performance of infrastructure support services at the Portsmouth Gaseous Diffusion

  11. Health risk from earthquake caused releases of UF{sub 6} at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Brown, N.W; Lu, S.; Chen, J.C.; Roehnelt, R.; Lombardi, D.

    1998-05-01

    The health risk to the public and workers from potential exposure to the toxic materials from earthquake caused releases of uranium hexafluoride from the Paducah gaseous Diffusion Plant are evaluated. The results of the study show that the health risk from earthquake caused releases is small, and probably less than risks associated with the transportation of hydrogen fluoride and other similar chemicals used by industry. The probability of more than 30 people experiencing health consequences (injuries) from earthquake damage is less than 4xlO{sup 4}/yr.

  12. APPLICATION OF THE LASAGNA{trademark} SOIL REMEDIATION TECHNOLOGY AT THE DOE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Swift, Barry D.; Tarantino, Joseph J., P. E.

    2003-02-27

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the Department of Energy (DOE), has been enriching uranium since the early 1950s. The enrichment process involves electrical and mechanical components that require periodic cleaning. The primary cleaning agent was trichloroethene (TCE) until the late 1980s. Historical documentation indicates that a mixture of TCE and dry ice were used at PGDP for testing the integrity of steel cylinders, which stored depleted uranium. TCE and dry ice were contained in a below-ground pit and used during the integrity testing. TCE seeped from the pit and contaminated the surrounding soil. The Lasagna{trademark} technology was identified in the Record of Decision (ROD) as the selected alternative for remediation of the cylinder testing site. A public-private consortium formed in 1992 (including DOE, the U.S. Environmental Protection Agency, and the Kentucky Department for Environmental Protection, Monsanto, DuPont, and General Electric) developed the Lasagna{trademark} technology. This innovative technology employs electrokinetics to remediate soil contaminated with organics and is especially suited to sites with low permeability soils. This technology uses direct current to move water through the soil faster and more uniformly than hydraulic methods. Electrokinetics moves contaminants in soil pore water through treatment zones comprised of iron filings, where the contaminants are decomposed to basic chemical compounds such as ethane. After three years of development in the laboratory, the consortium field tested the Lasagna{trademark} process in several phases. CDM installed and operated Phase I, the trial installation and field test of a 150-square-foot area selected for a 120-day run in 1995. Approximately 98 percent of the TCE was removed. CDM then installed and operated the next phase (IIa), a year-long test on a 600-square-foot site. Completed in July 1997, this test removed 75 percent of the total volume of TCE down to a depth of 45 feet. TCE in the test sites. Based on the successful field tests (Phases I and IIa), the ROD was prepared and the Lasagna{trademark} alternative was selected for remediation of TCE contaminated soils at the cylinder testing site Solid Waste Management Unit 91(SWMU 91). Bechtel Jacobs Company LLC contracted CDM to construct and operate a full-scale Lasagna{trademark} remediation system at the site (Phase IIb). Construction began in August 1999 and the operational phase was initiated in December 1999. The Lasagna{trademark} system was operated for two years and reduced the average concentration of TCE in SWMU 91 soil from 84 ppm to less than 5.6 ppm. Verification sampling was conducted during May, 2002. Results of the verification sampling indicated the average concentration of TCE in SWMU 91 soil was 0.38 ppm with a high concentration of 4.5 ppm.

  13. An interim report to the manager of the Paducah Gaseous Diffusion Plant from the Paducah Environmental Advisory Committee

    SciTech Connect (OSTI)

    Jackson, G.D.

    1987-10-01

    The Paducah Environmental Advisory Committee was formed as: (1) an outgrowth of other Environmental Advisory Committees already in existence at Oak Ridge and other Martin Marietta Energy Systems plants; (2) a result of public concern following significant nuclear incidents at Bhopal and Chernobyl; (3) a result of the new direction and commitment of the management of the Paducah Gaseous Diffusion Plant following contract acquisition by Martin Marietta Energy Systems; and (4) a means of reducing and/or preventing local and/or public concern regarding the activities of and potential risks created by PGDP. This report discusses the following issues and concerns of the Committee arrived at through a series of meetings: (1) groundwater monitoring; (2) long-range tails storage; C-404, scrap yrads, and PCB and TCE cleanup; nuclear criticality plan and alarm systems; documentation of historical data regarding hazardous waste burial grounds; dosimeter badges; and asbestos handling and removal.

  14. The Mailbox Computer System for the IAEA verification experiment on HEU downlending at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Aronson, A.L.; Gordon, D.M.

    2000-07-31

    IN APRIL 1996, THE UNITED STATES (US) ADDED THE PORTSMOUTH GASEOUS DIFFUSION PLANT TO THE LIST OF FACILITIES ELIGIBLE FOR THE APPLICATION OF INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA) SAFEGUARDS. AT THAT TIME, THE US PROPOSED THAT THE IAEA CARRY OUT A ''VERIFICATION EXPERIMENT'' AT THE PLANT WITH RESPECT TO DOOWNBLENDING OF ABOUT 13 METRIC TONS OF HIGHLY ENRICHED URANIUM (HEU) IN THE FORM OF URANIUM HEXAFLUROIDE (UF6). DURING THE PERIOD DECEMBER 1997 THROUGH JULY 1998, THE IAEA CARRIED OUT THE REQUESTED VERIFICATION EXPERIMENT. THE VERIFICATION APPROACH USED FOR THIS EXPERIMENT INCLUDED, AMONG OTHER MEASURES, THE ENTRY OF PROCESS-OPERATIONAL DATA BY THE FACILITY OPERATOR ON A NEAR-REAL-TIME BASIS INTO A ''MAILBOX'' COMPUTER LOCATED WITHIN A TAMPER-INDICATING ENCLOSURE SEALED BY THE IAEA.

  15. Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995

    SciTech Connect (OSTI)

    Smyre, J.L.; Moll, B.W.; King, A.L.

    1996-06-01

    Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

  16. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  17. Type B Accident Investigation of the August 22, 2000, Injury Resulting From Violent Exothermic Chemical Reaction at the Portsmouth Gaseous Diffusion Plant, X-701B Site

    Broader source: Energy.gov [DOE]

    On August 22, 2000, an accident occurred at the U. S. Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) located in Piketon, Ohio. An employee of the IT Corporation (IT) working on an Environmental Management (EM) Technology Deployment Project received serious burns from a violent chemical reaction.

  18. Dispersion of UO{sub 2}F{sub 2} aerosol and HF vapor in the operating floor during winter ventilation at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.

    1996-12-30

    The gaseous diffusion process is currently employed at two plants in the US: the Paducah Gaseous Diffusion Plant and the Portsmouth Gaseous Diffusion Plant. As part of a facility-wide safety evaluation, a postulated design basis accident involving large line-rupture induced releases of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant (GDP) is evaluated. When UF{sub 6} is released into the atmosphere, it undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form vaporized hydrogen fluoride (HF) and aerosolized uranyl fluoride (UO{sub 2}F{sub 2}). These reactants disperse in the process building and transport through the building ventilation system. The ventilation system draws outside air into the process building, distributes it evenly throughout the building, and discharges it to the atmosphere at an elevated temperature. Since air is recirculated from the cell floor area to the operating floor, issues concerning in-building worker safety and evacuation need to be addressed. Therefore, the objective of this study is to evaluate the transport of HF vapor and UO{sub 2}F{sub 2} aerosols throughout the operating floor area following B-line break accident in the cell floor area.

  19. DOE Releases Draft Request for Proposal and Announces Pre-Solicitation Conference for Paducah Gaseous Diffusion Plant Deactivation and Remediation Services

    Broader source: Energy.gov [DOE]

    Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for Proposals (RFP) for deactivation and remediation services at the Paducah Gaseous Diffusion Plant (PGDP). A contract that includes cost-plus-award-fee and indefinite-delivery indefinite-quantity contract line items for the purpose of providing deactivation and remediation services at PGDP is anticipated.

  20. Determination of the response function for the Portsmouth Gaseous Diffusion Plant criticality accident alarm system neutron detectors

    SciTech Connect (OSTI)

    Tayloe, R.W. Jr.; Brown, A.S.; Dobelbower, M.C.; Woollard, J.E.

    1997-03-01

    Neutron-sensitive radiation detectors are used in the Portsmouth Gaseous Diffusion Plant`s (PORTS) criticality accident alarm system (CAAS). The CAAS is composed of numerous detectors, electronics, and logic units. It uses a telemetry system to sound building evacuation horns and to provide remote alarm status in a central control facility. The ANSI Standard for a CAAS uses a free-in-air dose rate to define the detection criteria for a minimum accident-of-concern. Previously, the free-in-air absorbed dose rate from neutrons was used for determining the areal coverge of criticality detection within PORTS buildings handling fissile materials. However, the free-in-air dose rate does not accurately reflect the response of the neutron detectors in use at PORTS. Because the cost of placing additional CAAS detectors in areas of questionable coverage (based on a free-in-air absorbed dose rate) is high, the actual response function for the CAAS neutron detectors was determined. This report, which is organized into three major sections, discusses how the actual response function for the PORTS CAAS neutron detectors was determined. The CAAS neutron detectors are described in Section 2. The model of the detector system developed to facilitate calculation of the response function is discussed in Section 3. The results of the calculations, including confirmatory measurements with neutron sources, are given in Section 4.

  1. Enterprise Assessments Review of Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant … December 2015

    Energy Savers [EERE]

    Habitability at the Waste Isolation Pilot Plant - October 2015 | Department of Energy Mine Safety, Stabilization, and Habitability at the Waste Isolation Pilot Plant - October 2015 Enterprise Assessments Review of Mine Safety, Stabilization, and Habitability at the Waste Isolation Pilot Plant - October 2015 October 2015 Review of Mine Safety, Stabilization, and Habitability at the Waste Isolation Pilot Plant The U.S. Department of Energy Office of Enterprise Assessments (EA) conducted an

  2. Energy Department Completes K-25 Gaseous Diffusion Building Demolition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The K-25 building, located at the East Tennessee Technology Park formerly known as the Oak Ridge Gaseous Diffusion Plant, was built in 1943 as part of the Manhattan Project. At the ...

  3. DOE Issues Final Request for Proposal for Paducah Gaseous Diffusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Issues Final Request for Proposal for Paducah Gaseous Diffusion Plant Support Services October 6, 2014 - 4:13pm Addthis Media Contact Bill Taylor, 803-952-8564, bill.taylor@srs...

  4. Prediction of external corrosion for steel cylinders at the Paducah Gaseous Diffusion Plant: Application of an empirical method

    SciTech Connect (OSTI)

    Lyon, B.F.

    1996-02-01

    During the summer of 1995, ultrasonic wall thickness data were collected for 100 steel cylinders containing depleted uranium (DU) hexafluoride located at Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The cylinders were selected for measurement to assess the condition of the more vulnerable portion of the cylinder inventory at PGDP. The purpose of this report is to apply the method used in Lyon to estimate the effects of corrosion for larger unsampled populations as a function of time. The scope of this report is limited and is not intended to represent the final analyses of available data. Future efforts will include continuing analyses of available data to investigate defensible deviations from the conservative assumptions made to date. For each cylinder population considered, two basic types of analyses were conducted: (1) estimates were made of the number of cylinders as a function of time that will have a minimum wall thickness of either 0 mils (1 mil = 0.00 1 in.) or 250 mils and (2) the current minimum wall thickness distributions across cylinders were estimated for each cylinder population considered. Additional analyses were also performed investigating comparisons of the results for F and G yards with the results presented in Lyon (1995).

  5. Final environmental impact assessment of the Paducah Gaseous Diffusion Plant site, Paducah, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    This document considers: the need for uranium enrichment facilities; site location; plant description; and describes the power generating facilities in light of its existing environment. The impacts from continuing operations are compared with alternatives of shutdown, relocation, and alternative power systems. (PSB)

  6. Replacement of chlorofluorocarbons (CFCs) at the DOE Gaseous Diffusion Plants: An assessment of global impacts

    SciTech Connect (OSTI)

    Socolof, M.L.; Saylor, R.E.; McCold, L.N.

    1994-12-31

    The US Department of Energy (DOE) operates two uranium enrichment plants. Together, the two plants maintain an inventory of approximately 14 million pounds of a chlorofluorocarbon (CFC), dichlorote-trafluoroethane (CFC-114) as a coolant. Annual operational CFC-114 losses total over 500,000 pounds. In February, 1992, President Bush announced that the US would terminate manufacture and importation of Class 1 ozone depleting substances (including CFC-114) by the end of 1995. To comply with this requirement DOE has considered introducing a replacement coolant by the end of 1995. Two perfluorocarbons (PFCs) - namely, octofluoro-cyclobutane and decafluorobutane - are presently the only known coolants that could meet safety requirements. They would not contribute to stratospheric ozone depletion but contribute to global warming. The paper describes an analysis of the potential global impacts of the proposed replacement of CFC-114 with a PFC. A problem with analyses of global warming and ozone depletion impacts is that even large sources of compounds that contribute to these effects contribute only very small fractions of the total effect. The authors take the position that significant effects to global warming and ozone depletion have already occurred, and that any additional contribution to these effects are contributions to cumulatively significant adverse effects on the environment. The paper describes four alternatives and the extent to which each would contribute to global warming and ozone depletion.

  7. DOE/EA-1927, Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers, McCracken County, Kentucky

    Energy Savers [EERE]

    Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers, McCracken County, Kentucky U.S. Department of Energy Portsmouth/Paducah Project Office December 2015 DOE/EA-1927 ACRONYMS AND ABBREVIATIONS CEQ Council on Environmental Quality CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980 CFR Code of Federal Regulations dBA A-weighted decibel DOE U.S. Department of Energy DUF 6 depleted uranium hexafluoride EA

  8. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.

    2012-08-28

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU 7. The available soil and groundwater data indicate that the some of the waste disposed in this facility contacted and/or were contaminated by TCE. In our assessment, the relatively small amount of TCE associated with SWMU 7 is not contributing detectable TCE to the groundwater and does not represent a significant threat to the environment, particularly in an area where remediation and/or management of TCE in the NW plume will be required for an extended timeframe. If determined to be necessary by the PGDP team and regulators, additional TCE characterization or cleanup activities could be performed. Consistent with the limited quantity of TCE in SWMU 7, we identify a range of low cost approaches for such activities (e.g., soil gas surveys for characterization or SVE for remediation). We hope that this information is useful to the Paducah team and to their regulators and stakeholders to develop a robust environmental management path to address the groundwater and soil contamination associated with the burial ground areas.

  9. Diffusion method of seperating gaseous mixtures

    DOE Patents [OSTI]

    Pontius, Rex B.

    1976-01-01

    A method of effecting a relatively large change in the relative concentrations of the components of a gaseous mixture by diffusion which comprises separating the mixture into heavier and lighter portions according to major fraction mass recycle procedure, further separating the heavier portions into still heavier subportions according to a major fraction mass recycle procedure, and further separating the lighter portions into still lighter subportions according to a major fraction equilibrium recycle procedure.

  10. Applicable or relevant and appropriate requirements (ARARs) for remedial actions at the Paducah Gaseous Diffusion Plant: A compendium of environmental laws and guidance

    SciTech Connect (OSTI)

    Etnier, E.L.; Eaton, L.A. )

    1992-03-01

    Section 121 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 specifies that remedial actions for cleanup of hazardous substances found at sites placed on the National Priorities List (NPL) by the US Environmental Protection Agency (EPA) must comply with applicable or relevant and appropriate requirements (ARARs) or standards under federal and state environmental laws. To date, the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP) has not been on the NPL. Although DOE and EPA have entered into an Administrative Consent Order (ACO), the prime regulatory authority for cleanup at PGDP will be the Resource Conservation and Recovery Act (RCRA). This report supplies a preliminary list of available federal and state ARARs that might be considered for remedial response at PGDP in the event that the plant becomes included on the NPL or the ACO is modified to include CERCLA cleanup. A description of the terms applicable'' and relevant and appropriate'' is provided, as well as definitions of chemical-, location-, and action-specific ARARS. ARARs promulgated by the federal government and by the state of Kentucky are listed in tables. In addition, the major provisions of RCRA, the Safe Drinking Water Act, the Clean Water Act, the Clean Air Act, and other acts, as they apply to hazardous and radioactive waste cleanup, are discussed.

  11. Applicable or relevant and appropriate requirements (ARARs) for remedial actions at the Paducah Gaseous Diffusion Plant: A compendium of environmental laws and guidance. Environmental Restoration Program

    SciTech Connect (OSTI)

    Etnier, E.L.; Eaton, L.A.

    1992-03-01

    Section 121 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 specifies that remedial actions for cleanup of hazardous substances found at sites placed on the National Priorities List (NPL) by the US Environmental Protection Agency (EPA) must comply with applicable or relevant and appropriate requirements (ARARs) or standards under federal and state environmental laws. To date, the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP) has not been on the NPL. Although DOE and EPA have entered into an Administrative Consent Order (ACO), the prime regulatory authority for cleanup at PGDP will be the Resource Conservation and Recovery Act (RCRA). This report supplies a preliminary list of available federal and state ARARs that might be considered for remedial response at PGDP in the event that the plant becomes included on the NPL or the ACO is modified to include CERCLA cleanup. A description of the terms ``applicable`` and ``relevant and appropriate`` is provided, as well as definitions of chemical-, location-, and action-specific ARARS. ARARs promulgated by the federal government and by the state of Kentucky are listed in tables. In addition, the major provisions of RCRA, the Safe Drinking Water Act, the Clean Water Act, the Clean Air Act, and other acts, as they apply to hazardous and radioactive waste cleanup, are discussed.

  12. Thermal discharges from Paducah Gaseous Diffusion Plant outfalls: Impacts on stream temperatures and fauna of Little Bayou and Big Bayou Creeks

    SciTech Connect (OSTI)

    Roy, W.K.; Ryon, M.G.; Hinzman, R.L.

    1996-03-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.

  13. Application of the electromagnetic borehole flowmeter and evaluation of previous pumping tests at Paducah Gaseous Diffusion Plant. Final report, June 15, 1992--August 31, 1992

    SciTech Connect (OSTI)

    Young, S.C.; Julian, S.C.; Neton, M.J.

    1993-01-01

    Multi-well pumping tests have been concluded at wells MW79, MW108, and PW1 at the Paducah Gaseous Diffusion Plant (PGDP) to determine the hydraulic properties of the Regional Gravel Aquifer (RGA). Soil cores suggest that the RGA consists of a thin sandy facies (2 to 6 feet) at the top of a thicker (> 10 feet) gravelly facies. Previous analyses have not considered any permeability contrast between the two facies. To assess the accuracy of this assumption, TVA personnel conducted borehole flowmeter tests at wells MW108 and PW1. Well MW79 could not be tested. The high K sand unit is probably 10 times more permeable than comparable zone in the gravelly portion of the RGA. Previous analyses of the three multi-well aquifer tests do not use the same conceptual aquifer model. Data analysis for one pumping test assumed that leakance was significant. Data analysis for another pumping test assumed that a geologic boundary was significant. By collectively analyzing all three tests with the borehole flowmeter results, the inconsistency among the three pumping tests can be explained. Disparity exists because each pumping test had a different placement of observation wells relative to the high K zone delineating by flowmeter testing.

  14. Thermal Discharges from Paducah Gaseous Diffusion Plant Outfalls: Impacts on Stream Temperatures and Fauna of Little Bayou and Big Bayou Creeks

    SciTech Connect (OSTI)

    Roy, W.K.

    1999-01-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the United States Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.

  15. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J.; Houk, T.

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  16. Gas phase decontamination of gaseous diffusion process equipment

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-03-01

    D&D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D&D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly.

  17. Assessment of the influences of groundwater colloids on the migration of technetium-99 at the Paducah Gaseous Diffusion Plant Site in Paducah, Kentucky

    SciTech Connect (OSTI)

    Gu, B.; McDonald, J.A.; McCarthy, J.F.; Clausen, J.L.

    1994-07-01

    This short report summarizes the influences of groundwater colloids on the migration/transport of {sup 99}Tc at the Paducah Gaseous Diffusion Plant (PGDP) site in Paducah, Kentucky. Limited data suggest that inorganic colloidal materials (e.g., aluminosilicate clay minerals) may not play a significant role in the retention and transport of Tc. Studies by size fractionation reveal that both Tc and natural organic matter (NOM) are largely present in the <3K fraction. The role of NOM on Tc retention and transport is not conclusive on the basis of this study. However, a literature review suggests that Tc is very likely associated with the groundwater organics. The presence of the organic matter could have increased the solubility and cotransport of Tc at the PGDP site. Further studies, applying such techniques as gel chromatography, size exclusion, and spectroscopy, may be useful to determine the association of organic matter with Tc. If Tc is associated with groundwater organics, appropriate protocols for removal of organic matter associated with Tc may be developed. Time and resources were limited so this study is not comprehensive with respect to the role of mobile organic and inorganic colloidal materials on Tc transport in subsurface soils. The redox conditions (DO) of groundwaters reported may not represent the true groundwater conditions, which could have influenced the association and dissociation of Tc with groundwater colloidal materials. Because Tc concentrations in the groundwater (on the order of nCi/L) at the PGDP site is much lower than the solubility of reduced Tc (IV) (on the order of {approximately}10{sup {minus}8} mol/L or parts per billion), regardless of the redox conditions, Tc will stay in solution phase as TC(IV) or Tc(VII). The mechanisms of adsorption/association vs precipitation must be understood under reduced and low Tc conditions so that strategic plans for remediation of Tc contaminated soils and groundwaters can be developed.

  18. RCRA Facility Investigation Plan K-1004 Area Lab Drain and the K-1007-B Pond - Oak Ridge Gaseous Diffusion Plant - Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    ORGDP, Martin Marietta Energy Systems Inc.

    1988-12-01

    Within the confines of the Oak Ridge Gaseous Diffusion Plant (ORGDP) are hazardous waste treatment, storage, and disposal facilities; some are in operation while others are no longer in use. these solid waste management units (SWMUs) are subject to assessment by the US Environmental Protection Agency (EPA). The RCRA Facility Investigation (RFI) Plans are scheduled to be submitted for all units during calendar years 1987 and 1988. The RFI Plan - General Document (K/HS-132) includes information applicable to all the ORGDP SMWUs and serves as a reference document for the site-specific RFI plans. This document is the site-specific RFI Plan for the K-1004 Area Lab Drain (ALD) and the K-1007-B Pond. This plan is based upon requirements described in the draft document, RFI Guidance, Vols. I-IV, December 1987 (EPA 530/SW-87-001). This unit is regulated by Section 3004(u) of the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation Recovery Act (RCRA). Contained within this document are geographical, historical, operational, geological, and hydrological data specific to the K-1004 ALD and the K-1007-B Pond. The potential for release of contamination through the various media to receptors is addressed. A sampling plan is proposed to further determine the extent (if any) of release of contamination to the surrounding environment. Included are health and safety procedures to be followed when implementing the sampling plan. Quality control (QC) procedures for remedial action occurring on the Oak Ridge Reservation (ORR) are presented in 'The Environmental Surveillance Procedures Quality Control Program, Martin Marietta Energy Systems, Inc., (ESH/Sub/87-21706/1), and quality assurance (QA) guidelines for ORGDP investigations are contained in The K-25 Remedial Actions Program Quality Assurance Plan, K/HS-231.

  19. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF{sub 6}) in the diffusion cascade

    SciTech Connect (OSTI)

    Huffer, J.E.

    1997-04-01

    This paper determines the nuclear safety of gaseous UF{sub 6} in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF{sub 6} in plant operations..

  20. ENZYME ACTIVITY PROBE AND GEOCHEMICAL ASSESSMENT FOR POTENTIAL AEROBIC COMETABOLISM OF TRICHLOROETHENE IN GROUNDWATER OF THE NORTHWEST PLUME, PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B; M. Hope Lee, M; S. K. Hampson, S

    2008-06-27

    The overarching objective of the Paducah Gaseous Diffusion Plant (PGDP) enzyme activity probe (EAP) effort is to determine if aerobic cometabolism is contributing to the attenuation of trichloroethene (TCE) and other chlorinated solvents in the contaminated groundwater beneath PGDP. The site-specific objective for the EAP assessment is to identify if key metabolic pathways are present and expressed in the microbial community--namely the pathways that are responsible for degradation of methane and aromatic (e.g. toluene, benzene, phenol) substrates. The enzymes produced to degrade methane and aromatic compounds also break down TCE through a process known as cometabolism. EAPs directly measure if methane and/or aromatic enzyme production pathways are operating and, for the aromatic pathways, provide an estimate of the number of active organisms in the sampled groundwater. This study in the groundwater plumes at PGDP is a major part of a larger scientific effort being conducted by Interstate Technology and Regulatory Council (ITRC), U.S. Department of Energy (DOE) Office of Environmental Management (EM), Savannah River National Laboratory (SRNL), and North Wind Inc. in which EAPs are being applied to contaminated groundwater from diverse hydrogeologic and plume settings throughout the U.S. to help standardize their application as well as their interpretation. While EAP data provide key information to support the site specific objective for PGDP, several additional lines of evidence are being evaluated to increase confidence in the determination of the occurrence of biodegradation and the rate and sustainability of aerobic cometabolism. These complementary efforts include: (1) Examination of plume flowpaths and comparison of TCE behavior to 'conservative' tracers in the plume (e.g., {sup 99}Tc); (2) Evaluation of geochemical conditions throughout the plume; and (3) Evaluation of stable isotopes in the contaminants and their daughter products throughout the plume. If the multiple lines of evidence support the occurrence of cometabolism and the potential for the process to contribute to temporal and spatial attenuation of TCE in PGDP groundwater, then a follow-up enzyme probe microcosm study to better estimate biological degradation rate(s) is warranted.

