Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Dale Coke: Coke Farm  

E-Print Network (OSTI)

Dale Coke Photo by Benjamin J. Myers.2009. Coke FarmDale Coke grew up on an apricot orchard in California’s

Farmer, Ellen

2010-01-01T23:59:59.000Z

2

coking coal  

Science Journals Connector (OSTI)

coking coal [A caking coal suitable for the production of coke for metallurgical use] ? Kokskohle f, verkokbare Kohle

2014-08-01T23:59:59.000Z

3

Chemicals from Coal Coking  

Science Journals Connector (OSTI)

Chemicals from Coal Coking ... Since 2009, she has been at INCAR-CSIC, researching the preparation and characterization of carbon materials (cokes and fibers) and nanomaterials (nanotubes and graphenes) and their catalytic, environmental, and energy applications. ... He then joined the Fundamental Studies Section of the British Coke (later Carbonization) Research Association, eventually becoming Head of Fundamental Studies. ...

Marcos Granda; Clara Blanco; Patricia Alvarez; John W. Patrick; Rosa Menéndez

2013-09-30T23:59:59.000Z

4

Blast furnace coke quality in relation to petroleum coke addition  

SciTech Connect

The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Sirgado, M. [ENSIDESA, Aviles (Spain)

1995-12-01T23:59:59.000Z

5

100% Pet coke or pet coke blends combustion  

SciTech Connect

Information is outlined on the combustion of 100 percent petroleum coke or petroleum coke blends. Data are presented on NISCO overviews; fuel (coke) characteristics; delayed coke analysis (1995-96); limestone characteristics/effects; limestone preparation; ash characteristics; vortex finders; agglomerization; and NISCO performance results.

Swindle, D.L.

1996-12-31T23:59:59.000Z

6

Desulfurization of coke oven gas from the coking of coking coal blended with a sorbent and waste plastic  

Science Journals Connector (OSTI)

A new way to implement the simultaneous reutilization of solid waste, the desulfurization of coke oven gas (COG), and even the desulfurization of coke by the co-coking of coking coal (CC) and waste plastic (WP).....

Zhao Rongfang; Ye Shufeng; Xie Yusheng…

2007-03-01T23:59:59.000Z

7

Influence of coal preparation and coking conditions on coke reactivity  

Science Journals Connector (OSTI)

The influence of various technological factors on the high-temperature properties of coke is investigated. It is found that factors facilitating an orderly organic structure of the coke (fine grinding and comp...

D. V. Miroshnichenko

2009-02-01T23:59:59.000Z

8

Modified coal batch in coking  

Science Journals Connector (OSTI)

The influence of volatile products from low-metamorphic poorly clinkering G coal on plasticmass formation in rammed batch during coking is considered. An experimental batch of modified coke has been produced at P...

A. G. Starovoit; E. I. Malyi; M. S. Chemerinskii; M. A. Starovoit…

2013-05-01T23:59:59.000Z

9

Met coke world summit 2005  

SciTech Connect

Papers are presented under the following session headings: industry overview and market outlook; coke in the Americas; the global coke industry; and new developments. All the papers (except one) only consist of a copy of the overheads/viewgraphs.

NONE

2005-07-01T23:59:59.000Z

10

Coking and gasification process  

DOE Patents (OSTI)

An improved coking process for normally solid carbonaceous materials wherein the yield of liquid product from the coker is increased by adding ammonia or an ammonia precursor to the coker. The invention is particularly useful in a process wherein coal liquefaction bottoms are coked to produce both a liquid and a gaseous product. Broadly, ammonia or an ammonia precursor is added to the coker ranging from about 1 to about 60 weight percent based on normally solid carbonaceous material and is preferably added in an amount from about 2 to about 15 weight percent.

Billimoria, Rustom M. (Houston, TX); Tao, Frank F. (Baytown, TX)

1986-01-01T23:59:59.000Z

11

Coke and Coal Research  

Science Journals Connector (OSTI)

... A. Mott at the University of Sheffield, are concerned with problems affecting the hard coke industry, which enjoys facilities for large-scale experimentation through its member firms such as ... of the body organizing this work visited the Kingston and Fulham Laboratories of the British Coal Utilisation Research Association on September 9. Mr. J. G. Bennett, director of ...

1943-09-18T23:59:59.000Z

12

High coking value pitch  

SciTech Connect

A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

2014-06-10T23:59:59.000Z

13

Investigation of Bonding Mechanism of Coking on Semi-coke from Lignite with Pitch and Tar  

Science Journals Connector (OSTI)

Investigation of Bonding Mechanism of Coking on Semi-coke from Lignite with Pitch and Tar ... Study on the coking mechanism of coal and coal tar pitches. ...

Vedat Arslan

2006-08-16T23:59:59.000Z

14

Coke | OpenEI  

Open Energy Info (EERE)

18 18 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278418 Varnish cache server Coke Dataset Summary Description UK National coal (and solid fuels and gases derived from processing coal) are published in Chapter 2 (Solid Fuels and Derived Gases) of the Digest of UK Energy Statistics (DUKES). Included here are the datasets for commodity balances (1998 - 2009); supply and consumption (2005 - 2009) of coal and other fuels (e.g. coke oven gas, blast furnace gas, benzole and tars, etc). Chapter 2 of the report is available: http://www.decc.gov.uk/assets/decc/Statistics/publications/dukes/308-dukes-2010-ch2.pdf Source UK Department of Energy and Climate Change (DECC)

15

Design and construction of coke battery 1A at Radlin coke plant, Poland  

SciTech Connect

In the design and construction of coke battery 1A at Radlin coke plant (Poland), coking of rammed coke with a stationary system was employed for the first time. The coke batteries are grouped in blocks. Safety railings are provided on the coke and machine sides of the maintenance areas.

A.M. Kravchenko; D.P. Yarmoshik; V.B. Kamenyuka; G.E. Kos'kova; N.I. Shkol'naya; V.V. Derevich; A.S. Grankin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

16

Factors influencing coke gasification with carbon dioxide.  

E-Print Network (OSTI)

??Of all coke properties the influence of the catalytic mineral matter on reactivity of metallurgical cokes is least understood. There is limited information about the… (more)

Grigore, Mihaela

2007-01-01T23:59:59.000Z

17

Coke from coal and petroleum  

DOE Patents (OSTI)

A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

Wynne, Jr., Francis E. (Allison Park, PA); Lopez, Jaime (Pittsburgh, PA); Zaborowsky, Edward J. (Harwick, PA)

1981-01-01T23:59:59.000Z

18

Definition: Petroleum coke | Open Energy Information  

Open Energy Info (EERE)

coke coke Jump to: navigation, search Dictionary.png Petroleum coke A residue high in carbon content and low in hydrogen that is the final product of thermal decomposition in the condensation process in cracking (breaking of carbon-carbon bonds). This product is reported as marketable coke or catalyst coke.Coke from petroleum has a heating value of 6.024 million Btu per barrel.[1] View on Wikipedia Wikipedia Definition Petroleum coke (often abbreviated Pet coke or petcoke) is a carbonaceous solid derived from oil refinery coker units or other cracking processes. Other coke has traditionally been derived from coal. This coke can either be fuel grade (high in sulphur and metals) or anode grade (low in sulphur and metals). The raw coke directly out of the coker is often

19

Research on Coal and Coke  

Science Journals Connector (OSTI)

... THE third annual report of the Northern Coke Research Committee records the many-sided activities of its staff working in the Armstrong College ... activities of its staff working in the Armstrong College, Newcastle, on problems of the coals and ...

1932-10-22T23:59:59.000Z

20

Characteristics of coking coal burnout  

SciTech Connect

An attempt was made to clarify the characteristics of coking coal burnout by the morphological analysis of char and fly ash samples. Laboratory-scale combustion testing, simulating an ignition process, was carried out for three kinds of coal (two coking coals and one non-coking coal for reference), and sampled chars were analyzed for size, shape and type by image analysis. The full combustion process was examined in industrial-scale combustion testing for the same kinds of coal. Char sampled at the burner outlet and fly ash at the furnace exit were also analyzed. The difference between the char type, swelling properties, agglomeration, anisotropy and carbon burnout were compared at laboratory scale and at industrial scale. As a result, it was found that coking coals produced chars with relatively thicker walls, which mainly impeded char burnout, especially for low volatile coals.

Nakamura, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Bailey, J.G. [Univ. of Newcastle, New South Wales (Australia)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Influence of petroleum coking additive on the quality of coal batch, coke, and tar  

Science Journals Connector (OSTI)

Given the shortage of coal with good coking properties, a petroleum coking additive is introduced in coal batch so as to expand the range of plasticity. This additive improves coke quality in every respect, excep...

I. I. Mel’nikov; V. M. Kryachuk; D. A. Mezin; A. A. Gorbunov…

2011-12-01T23:59:59.000Z

22

Evaluation of coal and its influence on coke quality and the coking process  

Science Journals Connector (OSTI)

The evaluation of coal batch is considered, along with its influence on coke quality and the coking properties. The quality of the coal available for coking at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat is ...

G. R. Gainieva; V. I. Byzova; N. N. Nazarov; L. D. Nikitin…

2008-10-01T23:59:59.000Z

23

Estimating Coke and Pepsi's Price and Advertising Strategies  

E-Print Network (OSTI)

Strategy Distributions for Coke (First Quarter 1977) a)Paper No. 789 ESTIMATING COKE AND PEPSI'S PRICE ADVERTISINGEconomics July, 1998 Estimating Coke and Pepsi’s Price and

Golan, Amos; Karp, Larry S.; Perloff, Jeffrey M.

1998-01-01T23:59:59.000Z

24

Experimental study of elastoplastic mechanical properties of coke drum materials.  

E-Print Network (OSTI)

??Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes the… (more)

Chen, Jie

2010-01-01T23:59:59.000Z

25

New coke-sorting system at OAO Koks  

SciTech Connect

A new coke-sorting system has been introduced at OAO Koks. It differs from the existing system in that it has no bunkers for all-purpose coke but only bunkers for commercial coke. In using this system with coke from battery 4, the crushing of the coke on conveyer belts, at roller screens, and in the commercial-coke bunkers is studied. After installing braking elements in the coke path, their effectiveness in reducing coke disintegration and improving coke screening is investigated. The granulometric composition and strength of the commercial coke from coke battery 3, with the new coke-sorting system, is evaluated.

B.Kh. Bulaevskii; V.S. Shved; Yu.V. Kalimin; S.D. Filippov [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

26

Utilization of coke and functionalized coke-based composite for uptake of heavy metals from wastewater .  

E-Print Network (OSTI)

??This study investigated the functionalization of coke particles and their utilization for the preparation of coke-polymer composite. Looking at the possibility of using it for… (more)

Mdlalose, Lindani Mbalenhle

2014-01-01T23:59:59.000Z

27

Russian coking coal in 2008 and 2009  

Science Journals Connector (OSTI)

Coal resources and coke production in the second half of 2009 ... are considered. The unsuitability of the available coal for the production of high-strength coke is analyzed.

B. P. Kiselev

2010-10-01T23:59:59.000Z

28

Technological value of coal used for coking  

Science Journals Connector (OSTI)

The technological value of coal used for coking is analyzed, with particular attention to clinkering coal, the coke group, and lean additives, as well as G and GZhO coal. A relation is established between the tec...

A. S. Stankevich; V. S. Stankevich

2013-09-01T23:59:59.000Z

29

Oxidized coal in coking: A review  

Science Journals Connector (OSTI)

A literature review shows that the oxidation of coal changes its granulometric composition, packing density, ... clinkering properties, the quality of the resulting coke, and the yield of coking byproducts. On ac...

N. A. Desna; D. V. Miroshnichenko

2011-05-01T23:59:59.000Z

30

Russian coking coal in 2008 and 2009  

Science Journals Connector (OSTI)

The distribution and quality of Russian coal and coke resources are compared for periods before (the ... definition and determination of the technological value of coal. Analysis of coke strength suggests that, i...

B. P. Kiselev

2009-12-01T23:59:59.000Z

31

Coal fractionation by density for coking purposes  

Science Journals Connector (OSTI)

Scarce coal with good coking properties may be obtained by separating less valuable coal into different density fractions. The use of valuable fractions released in enrichment ensures optimal coking-batch composi...

S. G. Gagarin

2010-09-01T23:59:59.000Z

32

The mechanism of coking pressure generation II: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and contraction  

Science Journals Connector (OSTI)

One of the most important aspects of the cokemaking process is to control and limit the coking pressure since excessive coking pressure can lead to operational problems and oven wall damage. Following on from a previous paper on plastic layer permeability we have studied the effect of contraction of semi-coke on coking pressure and the effect of organic additives on contraction. A link between contraction (or simulated contraction) outside the plastic layer and coking pressure was demonstrated. The interaction between this contraction, local bulk density around the plastic layer and the dependence of the permeability of the plastic layer on bulk density was discussed as possible mechanisms for the generation of coking pressure. The effect of blending either a high volatile matter coal or one of two semi-anthracites with low volatile matter, high coking pressure coals on the coking pressure of the binary blends has been explained using this mechanism.

Merrick Mahoney; Seiji Nomura; Koichi Fukuda; Kenji Kato; Anthony Le Bas; David R. Jenkins; Sid McGuire

2010-01-01T23:59:59.000Z

33

Trends in the automation of coke production  

SciTech Connect

Up-to-date mathematical methods, such as correlation analysis and expert systems, are employed in creating a model of the coking process. Automatic coking-control systems developed by Giprokoks rule out human error. At an existing coke battery, after introducing automatic control, the heating-gas consumption is reduced by {>=}5%.

R.I. Rudyka; Y.E. Zingerman; K.G. Lavrov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

34

Clean Production of Coke from Carbonaceous Fines  

SciTech Connect

In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.

Craig N. Eatough

2004-11-16T23:59:59.000Z

35

Coke–pitch interactions during anode preparation  

Science Journals Connector (OSTI)

Abstract The information on the interactions between coke and pitch is of great value for the aluminum industry. This information can help choose the suitable coke and pitch pairs as well as the appropriate mixing parameters to be used during the production of anodes. In this study, the interaction mechanisms of pitch and coke at the mixing stage were studied by a sessile-drop test using two coal-tar pitches as the liquid and three petroleum cokes as the substrate. The results showed that the coke–pitch interactions are related to both pitch and coke chemical compositions. The contact angle of different coke–pitch systems decreased with increasing time and temperature. At high temperatures, decreasing the pitch viscosity facilitated the spreading of pitch and its penetration into the coke bed. The chemical behavior of petroleum cokes and coal tar pitches were studied using the FT-IR spectroscopy and XPS. The results showed that the wettability behavior of cokes by pitches depends on their physical properties as well as the presence of surface functional groups of coke and pitch which can form chemical bonds.

Arunima Sarkar; Duygu Kocaefe; Yasar Kocaefe; Dilip Sarkar; Dipankar Bhattacharyay; Brigitte Morais; Jérôme Chabot

2014-01-01T23:59:59.000Z

36

Effect of Indian Medium Coking Coal on Coke Quality in Non-recovery Stamp Charged Coke Oven  

Science Journals Connector (OSTI)

Abstract The maximum possibility of utilizing the Indian coking coals and inferior grade coking coal for producing metallurgical coke through non-recovery stamp charging technology was investigated. Indian indigenous coals contained low percent of vitrinite ( 15%) compared to imported coking coal. Therefore, the selection of appropriate proportion of different types of coals was a major challenge for coke makers. Coal blend selection criterion based on a single coefficient, named as composite coking potential (CCP), was developed. The use of increased proportion of semi-soft coal (crucible swelling number of 2.5) and high ash (? 15%) indigenous coal in the range of 20%–35% and 20%–65% respectively in the blends resulted in good quality of coke. Plant data of a non-recovery coke oven were used for developing and validating the model. The results showed that the coke strength after reaction (CSR) varied in the range of 63. 7%–67.7% and the M40 value was between 81.8 and 89.3 in both the cases.

H.P. Tiwari; P.K. Banerjee; V.K. Saxena; S.K. Haldar

2014-01-01T23:59:59.000Z

37

Using coke-battery flue gas to dry coal batch before coking  

Science Journals Connector (OSTI)

The utilization of heat from coke-battery flue gases and other potential secondary energy resources in drying coal batch prior to coking is considered. The main factors that influence ... . The reduction in moist...

A. Ya. Eremin; V. G. Mishchikhin; S. G. Stakheev; R. R. Gilyazetdinov…

2011-03-01T23:59:59.000Z

38

Selecting the optimum coke pushing sequence  

SciTech Connect

The sequence of pushing coke ovens is one of the most important aspects of battery operation. The sequence must satisfy a number of technical and process conditions: (1) achieve maximum heating-wall life by avoiding destructive expansion pressure in freshly charged ovens and during pushing of the finished coke; (2) ensure uniform brickwork temperature and prevent overheating by compensating for the high thermal flux in freshly charged ovens due to accumulated heat in adjacent ovens that are in the second half of the coking cycle; (3) ensure the most favorable working conditions and safety for operating personnel; (4) provide additional opportunities for repair personnel to perform various types of work, such as replacing coke-machine rails, without interrupting coal production; (5) perform the maximum number of coke-machine operations simultaneously: pushing, charging, and cleaning doors, frames, and standpipe elbows; and (6) reduce electricity consumption by minimizing idle travel of coke machines.

V.T. Krivoshein; A.V. Makarov [ZAO Trest Koksokhimmontazh (Russian Federation)

2007-01-15T23:59:59.000Z

39

Technological value of coal concentrates for coking  

Science Journals Connector (OSTI)

Options are outlined for calculating the technological value of coal and coal concentrates in the context of contractual obligations and the quality of the coke produced.

E. N. Stepanov; G. V. Larin; A. E. Stepanova; I. V. Semiokhina

2010-02-01T23:59:59.000Z

40

Estimating Coke and Pepsi's price and advertising strategies  

E-Print Network (OSTI)

Working Paper No. 789 ESTIMATING COKE AND PEPSI’ PRICE S ANDand Advertising Strategies: Coke and Pepsi) by Amos Golan,Revised, March 1999 Estimating Coke and Pepsi’s Price and

Golan, Amos; Karp, Larry; Perloff, Jeffrey M.

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Interaction of low-metamorphic coal components in coking batch  

Science Journals Connector (OSTI)

The interaction of low-metamorphic coal components in coking batch during pyrolysis is studied. The characteristics of the resulting coke are presented, and the partial hydrogenation is...

E. I. Malyi; A. S. Koverya; M. A. Starovoit

2010-08-01T23:59:59.000Z

42

12.2 Coke Production 12.2.1 General  

E-Print Network (OSTI)

Metallurgical coke is produced by the destructive distillation of coal in coke ovens. Prepared coal is heated in an oxygen-free atmosphere (–coked–) until most volatile components in the coal are removed. The material remaining is a carbon mass called coke. Metallurgical coke is used in iron and steel industry processes (primarily in blast furnaces) to reduce iron ore to iron. Over 90 percent of the total coke production is dedicated to blast furnace operations. Foundry coke comprises most of the balance and is used by foundries in furnaces for melting metal and in the preparation of molds. Foundry coke production uses a different blend of coking coals, longer coking times, and lower coking temperatures relative to those used for metallurgical coke. Most coke plants are collocated with iron and steel production facilities, and the demand for coke generally corresponds with the production of iron and steel. There has been a steady decline in the number of coke plants over the past several years for many reasons, including a decline in the demand for iron/steel, increased production of steel by mini-mills (electric arc furnaces that do not use coke), and the lowering of the coke:iron ratio used in the blast furnace (e. g., increased use of pulverized coal injection). There were 18 coke plants operating in the U. S. in 2007.

unknown authors

43

Clinkering properties of rammed coking coal and coal batches  

Science Journals Connector (OSTI)

The clinkering properties of rammed coking coal and coal batches are investigated. There is a close relation between the clinkering properties and coke quality.

V. M. Shmal’ko; M. A. Solov’ev

2009-03-01T23:59:59.000Z

44

Strength of the coke fillers of carbon materials  

SciTech Connect

Relationships between the ultimate compression strengths of coke fillers for carbon materials determined by various techniques and structures, final coke treatment temperatures, etc., are considered.

V.S. Ostrovskii [Research Institute of Structural Graphite Materials, Moscow (Russian Federation)

2008-12-15T23:59:59.000Z

45

New designs in the reconstruction of coke-sorting systems  

SciTech Connect

In recent Giprokoks designs for the reconstruction of coke-sorting systems, high-productivity vibrational-inertial screens have been employed. This permits single-stage screening and reduction in capital and especially operating expenditures, without loss of coke quality. In two-stage screening, >80 mm coke (for foundry needs) is additionally separated, with significant improvement in quality of the metallurgical coke (25-80 mm). New designs for the reconstruction of coke-sorting systems employ mechanical treatment of the coke outside the furnace, which offers new scope for stabilization of coke quality and permits considerable improvement in mechanical strength and granulometric composition of the coke by mechanical crushing.

A.S. Larin; V.V. Demenko; V.L. Voitanik [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

46

Table 5.2 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010; 2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280

47

Table 5.1 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5.1 End Uses of Fuel Consumption, 2010; 5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process

48

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006; 2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel -- 41 133 23 2,119 8 547 -- Conventional Boiler Use -- 41 71 17 1,281 8 129 -- CHP and/or Cogeneration Process -- -- 62 6 838 1 417 -- Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487

49

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006; 4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

50

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006; 1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use -- 12,109 11 3 1,245 2 6 -- CHP and/or Cogeneration Process

51

table5.1_02  

U.S. Energy Information Administration (EIA) Indexed Site

End Uses of Fuel Consumption, 2002; End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.4 1 NF TOTAL FUEL CONSUMPTION 16,273 832,257 33 24 5,641 26 53 6,006 3.4 Indirect Uses-Boiler Fuel -- 3,540 20 6

52

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

53

Table 5.4 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010; 4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP and/or Cogeneration Process -- 26 15 1,401 7 500 Direct Uses-Total Process 2,304 26 54 2,623 29 289 Process Heating 318 25 14 2,362 24 280 Process Cooling and Refrigeration

54

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

4.1 Offsite-Produced Fuel Consumption, 2006; 4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3 618 1 7 * 45 3112 Grain and Oilseed Milling 316 15,536 * * 115 * 5 0 28 311221 Wet Corn Milling 179 6,801 * * 51 * 4 0 8 31131 Sugar Manufacturing 67 974 1 * 17 * 1 * 4 3114 Fruit and Vegetable Preserving and Specialty Food 168 9,721

55

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3

56

Table 4.1 Offsite-Produced Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010; 1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4 563 1 8 * 54 3112 Grain and Oilseed Milling 346 16,620 * * 118 * 6 0 41 311221 Wet Corn Milling 214 7,481 * * 51 * 5 0 25 31131 Sugar Manufacturing 72 1,264 * * 15 * 2 * * 3114 Fruit and Vegetable Preserving and Specialty Foods 142 9,258 * Q 97

57

table5.3_02  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2002; 3 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Net Demand Fuel Oil Coal for Residual and Natural LPG and (excluding Coal RSE NAICS Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Row Code(a) End Use (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: NF 1 2.4 1.1 1.4 1 TOTAL FUEL CONSUMPTION 966,231 33 24 5,641 26 53 3.4 Indirect Uses-Boiler Fuel 6,714 20 6 2,105 2 35 5.3 Conventional Boiler Use

58

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006; 1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107 3112 Grain and Oilseed Milling 317 15,464 * * 115 * 5 0 30 311221 Wet Corn Milling 179 6,746 * * 51 * 4 0 9 31131 Sugar Manufacturing 82 968 1 * 17 * 1 * 20 3114 Fruit and Vegetable Preserving and Specialty Food 169 9,708 * * 123 * * 0 4 3115 Dairy Product

59

Determination of electrical resistivity of dry coke beds  

SciTech Connect

The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

Eidem, P.A.; Tangstad, M.; Bakken, J.A. [NTNU, Trondheim (Norway)

2008-02-15T23:59:59.000Z

60

Carol G. Cokely's recent Presentations Cokely, C. (2007). Incorporating Service Learing in to the AuD Curriculum. Invited  

E-Print Network (OSTI)

Carol G. Cokely's recent Presentations Cokely, C. (2007). Incorporating Service Learing in to the AuD Curriculum. Invited speaker, Teaching the Management of Hearing Loss, Pittsburgh, PA. Cokely, C, Pittsburgh, PA. Kricos, P.B., Weinstein, B., Lesner, S., Cokely, C., Milstein, D., & Chisolm, T. (2006) How

O'Toole, Alice J.

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Delayed Coking of Decant Oil and Coal in a Laboratory-Scale Coking Unit  

Science Journals Connector (OSTI)

The fact that coke quality varies with the chemical composition of the precursor feedstock creates a significant incentive to examine the process of coking and how it relates to the composition of the feedstock. ... (7)?Derbyshire, F. J.; Odoerfer, G. A.; Rudnick, L. R.; Varghese, P.; Whitehurst, D. D. Fundamental studies in the conversion of coals to fuels of increased hydrogen content. ... Bituminous coal/petroleum co-cokes were produced by coking 4:1 blends of vacuum resid (VR)/coal and decant oil (DO)/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 h, under autogenous pressure in microautoclave reactors. ...

Ömer Gül; Leslie R. Rudnick; Harold H. Schobert

2006-05-18T23:59:59.000Z

62

Spatial variation of coke quality in the non-recovery beehive coke ovens.  

E-Print Network (OSTI)

??More than 50% of hot metal production worldwide takes place in blast furnaces. Coke is the most expensive raw material in the blast furnace. It… (more)

Segers, Magrieta

2006-01-01T23:59:59.000Z

63

Delayed coking of decant oil and coal in a laboratory-scale coking unit  

SciTech Connect

In this paper, we describe the development of a laboratory-scale delayed coker and present results of an investigation on the recovered liquid from the coking of decant oil and decant oil/coal mixtures. Using quantitative gas chromatography/mass spectroscopy (GC/MS) and {sup 1}H and {sup 13}C NMR, a study was made of the chemical composition of the distillate liquids isolated from the overheads collected during the coking and co-coking process. {sup 1}H and {sup 13}C NMR analyses of combined liquids from coking and co-coking did not show any substantial differences. These NMR results of coking and co-coking liquids agree with those of GC/MS. In these studies, it was observed that co-coking with coal resulted in a decrease in the paraffins contents of the liquid. The percentage of cycloparaffins, indenes, naphthalenes, and tetralins did not change significantly. In contrast, alkyl benzenes and polycyclic aromatic hydrocarbons in the distillate were higher in the co-coking experiments which may have resulted from the distillation of thermally cracked coal macromolecules and the contribution of these molecules to the overall liquid composition. 40 refs., 3 figs., 13 tabs.

Oemer Guel; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University Park, PA (United States). Energy Institute, C205 Coal Utilization Laboratory

2006-08-15T23:59:59.000Z

64

Market boundaries for coking-coal concentrates  

Science Journals Connector (OSTI)

The construction of geographic and commodity boundaries is considered in relation to the Russian market for coking-coal concentrates. In this market, uniform commodities ... construction of the market boundaries....

V. A. Brodskii

2011-05-01T23:59:59.000Z

65

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect

Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

Michael Volk; Keith Wisecarver

2004-09-26T23:59:59.000Z

66

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect

Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

Michael Volk; Keith Wisecarver

2003-09-26T23:59:59.000Z

67

Mozambique becomes a major coking coal exporter?  

SciTech Connect

In addition to its potential role as a major international supplier of coking coal, Mozambique will also become a major source of power generation for southern Africa. 3 figs.

Ruffini, A.

2008-06-15T23:59:59.000Z

68

New and revised standards for coke production  

SciTech Connect

The need for new and revised standards for coke production in Ukraine and Russia is outlined. Such standards should address improvements in plant operation, working conditions, environmental protection, energy conservation, fire and explosion safety, and economic indices.

G.A. Kotsyuba; M.I. Alpatov; Y.G. Shapoval [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

69

Possibilities of coke manufacture in nonpollutant conditions  

SciTech Connect

The paper presents some possibilities to obtain coke briquettes from anthracite, using as binders petroleum pitch, wheat flour, cement, plaster, ashes from power-plants dried from the electrofilters. Specific thermal post-treatment were proposed for each case, such as: oxidation or heating at low temperatures (under 300 C). As a result the authors obtained coke briquettes to be used in small equipment, with no pollutant pyrogenetic treatment.

Barca, F.; Panaitescu, C.; Vidrighin, C.; Peleanu, I. [Politehnica Univ. Bucharest (Romania); Albastroiu, P. [S.C. ICEM S.A., Bucharest (Romania)

1994-12-31T23:59:59.000Z

70

Réactivité de l'anode et désulfuration : effet du niveau de calcination du coke.  

E-Print Network (OSTI)

??Les propriétés du coke et la performance des anodes sont affectées par le niveau de calcination du coke. Une densité de coke (VBD) élevée implique… (more)

Bergeron-Lagacé, Charles-Luc

2012-01-01T23:59:59.000Z

71

Physical, chemical and thermal changes of coals and coal maceral concentrates during coke formation.  

E-Print Network (OSTI)

??Research Doctorate - Doctor of Philosophy (PhD) The measured coke reactivity index (CRI) and coke strength after reaction (CSR) determined in experiments based on coke… (more)

Xie, Wei

2013-01-01T23:59:59.000Z

72

Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant  

SciTech Connect

Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

73

Investigation of bonding mechanism of coking on semi-coke from lignite with pitch and tar  

SciTech Connect

In coking, the bonding ability of inert macerals by reactive macerals is dependent on various parameters and also is related to the wettability of the inert macerals. In this study, the effect of carbonization temperature on the wettability of semi-cokes produced at various temperatures has been investigated. Soma and Yatagan semicokes represent inert macerals, and pitch was used as a reactive structure in the experiments. The briquetted pitch blocks were located on the semi-cokes and heated from the softening temperature of pitch (60{sup o}C) to 140{sup o}C to observe the wettability. In addition, liquid tar was also used to determine the wettability of semi-cokes. From the standpoint of wettability, the temperature of 900{sup o}C was determined to be the critical point for coke produced from sub-bituminous coals. 15 refs., 6 figs., 2 tabs.

Vedat Arslan [Dokuz Eylul University, Izmir (Turkey). Engineering Faculty

2006-10-15T23:59:59.000Z

74

Relationship between the technical parameters of cokes produced from blends of three Polish coals of different coking ability  

Science Journals Connector (OSTI)

The demand for metallurgical coke for blast furnaces is forcing the coking industry to look for new sources of coking coals. The physical and chemical parameters of coals used in coking blends determine the quality (reactivity and strength) of the finished cokes. This study examines the technical properties of the cokes produced from various blends of three Polish coals with different coking. These coals were collected from three mines: Zofiówka, Szczyg?owice, and Krupi?ski (Upper Silesian Coal Basin, Poland). The coal charges were coked in the laboratory scale, at temperatures of up to 1000 °C, in an inert atmosphere. The coke reactivity (index CRI) and the coke strength after reaction (CSR) were measured and correlated to the properties of parent coals using statistical analysis. The result of this study shows strong relationships between the concentration of the best coking coal (Zofiówka) in the blend and the CRI and CSR of the resulting coke. The CRI and CSR parameters for cokes obtained from single coals and from their blends show the additive character. This study also confirms the linear relationship between CRI and CSR parameters of the cokes.

A. Koszorek; M. Krzesi?ska; S. Pusz; B. Pilawa; B. Kwieci?ska

2009-01-01T23:59:59.000Z

75

Interactions among Different Fractions in the Thermoplastic State of Goonyella Coking Coal  

Science Journals Connector (OSTI)

An understanding of thermoplastic behavior in coking coal is essential in ascertaining appropriate procedures for the efficient conversion of slightly coking coals into good quality cokes. ... The conversion of coal into coke is detd. ...

Takahiro Yoshida; Toshimasa Takanohashi; Masashi Iino; Haruo Kumagai; Kenji Kato

2004-01-09T23:59:59.000Z

76

Hydrothermal Treatment of a Sub-bituminous Coal and Its Use in Coking Blends  

Science Journals Connector (OSTI)

Crucible coking determinations suggest that hydrothermal treatment can greatly increase the coke strength and the particle coke strength after reaction toward CO2 and decrease the coke reactivity when the hydrothermally treated coals were used in the coal blends instead of the raw coal. ... While the cokes from the crucible coking experiments were subjected to 800 rotations at a speed of 25 rpm, the weight percent of coke particles (>0.2 ... The coal charges were coked in the lab. ...

