Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Is the Missing Ultra-Red Material Colorless Ice?  

E-Print Network (OSTI)

The extremely red colors of some transneptunian objects and Centaurs are not seen among the Jupiter family comets which supposedly derive from them. Could this mismatch result from sublimation loss of colorless ice? Radiative transfer models show that mixtures of volatile ice and nonvolatile organics could be extremely red, but become progressively darker and less red as the ice sublimates away.

Grundy, W M

2008-01-01T23:59:59.000Z

2

Is the Missing Ultra-Red Material Colorless Ice?  

E-Print Network (OSTI)

The extremely red colors of some transneptunian objects and Centaurs are not seen among the Jupiter family comets which supposedly derive from them. Could this mismatch result from sublimation loss of colorless ice? Radiative transfer models show that mixtures of volatile ice and nonvolatile organics could be extremely red, but become progressively darker and less red as the ice sublimates away.

W. M. Grundy

2008-11-14T23:59:59.000Z

3

The Wettability of LaRC Colorless Polyimide Resins on Casting Surfaces  

Science Conference Proceedings (OSTI)

The effect of inherent viscosity, solids concentration, and solvent choice on the wettability of two colorless polyimides was investigated on various casting surfaces. LaRC-CP1 and LaRC-CP2 are optically transparent, radiation resistant, soluble polyimides ...

Miner Gilda A.; Stoakley Diane M.; Clair Anne K. St.; Gierow Paul A.; Bates Kevin

1997-04-01T23:59:59.000Z

4

Areas Participating in the Oxygenated Gasoline Program  

U.S. Energy Information Administration (EIA)

Demand and Price Outlook ... is a colorless, odorless, and poisonous gas ... oxygen by weight is to be used in the wintertime in those areas of the county that ...

5

Carbon Monoxide Safety Tips  

E-Print Network (OSTI)

Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist.

Shaw, Bryan W.; Garcia, Monica L.

1999-07-26T23:59:59.000Z

6

Hazardous odorless gases detected by LANL's IntelliCLAD  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video Collaboration Technology Transfer Technologies...

7

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

8

CLEARING THE AIR? THE EFFECTS OF GASOLINE CONTENT REGULATION ON AIR QUALITY  

E-Print Network (OSTI)

exposure to ground-level ozone pollution. Ozone is an odorless, colorless gas that has been linked are particularly pronounced amongst children and the elderly. Moreover, ozone is destructive to crops and natural: restrictions on the chemical composition of gasoline that are primarily intended to reduce the VOC emissions

Edwards, Paul N.

9

Z .Mutation Research 430 1999 145153 www.elsevier.comrlocatermolmut  

E-Print Network (OSTI)

theL statistical range of the calculated values assuming an additive interaction of the two agents product of uranium-238, is a colorless, odorless gas that decays with a half-life of 3.82 days and, in general, at concentra- tions hundreds of fold lower than in underground mines. Residential

10

Bio395 "Graduate School 101" Mohamed Noor, 613-8156, FFSC 4214  

E-Print Network (OSTI)

GRAVITY(H2 O = 1): 0.79 MELTING POINT: -98 °C (-144 °F) VAPOR DENSITY(AIR = 1): 1.1 IV. FIRE AND EXPLOSION impairment of vision, central nervous system dam- age, and death have been reported after prolonged: Clear, colorless, syrupy liquid. Odorless. SPECIFIC GRAVITY(H2O = 1): l.69 MELTING POINT: 2l °C (70 °F

Hammock, Bruce D.