  1. A TECHNICAL ASSESSMENT OF THE CURRENT WATER POLICY BOUNDARY AT U.S. DEPARTMENT OF ENERGY, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY

    SciTech Connect (OSTI)

    2012-12-13

    In 1988, groundwater contaminated with trichloroethene (TCE) and technetium-99 (Tc-99) was identified in samples collected from residential water wells withdrawing groundwater from the Regional Gravel Aquifer (RGA) north of the Paducah Gaseous Diffusion Plant (PGDP) facility. In response, the U.S. Department of Energy (DOE) provided temporary drinking water supplies to approximately 100 potentially affected residents by initially supplying bottled water, water tanks, and water-treatment systems, and then by extending municipal water lines, all at no cost, to those persons whose wells could be affected by contaminated groundwater. The Water Policy boundary was established in 1993. In the Policy, DOE agreed to pay the reasonable monthly cost of water for homes and businesses and, in exchange, many of the land owners signed license agreements committing to cease using the groundwater via rural water wells. In 2012, DOE requested that Oak Ridge Associated Universities (ORAU), managing contractor of Oak Ridge Institute for Science and Education (ORISE), provide an independent assessment of the quality and quantity of the existing groundwater monitoring data and determine if there is sufficient information to support a modification to the boundary of the current Water Policy. As a result of the assessment, ORAU concludes that sufficient groundwater monitoring data exists to determine that a shrinkage and/or shift of the plume(s) responsible for the initial development of this policy has occurred. Specifically, there is compelling evidence that the TCE plume is undergoing shrinkage due to natural attenuation and associated degradation. The plume shrinkage (and migration) has also been augmented in local areas where large volumes of groundwater were recovered by pump-and treat remedial systems along the eastern and western boundaries of the Northwest Plume, and in other areas where pump-and-treat systems have been deployed by DOE to remove source contaminants. The available evidence supports adjusting the western and northwestern Water Policy boundary. Based on the historical and modeled hydrogeological data reflecting past flow and plume attenuation, along with associated plume migration toward the northeast, the establishment of a new boundary along the westernmost margin of the earliest indication of the TCE plume is proposed and justified on hydrogeological grounds. Approximately 30% of the original area would remain within the adjusted Water Policy area west and northwest of the PGDP facility. This modification would release about 70% of the area, although individual properties would overlap the new boundary.

  2. Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky

    SciTech Connect (OSTI)

    Boerner, A. J.; Maldonado, D. G.; Hansen, Tom

    2012-09-01

    Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.

  3. EM Begins Demolishing K-31 Gaseous Diffusion Building

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – EM's demolition of the K-31 Building at Oak Ridge’s East Tennessee Technology Park (ETTP) began Wednesday, marking the removal of the fourth of five gaseous diffusion buildings at the former uranium enrichment site.

  4. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  5. K-25 Gaseous Diffusion Process Building | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    other two being electromagnetic separation and liquid thermal diffusion. The S-50 liquid thermal diffusion plant, using convection to separate the isotopes in thousands of tall...

  6. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  7. Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant Full Document and Summary Versions...

  8. Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1996-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.

  9. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  10. Evaluation of natural attenuation processes for trichloroethylene and technetium-99 in the Northeast and Northwest plumes at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Clausen, J.L.; Sturchio, N.C.; Heraty, L.J.; Huang, L.; Abrajano,T.

    1997-11-25

    NA processes such as biodegradation, sorption, dilution dispersion, advection, and possibly sorption and diffusion are occurring in the Northeast and Northwest plumes. However, the overall biological attenuation rate for TCE within the plumes is not sufficiently rapid to utilize as remedial option. The mobility and toxicity of {sup 99}Tc is not being reduced by attenuating processes within the Northwest Plume. The current EPA position is that NA is not a viable remedial approach unless destructive processes are present or processes are active which reduce the toxicity and mobility of a contaminant. Therefore, active remediation of the dissolved phase plumes will be necessary to reduce contaminant concentrations before an NA approach could be justified at PGDP for either plume. Possible treatment methods for the reduction of dissolved phase concentrations within the plumes are pump-and-treat bioaugmentation, biostimulation, or multiple reactive barriers. Another possibility is the use of a regulatory instrument such as an Alternate Concentration Limit (ACL) petition. Biodegradation of TCE is occurring in both plumes and several hypothesis are possible to explain the apparent conflicts with some of the geochemical data. The first hypothesis is active intrinsic bioremediation is negligible or so slow to be nonmeasurable. In this scenario, the D.O., chloride, TCE, and isotopic results are indicative of past microbiological reactions. It is surmised in this scenario, that when the initial TCE release occurred, sufficient energy sources were available for microorganisms to drive aerobic reduction of TCE, but these energy sources were rapidly depleted. The initial degraded TCE has since migrated to downgradient locations. In the second scenario, TCE anaerobic degradation occurs in organic-rich micro-environments within a generally aerobic aquifer. TCE maybe strongly absorbed to organic-rich materials in the aquifer matrix and degraded by local Immunities of microbes, perhaps even under anaerobic conditions. Chloride, generated by degradation in such microenvironment is released rapidly into the water, as is CO{sub 2}, from respiration of the microorganisms. TCE and its organic degradation products are retained on the aquifer matrix by sorption, and released more slowly into the groundwater. In this process, chloride produced from the microbial reaction may become separated in the plume from the residual TCE. This may explain why the chloride isotope ratio and dissolved TCE do not correlate with the DIC isotope ratio. The relationship between the {delta}{sup 37}Cl values of TCE and dissolved inorganic chloride is consistent with what would be expected from the degradation of TCE, but is complicated by the elevated levels of background chloride, presumably due to agriculture practice, and complex behavior of TCE in the aquifer.

  11. INDEPENDENT TECHNICAL REVIEW OF THE FOCUSED FEASIBILITY STUDY AND PROPOSED PLAN FOR DESIGNATED SOLID WASTE MANAGEMENT UNITS CONTRIBUTING TO THE SOUTHWEST GROUNDWATER PLUME AT THE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.; Amidon, M.; Rossabi, J.; Stewart, L.

    2011-05-31

    The U. S. Department of Energy (DOE) is currently developing a Proposed Plan (PP) for remediation of designated sources of chlorinated solvents that contribute contamination to the Southwest (SW) Groundwater Plume at the Paducah Gaseous Diffusion Plant (PGDP), in Paducah, KY. The principal contaminants in the SW Plume are trichloroethene (TCE) and other volatile organic compounds (VOCs); these industrial solvents were used and disposed in various facilities and locations at PGDP. In the SW plume area, residual TCE sources are primarily in the fine-grained sediments of the Upper Continental Recharge System (UCRS), a partially saturated zone that delivers contaminants downward into the coarse-grained Regional Gravel Aquifer (RGA). The RGA serves as the significant lateral groundwater transport pathway for the plume. In the SW Plume area, the four main contributing TCE source units are: (1) Solid Waste Management Unit (SWMU) 1 / Oil Landfarm; (2) C-720 Building TCE Northeast Spill Site (SWMU 211A); (3) C-720 Building TCE Southeast Spill Site (SWMU 211B); and (4) C-747 Contaminated Burial Yard (SWMU 4). The PP presents the Preferred Alternatives for remediation of VOCs in the UCRS at the Oil Landfarm and the C-720 Building spill sites. The basis for the PP is documented in a Focused Feasibility Study (FFS) (DOE, 2011) and a Site Investigation Report (SI) (DOE, 2007). The SW plume is currently within the boundaries of PGDP (i.e., does not extend off-site). Nonetheless, reasonable mitigation of the multiple contaminant sources contributing to the SW plume is one of the necessary components identified in the PGDP End State Vision (DOE, 2005). Because of the importance of the proposed actions DOE assembled an Independent Technical Review (ITR) team to provide input and assistance in finalizing the PP.

  12. Portsmouth Gaseous Diffusion Plant Director's Final Findings...

    Office of Environmental Management (EM)

    * Provide exemptions from specific solid and hazardous waste requirements of the Ohio Administrative Code as necessary to accomplish the integration process discussed above....

  13. Portsmouth Gaseous Diffusion Plant Director's Final Findings...

    Office of Environmental Management (EM)

    established for a three year rolling period consisting of the current federal fiscal year plus two additional federal fiscal years. * Non-enforceable target dates will be...

  14. Independent Activity Report, Portsmouth Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    HIAR-PORTS-2011-08-03 This Independent Activity Report documents an operational awareness activity conducted by Office of Health, Safety and Security's (HSS) Office of Safety...

  15. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The contractor at PORTS is Fluor-Babcock & Wilcox Portsmouth (FBP). The HSS Office of Safety and Emergency Management Evaluations performed the onsite portion of the Independent ...

  16. Portsmouth Gaseous Diffusion Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 30, 2015 Preliminary Notice of Violation, Fluor-B&W Portsmouth, LLC - January 29, 2015 Nuclear Safety Enforcement Preliminary Notice of Violation issued to Fluor-B&W ...

  17. Onsite Gaseous Centrifuge Enrichment Plant UF6 Cylinder Destructive Analysis

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong; Carter, Jennifer C.; McNamara, Bruce K.; O'Hara, Matthew J.; Phillips, Jon R.; Curtis, Michael M.

    2012-07-17

    The IAEA safeguards approach for gaseous centrifuge enrichment plants (GCEPs) includes measurements of gross, partial, and bias defects in a statistical sampling plan. These safeguard methods consist principally of mass and enrichment nondestructive assay (NDA) verification. Destructive assay (DA) samples are collected from a limited number of cylinders for high precision offsite mass spectrometer analysis. DA is typically used to quantify bias defects in the GCEP material balance. Under current safeguards measures, the operator collects a DA sample from a sample tap following homogenization. The sample is collected in a small UF6 sample bottle, then sealed and shipped under IAEA chain of custody to an offsite analytical laboratory. Current practice is expensive and resource intensive. We propose a new and novel approach for performing onsite gaseous UF6 DA analysis that provides rapid and accurate assessment of enrichment bias defects. DA samples are collected using a custom sampling device attached to a conventional sample tap. A few micrograms of gaseous UF6 is chemically adsorbed onto a sampling coupon in a matter of minutes. The collected DA sample is then analyzed onsite using Laser Ablation Absorption Ratio Spectrometry-Destructive Assay (LAARS-DA). DA results are determined in a matter of minutes at sufficient accuracy to support reliable bias defect conclusions, while greatly reducing DA sample volume, analysis time, and cost.

  18. In situ carbonyl extraction of Ni from gaseous diffusion cells

    SciTech Connect (OSTI)

    Visnapuu, A. [USBM Salt Lake Research Center, Salt Lake City, UT (United States); Hollenberg, G.W. [Battelle Pacific Northwest Lab., Richland, WA (United States); Bundy, R.D. [Battelle Memorial Institute, Oak Ridge, TN (United States)

    1995-12-31

    This paper discusses the use of carbonyl processing technology for recovery of nickel from uranium isotope separation diffusion cells, and potential applications to recover nickel, iron, chromium, cobalt, and other carbonyl forming metals from nuclear waste while reducing the volume of the high level residue for more economic disposal. Nickel powder was carbonylated under static and dynamic conditions using only carbon monoxide to determine if the nickel powder would react rapidly enough to require no promoter. Nickel to Ni(CO){sub 4} conversion was realized in all cases and nickel metal was vapor deposited in the thermal decomposer, but the conversion rates in all cases the reaction were too slow for practical recovery. Addition of hydrogen sulfide gas as a promoter increased the conversion rate more than 500-fold over conversion with no promoter. Test summaries are provided in the paper; results indicate that promoter activated carbonylation is a viable approach for recovery of nickel from uranium isotope diffusion cells.

  19. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous

    Energy Savers [EERE]

    Diffusion Plant | Department of Energy Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Full Document and Summary Versions are available for download PDF icon Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant PDF icon Summary - Environmental Management Waste Management Facility (EMWMF) at Oak Ridge, TN More Documents & Publications

  20. Deactivation Project Begins at Paducah Gaseous Diffusion Plant | Department

    Energy Savers [EERE]

    Shafer About Us David Shafer Team Leader, Asset Management Team David Shafer joined the Office of Legacy Management in 2011 and has served as both the UMTRCA/Nevada Offsites Environmental Team Lead and the Acting Director of the Office of Site Operations prior to his current position. David worked previously for DOE from 1989 to 1998, primarily for the Office of Environmental Management at DOE Headquarters, working with environmental restoration projects managed out of the DOE offices in Las

  1. DOE Awards Contract for Portsmouth Gaseous Diffusion Plant Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The primarily firm-fixed-price nature of the contract will allow DOE to hold the contractor accountable for meeting the contract requirements. Infrastructure support services to be ...

  2. DOE Awards Contract for Paducah Gaseous Diffusion Plant Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The primarily firm-fixed-price nature of the contract will allow DOE to hold the contractor accountable for meeting the contract requirements. Infrastructure support services to be ...

  3. Review of the Portsmouth Gaseous Diffusion Plant Integrated Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Independent Oversight noted that the FBP ISMS description includes the three key safety culture focus areas - leadership, employeeworker engagement, and organizational learning - ...

  4. Paducah Gaseous Diffusion Plant - GW OU Southwest Plume | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    No Basis for Exit Strategy: Other Environmental Indicators (EIs) Groundwater Migration Under Control? No Current Human Exposure Acceptable? Yes Confirmed by Lead Regulator? No ...

  5. Paducah Gaseous Diffusion Plant Compliance Order, September 10...

    Office of Environmental Management (EM)

    approved STP and determine whether compliance dates should be modified. * Delay in performance shall be excused and no civil penalty assessed when performance is prevented or...

  6. DOE Seeks Quotes for Paducah Gaseous Diffusion Plant Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Related Articles A view of PPPO's retooled website on a smartphone and laptop. New Website to Keep Portsmouth, Paducah Site Stakeholders Up to Date DOE Seeks Quotes for ...

  7. Breached cylinder incident at the Portsmouth gaseous diffusion plant

    SciTech Connect (OSTI)

    Boelens, R.A.

    1991-12-31

    On June 16, 1990, during an inspection of valves on partially depleted product storage cylinders, a 14-ton partially depleted product cylinder was discovered breached. The cylinder had been placed in long-term storage in 1977 on the top row of Portsmouth`s (two rows high) storage area. The breach was observed when an inspector noticed a pile of green material along side of the cylinder. The breach was estimated to be approximately 8- inches wide and 16-inches long, and ran under the first stiffening ring of the cylinder. During the continuing inspection of the storage area, a second 14-ton product cylinder was discovered breached. This cylinder was stacked on the bottom row in the storage area in 1986. This breach was also located adjacent to a stiffening ring. This paper will discuss the contributing factors of the breaching of the cylinders, the immediate response, subsequent actions in support of the investigation, and corrective actions.

  8. DOE/EA-1927, Paducah Gaseous Diffusion Plant Final Environmental...

    Energy Savers [EERE]

    ... Parameter Value a Land use for facility, roads, parking ... 3,000,000 gallons c Natural gas Minimal Steel and concrete ... Electricity use based on electrical requirements for two ...

  9. Community Visions for the Paducah Gaseous Diffusion Plant Site

    SciTech Connect (OSTI)

    Ormsbee, Lindell e; Kipp, James A

    2011-09-01

    This report focuses on assessing community preferences for the future use of the PGDP site, given the site's pending closure by US DOE. The project approach fostered interaction and engagement with the public based on lessons learned at other complex DOE environmental cleanup sites and upon the integration of a number of principles and approaches to public engagement from the Project Team's local, state, regional and international public engagement experience. The results of the study provide the community with a record of the diversity of values and preferences related to the environmental cleanup and future use of the site.

  10. Independent Activity Report, Portsmouth Gaseous Diffusion Plant - August

    Office of Environmental Management (EM)

    Achievements | Department of Energy Inaugural C3E Symposium Fosters Collaborative Discussions and Celebrates Achievements Inaugural C3E Symposium Fosters Collaborative Discussions and Celebrates Achievements November 20, 2012 - 12:57pm Addthis Inaugural C3E Symposium Fosters Collaborative Discussions and Celebrates Achievements Caroline McGregor Policy Analyst, Office of International Affairs Editor's note: This was originally posted in the Clean Energy MInisterial's Fall 2012 newsletter. In

  11. Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigat...

    Office of Environmental Management (EM)

    by Lead Regulator? Yes Regulatory Decision Document Status? Decision Document in Place Lead Regulatory Agency: State Date Approved: March 2001 Regulatory Driver: RCRA Regulatory...

  12. Orientation Visit to the Portsmouth Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    (UESA) Storage Building and Associated Outside Storage, and the DUF6 Conversion Facility. ... Lead, PPPO Nuclear Safety Oversight Lead, DUF6 Program Manager, Quality Assurance Lead, ...

  13. Review of the Portsmouth Gaseous Diffusion Plant Work Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Pre-job briefing for Converter Sampling 25-5-2 Stage 12 at X-326 * Pre-job briefing for Overhead Crane Preventive Maintenance * Pre-job briefing for Wise Construction Pre-job B-2

  14. DOE Seeks Small Businesses for Paducah Gaseous Diffusion Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 10, 2014 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for ...

  15. DOE Seeks Small Businesses for Portsmouth Gaseous Diffusion Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 2, 2014 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564, bill.taylor@srs.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for ...

  16. Orientation Visit to the Portsmouth Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    Opti-MN Impact House Presentation Opti-MN Impact House Presentation Opti-MN was the Grand Winner of the 2015 Race to Zero Student Design Competition. View the presentation for the Opti-MN Impact House below. Read a full list of the winning teams. PDF icon Opti-MN Presentation More Documents & Publications 2015 Race to Zero Competition Grand Winner and Grand Winner Finalist Team Submissions 2016 Race to Zero Competition Winner Team Presentations 2014 Race to Zero Student Design Competition:

  17. Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative

    Office of Environmental Management (EM)

    Small Modular Reactor Siting | Department of Energy Population Sensitivity Evaluation of Two Candidate Locations for Possible Small Modular Reactor Siting Population Sensitivity Evaluation of Two Candidate Locations for Possible Small Modular Reactor Siting This report documents population density studies of selected sites in the Hampton Roads, Virginia area. PDF icon Population Sensitivity Evaluation of Two Candidate Locations for Possible Small Modular Reactor Siting More Documents &

  18. Senior DOE Officials Visit Paducah Gaseous Diffusion Plant Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM Acting Assistant Secretary Mark Whitney (left). Brad Montgomery of LATA Environmental Services of Kentucky LLC (right) describes the deep-soil mixing process to EM Acting ...

  19. Energy Department Selects Deactivation Contractor for Paducah Gaseous

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diffusion Plant | Department of Energy Deactivation Contractor for Paducah Gaseous Diffusion Plant Energy Department Selects Deactivation Contractor for Paducah Gaseous Diffusion Plant July 22, 2014 - 5:48pm Addthis News Media Contact Brad Mitzelfelt, (859) 219-4035, brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy (DOE) today awarded a Task Order under the Nationwide Environmental Management ID/IQ Unrestricted Contract to Fluor Federal Services, Inc. for

  20. EA-1927: Conveyance of Land and Facilities at the Paducah Gaseous...

    Broader source: Energy.gov (indexed) [DOE]

    Draft EA for potential land and facilities transfers at the Paducah Gaseous Diffusion Plant in McCracken County, Kentucky. OPPORTUNITES FOR PUBLIC COMMENT No public comment...

  1. ,"U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production, Gaseous Equivalent (Bcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  2. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites

    Broader source: Energy.gov [DOE]

    When Babcock & Wilcox Conversion Services took over the DUF6 Project on March 29 of this year, the company had one thing in mind: Bring all seven conversion lines at both plants to fully operational status by Sept. 30, 2011.

  3. Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Kulkarni, Gourihar R.; Munley, John T.; Nelson, Danny A.; Qiao, Hong; Phillips, Jon R.

    2012-07-17

    Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energy (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids, producing a small atomic uranium vapor plume. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement is independent of chemical form and degree of dilution with nuisance dust and other materials. LAARS has high relative precision and detection limits approaching the femtogram range for U-235. The sample is scanned and assayed point-by-point at rates reaching 1 million measurements/hour, enabling LAARS to detect and analyze uranium in trace samples. The spectrometer is assembled using primarily commercially available components and features a compact design and automated analysis.Two specific gaseous centrifuge enrichment plant (GCEP) applications of the spectrometer are currently under development: 1) LAARS-Environmental Sampling (ES), which collects and analyzes aerosol particles for GCEP misuse detection and 2) LAARS-Destructive Assay (DA), which enables onsite enrichment DA sample collection and analysis for protracted diversion detection. The two applications propose game-changing technological advances in GCEP safeguards verification.

  4. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    SciTech Connect (OSTI)

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. )

    1990-07-01

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  5. Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong; Phillips, Jon R.

    2012-07-01

    Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energy’s (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids producing a small plume containing uranium atoms. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement has high relative precision and detection limits approaching the femtogram range for uranium. It is independent of chemical form and degree of dilution with nuisance dust and other materials. High speed sample scanning and pinpoint characterization allow measurements on millions of particles/hour to detect and analyze the enrichment of trace uranium in samples. The spectrometer is assembled using commercially available components at comparatively low cost, and features a compact and low power design. Future designs can be engineered for reliable, autonomous deployment within an industrial plant environment. Two specific applications of the spectrometer are under development: 1) automated unattended aerosol sampling and analysis and 2) on-site small sample destructive assay measurement. The two applications propose game-changing technological advances in gaseous centrifuge enrichment plant (GCEP) safeguards verification. The aerosol measurement instrument, LAARS-environmental sampling (ES), collects aerosol particles from the plant environment in a purpose-built rotating drum impactor and then uses LAARS-ES to quickly scan the surface of the impactor to measure the enrichments of the captured particles. The current approach to plant misuse detection involves swipe sampling and offsite analysis. Though this approach is very robust it generally requires several months to obtain results from a given sample collection. The destructive assay instrument, LAARS-destructive assay (DA), uses a simple purpose-built fixture with a sampling planchet to collect adsorbed UF6 gas from a cylinder valve or from a process line tap or pigtail. A portable LAARS-DA instrument scans the microgram quantity of uranium collected on the planchet and the assay of the uranium is measured to ~0.15% relative precision. Currently, destructive assay samples for bias defect measurements are collected in small sample cylinders for offsite mass spectrometry measurement.

  6. Design of an Unattended Environmental Aerosol Sampling and Analysis System for Gaseous Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Munley, John T.; Alexander, M. L.

    2011-07-19

    The resources of the IAEA continue to be challenged by the rapid, worldwide expansion of nuclear energy production. Gaseous centrifuge enrichment plants (GCEPs) represent an especially formidable dilemma to the application of safeguard measures, as the size and enrichment capacity of GCEPs continue to escalate. During the early part of the 1990's, the IAEA began to lay the foundation to strengthen and make cost-effective its future safeguard regime. Measures under Part II of 'Programme 93+2' specifically sanctioned access to nuclear fuel production facilities and environmental sampling by IAEA inspectors. Today, the Additional Protocol grants inspection and environmental sample collection authority to IAEA inspectors at GCEPs during announced and low frequency unannounced (LFUA) inspections. During inspections, IAEA inspectors collect environmental swipe samples that are then shipped offsite to an analytical laboratory for enrichment assay. This approach has proven to be an effective deterrence to GCEP misuse, but this method has never achieved the timeliness of detection goals set forth by IAEA. Furthermore it is questionable whether the IAEA will have the resources to even maintain pace with the expansive production capacity of the modern GCEP, let alone improve the timeliness in reaching current safeguards conclusions. New safeguards propositions, outside of familiar mainstream safeguard measures, may therefore be required that counteract the changing landscape of nuclear energy fuel production. A new concept is proposed that offers rapid, cost effective GCEP misuse detection, without increasing LFUA inspection access or introducing intrusive access demands on GCEP operations. Our approach is based on continuous onsite aerosol collection and laser enrichment analysis. This approach mitigates many of the constraints imposed by the LFUA protocol, reduces the demand for onsite sample collection and offsite analysis, and overcomes current limitations associated with the in-facility misuse detection devices. Onsite environmental sample collection offers the ability to collect fleeting uranium hexafluoride emissions before they are lost to the ventilation system or before they disperse throughout the facility, to become deposited onto surfaces that are contaminated with background and historical production material. Onsite aerosol sample collection, combined with enrichment analysis, provides the unique ability to quickly detect stepwise enrichment level changes within the facility, leading to a significant strengthening of facility misuse deterence. We report in this paper our study of several GCEP environmental sample release scenarios and simulation results of a newly designed aerosol collection and particle capture system that is fully integrated with the Laser Ablation, Absorbance Ratio Spectrometry (LAARS) uranium particle enrichment analysis instrument that was developed at the Pacific Northwest National Laboratory.