Hengfu Shui; Ye Wu; Zhicai Wang; Zhiping Lei; Changhui Lin; Shibiao Ren; Chunxiu Pan; Shigang Kang

2012-11-26T23:59:59.000Z

77

Elegest coal in coking batch at OAO EVRAZ ZSMK  

Science Journals Connector (OSTI)

The coking of batch with different proportions of Elegest coal from the Ulug-Khemsk Basin is investigated ... production conditions. The mechanical strength of the coke is improved when such coal is used in the b...

V. L. Osetkovskii; M. M. Naimark; V. G. Lupenko; A. E. Bazegskiy…

2013-03-01T23:59:59.000Z

78

Modification of poorly clinkering coal for use in coking  

Science Journals Connector (OSTI)

If coal is modified by the volatile products formed in pyrolysis, high-quality blast-furnace coke may be produced from batch with a smaller proportion of expensive clinkering coal. In such coking, the batch is mo...

E. I. Malyi

2014-03-01T23:59:59.000Z

79

Improving the preparation of coal batch for coking  

Science Journals Connector (OSTI)

Various methods of preparing coal for coking are analyzed. Laboratory experiments are conducted with a view to obtaining higher-quality coke from batch with a high content of poorly clinkering coal.

M. S. Chemerinskii; A. G. Starovoit; E. I. Malyi

2012-07-01T23:59:59.000Z

80

Coking of coal batch with different content of oxidized coal  

Science Journals Connector (OSTI)

The use of oxidized coal in coking batch increases the analytical moisture content and ... increases the oxygen content; reduces the gross coke yield and the yield of tar, benzene ... of carbon dioxide, pyrogenet...

D. V. Miroshnichenko; I. D. Drozdnik; Yu. S. Kaftan; N. B. Bidolenko…

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Kuznetsk Basin coking coal: Reserves and technological value  

Science Journals Connector (OSTI)

Reserves of Kuznetsk Basin coking coal are analyzed, in terms of rank composition and scope for coke production. The technological value of the coal is evaluated by the OOO VNITs Ugol...

V. P. Ivanov; V. Yu. Sushkov; A. A. Torgunakov; S. A. Pantykin

2008-09-01T23:59:59.000Z

82

Determining the environmental and thermal characteristics of coke oven batteries  

Science Journals Connector (OSTI)

A method is proposed for assessing the environmental and thermal characteristics of coke oven batteries and is tested for coke oven batteries 1 and 5 at OAO Zaporozhkoks. On ... the basis of data for the environm...

E. I. Toryanik; A. L. Borisenko; A. S. Malysh; A. A. Lobov…

2009-12-01T23:59:59.000Z

83

Development of coke strength after reaction (CSR) at Dofasco  

SciTech Connect

In order to prevent coke degradation without detrimentally affecting blast furnace service life, Dofasco initiated a project to improve coke strength after reaction. The results of the program and Dofasco's prediction model are presented. 9 refs., 12 figs., 9 tabs.

T.W. Todoschuk; J.P. Price; J.F. Gransden

2004-03-01T23:59:59.000Z

84

Fundamentals of Delayed Coking Joint Industry Project  

SciTech Connect

The coking test facilities include three reactors (or cokers) and ten utilities. Experiments were conducted using the micro-coker, pilot-coker, and stirred-batch coker. Gas products were analyzed using an on-line gas chromatograph. Liquid properties were analyzed in-house using simulated distillation (HP 5880a), high temperature gas chromatography (6890a), detailed hydrocarbon analysis, and ASTM fractionation. Coke analyses as well as feedstock analyses and some additional liquid analyses (including elemental analyses) were done off-site.

Volk Jr., Michael; Wisecarver, Keith D.; Sheppard, Charles M.

2003-02-07T23:59:59.000Z

85

Accepted Manuscript Title: Fuel Pyrolysis through Porous Media: Coke Formation  

E-Print Network (OSTI)

Accepted Manuscript Title: Fuel Pyrolysis through Porous Media: Coke Formation and Coupled effect. Gascoin, P. Gillard, M. Bouchez, J. Steelant, Fuel Pyrolysis through Porous Media: Coke Formation Coke Formation and Coupled effect on Permeability2 G. Fau1* , N. Gascoin1 , P. Gillard1 , M. Bouchez2

Paris-Sud XI, Université de

86

Working Paper No. 789 ESTIMATING COKE AND PEPSI'S PRICE  

E-Print Network (OSTI)

Working Paper No. 789 ESTIMATING COKE AND PEPSI'S PRICE AND ADVERTISING STRATEGIES (formerly Estimating Firms'Mixed Price and Advertising Strategies: Coke and Pepsi) by Amos Golan, Larry S. Karp. #12;Estimating Coke and Pepsi's Price and Advertising Strategies Amos Golan* Larry S. Karp** Jeffrey M

Karp, Larry S.

87

Influence of the coking properties of coal batch on coke properties  

Science Journals Connector (OSTI)

At OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK), research is undertaken to improve the optimization of coking batch. The basic approach, proposed by...K opt..., which characterizes the ...

D. A. Zavalishin; L. S. Belaya; G. R. Gainieva; V. G. Lupenko

2009-10-01T23:59:59.000Z

88

Water protection in coke-plant design  

SciTech Connect

Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

89

Reducing dust emissions at OAO Alchevskkoks coke battery 10A  

SciTech Connect

Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

90

RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: COKE FORMATION PREDICTABILITY MAPS  

SciTech Connect

The dispersed particle solution model of petroleum residua structure was used to develop predictors for pyrolytic coke formation. Coking Indexes were developed in prior years that measure how near a pyrolysis system is to coke formation during the coke formation induction period. These have been demonstrated to be universally applicable for residua regardless of the source of the material. Coking onset is coincidental with the destruction of the ordered structure and the formation of a multiphase system. The amount of coke initially formed appears to be a function of the free solvent volume of the original residua. In the current work, three-dimensional coke make predictability maps were developed at 400 C, 450 C, and 500 C (752 F, 842 F, and 932 F). These relate residence time and free solvent volume to the amount of coke formed at a particular pyrolysis temperature. Activation energies for two apparent types of zero-order coke formation reactions were estimated. The results provide a new tool for ranking residua, gauging proximity to coke formation, and predicting initial coke make tendencies.

John F. Schabron; A. Troy Pauli; Joseph F. Rovani Jr.

2002-05-01T23:59:59.000Z

91

Relation between the coking-chamber height, the coking pressure, and the packing density of regular or partially briquetted coal batch  

Science Journals Connector (OSTI)

Since coking coal is characterized by both elasticity and ductility in the plastic state, the coal charge of coke furnaces that contains a plastic layer exerts pressure (coking pressure) on the chamber walls. The...

L. V. Kopeliovich; V. I. Sukhorukov; V. I. Shvetsov

2012-07-01T23:59:59.000Z

92

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

SciTech Connect

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.

Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

1999-09-01T23:59:59.000Z

93

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

SciTech Connect

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

NONE

1998-09-01T23:59:59.000Z

94

Table 16. U.S. Coke Exports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coke Exports U.S. Coke Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 16. U.S. Coke Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 162,796 79,217 201,795 242,013 340,944 -29.0 Canada* 73,859 17,837 112,348 91,696 161,596 -43.3 Mexico 88,535 60,517 86,721 149,052 176,163 -15.4 Other** 402 863 2,726 1,265 3,185 -60.3 South America Total 223 217 591 440 1,158 -62.0 Other** 223 217 591 440 1,158 -62.0 Europe Total 48,972 59,197 - 108,169 6 NM Other** 347 11,743 - 12,090 - - United Kingdom 48,625 47,454 - 96,079 6 NM Asia Total 317 553 633 870 4,778

95

Table 21. U.S. Coke Imports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coke Imports U.S. Coke Imports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 21. U.S. Coke Imports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Origin April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 10,284 2,293 159,462 12,577 183,712 -93.2 Canada 3,009 2,293 159,462 5,302 183,712 -97.1 Panama 7,275 - - 7,275 - - South America Total 25,267 13,030 88,424 38,297 106,612 -64.1 Brazil - - 78,595 - 78,595 - Colombia 25,267 13,030 9,829 38,297 28,017 36.7 Europe Total 6,044 40,281 165,027 46,325 485,791 -90.5 Czech Republic - 170 - 170 - - Spain 363 - - 363 - - Ukraine 5,681 40,111 5,047 45,792 53,543 -14.5 United Kingdom

96

Coking properties of perhydrous low-rank vitrains. Influence of pyrolysis conditions  

E-Print Network (OSTI)

generally lead to increased coking potential of coals characterised in the resulting cokes by large sizes equivalent to natural coking coals, since the cokes from these residues are always made of smaller MOD than those obtained for coking coals. For comparison, a similar characterisation, carried out

Paris-Sud XI, Université de

97

Effect of bulk density of coking coal on swelling pressure  

Science Journals Connector (OSTI)

Abstract Coking coals are the important raw materials for the iron and steel industries and play an important role on its sustainable development, especially on the stamp-charging coke making with the characteristics of increasing the bulk density. There is a significance on the reasonable usage of the coking coal resource with the reduced production cost, improved efficiency of the economy to develop the stamp-charging coke making technology. Important effects of the density of coking coal on the coking and caking properties were investigated. In the article, the maximum values of swelling pressure and variation of Laowan gas coal and Xinjian 1/3 coking coal, Longhu fat coal and Didao coking coal, which were mined at Shenyang and Qitaihe respectively, were investigated under different bulk densities during the coking. The results showed that when the values of density increased from 0.85 ton/m3 to 1.05 ton/m3, for the Laowan gas coal, swelling pressure variation and even the maximum value changed slightly. The swelling pressure was 3.63 \\{KPa\\} when the density was improved to 1.05 ton/m3; for the Xinjian 1/3 coking coal, the values of swelling pressure changed significantly and the maximum values was 82.88 \\{KPa\\} with the density improved to 1.05 when the coal was heated to 600°C. The coke porosity, which was investigated by automatic microphotometer, decreased from 47.4% to 33.1% with the increasing of the density from 0.85 ton/m3 to 1.05 ton/m3, and the decreased value was 14.3%. Meanwhile, the pore structures of four cokes were characterized by an optical microscope.

Jinfeng Bai; Chunwang Yang; Zhenning Zhao; Xiangyun Zhong; Yaru Zhang; Jun Xu; Bai Xi; Hongchun Liu

2013-01-01T23:59:59.000Z

98

Coke profile and effect on methane/ethylene conversion process.  

E-Print Network (OSTI)

??The objective of this study was to investigate the coke profile with respect to time on stream and the change of product distribution due to… (more)

Al-Solami, Bandar

2012-01-01T23:59:59.000Z

99

Modélisation thermomécanique d'un piédroit de four à coke.  

E-Print Network (OSTI)

??Inscrite dans le cadre du projet européen Coke Oven Operating Limits, cette thèse porte sur la modélisation thermomécanique d'un piédroit de cokerie. Le piédroit est… (more)

Landreau, Matthieu

2009-01-01T23:59:59.000Z

100

The methods of steam coals usage for coke production  

SciTech Connect

Nowadays, high volatile bituminous coals are broadly used for metallurgical coke production in Russia. The share of such coals in the coking blend is variable from 20 to 40% by weight. There are some large coal deposits in Kuznetskii basin which have coals with low caking tendency. The low caking properties of such coals limit of its application in the coking process. At the same time the usage of low caking coals for coke production would allow flexibility of the feedstock for coke production. Preliminary tests, carried out in COAL-C's lab has shown some differences in coal properties with dependence on the size distribution. That is why the separation of the well-caking fraction from petrographically heterogeneous coals and its further usage in coking process may be promising. Another way for low caking coals application in the coke industry is briquettes production from such coals. This method has been known for a very long time. It may be divided into two possible directions. First is a direct coking of briquettes from the low caking coals. Another way is by adding briquettes to coal blends in defined proportion and combined coking. The possibility of application of coal beneficiation methods mentioned above was investigated in present work.

Korobetskii, I.A.; Ismagilov, M.S.; Nazimov, S.A.; Sladkova, I.L.; Shudrikov, E.S.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Reducing power production costs by utilizing petroleum coke. Annual report  

SciTech Connect

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

Galbreath, K.C.

1998-07-01T23:59:59.000Z

102

Nippon Coke and Engineering Sumitomo Corp JV | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: Nippon Coke and Engineering & Sumitomo Corp JV Place: Tokyo, Japan Zip: 135-6007 Product: Japan-based natural graphite base anode materials joint...

103

Impact of Coal-Coking Effluent on Sediment Microbial Communities: a Multivariate Approach  

Science Journals Connector (OSTI)

...General Microbial Ecology Impact of Coal-Coking Effluent on Sediment Microbial...response to and recovery from coal-coking waste effluent was evaluated for...community response. Impact of coal-coking effluent on sediment microbial...

Gary S. Sayler; Timothy W. Sherrill; Richard E. Perkins; Lawrence M. Mallory; Michael P. Shiaris; Deana Pedersen

1982-11-01T23:59:59.000Z

104

Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination  

Energy.gov (U.S. Department of Energy (DOE))

Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

105

A novel technique for assessing the coking potential of coals/coal blends for non-recovery coke making process  

Science Journals Connector (OSTI)

Abstract In an effort to broaden the scope of coal selection, the authors have developed a novel procedure based on a coefficient, named as Composite Coking Potential (CCP). CCP value assesses the suitability of a coal/coal blend for producing coke of desired quality; measured by the parameter coke strength after reaction (CSR). The coking potential takes into account of various properties of the coals and their proportions in a given coal blend and convert them into a single value. This technique is having advantage since each of these parameters represents different aspects of the coking phenomena along with inter dependence of some of these parameters also exists. This makes the coal selection process extremely difficult and in majority of the cases, decision is taken based on experience. In this investigation, CCP model has been used for selecting the least expensive coal blends which will comply with the minimum coke quality requirements of blast furnace. The study confirms the inter relations between the CCP and the hot strength of coke i.e. CSR. Actual plant data of a non-recovery coke oven have been used for developing and validation of the model. The technique was successfully used in identifying cheaper coals for producing coke with desired quality.

H.P. Tiwari; P.K. Banerjee; V.K. Saxena

2013-01-01T23:59:59.000Z

106

DELAYED COKING OF SOLVENT EXTRACTED COAL FOR PRODUCTION OF ANODE GRADE COKE: CHARACTERIZATION OF SOLID AND LIQUID PRODUCTS.  

E-Print Network (OSTI)

??This study investigates the feasibility of using high temperature solvent extraction of coal to produce feedstock for the production of anode grade coke through delayed… (more)

Karri, Vamsi

2011-01-01T23:59:59.000Z

107

RELATION BETWEEN TEXTURE AND REACTIVITY IN METALLURGICAL COKES OBTAINED FROM COAL USING PETROLEUM COKE AS ADDITIVE  

E-Print Network (OSTI)

Reactivity to C O2 is, perhaps, the most importam quality parameter used to evaluate the performance of a metallurgical coke in the blast furnace [ 1]. A lot of effort has been made to study how it is influenced by the

J. J. Pis; J. A. Men~ndez; R. Alvarez; M. A. Diez; J. B. Parra

108

Coke Gasification - A Solution to Excess Coke Capacity and High Energy Costs  

E-Print Network (OSTI)

effectively to produce medium-Btu (300 Btu/scf) gas which, in turn, can fuel the refinery furnaces to replace natural gas. Coke gasification should prove economical with natural gas price decontrol and the average price projected to rise to over $14.0 per...

Patel, S. S.

1982-01-01T23:59:59.000Z

109

Dry purification of aspirational air in coke-sorting systems with wet slaking of coke  

SciTech Connect

Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

110

Adsorptive removal of nitrogen from coal-based needle coke feedstocks using activated carbon.  

E-Print Network (OSTI)

??A low percentage of nitrogen in needle coke feedstocks is desired for the reduction of puffing during the process of graphitization of needle coke. The… (more)

Madala, Sreeja.

2009-01-01T23:59:59.000Z

111

Prediction of Coke Quality in Ironmaking Process: A Data Mining Approach.  

E-Print Network (OSTI)

??Coke is an indispensable material in Ironmaking process by blast furnace. To provide good and constant quality coke for stable and efficient blast furance operation… (more)

Hsieh, Hsu-huang

2006-01-01T23:59:59.000Z

112

Effects of preheating and highly heat-conductive brick on coke quality  

SciTech Connect

In replacing the coke ovens available currently, the introduction of a combined technique of a preheated coal charging method (preheating temperature:175 C) and the use of highly heat-conductive brick is under examination for raising the productivity of coke ovens. With such background, a study of the effects of this combined technique on the coke quality, especially the coke size was conducted. The experimental results revealed that the primary size of coke produced by the combined technique is noticeably larger than that of the coke made from wet coal and after five revolutions of drum (equivalent to mechanical impact given at a time of dropping from coke oven chamber to wharf), the coke size reduces even compared with an ordinary coke. This may be due to the fact that the coke produced by the combined technique includes a lot of fissures inside the coke lump.

Fukuda, K.; Arima, T. [Nippon Steel Corp., Chiba (Japan). Process Technology, Research Labs.

1995-12-31T23:59:59.000Z

113

Research on the evolvement of morphology of coking coal during the coking process  

Science Journals Connector (OSTI)

Abstract The evolvement of morphology and structure of the coal with different metamorphic degrees during coking process in the vertical furnace was investigated by infrared Image detector. Moreover, the temperature distribution in the radial direction and the crack formation were also studied in heating process. The results show that the amount of crack and the shrinkage level of char decrease with the coal rank rising. In addition, the initial temperature of crack formation for char increases with the coal rank rising.

Xiangyun Zhong; Shiyong Wu; Yang Liu; Zhenning Zhao; Yaru Zhang; Jinfeng Bai; Jun Xu; Bai Xi

2013-01-01T23:59:59.000Z

114

Coke formation during pyrolysis of 1,2-dichloroethane  

SciTech Connect

Most processes involving hydrocarbons or carbon oxides at high temperatures suffer from the disadvantage of coke formation. The formation of coke deposits during pyrolysis of hydrocarbons or chlorinated hydrocarbons is of significant practical importance. Examples of such processes are the steam cracking of alkanes to produce olefins and the thermal decomposition of 1,2-dichloroethane (EDC) for the production of vinyl chloride monomer (VCM). Even id the rate of coke production is low, the cumulative nature of the solid product will result in reactor fouling. The present work deals with the thermal decomposition of EDC. Coke formation has been studied on metal surfaces in a quartz tubular reactor. The rate of coke deposition was measures on metal foils hanging from one arm of a microbalance. A complete analysis of the product gas was accomplished using on-line gas chromatography. The results show that coke deposition during thermal decomposition of EDC depends on the composition of the feed as well as on the nature of the surface of the metal foil. Small amounts of other components (contamination with other chlorinated hydrocarbons as an example) may have a large influence on the rate of coke formation. The results are discussed in terms of surface composition/morphology of the metal foil and the free radical mechanism for thermal decomposition of FDC.

Holmen, A. [Norwegian Institute of Technology, Trondheim (Norway); Lindvag, O.A. [SINTEF Applied Chemistry, Trondheim (Norway)

1995-12-31T23:59:59.000Z

115

Coke mineral transformations in the experimental blast furnace  

SciTech Connect

Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development (CCSD)

2008-09-15T23:59:59.000Z

116

Surveyor: A System for Generating Coherent Survey Articles for Scientific Topics Rahul Jha and Reed Coke  

E-Print Network (OSTI)

Coke Department of EECS University of Michigan Ann Arbor, MI, 48109 Dragomir Radev Department of EECS

Radev, Dragomir R.

117

Variation in coke properties within the blast-furnace shop  

SciTech Connect

In active production at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), samples of melt materials were taken during shutdown and during planned repairs at furnaces 1 and 8. In particular, coke was taken from the tuyere zone at different distances from the tuyere tip. The mass of the point samples was 2-15 kg, depending on the sampling zone. The material extracted from each zone underwent magnetic separation and screening by size class. The resulting coke sample was averaged out and divided into parts: one for determining the granulometric composition and mechanical strength; and the other for technical analysis and determination of the physicochemical properties of the coke.

E.N. Stepanov; I.I. Mel'nikov; V.P. Gridasov; A.A. Stepanova [OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), Magnitogorsk, (Russian Federation)

2009-04-15T23:59:59.000Z

118

Graphitized needle cokes and natural graphites for lithium intercalation  

SciTech Connect

This paper examined effects of heat treatment and milling (before or after heat treatment) on the (electrochemical) intercalating ability of needle petroleum coke; natural graphite particles are included for comparison. 1 tab, 4 figs, 7 refs.

Tran, T.D.; Spellman, L.M.; Pekala, R.W. [Lawrence Livermore National Lab., CA (United States); Goldberger, W.M. [Superior Graphite Co., Chicago, IL (United States); Kinoshita, K. [Lawrence Berkeley National Lab., CA (United States)

1996-05-10T23:59:59.000Z

119

Co-gasification of petroleum coke and biomass  

Science Journals Connector (OSTI)

Abstract Gasification may be an attractive alternative for converting heavy oil residue – petroleum coke into valuable synthetic gas. Due to the low reactivity of petroleum coke, it is maybe preferable to convert it in combination with other fuels such as biomass. Co-gasification of petroleum coke and biomass was studied in an atmospheric bubbling fluidised bed reactor and a thermogravimetric analyser (TGA) at KTH Royal University of Technology. Biomass ash in the blends was found to have a catalytic effect on the reactivity of petroleum coke during co-gasification. Furthermore, this synergetic effect between biomass and petcoke was observed in the kinetics data. The activation energy Ea determined from the Arrhenius law for pure petcoke steam gasification in the TGA was 121.5 kJ/mol, whereas for the 50/50 mixture it was 96.3, and for the 20/80 blend – 83.5 kJ/mol.

Vera Nemanova; Araz Abedini; Truls Liliedahl; Klas Engvall

2014-01-01T23:59:59.000Z

120

Variation in mineral composition of coal during enrichment and coking  

Science Journals Connector (OSTI)

The parameters I b and B b used in developing an optimal coking-batch composition are determined from data on ... of the ash in Donetsk Basin and other coal. It is found that, when...

M. L. Ulanovskii; A. N. Likhenko

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Coking properties of coal pitch in coal batch  

Science Journals Connector (OSTI)

The coking properties of coal pitch depend significantly on its fractional composition, ... : 2: 2. This is typical of coal pitch with a softening temperature of 75– ... Such pitch is the best clinkering additive...

S. G. Gagarin; Yu. I. Neshin

2011-09-01T23:59:59.000Z

122

Coal preparation, coking, and slaking in China and Japan  

Science Journals Connector (OSTI)

In China and Japan, measures have been developed to maintain constant coke quality and hence permit economical and stable blast-furnace operation with the injection of coal-dust fuel; and to reduce the cost of th...

I. F. Kurunov; P. V. Lizogub; O. V. Golubev

2010-09-01T23:59:59.000Z

123

Coking theory: Internal stress in the coal batch  

Science Journals Connector (OSTI)

The development of local internal stress in the coal batch is analyzed on the basis of ... theoretical and experimental data. Its influence on coke quality is demonstrated. The influence of mineralized ... large ...

V. I. Sukhorukov

2011-09-01T23:59:59.000Z

124

Share a Coke - An Investigation of Social Media Marketing.  

E-Print Network (OSTI)

??This investigation examines the underlying factors behind audience participation in Coca-Cola’s ‘Share a Coke’ campaign, which became a trend on social media in Denmark in… (more)

Trougaard, Victor Frederic Wagn

2014-01-01T23:59:59.000Z

125

RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: WRI COKING INDEXES  

SciTech Connect

Pyrolysis experiments were conducted with three residua at 400 C (752 F) at various residence times. The wt % coke and gaseous products were measured for the product oils. The Western Research Institute (WRI) Coking Indexes were determined for the product oils. Measurements were made using techniques that might correlate with the Coking Indexes. These included spin-echo proton nuclear magnetic resonance spectroscopy, heat capacity measurements at 280 C (536 F), and ultrasonic attenuation. The two immiscible liquid phases that form once coke formation begins were isolated and characterized for a Boscan residuum pyrolyzed at 400 C (752 F) for 55 minutes. These materials were analyzed for elemental composition (CHNS), porphyrins, and metals (Ni,V) content.

John F. Schabron; Joseph F. Rovani, Jr.; Francis P. Miknis; Thomas F. Turner

2003-06-01T23:59:59.000Z

126

Table 38. Coal Stocks at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Stocks at Coke Plants by Census Division Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 38. Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Census Division June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 Middle Atlantic w w w w East North Central 1,313 1,177 1,326 -1.0 South Atlantic w w w w East South Central w w w w U.S. Total 2,500 2,207 2,295 8.9 w = Data withheld to avoid disclosure. Note: Total may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-5, 'Quarterly Coal Consumption and Quality Report - Coke Plants.'

127

SOURCE ACTIVITY TITLE: SOLID FUEL TRANSFORMATION PLANTS Coke Oven Furnaces Coke Oven (Door Leakage and Extinction) NOSE CODE: 104.12 NFR CODE:  

E-Print Network (OSTI)

1 ACTIVITIES INCLUDED Coke-production in general can be divided into the following steps: Coal handling and storage, coke oven charging, coal coking, extinction of coke, and coke oven gas purification. Combustion in coke oven furnaces (SNAP 010406) is treated in this chapter as well as door leakage and extinction (SNAP 040201). Figure 1-1 gives a key plan of a coke plant with emission relevant process steps and the byproduct recovery section. Figure 1-1: Key plan of a coke plant (Rentz et al. 1995) C o a l S lu d g e B l a s t F u r n a c e G a s f r o m S t e e l M il l A i r E m is s io n s G a s H o ld e r

Ic Activities; So Nox Nmv

128

Priorities in the design of chemical shops at coke plants  

SciTech Connect

Recent trends in the design of chemical equipment at coke plants are described, through the lens of experience at Giprokoks. The main priorities were to improve the removal of impurities from coke oven gas; to improve equipment design on the basis of new materials; to reduce reagent consumption; to reduce the materials and energy consumed in the construction of new equipment; and to minimize impacts on the environment and worker health. Some technological equipment is briefly characterized.

V.I. Rudyka; Y.E. Zingerman; V.V. Grabko; L.A. Kazak [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

129

Laboratory-Scale Coking of Coal?Petroleum Mixtures in Sealed Reactors  

Science Journals Connector (OSTI)

Further evidence for coal?petroleum interactions in this system is exhibited by the fact that (i) the product slates from the co-coking reactions are not linear combinations of the products from the feedstocks reacted individually and (ii) the fluidity profiles of the Powellton?resid mixtures are similar to those for two interacting coking coals. ... The boiling distribution of the oils from co-coking resembles that observed when the Powellton coal was coked in the absence of resid. ... In addition, the co-coking reactions show a “coke jump” that occurs at ?465 °C; this jump is not observed when the coal or petroleum feedstocks are reacted individually. ...

Anne E. Fickinger; Mark W. Badger; Gareth D. Mitchell; Harold H. Schobert

2004-05-19T23:59:59.000Z

130

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

SciTech Connect

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

131

Hydrodesulfurization of Fluid Catalytic Cracking Decant Oils for the Production of Low-sulfur Needle Coke Feedstocks.  

E-Print Network (OSTI)

??Needle coke, produced by the delayed coking of fluid catalytic cracking decant oils, is the primary filler used in the production of graphite electrodes. The… (more)

Wincek, Ronald

2013-01-01T23:59:59.000Z

132

Preparation and coking properties of coal maceral concentrates  

Science Journals Connector (OSTI)

Abstract The concentrates with different maceral contents were obtained from Kailuan coking coals with different coal ranks ( R o,ran ? varying from 0.88% to 1.73%) by float–sink separation in lab. Then these concentrates were characterized by proximate analysis, ultimate analysis, petrography analysis and coking index determination. The results show that the vitrinite is characterized as nature of lower carbon content, higher hydrogen content, higher volatile matter and stronger caking property compared to inertinite. The relationships between variation rate of volatile matter and maximum volatile matter and coal ranks are identified, and a linear model is developed for fast determination of the maceral contents. Compared to inertinite-rich concentrate, the blending ratio of vitrinite-rich concentrate is increased by 13%, which is considered to be a potential technique based on maceral separation for expanding the coking coal resources.

Lei Zhang; Wenli Liu; Dongpo Men

2014-01-01T23:59:59.000Z

133

Coking Plants, Coal-to-gas Plants, Gas Production and Distribution  

Science Journals Connector (OSTI)

This environmental brief covers various coal upgrading technologies, incl. coking and low-temperature carbonization as processes yielding the target products coke and gas plus tar products and diverse...

1995-01-01T23:59:59.000Z

134

Determining the coking properties and technological value of coal and coal mixtures  

Science Journals Connector (OSTI)

A method is developed for determining the coking properties and technological value of coal from newly identified beds or new sections of existing mines. The coking properties are assessed on the basis of predict...

A. S. Stankevich; V. S. Stankevich

2012-01-01T23:59:59.000Z

135

Influence of frothing-agent oxidation on coking-coal flotation  

Science Journals Connector (OSTI)

The oxidation of frothing agents (KOBS, OPPG-3, and the tar fraction of peat bitumen) affects coking-coal flotation. The tar fraction of Krapivinsk-peat ... provides the basis for a frothing agent in coking-coal ...

M. Yu. Klimovich; S. I. Zherebtsov; Yu. V. Musin; A. I. Moiseev…

2008-12-01T23:59:59.000Z

136

Calculating the relative value of coal in Russian coking-coal markets  

Science Journals Connector (OSTI)

In order to improve the pricing of Russian coking coal, a method is proposed for calculating the relative technological value of purchased coking-coal batches. The basic idea is to compare the parameters of optim...

V. A. Brodskii; E. V. Brodskaya

2009-03-01T23:59:59.000Z

137

Coal resources at OOO Metinvest Holding and their optimal coking at PAO AKKhZ  

Science Journals Connector (OSTI)

The coal resources at OOO Metinvest Holding are considered, in a climate of increase requirements on coke quality and self-reliance. The parameters of high-quality coke are outlined, and the corresponding require...

V. G. Gusak; V. I. Gavrilyuk; M. S. Magomedov; A. A. Pasternak…

2013-11-01T23:59:59.000Z

138

Role of coke characteristics in the regeneration of a catalyst for the MTG process  

SciTech Connect

The effect on combustion in air of the nature of the coke deposited in HZSM5 zeolites used in the MTG process has been studied. This coke is highly hydrogenated and unstable, and its H/C ratio decreases during combustion or when a previous thermal treatment is carried out. Coke H/C ratio greatly affects its reactivity during combustion; consequently, a severe thermal equilibration treatment is recommended for reproducibility of results. Combustion kinetics of equilibrated coke, when it is released from the catalyst, has been proven to be similar to that of the coke deposited on other catalysts for several processes. Lower coke reactivity for aging and combustion, on being deposited within the HZSM5 zeolite, must be attributed to air-coke contact restrictions due to the location of the coke, which partially impedes the flow of air into the crystals.

Ortega, J.M.; Gayubo, A.G.; Aguayo, A.T.; Benito, P.L.; Bilbao, J. [Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica] [Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica

1997-01-01T23:59:59.000Z

139

New packing in absorption systems for trapping benzene from coke-oven gas  

SciTech Connect

The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

140

Coke in the Cross Hairs: Water, India, and the University of Michigan  

E-Print Network (OSTI)

Coke in the Cross Hairs: Water, India, and the University of Michigan case 1-429-098 July 25, 2010, where "Killer Coke" banners had hung days before. Students were holed away studying for finals, the demonstrations were over and Coke was once again flowing from machines at the Michigan Union. That morning

Edwards, Paul N.