11

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

12

Investing in Oil and Natural Gas A Few Key Issues  

U.S. Energy Information Administration (EIA) Indexed Site

Strategic Advisors in Global Energy Strategic Advisors in Global Energy Strategic Advisors in Global Energy Strategic Advisors in Global Energy Investing in Oil and Natural Gas: A Few Key Issues Prepared for EIA Conference Susan Farrell, Senior Director PFC Energy April 8, 2009 Investing in Oil and Gas| PFC Energy| Page 2 The Top 20 IOCs and Top 20 NOCs Account for Over Half of E&P Spend Source: PFC Energy, Global E&P Surveys Investing in Oil and Gas| PFC Energy| Page 3 Oil Prices Rose, But So Did Costs + 52% $0 $20 $40 $60 $80 $100 $120 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 WTI $/barrel Annual averages Large Gulf of Mexico Facility Costs by Segment Avg $28.31 Avg $59.13 Source: PFC Energy Investing in Oil and Gas| PFC Energy| Page 4 Near term Spending Cuts will be Significant

13

Air pollution uncertainty exists in radon measurements  

SciTech Connect

This report discusses radon which is a colorless, odorless gas formed by the decay of radium and uranium that has been shown to cause lung cancer. Progress has been made in ensuring the accuracy of home radon measurements. According to this report, however, radon measurements are uncertain because the ability of the devices that measure radon and the companies analyzing the devices' readings varies and homeowners may not be following EPA's recommended testing procedures. Several possible causes for the uncertainty in radon measurements are cited.

1989-01-01T23:59:59.000Z

14

EVAPORATION OF CAI LIQUIDS INTO SOLAR GAS. A. V. , L. Grossman1,2  

E-Print Network (OSTI)

EVAPORATION OF CAI LIQUIDS INTO SOLAR GAS. A. V. Fedkin1 , L. Grossman1,2 and S. B. Simon1 , 1-like liquids evaporating into more general gas compositions. In this work, we assume that a CAI precursor liquid is immersed in a gas whose composition is solar except for the amounts of CMAS components which

Grossman, Lawrence

15

Co-utilization of biomass and natural gas: a new route for power productin from biomass  

E-Print Network (OSTI)

Abstract Co-utilization of biomass and natural gas: a new route for power productin from biomass production is proposed in which biomass energy is used to partially reform natural gas in gas turbines. As a result, part of the natural gas fuel supply can be replaced by biomass while keeping the biomass

Glineur, François

16

An Inexpensive CO Sensor  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 An Inexpensive CO Sensor A schematic of the prototype CO passive sensor. Carbon moNOxide is a colorless, odorless, toxic gas whose primary source indoor is the incomplete combustion of fossil fuels. This gas can be a potential problem in any house that uses combustion appliances for space or water heating, cooking, or idling an automobile in an attached garage. Although most appliances work correctly, a problem can exist in houses when the appliance is unventilated or its ventilation system does not properly eliminate exhaust gases from the house. Since Americans spend 90% of their time indoors and 65 to 70% in their residences, understanding how and when CO builds up indoors could save lives. We have very little systematic data on how CO hazards are distrubuted in the indoor environment, but mortality

17

Glossary: Energy-Related Carbon Emissions  

U.S. Energy Information Administration (EIA) Indexed Site

Glossary: Energy-Related Carbon Emissions Glossary: Energy-Related Carbon Emissions Glossary: Energy-Related Carbon Emissions For additional terms, refer to: the Glossary of Emissions of Greenhouse Gases in the United States 1998 for additional greenhouse gas related terms, the Glossary of Manufacturing Consumption of Energy 1994 for additional manufacturing terms, and Appendix F of Manufacturing Consumption of Energy 1994 for descriptions of the major industry groups. British Thermal Unit: The amount of heat required to raise the temperature of 1 pound of water by 1 degree Fahrenheit. One quadrillion Btu is 1015 Btu, or 1.055 exajoules. Btu: See British Thermal Unit. Carbon Dioxide: A colorless, odorless, non-poisonous gas that is a normal part of Earth's atmosphere. Carbon dioxide is a product of fossil-fuel combustion as well as other processes. It is considered a greenhouse gas as it traps heat radiated into the atmosphere and thereby contributes to the potential for global warming.