  7. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant, January--December 1995

    SciTech Connect (OSTI)

    Kszos, L.A.

    1996-04-01

    The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (benthic macroinvertebrates, fish). This report focuses on ESD activities occurring from Jan. 1995 to Dec. 1995, although activities conducted outside this period are included as appropriate.

  8. Using Artificial Neural Networks to Forecast Trichloroethylene Concentrations at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Kopp, Joshua D

    2007-05-01

    To determine the future extent of the TCE contamination plume at PGDP, a groundwater and solute transport model has been developed by the Department of Energy (DOE). The model used to perform these calculations is MODFLOWT which is an enhanced groundwater transport model developed by the United States Geological Survey (USGS). MODFLOWT models groundwater movement as well as the transport of species that are subject to adsorption and decay by using a finite difference method (Duffield et al 2001). A significant limitation of MODFLOWT is that it requires large amounts of data. This data can be difficult and expensive to obtain. MODFLOWT also requires excessive computational time to perform one simulation. It is desirable to have a model that can predict the spatial extent of the contaminant plume without as much required data and that does not require excessive computational times. The purpose of this study is to develop and alternative model to MODFLOWT that can produce similar results for possible use in a companion management model. The alternative model used in this study is an artificial neural network (ANN).

  9. Evaluation of the proposed pilot groundwater pump and treat demonstration for the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Hale, T.B.; Huff, D.D.; Nickelson, M.D.; Rightmire, C.T.

    1992-11-01

    This report contains the evaluation and recommendations of a Groundwater Corrective Actions Review Team. The primary goal is to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at Paducah, Kentucky. A key distinction recognized by the review team is that the proposed project is intended to be a full-scale hydraulic containment of contaminants migrating from the sources of the plume, not plume remediation. The key questions incorporated into this plan are whether (1) dense, nonaqueous-phase liquids (DNAPLS) are present in the Regional Gravel Aquifer (RGA) at the source of the plume and (2) [sup 99]Tc removal must be included as part of any groundwater treatment process. The first question cannot be answered until the contaminant sources are better defined; the second question requires further risk assessment and/or a policy decision by DOE. Technical evaluation by the review team suggests that the recommended course of action be to modify the proposed work plan to include accurate identification of the sources of contaminants and vertical distribution of contaminants within the Northwest plume before a decision is made on the preferred source-control option. If DNAPLs are not present in the RGA, removal or containment of the sources is recommended. If DNAPLs are present, then hydraulic containment will be required. Finally, the review team recognizes that it is necessary to initiate a more comprehensive analysis of sitewide remediation needs to create links between action taken for the Northwest plume and action taken for other contamination sites at PGPD.

  10. Reliability study: raw and make-up water system, Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Peterman, S.M.; Wiehle, W.E.; Walder, A.; Houk, T.C.; West, R.M.

    1981-09-01

    A reliability study for determining the ability of the raw and make-up water system to provide reliable and adequate service through the year 2000 has been completed. This study includes an evaluation of the well fields, X-608 Raw Water Pump House, X-605 Booster Station Complex, X-611 Water Treatment Complex, and the associated piping. The raw and make-up water system is in good overall condition, but to maintain this condition, the reliability study team made the following recommendations: (1) increase well field capacity; (2) replace certain speed reducers at X-611; (3) repair deteriorated poles, crossarms, and accessories on F-2 and W-1 feeders; (4) stabilize the landslide in vicinity of the 48 in. raw water main; and (5) initiate further investigation, testing, or engineering studies to correct deficiencies in the supervisory control system between well fields, pump house, and X-611, determine if the 2400 volt underground cables to X-608A wells should be replaced.

  11. Portsmouth Gaseous Diffusion Plant Director's Final Findings and Orders, February 24, 1998

    Office of Environmental Management (EM)

    Annual Site Environmental Reports Portsmouth Annual Site Environmental Reports The Portsmouth Annual Site Environmental Reports are prepared to summarize environmental activities, primarily environmental monitoring, at the Portsmouth Site. The report fulfills a requirement of DOE Order 231.1B, Environment, Safety and Health Reporting, for preparation of an annual summary of environmental data to characterize environmental management performance. The Annual Site Environmental Report also provides

  12. Portsmouth Gaseous Diffusion Plant Director's Final Findings and Orders, February 24, 1998 Summary

    Office of Environmental Management (EM)

    DUF 6 and LiOH) State Ohio Agreement Type Director's Final Findings and Orders Legal Driver(s) RCRA Scope Summary Establish Compliance Orders and schedules regarding the LiOH Storage Plan/LiOH removal, and the DUF 6 Management Plan. Parties DOE; Ohio Environmental Protection Agency; Lockheed Martin Energy Systems, Inc. Date 2/24/1998 SCOPE * Establish Compliance Orders and schedules regarding the LiOH Storage Plan/LiOH removal, and the DUF 6 Management Plan. * Exempt Respondents from 1) the

  13. Portsmouth Gaseous Diffusion Plant Director's Final Findings and Orders, March 18, 1999

    Office of Environmental Management (EM)

  14. Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    EIS, Draft Corridors - September 2007. | Department of Energy Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Map of the area covered by a programmatic environmental impact statement (PEIS), "Designation of Energy Corridors on Federal Land in the 11 Western States" (DOE/EIS-0386) to address the

  15. Detection of illicit HEU production in gaseous centrifuge enrichment plants using neutron counting techniques on product cylinders

    SciTech Connect (OSTI)

    Freeman, Corey R; Geist, William H

    2010-01-01

    Innovative and novel safeguards approaches are needed for nuclear energy to meet global energy needs without the threat of nuclear weapons proliferation. Part of these efforts will include creating verification techniques that can monitor uranium enrichment facilities for illicit production of highly-enriched uranium (HEU). Passive nondestructive assay (NDA) techniques will be critical in preventing illicit HEU production because NDA offers the possibility of continuous and unattended monitoring capabilities with limited impact on facility operations. Gaseous centrifuge enrichment plants (GCEP) are commonly used to produce low-enriched uranium (LEU) for reactor fuel. In a GCEP, gaseous UF{sub 6} spins at high velocities in centrifuges to separate the molecules containing {sup 238}U from those containing the lighter {sup 235}U. Unfortunately, the process for creating LEU is inherently the same as HEU, creating a proliferation concern. Insuring that GCEPs are producing declared enrichments poses many difficult challenges. In a GCEP, large cascade halls operating thousands of centrifuges work together to enrich the uranium which makes effective monitoring of the cascade hall economically prohibitive and invasive to plant operations. However, the enriched uranium exiting the cascade hall fills product cylinders where the UF{sub 6} gas sublimes and condenses for easier storage and transportation. These product cylinders hold large quantities of enriched uranium, offering a strong signal for NDA measurement. Neutrons have a large penetrability through materials making their use advantageous compared to gamma techniques where the signal is easily attenuated. One proposed technique for detecting HEU production in a GCEP is using neutron coincidence counting at the product cylinder take off stations. This paper discusses findings from Monte Carlo N-Particle eXtended (MCNPX) code simulations that examine the feasibility of such a detector.

  16. Virtual Museum Captures Ohio Plant History: Web-based Project Preserves

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant's Uranium Enrichment Legacy | Department of Energy Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy May 21, 2012 - 12:00pm Addthis An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. PIKETON, Ohio - Do

  17. Lessons-Learned from D and D Activities at the Five Gaseous Diffusion Buildings (K-25, K- 27, K-29, K-31 and K-33) East Tennessee Technology Park, Oak Ridge, TN - 13574

    SciTech Connect (OSTI)

    Kopotic, James D.; Ferri, Mark S.; Buttram, Claude

    2013-07-01

    The East Tennessee Technology Park (ETTP) is the site of five former gaseous diffusion plant (GDP) process buildings that were used to enrich uranium from 1945 to 1985. The process equipment in the original two buildings (K-25 and K-27) was used for the production of highly enriched uranium (HEU), while that in the three later buildings (K-29, K-31 and K-33) produced low enriched uranium (LEU). Equipment was contaminated primarily with uranium and to a lesser extent technetium (Tc). Decommissioning of the GDP process buildings has presented several unique challenges and produced many lessons-learned. Among these is the importance of good, up-front characterization in developing the best demolition approach. Also, chemical cleaning of process gas equipment and piping (PGE) prior to shutdown should be considered to minimize the amount of hold-up material that must be removed by demolition crews. Another lesson learned is to maintain shutdown buildings in a dry state to minimize structural degradation which can significantly complicate characterization, deactivation and demolition efforts. Perhaps the most important lesson learned is that decommissioning GDP process buildings is first and foremost a waste logistics challenge. Innovative solutions are required to effectively manage the sheer volume of waste generated from decontamination and demolition (D and D) of these enormous facilities. Finally, close coordination with Security is mandatory to effectively manage Special Nuclear Material (SNM) and classified equipment issues. (authors)

  18. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-08-11

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  19. Safeguards training course: Nuclear material safeguards for enrichment plants

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    The main objective of this course is to provide the course participants with the necessary skills to perform their inspection activities at enrichment plants. As background information, a variety of enrichment technologies will first be characterized and compared followed by a review of basic cascade, gas centrifuge, and gaseous diffusion theory. To focus on gas centrifuge and gaseous diffusion technology, the major components and system of gas centrifuge and gaseous diffusion enrichment plants including their function in routine LEU production will be identified. The objectives of safeguards at an enrichment plant, including those agreed to in the Hexapartite Safeguards Project, will then be described. Discussions will then focus on potential diversion scenarios at both a centrifuge and diffusion enrichment facility and applicable safeguards inspection activities for detecting these scenarios. This report presents a discussion on basic separation and cascade theory, uranium hexafluoride, and detailed separation theory, including gas centrifuge and gaseous diffusion.

  20. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, James A.; Hayden, Jr., Howard W.

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  1. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  2. U.S. Department of Energy Announces 2014 Dates for Public Tours of Portsmouth Gaseous Diffusion Plant

    Broader source: Energy.gov [DOE]

    PIKETON, OH – Interested in seeing what’s behind the security gates at the Department of Energy’s former uranium enrichment facilities in Piketon, Ohio? Then you will have a special opportunity to participate in a limited number of monthly public tours scheduled in 2014. Due to the popularity of the general public tours that began in 2012, additional tours have been scheduled from March through October 2014.

  3. Final report. Paducah Gaseous Diffusion Plant PCB sediment survey: Big Bayou Creek and Little Bayou Creek, Paducah, Kentucky

    SciTech Connect (OSTI)

    1996-12-01

    Laboratory analysis of collected samples along drainage features at PGDP. Report documents levels of PCB contamination and considers locations of contamination and known releases to theorize probable sources to further investigate.

  4. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1994-06-01

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  5. Evaluation of the proposed pilot groundwater pump and treat demonstration for the Paducah Gaseous Diffusion Plant. Environmental Restoration Program

    SciTech Connect (OSTI)

    Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Hale, T.B.; Huff, D.D.; Nickelson, M.D.; Rightmire, C.T.

    1992-11-01

    This report contains the evaluation and recommendations of a Groundwater Corrective Actions Review Team. The primary goal is to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at Paducah, Kentucky. A key distinction recognized by the review team is that the proposed project is intended to be a full-scale hydraulic containment of contaminants migrating from the sources of the plume, not plume remediation. The key questions incorporated into this plan are whether (1) dense, nonaqueous-phase liquids (DNAPLS) are present in the Regional Gravel Aquifer (RGA) at the source of the plume and (2) {sup 99}Tc removal must be included as part of any groundwater treatment process. The first question cannot be answered until the contaminant sources are better defined; the second question requires further risk assessment and/or a policy decision by DOE. Technical evaluation by the review team suggests that the recommended course of action be to modify the proposed work plan to include accurate identification of the sources of contaminants and vertical distribution of contaminants within the Northwest plume before a decision is made on the preferred source-control option. If DNAPLs are not present in the RGA, removal or containment of the sources is recommended. If DNAPLs are present, then hydraulic containment will be required. Finally, the review team recognizes that it is necessary to initiate a more comprehensive analysis of sitewide remediation needs to create links between action taken for the Northwest plume and action taken for other contamination sites at PGPD.

  6. Sensitivity Analysis on the Half-Life of Trichloroethylene and the Distribution Coefficient at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Kopp, Joshua D

    2007-06-01

    To determine the future extent of the TCE contamination plume at PGDP, a groundwater and solute transport model has been developed by the Department of Energy (DOE). The model used to perform these calculations is MODFLOWT which is an enhanced groundwater transport model developed by the United States Geological Survey (USGS). MODFLOWT models groundwater movement as well as the transport of species that are subject to adsorption and decay by using a finite difference method (Duffield et al 2001). A significant limitation of MODFLOWT is that it requires large amounts of data. This data can be difficult and expensive to obtain. MODFLOWT also requires excessive computational time to perform one simulation. It is desirable to have a model that can predict the spatial extent of the contaminant plume without as much required data and that does not require excessive computational times. The purpose of this study is to develop and alternative model to MODFLOWT that can produce similar results for possible use in a companion management model. The alternative model used in this study is an artificial neural network (ANN).

  7. Voluntary Protection Program Onsite Review, Swift and Staley Team, Infrastructure Support Contract, Paducah Gaseous Diffusion Plant- December 2014

    Broader source: Energy.gov [DOE]

    Annual Merit Review of Swift and Staley Team (SST) for continued participation in the Department of Energy Voluntary Protection Program.

  8. Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used.

  9. Safeguards training course: Nuclear material safeguards for enrichment plants

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    The main objective of this training course is to provide the course participants with the necessary skills to perform their inspection activities at enrichment plants. As background information, a variety of enrichment technologies will first be characterized and compared followed by a review of basic cascade, gas centrifuge, and gaseous diffusion theory. To focus on gas centrifuge and gaseous diffusion technology, the major components and systems of gas centrifuge and gaseous diffusion enrichment plants including their function in routine LEU production will be identified. The objectives of safeguards at an enrichment plant, including those agreed to in the Hexapartite Safeguards Project, will then be described. Discussion will then focus on potential diversion scenarios at both a centrifuge and diffusion enrichment facility and applicable safeguards inspection activities for detecting these scenarios.

  10. School science project 'demystifies' Portsmouth Gaseous Diffusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... It was pretty fun and rewarding, plus I learned a lot," Tolle said. "I really enjoyed (Fluor-B&W subject matter expert) Marc Hill who explained all the things that go on for ...

  11. Particulate and Gaseous Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... formation during cofiring of coal and biomass (Figure 3). Particulate-and-Gaseous-Emissions3-300x134 Figure 2. Important reaction pathways for conversion of fuel-bound nitrogen to ...

  12. Paducah Plant Begins Enrichment Operations after Five Parties Strike Agreement

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – On this Friday, June 1, the first of about 1,100 14-ton cylinders filled with depleted uranium tails will be re-fed into the Paducah Gaseous Diffusion Plant, officially marking the start of a project that will extend enrichment operations there for a year.

  13. NGPL Production, Gaseous Equivalent

    U.S. Energy Information Administration (EIA) Indexed Site

    NGPL Production, Gaseous Equivalent Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. 144,086 152,538 148,859 150,870 148,450 139,621 1973-2016

  14. Particulate and Gaseous Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Gaseous Emissions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  15. GASEOUS DISPOSAL PROCESS

    DOE Patents [OSTI]

    Ryan, R.F.; Thomasson, F.R.; Hicks, J.H.

    1963-01-22

    A method is described of removing gaseous radioactive Xe and Kr from water containing O. The method consists in stripping the gases from the water stream by means of H flowing countercurrently to the stream. The gases are then heated in a deoxo bed to remove O. The carrier gas is next cooled and passed over a charcoal adsorbent bed maintained at a temperature of about --280 deg F to remove the Xe and Kr. (AEC)

  16. Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Boerner, A. J.; Maldonado, D. G.

    2012-06-01

    This report contains the technical basis in support of the DOE?s derivation of Authorized Limits (ALs) for the DOE Paducah C-746-U Landfill. A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines. The ORISE-derived soil guidelines are specifically applicable to the Landfill at the end of its operational life. A suggested 'upper bound' multiple of the derived soil guidelines for individual shipments is provided.

  17. Type B Accident Investigation Board Report on the September 15, 1997, Drum Explosion at Building C-746-Q, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board (Board) appointed by James C. Hall, Manager, Oak Ridge Operations.

  18. NGPL Production, Gaseous Equivalent

    Gasoline and Diesel Fuel Update (EIA)

    NGPL Production, Gaseous Equivalent Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. 144,086 152,538 148,859 150,870 148,450 139,621 1973-2016

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012

  19. Gaseous Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Gaseous Hydrogen Delivery Gaseous hydrogen is most commonly delivered either by trucks or through pipelines. Because gaseous hydrogen is typically produced at relatively low pressures (20-30 bar), it must be compressed prior to transport. Learn more about gaseous hydrogen compression. Trucks that haul gaseous hydrogen are called tube trailers. Gaseous hydrogen is compressed to pressures of 180 bar (~2,600 psig) or higher into long cylinders which are stacked on the trailer that the

  20. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  1. Gaseous-fuel engine technology

    SciTech Connect (OSTI)

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  2. NGPL Production, Gaseous Equivalent at Processing Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 2012-2012 Colorado 53,590 67,607 82,637 90,801 81,943 1967-2012 Florida 22 0 0 0 0 1968-2012 Illinois 42 31 345 1,043 0 1967-2012 Indiana 0 0 0 0 0 1979-2012 Kansas 28,302...

  3. Apparatus for diffusion separation

    DOE Patents [OSTI]

    Nierenberg, William A.; Pontius, Rex B.

    1976-08-10

    1. The method of testing the separation efficiency of porous permeable membranes which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane.

  4. Photon detectors with gaseous amplification

    SciTech Connect (OSTI)

    Va`vra, J.

    1996-08-01

    Gaseous photon detectors, including very large 4{pi}-devices such as those incorporated in SLD and DELPHI, are finally delivering physics after many years of hard work. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photoelectrons. Among detector builders, there is hardly anybody who did not make mistakes in this area, and who does not have a healthy respect for the problems involved. This point is stressed in this paper, and it is suggested that only a very small operating phase space is available for running gaseous photon detectors in a very large system with good efficiency and few problems. In this paper the authors discuss what was done correctly or incorrectly in first generation photon detectors, and what would be their recommendations for second generation detectors. 56 refs., 11 figs.

  5. DOE completes demolition of K-31 gaseous diffusion building ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations ceased in 1985, and the site was permanently shut down in 1987. DOE then began cleanup operations, which includes demolition of many of the buildings at the site. The ...

  6. Demolition of K-31 gaseous diffusion building begins | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The K-31 facility began operations in 1951, and it was used to enrich uranium for defense and commercial purposes until it was shut down in 1985. In 2005, EM removed most of the ...

  7. Non-Destructive Analysis Calibration Standards for Gaseous Diffusion...

    Office of Environmental Management (EM)

    assay (NDA) of residual enriched uranium in facility components for safeguards and nuclear criticality safety purposes. Current practices used to perform NDA measurements ...

  8. Portsmouth Site Public Tour | Department of Energy

    Office of Environmental Management (EM)

    Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant | November 2009 Aerial View Portsmouth Gaseous Diffusion Plant | November 2009 Aerial View The current mission at the Portsmouth Gaseous Diffusion Plant is to effectively implement EM responsibilities, obligations and activities to accomplish environmental remediation actions in compliance with regulatory milestones and agreements; disposition legacy and newly generated waste; implement Cold

  9. Gaseous Hydrogen Compression | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Gaseous Hydrogen Compression Gaseous Hydrogen Compression Hydrogen is typically produced at relatively low pressures (20-30 bar) and must be compressed prior to transport. Most compressors used today for gaseous hydrogen compression are either positive displacement compressors or centrifugal compressors. Positive displacement compressors can be reciprocating or rotary. Reciprocating compressors use a motor with a linear drive to move a piston or a diaphragm back and forth. This motion

  10. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect (OSTI)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  11. California Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) California Natural Gas Plant Liquids Production ... Referring Pages: NGPL Production, Gaseous Equivalent California Natural Gas Plant ...

  12. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  13. Combination free electron and gaseous laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Stein, William E. (Los Alamos, NM)

    1980-01-01

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  14. Paducah Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paducah Site Paducah Site Paducah Gaseous Diffusion Plant Paducah Gaseous Diffusion Plant Productive reuse opportunities are being explored as the U.S. Department of Energy cleans ...

  15. Portsmouth Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portsmouth Site Portsmouth Site Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant The Environmental Cleanup Program at Portsmouth supports site investigations, ...

  16. EA-1599: Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications

    Broader source: Energy.gov [DOE]

    This EA was being prepared to evaluate potential environmental impacts of a proposal to dispose of nickel scrap that is volumetrically contaminated with radioactive materials and that DOE recovered from equipment it had used in uranium enrichment. This EA is on hold.

  17. Finding of No Significant Impact for Environmental Assessment on the Implementation of the Authorized Limits Process for Waste Acceptance at the C-746-U Landfill Paducah Gaseous Diffusion Plant Paducah, Kentucky

    Office of Environmental Management (EM)

  18. Process for removing metal carbonyls from gaseous streams

    SciTech Connect (OSTI)

    Heyd, R.L.; Pignet, T.P.

    1988-04-26

    A process for removing metal carbonyl contaminates from a gaseous stream is described containing such contaminates and which is free from sulfur contaminates, which process comprises contacting the gaseous stream with a zinc sulfide absorbent to thereby remove metal carbonyl contaminates from the gaseous stream, and separating the gaseous stream from the zinc sulfide absorbent.

  19. Apparatus for diffusion separation

    DOE Patents [OSTI]

    Nierenberg, William A.

    1976-08-10

    1. A diffuser separator apparatus which comprises a plurality of flow channels in a single stage, each of said channels having an inlet port and an outlet port and a constant cross sectional area between said ports, at least a portion of the defining surface of each of said channels being a diffusion separation membrane, and each of said channels having a different cross sectional area, means for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series, a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area.

  20. Gaseous insulators for high voltage electrical equipment

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

    1981-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  1. TREATMENT OF GASEOUS EFFLUENTS ISSUED FROM RECYCLING A REVIEW OF THE CURRENT PRACTICES AND PROSPECTIVE IMPROVEMENTS

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann; William Kerlin; Steven Bakhtiar

    2010-11-01

    The objectives of gaseous waste management for the recycling of nuclear used fuel is to reduce by best practical means (ALARA) and below regulatory limits, the quantity of activity discharged to the environment. The industrial PUREX process recovers the fissile material U(VI) and Pu(IV) to re-use them for the fabrication of new fuel elements e.g. recycling plutonium as a Mixed Oxide (MOX) fuel or recycling uranium for new enrichment for Pressurized Water Reactor (PWR). Meanwhile the separation of the waste (activation and fission product) is performed as a function of their pollution in order to store and avoid any potential danger and release towards the biosphere. Raffinate, that remains after the extraction step and which contains mostly all fission products and minor actinides is vitrified, the glass package being stored temporarily at the recycling plant site. Hulls and end pieces coming from PWR recycled fuel are compacted by means of a press leading to a volume reduced to 1/5th of initial volume. An organic waste treatment step will recycle the solvent, mainly tri-butyl phosphate (TBP) and some of its hydrolysis and radiolytic degradation products such as dibutyl phosphate (HDPB) and monobutyl phosphate (H2MBP). Although most scientific and technological development work focused on high level waste streams, a considerable effort is still under way in the area of intermediate and low level waste management. Current industrial practices for the treatment of gaseous effluents focusing essentially on Iodine-129 and Krypton-85 will be reviewed along with the development of novel technologies to extract, condition, and store these fission products. As an example, the current industrial practice is to discharge Kr-85, a radioactive gas, entirely to the atmosphere after dilution, but for the large recycling facilities envisioned in the near future, several techniques such as 1) cryogenic distillation and selective absorption in solvents, 2) adsorption on activated charcoal, 3) selective sorption on chemical modified zeolites, or 4) diffusion through membranes with selective permeability are potential technologies to retain the gas.