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table 33. Coal Carbonized at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Carbonized at Coke Plants by Census Division Coal Carbonized at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 33. Coal Carbonized at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Census Division April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Middle Atlantic w w w w w w East North Central 3,051 2,997 3,092 6,048 6,156 -1.8 South Atlantic w w w w w w East South Central w w w w w w U.S. Total 5,471 5,280 5,296 10,751 10,579 1.6 w = Data withheld to avoid disclosure. Note: Total may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-5, 'Quarterly Coal Consumption and Quality Report - Coke Plants

142

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents (OSTI)

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

143

Estimating Coke and Pepsi's Price and Advertising Strategies Amos Golan*  

E-Print Network (OSTI)

Estimating Coke and Pepsi's Price and Advertising Strategies Amos Golan* Larry S. Karp** Jeffrey M strategies in prices and advertising for Coca-Cola and Pepsi-Cola. Separate strategies for each firm variables are prices and advertising. We divide each firm's continuous price-advertising action space

Lansky, Joshua

144

Lummus process turns coal tar pitch to coke  

Science Journals Connector (OSTI)

Lummus Co. has developed a process for converting coal tar pitch to coke and now has a full-scale commercial plant in operation in Japan. The plant, which is owned by Nittetsu Chemical Industrial Co., a subsidiary of Yawata Iron and Steel, is producing ...

1968-12-09T23:59:59.000Z

145

The development of coke smelting and the industrial revolution  

E-Print Network (OSTI)

Abraham Darby and the origins of the industrial revolution in Britain. Alan Macfarlane talks to John about the reasons for the area near Birmingham becoming the epi-centre of the industrial development, and the development of coke furnaces and iron...

Macfarlane, Alan

2004-08-05T23:59:59.000Z

146

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

147

Table 23. Coal Receipts at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Receipts at Coke Plants by Census Division Receipts at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 23. Coal Receipts at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Census Division April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Middle Atlantic w w w w w w East North Central 3,189 2,679 3,225 5,867 5,993 -2.1 South Atlantic w w w w w w East South Central w w w w w w U.S. Total 5,770 4,962 5,370 10,732 10,440 2.8 w = Data withheld to avoid disclosure. Note: Total may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration (EIA), Form EIA-5, 'Quarterly Coal Consumption and Quality Report - Coke Plants

148

The Role of Semifusinite in Plasticity Development for a Coking Coal  

Science Journals Connector (OSTI)

Coal rank is a factor of great importance in plasticity development during carbonization, since only some bituminous coals swell in a satisfactory manner and then resolidify to produce good commercial cokes. ... Diessel studied the carbonization behavior of the inertinite macerals in Australian coals by carrying out tests up to 1000 °C where the optical characteristics of the coked entities were correlated with their noncoked counterparts. ... For instance, large-scale coking experiments of some Australian coals containing more than 45% inertinite produced good quality coke, while a Carboniferous coal with that high of an inertinite content gave only a very poor coke. ...

M. Mercedes Maroto-Valer; Darrell N. Taulbee; John M. Andrésen; James C. Hower; Colin E. Snape

1998-08-27T23:59:59.000Z

149

Theoretical and experimental foundations for preparing coke for blast-furnace smelting  

SciTech Connect

This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the -36 mm fraction, the separation of nut coke of the 15-36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2-4.1%.

A.L. Podkorytov; A.M. Kuznetsov; E.N. Dymchenko; V.P. Padalka; S.L. Yaroshevskii; A.V. Kuzin [Enakievo Metallurgical Plant, Enakievo (Ukraine)

2009-05-15T23:59:59.000Z

150

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

151

Characterization of Liquids Derived From Laboratory Coking of Decant Oil and Co-Coking of Pittsburgh Seam Bituminous Coal with Decant Oil  

Science Journals Connector (OSTI)

(41-43) Co-coking of decant oil/coal blend produced higher coke and gas yields but less liquid product than those of coking. ... When the same decant oil was blended with the Pittsburgh Seam coal and then delayed co-coked, the overhead liquid contained 2.1% gasoline, 3.6% jet fuel, 4.6% diesel, and 88.8% fuel oil on average. ... It is also possible that catalytic cracking reactions may occur via the coal mineral matter (e.g., clays, which are abundant minerals in coals, can serve as cracking catalysts) (Table 1). ...

Ömer Gül; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert

2009-04-21T23:59:59.000Z

152

Table 3.2 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010; 2 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,158 257 12 22 579 6 182 2 99 3112 Grain and Oilseed Milling 350 56 * 1 121 * 126 0 45 311221 Wet Corn Milling 214 25 * * 53 * 110 0 25 31131 Sugar Manufacturing 107 4 1 1 15 * 49 2 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 31 1 Q 100 1 2 0 4 3115 Dairy Products 105 33 2 2 66 1 * 0 2 3116 Animal Slaughtering and Processing 212 69 5 3 125 2 Q 0 8 312 Beverage and Tobacco Products 86 29 1 1 38 1 10 0 7 3121 Beverages

153

table2.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2002; 4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources; Unit: Establishment Counts. Any Combustible RSE NAICS Energy Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal and Breeze Other(f) Factors Total United States RSE Column Factors: 1.5 0.6 1.1 1 1.1 0.7 1 1.4 311 Food 406 W 152 185 0 0 4 83 9.6 311221 Wet Corn Milling W 0 W 0 0 0 0 W 0.8 31131 Sugar 6 0 W W 0 0 4 W 0.9 311421 Fruit and Vegetable Canning 14 W 6 0 0 0 0 9 5.6 312 Beverage and Tobacco Products 31 W 5 W 0 0 0 15 12.4 3121 Beverages Q W 5 0 0 0 0 12 31.9 3122 Tobacco W 0 0 W 0 0 0 W 0.8

154

table4.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Offsite-Produced Fuel Consumption, 2002; Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. RSE Economic Residual Distillate Natural LPG and Coke and Row Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Factors Total United States RSE Column Factors: 0.6 0.6 1.3 2.2 0.7 1.4 1.5 0.6 1 Value of Shipments and Receipts (million dollars) Under 20 1,276 437 15 50 598 W 47 W 97 14.5 20-49 1,258 417 28 22 590 W 112 W 72 6.1 50-99 1,463 401 17 W 731 7 185 W 97 4.9 100-249 2,041 571 43 17 968 8 253 7 175 4.6 250-499 1,962 475 54 W 826 W 326 W 255 5.6 500 and Over 3,971 618 38 W 2,077 37 259 W 607 1.5 Total 11,970

155

table5.2_02  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002; 2 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal RSE NAICS Net Residual and Natural LPG and (excluding Coal Row Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.3 1 NF TOTAL FUEL CONSUMPTION 16,273 2,840 208 141 5,794 103 1,182 6,006 3.3 Indirect Uses-Boiler Fuel -- 12 127 25 2,162 8 776 -- 5.5 Conventional Boiler Use -- 9 76 25 1,306 8 255 -- 5.6 CHP and/or Cogeneration Process -- 4 51 10 857 * 521 -- 3.7 Direct Uses-Total Process

156

table3.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption, 2002; Fuel Consumption, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. RSE Economic Net Residual Distillate Natural LPG and Coke and Row Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Factors Total United States RSE Column Factors: 0.6 0.7 1.3 2.1 0.7 1.4 1.5 0.7 0.9 Value of Shipments and Receipts (million dollars) Under 20 1,312 436 15 50 598 W 47 W 132 13.9 20-49 1,465 407 28 22 590 W 112 W 289 6.9 50-99 1,598 394 17 W 731 7 185 W 237 4.5 100-249 2,385 561 43 17 972 8 253 7 525 4.2 250-499 2,598 458 57 W 826 W 326 W 906 5.4 500 and Over 6,914 584 47 21 2,077 55 259 530 3,342 1.5 Total 16,273 2,840

157

table4.2_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Offsite-Produced Fuel Consumption, 2002; Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. RSE NAICS Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal and Breeze Other(f) Factors Total United States RSE Column Factors: 0.8 0.8 1.1 1.6 0.9 1.8 0.7 0.7 1.2 311 Food 1,079 233 13 19 575 5 184 1 50 8 311221 Wet Corn Milling 217 24 * * 61 * 121 0 11 1.1 31131 Sugar 74 3 2 1 22 * 37 1 8 1 311421 Fruit and Vegetable Canning 47 7 1 1 36 Q 0 0 1 12.4 312 Beverage and Tobacco Products 104 27 2 2 46 1 17 0 9 4.3 3121 Beverages 84 22 1 2 42 1 8 0 9 5.9 3122 Tobacco 19 5 1 * 4 * 10 0 * 0.9 313 Textile Mills 206 87 4 2 74 2

158

table5.4_02  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002; 4 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Net Demand Fuel Oil Coal RSE NAICS for Residual and Natural LPG and (excluding Coal Row Code(a) End Use Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: NF 1 2.4 1.1 1.3 1 TOTAL FUEL CONSUMPTION 3,297 208 141 5,794 103 1,182 3.3 Indirect Uses-Boiler Fuel 23 127 25 2,162 8 776 5.5 Conventional Boiler Use 11 76 25 1,306 8 255 5.6 CHP and/or Cogeneration Process 12 51 10 857 * 521 3.7 Direct Uses-Total Process 2,624

159

Table 3.3 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2010; 3 Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,148 314 6 53 446 14 25 Q 291 20-49 1,018 297 13 22 381 18 97 5 185 50-99 1,095 305 7 13 440 6 130 9 186 100-249 1,728 411 16 11 793 7 131 7 353 250-499 1,916 391 16 11 583 3 185 5 722 500 and Over 7,323 720 21 21 2,569 21 300 348 3,323 Total 14,228 2,437 79 130 5,211 69 868 376 5,059 Employment Size Under 50 1,149 305 12 45 565 21 31

160

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2006 2 Offsite-Produced Fuel Consumption, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Total United States 311 Food 1,124 251 26 16 635 3 147 1 3112 Grain and Oilseed Milling 316 53 2 1 118 * 114 0 311221 Wet Corn Milling 179 23 * * 52 * 95 0 31131 Sugar Manufacturing 67 3 9 1 18 * 31 1 3114 Fruit and Vegetable Preserving and Specialty Food 168 33 2 1 126 1 1 0 3115 Dairy Product 121 34 1 1 83 * * 0 3116 Animal Slaughtering and Processing 220 60 3 5 145 1 0 0 312 Beverage and Tobacco Products 101 30 3 1 41 1 20 0 3121 Beverages 89 26 2 1 38 1 16 0 3122 Tobacco 13

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

3.3 Fuel Consumption, 2006; 3.3 Fuel Consumption, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,139 367 23 45 535 14 21 3 131 20-49 1,122 333 13 19 530 8 93 5 122 50-99 1,309 349 22 17 549 10 157 8 197 100-249 2,443 607 25 19 994 11 263 10 512 250-499 2,092 413 53 13 633 4 244 3 730 500 and Over 7,551 781 115 17 2,271 31 240 344 3,752 Total 15,657 2,851 251 129 5,512 79 1,016 374 5,445 Employment Size Under 50 1,103 334 10 45 550 10

162

table4.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002; 1 Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) (million (million Other(f) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column Factors: 0.8 0.8 1.1 1.6 0.9 1.8 0.7 0.7 1.2 311 Food 1,079 68,230 2 3 560 1 8 * 50 8 311221 Wet Corn Milling 217 7,098 * * 59 * 5 0 11 1.1 31131 Sugar 74 733 * * 22 * 2 * 8 1 311421 Fruit and Vegetable Canning 47 1,987 * * 35 * 0

163

Coke County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Coke County, Texas: Energy Resources Coke County, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.8277663°, -100.5296115° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.8277663,"lon":-100.5296115,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Integrated coke, asphalt and jet fuel production process and apparatus  

DOE Patents (OSTI)

A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

Shang, Jer Y. (McLean, VA)

1991-01-01T23:59:59.000Z

165

Pricing of Australia's coking coal exports: A regional hedonic analysis  

Science Journals Connector (OSTI)

Black coal is Australia's most important export commodity, but the profitability of the domestic coal industry has been low relative to the mining sector average. As a consequence, a key policy issue in Australia has been the extent to which Japan's coal pricing and investment policies have influenced coal market outcomes. In this paper, a regional hedonic pricing model of Australia's coking coal exports is estimated for the period JFY1989 to 1996. Non-Japan regional intercept dummy variables were found to be significantly different from zero, although these varied across coal categories and years. However, the empirical evidence indicates that Japan does not pay significantly lower prices relative to other major export markets for coking coal of a given quality.

Lindsay Hogan; Sally Thorpe; Anthony Swan; Simon Middleton

1999-01-01T23:59:59.000Z

166

Coke profile and effect on methane/ethylene conversion process  

E-Print Network (OSTI)

balance in catalytic cracking. It is also extremely important in the dehydrogenation of butane to butadiene, because coke formation limits the cycle time before regeneration of the catalyst is needed. There are many add that equally important examples..., methane, ethane, ethylene, propane, iso-butane, butane, iso-pentane, pentane and hexanes. Also, the flow rate of the effluent stream is measured using the bubble meter. The mole percentages of methane and ethylene are subtracted of the effluent stream...

Al-Solami, Bandar

2002-01-01T23:59:59.000Z

167

New environmental concepts in the chemical and coke industries  

SciTech Connect

We know that environmentally pure technologies do not exist. Coke production is no exception to the rule. The article considers the logic of environmental decision making. Attention focuses on a new bank of ecologically appropriate materials whose release to the biosphere must be considered solely in quantititative terms. Qualitativily all these materials are familiar; they are assimilated by populations of microorganisms and tar thus compatible with the biosphere.

A.Yu. Naletov; V.A. Naletov [Mendeleev Russian Chemical-Engineering University (Russian Federation)

2007-05-15T23:59:59.000Z

168

Table 17. Average Price of U.S. Coke Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coke Exports Average Price of U.S. Coke Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 17. Average Price of U.S. Coke Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 240.59 241.38 218.40 240.85 225.80 6.7 Canada* 147.49 330.47 243.04 183.08 286.56 -36.1 Mexico 316.57 211.63 189.12 273.97 171.71 59.6 Other** 612.42 485.63 134.48 525.92 135.04 289.5 South America Total 140.65 156.15 322.70 148.29 250.36 -40.8 Other** 140.65 156.15 322.70 148.29 250.36 -40.8 Europe Total 259.26 255.24 - 257.06 427.83 -39.9 Other**

169

Table 22. Average Price of U.S. Coke Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coke Imports Average Price of U.S. Coke Imports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 22. Average Price of U.S. Coke Imports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Origin April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 263.21 252.66 353.05 261.29 356.01 -26.6 Canada 263.51 252.66 353.05 258.82 356.01 -27.3 Panama 263.09 - - 263.09 - - South America Total 196.86 194.14 175.88 195.94 181.01 8.2 Brazil - - 157.60 - 157.60 - Colombia 196.86 194.14 322.06 195.94 246.68 -20.6 Europe Total 181.55 232.13 385.65 225.53 384.96 -41.4 Czech Republic - 475.91 - 475.91 - - Spain 360.51

170

Influence of the permeability of the coal plastic layer on coking pressure  

Science Journals Connector (OSTI)

Ten coals of different rank and coking pressure characteristics were chosen in order to study the time of occurrence of the phenomena that take place during the coking of a coal and the way they affect the generation of dangerous coking pressures. Parameters derived from thermoplastic, thermogravimetric and permeability tests were studied together with semicoke contraction and the coking pressure generated by the coals in a movable wall oven. It was found that for safe coals, the maximum evolution of volatile matter occurs near the temperature of maximum fluidity. The position of the maximum rate of volatile matter evolution with respect to the zone of low permeability varies depending on the coking pressure characteristics of the coals. In addition, the relationship between the period of low permeability to the resolidification temperature may serve to indicate the degree of dangerousness of a coal. The fissure pattern of the semicoke was found to be related to the coking pressure and semicoke contraction.

M.D. Casal; E. Díaz-Faes; R. Alvarez; M.A. Díez; C. Barriocanal

2006-01-01T23:59:59.000Z

171

An Integrated Model of Coal/Coke Combustion in a Blast Furnace  

Science Journals Connector (OSTI)

A three?dimensional integrated mathematical model of the combustion of pulverized coal and coke is developed. The model is applied to the region of lance?blowpipe?tuyere?raceway?coke bed to simulate the operation of pulverized coal injection in an ironmaking blast furnace. The model integrates two parts: pulverized coal combustion model in the blowpipe?tuyere?raceway?coke bed and the coke combustion model in the coke bed. The model is validated against the measurements in terms of coal burnout and gas composition respectively. The comprehensive in?furnace phenomena are simulated in the raceway and coke bed in terms of flow temperature gas composition and coal burning characteristics. In addition underlying mechanisms for the in?furnace phenomena are analyzed. The model provides a cost?effective tool for understanding and optimizing the in?furnace flow?thermo?chemical characteristics of the PCI process in full?scale blast furnaces.

Y. S. Shen; B. Y. Guo; A. B. Yu; P. Austin; P. Zulli

2010-01-01T23:59:59.000Z

172

Assessing the utility of coal’s elementary composition in predicting the yield of coking products  

Science Journals Connector (OSTI)

Elementary analysis of the organic mass of coal does not provide sufficient information to predict the yield of coking products, since it does not reflect the...

M. L. Ulanovskii

2012-03-01T23:59:59.000Z

173

Lignin as Both Fuel and Fusing Binder in Briquetted Anthracite Fines for Foundry Coke Substitute.  

E-Print Network (OSTI)

??Lignin that had been extracted from Kraft black liquor was investigated as a fusing binder in briquetted anthracite fines for a foundry coke substitute. Cupola… (more)

Lumadue, Matthew

2012-01-01T23:59:59.000Z

174

Prediction of demand trends of coking coal in China based on grey linear regression composition model  

Science Journals Connector (OSTI)

The scarce of coking coal resources in China results in its short supply. By establishing a grey linear regression composition model, this paper has greatly improved the inadequacy of grey system prediction model and regression analysis method in trend prediction and finished the prediction of demand trends of coking coal in China with this model. As result of the prediction, it is estimated that in the next decade, the demand for coking coal in China will experience a growth trend; China's demand for coking coal will reach more than 1.535 billion tons by 2015, reach the maximum of 1.639 billion tons by 2020 and drop in 2025.

Hai-Dong Zhou; Qiang Wu; Min Fang; Zhong-Bao Ren; Li-Fei Jin

2013-01-01T23:59:59.000Z

175

Balance of supply and demand in the Russian market for coking-coal concentrates  

Science Journals Connector (OSTI)

Various methods are considered for calculating the balance of supply and demand in the Russian market for coking-coal concentrates within the planning (prediction) period....

V. A. Brodskii

2010-11-01T23:59:59.000Z

176

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network (OSTI)

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based… (more)

Gao, Chen

2010-01-01T23:59:59.000Z

177

MOLECULAR COMPOSITION OF NEEDLE COKE FEEDSTOCKS AND MESOPHASE DEVELOPMENT DURING CARBONIZATION.  

E-Print Network (OSTI)

??This study investigates the molecular composition of fluid catalytic cracking (FCC) decant oil and its derivatives that are used as feedstocks for delayed coking to… (more)

Wang, Guohua

2005-01-01T23:59:59.000Z

178

Pyrolysis behavior of coal and petroleum coke at high temperature and high pressure.  

E-Print Network (OSTI)

??While pyrolysis of coal is a well-studied thermal process, little is known about pressurized pyrolysis of coal and petroleum coke. This study aims to interpret… (more)

Wagner, David Ray

2011-01-01T23:59:59.000Z

179

Development Of Reclamation Substrates For Alberta Oil Sands Using Mature Fine Tailings And Coke.  

E-Print Network (OSTI)

??Mature fine tailings and coke are waste products of the oil sands industry with potential for reclamation. A greenhouse study assessed whether substrates of various… (more)

Luna-Wolter, Gabriela L.

2012-01-01T23:59:59.000Z

180

Investigating factors that influence carbon dissolution from Coke into Molten iron.  

E-Print Network (OSTI)

??The need for more efficient blast furnaces is even greater now that there are stricter environmental regulations on greenhouse gas (GHG) emissions. Coke within the… (more)

Cham, S. Tsuey

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Simulation of Combustion and Thermal-flow Inside a Petroleum Coke Rotary Calcining Kiln.  

E-Print Network (OSTI)

??Calcined coke is the best material for making carbon anodes for smelting of alumina to aluminum. Calcining is an energy intensive industry and a significant… (more)

Zhang, Zexuan

2007-01-01T23:59:59.000Z

182

Coke yield and transport processes in agglomerates of bitumen and solids.  

E-Print Network (OSTI)

??Agglomerate formation is a common phenomenon that can cause operating problems in the fluid coking reactor. When agglomerates form they provide longer diffusion paths of… (more)

Ali, Mohamed Ali Hassan

2010-01-01T23:59:59.000Z

183

Characterization of Coke Properties at Tuyere Level of an Operating Blast Furnace.  

E-Print Network (OSTI)

??Coke performance in an operating blast furnace is often empirically related to popular bench-scale tests, which are performed at relative much lower temperatures. Due to… (more)

Ye, Zhuozhu

2014-01-01T23:59:59.000Z

184

Preparation of Activated Carbon from Oil Sands Coke by Chemical and Physical Activation Techniques.  

E-Print Network (OSTI)

??Oil sands coke is a by-product resulting from the upgrading of heavy crude bitumen to light synthetic oil. This research investigates the preparation of activated… (more)

Morshed, Golam

2012-01-01T23:59:59.000Z

185

The effect of diabietic acid on the coking of oxidised solvent-extracted coal.  

E-Print Network (OSTI)

??Refcoal is a refined carbon source obtained by extraction of coal with dimethylformamide (DMF). During the coking process, Refcoal goes through a mesophase (fluid) stage… (more)

Ludere, Margaret Tshimangadzo

2008-01-01T23:59:59.000Z

186

Integration of stripping of fines slurry in a coking and gasification process  

DOE Patents (OSTI)

In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

DeGeorge, Charles W. (Chester, NJ)

1980-01-01T23:59:59.000Z

187

The effects of ash and maceral composition of Azdavay and Kurucasile (Turkey) coals on coking properties  

SciTech Connect

In this study, investigations were made as to the effect of the maceral compositions and mineral matter content of Azdavay and Kurucasile coals on the coking property. Chemical and maceral analyses and coking properties were determined for the products of the float-sink procedure. The coking properties were established on the basis of free swelling index and Ruhr dilatometer tests. Maceral analyses showed that as the ash content of a coal containing both high and medium volatile matter increases, its effective maceral proportion decreases, and the coking property is affected in an unfavorable way.

Toroglu, I. [Zonguldak Karaelmas University, Zonguldak (Turkey). Faculty of Engineering

2006-07-01T23:59:59.000Z

188

Developing indicators for the assessment and proper management of the different levels of exposure to polycyclic aromatic hydrocarbons (PAH)s generally associated with coke-oven workers.  

E-Print Network (OSTI)

??Coke ovens may occur in the aluminium, steel, graphite, electrical, and construction industries. In the work area coke-oven workers may be exposed to various chemical… (more)

Wang, Tianyuan

2011-01-01T23:59:59.000Z

189

CHARACTERIZATION OF COAL- AND PETROLEUM-DERIVED BINDER PITCHES AND THE INTERACTION OF PITCH/COKE MIXTURES IN PRE-BAKED CARBON ANODES.  

E-Print Network (OSTI)

??Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder.… (more)

Suriyapraphadilok, Uthaiporn

2008-01-01T23:59:59.000Z

190

The effects of petroleum coke amendments on macrophytes and aquatic invertebrates in northern Alberta, Canada constructed wetlands.  

E-Print Network (OSTI)

??Oil-sands operators of Fort McMurray, Alberta produce six million t/y of petroleum coke. The use of coke to stabilize clay-dominated mine tailings in constructed wetlands… (more)

Baker, Leanne F.

2007-01-01T23:59:59.000Z

191

Predicting CSR and CRI of coke on the basis of the chemical and petrographic parameters of the coal batch and the coking conditions  

Science Journals Connector (OSTI)

A model is developed for predicting the postreactive strength CSR and reactivity CRI of coke. The model adequately reflects the dependence of ... on the chemical and petrographic parameters of the coal batch, tak...

A. S. Stankevich; R. R. Gilyazetdinov; N. K. Popova; D. A. Koshkarov

2008-09-01T23:59:59.000Z

192

Modification of sub-bituminous coal by steam treatment: Caking and coking properties  

Science Journals Connector (OSTI)

A Chinese sub-bituminous Shenfu (SF) coal was steam treated under atmospheric pressure and the caking and coking properties of the treated coals were evaluated by caking indexes (GRI) and crucible coking characterizations. The results show that steam treatment can obviously increase the GRI of SF coal. When the steam treated coals were used in the coal blends instead of SF raw coal, the micro-strength index (MSI) and particle coke strength after reaction (PSR) of the coke increased, and particle coke reactivity index (PRI) decreased, which are beneficial for metallurgical coke to increase the gas permeability in blast furnace. The quality of the coke obtained from 8% of 200 °C steam treated SF coal in coal blends gets to that of the coke obtained from the standard coal blends, in which there was no SF coal addition in the coal blends. The removal of oxygen groups, especially hydroxyl group thus favoring the breakage of the coal macromolecules and allowing the treated coal formation of much more amount of hydrocarbons, may be responsible for the modified results. The mechanism of the steam treatment was proposed based on the elemental analysis, thermo gravimetric (TG) and FTIR spectrometer characterizations of the steam treated coal.

Hengfu Shui; Haiping Li; Hongtao Chang; Zhicai Wang; Zhi Gao; Zhiping Lei; Shibiao Ren

2011-01-01T23:59:59.000Z

193

Study on Further Treatment of Coal Coking Wastewater by Ultrasound Wave, Fenton's Reagent and Coagulation  

Science Journals Connector (OSTI)

The study on further treatment of coal coking wastewater by ultrasound wave, Fenton's reagent and coagulation was carried out in this paper at the first time, Furthermore, this paper discussed the optimum cooperative reaction condition of their combined ... Keywords: ultrasound wave, coke plant wastewater, Fenton reagent, coagulation

Jun Shi; Liangbo Zhang

2009-10-01T23:59:59.000Z

194

Analytical input-output and supply chain study of China's coke and steel sectors  

E-Print Network (OSTI)

I design an input-output model to investigate the energy supply chain of coal-coke-steel in China. To study the demand, supply, and energy-intensity issues for coal and coke from a macroeconomic perspective, I apply the ...

Li, Yu, 1976-

2004-01-01T23:59:59.000Z

195

Cyanide Leaching from Soil Developed from Coking Plant Purifier Waste as Influenced by Citrate  

Science Journals Connector (OSTI)

...Coking Plant Purifier Waste as Influenced by Citrate...developed from gas purifier waste was investigated. Without...developed from gas purifier waste near a former coking...for the iron and steel industries. Their gas was a by-product...2003). During coal gasification, hydrogen cyanide...

Tim Mansfeldt; Heike Leyer; Kurt Barmettler; Ruben Kretzschmar

196

Influence of coal on coke properties and blast-furnace operation  

SciTech Connect

With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

2007-07-01T23:59:59.000Z

197

Carbonization of Coal Effects of Variation of Rate of Heating during the Carbonization of a Typical Coking Coal  

Science Journals Connector (OSTI)

Carbonization of Coal Effects of Variation of Rate of Heating during the Carbonization of a Typical Coking Coal ...

William B. Warren

1935-01-01T23:59:59.000Z

198

Carbonization of Coal Evaluation of Effects of Rate of Heating and of Maximum Temperature on Pyrolysis of a Coking Coal  

Science Journals Connector (OSTI)

Carbonization of Coal Evaluation of Effects of Rate of Heating and of Maximum Temperature on Pyrolysis of a Coking Coal ...

William B. Warren

1935-01-01T23:59:59.000Z

199

Atmospheric Oxidation of Coal at Moderate Temperatures. Effect of Oxidation on the Carbonizing Properties of Representative Coking Coals.  

Science Journals Connector (OSTI)

Atmospheric Oxidation of Coal at Moderate Temperatures. ... Effect of Oxidation on the Carbonizing Properties of Representative Coking Coals. ...

L Schmidt; J Elder; J Davis

1940-01-01T23:59:59.000Z

200

Acidity deterioration and coke deposition in a HZSM5 zeolite in the MTG process  

Science Journals Connector (OSTI)

Summary The total acidity deterioration and the acidity strength distribution of a catalyst prepared from a H-ZSM-5 zeolite has been studied in the MTG process carried out in catalytic chamber and in an isothermal fixed bed integral reactor. The acidity deterioration has been related to coke deposition. The evolution of the acidic structure and of coke deposition has been analysed in situ by diffuse reflectance FTIR in a catalytic chamber. The effect of operating conditions (time on stream and temperature) on acidity deterioration, coke deposition and coke nature has been studied from experiments in a fixed integral reactor. The technique for studying acidity yields a reproducible measurement of total acidity and acidity strength distribution of the catalyst deactivated by coke. The NH3 adsorption-desorption is measured by combination of scanning differential calorimetry and the FTIR analysis of the products desorbed.

A.T. Aguayo; P.L. Benito; A.G. Gayubo; M. Olazar; J. Bilbao

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Innovative coke oven gas cleaning system for retrofit applications  

SciTech Connect

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

Not Available

1992-10-16T23:59:59.000Z

202

Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast  

E-Print Network (OSTI)

of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

Leu, Tzong-Shyng "Jeremy"

203

Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau (CPM)  

E-Print Network (OSTI)

- 1 - Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau with thermomechanical modelling of a coke oven heating wall. The objective is to define the safe limits of coke oven of walls, roof and larry car, pre-stresses (anchoring system), lateral pressure due to coal pushing A 3D

Boyer, Edmond

204

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

SciTech Connect

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

205

Gas treatment and by-products recovery of Thailand`s first coke plant  

SciTech Connect

Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

206

Integrated two stage coking and steam cracking process and apparatus therefor  

SciTech Connect

The invention relates to an improvement in an integrated, two stage coking and steam cracking process for the production of unsaturated light hydrocarbons. A heavy hydrocarbonaceous oil is first coked in a fluidized bed coking zone. The vaporous conversion product is passed to a dilute phase. High temperature cracking in the presence of steam is carried out on the vaporous coker conversion product by injecting into the vapors a stream of hot coke particles at a sufficient temperature and in sufficient amount to raise the coker vapors to steam cracking temperature and supply the endothermic heat of reaction. Solids are separated from product gas in a gas-solids separation zone such as one or more cyclones and sent to the fluid coking zone and the gas is quenched to stop olefin degradation reactions. According to the improvement, relatively low temperature steam is introduced into contact with the separated solids to superheat the steam and cool the solids. Suitably this is effected in a riser on the cyclone dipleg. The solids, after having given up heat to the steam, pass into the coking zone and the superheated steam passes into the dilute phase and serves as part of the dilution steam therefor. Conservation of fuel and mitigation of coke on reactor walls and equipment are advantages of the process.

Oldweiler, M.E.

1983-10-25T23:59:59.000Z

207

Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report No. 1, May 1--August 1, 1998  

SciTech Connect

The overall aim of the project is to demonstrate the performance and practical use of a laser ultrasonic probe for measuring the thickness of coke deposits located within the high temperature tubes of a thermal cracking furnace. This aim will be met by constructing an optical probe that will be tested using simulated coke deposits that are positioned inside of a bench-scale furnace. Successful development of the optical coke detector will provide industry with the only available method for on-line measurement of coke deposits. The optical coke detector will have numerous uses in the refining and petrochemical sectors including monitoring of visbreakers, hydrotreaters, delayed coking units, vacuum tower heaters, and various other heavy oil heating applications where coke formation is a problem. The coke detector will particularly benefit the olefins industry where high temperature thermal crackers are used to produce ethylene, propylene, butylene and other important olefin intermediates. The ethylene industry requires development of an on-line method for gauging the thickness of coke deposits in cracking furnaces because the current lack of detailed knowledge of coke deposition profiles introduces the single greatest uncertainty in the simulation and control of modern cracking furnaces. The laser ultrasonic coke detector will provide operators with valuable new information allowing them to better optimize the decoking turnaround schedule and therefore maximize production capacity.

NONE

1998-08-15T23:59:59.000Z

208

Nuclear Magnetic Resonance and Ruthenium Ion Catalyzed Oxidation Reaction Analysis for Further Development of Aromatic Ring Size through the Heat Treatment of Coking Coals at >500 °C  

Science Journals Connector (OSTI)

The strategy for coal blending is based on many empirical viewpoints, while scientific findings are believed to develop new criteria for obtaining high-quality coke from not only coking coals but also coking coals coupled with noncoking coals. ... by TEM and by comparing the microtextures of their cokes. ...