18

 

NLE Websites -- All DOE Office Websites (Extended Search)

Better Water through Ion Interactions? Better Water through Ion Interactions? Scientists at the U.S. Department of Energy's Advanced Photon Source (APS) at Argonne National Laboratory have discovered surprising information about the way ions interact with mineral surfaces in water, opening the door to new knowledge on how contaminants travel in the environment. The insight, published in Physical Review Letters, may lead to a better understanding of the factors that determine water quality. Water - colorless, odorless and tasteless - may seem simple, but its interactions with minerals can be difficult to study. Ions, which range from nutrients such as calcium, to contaminants such as lead, are present in natural waters, but their transport is often limited by adsorption to mineral surfaces. The more scientists can understand about the interaction

19

Definition: Liquid natural gas | Open Energy Information  

Open Energy Info (EERE)

Liquid natural gas Liquid natural gas Jump to: navigation, search Dictionary.png Liquid natural gas Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure.[1] View on Wikipedia Wikipedia Definition Liquefied natural gas or LNG is natural gas that has been converted to liquid form for ease of storage or transport. Liquefied natural gas takes up about 1/600th the volume of natural gas in the gaseous state. It is odorless, colorless, non-toxic and non-corrosive. Hazards include flammability after vaporization into a gaseous state, freezing and asphyxia. The liquefaction process involves removal of certain components, such as dust, acid gases, helium, water, and heavy hydrocarbons, which could cause difficulty downstream. The natural gas is then condensed into a

20

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

MS_NatGas_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GAS-FUELING THE GAS-FUELING THE BLUE FLAME Natural Gas: It is colorless, shapeless, and in its pure form, odorless. For many years, it was discarded as worthless. Even today, some countries (although not the United States) still get rid of it by burning it in giant fl ares, so large they can be seen from the Space Shuttle. Yet, it is one of the most valuable fuels we have. Natural gas is made up mainly of a chemical called methane: a simple compound that has a carbon atom surrounded by four hydrogen atoms. Methane is highly fl ammable and burns almost completely. Th ere is no ash and very little air pollution. Natural gas provides nearly one-quarter of all the energy used in the United States. It is especially important in homes, where it supplies nearly half of all the energy used for cooking,

22

Anaerobic Digestion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaerobic Digestion Basics Anaerobic Digestion Basics Anaerobic Digestion Basics August 14, 2013 - 1:07pm Addthis Anaerobic digestion is a common technology in today's agriculture, municipal waste, and brewing industries. It uses bacteria to break down waste organic materials into methane and other gases, which can be used to produce electricity or heat. Methane and Anaerobic Bacteria Methane is a gas that contains molecules of methane with one atom of carbon and four atoms of hydrogen (CH4). It is the major component of the natural gas used in many homes for cooking and heating. It is odorless, colorless, and yields about 1,000 British thermal units (Btu) [252 kilocalories (kcal)] of heat energy per cubic foot (0.028 cubic meters) when burned. Natural gas is a fossil fuel that was created eons ago by the anaerobic

23

Improvements needed in the Environmental Protection Agency's testing program for radon measurement companies  

SciTech Connect

Radon, a naturally occurring, colorless, odorless gas, has been shown to cause lung cancer. As a result, EPA and the Public Health Service advise homeowners to test their homes and to take action if elevated radon levels are discovered. However, GAO believes that to make health decisions, homeowners need more assurance that the radon test results they obtain are accurate. This report discusses how greater accuracy in radon measurements would result from mandating company participation in the Radon Measurement Proficiency program and requiring radon measurement firms to meet minimum quality assurance requirements as a condition to participation. In addition, to ensure that state programs provide a minimum degree of control and consistency over radon measurement companies, GAO recommends that EPA issue guidance on the type of state programs and level of control it believes are needed at the state level in order to provide homeowners with adequate assurances that radon measurements are accurate.

Hembra, R.L.