  2. Methods and systems for deacidizing gaseous mixtures

    DOE Patents [OSTI]

    Hu, Liang

    2010-05-18

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  3. Energy and materials flows in the production of liquid and gaseous oxygen

    SciTech Connect (OSTI)

    Shen, S.; Wolsky, A.M.

    1980-08-01

    Liquid and gaseous oxygen is produced in an energy-intensive air separation processo that also generates nitrogen. More than 65% of the cost of oxygen is attributable to energy costs. Energy use and materials flows are analyzed for various air separation methods. Effective approaches to energy and material conservation in air separation plants include efficient removal of contaminants (carbon dioxide and water), centralization of air products user-industries so that large air separation plants are cost-effective and the energy use in transportation is minimized, and increased production of nitrogen. Air separation plants can produce more than three times more nitrogen than oxygen, but present markets demand, at most, only 1.5 times more. Full utlization of liquid and gaseous nitrogen should be encouraged, so that the wasted separation energy is minimized. There are potential markets for nitrogen in, for example, cryogenic separation of metallic and plastic wastes, cryogenic particle size reduction, and production of ammonia for fertilizer.

  4. Federal Offshore California Natural Gas Plant Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants Federal Offshore California Natural Gas Gross Withdrawals and Production...

  5. California--State Offshore Natural Gas Plant Liquids Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants California State Offshore Natural Gas Gross Withdrawals and Production...

  6. The Promise of Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Promise of Renewable Gaseous Fuels The Promise of Renewable Gaseous Fuels Breakout Session 3-C: Renewable Gaseous Fuels The Promise of Renewable Gaseous Fuels Jeffrey Reed, Director of Business Strategy and Development, Southern California Gas Company/San Diego Gas & Electric PDF icon reed_bioenergy_2015.pdf More Documents & Publications QER - Comment of American Gas Association 3 Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus Renewable Natural Gas

  7. Fuel Cells and Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells and Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Breakout Session 3-C: Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Sarah Studer, ORISE Fellow-Fuel Cell Technologies Office, U.S. Department of Energy PDF icon studer_bioenergy_2015.pdf More Documents & Publications Workshop on Gas Clean-Up for Fuel Cell Applications U.S Department of Energy Fuel Cell Technologies Office Overview: 2015 Smithsonian Science Education Academies for Teachers Novel

  8. Gaseous modification of MCrAlY coatings

    DOE Patents [OSTI]

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes methods for modifying MCrAlY coatings by using gaseous carburization, gaseous nitriding or gaseous carbonitriding. The modified MCrAlY coatings are useful in thermal barrier coating systems, which may be used in gas turbine engines.

  9. EA-0767: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant

  10. Portsmouth Needs Assessment

    Broader source: Energy.gov [DOE]

    Needs Assessment for former Oak Ridge K-25, Paducah, and Portsmouth Gaseous Diffusion Plant production workers.

  11. Hierarchical diffusion

    SciTech Connect (OSTI)

    Bachas, C.P.

    1988-02-01

    We review the solution and properties of the diffusion equation in a hierarchical or ultrametric space. 11 refs.

  12. NGPL Production, Gaseous Equivalent at Processing Plants (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    44,086 152,538 148,859 150,870 148,450 139,621 1973

  13. U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent...

    U.S. Energy Information Administration (EIA) Indexed Site

    61 67 1982 71 65 69 65 64 62 63 61 59 60 61 62 1983 72 64 66 62 62 60 63 66 64 68 68 75 1984 79 69 71 69 69 67 69 68 65 69 68 74 1985 77 70 71 66 66 63 65 65 64 66 66 75 1986 76 67 ...

  14. NGPL Production, Gaseous Equivalent at Processing Plants (Summary...

    U.S. Energy Information Administration (EIA) Indexed Site

    066,366 1,134,473 1,250,012 1,356,709 1,608,148 1,717,894 1930-2015 Federal Offshore Gulf of Mexico 0 0 87,478 70,292 75,648 2007-2014 Alabama 19,059 17,271 7,133 7,675 7,044 ...

  15. Method for reacting nongaseous material with a gaseous reactant

    DOE Patents [OSTI]

    Lumpkin, Robert E.; Duraiswamy, Kandaswamy

    1979-03-27

    This invention relates to a new and novel method and apparatus for reacting nongaseous material with a gaseous reactant comprising introducing a first stream containing a nongaseous material into a reaction zone; simultaneously introducing a second stream containing a gaseous reactant into the reaction zone such that the gaseous reactant immediately contacts and reacts with the first stream thereby producing a gaseous product; forming a spiralling vortex within the reaction zone to cause substantial separation of gases, including the gaseous product, from the nongaseous material; forming and removing a third stream from the reaction zone containing the gaseous product which is substantially free of the nongaseous material before a major portion of the gaseous product can react with the nongaseous material; and forming and removing a fourth stream containing the nongaseous material from the reaction zone.

  16. Gas mixture for diffuse-discharge switch

    DOE Patents [OSTI]

    Christophorou, L.G.; Carter, J.G.; Hunter, S.R.

    1982-08-31

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF/sub 4/, C/sub 2/F/sub 6/, C/sub 3/F/sub 8/, n-C/sub 4/F/sub 10/, WF/sub 6/, (CF/sub 3/)/sub 2/S and (CF/sub 3/)/sub 2/O.

  17. Gas mixture for diffuse-discharge switch

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); Carter, James G. (Knoxville, TN); Hunter, Scott R. (Oak Ridge, TN)

    1984-01-01

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF.sub.4, C.sub.2 F.sub.6, C.sub.3 F.sub.8, n-C.sub.4 F.sub.10, WF.sub.6, (CF.sub.3).sub.2 S and (CF.sub.3).sub.2 O.

  18. Effect of gaseous inhibitors on PCDD/F formation

    SciTech Connect (OSTI)

    Ruokojaervi, P.H.; Halonen, I.A.; Tuppurainen, K.A.; Tarhanen, J.; Ruuskanen, J.

    1998-10-15

    Emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) from municipal waste incineration are currently a subject of considerable public concern because of their extreme toxicity. PCDD/F formation in incineration processes is being studied widely, but studies on inhibition are quite sparse, especially in a pilot-plant scale. In this work, the effect of four gaseous inhibitors (sulfur dioxide, ammonia, dimethylamine, and methyl mercaptan) on PCDD/PCDF formation in the combustion of liquid fuel was studied using a pilot-scale plant. The inhibitors were injected into the flue gas stream after the first economizer at a temperature of 670 C and just before the second economizer at 410 C. Both the chlorophenol and PCDD and PCDF concentrations decreased when inhibitors were added. Particle-phase PCDD/F concentrations in particular decreased by up to 98%. The results suggest that the formation of PCDD/Fs is hindered in the particle phase at the early stages of the PCDD/F formation chain, probably even before precursors such as chlorophenols have been formed.

  19. Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing

    Office of Scientific and Technical Information (OSTI)

    solid hydrates (Patent) | SciTech Connect Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates Citation Details In-Document Search Title: Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon

  20. Description of the Portsmouth Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Arthur, W.B.

    1980-12-16

    The Portsmouth Gas Centrifuge Enrichment Plant (GCEP) will be located at the site of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. The purpose of the facility is to provide enriching services for the production of low assay enriched uranium for civilian nuclear power reactors. The construction and operation of the GCEP is administered by the US Department of Energy. The facility will be operated under contract from the US Government. Control of the GCEP rests solely with the US Government, which holds and controls access to the technology. Construction of GCEP is expected to be completed in the mid-1990's. Many facility design and operating procedures are subject to change. Nonetheless, the design described in this report does reflect current thinking. Descriptions of the general facility and major buildings such as the process buildings, feed and withdrawal building, cylinder storage and transfer, recycle/assembly building, and a summary of the centrifuge uranium enriching process are provided in this report.

  1. DOE Issues Final Request for Proposal for Portsmouth Gaseous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and security; environment, safety, health and quality program; and training services. ... Addthis Related Articles DOE Issues Final Request for Proposal for Paducah Gaseous ...

  2. Property:PotentialBiopowerGaseousGeneration | Open Energy Information

    Open Energy Info (EERE)

    Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialBiopowerGaseousGeneration" Showing 25...

  3. Development of Compact Gaseous Sensors with Internal Reference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Monitoring O2 and NOx in Combustion Environments Development of Compact Gaseous Sensors with Internal Reference for Monitoring O2 and NOx in Combustion Environments ...

  4. 2011 GASEOUS IONS GORDON RESEARCH CONFERENCE

    SciTech Connect (OSTI)

    Scott Anderson

    2011-03-04

    The Gaseous Ions: Structures, Energetics and Reactions Gordon Research Conference will focus on ions and their interactions with molecules, surfaces, electrons, and light. The conference will cover theory and experiments, and systems ranging from molecular to biological to clusters to materials. The meeting goal continues to be bringing together scientists interested in fundamentals, with those applying fundamental phenomena to a wide range of practical problems. Each of the ten conference sessions will focus on a topic within this spectrum, and there will also be poster sessions for contributed papers, with sufficient space and time to allow all participants to present their latest results. To encourage active participation by young investigators, about ten of the poster abstracts will be selected for 15 minute 'hot topic' talks during the conference sessions. Hot topic selection will be done about a month before the meeting. Funds should be available to offset the participation cost for young investigators.

  5. Results of Continuous Load Cell Monitoring Field Trial for UF6...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; INDUSTRIAL PLANTS; MONITORING; PORTSMOUTH GASEOUS DIFFUSION PLANT; PROCESSING; SAFEGUARDS; TESTING ...

  6. Combustion characteristics of alternative gaseous fuels

    SciTech Connect (OSTI)

    Park, O.; Veloo, Peter S.; Liu, N.; Egolfopoulos, Fokion N.

    2011-01-01

    Fundamental flame properties of mixtures of air with hydrogen, carbon monoxide, and C{sub 1}C{sub 4} saturated hydrocarbons were studied both experimentally and numerically. The fuel mixtures were chosen in order to simulate alternative gaseous fuels and to gain insight into potential kinetic couplings during the oxidation of fuel mixtures. The studies included the use of the counterflow configuration for the determination of laminar flame speeds, as well as extinction and ignition limits of premixed flames. The experiments were modeled using the USC Mech II kinetic model. It was determined that when hydrocarbons are added to hydrogen flames as additives, flame ignition, propagation, and extinction are affected in a counterintuitive manner. More specifically, it was found that by substituting methane by propane or n-butane in hydrogen flames, the reactivity of the mixture is reduced both under pre-ignition and vigorous burning conditions. This behavior stems from the fact that propane and n-butane produce higher amounts of methyl radicals that can readily recombine with atomic hydrogen and reduce thus the rate of the H + O{sub 2} ? O + OH branching reaction. The kinetic model predicts closely the experimental data for flame propagation and extinction for various fuel mixtures and pressures, and for various amounts of carbon dioxide in the fuel blend. On the other hand, it underpredicts, in general, the ignition temperatures.

  7. Growth of graphene films from non-gaseous carbon sources

    DOE Patents [OSTI]

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  8. Method for removing acid gases from a gaseous stream

    DOE Patents [OSTI]

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  9. Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing

    Office of Scientific and Technical Information (OSTI)

    solid hydrates (Patent) | SciTech Connect Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates Citation Details In-Document Search Title: Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  10. Diffusion bonding

    DOE Patents [OSTI]

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  11. EA-1927: Draft Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1927: Draft Environmental Assessment Paducah Gaseous Diffusion Plant Potential Land and ... impacts of the proposed transfer of land and facilities at the Paducah Gaseous ...

  12. Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades

    DOE Patents [OSTI]

    Dyer, Robert H.; Fowler, Andrew H.; Vanstrum, Paul R.

    1977-01-01

    This invention relates to an improved method and system for making relatively large and rapid adjustments in the process gas

  13. Extruder system and method for treatment of a gaseous medium

    DOE Patents [OSTI]

    Silvi, Norberto; Perry, Robert James; Singh, Surinder Prabhjot; Balch, Gary Stephen; Westendorf, Tiffany Elizabeth Pinard

    2016-04-05

    A system for treatment of a gaseous medium, comprises an extruder having a barrel. The extruder further comprises a first inlet port, a second inlet port, and a plurality of outlet ports coupled to the barrel. The first inlet port is configured for feeding a lean sorbent, the second inlet port is configured for feeding a gaseous medium, and the plurality of outlet ports are configured for releasing a plurality of components removed from the gaseous medium. Further, the extruder comprises a plurality of helical elements coupled to a plurality of kneading elements, mounted on a shaft, and disposed within the barrel. The barrel and the plurality of helical and kneading elements together form an absorption unit and a desorption unit. The first and second inlet ports are formed in the absorption unit and the plurality of outlet ports are formed in the absorption and desorption units.

  14. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    SciTech Connect (OSTI)

    Denis Clark; Ronald Mizia; Piyush Sabharwall

    2012-09-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 °C. (RR E) A different set of alloys, such as Alloy N and 242, are needed to handle molten salts at this temperature. The diffusion welding development work described here builds on techniques developed during the NGNP work, as applied to these alloys. There is also the matter of dissimilar metal welding, since alloys suitable for salt service are generally not suited for service in gaseous oxidizing environments, and vice versa, and welding is required for the Class I boundaries in these systems, as identified in the relevant ASME codes.

  15. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    SciTech Connect (OSTI)

    Denis Clark; Ronald Mizia

    2012-05-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C. (RR E) A different set of alloys, such as Alloy N and 242, are needed to handle molten salts at this temperature. The diffusion welding development work described here builds on techniques developed during the NGNP work, as applied to these alloys. There is also the matter of dissimilar metal welding, since alloys suitable for salt service are generally not suited for service in gaseous oxidizing environments, and vice versa, and welding is required for the Class I boundaries in these systems, as identified in the relevant ASME codes.

  16. Alaska--State Offshore Natural Gas Plant Liquids Production,...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  17. Process for removing carbonyl sulfide from gaseous streams

    SciTech Connect (OSTI)

    Tellis, C.

    1981-11-10

    This invention relates to a process for reducing the carbonyl sulfide content of a gaseous stream which has a concentration of carbonyl sulfide of from at least 1 to about 100 parts per million, by volume, which comprises providing an absorbent bed wherein the absorbent comprises zinc oxide and contains no more than 5%, by weight, of an oxide of an alkli or alkaline earth metal, and contacting said process stream with said adsorbent bed at a temperature of from about ambient to 250/sup 0/ C. For a period of time sufficient to remove at least 90% of the carbonyl sulfide content of said gaseous stream.

  18. Gaseous Sulfate Solubility in Glass: Experimental Method

    SciTech Connect (OSTI)

    Bliss, Mary

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature to guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.

  19. Pulsating catalytic combustion of gaseous fuels

    SciTech Connect (OSTI)

    Gal-Ed, R.

    1988-01-01

    This study investigated the feasibility of operating catalytic combustors under pulsating conditions and the circumstances under which acoustic pulsations increase the combustion efficiencies and output of catalytic combustors. An experimental catalytic combustor was developed, and a theoretical model of acoustic motions in non-isothermal, low match number, duct flow was used to predict the acoustic behavior of the combustor. The effects of pulsations were determined by comparing temperature and species concentration data measured during operation with pulsations at different frequencies and pressure amplitudes to similar data measured during non-pulsating combustion. Experiments conducted with lean mixtures of methane or propane with air revealed that acoustic pulsations affected the temperature distribution along the combustor at flow Reynolds numbers less than 17,500. Excitation of pulsations during methane combustion caused shifts in the location of the combustion, and sometimes the onset of extinction of gas phase reactions. This occurred when several catalyst segments were located in the combustion section between an upstream pressure node and a downstream velocity node, defined here as an in phase location. Propane mixtures were used to investigate possible improvements in combustor's performance. Burning propane mixtures on a single catalyst segment at an in phase location showed that the excitation of acoustic pulsations increased the combustion efficiency by 10 to 50%. The changes in the operation of catalytic combustors caused by acoustic waves are explained by acoustic streaming. When the catalyst surfaces are at an in phase location, rotational flows caused by acoustic streaming enhance the reactants and products diffusion rate to and from the catalyst surfaces, respectively, improving combustion efficiency.

  20. Electrochemical cell apparatus having an integrated reformer-mixer nozzle-mixer diffuser

    DOE Patents [OSTI]

    Shockling, L.A.

    1991-09-10

    An electrochemical apparatus is made having a generator section containing electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one hot gaseous spent fuel recirculation channel, where the spent fuel recirculation channel, passes from the generator chamber to combine with the fresh feed fuel inlet to form a reformable mixture, where a reforming chamber contains an outer portion containing reforming material, an inner portion preferably containing a mixer nozzle and a mixer-diffuser, and a middle portion for receiving spent fuel, where the mixer nozzle and mixer-diffuser are preferably both within the reforming chamber and substantially exterior to the main portion of the apparatus, where the reformable mixture flows up and then backward before contacting the reforming material, and the mixer nozzle can operate below 400 C. 1 figure.

  1. Electrochemical cell apparatus having an integrated reformer-mixer nozzle-mixer diffuser

    DOE Patents [OSTI]

    Shockling, Larry A.

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one hot gaseous spent fuel recirculation channel (46), where the spent fuel recirculation channel (46), passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) to form a reformable mixture, where a reforming chamber (54) contains an outer portion containing reforming material (56), an inner portion preferably containing a mixer nozzle (50) and a mixer-diffuser (52), and a middle portion (64) for receiving spent fuel, where the mixer nozzle (50) and mixer-diffuser (52) are preferably both within the reforming chamber (54) and substantially exterior to the main portion of the apparatus, where the reformable mixture flows up and then backward before contacting the reforming material (56), and the mixer nozzle (50) can operate below 400.degree. C.

  2. Methods for deacidizing gaseous mixtures by phase enhanced absorption

    DOE Patents [OSTI]

    Hu, Liang

    2012-11-27

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  3. Atmospheric escape by magnetically driven wind from gaseous planets

    SciTech Connect (OSTI)

    Tanaka, Yuki A.; Suzuki, Takeru K.; Inutsuka, Shu-ichiro

    2014-09-01

    We calculate the mass loss driven by magnetohydrodynamic (MHD) waves from hot Jupiters by using MHD simulations in one-dimensional flux tubes. If a gaseous planet has a magnetic field, MHD waves are excited by turbulence at the surface, dissipate in the upper atmosphere, and drive gas outflows. Our calculation shows that mass-loss rates are comparable to the observed mass-loss rates of hot Jupiters; therefore, it is suggested that gas flow driven by MHD waves can play an important role in the mass loss from gaseous planets. The mass-loss rate varies dramatically with the radius and mass of a planet: a gaseous planet with a small mass but an inflated radius produces a very large mass-loss rate. We also derive an analytical expression for the dependence of mass-loss rate on planet radius and mass that is in good agreement with the numerical calculation. The mass-loss rate also depends on the amplitude of the velocity dispersion at the surface of a planet. Thus, we expect to infer the condition of the surface and the internal structure of a gaseous planet from future observations of mass-loss rate from various exoplanets.

  4. Enterprise Assessments Review of Radioactive Waste Management at the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portsmouth Gaseous Diffusion Plant - December 2015 | Department of Energy Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant - December 2015 Enterprise Assessments Review of Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant - December 2015 December 2015 Review of Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant The U.S. Department of Energy (DOE) Office of Nuclear Safety and Environmental Assessments, within the independent

  5. Type B Accident Investigation of the July 12, 2007, Forklift and Pedestrian

    Energy Savers [EERE]

    Accident at the Paducah Gaseous Diffusion Plant, Portsmouth/Paducah Project Office | Department of Energy 2, 2007, Forklift and Pedestrian Accident at the Paducah Gaseous Diffusion Plant, Portsmouth/Paducah Project Office Type B Accident Investigation of the July 12, 2007, Forklift and Pedestrian Accident at the Paducah Gaseous Diffusion Plant, Portsmouth/Paducah Project Office April 14, 2008 On July 12, 2007, an employee at the Paducah Gaseous Diffusion Plant (PGDP) was walking alone during

  6. Uranium Management and Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Management and Policy Uranium Management and Policy The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah, Kentucky. Paducah remains the only operating gaseous diffusion uranium enrichment plant in the United States. The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah, Kentucky. Paducah remains the only operating gaseous diffusion uranium enrichment plant in the United

  7. Energy Department Announces Secretarial Determination of No Adverse Material Impact for Uranium Transfers

    Broader source: Energy.gov [DOE]

    Transfers to Advance U.S. National Security Interests and Fund Cleanup at Portsmouth or Paducah Gaseous Diffusion Plants

  8. Uranium enrichment decontamination and decommissioning fund, 1995 report

    SciTech Connect (OSTI)

    1996-11-01

    This report describes strategies for the decontamination and decommissioning of gaseous diffusion plants. Progress in remedial action activities are discussed.

  9. EIS-0084: Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Incineration Facility for Radioactively Contaminated Polychlorinated Biphenyls and Other Wastes, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee

  10. Search for: All records | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Gaseous Diffusion Plant, Piketon, OH (United ... SC (United States) Savannah River Site Office Schenectady ... Southeastern Power Administration, Elberton, GA (United ...

  11. K-9 SOS receives small business award | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    » Signature Facilities » K-25 Gaseous Diffusion Process Building K-25 Gaseous Diffusion Process Building K-25 Gaseous Diffusion Process Building New! K-25 Virtual Museum The K-25 plant, located on the southwestern end of the Oak Ridge reservation, used the gaseous diffusion method to separate uranium-235 from uranium-238. Based on the well-known principle that molecules of a lighter isotope would pass through a porous barrier more readily than molecules of a heavier one, gaseous diffusion

  12. NOVEL TECHNOLOGIES FOR GASEOUS CONTAMINANTS CONTROL

    SciTech Connect (OSTI)

    B.S. Turk; T. Merkel; A. Lopez-Ortiz; R.P. Gupta; J.W. Portzer; G.N. Krishnan; B.D. Freeman; G.K. Fleming

    2001-09-30

    The overall objective of this project is to develop technologies for cleaning/conditioning the syngas from an integrated gasification combined cycle (IGCC) system to meet the tolerance limits for contaminants such as H{sub 2}S, COS, NH{sub 3}, HCN, HCl, and alkali for fuel cell and chemical production applications. RTI's approach is to develop a modular system that (1) removes reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removes hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface area material; and (3) removes NH{sub 3} with acidic adsorbents. RTI is working with MEDAL, Inc., and North Carolina State University (NCSU) to develop polymer membrane technology for bulk removal of H{sub 2}S from syngas. These membranes are being engineered to remove the acid gas components (H{sub 2}S, CO{sub 2}, NH{sub 3}, and H{sub 2}O) from syngas by focusing on the ''solubility selectivity'' of the novel polymer compositions. The desirable components of the syngas (H{sub 2} and CO) are maintained at high-pressure conditions as a non-permeate stream while the impurities are transported across the membrane to the low pressure side. RTI tested commercially available and novel materials from MEDAL using a high-temperature, high-pressure (HTHP) permeation apparatus. H{sub 2}S/H{sub 2} selectivities >30 were achieved, although there was a strong negative dependence with temperature. MEDAL believes that all the polymer compositions tested so far can be prepared as hollow fiber membrane modules using the existing manufacturing technology. For fuel cell and chemical applications, additional sulfur removal (beyond that achievable with the membranes) is required. To overcome limitations of conventional ZnO pellets, RTI is testing a monolith with a thin coating of high surface area zinc-oxide based materials. Alternatively, a regenerable sorbent developed by DOE/NETL (RVS-1) is being evaluated for this application. A multi-cycle test of 2-in. (5-cm) diameter monolith samples demonstrated that <0.5 ppm sulfur can be achieved. Removal of HCl vapors is being accomplished by low-cost materials that combine the known effectiveness of sodium carbonate as an active matrix used with enhanced surface area supports for greater reactivity and capacity at the required operating temperatures. RTI is working with SRI International on this task. Sorbents prepared using diatomaceous earth and sepiolite, impregnated with sodium carbonate achieved steady-state HCl level <100 ppb (target is 10 ppb). Research is continuing to optimize the impregnation and calcination procedures to provide an optimum pore size distribution and other properties. RTI and SRI International have established the feasibility of a process to selectively chemisorb NH3 from syngas on high surface area molecular sieve adsorbents at high temperatures by conducting a series of temperature-programmed reactions at 225 C (437 F). Significant levels of NH{sub 3} were adsorbed on highly acidic adsorbents; the adsorbed NH{sub 3} was subsequently recovered by heating the adsorbent and the regenerated adsorbent was reused. A comprehensive technical and economic evaluation of this modular gas cleaning process was conducted by Nexant to compare capital and operating cost with existing amine based processes. Nexant estimated a total installed cost of $42 million for the RTI process for a 500 MWe IGCC plant based on its current state of development. By comparison, Nexant estimated the installed cost for an equivalent sized plant based on the Rectisol process (which would achieve the same sulfur removal specification) to be $75 million. Thus the RTI process is economically competitive with a state-of-the-art process for syngas cleanup.