Koh Kidena; Koji Matsumoto; Satoru Murata; Masakatsu Nomura

2004-10-23T23:59:59.000Z

209

Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2008-09-15T23:59:59.000Z

210

Annual book of ASTM Standards 2005. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The standard part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrographic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2005-09-15T23:59:59.000Z

211

Investigation of the effects of heating rate on coking of shale during retorting  

SciTech Connect

The retorting of oil shale distributes organic carbon among three possible products: the liquid product, the noncondensible product, and the residual carbon (coke). The production of coke is detrimental because of the economic effects caused by the loss of organic carbon to this relatively intractable carbon form. Two reference oil shales, a Mahogany zone, Parachute Creek Member, Green River Formation oil shale from Colorado and a Clegg Creek Member, New Albany oil shale from Kentucky, were studied to evaluate the conditions that affect coke production during retorting. The variable that was studied in these experiments was the heating rate during retorting because heating rate has been indicated to have a direct effect on coke production (Burnham and Clarkson 1980). The six heating rates investigated covered the range from 1 to 650/degree/C/h (1.8 to 1169/degree/F/h). The data collected during these experiments were evaluated statistically in order to identify trends. The data for the eastern reference oil shale indicated a decrease in coke formation with increases in the heating rate. The liquid and noncondensible product yields both increased with increasing heating rate. The distribution of products in relation to retort heating rate follows the model suggested by Burnham and Clarkson (1980). Coke production during the retorting of western reference oil shale was found to be constant in relation to heating rate. The liquid product yield increased with increasing heating rate but the trend could not be verified at the 95% confidence level. The coke production observed in these experiments does not follow the prediction of the model. This may indicate that coke formation occurs early in the retorting process and may be limited by the availability of organic materials that form coke. 6 refs., 10 tabs.

Guffey, F.D.; Hunter, D.E.

1988-02-01T23:59:59.000Z

212

Caking and coking properties of the thermal dissolution soluble fraction of a fat coal  

Science Journals Connector (OSTI)

Abstract In the coal blending for coke-making, fat coal has a very important role for the caking and coking properties of the coal blends. In this study, a fat coal was thermally dissolved, and the caking and coking properties of the thermal dissolution soluble factions (TDSFs) from different solvents and temperatures were characterized. It was found that the caking properties of \\{TDSFs\\} were better than that of fat raw coal. The \\{TDSFs\\} obtained from non-polar solvents have a higher caking property than those obtained from polar solvents at the same thermal dissolution (TD) temperature. During TD process, polar solvents can thermally dissolve more polyaromatic compounds into TDSF, thus increasing the softening temperature and decreasing the caking property of the TDSF. For the same TD solvent, the \\{TDSFs\\} obtained from higher temperatures have a lower caking property compared to those obtained from lower temperatures because of more aromatic components and oxygen functional groups entering them. Crucible coking determinations were carried out to evaluate the coking property of the TDSFs. The result suggests that when 5% of TDSF and 5% of non-caking sub-bituminous coal were used instead of the same amount of fat coal and gas coal, respectively in the coal blends, the quality of the coke obtained could get to the level of the coke obtained from the standard coal blends (i.e. without TDSF and sub-bituminous coal). Therefore, the use of TDSF in coal blending for coke-making is one of the effective methods for opening the coking coal resources.

Hengfu Shui; Wenjuan Zhao; Chuanjun Shan; Tao Shui; Chunxiu Pan; Zhicai Wang; Zhiping Lei; Shibiao Ren; Shigang Kang

2014-01-01T23:59:59.000Z

213

Characterization of the origin and distribution of the minerals and phases in metallurgical cokes  

SciTech Connect

Three industrial metallurgical cokes were examined using X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray analysis (SEM/EDS). The study highlighted the difficulties and implications of identifying the inherent crystalline mineral phases in cokes using XRD such that increasing the ashing temperature led to the formation of anhydrite and destruction of metallic iron: microwave plasma ashing resulted in minimal alteration of the original coke mineralogy apart from the formation of bassanite and possibly jarosite. A preliminary scheme to characterize coke minerals is presented such that, physically, minerals can be classified as fine ({lt}50 {mu}m), coarse (50-100 {mu}m), and agglomerate ({gt}1000 {mu}m); chemically, minerals can be grouped as refractory, semirefractory, and reactive, while on the basis of distribution they can be described as discrete, disseminated, or pore inclusions. Quartz, cristobalite, mullite, and high melting point Al-silicates were found to be the predominant refractory phases while low melting point Al-silicates, e.g., containing high fluxing elements such as K, and Fe were the main semirefractory phases present in all cokes. A variety of iron containing phases including pyrrhotite, troilite, iron oxides, metallic iron, and iron silicates were also invariably present in all cokes while calcium phases were found to occur as sulfide, silicates, and phosphates. In general, iron and calcium phases can be categorized as reactive phases with few exceptions such as oldhamite (CaS). The study highlighted that most of the cokes possess a similar mineralogy, with the main distinction being in their relative abundance, particle size, and nature of distribution in the coke matrix. The study provides a basis to develop a mechanistic understanding of the influence of minerals on coke reactivity and strength at high temperatures. 41 refs., 13 figs., 4 tabs.

Sushil Gupta; Maria Dubikova; David French; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

2007-01-15T23:59:59.000Z

214

Energy efficiency of alternative coke-free metallurgical technologies  

SciTech Connect

Energy analysis is undertaken for the blast-furnace process, for liquid-phase processes (Corex, Hismelt, Romelt), for solid-phase pellet reduction (Midrex, HYL III, LP-V in a shaft furnace), for steel production in systems consisting of a blast furnace and a converter, a Midrex unit and an arc furnace, or a Romelt unit and an arc furnace, and for scrap processing in an arc furnace or in an LP-V shaft furnace. Three blast-furnace processes with sinter and coke are adopted as the basis of comparison, as in: the standard blast-furnace process used in Russia; the improved blast-furnace process with coal-dust injection; and the production of vanadium hot metal from vanadium-bearing titanomagnetite ore (with a subsequent duplex process, ferrovanadium production, and its use in the arc furnace).

V.G. Lisienko; A.V. Lapteva; A.E. Paren'kov [Ural State Technical University - Ural Polytechnic Institute, Yekaterinburg (Russian Federation)

2009-02-15T23:59:59.000Z

215

Researches on the Chemistry of Coal. Part II. The Resinic Constituents and Coking Propensitie of Coals  

Science Journals Connector (OSTI)

1 March 1922 research-article Researches on the Chemistry of Coal. Part II. The Resinic Constituents and Coking Propensitie of Coals William A. Bone A. R. Pearson E. Sinkinson W. E. Stockings The Royal Society is...

1922-01-01T23:59:59.000Z

216

A relationship for the evaluation o coking values of coal tar pitches from their physical characteristics  

Science Journals Connector (OSTI)

A relationship has been proposed to evaluate the coking values of coal tar pitches from the knowledge of their ... It has been tried on 44 self-prepared coal tar pitches and 18 others obtained from ... -ranging c...

G. Bhatia; R. K. Aggarwal; O. P. Bahl

1987-11-01T23:59:59.000Z

217

THE PREDICTED COKE STRENGTH AFTER REACTION VALl JES OF BRITISH COLUMBIA COALS, WITH COMPARISONS TCOALS  

E-Print Network (OSTI)

This paper provides background to the coke strength after reaction (CSR) test and gives perspective regarding changes in the cokinp coal market. It provides it sumtnary of some of the predicted relationships hctween the ash chemistry of

D. Ryan; B. C. Geological; Survey Branch; John T. Price; Canada Centre For Mineral; Energy Technology

218

Kinetics of catalyst regeneration by coke combustion. II. Influence of temperature rise in the catalyst particles  

Science Journals Connector (OSTI)

A grain-pellet model has been used to study the effect of high reaction rates upon the temperature profiles developed during regeneration of coked catalyst particles. The possibility of falsification of kinetic.....

D. Lafarga; C. Royo; A. Monzón; M. Menéndez…

1991-08-01T23:59:59.000Z

219

Experimental Study on Co-gasification of Coal Liquefaction Residue and Petroleum Coke  

Science Journals Connector (OSTI)

An experimental study on co-gasification of coal liquefaction residue and petroleum coke in carbon dioxide was investigated by thermogravimetric analysis. The temperature of the experiment was 1173–1323 K, and the isothermal (1273 K) kinetics were ...

Xin Liu; Zhi-jie Zhou; Qi-jing Hu; Zheng-hua Dai; Fu-chen Wang

2011-06-20T23:59:59.000Z

220

Industrial experience with the thermal preparation of coal batch before coking  

Science Journals Connector (OSTI)

The basic industrial results obtained with thermal preparation of batch, followed by bed coking in horizontal furnaces, are briefly reviewed. Precarbon technology, which, in various forms, has been successfull...

Yu. S. Vasil’ev; A. I. Gordienko; G. V. Dolgarev

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Relationship between coking pressure generated by coal blends and the composition of their primary tars  

Science Journals Connector (OSTI)

Four coals that develop different pressures during the coking process were selected together with 10 blends (7 binary and 3 ternary) prepared with the same coals. Their semicoke contraction/expansion was measured by means of two tests (the Koppers-INCAR and the sole heated oven) and the variation in coking pressure during coking was determined in a movable wall oven. The coals and blends were then pyrolysed and the tars were analysed by gas chromatography (GC-FID–MS). The additivity law was applied to the properties used to evaluate the dangerousness of the blends and to the composition of the tar produced from the blends. Afterwards, the composition of the tar was studied in relation to contraction/expansion and the coking pressure generated by the coals and blends.

C. Barriocanal; M.A. Díez; R. Alvarez; M.D. Casal

2009-01-01T23:59:59.000Z

222

Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions  

Science Journals Connector (OSTI)

Abstract To investigate the kinetic characteristics of coking coal mixed with biomass during pyrolysis, thermogravimetric (TG) and thermo-balance reactor (TBR) analyses were conducted under non-isothermal and isothermal condition. Yellow poplar as a biomass (B) was mixed with weak coking coal (WC) and hard coking coal (HC), respectively. The calculated activation energies of WC/B blends were higher than those of HC/B blends under non-isothermal and isothermal conditions. The coal/biomass blends show increased reactivity and decreased activation energy with increasing biomass blend ratio, regardless of the coking properties of the coal. The different char structures of the WC/B and HC/B blends were analyzed by BET and SEM.

Ha Myung Jeong; Myung Won Seo; Sang Mun Jeong; Byung Ki Na; Sang Jun Yoon; Jae Goo Lee; Woon Jae Lee

2014-01-01T23:59:59.000Z

223

Synthesis of super plasticizer NF-30 from coal coking by product washing oil and performance analysis  

Science Journals Connector (OSTI)

Super plasticizer was synthesized by using coal coking by product washing oil and industrial naphthalene....2 in exhaust (20%). Compared with NF, NF-30 have some advantages in lower cost, high water reducing rate...

Zifang Xu ???; Mingxu Zhang; Wenpei Hu

2013-10-01T23:59:59.000Z

224

Effect of Adsorption Contact Time on Coking Coal Particle Desorption Characteristics  

Science Journals Connector (OSTI)

Effect of Adsorption Contact Time on Coking Coal Particle Desorption Characteristics ... Esp. in the last decade a large amt. of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. ...

Wei Zhao; Yuanping Cheng; Meng Yuan; Fenghua An

2014-03-20T23:59:59.000Z

225

High-Temperature Stress Relaxation Cracking and Stress Rupture Observed in a Coke Gasifier Failure  

Science Journals Connector (OSTI)

This article discusses the high-temperature metal degradation mechanisms that occurred in the failure of a nine-story tall coke gasifier, located in a refinery power plant. Cracking of gasifier internals, bulging...

Daniel J. Benac; Douglas B. Olson…

2011-06-01T23:59:59.000Z

226

Guide to ASTM test methods for the analysis of coal and coke  

SciTech Connect

The guide includes brief descriptions of all 56 ASTM test methods that cover the physical, chemical, and spectroscopic analytical techniques to qualitatively and quantitatively identify over 40 chemical and physical properties of coal, coke, their products, and by-products.

R.A. Kishore Nadkarni (ed.)

2008-07-01T23:59:59.000Z

227

The development of Coke Carried-Heat Gasification Coal-Fired Combined Cycle  

Science Journals Connector (OSTI)

Carried-Heat Partial Gasification Combined cycle is a novel combined cycle which was proposed by Thermal Engineering Department ... technology, Coke Carried-Heat Gasification Coal-Fired Combined Cycle, as the imp...

Li Zhao; Xiangdong Xu

1999-12-01T23:59:59.000Z

228

Hydrogen Generation and Coke Formation over a Diesel Oxidation Catalyst under Fuel Rich Conditions  

Science Journals Connector (OSTI)

Hydrogen Generation and Coke Formation over a Diesel Oxidation Catalyst under Fuel Rich Conditions† ... Hydrogen production via hydrocarbon steam reforming and water gas shift reactions was investigated over a monolith-supported Pt-based diesel oxidation catalyst. ...

Meshari AL-Harbi; Jin-Yong Luo; Robert Hayes; Martin Votsmeier; William S. Epling

2010-12-08T23:59:59.000Z

229

Current developments at Giprokoks for coke-battery construction and reconstruction  

SciTech Connect

Approaches developed at Giprokoks for coke-battery construction and reconstruction are considered. Recommendations regarding furnace construction and reconstruction are made on the basis of Ukrainian and world experience.

V.I. Rudyka; Y.E. Zingerman; V.B. Kamenyuka; O.N. Surenskii; G.E. Kos'kova; V.V. Derevich; V.A. Gushchin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

230

Producing and controlling of the pollutant in the coal`s coking process  

SciTech Connect

In the process of heating and coke shaping, different pollutants and polluting factors will be produced and lost to the environment due to the different coking methods. The paper analyzes the production mechanism, type, emission, average quantity, and damage to the environment of the major pollutants and polluting factors produced in several kinds of coking processes in China at the present. Then, the paper concludes that an assessment for any coking method should include a comprehensive beneficial assessment of economical benefit, environmental benefit and social benefit. The items in the evaluation should consist of infrastructure investment, which includes production equipment and pollution control equipment, production cost, benefit and profit produced by one ton coal, whether the pollution complies with the environmental requirement, extent of the damage, influence to the social development, and etc.

Li, S. [Shanxi Environmental Protection Bureau (China); Fan, Z. [Shanxi Central Environmental Monitoring Station (China)

1997-12-31T23:59:59.000Z

231

Three-dimensional simulation of combustion processes in coke-battery furnace chambers  

Science Journals Connector (OSTI)

A three-dimensional model of the heating wall in a coke battery is developed by means of the Fluent CFD program. The results of simulation are in satisfactory agreement with experimental data. The mathematical...

M. V. Isaev; I. A. Sultanguzin

2010-08-01T23:59:59.000Z

232

Experimental study on the effects of blast-cap configurations and charge patterns on coke descending in CDQ cooling shaft  

SciTech Connect

The coke descending behavior in a CDQ cooling shaft is studied experimentally by means of a tracing method with a digital camera. For three different blast-caps, the law of coke flow is studied under five conditions of coke charge. The experimental results show that, for the sake of the uniformity of the coke burden descending, a blast-cap with elliptical cross-section is a better choice than that with circular cross-section regardless of high or low placement. A coke charge pattern with a flat top burden surface is preferable to that with peak-valley surface, a double-peak superior to a one-peak. Trajectory and average velocity distribution of coke behavior depend weakly on whether the coke is continuously fed or not as the discharging began. The blast-caps have local effects on the descending coke and hardly affect whether the cokes flow smoothly or not in the case of coke burden with enough depth.

Y.H. Feng; X.X. Zhang; M.L. Wu [University of Science & Technology, Beijing (China). School of Mechanical Engineering

2008-08-15T23:59:59.000Z

233

Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process  

DOE Patents (OSTI)

In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

DeGeorge, Charles W. (Chester, NJ)

1981-01-01T23:59:59.000Z

234

Effect of thermal treatment on coke reactivity and catalytic iron mineralogy  

SciTech Connect

Iron minerals in coke can catalyze its gasification and may affect coke behavior in the blast furnace. The catalytic behavior of iron depends largely upon the nature of the iron-bearing minerals. To determine the mineralogical changes that iron could undergo in the blast furnace, cokes made from three coals containing iron present in different mineral forms (clays, carbonates, and pyrite) were examined. All coke samples were heat-treated in a horizontal furnace at 1373, 1573, and 1773 K and then gasified with CO{sub 2} at 1173 K in a fixed bed reactor (FBR). Coke mineralogy was characterized using quantitative X-ray diffraction (XRD) analysis of coke mineral matter prepared by low-temperature ashing (LTA) and field emission scanning electron microscopy combined with energy dispersive X-ray analysis (FESEM/EDS). The mineralogy of the three cokes was most notably distinguished by differing proportions of iron-bearing phases. During heat treatment and subsequent gasification, iron-containing minerals transformed to a range of minerals but predominantly iron-silicides and iron oxides, the relative amounts of which varied with heat treatment temperature and gasification conditions. The relationship between initial apparent reaction rate and the amount of catalytic iron minerals - pyrrhotite, metallic iron, and iron oxides - was linear and independent of heat treatment temperature at total catalyst levels below 1 wt %. The study showed that the coke reactivity decreased with increasing temperature of heat treatment due to decreased levels of catalytic iron minerals (largely due to formation of iron silicides) as well as increased ordering of the carbon structure. The study also showed that the importance of catalytic mineral matter in determining reactivity declines as gasification proceeds. 37 refs., 13 figs., 7 tabs.

Byong-chul Kim; Sushil Gupta; David French; Richard Sakurovs; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research and Technology

2009-07-15T23:59:59.000Z

235

Coke gasification: the influence and behavior of inherent catalytic mineral matter  

SciTech Connect

Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact between catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.

Mihaela Grigore; Richard Sakurovs; David French; Veena Sahajwalla [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Bangor, NSW (Australia)

2009-04-15T23:59:59.000Z

236

Evaluation of fly ash from co-combustion of coal and petroleum coke for use in concrete  

SciTech Connect

An investigation of fly ash (FA) produced from various blends of coal and petroleum coke (pet coke) fired at Belledune Generating Station, New Brunswick, Canada, was conducted to establish its performance relative to FA derived from coal-only combustion and its compliance with CSA A3000. The FA samples were beneficiated by an electrostatic separation process to produce samples for testing with a range of loss-on-ignition (LOI) values. The results of these studies indicate that the combustion of pet coke results in very little inorganic residue (for example, typically less than 0.5% ash) and the main impact on FA resulting from the co-combustion of coal and up to 25% pet coke is an increase in the unburned carbon content and LOI values. The testing of FA after beneficiation indicates that FA produced from fuels with up to 25% pet coke performs as good as FA produced from the same coal without pet coke.

Scott, A.N.; Thomas, M.D.A.

2007-01-15T23:59:59.000Z

237

Characterization of tuyere-level core-drill coke samples from blast furnace operation  

SciTech Connect

A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

238

Predicting the yield of coking byproducts on the basis of elementary and petrographic analysis of the coal batch  

Science Journals Connector (OSTI)

Mathematical models are developed for predicting the yield of coking byproducts on the basis of elementary and petrographic analysis of the coal batch.

M. B. Golovko; I. D. Drozdnik; D. V. Miroshnichenko; Yu. S. Kaftan

2012-06-01T23:59:59.000Z

239

Study of the sulphur in coal and its distribution between the gases and the residue in coking.  

E-Print Network (OSTI)

??Sulphur exists in metallurgical coke as a source of annoyance and difficulties in the economic progress of the metal industries. It ie present in coal… (more)

Wenger, Arthur W.

1923-01-01T23:59:59.000Z

240

Australia–Japan coking coal trade: A hedonic analysis under benchmark and fair treatment pricing  

Science Journals Connector (OSTI)

Given Japan's dominant position in the Asia–Pacific regional coal market and the continuing relatively low profitability of Australia's coal industry, the influence of the Japanese steel mills on coal pricing arrangements between Australia and Japan remains an issue in Australia. In Japanese fiscal year (JFY) 1996, the Japanese steel mills replaced benchmark pricing with the “fair treatment” pricing system whereby coal contract information is kept confidential. In this paper, Quandt's switching regime model is used to test for structural change in hedonic pricing relationships in the important Australia–Japan coking coal trade between JFY 1992 and 1997. There is statistical evidence of significant structural change in JFY 1996 for hard coking coal and in JFY 1995 for semisoft coking coal (when soft coking coal was merged with the semisoft category). The goodness of fit of the regressions is lower in each recent period. It is concluded that price discovery in the annual coal negotiations, particularly for hard coking coal, is relatively more difficult under fair treatment pricing.

Anthony Swan; Sally Thorpe; Lindsay Hogan

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Relationship between coking coal quality and its micro-Raman spectral characteristics  

Science Journals Connector (OSTI)

Abstract Micro-Raman spectroscopy examination of 20 samples of coking coals (Rr = 0.84–1.43%) was performed. Spectral parameters were correlated with the basic rank and technological properties of coals. The G band FWHM and the AG/AALL ratio decrease with the volatile matter content (Vdaf) decrease and the all maceral reflectance scan (Rscan) value increase. The correlations between these parameters are stronger than those, between the G band FWHM and the AG/AALL ratio, and the mean random vitrinite reflectance (Rr). Coking properties are weakly related to the Raman spectral characteristics of coal. Based on the Raman parameters G band FWHM and the AG/AALL ratio, it may be possible to evaluate the volatile matter content (Vdaf) and the all maceral reflectance scan (Rscan) value for coking coals.

Rafa? Morga; Iwona Jelonek; Krystyna Kruszewska

2014-01-01T23:59:59.000Z

242

Coking phenomena in the pyrolysis of ethylene dichloride into vinyl chloride  

SciTech Connect

Pyrolysis of ethylene dichloride (EDC) into vinyl chloride (VCM) which is the monomer for polyvinyl chloride, one of the most popular polymers, has been established commercially for quite a time. The process around 500{degrees}C has been proved to give VCM of high purity at very high selectivity about 99% and a reasonable conversion about 50%. However, the coking is a major problem in the long run, requiring decoking treatment every two months. The present paper describes features of carbons produced in the pyrolysis process. Coke of respective features was found in the reactor, the transfer line, the heat exchanger and the rapid quencher. Typical pyrolytic carbon, anisotropic coke produced in the liquid phase, isotropic carbon was produced on the reactor wall as low as 500{degrees}C. The mechanisms for their formation are discussed.

Sotowa, Chiaki; Korai, Yozo; Mochida, Isao [Kyushu Univ., Kasuga, Fukuoka (Japan)] [and others

1995-12-31T23:59:59.000Z

243

Catalyst deactivation by coking in the MTG process in fixed and fluidized bed reactors  

Science Journals Connector (OSTI)

The validity of a kinetic model for describing the deactivation of a catalyst based on a HZSM5 zeolite has been studied by carrying out reaction in fixed and fluidized bed reactors. The kinetic model takes into account that activity is dependent on the concentration of the lumps of oxygenates, of light olefins and of the remaining products and shows that coke formation capability follows this order. The difference between the deactivation kinetic constants calculated for the fixed and fluidized bed reactors is explained by the effect of the steam produced in the reaction, where coke stripping attenuates deactivation. Future improvements in the deactivation kinetic model must take into account coke stripping by the steam produced in the reaction.

Andrés T. Aguayo; Ana G. Gayubo; JoséM. Ortega; Martin Olazar; Javier Bilbao

1997-01-01T23:59:59.000Z

244

Study on the Respirable Particulate Matter Generated from the Petroleum Coke and Coal Mixed-Fired CFB Boiler  

Science Journals Connector (OSTI)

The dust generated from the fuel combustion is one of the important sources for air pollution. This paper has made a comprehensive research on the particulate matter generated from the petroleum coke and coal mixed-fired circulating fluidized bed (CFB) ... Keywords: petroleum coke, respirable particulate matter, air pollution, circulating fluidized bed boiler

Yan Ma; Hao Bai; Lihua Zhao; Yang Ma; Daqiang Cang

2010-12-01T23:59:59.000Z

245

Preparation and evaluation of hydrotreating catalysts based on activated carbon derived from oil sand petroleum coke  

Science Journals Connector (OSTI)

Novel Ni–Mo/activated carbon (AC) hydrotreating catalysts were prepared and evaluated for upgrading heavy vacuum gas oil (HVGO). The AC supports were derived from Alberta oil sand petroleum coke, i.e. fluid coke and/or delayed coke, hereafter referred to as OSP coke, through a chemical process. The BET surface area was as high as 2194 m2/g for the fluid coke derived AC and 2357 m2/g for the delayed coke derived AC. Both \\{ACs\\} contained a large number of micropores with pore volume as high as 1.2 cm3/g. Ni and Mo based active component precursors could be easily loaded on the activated carbon supports by chemical impregnation of nickel nitrate and ammonium molybdate followed by calcination in nitrogen at 773 K without further modification or oxidation treatment to the activated carbons. Scanning electron microscopy (SEM) observation showed highly porous surface structure of the bare activated carbon supports and well dispersed metal (oxide) precursor nanoparticles of 30–50 nm loaded on the AC supports. For comparison, two reference catalysts were also prepared by the same procedure but using commercial activated carbon and porous alumina as supports. After catalyst activation by sulfiding, the hydrotreating performance of the prepared catalysts was evaluated in a magnetically stirred autoclave with a HVGO feedstock to examine their hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities. Two commercial hydrotreating catalysts were also tested and compared under similar conditions with the same feed. The results showed that the catalysts based on the activated carbon supports prepared from OSP coke had better hydrotreating performance than the other catalysts. Scanning transmission electron microscopy (STEM) characterization of the catalysts after activation showed that small particles of nanostructure (2–5 nm in size) were evenly embedded in the carbon matrix except for some bigger particles that were located on the catalyst surface. Energy dispersive X-ray (EDX) spectroscopy revealed that these particles were composed of Ni, Mo and S elements. The dispersed nanoparticles formed the active sites and were responsible for the observed high HDS and HDN activity. Elemental analysis and surface characterization of the spent catalysts showed that the formation of coke precursors was favored on the alumina supported catalyst, which resulted in catalyst deactivation.

Yu Shi; Jinwen Chen; Jian Chen; Robb A. Macleod; Marek Malac

2012-01-01T23:59:59.000Z

246

An active carbon catalyst prevents coke formation from asphaltenes during the hydrocracking of vacuum residue  

SciTech Connect

Active carbons were prepared by the steam activation of a brown coal char. The active carbon with mesopores showed greater adsorption selectivity for asphaltenes. The active carbon was effective at suppressing coke formation, even with the high hydrocracking conversion of vacuum residue. The analysis of the change in the composition of saturates, aromatics, resins, and asphaltenes in the cracked residue with conversion demonstrated the ability of active carbon to restrict the transformation of asphaltenes to coke. The active carbon that was richer in mesopores was presumably more effective at providing adsorption sites for the hydrocarbon free-radicals generated initially during thermal cracking to prevent them from coupling and polycondensing.

Fukuyama, H.; Terai, S. [Toyo Engineering Corp., Chiba (Japan). Technological Research Center

2007-07-01T23:59:59.000Z

247

Contribution to kinetic modeling of catalyst deactivation by coke in the MTG process  

SciTech Connect

The adequacy of a kinetic model for deactivation of a catalyst based on a H-ZSM5 used in the transformation of methanol into hydrocarbons has been proven. The model takes into account the pronounced effect on coke deposition of the concentration of reaction lumps and coke preferable deposition at the reactor inlet by degradation of oxygenates (methanol and dimethylether) on the catalyst acid sites. The kinetic model is in agreement with the experimental results of fixed and fluidized bed reactors within the 300-400 {degrees}C range. The deactivation is slightly smaller in fluidized bed but contribution of catalyst attrition to deactivation must be considered. 14 refs., 3 figs.

Gayubo, A.G.; Ortega, J.M.; Benito, P.L.; Aguayo, A.T.; Bilbao, J. [Universidad del Pais Vasco, Bilbao (Spain)

1996-12-31T23:59:59.000Z

248

Mechanism of physical transformations of mineral matter in the blast furnace coke with reference to its reactivity and strength  

SciTech Connect

Examinations of polished and dry cut sections of feed and tuyere coke revealed some possible mechanisms for the physical influence of mineral compounds on the reactivity and strength of coke. It was observed that rounded particles of mineral phases that are exposed to the pore walls and surface of coke at high temperature create an inorganic cover, thus reducing the surface available for gas-solid reactions. The particles of mineral matter that have a low melting point and viscosity can affect the coke at earlier stages in the blast furnace process, acting in the upper parts of the blast furnace (BF). The temperature-driven redistribution of mineral phases within the coke matrix probably leads to the creation of weak spots and in general to anisotropy in its properties, thus reducing its strength. 9 refs., 2 figs., 1 tab.

Stanislav S. Gornostayev; Jouko J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2006-12-15T23:59:59.000Z

249

Rates of Microbial Transformation of Polycyclic Aromatic Hydrocarbons in Water and Sediments in the Vicinity of a Coal-Coking Wastewater Discharge  

Science Journals Connector (OSTI)

...Sediments in the Vicinity of a Coal-Coking Wastewater Discharge Stephen E...collected in the vicinity of a coal-coking treated wastewater discharge from...sediments in the vicinity of a coal-coking wastewater discharge. | To facilitate...

Stephen E. Herbes

1981-01-01T23:59:59.000Z

250

Dissolution of refractories for gasification process of petroleum coke for the steel industry  

Science Journals Connector (OSTI)

The production of energizing gases such as H2 and CO by gasification process of solid fuels is a technology that has increased in recent years since it is an efficient and clean process. To enable the production of gases, it is necessary to use refractory materials capable of withstanding high temperatures, thermal shock and contact with aggressive media. Nowadays, there is not published literature on refractory materials used for furnaces lining for petroleum coke gasification at high temperatures (?1900 °C). Therefore, this paper deals with the study of alumina and magnesium aluminate/alumina-based refractories as candidates for the furnace lining used in the petroleum coke gasification for steel production. Refractory samples were made with some designed formulations which were subjected to chemical interactions with pellets made of petroleum coke and petroleum coke ash at 1650 °C for 4 h. After completing the tests, the formulations were cut transversely and were characterized by SEM-EDS and XRD to evaluate the resistance to slag penetration and formation of low melting point phases. The results show that slag penetration and corrosion in the refractory formulations occur due to the formation of hibonite, spinels (Ni2+, Fe2+, Mg2+)(Al, Fe)2O4 and gehlenite phases. However, these phases together stop the molten slag penetration.

R. Puente-Ornelas; C.J. Lizcano-Zulaica; A.M. Guzmán; P.C. Zambrano; T.K. Das-Roy

2012-01-01T23:59:59.000Z

251

Effect of Iron Species and Calcium Hydroxide on High-Sulfur Petroleum Coke CO2 Gasification  

Science Journals Connector (OSTI)

The effect of iron species on petroleum coke CO2 gasification was studied in the present work. The effects of the temperature (1173–1673 K), the catalyst types, catalyst loading (ranging from 0 to 5 wt %), and composition during the gasification of ...

Zhi-jie Zhou; Qi-jing Hu; Xin Liu; Guang-suo Yu; Fu-chen Wang

2012-01-24T23:59:59.000Z

252

The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant  

Science Journals Connector (OSTI)

The occurrence, behaviors and fate of 18 \\{PAHs\\} were investigated in a coking wastewater treatment plant in Songshan coking plant, located in Shaoguan, Guangdong Province of China. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent, sludge and gas samples. In raw coking wastewater, high molecular weight (MW) \\{PAHs\\} were the dominant compounds, while 3–6 ring \\{PAHs\\} predominated in the final effluent. The dominant compounds in gas samples were phenathrene, fluoranthene and pyrene, while they were fluoranthene, pyrene, chrysene and benzo[k]fluoranthene for sludge. The process achieved over 97% removal for all the PAHs, 47–92% of eliminations of these target compounds in liquid phase were achieved in biological stage. Different behaviors of \\{PAHs\\} were observed in the primary tank, anaerobic tank, aerobic tank, hydrolytic tank and coagulation tank units, while heavier and lower ones were mainly removed in anaerobic tank and aerobic tanks, respectively. Regarding the fate of PAHs, calculated fractions of mass losses for low MW \\{PAHs\\} due to transformation and adsorption to sludge accounted for 15–50% and 24–49%, respectively, while the rest was less than 1%. For high MW PAHs, the mass losses were mainly due to adsorption to sludge and separation with tar (contributing 56–76% and 22–39%, respectively), and the removal through transformation was less.