1990-05-01T23:59:59.000Z

24

NREL: Hydrogen and Fuel Cells Research - Safety, Codes, and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety, Codes, and Standards Safety, Codes, and Standards NREL's hydrogen safety, codes, and standards projects focus on ensuring safe operation, handling, and use of hydrogen and hydrogen systems through safety sensors and codes and standards for buildings and equipment. Safety Sensors To facilitate hydrogen safety, NREL is testing hydrogen sensors that detect leaks and monitor gas purity at the Safety Sensor Testing Laboratory. Because hydrogen is colorless and odorless, sensors are important for safe hydrogen fueling stations, equipment, and facilities. NREL researchers are testing fiber-optic sensor configurations resistant to electromagnetic interference. They also are testing protective and self-cleaning overlayer coatings for sensors. For remote hydrogen sensing, NREL is assessing sensor requirements and design options for innovative

25

717 Notices to Readers Carbon Monoxide Poisoning Deaths  

E-Print Network (OSTI)

Carbon Monoxide monoxide Poisoning (CO) is an odorless, Continued colorless, nonirritating gas produced by the incomplete combustion of carbon-based fuels. CO exposure is responsible for more fatal unintentional poisonings in the United States than any other agent, with the highest incidence occurring during the cold-weather months (1). Although most of these deaths occur in residences or motor vehicles (2), two incidents among campers in Georgia illustrate the danger of CO in outdoor settings. This report describes the two incidents, which resulted in six deaths, and provides recommendations for avoiding CO poisoning in outdoor settings. Cases 14. On the afternoon of March 14, 1999, a 51-year-old man, his 10-year-old son, a 9-year-old boy, and a 7-year-old girl were found dead inside a zipped-up, 10-foot by 14-foot, two-room tent at their campsite in southeast Georgia (a pet dog also died). A propane gas stove, still burning, was found inside the tent; the stove apparently had been brought inside to provide warmth. The occupants had died during the night. Postmortem carboxyhemoglobin (COHb) levels measured 50%, 63%, 69%, and 63%, respectively, in the four decedents (in the general U.S. population, COHb concentrations

Basidiobolomycosis Arizona; North Carolinia

1999-01-01T23:59:59.000Z

26

Three-Dimensional Polypeptide Architectures Through Tandem Catalysis and Click Chemistry  

E-Print Network (OSTI)

product was a clear, colorless oil. No further purificationwas an opaque colorless oil (13.4 g crude isolated, 69%isolated as a clear, colorless oil. 1 H NMR (500 MHz, CDCl

Rhodes, Allison Jane

2013-01-01T23:59:59.000Z

27

Natural Gas A Preliminary Summary 1999  

Reports and Publications (EIA)

This Special Report provides preliminary natural gas data for 1999 which were reported on monthly surveys of the industry through December.

Information Center

2000-05-01T23:59:59.000Z

28

Natural Gas A Preliminary Summary 1998  

Reports and Publications (EIA)

This Special Report provides preliminary natural gas data for 1998 which were reported on monthly surveys of the industry through December.

Information Center

1999-04-01T23:59:59.000Z

29

Gemstones  

E-Print Network (OSTI)

crystal (colorless quartz) cosmetic jar with hieroglyphicElephant-ivory cosmetic jar in the form of a hippopotamus.crystal (colorless quartz) cosmetic jar with hieroglyphic

Harrell, James

2012-01-01T23:59:59.000Z

30

Areas Participating in the Oxygenated Gasoline Program  

Gasoline and Diesel Fuel Update (EIA)

odorless, and poisonous gas produced by incomplete burning of fuels used in internal combustion engines. Elevated levels of CO generally occur during the winter months because of...

31

Weathering Patterns of Ignitable Liquids with the Advanced ...  

Science Conference Proceedings (OSTI)

... 40 EZ Paint Thinner Kingsford Odorless Charcoal Lighter 2 ... the thermophysical properties of a coal-derived-liquid ... of S-8, Final Report for MIPR ...

2013-01-30T23:59:59.000Z

32

Energy Economizer for Low Temperature Stack Gas: A Case Study  

E-Print Network (OSTI)