  13. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  14. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  15. Method of producing gaseous products using a downflow reactor

    DOE Patents [OSTI]

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  16. Process and composition for drying of gaseous hydrogen halides

    DOE Patents [OSTI]

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  17. Method and apparatus for analyzing particle-containing gaseous suspensions

    DOE Patents [OSTI]

    Solomon, P.R.; Carangelo, R.M.; Best, P.E.

    1987-03-24

    The method and apparatus permit analyses, by optical means, of properties of gaseous suspensions of particles, by measuring radiation that is emitted, transmitted or scattered by the particles. Determinations of composition, size, temperature and spectral emittance can be performed either in-situ or by sampling, and Fourier-transform infrared spectrometric techniques are most effectively used. Apparatus specifically adapted for performing radiation scattering analyses, and for collecting radiation from different sources, are provided. 51 figs.

  18. Method and apparatus for analyzing particle-containing gaseous suspensions

    DOE Patents [OSTI]

    Solomon, Peter R.; Carangelo, Robert M.; Best, Philip E.

    1987-01-01

    The method and apparatus permit analyses, by optical means, of properties of gaseous suspensions of particles, by measuring radiation that is emitted, transmitted or scattered by the particles. Determinations of composition, size, temperature and spectral emittance can be performed either in-situ or by sampling, and Fourier-transform infrared spectrometric techniques are most effectively used. Apparatus specifically adapted for performing radiation scattering analyses, and for collecting radiation from different sources, are provided.

  19. Microfabricated diffusion source

    DOE Patents [OSTI]

    Oborny, Michael C.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2008-07-15

    A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

  20. Theoretical solution of the minimum charge problem for gaseous detonations

    SciTech Connect (OSTI)

    Ostensen, R.W.

    1990-12-01

    A theoretical model was developed for the minimum charge to trigger a gaseous detonation in spherical geometry as a generalization of the Zeldovich model. Careful comparisons were made between the theoretical predictions and experimental data on the minimum charge to trigger detonations in propane-air mixtures. The predictions are an order of magnitude too high, and there is no apparent resolution to the discrepancy. A dynamic model, which takes into account the experimentally observed oscillations in the detonation zone, may be necessary for reliable predictions. 27 refs., 9 figs.

  1. Process for obtaining gaseous streams rich in ethene

    SciTech Connect (OSTI)

    Cabral, J.A.; Coutinho, P.H.

    1981-02-17

    This invention relates to the production of ethene with a highly profitable yield by means of fluidized bed catalytic cracking of a mixture containing 0.13 to 50 parts by weight of ethanol to 100 parts by weight of hydrocarbons blend at a temperature between 430/sup 0/C and 550/sup 0/C., and pressure between 0 and 5.0kg/cm2 ga in such way that the final gaseous product resulting therefrom has an ethene content between 18.8% and 64% by volume.

  2. Pattern recognition techniques to reduce backgrounds in the search for the {sup 136}Xe double beta decay with gaseous TPCs

    SciTech Connect (OSTI)

    Iguaz, F. J.; Cebrin, S.; Dafni, T.; Gmez, H.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Segui, L.; Tomas, A. [Laboratorio de Fsica Nuclear y Astropartculas, Universidad de Zaragoza (Spain)] [Laboratorio de Fsica Nuclear y Astropartculas, Universidad de Zaragoza (Spain)

    2013-08-08

    The observation of the neutrinoless double beta decay may provide essential information on the nature of neutrinos. Among the current experimental approaches, a high pressure gaseous TPC is an attractive option for the search of double beta decay due to its good energy resolution and the detailed topological information of each event. We present in this talk a detailed study of the ionization topology of the {sup 136}Xe double beta decay events in a High Pressure Xenon TPC, as well as that of the typical competing backgrounds. We define some observables based on graph theory concepts to develop automated discrimination algorithms. Our criteria are able to reduce the background level by about three orders of magnitude in the region of interest of the {sup 136}Xe Q{sub ??} for a signal acceptance of 40%. This result provides a quantitative assessment of the benefit of topological information offered by gaseous TPCs for double beta decay search, and proves that it is a promising feature in view of future experiments in the field. Possible ideas for further improvement in the discrimination algorithms and the dependency of these results with the gas diffusion and readout granularity will be also discussed.

  3. Operating limit evaluation for disposal of uranium enrichment plant wastes

    SciTech Connect (OSTI)

    Lee, D.W.; Kocher, D.C.; Wang, J.C.

    1996-02-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) will accept wastes generated during normal plant operations that are considered to be non-radioactive. However, nearly all solid waste from any source or facility contains small amounts of radioactive material, due to the presence in most materials of trace quantities of such naturally occurring radionuclides as uranium and thorium. This paper describes an evaluation of operating limits, which are protective of public health and the environment, that would allow waste materials containing small amounts of radioactive material to be sent to a new solid waste landfill at PGDP. The operating limits are expressed as limits on concentrations of radionuclides in waste materials that could be sent to the landfill based on a site-specific analysis of the performance of the facility. These limits are advantageous to PGDP and DOE for several reasons. Most importantly, substantial cost savings in the management of waste is achieved. In addition, certain liabilities that could result from shipment of wastes to a commercial off-site solid waste landfill are avoided. Finally, assurance that disposal operations at the PGDP landfill are protective of public health and the environment is provided by establishing verifiable operating limits for small amounts of radioactive material; rather than relying solely on administrative controls. The operating limit determined in this study has been presented to the Commonwealth of Kentucky and accepted as a condition to be attached to the operating permit for the solid waste landfill.

  4. Magnetic roller gas gate employing transonic sweep gas flow to isolate regions of differing gaseous composition or pressure

    DOE Patents [OSTI]

    Doehler, Joachim

    1994-12-20

    Disclosed herein is an improved gas gate for interconnecting regions of differing gaseous composition and/or pressure. The gas gate includes a narrow, elongated passageway through which substrate material is adapted to move between said regions and inlet means for introducing a flow of non-contaminating sweep gas into a central portion of said passageway. The gas gate is characterized in that the height of the passageway and the flow rate of the sweep gas therethrough provides for transonic flow of the sweep gas between the inlet means and at least one of the two interconnected regions, thereby effectively isolating one region, characterized by one composition and pressure, from another region, having a differing composition and/or pressure, by decreasing the mean-free-path length between collisions of diffusing species within the transonic flow region. The gas gate preferably includes a manifold at the juncture point where the gas inlet means and the passageway interconnect.

  5. Regenerable sorbent and method for removing hydrogen sulfide from hot gaseous mixtures

    DOE Patents [OSTI]

    Farrior, Jr., William L. (Morgantown, WV)

    1978-01-01

    Hydrogen sulfide is effectively removed from hot gaseous mixtures useful for industrial purposes by employing a solid absorbent consisting of silica-supported iron oxide in pellet form.

  6. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOE Patents [OSTI]

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  7. Characterization of the Installed Costs of Prime Movers Using Gaseous Opportunity Fuels, September 2007

    Broader source: Energy.gov [DOE]

    A report addendum and final white paper for the Characterization of the Installed Costs of Prime Movers Using Gaseous Opportunity Fuels

  8. May 2012 Electrical Safety Occurrences

    Energy Savers [EERE]

    ... Management LabSiteOrg: Paducah Gaseous Diffusion Plant Facility Name: Paducah Duf6 Conversion Plant SubjectTitle: Zero-Energy Verification Not Performed DateTime ...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Gaseous Diffusion Plant, Paducah, KY (United States) Pantex Plant (PTX), Amarillo, TX (United States) Pertoleum Oil Reserves Office Philadelphia Regional Office, Philadelphia, PA ...

  10. U.S. Department of Commerce National Technical Information Service

    National Nuclear Security Administration (NNSA)

    ... PLANT PX PORTSMOUTH GASEOUS DIFFUSION PLANT PO PRINCETON PLASMA PHYSICS LAB PL ... DEMONSTARTION PROJECT WV WESTINGHOUSE SAVANNAH RIVER SR 3 UT Battelle shipped from sites in ...

  11. Construction Worker Screening Projects | Department of Energy

    Energy Savers [EERE]

    Battelle Laboratories-King Avenue Battelle Laboratories-West Jefferson Brush Luckey Plant Fernald Mound Portsmouth Gaseous Diffusion Plant South Carolina: Savannah River Tennessee: ...

  12. Impact of mesophyll diffusion on estimated global land CO2 fertilizati...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Impact of mesophyll diffusion on estimated global land CO2 fertilization In C3 plants, CO2 concentrations drop considerably along ...

  13. Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants

    SciTech Connect (OSTI)

    Jones, E

    1999-07-26

    One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on the conversion process, preconceptual plant description, rough capital and operating costs, and preliminary project schedule.

  14. Cosmology with matter diffusion

    SciTech Connect (OSTI)

    Calogero, Simone; Velten, Hermano E-mail: velten@cce.ufes.br

    2013-11-01

    We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field ? which we identify with the dark energy component of the universe. The model is characterized by only one new degree of freedom, the diffusion parameter ?. The standard ?CDM model can be recovered by setting ? = 0. If diffusion takes place (? > 0) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the universe may serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integrated Sachs-Wolfe signal, and on the matter power spectrum P(k). The latter analysis places strong constraints on the magnitude of the diffusion mechanism but does not rule out the model.

  15. Hydrogen diffusion in Lead Zirconate Titanate and Barium Titanate

    SciTech Connect (OSTI)

    Alvine, Kyle J.; Vijayakumar, M.; Bowden, Mark E.; Schemer-Kohrn, Alan L.; Pitman, Stan G.

    2012-08-28

    Hydrogen is a potential clean-burning, next-generation fuel for vehicle and stationary power. Unfortunately, hydrogen is also well known to have serious materials compatibility issues in metals, polymers, and ceramics. Piezoelectric actuator materials proposed for low-cost, high efficiency high-pressure hydrogen internal combustion engines (HICE) are known to degrade rapidly in hydrogen. This limits their potential use and poses challenges for HICE. Hydrogen-induced degradation of piezoelectrics is also an issue for low-pressure hydrogen passivation in ferroelectric random access memory. Currently, there is a lack of data in the literature on hydrogen species diffusion in piezoelectrics in the temperature range appropriate for the HICE as charged via a gaseous route. We present 1HNMR quantification of the local hydrogen species diffusion within lead zirconate titanate and barium titanate on samples charged by exposure to high-pressure gaseous hydrogen ?32?MPa. Results are discussed in context of theoretically predicted interstitial hydrogen lattice sites and aqueous charging experiments from existing literature.

  16. Manhattan Project: The Navy and Thermal Diffusion, 1944

    Office of Scientific and Technical Information (OSTI)

    Diffusion columns, S-50 Thermal Diffusion Plant, Oak Ridge, 1945. THE NAVY AND THERMAL DIFFUSION (Oak Ridge: Clinton, 1944) Events > The Uranium Path to the Bomb, 1942-1944 Y-12: Design, 1942-1943 Y-12: Construction, 1943 Y-12: Operation, 1943-1944 Working K-25 into the Mix, 1943-1944 The Navy and Thermal Diffusion, 1944 As problems with both Y-12 and K-25 reached crisis proportions in spring and summer 1944, the Manhattan Project received help from an unexpected source: the United States

  17. U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1930's 75 62 52 48 52 55 61 70 73 74 1940's 80 115 119 122 143 160 165 189 210 224 1950's 260 292 319 340 354 377 418 434 458 498 1960's 543 592 624 670 723 753 739 785 828 867 1970's 906 883 908 917 887 872 854 863 852 808 1980's 777 775 762 790 838 816 800 812 816 785 1990's 784 835 872 886 889 908 958 964 938 973 2000's 1,016 954 957 876 927 876 906 930 953 1,024 2010's 1,066 1,134 1,250 1,357 1,608

  18. Photoelectron spectroscopy of wet and gaseous samples through graphene membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kraus, Jürgen; Reichelt, Robert; Günther, Sebastian; Gregoratti, Luca; Amati, Matteo; Kiskinova, Maya; Yulaev, Alexander; Vlassiouk, Ivan V.; Kolmakov, Andrei

    2014-01-01

    Photoelectron spectroscopy (PES) and microscopy are highly important for exploring morphologically and chemically complex liquid–gas, solid–liquid and solid–gas interfaces under realistic conditions, but the very small electron mean free path inside dense media imposes serious experimental challenges. Currently, near ambient pressure PES is conducted using dexterously designed electron energy analyzers coupled with differentially pumped electron lenses which make it possible to conduct PES measurements at a few hPa. This report proposes an alternative ambient pressure approach that can be applied to a broad class of samples and be implemented in conventional PES instruments. It uses ultrathin electron transparent but molecularmore » impermeable membranes to isolate the high pressure sample environment from the high vacuum PES detection system. We show that the separating graphene membrane windows are both mechanically robust and sufficiently transparent for electrons in a wide energy range to allow soft X-ray PES of liquid and gaseous water. The performed proof-of-principle experiments confirm the possibility to probe vacuum-incompatible toxic or reactive samples placed inside such hermetic, gas flow or fluidic environmental cells.« less

  19. Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection

    SciTech Connect (OSTI)

    Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

    2010-12-03

    A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

  20. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOE Patents [OSTI]

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  1. Nodal Diffusion & Transport Theory

    Energy Science and Technology Software Center (OSTI)

    1992-02-19

    DIF3D solves multigroup diffusion theory eigenvalue, adjoint, fixed source, and criticality (concentration, buckling, and dimension search) problems in 1, 2, and 3-space dimensions for orthogonal (rectangular or cylindrical), triangular, and hexagonal geometries. Anisotropic diffusion theory coefficients are permitted. Flux and power density maps by mesh cell and regionwise balance integrals are provided. Although primarily designed for fast reactor problems, upscattering and internal black boundary conditions are also treated.

  2. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF.sub.6

    DOE Patents [OSTI]

    Jones, Robert L.; Otey, Milton G.; Perkins, Roy W.

    1982-01-01

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF.sub.6. The contaminants include fluorine and fluorides which are more reactive with CaCO.sub.3 than is UF.sub.6. The method comprises contacting the contaminant-carrying UF.sub.6 with particulate CaCO.sub.3 at a temperature effecting reaction of the contaminant and the CaCO.sub.3.

  3. Stellar and gaseous nuclear disks observed in nearby (U)LIRGs (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Stellar and gaseous nuclear disks observed in nearby (U)LIRGs Citation Details In-Document Search Title: Stellar and gaseous nuclear disks observed in nearby (U)LIRGs We present near-infrared integral field spectroscopy of the central kiloparsec of 17 nearby luminous and ultra-luminous infrared galaxies undergoing major mergers. These observations were taken with OSIRIS assisted by the Keck I and II Adaptive Optics systems, providing spatial resolutions of a few

  4. Uranium and cesium diffusion in fuel cladding of electrogenerating channel

    SciTech Connect (OSTI)

    Vasilev, I. V. Ivanov, A. S.; Churin, V. A.

    2014-12-15

    The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

  5. Stratified charge combustion system and method for gaseous fuel internal combustion engines

    SciTech Connect (OSTI)

    Rhoades, W.A. Jr.

    1986-03-11

    This patent describes a stratified charge combustion system for use in a gaseous fuel internal combustion engine. This system consists of: (a) a combustion chamber; (b) an ignition; (c) a gaseous fuel injection valve assembly in communication with the combustion chamber and in spaced relationship from the ignition source with a portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The fuel valve assembly defines an entry port for the entrance of gaseous fuel, the entry port is recessed outside of a fixed inside surface. (d) means for pressuring the gaseous fuel prior to injection; and (e) a curved transitional surface extending from the entry port toward the portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The curved transitional surface curves away from the direction of the entry port. The curved transitional surface has a curvature for the particular direction and configuration of the entry port. The particular configuration of the portion of the inside surfaces extends between the injection valve assembly and the ignition source. The particular arrangment of the fuel injection valve assembly in the combustion chamber, and for the particular pressure of the gaseous fuel is to produce the Coanda Effect in the injected gaseous fuel flow after it passes through the entry port and follows the curved transitional surface under the Coanda Effect. As the curved transitional surface curves away from the direction of the entry port, a flow is produced of the gaseous fuel that clings to and follows the particular configuration of the inside surfaces to the ignition source.

  6. Photocatalytic degradation of gaseous toluene over TiO{sub 2}-SiO{sub 2} composite nanotubes synthesized by sol-gel with template technique

    SciTech Connect (OSTI)

    Zou, Xuejun [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China)] [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China) [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China); Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Qu, Zhenping; Zhao, Qidong; Shi, Yong; Chen, Yongying [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China)] [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China); Tade, Moses [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Liu, Shaomin, E-mail: shaomin.liu@curtin.edu.au [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)

    2012-02-15

    Graphical abstract: TiO{sub 2}-SiO{sub 2} nanotubes (b) were fabricated by sol-gel method using ZnO nanowires (a) as template. Highlights: Black-Right-Pointing-Pointer A simple method to prepare TiO{sub 2}-SiO{sub 2} nanotubes for photocatalytic toluene removal. Black-Right-Pointing-Pointer The TiO{sub 2}-SiO{sub 2} nanotubes have a small blue shift and higher absorption intensity. Black-Right-Pointing-Pointer The TiO{sub 2}-SiO{sub 2} nanotubes have an enhanced photoactivity in degrading gaseous toluene. -- Abstract: TiO{sub 2}-SiO{sub 2} composite nanotubes were successfully synthesized by a facile sol-gel technique utilizing ZnO nanowires as template. The nanotubes were well characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, N{sub 2} adsorption-desorption analysis and UV-vis diffuse reflectance spectroscopy. The nanotubular TiO{sub 2}-SiO{sub 2} composite photocatalysts showed diameter of 300-325 nm, fine mesoporous structure and high specific surface area. The results indicated that the degradation efficiency of gaseous toluene could get 65% after 4 h reaction using the TiO{sub 2}-SiO{sub 2} composite as the photocatalyst under UV light illumination, which was higher than that of P25.

  7. Diffusion Bonding Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffusion Bonding Characterization - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  8. Policy Flash 20016-18 | Department of Energy

    Energy Savers [EERE]

    Site Paducah Site Paducah Gaseous Diffusion Plant Paducah Gaseous Diffusion Plant Productive reuse opportunities are being explored as the U.S. Department of Energy cleans up the 3,556-acre Paducah Gaseous Diffusion Plant site. Read more Paducah Citizens Advisory Board Paducah Citizens Advisory Board The Paducah Citizens Advisory Board works with the Department of Energy to make recommendations that reflect the community's concerns. Read more Paducah Environmental Remediation Paducah

  9. DOE Shipment Activities: What We Accomplished and a Look Forward |

    Office of Environmental Management (EM)

    Services Contract | Department of Energy Portsmouth Gaseous Diffusion Plant Technical Services Contract DOE Seeks Proposals for Portsmouth Gaseous Diffusion Plant Technical Services Contract June 19, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy today issued a Draft Request for Proposals (RFP) for an Environmental Technical Services acquisition at the Portsmouth Gaseous Diffusion Plant near Piketon, Ohio. The draft RFP

  10. U.S. Department of Energy Finding of No Significant Impact

    Energy Savers [EERE]

    Portsmouth Gaseous Diffusion Plant | Department of Energy U.S. Department of Energy Announces 2014 Dates for Public Tours of Portsmouth Gaseous Diffusion Plant U.S. Department of Energy Announces 2014 Dates for Public Tours of Portsmouth Gaseous Diffusion Plant February 21, 2014 - 3:59pm Addthis PIKETON, OH - Interested in seeing what's behind the security gates at the Department of Energy's former uranium enrichment facilities in Piketon, Ohio? Then you will have a special opportunity to

  11. DOE Announces Transfer of Depleted Uranium to Advance the U.S. National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security Interests, Extend Operations at Paducah Gaseous Diffusion Plant | Department of Energy Transfer of Depleted Uranium to Advance the U.S. National Security Interests, Extend Operations at Paducah Gaseous Diffusion Plant DOE Announces Transfer of Depleted Uranium to Advance the U.S. National Security Interests, Extend Operations at Paducah Gaseous Diffusion Plant May 15, 2012 - 4:00pm Addthis News Media Contact (202) 386-4940 WASHINGTON - The Department of Energy - in collaboration

  12. DOE Selects NREL as a New Biofuels R&D Program Leader - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services Contract | Department of Energy Proposals for Portsmouth Gaseous Diffusion Plant Technical Services Contract DOE Seeks Proposals for Portsmouth Gaseous Diffusion Plant Technical Services Contract June 19, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy today issued a Draft Request for Proposals (RFP) for an Environmental Technical Services acquisition at the Portsmouth Gaseous Diffusion Plant near Piketon, Ohio.

  13. Paducah Site Public Tour | Department of Energy

    Office of Environmental Management (EM)

    Potential Land and Facilities Transfers | Department of Energy Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers On December 14, 2015, the Department of Energy issued a Finding of No Significant Impact (FONSI) relative to potential Paducah Gaseous Diffusion Plant land and facilities transfers, indicating that the activity is not a major

  14. Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Site-Wide Waste Disposition Evaluation Project at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, presents the information necessary to select a Site-wide...

  15. Portsmouth News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area Students PIKETON, Ohio - Educational outreach efforts at the Portsmouth Gaseous Diffusion Plant in southern Ohio are making a positive and significant impact on youth in the...

  16. EA-1599: Disposition of Radioactively Contaminated Nickel Located...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications EA-1599:...

  17. Independent Oversight Review, Portsmouth/Paducah Project Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the PortsmouthPaducah Project Office Oversight of the Portsmouth Gaseous Diffusion Plant Criticality Safety Program This report provides the results of an independent...

  18. EA-1856: Conveyance of Land and Facilities at the Portsmouth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    56: Conveyance of Land and Facilities at the Portsmouth Gaseous Diffusion Plant for Economic Development Purposes, Piketon, Ohio EA-1856: Conveyance of Land and Facilities at the...

  19. Portsmouth | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administrative Consent Order, August 12, 1997 Summary PDF icon Portsmouth Gaseous Diffusion Plant Director's Final Findings and Orders, October 4, 1995 PDF icon Portsmouth...

  20. EM Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 2, 2014 DOE Seeks Small Businesses for Portsmouth Gaseous Diffusion Plant Infrastructure Support Services Cincinnati -- The U.S. Department of Energy (DOE) today issued a...

  1. Paducah Needs Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paducah Needs Assessment May 2003 This Needs Assessment for former Paducah Gaseous Diffusion Plant construction workers was developed for the purpose of collecting existing...

  2. Department of Energy Cites LATA Environmental Services of Kentucky...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Diffusion Plant. The violations are associated with a March 9, 2011, heat stress event during which an employee lost consciousness; and a May 22, 2011, event resulting...

  3. Voluntary Protection Program Onsite Review, Swift and Staley...

    Office of Environmental Management (EM)

    Swift and Staley Team, Infrastructure Support Contract, Paducah Gaseous Diffusion Plant - December 2014 Voluntary Protection Program Onsite Review, Swift and Staley Team,...

  4. EA-1599: Draft Environmental Assessment

    Broader source: Energy.gov [DOE]

    Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

  5. APPLICATION OF A CATEGORICAL EXCLUSION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    disposition of U. S. Department of Energy (DOE) surplus or excess personal property at the Portsmouth, Ohio andor the Paducah Kentucky, Gaseous Diffusion Plants. "Personal...

  6. Public Comment Period for Portsmouth Site D&D and Waste Disposition Decisions

    Broader source: Energy.gov [DOE]

    Public Comment Period for the Process Buildings and Complex Facilities Decontamination and Decommissioning and Site-Wide Waste Disposition Decisions at the Portsmouth Gaseous Diffusion Plant

  7. Preliminary Notice of Violation, Bechtel Jacobs Company, LLC- EA-2003-09

    Broader source: Energy.gov [DOE]

    Preliminary Notice of Violation issued to Bechtel Jacobs Company, LLC, related to Multiple Nuclear Safety Issues at Oak Ridge and the Paducah Gaseous Diffusion Plant

  8. Type B Accident Investigation of the August 22, 2000, Injury...

    Office of Environmental Management (EM)

    Chemical Reaction at the Portsmouth Gaseous Diffusion Plant, X-701B Site Type B Accident Investigation of the August 22, 2000, Injury Resulting From Violent Exothermic Chemical ...

  9. FIA-12-0032- In the Matter of Patsy Cornwell Sherriff

    Broader source: Energy.gov [DOE]

    Ms. Sherriff filed a FOIA request for employment, medical and exposure records relating to her grandfathers employment at the Paducah Gaseous Diffusion Plant.