Wanhui Zhang; Chaohai Wei; Xinsheng Chai; Jingying He; Ying Cai; Man Ren; Bo Yan; Pingan Peng; Jiamo Fu

2012-01-01T23:59:59.000Z

253

Coke deposits formation and products selectivities for the MTG process in a fluidized bed reactor  

Science Journals Connector (OSTI)

Experiments were carried out in a demonstrative scale fluidized bed reactor for methanol conversion to gasoline (MTG). We investigated the kinetics of the coke deposits formation and their influence on the products selectivities. New reaction indexes were advanced for on line monitoring of the catalyst activity.

Grigore Pop; Gavril Musca; Eleonora Chirila; Rodica Boeru; Gheorghe Niculae; Natalia Natu; Gheorghe Ignatescu; Sorin Straja

1989-01-01T23:59:59.000Z

254

Investigation of Vanadium Compounds in Ashes from a CFBC Firing 100 Petroleum Coke  

Science Journals Connector (OSTI)

Investigation of Vanadium Compounds in Ashes from a CFBC Firing 100 Petroleum Coke ... The ash pits have since gone through an extensive remedial process. ... The other metals investigated (i.e., Fe, Cu, Zn, and Pb) also were present predominantly as sulfates. ...

L. Jia; E. J. Anthony; J. P. Charland

2002-02-27T23:59:59.000Z

255

Coal flow aids reduce coke plant operating costs and improve production rates  

SciTech Connect

Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

2005-06-01T23:59:59.000Z

256

Optimization of experimental conditions for recovery of coking coal fines by oil agglomeration technique  

Science Journals Connector (OSTI)

The significance of coking coal in the metallurgical sector as well as the meager coking coal reserves across the globe increase the necessity to recover coking coal fines from the fine coking coal slurries generated from coal preparation and utilization activities. Oil agglomeration studies were carried out by varying the experimental conditions for maximum recovery of coking coal fines i.e., yield of the agglomerates. The various operational parameters studied were oil dosage, agitation speed, agglomeration time and pulp density. By using Taguchi experimental design, oil dosage (20%), agitation speed (1100 rpm), agglomeration time (3 min) and pulp density (4.5%) were identified as the optimized conditions. A confirmation experiment has also been carried out at the optimized conditions. The percentage contribution of each parameter on agglomerate yield was analyzed by adopting analysis of variance (ANOVA) statistical method as well as multiple linear regression analysis. The order of influence of the parameters on the agglomerate yield is of the following order: pulp density > oil dosage > agitation speed > agglomeration time. A mathematical model was developed to fit the set of experimental conditions with the yield obtained at each test run and also at the optimized conditions. The experimentally obtained yield was compared with the predicted yield of the model and the results indicate a maximum error of 5% between the two. A maximum yield of 90.42% predicted at the optimized conditions appeared to be in close agreement with the experimental yield thus indicating the accuracy of the model in predicting the results.

G.H.V.C. Chary; M.G. Dastidar

2010-01-01T23:59:59.000Z

257

Spectroscopic studies on the formation of coke on individual Fluid Catalytic Cracking particles: the effect of poisoning metal compounds.  

E-Print Network (OSTI)

??The formation of coke on individual Fluid Catalytic Cracking (FCC) catalyst particles was studied using UV/Vis microspectroscopy and confocal fluorescence microscopy, with n-hexane cracking as… (more)

Goetze, J.G.

2013-01-01T23:59:59.000Z

258

Influence of the batch's coke-ore ratio and distribution on the porosity of the melting zone  

SciTech Connect

The variation in gas permeability in the melting zone is considered as a function of the height and configuration of the coke packing and the ore component of the batch.

V.P. Tarasov; L.V. Bykov; P.V. Tarasov [Priazovsk State Technical University, Mariupol (Ukraine)

2008-09-15T23:59:59.000Z

259

Deposition and characteristics of coke over a H-ZSM5 zeolite-based catalyst in the MTG process  

SciTech Connect

The influence of reaction conditions in the transformation of methanol into gasoline (temperature, time on stream, and contact time) on the deposition and nature of coke (composition, H/C ratio) and on its location in the porous structure of a H-ZSM5 zeolite-based catalyst has been studied in an isothermal fixed-bed integral reactor. The distribution of the coke within the porous structure of the catalyst is similar to that proposed for other reactions on H-ZSM5 zeolites, and the highly hydrogenated character of coke and its instability is noteworthy. Coke deposition has been related to catalyst acidic site deterioration and to a kinetic model for catalyst deactivation in an integral reactor.

Benito, P.L.; Gayubo, A.G.; Aguayo, A.T.; Olazar, M.; Bilbao, J. [Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica] [Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica

1996-11-01T23:59:59.000Z

260

Production of Syngas via Partial Oxidation and CO2 Reforming of Coke Oven Gas over a Ni Catalyst  

Science Journals Connector (OSTI)

Production of Syngas via Partial Oxidation and CO2 Reforming of Coke Oven Gas over a Ni Catalyst ... The yield of produced syngas increases with an increase in temperature. ...

Jianzhong Guo; Zhaoyin Hou; Jing Gao; Xiaoming Zheng

2008-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reducing the sulfur content of coke by increasing the content of thermally conditioned g coal in the batch  

Science Journals Connector (OSTI)

In periods of economic growth, Ukrainian coke plants face a shortage of Zh and K coal, because of the high demand. In periods of economic stagnation, conversely, there is an excess of Zh coal, on account of the d...

E. I. Malyi

2014-05-01T23:59:59.000Z

262

3D Computational Fluid Dynamics Simulation of Natural Coke Steam Gasification in General and Improved Fluidized Beds  

Science Journals Connector (OSTI)

The thermal characteristics of natural coke steam gasification in a fluidized bed were three-dimensionally (3D) simulated based on the computational fluid dynamics (CFD) method using Fluent code. ... However, this technology seems difficult to carry out due to its abradability, hard ignition, hot burst, and so on. ... In short, all the results in this work have a significance to provide the theoretical basis for the design, operational optimization, and scale-up of the natural coke steam gasification process. ...

Ya-li Tang; Dai-jun Liu; Yu-hong Liu; Qian Luo

2010-09-30T23:59:59.000Z

263

Air pollution from a large steel factory: polycyclic aromatic hydrocarbon emissions from coke-oven batteries  

SciTech Connect

A systematic investigation of solid and gaseous atmospheric emissions from some coke-oven batteries of one of Europe's largest integrated steel factory (Taranto, Italy) has been carried out. These emissions, predominantly diffuse, originate from oven leakages, as well as from cyclic operations of coal loading and coke unloading. In air monitoring samples, polycyclic aromatic hydrocarbons (PAHs) were consistently detected at concentrations largely exceeding threshold limit values. By means of PAHs speciation profile and benzo-(a)pyrene (BaP) equivalent dispersion modeling from diffuse sources, the study indicated that serious health risks exist not only in working areas, but also in a densely populated residential district near the factory. 30 refs., 5 figs., 3 tabs.

Lorenzo Liberti; Michele Notarnicola; Roberto Primerano; Paolo Zannetti [Technical University of Bari, Bari (Italy). Department of Environmental Engineering and Sustainable Development

2006-03-15T23:59:59.000Z

264

Linings with optimum heat-emission surfaces for cars receiving and transporting incandescent coke  

SciTech Connect

The least reliable components of the cars which receive and transport incandescent coke are the lining plates. This applies to both the quenching cars used for wet quenching and the hot-coke cars used in the dry cooling process. Technical advances have been described whereby the life of car linings is prolonged by increasing heat emission from the lining plate surfaces. As the heat emission level is enhanced the mean plate temperature is lowered and the lining life thereby prolonged; moreover, the between-servicings period is prolonged. This involves providing fins on the non-working (outer) plate surfaces. The problem of optimizing the size and shape of the fins with reference to heat emission remains unsolved: the requirement is maximum heat emission from plates of a given weight, or conversely minimum plate weight for a given heat emission level. 6 refs., 3 figs.

Kotlyar, B.D.; Pleshkov, P.I.; Gadyatskii, V.G. [and others

1992-12-31T23:59:59.000Z

265

Unsteady-state kinetic simulation of naphtha reforming and coke combustion processes in the fixed and moving catalyst beds  

Science Journals Connector (OSTI)

Abstract The work is dedicated to the construction of kinetics models for the naphtha reforming process and the adjacent process of catalyst regeneration by coke combustion. The proposed kinetic model for the reforming process is based on the use of common rate equations for the groups of similar reactions with account of difference in reaction rates for individual homologs within these groups by simple correlations with thermodynamic properties (first of all – with the values of Gibbs free energy) of individual reactions and by other simplification methods. Such approach gives the way to construct the kinetics models optimal from the point of view of compromise between accuracy and simplicity. The proposed naphtha reforming model is characterized with the high level of kinetic scheme detailization (62 individual and group reactants and 146 individual reactions), at the same it is rather simple and provides the accurate description of the experimental data using only 22 kinetic parameters. This model is thermodynamically consistent and provides accurate description of experimental data in a wide range of process parameters. Account of catalyst deactivation by coke deposition in the model gives the way to simulate transient reforming process performance both in fixed and moving catalyst beds. Kinetics of coke combustion for catalysts with moderate coke content (up to 3% mass) may described by simple kinetic equation with apparent reaction rate orders closed to unit for relative coke content and to 1/2 for oxygen. Demonstration simulations of naphtha reforming and coke combustion processes are presented.

Andrey N. Zagoruiko; Alexander S. Belyi; Mikhail D. Smolikov; Alexander S. Noskov

2014-01-01T23:59:59.000Z

266

Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine  

E-Print Network (OSTI)

OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

Yarbrough, Charles Michael

2012-06-07T23:59:59.000Z

267

Profitability analysis of non-coking coal preparation for power plants in India  

SciTech Connect

Currently coal-based power plants produce about 70% of the total electricity generated in India, where non-coking (steam) coals are utilized mostly without any preparation. A massive capacity addition of at least 140,000 MWe is required (over the 81,000 MWe of current installed capacity) during the next 15 years to meet growing energy demand. Such a rapid expansion of power generation capacity poses a serious challenge to the environment (at emission controls) and transportation infrastructure in India. Furthermore, the high ash content of indigenous coals and concentration of coal mines in central and northeastern India away from urban centers exacerbate the problem. Thus, coal preparation is envisioned to play a major role in shaping the energy future of India. Under the Indo-US Coal Preparation Program, the US Department of Energy`s Pittsburgh Energy Technology Center (PETC) is coordinating coal preparation activities for the US Agency for International Development. In this context, a detailed analysis of the washability characteristics of non-coking coals was performed using the PETC Coal Preparation Plant Simulator (CPPS) to identify coal preparation strategies for India. Based on these strategies, a profitability analysis of non-coking coal preparation has been conducted considering coal preparation and transportation costs, and coal quality impacts on power plant operations. This paper summarizes the results of this analysis and quantifies the significance of coal preparation for the Indian power sector.

Gollakota, S.V.; Rao, S.N. [Burns and Roe Services Corp., Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Staats, G.E. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

1996-12-31T23:59:59.000Z

268

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ","Coke and"," "," " " "," ",,"Net","Residual","Distillate","Natural Gas(d)"," ","Coal","Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row"

269

An example of alkalization of SiO{sub 2} in a blast furnace coke  

SciTech Connect

Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2007-09-15T23:59:59.000Z

270

Co-coking of Hydrotreated Decant Oil/Coal Blends: Effect of Hydrotreatment Severity on the Yield Distribution and Quality of Distillate Fuels  

Science Journals Connector (OSTI)

The coke yield from delayed co-coking of hydrotreated DOs and coal blends was observed to be in the range of 15.9–24.4%. ... The coal used in this study (EI-106) was a 50:50 blend of the Powellton and Eagle seams, both very similar coals of high-volatile A bituminous rank from West Virginia. ... One of the hydrotreated DOs (EI-133) was coked alone. ...

Ömer Gül; Leslie R. Rudnick; Harold H. Schobert

2013-05-19T23:59:59.000Z

271

Usiing NovoCOS cleaning equipment in repairing the furnace-chamber lining in coke batteries 4 & 5 at OAO Koks  

SciTech Connect

Experience with a new surface-preparation technology for the ceramic resurfacing of the refractory furnace-chamber lining in coke batteries is described.

S.G. Protasov; R. Linden; A. Gross [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

272

Application of artificial neural network to study the performance of jig for beneficiation of non-coking coal  

Science Journals Connector (OSTI)

Non-coking coal is the major resource of energy in India. Apart from its utilization in energy sector, the other major application of this coal is in metallurgical sector. The resource of high quality of non-coking coal is not available as per demand; as a result beneficiation of non-coking coal is now becoming essential. Jigging is one of the economical physical beneficiation processes for Indian high ash non-coking coal. At present scenario in coal washery in India, below 3 mm size is not being processed. Attempt has been taken to beneficiate the fine size non-coking coal fractions generated at different sizes of bed materials, feed rates and water rates using laboratory Denver mineral jig. The performance of jig was evaluated in term of Ep and imperfection value. Furthermore artificial neural network (ANN) model has been developed for determining combustible recovery and ash percent of the concentrate. The ANN architecture is made up of three layers (input – hidden – output). A back propagation algorithm was used for training of the ANN model. It has been observed that the predicted values by ANN model are in good agreement with the experimental results.

Lopamudra Panda; A.K. Sahoo; A. Tripathy; S.K. Biswal; A.K. Sahu

2012-01-01T23:59:59.000Z

273

Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001  

SciTech Connect

This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

Jin, H.G.; Sun, S.; Han, W.; Gao, L. [Chinese Academy of Sciences, Beijing (China)

2009-09-15T23:59:59.000Z

274

Split and collectorless flotation to medium coking coal fines for multi-product zero waste concept  

Science Journals Connector (OSTI)

The medium coking coal fines of ? 0.5 mm from Jharia coal field were taken for this investigation. The release analysis of the composite coal reveals that yield is very low at 10.0% ash, about 25% at 14% ash and 50% at 17% ash level. The low yield is caused by the presence of high ash finer fraction. The size-wise ash analysis of ? 0.5 mm coal indicated that ? 0.5 + 0.15 mm fraction contains less ash than ? 0.15 mm fraction. Thus, the composite feed was split into ? 0.5 + 0.15 mm and ? 0.15 mm fractions and subjected to flotation separately. The low ash bearing fraction (? 0.5 + 0.15 mm) was subjected to two stages collectorless flotation to achieve the concentrate with 10% ash. The cleaner concentrate (18.9%) with 10% ash was recovered which has an application in metallurgical industries. The concentrate of 30.2% yield with 12.5% ash could be achieved in one stage collectorless flotation which is suitable for use in coke making as sweetener. As the ? 0.15 mm fraction contains relatively high ash, collector aided flotation using sodium silicate was performed to get a concentrate of 23.6% yield with about 17% ash. The blending of this product with cleaner tail obtained from ? 0.5 + 0.15 mm produces about 35.0% yield with 17% ash and that can be utilized for coke making. The reject from the two fractions can be used for conventional thermal power plant or cement industries using a 23.5% ash after one stage collector aided flotation and the final tailings produced content ash of 61.6% can be used for fluidization combustion bed (FBC). This eventually leads to complete utilization of coal.

Shobhana Dey; K.K. Bhattacharyya

2007-01-01T23:59:59.000Z

275

Co-gasification of Biomass with Coal and Oil Sand Coke in a Drop Tube Furnace  

Science Journals Connector (OSTI)

From this work, a synergistic effect was observed for blends of coal with petcoke and an increase in the production of H2 and CO was obtained. ... Finally, blending biomass with coal?petcoke blends did not produce any significant change in H2 production, although slight variations were observed in the production of CO and CO2. ... In addn., co-gasification tests of binary blends of a bituminous coal with different types of biomass (up to 10%) and petroleum coke (up to 60%), as well as ternary blends of coal-petcoke-biomass (45-45-10%) were conducted to study the effect of blending on gas prodn. ...

Chen Gao; Farshid Vejahati; Hasan Katalambula; Rajender Gupta

2009-10-13T23:59:59.000Z

276

Matrix endor studies of the carbonization of West Canadian coking coals  

Science Journals Connector (OSTI)

Cretaceous bituminous coals of known rank R?0 max vitrinite reflectance) have been examined by ESR (electron spin resonance) and ENDOR (electron nuclear double resonance) techniques. Both highly oxidised (outcrop) and unoxidised mine?run Balmer coal from the Crowsnest field have been subjected to heat treatment (200?900°C) and the matrix proton ENDOR signal studied as a function of applied microwave and rf power. Changes in ENDOR line shape and intensity are described with particular emphasis on the presoftening region of the unoxidised coal. A comparative study of the carbonization of hvb and 1vb coking coal from the Crowsnest is reported.

P. R. West; S. E. Cannon

1981-01-01T23:59:59.000Z

277

Form EIA-5 Users Manual Quarterly Coal Consumption and Quality - Coke Plants  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Users Manual Quarterly Coal Consumption and Quality - Coke Plants Document Number: 001 Version: 2.0 June 2011 i June 2011 Document History Number Date Section Description 1 2 June 2011 June 2011 Document initiation Revised screen shots and remove external user references. Primary POC: Tejasvi Raghuveer Phone: (202) 586-8926 Email: Tejasvi.Raghuveer@eia.gov Document Changes/Maintenance POC: Primary POC: Tejasvi Raghuveer Phone: (202) 586-8926 Email: Tejasvi.Raghuveer@eia.gov Project References: Coal Internet Data Collection (CIDC) User's Manual, September 2007 ii June 2011 Content 1. General System Overview ................................................................................. 1

278

Theoretical and experimental investigations into the particular features of the process of converting coal gas hydrocarbons on incandescent coke  

SciTech Connect

The prospects of the use of reducing gases in ferrous metallurgy and the possibilities for using them as a basis for coke production have been presented by the authors of the present article in the past. In the present report, the authors present certain results of theoretical and experimental investigations into the process of converting coal gas hydrocarbons on incandescent coke. The modification of the present-day method of thermodynamically calculating stable compositions of coking products, which was developed by the authors, has made it possible to apply it to specific chemical systems and process conditions not met with before, such as the conversion of hydrocarbons in mixtures of actual industrial gases (coal gas and blast furnace gas) in the presence of carbon and considerable amounts of hydrogen.

Zubilin, I.G.; Umanskii, V.E.

1984-01-01T23:59:59.000Z

279

Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine  

SciTech Connect

The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

2007-03-15T23:59:59.000Z

280

Methane steam reforming at low temperature: Effect of light alkanes’ presence on coke formation  

Science Journals Connector (OSTI)

Abstract Steam reforming of natural gas for the production of hydrogen at low operation temperature offers significant financial and environmental advantages. However, the presence of higher hydrocarbons as minor components of natural gas can significantly affect the formation of coke and thus the effectiveness of the catalyst. In this study, the effect of the presence of C2–C3 alkanes in the feedstock on the carbon accumulation during low temperature steam reforming of methane is investigated over Ni and Rh catalysts supported on lanthanum doped ceria–zirconia mixed oxide. Both catalysts showed high resistance to coke formation and especially in the case of Rh/La/CeO2–ZrO2, the carbon accumulation detected was low even after 10 h on stream in steam reforming of all mixtures of hydrocarbons tested. The presence of higher alkanes in methane increased the amount of carbon on Ni(10)CeZrLa compared to pure methane as well as the nature of the carbonaceous species. Increase in the C-number of the additive alkane had almost no influence on the total amount of carbon formed (C/H feed ratio = constant) but favored the formation of filamentous carbon.

Sofia D. Angeli; Fotis G. Pilitsis; Angeliki A. Lemonidou

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A new technology for producing hydrogen and adjustable ratio syngas from coke oven gas  

SciTech Connect

About 15 billion Nm{sup 3} coke oven gas (COG) is emitted into the air in Shanxi Province in China as air pollutants. It is also a waste of precious chemical resources. In this study, COG was purified respectively by four methods including refrigeration, fiberglass, silica gel, and molecular sieve. Purified COG was separated by a prism membrane into two gas products. One consists mainly of H{sub 2} ({gt}90 vol %) and the other is rich in CH{sub 4} ({gt}60 vol %) with their exact compositions to vary with the membrane separation pressure and outlet gas flow ratio. The gas rich in CH{sub 4} was partially oxidized with oxygen in a high-temperature fixed-bed quartz reactor charged with coke particles of 10 mm size. At 1200-1300{sup o}C, a CH{sub 4} conversion of {gt}99% could be obtained. The H{sub 2}/CO ratio in the synthesis product gas can be adjusted in the range 0.3-1.4, very favorable for further C1 synthesis. 10 refs., 17 figs., 1t ab.

Jun Shen; Zhi-zhong Wang; Huai-wang Yang; Run-sheng Yao [Taiyuan University of Technology, Taiyuan (China). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

282

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

SciTech Connect

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

283

Features of hydrotreating catalytic cracking feed and heavy slow coking gas oils  

SciTech Connect

A possible means of more extensive processing of crude oil is the use, in catalytic cracking, of heavy coking gas oils (HCGOs), a feature of which is a higher content of polycyclic aromatic compounds and resins by comparison with straight-run vacuum distillates. The presence of these compounds in catalytic cracking feed causes a reduction in the product yield and increased coke formation. Therefore, one of the problems of hydrotreating feedstock of this kind is the hydrogenation of polycyclic arenes. Processes of extensive desulphurization and denitration occur in parallel, since the sulphur and nitrogen compounds of HCGO are chiefly condensed benzoderivatives of thiophene, pyridine and carbazole, and largely concentrated in heavy aromatic and resinous fractions. The composition of the saturated part of the cracking feed plays a large role in achieving the optimum yields of gaseous and gasoline fractions. Thus an increase in the proportion of cyclanes in the feed raises the gasoline yield. In this way, an investigation of the hydrocarbon conversions during the hydrotreatment of cracking feed is of great importance. The present paper sets out the results for studying the change in the group-structural characteristics of the hydrogenation products of a mixture containing 30% HCGOs according to data of {sup 1}H and {sup 13}C NMR spectroscopy. 7 refs., 7 figs., 1 tab.

Yefremov, N.I.; Kushnarev, D.F.; Frolov, P.A.; Chagovets, A.N.; Kalabin, G.A.

1993-12-31T23:59:59.000Z

284

Petroleum Coke  

U.S. Energy Information Administration (EIA) Indexed Site

81,811 82,516 82,971 84,053 85,190 84,889 1986-2013 East Coast (PADD 1) 12,198 10,887 9,316 9,766 9,003 7,430 1986-2013 Midwest (PADD 2) 15,005 15,507 16,480 16,834 17,611 17,597...

285

Co-Gasification of Biomass Wastes and Coal?Coke Blends in an Entrained Flow Gasifier: An Experimental Study  

Science Journals Connector (OSTI)

An experimental study of entrained flow, air-blown cogasification of biomass and a coal?coke mixture has been performed in order to evaluate the effect of the relative fuel/air ratio (ranging between 2.5 and 7.5), the reaction temperature (ranging between ...

Juan J. Hernández; Guadalupe Aranda-Almansa; Clara Serrano

2010-03-29T23:59:59.000Z

286

Urinary 1-hydroxypyrene concentrations in Chinese coke oven workers relative to job category, respirator usage, and cigarette smoking  

SciTech Connect

1-Hydroxypyrene (1-OHP) is a biomarker of recent exposure to polycyclic aromatic hydrocarbons (PAHs). We investigated whether urinary 1-OHP concentrations in Chinese coke oven workers (COWs) are modulated by job category, respirator usage, and cigarette smoking. The present cross-sectional study measured urinary 1-OHP concentrations in 197 COWs from Coking plant I and 250 COWs from Coking plant II, as well as 220 unexposed referents from Control plant I and 56 referents from Control plant II. Urinary 1-OHP concentrations (geometric mean, {mu}mol/mol creatinine) were 5.18 and 4.21 in workers from Coking plants I and II, respectively. The highest 1-OHP levels in urine were found among topside workers including lidmen, tar chasers, and whistlers. Benchmen had higher 1-OHP levels than other workers at the sideoven. Above 75% of the COWs exceeded the recommended occupational exposure limit of 2.3 {mu}mol/mol creatinine. Respirator usage and increased body mass index (BMI) slightly reduced 1-OHP levels in COWs. Cigarette smoking significantly increased urinary 1-OHP levels in unexposed referents but had no effect in COWs. Chinese COWs, especially topside workers and benchmen, are exposed to high levels of PAHs. Urinary 1-OHP concentrations appear to be modulated by respirator usage and BMI in COWs, as well as by smoking in unexposed referents.

Bo Chen; Yunping Hu; Lixing Zheng; Qiangyi Wang; Yuanfen Zhou; Taiyi Jin [Fudan University, Shanghai (China). School of Public Health

2007-09-15T23:59:59.000Z

287

Evaluation of pitches and cokes from solvent-extracted coal materials  

SciTech Connect

Three initial coal-extracted (C-E) samples were received from the West Virginia University (WVU) Chemical Engineering Department. Two samples had been hydrogenated to obtain pitches that satisfy Theological requirements. One of the hydrogenated (HC-E) samples had been extracted by toluene to remove ash and higher molecular weight aromatic compounds. We were unable to measure the softening point and viscosity of the non-hydro treated solid extract sample, Positive characteristics in the HC-E materials were softening points of 113-119{degrees}C, low sulfur and ash. The oxygen and nitrogen content of the HC-E samples may limit future usage in premium carbon and graphite products. Coking values were similar to petroleum pitches. Laboratory anode testing indicates that in combination with standard coal-tar pitch, the HC-E material can be used as a binder pitch.

McHenry, E.R.

1996-12-01T23:59:59.000Z

288

Comparative study of the performance of conventional and column flotation when treating coking coal fines  

Science Journals Connector (OSTI)

Investigations were carried out on coking coal fines by conventional cell and column flotation techniques. The effects of different operating parameters were evaluated for both conventional and column flotation. The coal fines were collected from Bhojudih washery, India. These coal fines averaged 24.4% ash, 19.8% volatile matter and 53.8% fixed carbon on a dry basis. A commercial grade sodium silicate, light diesel oil and pine oil were used as depressant, collector and frother respectively. The flotation performance was compared with release analysis. The conventional flotation results indicated that a clean coal with 14.4% ash could be obtained at 78.0% yield with 88.4% combustible recovery. The ash of the clean coal could be further reduced to 10.1% at 72.0% yield with 85.6% combustible recovery by using column flotation. The column flotation results were close to those obtained by release analysis.

M.S. Jena; S.K. Biswal; S.P. Das; P.S.R. Reddy

2008-01-01T23:59:59.000Z

289

Fouling in a 160 MWe FBC boiler firing coal and petroleum coke  

Science Journals Connector (OSTI)

The 160 MWe fluidized bed combustor (FBC) boiler owned and operated by the Tennessee Valley Authority (TVA) has recently been co-fired with coal and petroleum coke (up to 50%). However, it has suffered some fouling problems. On examination of the deposits it became clear that, in only a few cases could the fouling be partially attributed to alkali metals, and even in those cases the primarily limestone-derived materials were almost quantitatively sulphated to a level which was sufficient to cause strength development by itself. In other cases, it appeared that the fouling mechanism was carbonation of the free lime component of the deposit followed by sulphation. Finally, in a few deposits which were less sulphated than bed materials and fly ash, strength development appeared to have occurred by conversion of the free lime in the deposits to Ca(OH)2, followed by carbonation. This type of agglomeration has not been reported previously in a FBC.

E.J. Anthony; A.P. Iribarne; J.V. Iribarne; R. Talbot; L. Jia; D.L. Granatstein

2001-01-01T23:59:59.000Z

290

Cyanide leaching from soil developed from coking plant purifier waste as influenced by citrate  

SciTech Connect

Soils in the vicinity of manufactured gas plants and coal coking plants are often highly contaminated with cyanides in the form of the compound Prussian blue. The objective of this study was to investigate the influence of citrate on the leaching of iron-cyanide complexes from an extremely acidic soil (pH 2.3) developed from gas purifier waste near a former coking plant. The soil contained 63 g kg{sup -1} CN, 148 g kg{sup -1} Fe, 123 g kg{sup -1} S, and 222 g kg{sup -1} total C. Analysis of the soil by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy revealed the presence of Prussian blue, gypsum, elemental sulfur, jarosite, and hematite. For column leaching experiments, air-dried soil was mixed with purified cristabolite sand at a ratio of 1:3 and packed into chromatography columns. The soil was leached with dilute (0.1 or 1 mM) CaCl{sub 2} solutions and the effluent was collected and analyzed for total and dissolved CN, Ca, Fe, SO{sub 4}, pH, and pe. In the absence of citrate, the total dissolved CN concentration in the effluent was always below current drinking water limits (< 1.92 {mu}M), indicating low leaching potential. Adding citrate at a concentration of 1 mM had little effect on the CN concentrations in the column effluent. Addition of 10 or 100 mM citrate to the influent solution resulted in strong increases in dissolved and colloidal CN concentrations in the effluent.

Tim Mansfeldt; Heike Leyer; Kurt Barmettler; Ruben Kretzschmar [Ruhr-University Bochum, Bochum (Germany). Soil Science and Soil Ecology Group, Faculty of Geosciences

2004-07-01T23:59:59.000Z

291

Influence of coal thermoplastic properties on coking pressure generation: Part 2 – A study of binary coal blends and specific additives  

Science Journals Connector (OSTI)

A number of coal blends and pitch/coal blends were evaluated using rheometry, thermogravimetric analysis and microscopy to confirm and further elucidate the coking pressure mechanism previously proposed by Duffy et al. (2007) [1]. We confirm that blending a low rank, high fluidity, low coking pressure coal, with a high rank, low fluidity, high coking pressure coal can significantly reduce the coking pressure associated with the latter. Interestingly, blending does not necessarily result in a fluidity that is midway between that of the two coals; sometimes the fluidity of the blend is less than that of the low fluidity coal, especially when the coals are significantly different in rank. This occurs because the increase in complex viscosity (?*) through resolidification of the low rank, high fluidity coal counteracts the reduction in ?* resulting from softening of the high rank, low fluidity coal. It has also been confirmed that the ?* of the resultant blend can be estimated from the ?* of each component coal using a logarithmic additivity rule commonly employed for polymer blends. Polarised light microscopy has indicated that the degree of mixing between coals of different rank is minimal, with fusion restricted to the particle surface. It is therefore inappropriate to think of such a coal blend in the same way as a single coal, since each component coal behaves relatively independently. This limited fusion is important for understanding the coking pressure mechanism for blends. It is proposed here that the lower rank coal, which softens at lower temperature, is able to expand into the interparticle voids between the high rank coal that is yet to soften, and these voids can create channels for volatiles to traverse. Then, and importantly, when the high rank coal begins to expand, the pore structure developed in the resolidified structures of the low rank coal can facilitate removal of volatiles, while the resolidified material may also act as a suitable sorbent for volatile matter. This is considered to be the primary mechanism by which coal blending is able to alleviate coking pressure, and applies to addition of inert material also. Addition of a coal tar pitch was found to increase fluidity but also to extend the thermoplastic range to lower temperatures. This caused an increase in the swelling range, which was accompanied by a long plateau in ?*, a feature which has previously been observed for certain high fluidity, high pressure coals. Elasticity and ?* at the onset of expansion were also higher for both the pitch impregnated coals and the high pressure blends, which supports previous findings for singly charged high pressure coals, and confirms the potential use of such criteria for identifying potentially dangerous coals/blends.

John J. Duffy; Merrick R. Mahoney; Karen M. Steel

2010-01-01T23:59:59.000Z

292

Innovative coke oven gas cleaning system for retrofit applications. Environmental Monitoring program. Volume 1 - sampling progrom report. Baseline Sampling Program report  

SciTech Connect

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This innovative coke oven gas cleaning system combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE provided cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct and Environmental Monitoring Plan for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. It also requires the preparation of a final report on the results of the Baseline Compliance and Supplemental Sampling Programs that are part of the EMP and which were conducted prior to the startup of the innovative coke oven gas cleaning system. This report is the Baseline Sampling Program report.

Stuart, L.M.

1994-05-27T23:59:59.000Z

293

Evaluating coking resources. 2. State standard GOST 25543-88 as a coding system for coal and coal mixtures in evaluating their technological properties  

Science Journals Connector (OSTI)

The codification of coal in State Standard 25543-88 is compared with the international codification of coal of medium and high rank. The ranking of coking coal on the basis of State Standard GOST...