Bartlesville (Oklahoma) Energy Technology Center (BETC) engineers made a study of recycling waste heat from one of the Power Plant boilers. The study showed that a system could be designed that would reclaim this waste heat and then utilize it to preheat air for boiler operation. The system incorporated a heat pipe heat exchanger flanged in a stack by-pass loop that would efficiently capture and transfer heat at low temperature differences (?T 350-5000 F). After reclaiming heat from this source, the burner air supply is preheated by passing through the heat exchanger. Sensitive design problems that had to be resolved were: Overall cost-effectiveness; below dew point cooling of stack gas causing acid corrosion; and selection of an effective heat exchanger for this application The candidate boiler is one of two that generate high temperature hot water (HTHW) for BETC facility heating and cooling. One unit normally handles the heating and cooling load while the other is in standby status. The preheat system was designed by BETC engineers. The new stack assembly was fabricated by a local metal shop, and was installed by BETC maintenance personnel. The cost of the heat exchanger and other hard-ware was $7,562. Operational results show that boiler efficiency has increased between 6 and 7 percent, which reflects the percent of reduction in fuel consumption. At full-load conditions, the burner supply air is preheated to 350oF and stack gas is cooled to 310oF. Corrosion damage to the heat exchanger and other internal parts are non-existent. Natural gas is the boiler fuel, and as expected, no residue coating of the heat exchanger has developed. To date, we are well pleased with the performance of the system. The savings in fuel and dollars speaks for itself. We are optimistic that this approach of reclaiming heat is not only technically feasible, but also cost-effective for many industry boilers that emit low temperature stack gas.

Tipton, J. A.

1979-01-01T23:59:59.000Z

33

Investing in Oil and Natural Gas A Few Key Issues  

U.S. Energy Information Administration (EIA)

The Top 20 IOCs and Top 20 NOCs Account for Over Half of E&P Spend Source: PFC Energy, Global E&P Surveys Oil Prices Rose, ...

34

Liquefied natural gas. A literature survey issued quarterly. [235 references  

SciTech Connect

This literature survey is a compilation of approximately 235 citations on LNG in the following areas: thermodynamic, phase equilibria, and other properties of methane; other properties of methane mixtures; liquefaction and separation; regasification;peak shaving and terminal storage plants; liquid storage; importation of LNG; ground and sea transportation; liquid pipelines; heat and mass transport; safety; sorption; instrumentation; gas fields and cavern storage; transportation and other applications; general references; economic factors; miscellaneous; patents; energy; and SNG.

1977-01-01T23:59:59.000Z

35

Liquefied natural gas. A literature survey issued quarterly. [225 references  

SciTech Connect

The literature survey covers approximately 225 references under 25 headings: thermodynamic properties of methane; other properties of methane; phase equilibria of methane; other properties of methane mixtures; liquefaction and separation; regasification;peak shaving and terminal storage plants; liquid storage; importation of LNG; ground transportation; sea transportation; liquid pipelines; heat and mass transport; safety; sorption; instrumentation; gas fields and cavern storage; transportation and other applications; general references; economic factors; miscellaneous; patents; energy; and SNG. (MCW)

1977-01-01T23:59:59.000Z

36

Asian Natural Gas: A Softer Market is coming  

U.S. Energy Information Administration (EIA)

Korea Uncontracted Demand Japan Uncontracted Demand Likely uncontracted demand including contract renewals. Asia Overview: Imports and Uncontracted Demand

37

Critical Feynman-Wilson gas: A model for multiparticle physics  

SciTech Connect

We develop a model in which hadron production in the true asymptotic region proceeds via the exchange of a factorizable singularity at J = 1, which implies a sensible meson spectrum. The rise of the hadronic total cross section and the inclusive plateau are ascribed to threshold effects of this mechanism, which is estimated to take effect at Fermilab energies. In the true asymptotic region the total cross section decreases like a small power of the rapidity, while fireball structure appears in the one-particle distribution. Both the exclusive (multiperipheral) and inclusive (Mueller) approaches are exploited. The discussion is in the language of statistical mechanics and our key assumptions are (i) existence of sensible thermodynamic limit, (ii) Koba-Nielsen-Olesen scaling, and (iii) factorization. We show that the nearest-neighbour interaction implied in the Feynman-Wilson ''gas'' by our factorizable singularity is responsible for its critical behaviour at infinite rapidity.

Antoniou, N.G.; Vlassopulos, S.D.P.

1978-12-01T23:59:59.000Z

38

Natural gas: A raw material or an energy source?  