  10. Microsoft Word - k-25 cover

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project" BACKGROUND The East Tennessee Technology Park (ETTP), formerly the Oak Ridge Gaseous Diffusion Plant, began operation during World War II as part of the Manhattan Project. ...

  11. APPLICATION OF A CATEGORICAL EXCLUSION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the conveyance of four groundwater wells and well pumps from the Department of Energy Portsmouth Gaseous Diffusion Plant to the Village of Piketon. The wells, well pumps and ...

  12. Project Develops Student-Stakeholders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PIKETON, Ohio High school students are learning valuable skills while helping EM provide important information to the public about the Portsmouth Gaseous Diffusion Plant. ...

  13. NOTICE: U.S. Department of Energy (DOE) Portsmouth/Paducah Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment (EA) for Potential Land and Facilities Transfers, McCracken ... DOE's Paducah Gaseous Diffusion Plant Environmental Assessment for Potential Land and ...

  14. U.S. Department of Energy Portsmouth/Paducah Project Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy (DOE) needs to deactivate the Paducah Gaseous Diffusion Plant (PGDP) in order to place it in an environmentally safe configuration and conduct ...

  15. EM News Flashes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    project. July 31, 2013 Members of the Paducah Citizens Advisory Board helped create the book, The Story of the Paducah Gaseous Diffusion Plant, Megawatts to Megatons to Megawatts....

  16. A look back at Union Carbides [first] 20 Years in Nuclear Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    first 20 Years in Nuclear Energy The Gaseous Diffusion Plants Note: Union Carbide Nuclear Division, which started out as Carbide and Carbon Chemicals Company, operated the...

  17. Microsoft Word - EM Major Contracts Summary 101515update.docx

    Office of Environmental Management (EM)

    Federal Services, Inc. DE-EM0001131 72214 - 102017 465M Paducah Gaseous Diffusion Plant Deactivation Cost, firm fixed price, and award fee elements Site Contractor Contract...

  18. Sustainable Environmental Stewardship | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silver level award winners were Ames Laboratory and Portsmouth Gaseous Diffusion Plant. Pollution Prevention and Waste Reduction The purpose of pollution prevention and waste ...

  19. Enforcement Letter, Geiger Brothers Mechanical Contractors, INC- March 26, 2010

    Broader source: Energy.gov [DOE]

    Issued to Geiger Brothers Mechanical Contractors, Inc. related to Installation and Inspection of Penetration Fire Seals at the DUF6 Conversion Building at the Portsmouth Gaseous Diffusion Plant

  20. Voluntary Protection Program Onsite Review, TPMC Portsmouth- September 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Portsmouth Gaseous Diffusion Plant Infrastructure Contract is continuing to perform at a level deserving DOE-VPP Star recognition.

  1. EM Newsletters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 24, 2015 Electricians prepare to attach a new power cable to a transformer located inside the former Paducah Gaseous Diffusion Plant. Reconfiguration of Paducah Site's...

  2. Preliminary Notice of Violation, Fluor-B&W Portsmouth, LLC- January 29, 2015

    Broader source: Energy.gov [DOE]

    Nuclear Safety Enforcement Preliminary Notice of Violation issued to Fluor-B&W Portsmouth, LLC for improper alteration of radiation protection records at the Portsmouth Gaseous Diffusion Plant.

  3. Enterprise Assessments Review of Radioactive Waste Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an independent review of the Fluor-B&W Portsmouth, LLC (FBP) radioactive waste management program at the deactivated Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio. ...

  4. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOE Patents [OSTI]

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  5. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOE Patents [OSTI]

    Bischel, William K. [Menlo Park, CA; Jacobs, Ralph R. [Livermore, CA; Prosnitz, Donald [Hamden, CT; Rhodes, Charles K. [Palo Alto, CA; Kelly, Patrick J. [Fort Lewis, WA

    1979-02-20

    Method and apparatus for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH.sub.3) or methyl fluoride (CH.sub.3 F) is optically pumped by a pair of CO.sub.2 lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level.

  6. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOE Patents [OSTI]

    Bischel, W.K.; Jacobs, R.R.; Prosnitz, D.P.; Rhodes, C.K.; Kelly, P.J.

    1979-02-20

    Method and apparatus are disclosed for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH[sub 3]) or methyl fluoride (CH[sub 3]F) is optically pumped by a pair of CO[sub 2] lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level. 3 figs.

  7. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  8. Beta 3 at Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    235 for Little Boy. The feed material from first the Alpha calutrons, next the S-50 Thermal Diffusion Plant and finally the output of the K-25 Gaseous Diffusion Plant was...

  9. Y-12's first Open House-September 2-3, 1967, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    site, K-25 was assigned to the Gaseous Diffusion Plant, and S-50 was assigned to the Thermal Diffusion Plant. The only designation that might have some connection may be K-25....

  10. Little known heroes of the nuclear age, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He would become one of the first people injured in the Manhattan Project. The S-50 Thermal Diffusion Plant was being constructed at the K-25 Gaseous Diffusion Plant site....

  11. Oak Ridge Reservation Volume 2. Records relating to cesium at the K-25 Plant: A guide to record series of the Department of Energy and its contractors

    SciTech Connect (OSTI)

    1995-02-21

    The purpose of this guide is to describe the documents and record series at the K-25 plant that pertain to the handling of waste containing cesium-137 produced as a result of processes to enrich uranium and separate plutonium at the Department of Energy`s (DOE) Oak Ridge National Laboratory (ORNL) and Oak Ride Gaseous Diffusion Plant (ORGDP, called K-25) in Oak Ridge, Tennessee. History Associates Incorporated (HAI) prepared this guide as part of DOE`s Epidemiologic Records Inventory Project, the purpose of which is to verify and conduct inventories of epidemiologic and health-related records at various DOE and DOE contractor sites. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in it. Specific attention is given to the history of the DOE-Oak Ridge Reservation, the history and development of the K-25 plant, the creation and handling of cesium-contaminated waste, and environmental monitoring efforts at ORNL and K-25 from the late 1940s to the present. This introduction also presents the methodology used to identify the documents and series pertaining to cesium, a discussion of the inventory of these documents, information concerning access to the site and the records, and a description of the arrangement of the chapters.

  12. Laser activated diffuse discharge switch (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Laser activated diffuse discharge switch Title: Laser activated diffuse discharge switch The invention is a gas mixture for a diffuse discharge switch which is capable of changing ...

  13. Gaseous fission product management for molten salt reactors and vented fuel systems

    SciTech Connect (OSTI)

    Messenger, S. J.; Forsberg, C.; Massie, M.

    2012-07-01

    Fission gas disposal is one of the unresolved difficulties for Molten Salt Reactors (MSRs) and advanced reactors with vented fuel systems. As these systems operate, they produce many radioactive isotopes of xenon and krypton (e.g. {sup 135}Xe t{sub 1/2} = 9.14 hours and {sup 85}Kr t{sub 1/2}= 10.73 years). Removing these gases proves vital to the success of such reactor designs for two reasons. First, the gases act as large neutron sinks which decrease reactivity and must be counterbalanced by increasing fuel loading. Second, for MSRs, inert fission product gases naturally separate quickly from high temperature salts, thus creating high vapor pressure which poses safety concerns. For advanced reactors with solid vented fuel, the gases are allowed to escape into an off-gas system and thus must be managed. Because of time delays in transport of fission product gases in vented fuel systems, some of the shorter-lived radionuclides will decay away thereby reducing the fission gas source term relative to an MSR. To calculate the fission gas source term of a typical molten salt reactor, we modeled a 1000 MWe graphite moderated thorium MSR similar to that detailed in Mathieu et al. [1]. The fuel salt used in these calculations was LiF (78 mole percent) - (HN)F 4 (22 mole percent) with a heavy nuclide composition of 3.86% {sup 233}U and 96.14% {sup 232}Th by mass. Before we can remove the fission product gases produced by this reactor configuration, we must first develop an appropriate storage mechanism. The gases could be stored in pressurized containers but then one must be concerned about bottle failure. Methods to trap noble gases in matrices are expensive and complex. Alternatively, there are direct storage/disposal options: direct injection into the Earth or injecting a grout-based product into the Earth. Advances in drilling technologies, hydro fracture technologies, and methods for the sequestration of carbon dioxide from fossil fuel plants are creating new options for disposal of fission gas wastes. In each option, lithostatic pressure, a kilometer or more underground, eliminates the pressure driving force for noble gas release and dissolves any untrapped gas in deep groundwater or into incorporated solid waste forms. The options, challenges, and potential for these methods to dispose of gaseous fission products are described. With this research, we hope to help both MSRs and other advanced reactors come one step closer to commercialization. (authors)

  14. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect (OSTI)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  15. Diffusion in silicon isotope heterostructures

    SciTech Connect (OSTI)

    Silvestri, Hughes Howland

    2004-05-14

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly positively charged P species. Additionally, the temperature dependence of the diffusion coefficient of Si in Ge was measured over the temperature range of 550 C to 900 C using a buried Si layer in an epitaxially grown Ge layer.

  16. Method of absorbing UF.sub.6 from gaseous mixtures in alkamine absorbents

    DOE Patents [OSTI]

    Lafferty, Robert H.; Smiley, Seymour H.; Radimer, Kenneth J.

    1976-04-06

    A method of recovering uranium hexafluoride from gaseous mixtures employing as an absorbent a liquid composition at least one of the components of which is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2.

  17. Light diffusing fiber optic chamber (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: light; diffusing; fiber; optic; chamber; light; diffusion; transmitting; light; target; light; transmitted; ...

  18. Impact of mesophyll diffusion on estimated global land CO2 fertilization

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Impact of mesophyll diffusion on estimated global land CO2 fertilization Citation Details In-Document Search Title: Impact of mesophyll diffusion on estimated global land CO2 fertilization In C3 plants, CO2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and so overestimate CO2

  19. Rotor dynamic analysis of GCEP (Gas Centrifuge Enrichment Plant) Tails Withdrawal Test Facility AC-12 compressor

    SciTech Connect (OSTI)

    Spencer, J.W.

    1982-01-22

    The reliable operation of the centrifugal compressors utilized in the gaseous diffusion process is of great importance due to the critical function of these machines in product and tails withdrawal, cascade purge and evacuation processes, the purge cascade and product booster applications. The same compressors will be used in equally important applications within the Gas Centrifuge Enrichment Plant (GCEP). In response to concern over the excessive vibration exhibited by the AC-12 compressor in the No. 3 position of the GCEP Tails Withdrawal Test Facility, a rotor-bearing dynamic analysis was performed on the compressor. This analysis included the acquisition and reduction of compressor vibration data, characterization and modeling of the rotorbearing system, a computer dynamic study, and recommendations for machine modification. The compressor dynamic analysis was performed for rotor speeds of 9000 rpm and 7200 to 7800 rpm, which includes all possible opreating speeds of the compressor in the GCEP Test Facility. While the analysis was performed on this particular AC-12 compressor, the results should be pertinent to other AC-12 applications as well. Similar diagnostic and analytical techniques can be used to evaluate operation of other types of centrifugal compressors.

  20. Diffusion-flame burning of fuel-vapor pockets in air

    SciTech Connect (OSTI)

    Fendell, F.E.; Bush, W.B.; Mitchell, J.A.; Fink, S.F. IV . Center for Propulsion Technology and Fluid Mechanics)

    1994-08-01

    The authors examine analytically, with numerical assistance, the unsteady, diffusively limited burnup of initially unmixed fuel vapor and gaseous oxidizer. They study three simple spherical geometries: (1) an initially uniform sphere of fuel vapor immersed in an unbounded expanse of oxidizer; (2) a variant on case 1 in which only a finite concentric annulus of enveloping oxidizer is available for the burning of the initially uniform sphere of fuel vapor; and (3) an impervious sphere, consisting initially of one uniform hemisphere of fuel vapor and one uniform hemisphere of oxidizer. Of particular interest is the time interval for the exhaustion of the lean reactant, as a function of the fuel-to-oxidizer stoichiometry and the sphere radius. The motivation for these studies is to ascertain the fate of inhomogeneous blobs that arise as a consequence of imperfect fuel/air mixing, e.g., in the context of a supersonic combustor. In such a context, an inhomogeneous blob of gaseous mixture, idealized to have the geometry of a sphere, is examined as a Lagrangian element, as it is convected downstream, without slip, by the surrounding gaseous flow. The longest time for diffusional burnup, for the spherically enclosed geometries, arises for the case in which the fuel vapor and oxidizer are present in stoichiometric proportion.

  1. Light diffusing fiber optic chamber

    DOE Patents [OSTI]

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  2. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    SciTech Connect (OSTI)

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  3. Plant Operational Status - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Operational Status Plant Operational Status Page Content Shift 1 - Day The Pantex Plant is open for normal Day Shift operations. Plant personnel are to report as assigned. Personnel may call 477-3000, Option 1 for additional details. Shift 2 - Swing The Pantex Plant is open for normal Swing Shift operations. Plant personnel are to report as assigned. Personnel may call 477-3000, Option 1 for additional details. Shift 3 - Grave The Pantex Plant is open for normal Graveyard Shift operations.

  4. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants A Literature Survey and Assessment

    SciTech Connect (OSTI)

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

  5. Multiscale simulation of xenon diffusion and grain boundary segregation in UO₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andersson, David A.; Tonks, Michael R.; Casillas, Luis; Vyas, Shyam; Nerikar, Pankaj; Uberuaga, Blas P.; Stanek, Christopher R.

    2015-07-01

    In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. The segregation rate is controlled by diffusion of fission gas atoms through the grains and interaction with the boundaries. Based on the mechanisms established from earlier density functional theory (DFT) and empirical potential calculations, diffusion models for xenon (Xe), uranium (U) vacancies and U interstitials in UO₂ have been derived for both intrinsic (no irradiation) and irradiation conditions. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model formore » the interaction between Xe atoms and three different grain boundaries in UO₂ (Σ5 tilt, Σ5 twist and a high angle random boundary), as derived from atomistic calculations. The present model does not attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries. The point defect and Xe diffusion and segregation models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as to simulate Xe redistribution for a few simple microstructures.« less

  6. METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS

    DOE Patents [OSTI]

    Hoffman, J.D.; Ballou, J.K.

    1957-11-19

    A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

  7. Fractional diffusion on bounded domains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Defterli, Ozlem; D'Elia, Marta; Du, Qiang; Gunzburger, Max Donald; Lehoucq, Richard B.; Meerschaert, Mark M.

    2015-03-13

    We found that the mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. In this paper we discuss the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.

  8. Process and system for removing sulfur from sulfur-containing gaseous streams

    DOE Patents [OSTI]

    Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  9. Enthalpy Diffusion in Multicomponent Flows

    SciTech Connect (OSTI)

    Cook, A W

    2008-11-12

    The enthalpy diffusion flux in the multicomponent energy equation is a well known yet frequently neglected term. It accounts for energy changes, associated with compositional changes, resulting from species diffusion. Enthalpy diffusion is important in flows where significant mixing occurs between species of dissimilar molecular weight. The term plays a critical role in preventing local violations of the entropy condition. In simulations of nonpremixed combustion, omission of the enthalpy flux can lead to anomalous temperature gradients, which may cause mixing regions to exceed ignition conditions. The term can also play a role in generating acoustic noise in turbulent mixing layers. Euler solvers that rely on numerical diffusion to mix fluids cannot accurately predict the temperature in mixed regions. On the other hand, Navier-Stokes solvers that incorporate enthalpy diffusion can provide much more accurate results.

  10. Portable vapor diffusion coefficient meter

    DOE Patents [OSTI]

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  11. Simulation of xenon, uranium vacancy and interstitial diffusion and grain boundary segregation in UO2

    SciTech Connect (OSTI)

    Andersson, Anders D.; Tonks, Michael R.; Casillas, Luis; Nerikar, Pankaj; Vyas, Shyam; Uberuaga, Blas P.; Stanek, Christopher R.

    2014-10-31

    In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations 1, continuum models for diffusion of xenon (Xe), uranium (U) vacancies and U interstitials in UO2 have been derived for both intrinsic conditions and under irradiation. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model for the interaction between Xe atoms and three different grain boundaries in UO2 ( ?5 tilt, ?5 twist and a high angle random boundary),as derived from atomistic calculations. All models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as redistribution for a few simple microstructures.

  12. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; Eliasson, Bengt; W. T. Hill, III; Wang, Jyhpyng; Chen, Shih -Hung

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  13. Laser acceleration of protons using multi-ion plasma gaseous targets

    SciTech Connect (OSTI)

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; Eliasson, Bengt; W. T. Hill, III; Wang, Jyhpyng; Chen, Shih -Hung

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such a laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.

  14. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOE Patents [OSTI]

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  15. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOE Patents [OSTI]

    Ghate, Madhav R.; Yang, Ralph T.

    1987-01-01

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

  16. METHOD FOR THE RECOVERY AND PURIFICATION OF GASEOUS UF$sub 6$ FROM GASEOUS MIXTURES AND UF$sub 7$NO AND UF$sub 7$NO$sub 2$ PRODUCTS PRODUCED THEREBY

    DOE Patents [OSTI]

    Ogle, P.R. Jr.

    1962-06-16

    A method is given for recovering uranium hexafluoride from a gaseous mixture containing said uranium hexafluoride and extraneous gaseous impurities. The method comprises reacting said mixture with a nitrogen oxyfluoride at a temperature in the range - 100 to 50 deg C to thereby form a solid compound having the empirical formula UF/sub 7/N(O)/sub x/ where x is a number from 1 to 2. (AEC)

  17. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 μg/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 μg/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 μg/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable emission control scenarios suggested significant air quality improvements from emission reduction: 90% of SO2 emission removed from power plant in YRD would be able to reduce more than 85% of SO2 pollution, 85% NOx emission reduction from power plant would reduce more than 60% of NO2 pollution, in terms of reducing the number of days exceeding daily air quality standard. NOx emission reduction from transportation and industry were also found to effectively reduce NO2 pollution but less efficient than emission control from power plants. We also found that multi-pollutants emission control including both NOx and VOC would be a better strategy than independent NOx control over YRD which is China’s 12th Five-Year-Plan (from 2011 to 2015), because O3 pollution would be increased as a side effect of NOx control and counteract NO2 pollution reduction benefit.

  18. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 469 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Wyoming

  19. Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Utah (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Utah

  20. Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Oklahoma (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kansas-Oklahoma

  1. Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-Wyoming

  2. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect (OSTI)

    Stalheim, Mr. Douglas; Boggess, Todd; San Marchi, Chris; Jansto, Steven; Somerday, Dr. B; Muralidharan, Govindarajan; Sofronis, Prof. Petros

    2010-01-01

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 800 and 3000 psi. This paper will describe the work performed on four commercially available pipeline steels in the presence of gaseous hydrogen at pressures relevant for transport in pipelines. Microstructures and mechanical property performances will be compared. In addition, recommendations for future work related to gaining a better understanding of steel pipeline performance in hydrogen service will be discussed.

  3. STAR FORMATION IN THE EXTENDED GASEOUS DISK OF THE ISOLATED GALAXY CIG 96

    SciTech Connect (OSTI)

    Espada, D.; Sabater, J.; Verdes-Montenegro, L.; Sulentic, J.; Munoz-Mateos, J. C.; Gil de Paz, A.; Verley, S.; Leon, S.

    2011-07-20

    We study the Kennicutt-Schmidt star formation law and efficiency in the gaseous disk of the isolated galaxy CIG 96 (NGC 864), with special emphasis on its unusually large atomic gas (H I) disk (r{sub Hmathsci}/r{sub 25} = 3.5, r{sub 25} = 1.'85). We present deep Galaxy Evolution Explorer near- and far-UV observations, used as a recent star formation tracer, and we compare them with new, high-resolution (16''or 1.6 kpc) Very Large Array H I observations. The UV and H I maps show good spatial correlation outside the inner 1', where the H I phase dominates over H{sub 2}. Star-forming regions in the extended gaseous disk are mainly located along the enhanced H I emission within two (relatively) symmetric, giant gaseous spiral arm-like features, which emulate an H I pseudo-ring at r {approx_equal} 3'. Inside this structure, two smaller gaseous spiral arms extend from the northeast and southwest of the optical disk and connect to the previously mentioned H I pseudo-ring. Interestingly, we find that the (atomic) Kennicutt-Schmidt power-law index systematically decreases with radius, from N {approx_equal} 3.0 {+-} 0.3 in the inner disk (0.'8-1.'7) to N = 1.6 {+-} 0.5 in the outskirts of the gaseous disk (3.'3-4.'2). Although the star formation efficiency (SFE), the star formation rate per unit of gas, decreases with radius where the H I component dominates as is common in galaxies, we find that there is a break of the correlation at r = 1.5r{sub 25}. At radii 1.5r{sub 25} < r < 3.5r{sub 25}, mostly within the H I pseudo-ring structure, regions exist whose SFE remains nearly constant, SFE {approx_equal} 10{sup -11} yr{sup -1}. We discuss possible mechanisms that might be triggering the star formation in the outskirts of this galaxy, and we suggest that the constant SFE for such large radii (r > 2r{sub 25}) and at such low surface densities might be a common characteristic in extended UV disk galaxies.

  4. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOE Patents [OSTI]

    Wijmans Johannes G.; Merkel, Timothy C.; Baker, Richard W.

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  5. Improved diffuser for augmenting a wind turbine

    DOE Patents [OSTI]

    Foreman, K.M.; Gilbert, B.L.

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  6. Diffuser for augmenting a wind turbine

    DOE Patents [OSTI]

    Foreman, Kenneth M.; Gilbert, Barry L.

    1984-01-01

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  7. Results of Continuous Load Cell Monitoring Field Trial for UF6 Withdrawals at an Operating Industrial Plant

    SciTech Connect (OSTI)

    Krichinsky, Alan M; Bell, Lisa S; Conchewski, Curtis A; Peters, Benjamin R; Pickett, Chris A; Richardson, Dave; Rowe, Nathan C; Younkin, James R

    2010-01-01

    Continuous load cell monitoring (CLCM) has been implemented and tested for use as a safeguards tool during a 2009 field trial in an operating UF6 transfer facility. The transfer facility is part of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio, operated by the United States Enrichment Corporation. During the field trial, two process scales for UF{sub 6} cylinders were continuously monitored for a 6-month period as cylinders were being filled. The collected CLCM data were used in testing an event processor serving as a filter for highlighting measurements representing significant operational activities that are important in verifying declared operations. The collection of CLCM data, coupled with rules-based event processing, can provide inspectors with knowledge of a facility's feed and withdrawal activities occurring between site visits. Such process knowledge promises to enhance the effectiveness of safeguards by enabling inspectors to quantitatively compare declared activities directly with process measurements. Selected results of the field trial and event processing will be presented in the context of their value to an independent inspector and a facility operator.

  8. Luminescent Concentration of Diffuse Light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Luminescent Concentration of Diffuse Light Achieving 30X Concentration Work w as p erformed a t L BL a nd U IUC Bronstein, N .D.; Y ao, Y .; X u, L .; O 'Brien, E .; P owers, A...

  9. Boron diffusion in silicon devices

    SciTech Connect (OSTI)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  10. Reaction and diffusion in turbulent combustion

    SciTech Connect (OSTI)

    Pope, S.B.

    1993-12-01

    The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

  11. THREE-DIMENSIONAL LAGRANGIAN TURBULENT DIFFUSION OF DUST GRAINS IN A PROTOPLANETARY DISK: METHOD AND FIRST APPLICATIONS

    SciTech Connect (OSTI)

    Charnoz, Sebastien; Aleon, Jerome

    2011-08-10

    In order to understand how the chemical and isotopic compositions of dust grains in a gaseous turbulent protoplanetary disk are altered during their journey in the disk, it is important to determine their individual trajectories. We study here the dust-diffusive transport using Lagrangian numerical simulations using the popular 'turbulent diffusion' formalism. However, it is naturally expressed in an Eulerian form, which does not allow the trajectories of individual particles to be studied. We present a simple stochastic and physically justified procedure for modeling turbulent diffusion in a Lagrangian form that overcomes these difficulties. We show that a net diffusive flux F of the dust appears and that it is proportional to the gas density ({rho}) gradient and the dust diffusion coefficient D{sub d}: (F = D{sub d} /{rho} x grad({rho})). It induces an inward transport of dust in the disk's midplane, while favoring outward transport in the disk's upper layers. We present tests and applications comparing dust diffusion in the midplane and upper layers as well as sample trajectories of particles with different sizes. We also discuss potential applications for cosmochemistry and smoothed particle hydrodynamic codes.

  12. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  13. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, John E.; Jalan, Vinod M.