Yu. A. Zolotukhin

2008-08-01T23:59:59.000Z

294

Comparative Study of Gasification Performance between Bituminous Coal and Petroleum Coke in the Industrial Opposed Multiburner Entrained Flow Gasifier  

Science Journals Connector (OSTI)

SUMMARY : Co-gasification performance of coal and petroleum coke (petcoke) blends in a pilot-scale pressurized entrained-flow gasifier was studied exptl. ... Two different coals, including a subbituminous coal (Coal A) and a bituminous coal (Coal B), individually blended with a petcoke in the gasifier were considered. ... results suggested that, when the petcoke was mixed with Coal A over 70%, the slagging problem, which could shorten the operational period due to high ash content in the coal, was improved. ...

Zhonghua Sun; Zhenghua Dai; Zhijie Zhou; Jianliang Xu; Guangsuo Yu

2012-09-27T23:59:59.000Z

295

The association of XRCC1 haplotypes and chromosomal damage levels in peripheral blood lymphocyte among coke-oven workers  

SciTech Connect

Theoretically, a haplotype has a higher level of heterozygosity than individual single nucleotide polymorphism (SNP) and the association study based on the haplotype may have an increased power for detecting disease associations compared with SNP-based analysis. In this study, we investigated the effects of four haplotype-tagging SNPs (htSNP) and the inferred haplotype pairs of the X-ray cross-complementing group 1 (XRCC1) gene on chromosome damage detected by the cytokinesis-block micronucleus assay. The study included 141 coke-oven workers with exposure to a high level of polycyclic aromatic hydrocarbons and 66 nonexposed controls. The frequencies of total MN and MNed cells were borderline associated with the Arg{sup 194}Trp polymorphism (P = 0.053 and P = 0.050, respectively) but not associated with the Arg{sup 280}His, Arg{sup 399}Gln and Gln{sup 632}Gln polymorphisms among coke-oven workers. Five haplotypes, including CGGG, TGGG, CAGG, CGAG, and CGGA, were inferred based on the four htSNPs of XRCC1 gene. The haplotype CGGG was associated with the decreased frequencies of total MN and MNed cells, and the haplotypes TGGG and CGAG were associated with the increased frequencies of total MN and MNed cells with adjustment for covariates among coke-oven workers. This study showed that the haplotypes derived from htSNPs in the XRCC1 gene were more likely than single SNPs to correlate with the polycyclic aromatic hydrocarbon-induced chromosome damage among coke-oven workers.

Shuguang Leng; Juan Cheng; Linyuan Zhang; Yong Niu; Yufei Dai; Zufei Pan; Bin Li; Fengsheng He; Yuxin Zheng [Chinese Center for Disease Control and Prevention, Beijing (China). National Institute of Occupational Health and Poison Control

2005-05-15T23:59:59.000Z

296

Characterization of fly ashes from circulating fluidized bed combustion (CFBC) boilers cofiring coal and petroleum coke  

SciTech Connect

The chemistry, mineralogy, morphology, and particle size distribution were investigated in fly ashes from the burning of Datong (ShanXi, China) bituminous coal and the cofiring of Mideast high-sulfur petroleum coke (PC) with 30:70 (cal %) and 50:50 (cal %) blends of Datong bituminous coal in two commercial CFBC boilers. With the exception of CaO, the amounts of major oxides in the fly ashes from cofiring PC and coal were close to those of the common coal fly ashes. The PC-coal fly ashes were enriched in Ni, V, and Mo, implying these trace elements were mainly derived from PC. Ni and V, along with several other elements, such as Cr, Cu, Se, Pb, U, Th, and possibly As and Cd, increased in content with a decrease in temperature of the electrostatic precipitator (ESP). The results of chemistry, mineralogy, and morphology studies suggested that the desulfurization rate of the CFBC boilers at current conditions was low, and the PC tends to coarsen the fly ash particles and increase the loss on ignition (LOI) values, making these fly ashes unsuitable for use as a cement additive or a mineral admixture in concrete. Further studies on the combustion status of the CFBC boilers are needed if we want to be able to increase the desulfurization rate and produce high-quality fly ashes for broader and full utilization. 22 refs., 4 figs., 4 tabs.

Feihu Li; Jianping Zhai; Xiaoru Fu; Guanghong Sheng [Nanjing University, Nanjing (China). State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment

2006-08-15T23:59:59.000Z

297

Coking” of zeolites during methanol conversion: Basic reactions of the MTO-, MTP- and MTG processes  

Science Journals Connector (OSTI)

Deactivation of acidic zeolite catalysts during methanol conversion is investigated for elucidating how spatial constraints interfere mechanistically. Detailed product composition – including retained organic matter – is determined in a time resolved mode. At 270–300 °C with H-ZSM-5, first unsaturated hydrocarbons are formed—methane being the indicative co-product. Then the reaction rate increases auto-catalytically, but soon declines because of exhaustive pore filling. The retained organic matter consists mainly of ethyl-trimethyl-benzene- and isopropyl-dimethyl-benzene molecules. Alkylation of benzene rings with ethene and propene produces the deactivating molecules. At 475 °C, alkylation of benzene rings with olefins has shifted to the reverse, reactivating the H-ZSM-5 catalyst. Coke forms slowly on the surface of H-ZSM-5 crystallites. Spatial constraints suppress the formation of 2-ring aromatics. With the wide pore zeolite H-Y, fast deactivation is noticed—bigger aromatic molecules can be formed and are retained. Methanol reactions on the protonic catalyst sites are visualized as CH3+ attack for methylation and dehydrogenation, methane being the hydrogen-rich co-product. Methanol conversion on zeolites H-ZSM-58, H-EU-1 and H-Beta is comparatively investigated. Zone ageing is discussed for favorable reactor design. It is shown, how a multi-compound product composition is the source of information for elucidating complex reaction mechanisms.

Hans Schulz

2010-01-01T23:59:59.000Z

298

Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends  

SciTech Connect

Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

2008-05-15T23:59:59.000Z

299

Removal of ash from Indian Assam coking coal using sodium hydroxide and acid solutions  

SciTech Connect

Mineral matter (ash) removal from Assam coking coal by leaching with different concentrations of sodium hydroxide and acid (HCl, H{sub 2}SO{sub 4}, HNO{sub 3}, and HF) solutions has been investigated at a temperature of 75 C. The parameters tested were concentration of NaOH, type of acid, concentration of acids, and number of acid leaching steps. Total ash removed increased with increase of NaOH and acid concentrations up to the range studied. For the same experimental conditions, treatment of caustic leached coal in HCl acid resulted in better demineralization than in H{sub 2}SO{sub 4} or HNO{sub 3} acid. In the NaOH-HNO{sub 3} leaching method, a higher concentration (>20%) of HNO{sub 3} acid had an adverse effect on the de-ashing of coal. The NaOH-HF leaching process has been found to be the most effective method of coal de-ashing. The two acid treatment steps (HCl-H{sub 2}SO{sub 4}/HCl-HNO{sub 3}) after caustic leaching are the next most effective methods of coal de-ashing. The removal of mineral matter (including S) from coal is expected to decrease the graphite reactivity and thus the atmospheric pollution (due to the generation of smaller quantities of CO and SO{sub 2} gases).

Kumar, M.; Shankar, R.H.

2000-03-01T23:59:59.000Z

300

Comparison of 3 MeV C{sup +} Ion-Irradiation Effects between The Nuclear Graphites made of Pitch and Petroleum Cokes  

SciTech Connect

Currently, all the commercially available nuclear graphite grades are being made from two different cokes, i.e., petroleum coke or coal-tar pitch coke, and a coal-tar pitch binder. Of these, since the coke composes most of the graphite volume, i.e., > 70 %, it is understood that a physical, chemical, thermal, and mechanical property as well as an irradiation-induced property change will be strongly dependent on the type of coke. To obtain first-hand information on the effects of the coke type, i.e., petroleum or pitch, on the irradiation sensitivity of graphite, specimens made of IG-110 of petroleum coke and IG-430 of pitch coke were irradiated up to {approx} 19 dpa by 3 MeV C{sup +} at room temperature, and the irradiation-induced changes in the hardness, Young's modulus, Raman spectrum, and oxidation properties were characterized. Results of the TEM show that the size and density of the Mrozowski cracks appeared to be far larger and higher in the IG-110 than the IG-430. Results of the hardness test revealed a slightly higher increase in the IG-430 than the IG-110 by around 10 dpa, and the Raman spectrum measurement showed a higher (FWHM){sub D}/(FWHM){sub G} value for IG-430 for 0.02 {approx} 0.25 dpa. Both the hardness and Raman measurement may imply a higher irradiation sensitivity of the IG-430 than the IG-110. Results of the Young's modulus measurements showed a large data scattering, which prevented us from estimating the differences between the grades. Oxidation experiments using a TG-DTA under a flow of dry air/He = 2.5 % (flow rate: 40 CC/min) at 750 and 1000 deg C show that the IG-110 of the petroleum coke exhibits a far higher oxidation rate than the IG-430. The discrepancy between the oxidation rate of the two grades increased with an increase in the oxidation temperature and the dose. Oxidized surface pore area was larger for IG-110. Judging from the results obtained from the present experimental conditions, the irradiation sensitivity appeared to be dependent on the degree of graphitization (thus, the perfection of graphite structure), and the differences in the oxidation property of the grades appeared to be largely affected by the structure of the Mrozowski cracks. Differences in the size and density of the Mrozowski cracks between the grades were attributed to the differences in the thermal conductivity of the grades. (authors)

Se-Hwan, Chi; Gen-Chan, Kim; Jong-Hwa, Chang [Nuclear Hydrogen Development and Demonstration Project, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon (Korea, Republic of)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Detection of natural oxidation of coking coal by TG-FTIR—mechanistic implications  

Science Journals Connector (OSTI)

The natural oxidation/weathering of coal continues to be a subject of interest both scientifically and industrially, in part due to the complexity of the molecular processes at hand as well as to the commercial implications involved. It is widely recognized that coking can be adversely affected by weathering whereas, combustion processes appear to be enhanced as result of oxidation. Combustion techniques are commonly used in the analysis of coal, and organic compounds in general, for the determination of elemental hydrogen, carbon and nitrogen. For oxygen, the method in common practice involves the determination by difference from directly determined values for moisture, ash, sulphur, hydrogen, carbon and nitrogen. This has led us to consider the use of thermogravimetry coupled to gas analysis by infrared spectroscopy (TG-FTIR) to measure organic oxygen in coal directly. Although this technique, developed by Solomon and coworkers, has been extensively used by our group and others, it appears not to have been considered for this particular purpose. Recently, we have shown that TG-FTIR is capable of measuring all the organic oxygen in both fresh and oxidized coal by simultaneous measurement of the three main oxygen-containing gases H2O, CO and CO2 evolved during rapid pyrolysis. This gives us a way of measuring quantitatively the oxygen introduced into the coal matrix during oxidation and at least a partial capability of establishing oxygen speciation. We have found, using TG-FTIR, that the early stages of coal oxidation results in the appearance of O-containing functional groups not present in the original coal. The nature of these functional groups is directly related to the oxidation reaction mechanism. These results will be presented and discussed in detail.

J.A. MacPhee; L. Giroux; J.-P. Charland; J.F. Gransden; J.T. Price

2004-01-01T23:59:59.000Z

302

A scanning electron microscope study on agglomeration in petroleum coke-fired FBC boilers  

Science Journals Connector (OSTI)

Ten samples originating from different boiler FBC systems burning petroleum coke and one laboratory sample were chosen to perform a study on the development, structure, and composition of deposits formed by agglomeration in various locations. The work focused on examination by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The possibility of a contribution of liquid phases in the adherence to solid surfaces and in agglomeration was discussed and checks by SEM, EDX, and analysis by neutron activation were performed; no evidence could be found either for liquid phases or for any role of vanadium or alkaline element compounds. The agglomerations result from the continued sintering of CaSO4 particles until they build up a strong framework that is indefinitely extended, into which particles of different and complex compositions are bound, without contributing to the cohesion. Chemical sintering occurring by the sulphation of CaO into CaSO4 appears to be an important contribution while CaO is still available, but sintering also occurs by mass transfer mechanisms and continues after the depletion of CaO. Deposits formed in regions only reached by fly ash (convection section), and also in in-bed deposits, grow from particles <50 ?m, mostly in the range of 10 ?m or less. In regions collecting bed ash (e.g., J-valves), the deposit grows from the sintering together of particles on the order of 100–300 ?m (originally bed ash particles), which themselves appear as conglomerates of extensively sintered smaller particles.

J.V Iribarne; E.J Anthony; A Iribarne

2003-01-01T23:59:59.000Z

303

A new mechanism for FBC agglomeration and fouling when firing 100% petroleum coke  

SciTech Connect

In a preliminary study of the problem of agglomeration development in the petroleum coke combustion ashes, samples from different locations in a combustor from an industrial CFBC boiler were analyzed. Various oxides and calcium compounds of vanadium were found, in all cases, amounting to a total of 0.1--0.2% of V. These compounds do not accumulate (i.e. their concentration in the deposit does not increase) in the course of the FBC operation. The deposits show abnormally high conversion to CaSO{sub 4}, in some cases with very little content of free CaO, and a new mechanism of agglomeration similar to chemical reaction sintering is proposed. Different possible mechanisms leading to the formation of agglomerates were examined and the hypothesis that currently seems to best fit with the data is that the agglomeration phenomenon is due to a ``molecular cramming`` effect caused by the nearly quantitative conversion of the CaO to CaSO{sub 4}. While the absence of fuel derived ash, which would normally provide discontinuities in the deposits allowing them to break up, instead permits the buildup of massive monolithic deposits in various parts of the CFBC primary reactor loop. This explanation is also consistent with the ability of Mg compounds to mitigate the problem, but it suggests that the effect of these compounds is to prevent the buildup of the deposits by providing ``inert material`` rather than by capturing vanadium oxides as has heretofore been supposed. Further systematic investigations are planned to definitively rule out a vanadate capture mechanisms and to explore whether sulfidization as opposed to sulfation plays any part in the buildup of these deposits.

Anthony, E.J. [CANMET, Ottawa, Ontario (Canada). Natural Resources Canada; Iribarne, A.P.; Iribarne, J.V. [Univ. of Toronto, Ontario (Canada)

1995-12-31T23:59:59.000Z

304

Effect of Pyrolysis and CO2 Gasification Pressure on the Surface Area and Pore Size Distribution of Petroleum Coke  

Science Journals Connector (OSTI)

Normalization of the reaction rate by the surface area indicated that the effect of the pressure on the physical characteristics of the petcoke was the main but not sole factor in the change of the reaction rate with the gasification pressure. ... As refiners are pushed toward producing cleaner transportation fuels from poorer quality crudes, the production of petroleum coke (petcoke) is increasing as a byproduct of heavy oil upgrading units. ... (1, 2) The majority of petcoke produced in Canada is currently stockpiled on the site of the plant. ...

Maryam Malekshahian; Josephine M. Hill

2011-10-03T23:59:59.000Z

305

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

306

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

307

Characteristics of a commercially aged Ni-Mo/Al2O3 hydrotreating catalyst: component distribution, nature of coke and effects of regeneration  

SciTech Connect

Information concerning the morphology and behavior of active components on commercially aged catalyst, the effects of regeneration conditions on activity, and insights into the nature of coke and contaminant metal deposits could lead to improved catalysts and operating conditions , yielding significant economic returns. Spent Ni-Mo/Al2O3 hydrotreating catalyst from a commercial hydrotreater was examined using TGA, SEM, STEM, XPS, and a microreactor. Information concerning intraparticle distributions of active components, characteristics of the coke and metal deposits, and catalytic activity for fresh, spent and regenerated catalyst was used to draw general conclusions concerning hydrotreating catalyst deactivation. It was found that catalytic activity was reduced and the nature of the hydrogenation function was altered due to bulk migration and agglomeration of molybdenum. This process was found to be accelerated by high-temperature regeneration. Results also indicated that iron deposits might catalyze formation of coke. Tentative generalizations and suggestions on improved reactor operation are presented.

Bogdanor, J.M.

1984-01-01T23:59:59.000Z

308

Effects of genetic polymorphisms of metabolic enzymes on cytokinesis-block micronucleus in peripheral blood lymphocyte among coke-oven workers  

SciTech Connect

Exploring the associations between genetic polymorphisms of metabolic enzymes and susceptibility to polycyclic aromatic hydrocarbon (PAH)-induced chromosomal damage is of great significance for understanding PAH carcinogenesis. Cytochrome P450, glutathione S-transferase, microsomal epoxide hydrolase, NAD(P)H:quinone oxidoreductase, and N-acetyltransferase are PAH-metabolizing enzymes. In this study, we genotyped for the polymorphisms of these genes and assessed their effects on cytokinesis-block micronucleus (CBMN) frequencies in peripheral blood lymphocytes among 141 coke-oven workers and 66 non-coke-oven worker controls. The geometric means of urinary 1-hydroxypyrene levels in coke-oven workers and the controls were 12.0 and 0.7 {mu}mol/mol creatinine, respectively. The CBMN frequency (number of micronuclei per 1,000 binucleated lymphocytes) was significantly higher in coke-oven workers (9.5 {+-} 6.6) than in the controls. Among the coke-oven workers, age was positively associated with CBMN frequency; the mEH His{sup 113} variant genotype exhibited significantly lower CBMN frequency than did the Tyr{sup 113}/Tyr{sup 113} genotype; the low mEH activity phenotype exhibited a lower CBMN frequency than did the high mEH activity phenotype; the GSTP1 Val{sup 105}/Val{sup 105} genotype exhibited a higher CBMN frequency than did the GSTP1 Ile{sup 105}/Ile{sup 105} or Ile{sup 105}/Val{sup 105} genotypes; the joint effect of high mEH activity phenotype and GSTM1 null genotype on CBMN frequencies was also found. Gene-environment interactions between occupational PAH exposure and polymorphisms of mEH and/or GSTM1 were also evident. These results indicate that the mEH, GSTP1, and GSTM1 polymorphisms may play a role in sensitivity or genetic susceptibility to the genotoxic effects of PAH exposure in the coke-oven workers.

Shuguang Leng; Yufei Dai; Yong Niu; Zufei Pan; Xiaohua Li; Juan Cheng; Fengsheng He; Yuxin Zheng [Chinese Center for Disease Control and Prevention, Beijing (China). National Institute for Occupational Health and Poison Control

2004-10-15T23:59:59.000Z

309

Experimental Investigation of Natural Coke Steam Gasification in a Bench-Scale Fluidized Bed: Influences of Temperature and Oxygen Flow Rate  

Science Journals Connector (OSTI)

However, natural coke was restricted in application and research due to its hot burst, difficult ignition, and abradability. ... disordering as a cause is now a real possibility on the basis of correlated optical and x-ray diffraction data from samples analyzed from within a thermal aureole of a Tertiary dyke emplaced in Permian coal-bearing strata. ... The thermal characteristics of natural coke steam gasification in a fluidized bed were three-dimensionally (3D) simulated based on the computational fluid dynamics (CFD) method using Fluent code. ...

Wen-guo Xiang; Chang-sui Zhao; Ke-liang Pang

2009-01-05T23:59:59.000Z

310

Physicochemical characterization of coke-plant soil for the assessment of polycyclic aromatic hydrocarbon availability and the feasibility of phytoremediation  

SciTech Connect

Coke oven site soil was characterized to assess the particle association and availability of polycyclic aromatic hydrocarbons (PAHs). We identified various carbonaceous materials including coal, coke, pitch, and tar decanter sludge. Most of the PAHs were associated with the polymeric matrix of tar sludge or hard pitch as discrete particles, coatings on soil mineral particles, or complex aggregates. The PAH availability from these particles was very low due to hindered diffusive release from solid tar or pitch with apparent diffusivities of 6 x 10{sup -15} for phenanthrene, 3 x 10{sup -15} for pyrene, and 1 x 10{sup -15} cm{sup 2}/s for benzo(a)pyrene. Significant concentrations of PAHs were observed in the interior of solid tar aggregates with up to 40,000 mg/kg total PAHs. The release of PAHs from the interior of such particles requires diffusion over a substantial distance, and semipermeable membrane device tests confirmed a very limited availability of PAHs. These findings explain the results from three years of phytoremediation of the site soil, for which no significant changes in the total PAH concentrations were observed in the test plot samples. The observed low bioavailability of PAHs probably inhibited PAH phytoremediation, as diffusion-limited mass transfer would limit the release of PAHs to the aqueous phase.

Ahn, S.; Werner, D.; Luthy, R.G. [Stanford University, Stanford, CA (United States). Dept. of Civil & Environmental Engineering

2005-09-01T23:59:59.000Z

311

Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China  

SciTech Connect

A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen [Peking University, Beijing (China). Laboratory for Earth Surface Processes, College of Environmental Sciences

2006-08-01T23:59:59.000Z

312

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

313

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

314

Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy  

SciTech Connect

Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2009-03-15T23:59:59.000Z

315

Co-gasification of Biomass and Non-biomass Feedstocks: Synergistic and Inhibition Effects of Switchgrass Mixed with Sub-bituminous Coal and Fluid Coke During CO2 Gasification  

Science Journals Connector (OSTI)

Co-gasification of biomass, namely, switchgrass, with coal and fluid coke was performed to investigate the availability of the gasification catalysts to the mixed feedstock, especially alkali and alkaline earth elements, naturally present on switchgrass. ...

Rozita Habibi; Jan Kopyscinski; Mohammad S. Masnadi; Jill Lam; John R. Grace; Charles A. Mims; Josephine M. Hill

2012-11-21T23:59:59.000Z

316

Further investigation of the impact of the co-combustion of tire-derived fuel and petroleum coke on the petrology and chemistry of coal combustion products  

SciTech Connect

A Kentucky cyclone-fired unit burns coal and tire-derived fuel, sometimes in combination with petroleum coke. A parallel pulverized combustion (pc) unit at the same plant burns the same coal, without the added fuels. The petrology, chemistry, and sulfur isotope distribution in the fuel and resulting combustion products was investigated for several configurations of the fuel blend. Zinc and Cd in the combustion products are primarily contributed from the tire-derived fuel, the V and Ni are primarily from the petroleum coke, and the As and Hg are probably largely from the coal. The sulfur isotope distribution in the cyclone unit is complicated due to the varying fuel sources. The electrostatic precipitator (ESP) array in the pc unit shows a subtle trend towards heavier S isotopic ratios in the cooler end of the ESP.

Hower, J.C.; Robertson, J.D.; Elswick, E.R.; Roberts, J.M.; Brandsteder, K.; Trimble, A.S.; Mardon, S.M. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

2007-07-01T23:59:59.000Z

317

Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry  

SciTech Connect

High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

2005-12-01T23:59:59.000Z

318

Effects of polymerization and briquetting parameters on the tensile strength of briquettes formed from coal coke and aniline-formaldehyde resin  

SciTech Connect

In this work, the utilization of aniline (C{sub 6}H{sub 7}N) formaldehyde (HCHO) resins as a binding agent of coke briquetting was investigated. Aniline (AN) formaldehyde (F) resins are a family of thermoplastics synthesized by condensing AN and F in an acid solution exhibiting high dielectric strength. The tensile strength sharply increases as the ratio of F to AN from 0.5 to 1.6, and it reaches the highest values between 1.6 and 2.2 F/AN ratio; it then slightly decreases. The highest tensile strength of F-AN resin-coke briquette (23.66 MN/m{sup 2}) was obtained from the run with 1.5 of F/AN ratio by using (NH4){sub 2}S{sub 2}O{sub 8} catalyst at 310 K briquetting temperature. The tensile strength of F-AN resin-coke briquette slightly decreased with increasing the catalyst percent to 0.10%, and then it sharply decreased to zero with increasing the catalyst percent to 0.2%. The effect of pH on the tensile strength is irregular. As the pH of the mixture increases from 9.0 to 9.2, the tensile strength shows a sharp increase, and the curve reaches a plateau value between pH 9.3 and 9.9; then the tensile strength shows a slight increase after pH = 9.9.

Demirbas, A.; Simsek, T. [Selcuk University, Konya (Turkey)

2006-10-15T23:59:59.000Z

319

Production of syngas via partial oxidation and CO{sub 2} reforming of coke oven gas over a Ni catalyst  

SciTech Connect

The partial oxidation and CO{sub 2} reforming of coke oven gas (COG) to syngas was investigated on differently sized Ni catalysts in a fluidized-bed reactor. It was found that the catalytic performance of Ni depends strongly on its particle size. The small-sized Ni catalyst exhibited higher activity and higher selectivity in the partial oxidation of COG. The conversion of CH{sub 4} was kept at 80.7% at a lower temperature (750{sup o}C) and a wide space velocity (from 8000 to 80 000 h{sup -1}). CO{sub 2} reforming of COG is also an efficient route for syngas production. The H{sub 2}/CO ratio in the COG-derived syngas could be controlled by manipulating the concentration of O{sub 2} or CO{sub 2} added in the feed. The yield of produced syngas increases with an increase in temperature. 19 refs., 10 figs., 2 tabs.

Jianzhong Guo; Zhaoyin Hou; Jing Gao; Xiaoming Zheng [Zhejiang University, Hangzhou (China). Institute of Catalysis, Department of Chemistry

2008-05-15T23:59:59.000Z

320

Study on one-dimensional steady combustion of highly densified biomass briquette (bio-coke) in air flow  

Science Journals Connector (OSTI)

Abstract Combustion experiments on cylindrical bio-coke (BIC), a highly densified biomass briquette, have been conducted to observe whether quasi-one-dimensional steady combustion can be attained in room temperature air flow. In the experiments, the air flow velocity was the main test condition and the fuel consumption rate when the bottom surface of the BIC sample burned was evaluated as the regression rate of the combustion zone at the bottom surface. In addition, one-dimensional calculations based on an energy equation at the combustion zone were conducted to understand the mechanism that results in steady combustion and predict the effect of water and volatile matter content in BIC on the extinction limit. The results showed that steady combustion of the BIC sample could be attained in 4.67 m/s or more, and, in contrast, extinction was observed in 3.82 m/s or less. The critical regression rate explained by the combustion zone temperature was shown, and the reason combustion becomes unsteady could be explained by the energy balance at the combustion zone. Though the main reason for extinction was radiation heat loss, the heat loss by water and volatile matter was not negligible. Therefore, the effect of water and volatile matter content on steady combustion must be considered.

Takero Nakahara; Hui Yan; Hiroyuki Ito; Osamu Fujita

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Numerical modeling of the aerodynamics, heat exchange, and combustion of a polydisperse ensemble of coke-ash particles in ascending axisymmetric two-phase flow  

SciTech Connect

A two-dimensional stationary model of motion, heat and mass exchange, and chemical reaction of polydisperse coke and ash particles in ascending gas-suspension flow has been constructed with allowance for the turbulent and pseudo turbulent mechanisms of transfer in the dispersed phase. The system of equations that describes motion and heat transfer in the solid phase has been closed at the level of the equations for the second moments of velocity and temperature pulsations, whereas the momentum equations of the carrying medium have been closed using the equation for turbulent gas energy, which allows for the influence of the particles and heterogeneous reactions.

B.B. Rokhman [National Academy of Sciences of Ukraine, Kiev (Ukraine). Institute of Coal Power Technologies

2009-07-15T23:59:59.000Z

322

Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 3, January 1, 1991--December 31, 1991  

SciTech Connect

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

Not Available

1992-10-16T23:59:59.000Z

323

Syngas production by CO2 reforming of coke oven gas over Ni/La2O3–ZrO2 catalysts  

Science Journals Connector (OSTI)

Abstract Syngas production by CO2 reforming of coke oven gas (COG) was studied in a fixed-bed reactor over Ni/La2O3–ZrO2 catalysts. The catalysts were prepared by sol–gel technique and tested by XRF, BET, XRD, H2-TPR, TEM and TG–DSC. The influence of nickel loadings and calcination temperature of the catalysts on reforming reaction was measured. The characterization results revealed that all of the catalysts present excellent resistance to coking. The catalyst with appropriate nickel content and calcination temperature has better dispersion of active metal and higher conversion. It is found that the Ni/La2O3–ZrO2 catalyst with 10 wt% nickel loading provides the best catalytic activity with the conversions of CH4 and CO2 both more than 95% at 800 °C under the atmospheric pressure. The Ni/La2O3–ZrO2 catalysts show excellent catalytic performance and anti-carbon property, which will be of great prospects for catalytic CO2 reforming of COG in the future.

Wei Tao; Hongwei Cheng; Weilin Yao; Xionggang Lu; Qiuhua Zhu; Guangshi Li; Zhongfu Zhou

2014-01-01T23:59:59.000Z

324

“From Coal to Coke  

Science Journals Connector (OSTI)

... IN the Sixth Coal Science Lecture, organized by the British ... Science Lecture, organized by the British Coal Utilization Research Association, and given at the Institution of Civil Engineers on October 16, ...

1957-11-02T23:59:59.000Z

325

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

326

Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report. Report No. 5 for reporting period May 1, 1999 through August 1, 1999  

SciTech Connect

The overall aim of the project is to demonstrate the performance and practical use of a probe for measuring the thickness of coke deposits located within the high-temperature tubes of a thermal cracking furnace. The objective of work during this period was to enhance the sensitivity and signal-to-noise ratio of the probe measurement. Testing identified that the primary source of signal noise was traced to imperfections in the sacrificial stand-off, which was formed using a casting procedure. Laminations, voids, and impurities contained in the casting result in attenuation and dispersion of the ultrasonic signal. This report describes the work performed to optimize the signal conductance of the sacrificial stand-off.

NONE

1999-08-15T23:59:59.000Z

327

Hydrogen production by reforming of simulated hot coke oven gas over nickel catalysts promoted with lanthanum and cerium in a membrane reactor  

SciTech Connect

Catalysts of Ni/Mg(Al)O promoted with lanthanum and cerium were tested in a BaCo{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3{delta}} (BCFNO) membrane reactor by catalytic partial oxidation of simulated hot coke oven gas (COG) with toluene as a model tar compound under atmospheric pressure. Analysis of the catalysts suggested that the hydrotalcite precursor after thermal treatment lead to a good dispersion of nickel forming the solid solution NiO-MgO and spinel (Ni,Mg)Al{sub 2}O{sub 4}. The promoted catalysts had higher oxygen permeation flux, better catalytic activity, and better resistance to carbon formation, which will be promising catalysts in the catalytic partial oxidation reforming of hot COG. 29 refs., 11 figs., 2 tabs.

Hongwei Cheng; Xionggang Lu; Yuwen Zhang; Weizhong Ding [Shanghai University, Shanghai (China). Shanghai Key Laboratory of Modern Metallurgy and Materials Processing

2009-05-15T23:59:59.000Z

328

Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke  

Science Journals Connector (OSTI)

Abstract The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25 g/L ZVI to OSPW resulted in 58.4% removal of \\{NAs\\} in the presence of oxygen, the addition of 25 g petroleum coke (PC) as an electron conductor enhanced the \\{NAs\\} removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the \\{NAs\\} removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox® bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment.

Parastoo Pourrezaei; Alla Alpatova; Kambiz Khosravi; Przemys?aw Drzewicz; Yuan Chen; Pamela Chelme-Ayala; Mohamed Gamal El-Din

2014-01-01T23:59:59.000Z

329

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

330

Coke-free dry reforming of model diesel fuel by a pulsed spark plasma at low temperatures using an exhaust gas recirculation (EGR) system  

Science Journals Connector (OSTI)

Dry reforming of diesel fuel, an endothermic reaction, is an attractive process for on-board hydrogen/syngas production to increase energy efficiency. For operating this dry reforming process in a vehicle, we can use the exhaust gas from an exhaust gas recirculation (EGR) system as a source of carbon dioxide. Catalytic dry reforming of heavy hydrocarbon is a very difficult reaction due to the high accumulation of carbon on the catalyst. Therefore, we attempted to use a non-equilibrium pulsed plasma for the dry reforming of model diesel fuel without a catalyst. We investigated dry reforming of model diesel fuel (n-dodecane) with a low-energy pulsed spark plasma, which is a kind of non-equilibrium plasma at a low temperature of 523?K. Through the reaction, we were able to obtain syngas (hydrogen and carbon monoxide) and a small amount of C2 hydrocarbon without coke formation at a ratio of CO2/Cfuel = 1.5 or higher. The reaction can be conducted at very low temperatures such as 523?K. Therefore, it is anticipated as a novel and effective process for on-board syngas production from diesel fuel using an EGR system.