SciTech Connect

Topics are raised concerning the imperfections in the conditions of supplying and charging for natural gas in Russia, where emphasis is placed on measuring the volumes and one neglects aspects of monitoring the calorific value of the gaseous fuel. When organizations in fuel and energy supply go over to market economics, particular interest attaches to research and to the use of experience in such organizations abroad. In developed Western countries, there is only about 0.1% error in determining the calorific value of natural gas, which is made up of errors in measuring the volume and combustion energy.

Aleksandrov, Yu.I.; Korchagina, E.N.

1994-10-01T23:59:59.000Z

39

Hydrogen peroxide in home-care formulations  

Science Conference Proceedings (OSTI)

Hydrogen peroxide-based bleaches are gentler to colors and fibers, are odorless, and have very low environmental impact. A research manager at Church & Dwight Co. describes the chemistry behind their development. Hydrogen peroxide in home-care formulations

40

ARM - Measurement - CO2 flux  

NLE Websites -- All DOE Office Websites (Extended Search)

: CO2 flux The rate of flow for carbon dioxide, a heavy, colorless greenhouse gas. Categories Atmospheric Carbon, Surface Properties Instruments The above measurement is...

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ARM - Measurement - CO2 concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

: CO2 concentration The amount of carbon dioxide, a heavy, colorless greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is...

42

Saunders, A.D., Larsen, H.C., and Wise, S.W., Jr. (Eds.), 1998 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 152  

E-Print Network (OSTI)

of ash fallout from large explosive eruptions. The tephra are bimodal (colorless km elevation in midsummer, followed by fallout in southern Greenland and in the Irminger Basin

43

Award-Winning DOE Technology Scores Success in Carbon Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

uses perfluorocarbon tracers (PFTs) - non-toxic, chemically inert clear colorless liquids - to provide a verifiable way to measure CO2 movement as well as provide leak...

44

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Sulfur hexafluoride (SF 6): A colorless gas soluble in alcohol and ether, and slightly less soluble in water. It is used as a dielectric in ...

45

A T U Section 3. Natural Gas A G A S  

U.S. Energy Information Administration (EIA)

Section 3. Natural Gas Natural gas prices are developed for the residential, commercial, indus-trial, transportation, and electric power sectors.

46

Synthesis of Isobutene and Isobutane from Synthesis Gas. A Literature Review Since 1992  

DOE Green Energy (OSTI)

The isosynthesis reaction is commonly referred as the reaction that converts selectively synthesis gas to isobutene and isobutane. The main feature of this reaction is the production of branched hydrocarbons in higher proportion with respect to linear hydrocarbons than expected from thermodynamic equilibrium and with a molecular weight distribution favoring iso-C4 hydrocarbons. This article reviews and summarizes isosynthesis research results reported in the open scientific literature with emphasis on the articles published in the last two decades.

Petkovic, Lucia M.; Ginosar, Daniel M.

2012-04-01T23:59:59.000Z

47

Strong Shock Waves and Nonequilibrium Response in a One-dimensional Gas: a Boltzmann Equation Approach  

E-Print Network (OSTI)

We investigate the nonequilibrium behavior of a one-dimensional binary fluid on the basis of Boltzmann equation, using an infinitely strong shock wave as probe. Density, velocity and temperature profiles are obtained as a function of the mixture mass ratio \\mu. We show that temperature overshoots near the shock layer, and that heavy particles are denser, slower and cooler than light particles in the strong nonequilibrium region around the shock. The shock width w(\\mu), which characterizes the size of this region, decreases as w(\\mu) ~ \\mu^{1/3} for \\mu-->0. In this limit, two very different length scales control the fluid structure, with heavy particles equilibrating much faster than light ones. Hydrodynamic fields relax exponentially toward equilibrium, \\phi(x) ~ exp[-x/\\lambda]. The scale separation is also apparent here, with two typical scales, \\lambda_1 and \\lambda_2, such that \\lambda_1 ~ \\mu^{1/2} as \\mu-->0$, while \\lambda_2, which is the slow scale controlling the fluid's asymptotic relaxation, increases to a constant value in this limit. These results are discussed at the light of recent numerical studies on the nonequilibrium behavior of similar 1d binary fluids.