    1984-01-01

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  14. Mechanistic study of the isotopic-exchange reaction between gaseous hydrogen and palladium hydride powder

    SciTech Connect (OSTI)

    Outka, D.A.; Foltz, G.W. (Sandia National Labs., Livermore, CA (USA))

    1991-07-01

    A detailed mechanism for the isotopic-exchange reaction between gaseous hydrogen and solid palladium hydride is developed which extends previous model for this reaction by specifically including surface reactions. The modeling indicates that there are two surface-related processes that contribute to the overall rate of exchange: the desorption of hydrogen from the surface and the exchange between surface hydrogen and bulk hydrogen. This conclusion is based upon measurements examining the effect of small concentrations of carbon monoxide were helpful in elucidating the mechanism. Carbon monoxide reversibly inhibits certain steps in the exchange; this slows the overall rate of exchange and changes the distribution of products from the reactor.

  15. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    1980-10-01

    This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in fiscal Year (FY)-1979 and early FY-1980. Volume 3 contains reports from 6 government contractors on LPG, anhydrous ammonia, and hydrogen energy systems. Report subjects include: simultaneous boiling and spreading of liquefied petroleum gas (LPG) on water; LPG safety research; state-of-the-art of release prevention and control technology in the LPG industry; ammonia: an introductory assessment of safety and environmental control information; ammonia as a fuel, and hydrogen safety and environmental control assessment.

  16. 2013 GASEOUS IONS GORDON RESEARCH CONFERENCE, FEBRUARY 24 - MARCH 1, 2013

    SciTech Connect (OSTI)

    Williams, Evan

    2013-03-01

    The Gaseous Ions: Structures, Energetics and Reactions Gordon Research Conference will focus on ions and their interactions with molecules, surfaces, electrons, and light. The long-standing goal of our community is to develop new strategies for capturing complex molecular architectures as gas phase ions where they can be isolated, characterized and manipulated with great sensitivity. Emergent areas of interest include catalytic mechanisms, cryogenic processing of ions extracted from solution, ion fragmentation mechanisms, and new methods for ion formation and structural characterization. The conference will cover theoretical and experimental advances on systems ranging from model studies at the molecular scale to preparation of nanomaterials and characterization of large biological molecules.

  17. Measurement of the electron antineutrino mass from the beta spectrum of gaseous tritium

    SciTech Connect (OSTI)

    Knapp, D.A.

    1986-12-01

    A measurement has been made of the mass of the electron antineutrino using the beta spectrum from a source of gaseous molecular tritium, and an upper limit of 36 eV/c/sup 2/ has been set on this mass. This measurement is the first upper limit on neutrino mass that does not rely on assumptions about the atomic configuration after the beta decay, and it has significantly smaller systematic errors associated with it than do previous measurements. 130 refs., 83 figs., 8 tabs.

  18. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  19. Record of Decision for the Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, UT (DOE/EIS-0355) (09/21/05)

    Office of Environmental Management (EM)

    Record Number Attend EM's Science Alliance Record Number Attend EM's Science Alliance October 30, 2013 - 12:00pm Addthis A record 1,200 students and educators visited EM’s Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. A record 1,200 students and educators visited EM's Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. PIKETON, Ohio - More than 1,200 students and educators from 23 southern Ohio schools visited EM's Portsmouth Gaseous

  20. South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 86 4 0 1980's 0 0 0 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 30 25 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous

  1. Tennessee Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Tennessee Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 506 516 501 488 382 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Tennessee Natural Gas Plant Processing NGPL

  2. Texas Offshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    7 (Million Cubic Feet)

    Offshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Offshore Natural Gas Plant Processing

  3. Indiana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Indiana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72 1980's 74 19 12 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  4. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The Assistant Secretary for Environment has responsibility for identifying, characterizing, and ameliorating the environmental, health, and safety issues and public concerns associated with commercial operation of specific energy systems. The need for developing a safety and environmental control assessment for liquefied gaseous fuels was identified by the Environmental and Safety Engineering Division as a result of discussions with various governmental, industry, and academic persons having expertise with respect to the particular materials involved: liquefied natural gas, liquefied petroleum gas, hydrogen, and anhydrous ammonia. This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in Fiscal Year (FY)-1979 and early FY-1980. Volume 1 (Executive Summary) describes the background, purpose and organization of the LGF Program and contains summaries of the 25 reports presented in Volumes 2 and 3. Annotated bibliographies on Liquefied Natural Gas (LNG) Safety and Environmental Control Research and on Fire Safety and Hazards of Liquefied Petroleum Gas (LPG) are included in Volume 1.

  5. Diffusive mixing and Tsallis entropy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    O'Malley, Daniel; Vesselinov, Velimir V.; Cushman, John H.

    2015-04-29

    Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q-entropy, which is non-additive, was developed as an alternative to the classical entropy for systems which are non-ergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. In addition, the distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered.

  6. Diffusion In Confinement: Kinetic Simulations of Self- andCollective...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffusion In Confinement: Kinetic Simulations of Self- and Collective-Diffusion Behavior of Adsorbed Gases...

  7. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOE Patents [OSTI]

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  8. Structure of the NiFe2O4(001) surface in contact with gaseous O2 and water

    Office of Scientific and Technical Information (OSTI)

    vapor (Journal Article) | SciTech Connect Structure of the NiFe2O4(001) surface in contact with gaseous O2 and water vapor Citation Details In-Document Search This content will become publicly available on August 3, 2017 Title: Structure of the NiFe2O4(001) surface in contact with gaseous O2 and water vapor Authors: Shi, Xiao Search SciTech Connect for author "Shi, Xiao" Search SciTech Connect for ORCID "0000000279925262" Search orcid.org for ORCID

  9. Microsoft Word - DOENV--FY2007.doc

    National Nuclear Security Administration (NNSA)

    ... GASEOUS DIFFUSION PLANT, TN PD PANTEX PLANT, TX PX PERMAFIX (M&CE), TN PF PORTSMOUTH ... JOINT VENTURE, NV 4 IT WASHINGTON SAVANNAH RIVER, SC SR WEST VALLEY DEMONSTARTION ...

  10. Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements

    DOE Patents [OSTI]

    Tom, Glenn M.; McManus, James V.; Luxon, Bruce A.

    1991-08-06

    Scavenger compositions are disclosed, which have utility for effecting the sorptive removal of hazardous gases containing Group II-VII elements of the Periodic Table, such as are widely encountered in the manufacture of semiconducting materials and semiconductor devices. Gas sorption processes including the contacting of Group II-VII gaseous compounds with such scavenger compositions are likewise disclosed, together with critical space velocity contacting conditions pertaining thereto. Further described are gas contacting apparatus, including mesh structures which may be deployed in gas contacting vessels containing such scavenger compositions, to prevent solids from being introduced to or discharged from the contacting vessel in the gas stream undergoing treatment. A reticulate heat transfer structure also is disclosed, for dampening localized exothermic reaction fronts when gas mixtures comprising Group II-VII constituents are contacted with the scavenger compositions in bulk sorption contacting vessels according to the invention.

  11. Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals

    DOE Patents [OSTI]

    Hobson, D.O.; Alexeff, I.; Sikka, V.K.

    1987-08-10

    Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to ''float'' in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields. 6 figs.

  12. Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals

    DOE Patents [OSTI]

    Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.

    1988-01-01

    Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.

  13. Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates

    DOE Patents [OSTI]

    Elliott, Guy R. B. (Los Alamos, NM); Barraclough, Bruce L. (Santa Fe, NM); Vanderborgh, Nicholas E. (Los Alamos, NM)

    1984-01-01

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus, carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  14. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.; Park, Chan Seung

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  15. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  16. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    1980-10-01

    Volume 2 consists of 19 reports describing technical effort performed by Government Contractors in the area of LNG Safety and Environmental Control. Report topics are: simulation of LNG vapor spread and dispersion by finite element methods; modeling of negatively buoyant vapor cloud dispersion; effect of humidity on the energy budget of a liquefied natural gas (LNG) vapor cloud; LNG fire and explosion phenomena research evaluation; modeling of laminar flames in mixtures of vaporized liquefied natural gas (LNG) and air; chemical kinetics in LNG detonations; effects of cellular structure on the behavior of gaseous detonation waves under transient conditions; computer simulation of combustion and fluid dynamics in two and three dimensions; LNG release prevention and control; the feasibility of methods and systems for reducing LNG tanker fire hazards; safety assessment of gelled LNG; and a four band differential radiometer for monitoring LNG vapors.

  17. Liquefied gaseous fuels safety and environmental control assessment program: third status report

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    This Status Report contains contributions from all contractors currently participating in the DOE Liquefied Gaseous Fuels (LG) Safety and Environmental Control Assessment Program and is presented in two principal sections. Section I is an Executive Summary of work done by all program participants. Section II is a presentation of fourteen individual reports (A through N) on specific LGF Program activities. The emphasis of Section II is on research conducted by Lawrence Livermore National Laboratory (Reports A through M). Report N, an annotated bibliography of literature related to LNG safety and environmental control, was prepared by Pacific Northwest Laboratory (PNL) as part of its LGF Safety Studies Project. Other organizations who contributed to this Status Report are Aerojet Energy Conversion Company; Applied Technology Corporation; Arthur D. Little, Incorporated; C/sub v/ International, Incorporated; Institute of Gas Technology; and Massachusetts Institute of Technology. Separate abstracts have been prepared for Reports A through N for inclusion in the Energy Data Base.

  18. Selective Gaseous Extraction: Research, Development and Training for Isotope Production, Final Technical Report

    SciTech Connect (OSTI)

    Bertch, Timothy C,

    2014-03-31

    General Atomics and the University of Missouri Research Reactor (MURR) completed research and development of selective gaseous extraction of fission products from irradiated fuel, which included training and education of MURR students. The process used porous fuel and after irradiation flowed product gases through the fuel to selectively removed desired fission products with the primary goal of demonstrating the removal of rhodium 105. High removal rates for the ruthenium/rhodium (Ru/Rh), tellurium/iodine (Te/I) and molybdenum/technetium (Mo/Tc) series were demonstrated. The success of this research provides for the reuse of the target for further production, significantly reducing the production of actinide wastes relative to processes that dissolve the target. This effort was conducted under DOE funding (DE-SC0007772). General Atomics objective of the project was to conduct R&D on alternative methods to produce a number of radioactive isotopes currently needed for medical and industry applications to include rhodium-105 and other useful isotopes. Selective gaseous extraction was shown to be effective at removing radioisotopes of the ruthenium/rhodium, tellurium/iodine and molybdenum/technetium decay chains while having trace to no quantities of other fission products or actinides. This adds a new, credible method to the area of certain commercial isotope production beyond current techniques, while providing significant potential reduction of process wastes. Waste reduction, along with reduced processing time/cost provides for superior economic feasibility which may allow domestic production under full cost recovery practices. This provides the potential for improved access to domestically produced isotopes for medical diagnostics and treatment at reduced cost, providing for the public good.

  19. Engine gaseous, aerosol precursor and particulate at simulated flight altitude conditions. Technical memo

    SciTech Connect (OSTI)

    Wey, C.C.

    1998-10-01

    The overall objective of the NASA Atmospheric Effects of Aviation Project (AEAP) is to develop scientific bases for assessing atmospheric impacts of the exhaust emissions by both current and future fleets of subsonic and supersonic aircraft. Among the six primary elements of the AEAP is Emissions Characterization. The objective of the Emission Characterization effort is to determine the exhaust emission constituents and concentrations at the engine exit plane. The specific objective of this engine test is to obtain a database of gaseous and particulate emissions as a function of fuel sulfur and engine operating conditions. The database of the particulate emission properties is to be used as a comparative baseline with subsequent flight measurement. The engine used in this test was a Pratt and Whitney F100-200E turbofan engine. Aviation fuel (Jet A) with a range of fuel sulfur was used. Low and high sulfur values are limited by commercially available fuels and by fuel specification limits of 0.3% by weight. Test matrix was set by parametrically varying the combustor inlet temperature (T3) between idle and maximum power setting at simulated SLS and up to five other altitudes for each fuel. Four diagnostic systems, extractive and non-intrusive, were assembled for the gaseous and particulate emissions characterization measurements study. NASA extractive system includes smoke meter and analyzers for measurement of CO, CO{sub 2}, NO, NOx, O{sub 2}, total unburnt hydrocarbons (THC), and SO{sub 2}. Particulate emissions were characterized by University of Missouri-Rolla Mobile Aerosol Sampling System.

  20. Origin State>> CA CA ID ID IL KY NJ NM NY NY NV OH OH OH SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mix Wastew Treatment Project Argonne National Laboratory Paducah Gaseous Diffusion Plant Princeton Plasma Physics Laboratory Sandia National Laboratory Brookhaven National Laboratory West Valley Demonstration Project National Security Technologies, Inc. Mound Closure Project Portsmouth Gaseous Diffusion Plant Fernald Closure Project Savannah River Site BWXT Y-12 Plant Duratek Nuclear Fuels UT-Battelle Bechtel Jacobs Permafix M&EC EnergX (Foster Wheeler) Pantex Plant SOUTHERN I-15, CA-127,

  1. Origin State>> CA CA ID ID IL KY NJ NM NY NY NV OH OH OH SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed Waste Treatment Project Argonne National Laboratory Paducah Gaseous Diffusion Plant Princeton Plasma Physics Laboratory Sandia National Laboratory Brookhaven National Laboratory West Valley Demonstration Project National Security Technologies, Inc. Mound Closure Project Portsmouth Gaseous Diffusion Plant Fernald Closure Project Savannah River Site BWXT Y-12 Plant Duratek Nuclear Fuels UT-Battelle Bechtel Jacobs Permafix M&EC EnergX (formerly Foster Wheeler) Pantex Plant SOUTHERN I-15,

  2. APPLICATION OF A CATEGORICAL EXCLUSION

    Energy Savers [EERE]

    categorical exclusion (451.1a-015) involve conducting Site Characterization, Investigation and Environmental Monitoring Activities at the Portsmouth Gaseous Diffusion Facility located performing in Piketon, Ohio and the Paducah Gaseous Diffusion Plant located in Paducah, Kentucky. Number and Title of the Categorical Exclusions Applied: 10 CFR 1021, Appendix B to Subpart D. B3.1 Site Characterization and Environmental Monitoring

  3. Pipe diffusion at dislocations in UO2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of pipe diffusion to the overall O 2 and U 4+ diffusion is also discussed. 2014 Elsevier B.V. All rights reserved. 1. Introduction During its lifetime in-pile nuclear fuel...

  4. Gas-phase diffusion in porous media: Evaluation of an advective- dispersive formulation and the dusty-gas model including comparison to data for binary mixtures

    SciTech Connect (OSTI)

    Webb, S.W.

    1996-05-01

    Two models for gas-phase diffusion and advection in porous media, the Advective-Dispersive Model (ADM) and the Dusty-Gas Model (DGM), are reviewed. The ADM, which is more widely used, is based on a linear addition of advection calculated by Darcy`s Law and ordinary diffusion using Fick`s Law. Knudsen diffusion is often included through the use of a Klinkenberg factor for advection, while the effect of a porous medium on the diffusion process is through a porosity-tortuosity-gas saturation multiplier. Another, more comprehensive approach for gas-phase transport in porous media has been formulated by Evans and Mason, and is referred to as the Dusty- Gas Model (DGM). This model applies the kinetic theory of gases to the gaseous components and the porous media (or ``dust``) to develop an approach for combined transport due to ordinary and Knudsen diffusion and advection including porous medium effects. While these two models both consider advection and diffusion, the formulations are considerably different, especially for ordinary diffusion. The various components of flow (advection and diffusion) are compared for both models. Results from these two models are compared to isothermal experimental data for He-Ar gas diffusion in a low-permeability graphite. Air-water vapor comparisons have also been performed, although data are not available, for the low-permeability graphite system used for the helium-argon data. Radial and linear air-water heat pipes involving heat, advection, capillary transport, and diffusion under nonisothermal conditions have also been considered.

  5. Kimberlina: a zero-emissions demonstration plant

    SciTech Connect (OSTI)

    Pronske, K.

    2007-06-15

    FutureGen may be getting the headlines, but it is not the only superclean demonstration plant in town. In fact, you could argue that other technologies are further down the evolutionary timeline. Case in point: Clean Energy Systems' adaptation of rocket engine technology to radically change the way fuel is burned. The result is a true zero-emissions power plant. Its most distinctive element is an oxy-combustor, similar to one used in rocket engines, that generates steam by burning clean, gaseous fuel in the presence of gaseous oxygen and water. The clean fuel is prepared by processing a conventional fossil fuel such as coal-derived syngas, refinery residues, biomass or biodigester gas, or natural or landfill gas. Combustion takes place at near-stoichiometric conditions to produce a mixture of steam and CO{sub 2} at high temperature and pressure. The steam conditions are suitable for driving a conventional or advanced steam turbine-generator, or a gas turbine modified to be driven by high-temperature steam or to do work as an expansion unit at intermediate pressure. After pressure through the turbine(s), the steam/CO{sub 2} mixture is condensed, cooled, and separated into water and CO{sub 2}. The CO{sub 2} can be sequestered and/or purified and sold for commercial use. Durability and performance tests carried out between March 2005 and March 2006 produced excellent results. CO and NOx emissions are considerably low than those of combined-cycle power plants fuelled by natural gas and using selective catalytic reduction for NOx control. Work is continuing under an NETL grant. Progress and plans are reported in the article. 7 figs.

  6. Use of the slow-strain-rate technique for the evaluation of structural materials for application in high-temperature gaseous environments

    SciTech Connect (OSTI)

    Johnson, C.E.; Ugiansky, G.M.

    1981-01-01

    Types 309, 310, 310S, 347 and 446 stainless steels, Incoloy 800, and Inconel 671 were tested at temperatures from 370 to 1040/sup 0/C at strain rates from 10/sup -4/ to 10/sup -7//s in H/sub 2/S plus water, gaseous mixtures of CO, CO/sub 2/, H/sub 2/, CH/sub 4/, H/sub 2/S, and H/sub 2/O, and in nominally inert environments of He and Ar. Type 310 steel showed a marked reduction in mechanical properties at low strain rates (< 10/sup -5//s) in H/sub 2/S/H/sub 2/O at 540/sup 0/C, and this was associated with the occurrence of a large degree of secondary intergranular cracking in addition to the main ductile fracture mode. The occurrence of the secondary cracking was taken as the primary indication of embrittlement in subsequent tests. It occurred to some degree in all alloys tested in the simulated coal-gasification environments at 600/sup 0/C. The mechanism(s) of the embrittlement phenomena remain uncertain; a number of possible causes including creep and several environmentally-induced fracture processes are outlined. It is shown that the overall results of the test program are in good agreement with in-plant experience.

  7. Using Process Load Cell Information for IAEA Safeguards at Enrichment Plants

    SciTech Connect (OSTI)

    Laughter, Mark D; Whitaker, J Michael; Howell, John

    2010-01-01

    Uranium enrichment service providers are expanding existing enrichment plants and constructing new facilities to meet demands resulting from the shutdown of gaseous diffusion plants, the completion of the U.S.-Russia highly enriched uranium downblending program, and the projected global renaissance in nuclear power. The International Atomic Energy Agency (IAEA) conducts verification inspections at safeguarded facilities to provide assurance that signatory States comply with their treaty obligations to use nuclear materials only for peaceful purposes. Continuous, unattended monitoring of load cells in UF{sub 6} feed/withdrawal stations can provide safeguards-relevant process information to make existing safeguards approaches more efficient and effective and enable novel safeguards concepts such as information-driven inspections. The IAEA has indicated that process load cell monitoring will play a central role in future safeguards approaches for large-scale gas centrifuge enrichment plants. This presentation will discuss previous work and future plans related to continuous load cell monitoring, including: (1) algorithms for automated analysis of load cell data, including filtering methods to determine significant weights and eliminate irrelevant impulses; (2) development of metrics for declaration verification and off-normal operation detection ('cylinder counting,' near-real-time mass balancing, F/P/T ratios, etc.); (3) requirements to specify what potentially sensitive data is safeguards relevant, at what point the IAEA gains on-site custody of the data, and what portion of that data can be transmitted off-site; (4) authentication, secure on-site storage, and secure transmission of load cell data; (5) data processing and remote monitoring schemes to control access to sensitive and proprietary information; (6) integration of process load cell data in a layered safeguards approach with cross-check verification; (7) process mock-ups constructed to provide simulated load cell data; (8) hardware and software implementation for process load cell data collection; (9) costs associated with unattended monitoring of load cells (for both operator and inspector) weighed against the potential benefits of having access to such data; (10) results from field tests of load cell data collection systems in operating facilities; and (11) use of unattended load cell data to increase efficiency of on-site inspection schedules and activities.

  8. Photocatalytic degradation of gaseous toluene over hollow spindle-like ?-Fe{sub 2}O{sub 3} loaded with Ag

    SciTech Connect (OSTI)

    Li, Hong [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China) [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Department of Basic, Dalian Naval Academy, Dalian 116018 (China); Zhao, Qidong [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China)] [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China) [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Shi, Yong [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China)] [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Zhu, Zhengru [Research Center of Hydrology and Engineering, Academy of City and Environment, Liaoning Normal University, Dalian 116029 (China)] [Research Center of Hydrology and Engineering, Academy of City and Environment, Liaoning Normal University, Dalian 116029 (China); Tade, Moses [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Liu, Shaomin, E-mail: shaomin.liu@curtin.edu.au [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)

    2012-06-15

    Highlights: ? Hollow ?-Fe{sub 2}O{sub 3} spindle-shaped microparticles were prepared for Ag support. ? The hollow ?-Fe{sub 2}O{sub 3} and Ag/?-Fe{sub 2}O{sub 3} materials were used to degrade gaseous toluene. ? Complete degradation of toluene occurred on the Ag/?-Fe{sub 2}O{sub 3} surface. -- Abstract: In this work, hollow spindle-like ?-Fe{sub 2}O{sub 3} nanoparticles were synthesized by a hydrothermal route. The Ag/?-Fe{sub 2}O{sub 3} catalyst was prepared based on the spindle-shaped ?-Fe{sub 2}O{sub 3} with CTAB as the surfactant, which showed excellent photoelectric property and photocatalytic activity. The structural properties of these samples were systematically investigated by X-ray powder diffraction, scanning electronic microscopy, transmission electronic microscopy, energy-dispersive X-ray spectra, and UVVis diffuse reflectance spectroscopy techniques. The photo-induced charge separation in the samples was demonstrated by surface photovoltage measurement. The photocatalytic performances of the Ag/?-Fe{sub 2}O{sub 3} and ?-Fe{sub 2}O{sub 3} samples were comparatively studied in the degradation of toluene under xenon lamp irradiation by in situ FTIR spectroscopy. Benzaldehyde and benzoic acid species could be observed on the ?-Fe{sub 2}O{sub 3} surface rather than Ag/?-Fe{sub 2}O{sub 3} surface. The results indicate that the Ag/?-Fe{sub 2}O{sub 3} sample exhibited higher photocatalytic efficiency.

  9. MODEL OF DIFFUSERS / PERMEATORS FOR HYDROGEN PROCESSING

    SciTech Connect (OSTI)

    Hang, T; William Jacobs, W

    2007-08-27

    Palladium-silver (Pd-Ag) diffusers are mainstays of hydrogen processing. Diffusers separate hydrogen from inert species such as nitrogen, argon or helium. The tubing becomes permeable to hydrogen when heated to more than 250 C and a differential pressure is created across the membrane. The hydrogen diffuses better at higher temperatures. Experimental or experiential results have been the basis for determining or predicting a diffuser's performance. However, the process can be mathematically modeled, and comparison to experimental or other operating data can be utilized to improve the fit of the model. A reliable model-based diffuser system design is the goal which will have impacts on tritium and hydrogen processing. A computer model has been developed to solve the differential equations for diffusion given the operating boundary conditions. The model was compared to operating data for a low pressure diffuser system. The modeling approach and the results are presented in this paper.

  10. Laser activated diffuse discharge switch

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); Hunter, Scott R. (Oak Ridge, TN)

    1988-01-01

    The invention is a gas mixture for a diffuse discharge switch which is capable of changing from a conducting state to an insulating state in the presence of electrons upon the introduction of laser light. The mixture is composed of a buffer gas such as nitrogen or argon and an electron attaching gas such as C.sub.6 H.sub.5 SH, C.sub.6 H.sub.5 SCH.sub.3, CH.sub.3 CHO and CF.sub.3 CHO wherein the electron attachment is brought on by indirect excitation of molecules to long-lived states by exposure to laser light.

  11. An asixymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples

    SciTech Connect (OSTI)

    Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.

    2011-02-01

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an axisymmetric diffusion experiment coupled with tracer profiling may be a promising approach to estimate of diffusion anisotropy of sedimentary rocks.