Yasushi Sekine; Naotsugu Furukawa; Masahiko Matsukata; Eiichi Kikuchi

2011-01-01T23:59:59.000Z

331

Association of polymorphisms in AhR, CYP1A1, GSTM1, and GSTT1 genes with levels of DNA damage in peripheral blood lymphocytes among coke-oven workers  

SciTech Connect

Accumulating evidence has shown that both DNA damage caused by the metabolites of polycyclic aromatic hydrocarbons (PAH) and genetic polymorphisms in PAH-metabolic genes contribute to individual susceptibility to PAH-induced carcinogenesis. However, the functional relevance of genetic polymorphisms in PAH-metabolic genes in exposed individuals is still unclear. In this study of 240 coke-oven workers (the exposed group) and 123 non-coke-oven workers (the control group), we genotyped for polymorphisms in the AhR, CYP1A1, GSTM1, and GSTT1 genes by PCR methods, and determined the levels of DNA damage in peripheral blood lymphocytes using the alkaline comet assay. It was found that the ln-transformed Olive tail moment (Olive TM) values in the exposed group were significantly higher than those in the control group. Furthermore, in the exposed group, the Olive TM values in subjects with the AhR Lys{sup 554} variant genotype were higher than those with the AhR Arg{sup 554}/Arg{sup 554} genotype. Similarly, the Olive TM values in the non-coke-oven workers with the CYP1A1 MspI CC + CT genotype were lower than the values of those with the CYP1A1 MspI TT genotype. However, these differences were not evident for GSTM1 and GSTT1. These results suggested that the polymorphism of AhR might modulate the effects of PAHs in the exposed group; however, the underlying molecular mechanisms by which this polymorphism may have affected the levels of PAH-induced DNA damage warrant further investigation.

Yongwen Chen; Yun Bai; Jing Yuan; Weihong Chen; Jianya Sun; Hong Wang; Huashan Liang; Liang Guo; Xiaobo Yang; Hao Tan; Yougong Su; Qingyi Wei; Tangchun Wu [Huazhong University of Science and Technology, Wuhan (China). Institute of Occupational Medicine and Ministry of Education Key Lab of Environment and Health

2006-09-15T23:59:59.000Z

332

Kinetic Modeling for the Combined Pyrolysis and Steam Gasification of Petroleum Coke and Experimental Determination of the Rate Constants by Dynamic Thermogravimetry in the 500?1520 K Range  

Science Journals Connector (OSTI)

1 An important example of such hybridization is the endothermic steam gasification of petroleum coke (petcoke) to synthesis gas (syngas). ... A 2nd-Law analysis for generating electricity using the solar gasification products indicates the potential of doubling the specific electrical output and, consequently, halving the specific CO2 emissions, vis-à-vis conventional petcoke-fired power plants. ... 2 The overall chemical process can be represented by the simplified net reaction: where x and y are the elemental molar ratios of H/C and O/C in petcoke, respectively. ...

D. Trommer; A. Steinfeld

2006-03-28T23:59:59.000Z

333

Coking Coal Import Costs - EIA  

Gasoline and Diesel Fuel Update (EIA)

Import Costs for Selected Countries Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 48.67 46.59 49.25 78.98 108.68 126.85 120.51 163.26 NA France 52.47 60.26 62.05 75.46 109.69 133.48 124.63 212.51 NA Germany 51.30 59.53 64.00 74.74 113.48 135.72 133.45 182.72 NA Italy 55.48 57.67 60.39 77.24 103.02 112.05 118.05 118.97 NA Japan 41.13 42.14 41.73 61.40 88.80 93.10 88.43 184.13 NA Netherlands 55.37 55.55 63.00 78.99 104.06 125.70 125.84 187.06 NA Spain 52.32 57.10 60.44 79.30 116.50 134.81 124.87 211.23 NA United Kingdom 53.14 56.81 57.34 77.73 116.05 128.51 120.24 187.79 NA 1To convert U.S. dollars per metric ton to U.S. dollars per short ton

334

Quality fluctuations of coking coal  

Science Journals Connector (OSTI)

The quality fluctuations of coal from different sources is assessed, in terms of technical analysis, petrographic analysis, and plastometric data. Considerable fluctuations are seen in the moisture, ash, and s...

V. P. Lyalyuk; V. P. Sokolova; I. A. Lyakhova; D. A. Kassim

2013-01-01T23:59:59.000Z

335

Fundamental factors influencing coke strength.  

E-Print Network (OSTI)

??Research Doctorate - Doctor of Philosophy (PhD) In an ironmaking blast furnace solid-gas reactions are important and the rate of iron production is strongly dependent… (more)

Curran, Joel

2009-01-01T23:59:59.000Z

336

Coking Coal Prices for Industry - EIA  

Gasoline and Diesel Fuel Update (EIA)

Prices for Industry for Selected Countries1 Prices for Industry for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA 37.24 NA NA NA Austria NA NA NA NA NA NA NA NA NA Belgium 54.03 NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA 106.77 NA NA NA Canada NA NA NA NA NA NA NA NA NA Chile NA NA NA NA NA 69.02 NA NA NA China NA 38.38 41.28 52.20 61.72 NA NA NA NA Chinese Taipei (Taiwan) - - - - - - - - - - - - - - - - - - Colombia NA NA NA NA NA 33.84 NA NA NA Costa Rica NA NA NA NA NA NA NA NA NA Cuba NA NA NA NA NA NA NA NA NA Czech Republic 51.37 61.04 C C C C C C C Denmark - - - - - - - - - - - - - - - - - -

337

Petroleum Coke: A Viable Fuel for Cogeneration  

E-Print Network (OSTI)

; buy sulfur dioxide credits on the open market; install FGD; or switch to clean coal technology such as circulating fluidized bed combustion and gasification. Current trends in utility modernization are to utilize new clean coal technologies..., such as fluidized bed combustion or gasification, and install FGD technology. Regardless of which modernization method is used, it will feature high-sulfur fuel capability. In summary, public utilities are looking at low-sulfur fuel as a means to comply...

Dymond, R. E.

338

Differences in the coking pressure of coal  

Science Journals Connector (OSTI)

A method is developed for formulating a rheological model that describes the plastic mass of coal; the parameters of the plastic mass in the state of maximum deformability are considered. This method is used i...

L. V. Kopeliovich

2009-01-01T23:59:59.000Z

339

Removing petroleum products from coke-plant wastewater by means of coal concentrates and coking products  

Science Journals Connector (OSTI)

The use of raw materials and products at OAO Moskoks in absorbing petroleum products is explored. These materials are compared with mass-produced carbon absorbers. The possibility of producing carbon adsorbent...

N. P. Zubakhin; V. N. Klushin; D. A. Dmitrieva; E. V. Zen’kova

2011-04-01T23:59:59.000Z

340

Assessing the value of coking coal in terms of coking properties and genetic compatibility  

Science Journals Connector (OSTI)

On the basis of new research by the Sapozhnikov method (State Standard GOST 1186), as well as data on the yield of volatiles (State Standard GOST 6382) and the petrological characteristics, new definitions are pr...

V. P. Ivanov; I. S. Bondarenko; S. A. Pantykin

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Improved cost calculations of coke-oven gas at coke plants  

Science Journals Connector (OSTI)

It is important to develop new methods of determining the costs of individual products within a complex process, ... to determine, with maximum precision, the direct costs of each stage of the production process ...

S. V. Vashchilin; T. V. Osipovich; T. A. Ermolenko; E. I. Kotlyarov…

2009-04-01T23:59:59.000Z

342

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

Coal Washed Coal Coke Coke Oven Gas Other Gas Other CokingTJ) Coal Coke Coke Oven Gas Other Gas Other Coking Products

Lu, Hongyou

2013-01-01T23:59:59.000Z

343

Locally Roasted Omar Coffee Freshly Brewed Regular or Decaffeinated Coffee  

E-Print Network (OSTI)

: Coke, Diet Coke, Sprite...............................................................$ 1.25 Bottled

Holsinger, Kent

344

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

factor of bituminous coal, coking coal, and coke consumed inprice of Bituminous coal, coking coal, and coke consumed in

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

345

Cogeneration Waste Heat Recovery at a Coke Calcining Facility  

E-Print Network (OSTI)

hard surface overlays on their impellers and scrolls to prevent erosion. The use of linings was selected after a comprehensive study was performed investi gating the expected wear on unlined equipment, additional cost of linings, frequency of main... is provided fr the pump discharge head r for of the bypass steam e tering carbon steel steam sal s line line of the refine is feet long. The st am is metered by a primary venturi flow nozzle, essure transmitters, and temperature elements ne r...

Coles, R. L.

346

Innovative coke oven gas cleaning system for retrofit applications  

SciTech Connect

The EMP consists of a Compliance Monitoring Sampling Program and a Supplemental monitoring Sampling Program. The Compliance Monitoring Sampling Program will be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Project and during a summer and a winter period following the successful Startup and Operational phase of the completed Project. compliance monitoring consist of conducting all the sampling and observation programs associated with existing required Federal, State, and Local Regulations, Permits and Orders. These include air, water, and waste monitoring and OSHA and NESHAP monitoring. The Supplemental Monitoring Program will also be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Demonstration Facility and during a summer and a winter period following the successful startup and Operational phase of the completed Facility. Supplemental Monitoring includes sampling of 27 additional streams that are important to measure operational or environmental performance and impacts of the installation of the new COG treatment facilities.

Not Available

1992-09-21T23:59:59.000Z

347

Microwave heating for adsorbents regeneration and oil sands coke activation.  

E-Print Network (OSTI)

??Microwave heating has unique advantages compared to convection-radiation heating methods including fast heating rate and selective heating of objects. This thesis studied two applications of… (more)

Chen, Heng

2010-01-01T23:59:59.000Z

348

Effect of petroleum coke addition on coal gasification  

Science Journals Connector (OSTI)

The main fuel for power generation is combustion of coal and/or natural gas. Natural gas is expensive but clean and less problematic whereas coal is the reverse of natural gas. Natural gas resources are expected to last until 2020 where else coal has another 200 years expectancy. To replace the natural gas synthetic gas (syngas) can be used as a substitute fuel. Syngas can be produced using coal as fuel. In this study we blend petcoke a cheap solid carboneous fuel as an alternative to coal for the production of syngas using a 30 Kwattheat bubbling fluidized bed gasifier. The equivalent ratio (ER) was set at 2.8 and a gasification temperature was maintained between 680 to 710°C by manipulating between the feed flow rates and fluidizing medium. This condition was chosen as it proved to be the optimum based on the work by the same group. Various blend of coal:petcoke between 0 to 100% was analyzed. It was found that a 20:80 petcoke to coal gives a good correlation with 100% coal gasification.

2014-01-01T23:59:59.000Z

349

Industrial coking of coal batch without bituminous coal  

Science Journals Connector (OSTI)

For many years, Kuznetsk-coal batch has always included bituminous coal. Depending on the content of such coal, the batch may be characterized as lean ... classification was adopted by specialists of the Eastern

P. V. Shtark; Yu. V. Stepanov; N. K. Popova; D. A. Koshkarov…

2008-03-01T23:59:59.000Z

350

Evaluation of Bioremediation in a Coal-Coking Waste Lagoon  

Science Journals Connector (OSTI)

Bioremediation is a new and relatively unproven alternative for the destruction of complex organic wastes. While bioremediation of relatively simple hydrocarbons, such as the constituents of gasoline and diese...

Maureen E. Leavitt; Duane A. Graves…

1991-01-01T23:59:59.000Z

351

Investigation of the stress induced properties of coke during carbonization.  

E-Print Network (OSTI)

??The large polycyclic aromatic plates within coal tar pitches do not flow freely enough to organize into large anisotropic domains during pyrolytic carbonization. It was… (more)

Maybury, James Joshua.

2007-01-01T23:59:59.000Z

352

Coke resistant coating technology for applications in ethylene pyrolysis heaters.  

E-Print Network (OSTI)

?? This dissertation begins with a description of the history of the events leading to ethylene pyrolysis tube failure. During service, hydrocarbons pass through the… (more)

Chauhan, Alok Pratap Singh

2008-01-01T23:59:59.000Z

353

Dynamic Behaviour of Coke Drums PSVs During Blocked Outlet Condition.  

E-Print Network (OSTI)

??The maximum yield taken in an oil refinery can not exceed 70% without including Delayed Coker Unit (DCU) as part of unit operations in the… (more)

Vakilalroayaei, Hessam

2009-01-01T23:59:59.000Z

354

Effect of weathering on coal characteristics and coke qualities.  

E-Print Network (OSTI)

??The effect of weathering on the modification of chemical, petrological and rheological properties of four metallurgical coals in different rank and geology was investigated. And… (more)

Lee, Seung Jae

2012-01-01T23:59:59.000Z

355

E-Print Network 3.0 - adaptation taenkbara konsekvenser Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

altafgrende ngle... de arabiske lande, fr det selvsagt nogle konsekvenser. Det stiller nogle nye udfordringer til ... Source: Aarhus Universitet, Department of Computer...

356

Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector  

E-Print Network (OSTI)

2011. The World Coke & Coking Coal Markets, Global Steel2010. India's Domestic Coking Coal Scenario. New WorldSTEELEASE, 2011. China Coking Coal and Coke Weekly Monitor,

Karali, Nihan

2014-01-01T23:59:59.000Z

357

CISC 6930 1 Data Preprocessing  

E-Print Network (OSTI)

Bread, Coke, Milk 2 Beer, Bread 3 Beer, Coke, Diaper, Milk 4 Beer, Bread, Diaper, Milk 5 Coke, Diaper

Li, Yanjun "Lisa"

358

Parallel Composition Communication and Allow Hiding Parallel Processes  

E-Print Network (OSTI)

Parallel Composition Challenge (Dish1+Dish2) || Coke ? = (Dish1 || Coke)+(Dish2 || Coke) Mousavi: Parallel Composition Challenge (Dish1+Dish2) || Coke ? = (Dish1 || Coke)+(Dish2 || Coke) Faron Moller's Result Parallel Parallel Composition and |: Raisons d'^etre (Dish1 + Dish2) Coke (Dish1 Coke) + (Dish2 Coke) (Dish1 + Dish

Mousavi, Mohammad

359

Appendix A. Comparison of fuel detail for the State Energy Data...  

Annual Energy Outlook 2012 (EIA)

Pet Coke Industrial Coal Coal Total Coal Total Industrial CoalCoke Not Available Coking coal Industrial Coal Not Available Other Coal Industrial CoalCoke Not Available...

360

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

In addition, the coking coal market began to deteriorateits permeability. Bituminous, or coking coal, is blended andmerchant coke plants, coking coal is heated in a low-oxygen,

Worrell, Ernst

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

13C NMR Investigation of the Chemical Structures of Coking and Non-Coking Coals in the Original and Reductively Alkylated Solid States  

Science Journals Connector (OSTI)

Chemical structures of four Turkish coals in their original and reductively alkylated forms were investigated in the solid state by13C NMR, using cross polarization and magic-angle spinning. Changes in13C NMR int...

Gaye Erbatur; Oktay Erbatur; Abdullah Coban; Mark F. Davis…

1984-01-01T23:59:59.000Z

362

ISSUE 17 MAY 2014 A NAACP ECONOMIC PROGRAMS PUBLICATION WWW.NAACP.ORG/ECON  

E-Print Network (OSTI)

ANNIVERSARY #12;ISSUE 15 January 2014 NGLE THE A NAACP ECONOMIC PROGRAMS PUBLICATION EDITOR: NICOLE E. KENNEY is the very bottom of hardships." -W.E.B. Du Bois WWW.NAACP.ORG/ECON BROWNV.BOARDOFEDUCATION 60TH ANNIVERSARY

California at Santa Barbara, University of

363

China Energy Primer  

E-Print Network (OSTI)

35 Table 2-17 Coking Coal Used in Coke Production (1980-Figure 2-5, Figure 2-6). Coking coal accounts for about 45%although less than 40% of coking coal is used for coking (

Ni, Chun Chun

2010-01-01T23:59:59.000Z

364

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network (OSTI)

other bituminous coal and coking coal. Small differences incoal (used as fuel) Coking coal Coke oven coke Natural gasrange for typical NCVs of coking coal of 26.6 to 29.8Mj/kg.

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

365

Effect of pressure on the coking yields of coal tar pitches  

Science Journals Connector (OSTI)

Pyrolysis of five coal tar pitches with wide ranging characteristics, made from the same coal tar precursor, has been studied under nitrogen...5, 50×105, 90×105 and 160×105 Pa, at a temperature of 550 °C. The res...

G. Bhatia; R. K. Aggarwal; O. P. Bahl

1992-08-15T23:59:59.000Z

366

Reconstruction of the paleoenvironments of Jameson (Strawn) Reef field, Coke County, Texas  

E-Print Network (OSTI)

. Dr. Doug yon Gonten, though called upon rarely, was most courteous in rapidly seeing to it that necessary papezs were signed. I would like to thank most sincerely, my parents, Mr. and Mrs. Joe W. Hopkins. Their constant support during all my years... as absent, rare (& 5X), common (5-10%), oz abundant (& 10%%d) 56 LIST OF FIGURES (cont) Figure Page 18 Diagenetic features of the R. W. Walker //5 core as related to lithology, porosity, and permeability. Diagenetic features are recorded as absent...

Hopkins, Kenneth Warren

2012-06-07T23:59:59.000Z

367

Blast-furnace smelting with the injection of natural gas and coke-oven gas  

Science Journals Connector (OSTI)

A multizone mathematical model developed at Nekrasov Institute of Ferrous Metallurgy reveals the internal relations between the processes in a blast furnace. Using this model, the smelting processes and parameter...

I. G. Tovarovskii; A. E. Merkulov

2011-06-01T23:59:59.000Z

368

Sawdust Pyrolysis and Petroleum Coke CO2 Gasification at High Heating Rates.  

E-Print Network (OSTI)

??Clean and efficient electricity can be generated using an Integrated Gasification Combined Cycle (IGCC). Although IGCC is typically used with coal, it can also be… (more)

Lewis, Aaron D.

2011-01-01T23:59:59.000Z

369

Lack of correlation between the properties of a petroleum coke and its behaviour during combustion  

Science Journals Connector (OSTI)

This work is an attempt to establish links between the properties of the petcoke that can be measured through standard analysis in the laboratory and the behaviour of the petcoke both in terms of its combustion velocity and the emission of gas pollutants. A large number of petcokes, 22, taken from different sources, were burnt in an Entrained Flow Reactor (EFR) in conditions close to those of a fluidised bed of a cement plant precalciner. The burnout for the 22 petcokes ranged from 68% to 81%. The gas emissions resulting from their combustion were analysed. Prior to this, each type of petcoke was characterised in terms of its chemical composition, volatile matter and ash content, structural properties and LCV. The correlation between all these characteristics and the combustion velocity, SO2 emissions and NO emissions in the EFR were systematically investigated. The combustion velocity does not appear to be correlated to any of the properties. The emissions of SO2 can be accurately predicted from the content in S of the petcoke. The emissions in NO are not directly linked to the N content of the petcoke. No simple correlation could be established to predict NO emissions.

J.-M. Commandré; S. Salvador

2005-01-01T23:59:59.000Z

370

Kinetic Analysis of CO2 Gasification of Petroleum Coke at High Pressures  

Science Journals Connector (OSTI)

Two petcoke samples were gasified by CO2 at total pressures of 10 and 15 atm in a high-pressure flat-flame burner reactor at conditions where the bulk phase consisted of either 40 or 90 mol % CO2 with gas temperatures up to 1909 K. Particle diameters of ... ...

Maryam Malekshahian; Josephine M. Hill

2011-08-10T23:59:59.000Z

371

Benefication of coking-coal slimes by means of screen centrifuges  

Science Journals Connector (OSTI)

A new slime-benefication technology has been developed at Coal Preparation Plant Neryungrinskaya. In this technology, the product is separated in screen centrifuges. As a result, small particles with relativel...

S. A. Osadchii; E. K. Samoilova; G. Yu. Gol’berg

2009-06-01T23:59:59.000Z

372

A linear programming approach to optimal utilization of good quality coking coal — The Indian case  

Science Journals Connector (OSTI)

The present treatment is an attempted method for working out a standard against which the efficiency of any existing system of coal distribution of a country can be studied. The exercise, however, leans heavil...

Prof. Dr. Ranen Sen

1984-06-01T23:59:59.000Z

373

Formation of Coking Coal by Thermal Treatment of a Cannel Coal  

Science Journals Connector (OSTI)

... of the higher plants and the microplants (Ölalgen) have both played a part in coal formation: ... formation: coals formed from the former have been called humus ...

H. E. BLAYDEN; J. GIBSON; H. L. RILEY

1947-04-19T23:59:59.000Z

374

Nitrogen bases in the coking products of coal (composition, methods of isolation, and utilization) (Review)  

Science Journals Connector (OSTI)

The compositions and yields of nitrogen bases during thermochemical transformations of the organic mass of coals are presented. The dependence of the distribution ... nitrogen in the products of thermal refining ...

N. D. Rus'yanova; B. E. Kogan; M. A. Kosareva

1976-12-01T23:59:59.000Z

375

Production of catalyst supports for coking and sorbents from brown coal  

Science Journals Connector (OSTI)

Thermal activation of brown coal for production of porous carbon materials in a set-up with fluidized oxidation catalyst has been studied.

M. L. Shchipko; V. B. Fenelonov; E. V. Shevtsov…

1994-11-01T23:59:59.000Z

376

The nature and formation of coke in the reaction of methanol to hydrocarbons over chabazite  

E-Print Network (OSTI)

). Reactant: methanol t-butanol 1-heotanol Reaction conditions Temp. (K) LHSV (hr ) 644 1. 0 644 1. 0 644 0. 7 Conversion (g) 1 00 100 99. 9 Hydrocarbon distribution (wt g) methane ethane ethylene propane propylene i-butane n-butane bu...

McLaughlin, Kenneth Woot

1983-01-01T23:59:59.000Z

377

Zeolite deactivation during hydrocarbon reactions: characterisation of coke precursors and acidity, product distribution.  

E-Print Network (OSTI)

??The catalytic conversion of hydrocarbons over zeolites has been applied in large scale petroleum-refining processes. However, there is always formation and retention of heavy by-products,… (more)

Wang, B.

2008-01-01T23:59:59.000Z

378

Development of coke properties during the descent in the blast furnace.  

E-Print Network (OSTI)

??The efficiency in use of reducing agents in blast furnace (BF) ironmaking has been significantly improved over the years. At most blast furnaces, auxiliary fuels… (more)

Maria Lundgren

2013-01-01T23:59:59.000Z

379

High ash non-coking coal preparation by tribo-electrostatic dry process.  

E-Print Network (OSTI)

??Coal is the single largest fossil fuel used world-wide and accounts for more than 60% of the total commercial energy consumed. Between 60 to 80%… (more)

Ranjan Dwari

2008-01-01T23:59:59.000Z

380

Effects of hydrogen donor additives on the coking properties of high-temperature coal extracts.  

E-Print Network (OSTI)

?? Refcoal is a carbon precursor obtained by alkali-mediated extraction of coal with aprotic solvents such as DMF. Refcoal can be converted into a graphitic… (more)

Makgato, Matlou Hector

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High temperature properties and reactivity of coal and coke for ironmaking.  

E-Print Network (OSTI)

??Rapid growth of the steel industry in coming years will be strongly dependent upon coal. Understanding of coal behavior in current or emerging ironmaking processes… (more)

Kim, Byong-Chul

2012-01-01T23:59:59.000Z

382

Technology for processing ammonium rhodanide of coking plants into high-purity ammonium thiocyanate and thiourea  

SciTech Connect

The regularities of the reversible reaction of isomerization of ammonium thiocyanate (NH{sub 4}NCS) into thiourea (NH{sub 2}){sub 2}CS, and the reverse reaction, were analyzed. An ecologically clean and highly efficient method for the extraction, purification, separation, and production of isomers from the coal byproduct ammonium thiocyanate was developed based on the measured volatilities of NH{sub 4}NCS and (NH{sub 2}){sub 2}CS.

Urakaev, F.K. [Institute of Geology & Mineral SB RAS, Novosibirsk (Russian Federation)

2009-04-15T23:59:59.000Z

383

PSYCHO? LOGICAL? BULLETIN December 2003 Volume 2, No. 12  

E-Print Network (OSTI)

Advice from Your Friendly Health Psychologist #12;3 PsyCOKE TURNS TO MARKET RESEARCH Here's your big chance to make a difference! The PsyCoke crew is soliciting feedback on the current Coke machine menu@cmu.edu. ___________ Cherry Coke ___________ Coke ___________ Diet Cherry Coke ___________ Diet Coke ___________ Diet Dr

384

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network (OSTI)

et al. 2009. “Shift From Coke to Coal Using Direct Reductionadopted in China include: Coke Dry Quenching Theseand Hyman (2001) include coke-making energy use, Kim and

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

385

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network (OSTI)

Heat,” “Catalyst Petroleum Coke,” and “Hydrogen. ” OtherHeat,” “Catalyst Petroleum Coke,” and “Hydrogen. ” Tofuel,” “Marketable petroleum coke,” and “ Unfinished oil”; “

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

386

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry  

E-Print Network (OSTI)

briquette with pulverized coke in nitrogen atmosphere. ”Barriocanal. 2002. “Coal for metallurgical coke production:predictions of coke quality and future requirements for

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

387

Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry  

E-Print Network (OSTI)

fuel gas and catalyst coke, which are consumed within thefuel gas and catalyst coke requiring additional investmentsof a reaction section (coke drums) and a fractionation

Morrow III, William R.

2014-01-01T23:59:59.000Z

388

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network (OSTI)

Intercity Trucks Coal, oil, coke, other Freight water localmetal min prod petroleum, coke, & nuke smelting & rolling ofElectricity heat Coal and coke Coal Electr icity heat

Lin, Jiang

2008-01-01T23:59:59.000Z

389

Signal processing for 3D videos and displays  

E-Print Network (OSTI)

Accurately reconstructed “Coke” images using disparity map:actual full sized “Coke” L and R images . . . . . . . . . .cropped “Coke” L and R images . . . . . . . . . . . . Figure

Ramachandra, Vikas

2009-01-01T23:59:59.000Z

390

Exclusion as a Core Competition Problem  

E-Print Network (OSTI)

agree to exclusivity to Coke and one in which none doequilibrium dominates if Coke can convince even a smallis a prospective entrant, Coke may consider a broader range

Baker, Jonathan B.

2012-01-01T23:59:59.000Z

391

Key China Energy Statistics 2011  

E-Print Network (OSTI)

Heating Supply Coal Washing Coking Petroleum Refineries GasPower Heating Supply Coal Washing Coking Total ConsumptionHeating Supply Coal Washing Coking Petroleum Refineries Gas

Levine, Mark

2013-01-01T23:59:59.000Z

392

Key China Energy Statistics 2012  

E-Print Network (OSTI)

Heating Supply Coal Washing Coking Petroleum Refineries GasHeating Supply Coal Washing Coking Petroleum Refineries GasRefueling in China Coal Washing Coking Petroleum Refineries

Levine, Mark

2013-01-01T23:59:59.000Z

393

The Economic Ascent of China and the Potential for Restructuring the Capitalist World-Economy  

E-Print Network (OSTI)

Anderson, D. ????. “Japan’s Coking Coal Procurement System:in the International Coking Coal Market. ” Energy EconomicsHogan. ????. “Australia- Japan Coking Coal Trade: A Hedonic

Paul S. Ciccantell; Stephen G. Bunker

2005-01-01T23:59:59.000Z

394

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network (OSTI)

gas petroleum waxes coking coal t C/TJ other bituminous coalprocesses of coal washing, coking, petroleum refineries, gaslosses include coal washing, coking, petroleum refining, gas

Fridley, David

2011-01-01T23:59:59.000Z

395

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

generation, heating, coking and coal gas production, andgeneration, heating, coking and coal gas production, andgeneration, heating, coking and coal gas production, and

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

396

China Energy and Emissions Paths to 2030  

E-Print Network (OSTI)

refining, oil extraction, coking, coal mining, natural gasthe use of expensive heavy coking coal and increase theof inexpensive semi-coking coal. The ability to substitute

Fridley, David

2012-01-01T23:59:59.000Z

397

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

Aden, Nathaniel

2010-01-01T23:59:59.000Z

398

Toward a Process Model of Explanation with Implications for the Type-Token Problem  

E-Print Network (OSTI)

to prefer Pepsi to Coke as often as they prefer Coke to Pepsi. However, ministers tend to prefer Coke over typically generated took the general form: "Ministers tend to be conservative. Perhaps the Coke Corporation

Landy, David

399

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Production by Province, 1990 9. Coke Production, 1949-199410. Coking Coal Used in Coke Production, 1980-1992 11.coal plus small amounts of coke and middlings. Coal is used

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

400

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Mining Accidents Table 2B.6. Coke Production, 1949-20062B.7. Coking Coal Used in Coke Production, 1980-2006 TableConversion (Mtce) Table 4A.19.1. Coke Oven Gas End Use and

Fridley, Ed., David

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Analysis of the Past and Future Trends of Energy Use in Key Medium- and Large-Sized Chinese Steel Enterprises, 2000-2030  

E-Print Network (OSTI)

do not cite or circulate Coke Dry Quenching (CDQ), Top-other iron-bearing wastes, and coke dust are blended andmostly located at mining sites. Coke Making Coke is a carbon

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

402

Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector  

E-Print Network (OSTI)

A. , 2011. The World Coke & Coking Coal Markets, Globalnishant.blogspot.com/2010/03/met-coke-prices-rise-sharply-Ojha, V. , 2010. Global Coke, ICC Conference, New Delhi,

Karali, Nihan

2014-01-01T23:59:59.000Z

403

CHARACTERIZATION OF THE DEGRADATION OF HYDRODESULFURIZING CATALYSTS  

E-Print Network (OSTI)

clogged by the formation of coke through hydrogenation andcontained 0.5 percent coke residue. Light Vacuum Resid forcovered with a black layer of coke. This coke layer was seen

Whittle, D.P.

2012-01-01T23:59:59.000Z

404

www.hfs.washington.edu/UWStreetFood/ & Resident Dining Account  

E-Print Network (OSTI)

....................................... $ 1.75 Shinka Tea Chocolate Pudding ...................... $ 2.50 COLD DRINKS Coke, Diet Coke, Coke Zero, Sprite, ...............$ 1.05 Lemonade, Grape Fanta, Orange Fanta, Water Mexican Coke or Orange

Washington at Seattle, University of

405

China Energy Primer  

E-Print Network (OSTI)

37 Figure 2-8 Coke Production (1980-2006) 99 Figure 3-28 Coke Oven Gas End-use and Inputs35 Table 2-17 Coking Coal Used in Coke Production (1980-

Ni, Chun Chun

2010-01-01T23:59:59.000Z

406

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry  

E-Print Network (OSTI)

Capacity (Mt) Sintering Coke Making  Iron Making – Blast 12%), miscellaneous oil (9%), and coke gas (3%). A weightedof $1.66 (coal), $2.82 (coke, and coke gas), $4.43 (natural

Morrow III, William R.