  12. Uranium isotope exchange between gaseous UF{sub 6} and solid UF{sub 5}

    SciTech Connect (OSTI)

    Yato, Yumio; Kishimoto, Yoichiro; Sasao, Nobuyuki; Suto, Osamu; Funasaka, Hideyuki

    1996-08-01

    Based on a collision model, a new rate equation is derived for uranium isotope exchange between gaseous UF{sub 6} and solid UF{sub 5} by considering the number of UF{sub 5} molecules on the solid surface to be dependent on time. The reaction parameters included in the equation are determined from the experimental data and compared with the previous ones. A remarkable agreement is found between the particle sizes of UF{sub 5} estimated from the reaction parameter and from the direct observation with an electron microscope. The rate equation given in this work fully satisfies the related mass conservation and furthermore includes explicitly the terms related to the UF{sub 6} density and the mean size of UF{sub 5} particles, both of which are considered to cause an important effect on the reaction. This remarkable feature facilitates the simulation studies on this reaction under various conditions. The long term behavior of a simulated exchange reaction is studied under the condition considered to be close to that in a recovery zone of the MLIS process. The result indicates that the reaction is virtually limited to the solid surface under this conditions and thus the depletion of {sup 235}UF{sub 5} concentration averaged over the whole UF{sub 5} particles is not significant even after 200 h of the exchange reaction.

  13. Activities to support the liquefied gaseous fuels spill test facility program. Final report

    SciTech Connect (OSTI)

    Sheesley, D.; King, S.B.; Routh, T.

    1997-03-01

    Approximately a hundred years ago the petrochemical industry was in its infancy, while the chemical industry was already well established. Today, both of these industries, which are almost indistinguishable, are a substantial part of the makeup of the U.S. economy and the lifestyle we enjoy. It is difficult to identify a single segment of our daily lives that isn`t affected by these industries and the products or services they make available for our use. Their survival and continued function in a competitive world market are necessary to maintain our current standard of living. The occurrence of accidents in these industries has two obvious effects: (1) the loss of product during the accident and future productivity because of loss of a portion of a facility or transport medium, and (2) the potential loss of life or injury to individuals, whether workers, emergency responders, or members of the general public. A great deal of work has been conducted at the Liquefied Gaseous Fuels Spill test Facility (LGFSTF) on hazardous spills. WRI has conducted accident investigations as well as provided information on the research results via the internet and bibliographies.

  14. Modeling of temporal behavior of isotopic exchange between gaseous hydrogen and palladium hydride power

    SciTech Connect (OSTI)

    Melius, C F; Foltz, G W

    1987-01-01

    A parametric rate-equation model is described which depicts the time dependent behavior of the isotopic exchange process occurring between the solid and gas phases in gaseous hydrogen (deuterium) flows through packed-powder palladium deuteride (hydride) beds. The exchange mechanism is assumed to be rate-limited by processes taking place on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with recent experimental measurements of isotope exchange in the ..beta..-phase hydrogen/palladium system and, using a literature value of ..cap alpha.. = 2.4, a good description of the experimental data is obtained for p approx. 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of ..cap alpha.. values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

  15. Statistics for the Relative Detectability of Chemicals in Weak Gaseous Plumes in LWIR Hyperspectral Imagery

    SciTech Connect (OSTI)

    Metoyer, Candace N.; Walsh, Stephen J.; Tardiff, Mark F.; Chilton, Lawrence

    2008-10-30

    The detection and identification of weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temperature, and background clutter. This paper presents an analysis of one formulation of the physics-based model that describes the at-sensor observed radiance. The motivating question for the analyses performed in this paper is as follows. Given a set of backgrounds, is there a way to predict the background over which the probability of detecting a given chemical will be the highest? Two statistics were developed to address this question. These statistics incorporate data from the long-wave infrared band to predict the background over which chemical detectability will be the highest. These statistics can be computed prior to data collection. As a preliminary exploration into the predictive ability of these statistics, analyses were performed on synthetic hyperspectral images. Each image contained one chemical (either carbon tetrachloride or ammonia) spread across six distinct background types. The statistics were used to generate predictions for the background ranks. Then, the predicted ranks were compared to the empirical ranks obtained from the analyses of the synthetic images. For the simplified images under consideration, the predicted and empirical ranks showed a promising amount of agreement. One statistic accurately predicted the best and worst background for detection in all of the images. Future work may include explorations of more complicated plume ingredients, background types, and noise structures.

  16. Diffusion releases through one and two finite planar zones from...

    Office of Scientific and Technical Information (OSTI)

    WASTES; UNDERGROUND DISPOSAL; TUFF; DIFFUSION BARRIERS; GROUND WATER; RADIONUCLIDE MIGRATION; CONTAINERS; DIFFUSION; NUMERICAL ANALYSIS; CONCENTRATION RATIO; Yucca Mountain ...

  17. Diffusion releases through one and two finite planar zones from...

    Office of Scientific and Technical Information (OSTI)

    ... WASTES; UNDERGROUND DISPOSAL; TUFF; DIFFUSION BARRIERS; GROUND WATER; RADIONUCLIDE MIGRATION; CONTAINERS; DIFFUSION; NUMERICAL ANALYSIS; CONCENTRATION RATIO; Yucca Mountain ...

  18. Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 60,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Wyoming-Wyoming

  19. Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 8,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Oklahoma

  20. Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 790,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Texas

  1. Florida Natural Gas Plant Liquids Production Extracted in Florida (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Liquids Production Extracted in Florida (Million Cubic Feet) Florida Natural Gas Plant Liquids Production Extracted in Florida (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Florida-Florida

  2. Pennsylvania Natural Gas Plant Liquids Production Extracted in Ohio

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Extracted in Ohio (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production Extracted in Ohio (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania-Ohio

  3. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi (Million Cubic Feet) Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 9,793 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of

  4. Illinois Natural Gas Plant Liquids Production Extracted in Illinois

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Liquids Production Extracted in Illinois (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production Extracted in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  5. Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) West Virginia (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kentucky-West Virginia

  6. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Louisiana Onshore-Texas

  7. Montana Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 303 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-North Dakota

  8. Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 166,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Oklahoma

  9. Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Texas (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,434 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Texas

  10. Pennsylvania Natural Gas Plant Liquids Production Extracted in West

    Gasoline and Diesel Fuel Update (EIA)

    Virginia (Million Cubic Feet) West Virginia (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 14,335 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  11. Origin State>> CA CA ID ID IL KY NJ NM NY NY NV OH OH SC TN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SC TN TN TN TN TN TN TN TX Total Shipments by Route Lawrence Livermore National Laboratory Boeing/Rocketdyne Idaho National Labaratoy Advanced Mixed Waste Treatment Project Argonne National Laboratory Paducah Gaseous Diffusion Plant Princeton Plasma Physics Laboratory Sandia National Laboratory Brookhaven National Laboratory West Valley Demonstration Project National Security Technologies, Inc. Portsmouth Gaseous Diffusion Plant Fernald Closure Project Savannah River Site BWXT Y-12 Plant Duratek

  12. Origin State>> CA ID ID ID IL KY NV NY NY OH TN TN TN, WA, CA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NV NY NY OH TN TN TN, WA, CA TN TN TN TN TX Total Shipments by Route Lawrence Livermore National Laboratory Advanced Mixed Waste Treatment Project Batelle Energy Alliance Idaho National Laboratory Argonne National Laboratory Paducah Gaseous Diffusion Plant National Security Technologies Brookhaven National Laboratory West Valley Environmental Services Portsmouth Gaseous Diffusion Plant Duratek/Energy Solutions Babcox & Wilcox Technical Services Y-12 Plant Materials & Energy Corporation

  13. Origin State>> CA ID ID IL IL KY NM NM NV NY OH TN TN TN, WA,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IL IL KY NM NM NV NY OH TN TN TN, WA, CA TN TN TN TN Total Shipments by Route Lawrence Livermore National Laboratory Batelle Energy Alliance Idaho National Laboratory Energx Argonne National Laboratory Argonne National Laboratory Paducah Gaseous Diffusion Plant Sandia National Laboratory Los Alamos National Laboratory National Security Technologies West Valley Environmental Services Portsmouth Gaseous Diffusion Plant Duratek/Energy Solutions Babcox & Wilcox Technical Services Y-12 Plant

  14. DOE Award No.: DE-FE0010406 Final Scientific Report: CONTROLS ON METHANE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announces Plans for WIPP DOE Announces Plans for WIPP Carlsbad, NM The Department of Energy announces that it will dispose of defense-generated transuranic waste at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico Security Interests, Extend Operations at Paducah Gaseous Diffusion Plant | Department of Energy

    Transfer of Depleted Uranium to Advance the U.S. National Security Interests, Extend Operations at Paducah Gaseous Diffusion Plant DOE Announces Transfer of Depleted

  15. PAndAS IN THE MIST: THE STELLAR AND GASEOUS MASS WITHIN THE HALOS OF M31 AND M33

    SciTech Connect (OSTI)

    Lewis, Geraint F.; Braun, Robert; McConnachie, Alan W.; Irwin, Michael J.; Chapman, Scott C.; Ibata, Rodrigo A.; Martin, Nicolas F.; Ferguson, Annette M. N.; Fardal, Mark; Dubinski, John; Widrow, Larry; Mackey, A. Dougal; Babul, Arif; Tanvir, Nial R.; Rich, Michael

    2013-01-20

    Large-scale surveys of the prominent members of the Local Group have provided compelling evidence for the hierarchical formation of massive galaxies, revealing a wealth of substructure that is thought to be the debris from ancient and ongoing accretion events. In this paper, we compare two extant surveys of the M31-M33 subgroup of galaxies: the Pan-Andromeda Archaeological Survey of the stellar structure, and a combination of observations of the H I gaseous content, detected at 21 cm. Our key finding is a marked lack of spatial correlation between these two components on all scales, with only a few potential overlaps between stars and gas. The paucity of spatial correlation significantly restricts the analysis of kinematic correlations, although there does appear to be H I kinematically associated with the Giant Stellar Stream where it passes the disk of M31. These results demonstrate that different processes must significantly influence the dynamical evolution of the stellar and H I components of substructures, such as ram pressure driving gas away from a purely gravitational path. Detailed modeling of the offset between the stellar and gaseous substructures will provide a determination of the properties of the gaseous halos of M31 and M33.

  16. Experience with Palladium Diffusers in Tritium Processing

    SciTech Connect (OSTI)

    Motyka, T.; Clark, E.A.; Dauchess, D.A.; Heung, L.K.; Rabum, R.L.

    1995-01-27

    Hydrogen isotopes are separated from other gases by permeation through palladium and palladium-silver alloy diffusers in the Tritium Facilities at the US Department of Energy Savannah River Site (SRS). Diffusers have provided effective service for almost forty years. This paper is an overview of the operational experience with the various diffuser types that have been employed at SRS. Alternative technologies being developed at SRS for purifying hydrogen isotopes are also discussed.

  17. Diffuse Irradiance Study Planned for October

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and radiometers installed at the SGP CART site near Lamont, Oklahoma. The instruments measuring diffuse solar radiation have black sphere-shaped shades to keep direct sunlight from...

  18. ARM - Measurement - Shortwave narrowband diffuse downwelling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Shortwave narrowband diffuse downwelling irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4 mum, that has been ...

  19. ARM - Measurement - Shortwave spectral diffuse downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Shortwave spectral diffuse downwelling irradiance The rate at which spectrally resolved radiant energy at wavelengths shorter than approximately 4 mum, that has ...

  20. ARM - Measurement - Shortwave narrowband diffuse upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband diffuse upwelling irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4 mum, that has ...

  1. 2-D Multi-Group Diffusion Program

    Energy Science and Technology Software Center (OSTI)

    1992-07-21

    The multigroup, two-dimensional neutron diffusion equations are solved in x-y, r-z, or r-theta geometry.

  2. BINARIES MIGRATING IN A GASEOUS DISK: WHERE ARE THE GALACTIC CENTER BINARIES?

    SciTech Connect (OSTI)

    Baruteau, C.; Lin, D. N. C.; Cuadra, J. E-mail: lin@ucolick.org

    2011-01-01

    The massive stars in the Galactic center inner arcsecond share analogous properties with the so-called Hot Jupiters. Most of these young stars have highly eccentric orbits and were probably not formed in situ. It has been proposed that these stars acquired their current orbits from the tidal disruption of compact massive binaries scattered toward the proximity of the central supermassive black hole. Assuming a binary star formed in a thin gaseous disk beyond 0.1 pc from the central object, we investigate the relevance of disk-satellite interactions to harden the binding energy of the binary, and to drive its inward migration. A massive, equal-mass binary star is found to become more tightly wound as it migrates inward toward the central black hole. The migration timescale is very similar to that of a single-star satellite of the same mass. The binary's hardening is caused by the formation of spiral tails lagging the stars inside the binary's Hill radius. We show that the hardening timescale is mostly determined by the mass of gas inside the binary's Hill radius and that it is much shorter than the migration timescale. We discuss some implications of the binary's hardening process. When the more massive (primary) components of close binaries eject most their mass through supernova explosion, their secondary stars may attain a range of eccentricities and inclinations. Such processes may provide an alternative unified scenario for the origin of the kinematic properties of the central cluster and S-stars in the Galactic center as well as the high-velocity stars in the Galactic halo.

  3. TIME-DEPENDENT PHOTOIONIZATION OF GASEOUS NEBULAE: THE PURE HYDROGEN CASE

    SciTech Connect (OSTI)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, T. R. E-mail: manuel.bautista@wmich.edu E-mail: timothy.r.kallman@nasa.gov

    2013-09-20

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full time-dependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionization/thermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IF/thermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal fronts/IFs and equilibration times.

  4. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF/sub 6/. [ClF/sub 3/

    DOE Patents [OSTI]

    Jones, R.L.; Otey, M.G.; Perkins, R.W.

    1980-11-24

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF/sub 6/. The contaminants include fluorine and fluorides which are more reactive with CaCO/sub 3/ than is UF/sub 6/. The method comprises contacting the contaminant-carrying UF/sub 6/ with particulate CaCO/sub 3/ at a temperature effecting reaction of the contaminant and the CaCO/sub 3/.

  5. Finite-difference schemes for anisotropic diffusion

    SciTech Connect (OSTI)

    Es, Bram van; Koren, Barry; Blank, Hugo J. de

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  6. Solid-state diffusion in amorphous zirconolite

    SciTech Connect (OSTI)

    Yang, C.; Dove, M. T.; Trachenko, K.; Zarkadoula, E.; Todorov, I. T.; Geisler, T.; Brazhkin, V. V.

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  7. SATURATED TORQUE FORMULA FOR PLANETARY MIGRATION IN VISCOUS DISKS WITH THERMAL DIFFUSION: RECIPE FOR PROTOPLANET POPULATION SYNTHESIS

    SciTech Connect (OSTI)

    Masset, F. S. [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico (UNAM), Apdo. Postal 48-3, 62251-Cuernavaca, Morelos (Mexico); Casoli, J., E-mail: masset@fis.unam.m, E-mail: jules.casoli@cea.f, E-mail: masset@fis.unam.m [Laboratoire AIM, CEA/DSM, CNRS, Universite Paris Diderot, Irfu/Service d'Astrophysique, Bat. 709, CEA/Saclay, 91191 Gif-sur-Yvette (France)

    2010-11-10

    We provide torque formulae for low-mass planets undergoing type I migration in gaseous disks. These torque formulae put special emphasis on the horseshoe drag, which is prone to saturation: the asymptotic value reached by the horseshoe drag depends on a balance between coorbital dynamics (which tends to cancel out or saturate the torque) and diffusive processes (which tend to restore the unperturbed disk profiles, thereby desaturating the torque). We entertain the question of this asymptotic value and derive torque formulae that give the total torque as a function of the disk's viscosity and thermal diffusivity. The horseshoe drag features two components: one that scales with the vortensity gradient and another that scales with the entropy gradient and constitutes the most promising candidate for halting inward type I migration. Our analysis, which is complemented by numerical simulations, recovers characteristics already noted by numericists, namely, that the viscous timescale across the horseshoe region must be shorter than the libration time in order to avoid saturation and that, provided this condition is satisfied, the entropy-related part of the horseshoe drag remains large if the thermal timescale is shorter than the libration time. Side results include a study of the Lindblad torque as a function of thermal diffusivity and a contribution to the corotation torque arising from vortensity viscously created at the contact discontinuities that appear at the horseshoe separatrices. For the convenience of the reader mostly interested in the torque formulae, Section 8 is self-contained.

  8. Deming Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic...

  9. Prescott Airport Solar Plant Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar...

  10. Solana Generating Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solana Generating Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type...

  11. Better Plants

    Broader source: Energy.gov [DOE]

    Leading manufacturers and industrial-scale energy-using organizations demonstrate their commitment to improving energy performance by signing a voluntary pledge to reduce their energy intensity by 25% over a ten year period. The U.S. Department of Energys Better Buildings, Better Plants Program is an important partnership which consists of approximately 150 industrial companies, representing about 2,300 facilities and close to 11% of the total U.S. manufacturing energy footprint as well as several water and wastewater treatment organizations.

  12. Paducah Site Management Plan

    Broader source: Energy.gov [DOE]

    The annual Paducah Gaseous Diffusion Plant Site Management Plan (SMP) outlines DOE’s strategic approach for achieving cleanup under the Federal Facility Agreement. The purpose of the SMP is to...

  13. Paducah News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    turns an eight-foot-diameter auger performing deep-soil mixing at the Paducah Gaseous Diffusion Plant's southwest groundwater plume. More than 260 borings are being made to a depth...

  14. Enforcement Letter, NEL-2011-01 - March 31, 2011 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that resulted in the release of uranium hexafluoride (UF6) at the Paducah Gaseous Diffusion Plant On March 31, 2011, the U.S. Department of Energy (DOE) Office of Health,...

  15. PPPO News Archive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portsmouth Gaseous Diffusion Plant Site and throughout the EM program.

  16. Enforcement Letter, Geiger Brothers Mechanical Contractors, INC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Penetration Fire Seals at the DUF6 Conversion Building at the Portsmouth Gaseous Diffusion Plant On March 26, 2010, the U.S. Department of Energy (DOE) Office of Health,...

  17. EM Reviews Portsmouth, Paducah Site Contractor Performance, Determines Award Fees

    Broader source: Energy.gov [DOE]

    LEXINGTON, Ky. – EM has completed annual performance evaluations of four prime contractors working on the deactivation, decontamination, and decommissioning of the former gaseous diffusion plants near Portsmouth, Ohio and Paducah, Kentucky.

  18. Enforcement Notice of Intent to Investigate, BWXT Conversion Services, LLC

    Broader source: Energy.gov [DOE]

    The DOE Office of Enforcement issued a Notice of Intent to Investigate potential worker safety and health noncompliances associated with a potassium hydroxide injury event that occurred at the Portsmouth Gaseous Diffusion Plant.

  19. Audit Report: OAS-M-13-01 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Audit Report: OAS-M-13-01 Audit Report: OAS-M-13-01 Audit Report: OAS-M-13-01 March 15, 2013 Paducah Gaseous Diffusion Plant's Waste Diversion Efforts Executive Order 13423,...

  20. Enforcement Letter, Wise Services, Inc - July 9, 2014 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    related to a track hoe operated by a Wise Services employee that struck a fiber optics line at the DOE Portsmouth Gaseous Diffusion Plant on November 8, 2012. Enforcement...

  1. cold standby

    Energy Savers [EERE]

    Cold Standby Program at the Portsmouth Gaseous Diffusion Plant DOE/IG-0634 December 2003 Program Results and Cost Details of Finding ...................................................................... 1 Recommendations and Comments ........................................... 5 Appendices Prior Reports .............................................................................. 7 Objective, Scope, and Methodology .......................................... 8 Management Comments

  2. PPPO Mission

    Broader source: Energy.gov [DOE]

    The Portsmouth/Paducah Project Office (PPPO) manages the DOE cleanup efforts at two gaseous diffusion plant sites – Portsmouth, Ohio, and Paducah, Kentucky. The PPPO mission is to...

  3. OPT Annual Report, FY 2012

    Energy Savers [EERE]

    meet the needs of DOE programs, and to protect the health and safety of workers and the public. ... Portsmouth Gaseous Diffusion Plant and Moab sites, by identifying cost avoidance ...

  4. Contract Awarded for Environmental Technical Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The U.S. Department of Energy (DOE) awarded a contract for Environmental Technical Services to Restoration Services Inc. of Oak Ridge, Tennessee, for support services at the Portsmouth Gaseous Diffusion Plant located near Piketon, OH.

  5. Task Order Awarded for Environmental Technical Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a task order for environmental technical services to Professional Project Services, Inc., of Oak Ridge, TN, for support services at the Paducah Gaseous Diffusion Plant located near Paducah, KY.

  6. Preparation Helps Paducah Site Weather Tornado

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Emergency management is a systematic, integrated effort at the Paducah Gaseous Diffusion Plant (PGDP) site, a sprawling complex with more than 500 facilities and multiple work organizations.

  7. Deactivation Project Commences While Cleanup Continues at Paducah Site

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – As EM took control of the Paducah Gaseous Diffusion Plant (PGDP) facilities from its commercial lease in 2014, the PGDP Deactivation Project began under EM’s recently selected prime contractor.

  8. DOE Employees, Contractors Donate More than 15,500 Pounds of Food

    Broader source: Energy.gov [DOE]

    PIKETON, Ohio ̶ As part of the federal government’s Feds Feed Families campaign, employees at the Portsmouth Gaseous Diffusion Plant donated 15,681 pounds of canned goods and other items to local food pantries in 2014.

  9. Paducah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issued to LATA Environmental Services of Kentucky, LLC (WEA-2012-01) related to a Heat Stress Event and a Uranium Hexafluoride Release at the Paducah Gaseous Diffusion Plant. March ...

  10. G

    Office of Legacy Management (LM)

    ... It is noted that gaseous diffusion R&D and a barrier production pilot plant operation were carried out probably in a courtyard area now used for fuel oil - storage. Floor surfaces ...

  11. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...

    Office of Environmental Management (EM)

    Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is ...

  12. Environmental Report Project Transforms Students into Informed Stakeholders

    Broader source: Energy.gov [DOE]

    A group of Eastern High School students is helping the U.S. Department of Energy (DOE) provide important information to the public while learning valuable skills and furthering their education and knowledge of the Portsmouth Gaseous Diffusion Plant.

  13. Enforcement Letter, Intermech, Inc.- March 26, 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    Issued to Intermech, Inc. related to Installation and Inspection of Anchor Bolts and Pipe Supports at the DUF6 Conversion Buildings at the Portsmouth and Paducah Gaseous Diffusion Plants

  14. Portsmouth Site Achieves Regulatory Milestone after Successful Controlled Burn

    Broader source: Energy.gov [DOE]

    PIKETON, Ohio – Portsmouth Gaseous Diffusion Plant firefighters recently completed a prescribed fire, or controlled burn, of an 18-acre prairie at the site, two weeks ahead of a regulatory deadline.

  15. About 900 High School Students, Educators Attend Third Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fair that took place September 25-26, 2012, at the Portsmouth Gaseous Diffusion Plant. ... Science Alliance Third Annual Science Alliance Takes Place in Ohio A record 1,200 students ...

  16. Type B Accident Investigation Board Report Employee Puncture...

    Energy Savers [EERE]

    Employee Puncture Wound at the F-TRU Waste Remediation Facility at the Savannah River Site on ... at the Paducah Gaseous Diffusion Plant, PortsmouthPaducah Project Office Type ...

  17. DOE-STD-1020 Natural Phenomena Hazards Design and Evaluation...

    National Nuclear Security Administration (NNSA)

    ... (3) - (3) Portsmouth Gaseous Diffusion Plant, OH 90 96 - (3) - (3) Nevada Test Site, ... Accelerator Center, CA 85 91 111 128 - Savannah River Site, SC 100 107 - 169 - 213 1. Although ...

  18. SITE-LEVEL SUMMARY of FINAL-3RD-QUARTER-FY-2012-SCORECARD-01...

    Office of Environmental Management (EM)

    0) GREEN (0 0) N A N A N A Savannah River Site (SRS) GREEN GREEN (0 0) GREEN (12 ... Multiple ORPS Reports --- Paducah Gaseous Diffusion Plant, Outfall 017 --- Multiple ...

  19. Microsoft Word - FINAL DOENV--1187.doc

    National Nuclear Security Administration (NNSA)

    ... (M&CE) PF PORTSMOUTH GASEOUS DIFFUSION PLANT PO PRINCETON PLASMA PHYSICS LAB PL ... DEMONSTARTION PROJECT WV WESTINGHOUSE SAVANNAH RIVER SR 3 On-site and Outbound Only 4 ...

  20. Annual Transportation Report for Radioactive Waste Shipments...

    National Nuclear Security Administration (NNSA)

    ... TN PF 15 PORTSMOUTH GASEOUS DIFFUSION PLANT, OH PO 16 PRINCETON PLASMA PHYSICS ... IT 19 UT-BATTELLE, TN OL 20 WASHINGTON SAVANNAH RIVER COMPANY, SC SR 21 WEST VALLEY ...