2014-01-01T23:59:59.000Z

407

Psycho? Logical? Bulletin! October 2007  

E-Print Network (OSTI)

Report (pg. 5) Invasion of the (sleeping) Pod People (pg. 10) Et Cetera #12;The Graduate Coke Team would like to announce... New Flavors for the Coke Machine Coca-Cola Classic Diet Coke Diet Cherry Coke

408

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

the blast furnace means less coke is needed, so maintenancecontrol Foamy slag practices Coke making Oxy-fuel burners/Variable speed drive on coke oven gas compressors Coke dry

Worrell, Ernst

2011-01-01T23:59:59.000Z

409

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

2] In 1996, 1997, 1998, coking and coal numbers are combined2] In 1996, 1997, 1998, coking and coal numbers are combined1949-2006 Table 2B.7. Coking Coal Used in Coke Production,

Fridley, Ed., David

2008-01-01T23:59:59.000Z

410

PITTSBURGH REGIONAL ENVIRONMENTAL THREATS ANALYSIS  

E-Print Network (OSTI)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Coke Oven Emissions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Carbon Tetrachloride.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Acetaldehyde

Jiang, Huiqiang

411

Charlton House Hospitality Menu Selector  

E-Print Network (OSTI)

£1.40 per litre Soft Drinks: (Coke, Diet Coke, Sprite, Fanta) 80p per can #12;HOSPITALITY BREAKFASTS

412

Jo Ann Baumgartner and Sam Earnshaw: Organizers and Farmers  

E-Print Network (OSTI)

Janet Brians chaired and Dale Coke was there, and maybe Kenwith Janet Brians, Dale Coke, Ken Kimes, and Barney Bricmont

Rabkin, Sarah

2010-01-01T23:59:59.000Z

413

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

factors for production of coal products -- patent fuel, cokeoven coke,coke oven gas, blast furnace gas and briquettes (BKB) --

2006-01-01T23:59:59.000Z

414

ANTHROPOLOGY OF/IN CIRCULATION: The Future of Open Access and Scholarly Societies  

E-Print Network (OSTI)

to do something like the “Coke Complex” volume Culturalaccessed May 6, 2008. The Coke Complex project (http://

2008-01-01T23:59:59.000Z

415

Jered Lawson and Nancy Vail: Pie Ranch: A Rural Center for Urban Renewal  

E-Print Network (OSTI)

the Homeless Garden Project. Dale Coke called, interested inthe oral history with Dale Coke in this series. See the oral

Rabkin, Sarah

2010-01-01T23:59:59.000Z

416

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

Consumption of coking coal mainly for steelmaking will dropelectricity and town gas. Coking coal consumption mainly for

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

417

Vol. 60364 P. L. WALKER,JR.,AND EMILERAATS whether the swelling is of the predicted order of  

E-Print Network (OSTI)

ofpetro- leum coke bound together by a thin shell of coal tar pitch coke, which essentially consists

418

Adding coal dust to coal batch  

SciTech Connect

The granulometric composition of coke dust from the dry-slaking machine is determined. The influence of additions of 3-7% coke dust on the quality of industrial coking batch and the coke obtained by box coking is estimated. Adding 1% coke dust to coking batch does not markedly change the coke quality. Industrial equipment for the supply of dry-slaking dust to the batch is described.

V.S. Shved; A.V.Berezin [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

419

The Cylinder: Kinematics of the Nineteenth Century  

E-Print Network (OSTI)

distillation. The coking of coal as well as the productionin coal mines, in steel and paper mills, in coking plants,

Müller-Sievers, Helmut

2012-01-01T23:59:59.000Z

420

A Long, Contingent Path to Comparative Advantage: Industrial Policy and the Japanese Iron and Steel Industry, 1900-1973  

E-Print Network (OSTI)

Overseas Procurement of Coking Coal By the Japanese Steelendowed as Japan in coking coal and iron ore (Yonekura,

ELBAUM, BERNARD

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan  

E-Print Network (OSTI)

calcium carbide, coking, cement, coal, plate glass, pulp andcarbide 2 Mt Coking 80 Mt Cement 250 Mt Coal mining (

Levine, Mark D.

2010-01-01T23:59:59.000Z

422

Chips, Sticks, Dips & Bars Kettle Chips with Onion Dip  

E-Print Network (OSTI)

Dip · Lemon or Magic Bars · Coke, Diet Coke, Sprite & UConn Natural Spring Water $5.50 per guest $6.75 per guest Keep it Simple · Gourmet Filled Cookies · Coke, Diet Coke, Sprite & UConn Natural · Seasonal Fresh Fruit Display · Coke, Diet Coke, Sprite & UConn Natural Spring Water $5.50 per guest Take

Holsinger, Kent

423

University of Wales Swansea U Berger Department of Computer Science 27 February 2004  

E-Print Network (OSTI)

to bottom of the bag. For example, if the list of items is [coke, cake, mug, mug, choc, butter, coke, bread, tissuebox, soap, biscuit, lettuce, coke], then the output could be: bag 1: soap bag 2: biscuit bag 3: bread butter cake coke choc coke coke mug tissuebox mug lettuce [60 marks] Question 3. Use Prolog to solve

Berger, Ulrich

424

Complexation of the pyridine bases in the products from the coking of coal with organic solvents (review)  

Science Journals Connector (OSTI)

Published data on the complexation of pyridine bases with organic substances of various chemical types are reviewed. Examples of the use of these data for the isolation of individual heterocycles are discussed.

M. I. Zaretskii

1997-01-01T23:59:59.000Z

425

The production of high surface carbons from coal using pre-swelling in solvents to disperse coking catalysts  

Science Journals Connector (OSTI)

Carbons have been produced from Amaga coal using ZnCl2 as a catalyst to increase carbon yields during pyrolysis. It was found that the surface area and micropore volume could be increased by swelling the coal ...

F MONDRAGON; G QUINTERO; A JARAMILLO; J FERNANDEZ…

426

CO2 Gasification Rates of Petroleum Coke in a Pressurized Flat-Flame Burner Entrained-Flow Reactor  

Science Journals Connector (OSTI)

Two petcoke samples were gasified by CO2 at total pressures of 10 and 15 atm in a high-pressure flat-flame burner reactor at conditions where the bulk phase consisted of either 40 or 90 mol % CO2 with gas temperatures up to 1909 K. Particle diameters of 45–75 ?m were used in the experiments. ... The mass release data caused by CO2 gasification of the petcoke chars were fit to a global first-order model, and the optimal kinetic parameters are reported. ... The CO2 char gasification rates of both petcokes were shown to be higher than Illinois #6 coal when reacted at conditions of high temperature and pressure, even though most reactivity comparisons between petcoke and coal at lower temperature, pressure, and heating rates typically result in coal being more reactive. ...

Aaron D. Lewis; Emmett G. Fletcher; Thomas H. Fletcher

2014-06-05T23:59:59.000Z

427

Evaluation of metals release from oil sands coke : an ecotoxicological assessment of risk and hazard to aquatic invertebrates.  

E-Print Network (OSTI)

??The oil sands operations in northeast Alberta, Canada, employ unconventional processes to produce synthetic crude oil (SCO). Because the extracted bitumen, ¡®the form of oil… (more)

PUTTASWAMY, NAVEEN V

2011-01-01T23:59:59.000Z

428

Deactivation models by fitting the progression of temperature profiles – Coking model for the MTG process in adiabatic reactors  

Science Journals Connector (OSTI)

Abstract A methodology for estimating deactivation models for catalysts in industrial application is proposed. The method applies the movement of the measured axial temperature profile to gain information of the deactivating phenomena. For adiabatic reactors the conditions must be obtained by controlled heat compensation in a reactor furnace. As an example a deactivation model for the industrial methanol-to-gasoline (MTG) process is developed. The deactivation model together with suitable reactor models is a system of coupled partial differential equations with time and spatial coordinate as the independent variables. The unknown model parameters are estimated via a non-linear least square method, by matching predicted axial temperature profiles with measured profiles obtained in a pilot reactor containing a gasoline synthesis test catalyst.

Martin Dan Palis Sørensen

2014-01-01T23:59:59.000Z

429

Path Analysis of Biomarkers of Exposure and Early Biological Effects among Coke-Oven Workers Exposed to Polycyclic Aromatic Hydrocarbons  

Science Journals Connector (OSTI)

...8-diol of benzo(a)pyrene to more water-soluble trans-dihydrodiols, which...workers exposed to polycyclic aromatic hydrocarbons in engine repair workshops. Mutat Res...determination of exposure to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health 2002...

Li Qiu; Shuguang Leng; Zhongxu Wang; Yufei Dai; Yuxin Zheng; and Zengzhen Wang

2007-06-01T23:59:59.000Z

430

NUG2013NERSCplans.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

f S cience M agazine's T op Ten B reakthroughs o f 2 012 - t he d iscovery o f t he Higgs boson and the measurement of the 13 neutrino w eak m ixing a ngle * MIT r esearchers d...

431

Spring 2013 www.ecu.edu/services Proceeds from the three-hour  

E-Print Network (OSTI)

stuffed Coke polar bears. Sodas weren't the only things a special Coke vending machine set up in Dowdy was dispensed with a Coke. One lucky student, Naeem Pearson, got an XBOX KINECT with his Diet Coke. Cans, and plenty to share with those around. She had to call her office for help to bring them all back. Coke

432

Mining Association Rules in Large Association rules  

E-Print Network (OSTI)

, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke Examples of association rules {Diaper} {Beer}, {Milk, Bread} {Diaper,Coke}, {Beer, Bread} {Milk}, #12;An even simpler, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke Examples of frequent itemsets

Terzi, Evimaria

433

Jeff Larkey: Route One Farms  

E-Print Network (OSTI)

the Bay Area. And then Coke Farms, who brokers my produce—talking about marketing. You said Coke Farms has a cooler.Larkey: Coke Farms has a cooler, and they not only broker,

Farmer, Ellen

2010-01-01T23:59:59.000Z

434

China Energy and Emissions Paths to 2030  

E-Print Network (OSTI)

in solid fuels (coal), coke and electricity as a result ofHeat Natural Gas Oil Products Coke Solid Fuels Efficiencydemand for metallurgical coke. The energy intensity of the

Fridley, David

2012-01-01T23:59:59.000Z

435

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

436

Interference in a Modified Recognition Task: An Evaluation of the Changed-trace and Multiple-trace Hypotheses  

E-Print Network (OSTI)

screwdriver), a soda can (Coke, 7-up, or Sunkist), a coffeeif the participant saw a Coke in the slides and read about awith a choice between the Coke and the 7-up in the standard

Cybenko, Anne Katherine

2011-01-01T23:59:59.000Z

437

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

in the India Iron and Steel ISF Coke- Making a. b. c. d.and Stamp Charging). Maximum Recovery of Coke OvenGas Using Coke Oven Gas for achieving higher blast

Sathaye, Jayant

2011-01-01T23:59:59.000Z

438

Industry  

E-Print Network (OSTI)

combined heat and power and coke ovens, and waste managementto ban the use of small-scale coke-producing facilities forcasting, Scrap preheating, Dry coke quenching Inert anodes,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

439

Retrospective and Prospective Decomposition Analysis of Chinese Manufacturing Energy Use, 1995-2020  

E-Print Network (OSTI)

the production of petroleum products and in coke making forproduction of coke are not included in the primary energyproducts and for production of coke are not included in the

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

440

"A Most Grievous and Insupportable Vexation": Billeting in Early Seventeenth Century England  

E-Print Network (OSTI)

Montgomery Kellie Conway J. Coke These men are: ThomasSecretary of State; Sir John Coke, Secretary of State.Feb 1626, Cecil to Sir John Coke on the numbers of sailors

Stivers, George Spencer

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Information Organization Dagobert Soergel  

E-Print Network (OSTI)

Coke carbonated water 355 ml body Diet Coke aspartame 200 mg taste Table for intended for food product diet pecan pie normal Diet Coke low cal split pea soup normal unsalted butter low salt ice cream normal

Soergel, Dagobert

442

Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)  

E-Print Network (OSTI)

of coal powder injections for coke i n blast furnaces Theof coal powder injections for coke in ironmaking is a commonenergy use medium plants, coke & coal use medium plants,

Zhiping, L.

2010-01-01T23:59:59.000Z

443

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network (OSTI)

Intensity by Fuel MJ per US$ Diesel Coal Electricity Coke67 Figure 57: Coke Energy Intensity Trends, 2000 -enterprises tend to use coke-based blast furnaces more than

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

444

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

icity H eat Ammonia Coal and coke Coal Electri ci ty Heat NGOil Heavy oil Electri city Heat Coal Coke Electricity NG Heavy oil Coal Coke Electricity Diesel H eavy oil Coal NG

2008-01-01T23:59:59.000Z

445

Andy Griffin: Mariquita Farm  

E-Print Network (OSTI)

down and she talked to Dale Coke. 4 She might have talked toit to make their salads. Dale Coke was the first person I’mSo we just went for it. Dale Coke had a great scene going;

Rabkin, Sarah

2010-01-01T23:59:59.000Z

446

HARVEYMITCHELLPW(FM2818) RAYMOND STOTZER PW (FM 60)  

E-Print Network (OSTI)

BIZZELL SPENCE NAGLE LAMAR LUBBOCK COKE THROCKMORTON MOSHER SPENCE COKE THROCKMORTON LEWIS HOUSTON JOE HEAT BEUT YMCA COKE BIZZELL RUDDER COMPLEX MEMORIAL STUDENT CENTER KOLDUS SANDERS CORPS CENTER VICE

447

The VLDB Journal DOI 10.1007/s00778-014-0367-9  

E-Print Network (OSTI)

for something Coka-Cola flavored but I don't want an actual Coke", and a dictionary with two enti- ties "Coca Cola" and "Coke". Dictionary-based entity extraction finds the predefined entity "Coke" from the doc

Li, Guoliang

448

Combating the Privatization of Life in a Neo-Liberal Regime: The Fight for Water Democracies in India  

E-Print Network (OSTI)

2005 Everything Gets Worse With Coke. August 21. Electronica Web of Activists Gives Coke Problems in India. Wall Streetsheds light on a well-known Coke slogan – Life ho toh aisi –

Raders, Gavin

2009-01-01T23:59:59.000Z

449

Social Justice Feminism  

E-Print Network (OSTI)

Long Island Care at Home v. Coke, 127 S. Ct. 2339, 2344 (Long Island Care at Home v. Coke, 127 S. Ct. 2339 (2007) (download/Aspen.pdf). 299. Coke, 267 F. Supp. 2d at 333. She

Kalsem, Kristin; Williams, Verna L.

2010-01-01T23:59:59.000Z

450

W E P L A N , cook, S E R V E A N D R U N E V E R Y A S P E C T  

E-Print Network (OSTI)

$6.50 S I G N A T U R E E N T R � E S Coke, Diet Coke, Coke Zero, Sprite & Mr. Pibb­ served in 20-oz

Glasser, Adrian

451

A Comparison of Iron and Steel Production Energy Intensity in China and the U.S  

E-Print Network (OSTI)

industry includes all coke making, pelletizing, sintering,accounting for energy used for coke production within theinput used as a feedstock for coke making and also as a fuel

Price, Lynn

2014-01-01T23:59:59.000Z

452

House Matters: A Novel  

E-Print Network (OSTI)

the PC. Dozens of opened Coke cans surround the keyboard andfull ashtrays. “You want a Coke? ” he says, reaching into ahis mom enters with a tray of Cokes and glasses. “You boys

Pappas, Scott

2012-01-01T23:59:59.000Z

453

Janet and Grant Brians: Brians Ranch  

E-Print Network (OSTI)

organization, like Dale Coke. 3 I remember going and helpingmarket and deliver to Dale Coke over in San Juan [Bautista].See the oral history with Dale Coke in this series. The Loma

Farmer, Ellen

2010-01-01T23:59:59.000Z

454

Bubbling Over: Soda Consumption and Its Link to Obesity in California  

E-Print Network (OSTI)

did you drink soda such as Coke or 7-Up? Do not include dietor cans of soda such as Coke, or other sweetened drinks suchor cans of soda such as Coke or other sweetened drinks such

Babey, Susan H.; Jones, Malia; Yu, Hongjian; Goldstein, Harold

2009-01-01T23:59:59.000Z

455

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network (OSTI)

fuel, lignite, and petroleum coke and/ or crude oil), 86% ofalternatives such as petroleum coke and/ or crude oil withinEFj,js relevant to petroleum coke and crude oil were not

McKone, Thomas E.

2011-01-01T23:59:59.000Z

456

Charles I and the Spanish Plot: Anglo-Habsburg Relations and the Outbreak of the War of Three Kingdoms, 1630-1641  

E-Print Network (OSTI)

18 Hounded by Secretary John Coke for updates, Gerbier wasthe heads at Brussels by having Coke take the matter up withSP77/21 f.109. Gerbier to Coke, 31 March 1632, TNA SP77/21

O'Neill, Patrick Ignacio

2014-01-01T23:59:59.000Z

457

REGULATION AND SYSTEM INTERDEPENDENCE: EFFECTS ON THE SITING OF CALIFORNIA ELECTRICAL ENERGY FACILITIES  

E-Print Network (OSTI)

p. 297. Allan Rodgers, "Coking Coal Supply: Its Role in theChanges in the Supply of Coking Coal in Belgium since 1945,"Changes in the Supply of Coking Coal in Belgiumsince 1945,"

Kooser, J.C.

2013-01-01T23:59:59.000Z

458

Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector  

E-Print Network (OSTI)

Moreover, the coking coal prices peak in 2009 to above $between China Coking Coal Price and China Steel ProductionVolume China Coking Coal Prices (24) (2005 $/ton) (Mtonnes)

Karali, Nihan

2014-01-01T23:59:59.000Z

459

Review of China's Low-Carbon City Initiative and Developments in the Coal Industry  

E-Print Network (OSTI)

the slowing growth in coking coal production after 2005,the relative share of coking coal has continued to declinein domestic production of coking coal can be linked to the

Fridley, David

2014-01-01T23:59:59.000Z

460

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry  

E-Print Network (OSTI)

effective use of non-coking coal and iron-bearing dust andfrom iron ore and non-coking coal. The process was developedBF production in using non-coking coal as reducing agent and

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

coal mining, petroleum extraction and refining, coking, andCoal Mining and Dressing Petroleum and Natural Gas Extraction Petroleum Processing, Coking andCoal Mining and Dressing Petroleum and Natural Gas Extraction Petroleum Processing, Coking and

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

462

China's Energy and Carbon Emissions Outlook to 2050  

E-Print Network (OSTI)

power generation and coal input to coking is not included inTransformation Coking Generation CIS Total Coal Demand (Coking Generation AIS Figure 44 CIS and AIS Coal Demand by

Zhou, Nan

2011-01-01T23:59:59.000Z

463

Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors  

E-Print Network (OSTI)

of medium / poor coking coals (i.e. Partial Briquetting andNevertheless, the Indian non-coking coals, suitable for SSI,blast furnaces require coking coal that is mostly imported.

Sathaye, Jayant

2011-01-01T23:59:59.000Z

464

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Marketable Petroleum Coke Consumed at Refineries (Thousand Barrels)","U.S. Catalyst Petroleum Coke Consumed at Refineries (Thousand Barrels)","U.S. Other Products...

465

A la Carte Entres and Sandwiches Chicken Dijon 55  

E-Print Network (OSTI)

34 1/4 Sheet Cake 22 Beverages Soft Drinks (six pack) 6.50 Coke Sprite Diet Coke Dasani Water Juices

466

Andrew Wiles Building Radcliffe Observatory Quarter  

E-Print Network (OSTI)

- Orange or Apple £3.20 per litre Soft drinks ­ Coke, Diet Coke, Sprite, Fanta £1.95 each Cake & Pastry

467

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Coke " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Petroleum Coke...

468

Jim Cochran: Swanton Berry Farm  

E-Print Network (OSTI)

were a couple people (Dale Coke was one, and a couple ofthe oral history with Dale Coke in this series. “A watershed

Farmer, Ellen

2010-01-01T23:59:59.000Z

469

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network (OSTI)

coal Gas coal Fat coal Coking coal Lean coal Meagre coalCoal used for coking Natural Gas Coal used as fuel Source:

Zhou, Nan

2013-01-01T23:59:59.000Z

470

file://J:\\mydocs\\Coal\\Distribution\\2003\\distable4.HTML  

U.S. Energy Information Administration (EIA) Indexed Site

Short Tons) DESTINATION: Alabama State of Origin by Method of Transportation Electricity Generation Coke Plants Industrial Plants (Except Coke) Residential and Commercial...

471

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

8: Coal Price and Expenditure Estimates and Imports and Exports of Coal Coke, 2012 State Coal Coal Coke Prices Expenditures Prices Expenditures Residential Commercial Industrial...

472

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network (OSTI)

around 8-9% for good coking coal (IISI, 1982). Dryingof steam coal and coking coal to be $15/t (IEA, 1995). This

Xu, T.T.

2011-01-01T23:59:59.000Z

473

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

5% of its reserve is coking coal used by the steel industry.imports around 70% of coking coal annually. More recently,

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

474

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network (OSTI)

d The predominant use is coking coal for steel production.a,metallurgical grade coal for coking use in steel making (

Authors, Various

2010-01-01T23:59:59.000Z

475

How Godzilla Ate Pittsburgh: The Long Rise of the Japanese Iron and Steel Industry, 1900–1973  

E-Print Network (OSTI)

poorly endowed as Japan in coking coal and iron ore (WarrenYawata of iron ore for coking coal and the progressive in-

Bernard Elbaum

2007-01-01T23:59:59.000Z

476

GREET Development and Applications for Life-Cycle Analysis of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gas Animal Waste Waste water treatment 6 Coke Oven Gas Petroleum Coke Nuclear Energy Hydrogen GREET Examines More Than 85 VehicleFuel Systems Conventional Spark-Ignition...

477

Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 2, July 1, 1991--September 30, 1991  

SciTech Connect

The EMP consists of a Compliance Monitoring Sampling Program and a Supplemental monitoring Sampling Program. The Compliance Monitoring Sampling Program will be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Project and during a summer and a winter period following the successful Startup and Operational phase of the completed Project. compliance monitoring consist of conducting all the sampling and observation programs associated with existing required Federal, State, and Local Regulations, Permits and Orders. These include air, water, and waste monitoring and OSHA and NESHAP monitoring. The Supplemental Monitoring Program will also be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Demonstration Facility and during a summer and a winter period following the successful startup and Operational phase of the completed Facility. Supplemental Monitoring includes sampling of 27 additional streams that are important to measure operational or environmental performance and impacts of the installation of the new COG treatment facilities.

Not Available

1992-09-21T23:59:59.000Z

478

Innovative coke oven gas cleaning system for retrofit applications: Environmental Monitoring Program. Baseline sampling program report: Volume 2, Appendix sections 1--7  

SciTech Connect

This report contains no text. It consist entirely of results monitoring stack opacity, benzene surveys, chemical effluent in wastewater, etc.

Stuart, L.M.

1994-05-27T23:59:59.000Z

479

Etude de l’influence de la composition chimique de la charge de cokéfaction sur le rendement et la qualité du coke.  

E-Print Network (OSTI)

??116 p. : ill. ; 30 cm Dans le présent travail, on se propose d’étudier l’influence de la qualité de la charge du procédé de… (more)

Hennaoui, Feriel

2010-01-01T23:59:59.000Z

480

Evaluation of co-cokes from bituminous coal with vacuum resid or decant oil, and evaluation of anthracites, as precursors to graphite.  

E-Print Network (OSTI)

??Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged… (more)

Nyathi, Mhlwazi

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gasd ngle coke" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Theor Appl Genel (19961 'J2: 532-540 iD Spri ngt'r Verlag 1006 D. M. Spooner' J. Tivang . J. Nienhuis J. T. Miller  

E-Print Network (OSTI)

evaluated chl()ropla~t DNA (cpONA). j~o zymes. si ngle to low-copy nuclcu Ol\\ ,\\., (RFLPs). and fan dom by G, E. H;II,t D, rvl. Spouner (8 I ' J, T, iVl iller Vegclabk Crops Research Unit. USDA, Agric)' o he 'illlt,lhlc Introduction SOIUIIIIII1 L. section Eluhcrosulli (JUl.) A, Chi Id I~ COIl] pri ,ed

Douches, David S.

482

PREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DEAC0276CH03073  

E-Print Network (OSTI)

control, status li nes shared coordi nati on. The klystrons powered si ngle hi gh­voltage power supply ng control toroi phase. addi ti a dynami c phase control system wi ll allow feedback stabi li zati under quasi ­steady­state condi ti The hi electron temperature predi wi of ICRF (T ~5­7 keV)i nsures fi

483

HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 PARTICULATES #1PARTICULATES #1  

E-Print Network (OSTI)

- 10 Packaging derived fuel (PDF) 5 - 15 Auto shredder residue (ASR) ~25 Petroleum coke, "petcoke" ~1

Zevenhoven, Ron

484

From Analogy to Explanation: Relaxing the 1:1 Mapping Constraint... Very Carefully  

E-Print Network (OSTI)

as a whole, people tend to prefer Pepsi to Coke as often as they prefer Coke to Pepsi. However, ministers tend to prefer Coke over Pepsi," and asked them to generate an explanation for this "fact". One the Coke Corporation supports conservative causes." This explanation reflects a combination of knowledge

Landy, David

485

BLEACHERSBLEACHERS NO PARKING NO PARKING NO PARKING  

E-Print Network (OSTI)

&M BUILDING CE/TTI PAVILION HEEP CENTER HARRINGTON EDUCATION CENTER DUNCAN HALL REEDARENA YMCA COKE WERC HULLABALOO P.E.A.P. BIOTECHNOLOGY PLANT COKE GEORGEBUSHDR. UNIVERSITYDR. OUTHCOLLEGEAVE. BIZZELL BIZZELL NRD LAMAR NAGLE COKE THROCKMORTON COKE THROCKMORTON HOUSTON JONES HOUSTON HOGG ASBURY NEW IRELAND SPENCE

Behmer, Spencer T.

486

Motorist Assistance Service Area ADMINISTRATION  

E-Print Network (OSTI)

COKE WERC RICHARDSON DOHERTY CYCLOTRON REED-MCDONALD HALBOUTY HOTARD WALTON SCHUMACHER DAVIS-GARY MOSES HEALTH SCHOOL OF COKE TEXASAVE TEXASAVE NEW MAINDR. GEORGE BUSH DR. UNIVERSITY DR. SOUTHCOLLEGEAVE LEWIS LUBBOCK E LAMAR MOSHER CENTRALLAMAR NAGLE COKE THROCKMORTON COKE THROCKMORTON HOUSTON JONES

487

GEORGEBUSHDR. NRD(FM2154)  

E-Print Network (OSTI)

Green COKE GEORGEBUSHDR. BIZZELL OLDMAINDR. W LAMAR JOEROUTT HOUSTON NRD(FM2154) LEWIS LUBBOCK E LAMAR MOSHER CENTRAL LAMAR NAGLE COKE THROCKMORTON COKE THROCKMORTON STON SPENCE WELLBORNRD(FM GEORGE BUSH DR. R U SSEL CENTER GOLF CLUBHOUSE O&M BUILDINGPAVILION DUNCAN HALL COKE HART NAGLE DUNN MOSHERASTON COMMONS WELLS

Behmer, Spencer T.

488

WELLBORNRD(FM2154) HORTICULTURE  

E-Print Network (OSTI)

CHERS BLEACHERS YELL COKE OLDMAINDR. W LAMAR JOEROUTT HOUSTON OLSENBLVD OLSENBLVD OLSENBLVD WELLBORNRD(FM2154) HORTICULTURE RD GEORGEBUSHDR. LEWIS CENTRALLAMAR NAGLE COKE THROCKMORTON COKE THROCKMORTON CORPSOFCADETS CENTER BEUTEL HEALTH CTR. HEEP CENTER HARRINGTON EDUCATION CENTER DUNCAN HALL REED ARENA YMCA COKE

Behmer, Spencer T.

489

CORPS OF CADETS CLAYTON WILLIAMS  

E-Print Network (OSTI)

PAVILION HEEP CENTER HARRINGTON EDUCATION CENTER DUNCAN HALL YMCA COKE HEATON THOMPSON HART NAGLE DUNN NCE CENTER MCFERRIN COKE GE BIZZELL OLDMAINDR. W LAMAR JOEROUTT HOUSTON OLSENBLVD OLSENBLVD WELLBORNRD(FM2154) DR. LEWIS LUBBOCK ELAMAR MOSHER CENTRALLAMAR NAGLE COKE THROCKMORTON COKE THROCKMORTON HOUSTON

Behmer, Spencer T.

490

Mentos Lesson Grades 4 -8  

E-Print Network (OSTI)

Diet Coke Mentos x 2 tablet Balloons Beakers Tarp Container for water Note: Experiment is best the balloon is gas. The balloon example will be used as an analogy for the vessel containing Diet Coke. To prove that gas is in the Diet Coke; we will shake a bottle of Diet Coke and loosen the top allowing

491

Psycho? Logical? Bulletin! September, 2007  

E-Print Network (OSTI)

, as required In This Issue: New Recruiting System (pg. 2) New Coke? (pg. 3) New Vacation Photos (pp. 8 up right under your inbox! Page 2 #12;NewCokeAdministration A new year--a new Coke machine staff!! Changes you should know about: 1. We will aim to refill the coke machine twice weekly (Monday and Thursday

492

CLAYTONWILLIAMS CORPSOFCADETS  

E-Print Network (OSTI)

REEDARENA YMCA COKE HEATON HART NAGLE FOU HARR UTAY LEGGETT BOLTON BIZZELL HENDERSON LACY LIFESCIENCES AGLS.E.A.P. PLANT BIOTECHNOLOGY COKE OLDMAINDR. W LAMAR JOEROUTT HOUSTON OLSENBLVD OLSENBLVD WELLBORNRD(FM2154) LTU GEORGEBUSHDR. CENTRALLAMAR COKE THROCKMORTON COKE THROCKMORTON HOUSTON WELLBORN RD(FM 2154) GEORGE BUSH DR

493

Inverse Problems and Industrial Mathematics  

E-Print Network (OSTI)

line coke ore charging of ore and coke layers indirect reduction of ore by CO and H2 Inverse Problems in process parameters - charging strategy (distribution of coke-ore layers) - different raw materials Inverse and uniform quality of produced liquid iron - the decrease of coke consumption - a uniform gas mass flow

Fulmek, Markus

494

A Online appendix to accompany "A Spatial Approach to Energy Economics"  

E-Print Network (OSTI)

of the Standard International Trade Classification, Rev. 4 as: coal, coke and briquettes; petroleum, petroleum

Calgary, University of

495

Department of Ecosystem Science & SOIL RESEARCH CLUSTER LABORATORY  

E-Print Network (OSTI)

, Organometallics, Gasoline and fuels, Coal and coke, Graphite and carbides, Metals and alloys · Operator: Julie

Boyer, Elizabeth W.

496

Description: Start | Grid View | Browse by Day OR Group/Topical | Author Index | Keyword Index | Personal Scheduler  

E-Print Network (OSTI)

Knowlton (172b) COAL Direct Chemical Looping Process: Metallurigical Coke and PRB COAL Conversions L. - S

Gilchrist, James F.

497

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Qatar Reunion Romania Russia Chapter 7, Imports and Exports Exports Coke Imports Exports (t) Crude Oil

Fridley, Ed., David

2008-01-01T23:59:59.000Z

498

MA 225-001 Test 1 Review Questions S. Schecter  

E-Print Network (OSTI)

at both math and baseball. (c) Everyone plays golf or tennis. (d) Some people like Coke and some people neither golf nor tennis. (d) Some people like Coke and some people like Pepsi. i. x(x likes Coke) x(x likes Pepsi) ii. (x(x likes Coke) x(x likes Pepsi)) x(x likes Coke) x(x likes Pepsi) iii. No one

Schecter, Stephen

499

File  

U.S. Energy Information Administration (EIA) Indexed Site

1,"Alabama","Alabama","Electric Power Sector","Railroad",448583 1,"Alabama","Alabama","Electric Power Sector","Railroad",448583 2013,1,"Alabama","Alabama","Coke Plant","Railroad",71299 2013,1,"Alabama","Alabama","Industrial Plants Excluding Coke","Railroad",14493 2013,1,"Alabama","Alabama","Electric Power Sector","River",358269 2013,1,"Alabama","Alabama","Coke Plant","Truck",87126 2013,1,"Alabama","Alabama","Industrial Plants Excluding Coke","Truck",267108 2013,1,"Alabama","Indiana","Coke Plant","Railroad",164223 2013,1,"Alabama","Kentucky","Industrial Plants Excluding Coke","River",6042

500

PriceTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

prices prices are developed for the following three categories: coking coal; steam coal (all noncoking coal); and coal coke imports and exports. Coking coal, used in the industrial sector only, is a high-quality bitumi- nous coal that is used to make coal coke. Steam coal, which may be used by all sectors, includes anthracite, bituminous coal, subbituminous coal, and lignite. In the industrial sector, coal consumption is the sum of cok- ing coal and steam coal. The industrial coal price is the quantity- weighted average price of these two components. Imports and exports of coal coke are available only on the national level and are accounted for in the industrial sector. Coal coke imports and ex- ports are reported separately and are not averaged with other coal prices and expenditures. Coking Coal Coking coal is generally more expensive than steam coal; therefore, it is identified separately