Pablo I. Hurtado

2005-05-02T23:59:59.000Z

48

Utilization of low-quality natural gas: A current assessment. Final report  

SciTech Connect

The objective of this report is to evaluate the low quality natural gas (LQNG) resource base, current utilization of LQNG, and environmental issues relative to its use, to review processes for upgrading LQNG to pipeline quality, and to make recommendations of research needs to improve the potential for LQNG utilization. LQNG is gas from any reservoir which contains amounts of nonhydrocarbon gases sufficient to lower the heating value or other properties of the gas below commercial, pipeline standards. For the purposes of this study, LQNG is defined as natural gas that contains more than 2% carbon dioxide, more than 4% nitrogen, or more than 4% combined CO{sub 2} plus N{sub 2}. The other contaminant of concern is hydrogen sulfide. A minor contaminant in some natural gases is helium, but this inert gas usually presents no problems.

Acheson, W.P.; Hackworth, J.H.; Kasper, S.; McIlvried, H.G.

1993-01-01T23:59:59.000Z

49

Liquefied natural gas. A literature survey issued quarterly, October--December 1976. [About 130 items  

SciTech Connect

A bibliography is compiled on LNG. In this issue, about 130 items are categorized in the following areas: thermodynamic, other properties, and phase equilibria of methane; other properties of methane mixtures; liquefaction and separation; regasification; peak shaving and terminal storage plants; liquid storage; importation of LNG; ground and sea transport; liquid pipelines; heat and mass transport; safety; sorption; instrumentation; gas fields and cavern storage; transportation and other applications; general references; economic factors; miscellaneous; patents; energy; and SNG. (MCW)

1976-01-01T23:59:59.000Z

50

Liquefied natural gas. A literature survey issued quarterly, April--June 1976. [About 250 items  

SciTech Connect

A bibliography is compiled on LNG. In this issue, about 250 items are categorized in the following areas: thermodynamic, other properties, and phase equilibria of methane; other properties of methane mixtures; liquefaction and separation; regasification; peak shaving and terminal storage plants; liquid storage; importation of LNG; ground and sea transport; liquid pipelines; heat and mass transport; safety; sorption; instrumentation; gas fields and cavern storage; transportation and other applications; general references; economic factors; miscellaneous; patents; energy; and SNG. (MCW)

1976-01-01T23:59:59.000Z

51

Liquefied natural gas. A literature survey issued quarterly, January--March 1976. [About 400 items  

SciTech Connect

A bibliography is compiled on LNG. In this issue, over four hundred items are categorized in the following areas: thermodynamic, other properties, and phase equilibria of methane; other properties of methane mixtures; liquefaction and separation; regasification; peak shaving and terminal storage plants; liquid storage; importation of LNG; ground and sea transportation; liquid pipelines; heat and mass transport; safety; sorption; instrumentation; gas fields and cavern storage; transportation and other applications; general references; economic factors; miscellaneous; patents; energy; and SNG. (MCW)

1976-01-01T23:59:59.000Z

52

Liquefied natural gas. A literature survey issued quarterly, July--September 1976. [About 150 items  

SciTech Connect

A bibliography is compiled on LNG. In this issue, about 150 items are categorized in the following areas: thermodynamic, other properties, and phase equilibria of methane; other properties of methane mixtures; liquefaction and separation; regasification; peak shaving and terminal storage plants; liquid storage; importation of LNG; ground and sea transport; liquid pipelines; heat and mass transport; safety; sorption; instrumentation; gas fields and cavern storage; transportation and other applications; general references; economic factors; miscellaneous; patents; energy; and SNG. (MCW)

1976-01-01T23:59:59.000Z

53

Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey  

SciTech Connect

A literature survey was conducted to collect information and summarize the methods available to capture iodine from fuel reprocessing off-gases. Techniques were categorized as either wet scrubbing or solid adsorbent methods, and each method was generally described as it might be used under reprocessing conditions. Decontamination factors are quoted only to give a rough indication of the effectiveness of the method. No attempt is made to identify a preferred capture method at this time, although activities are proposed that would provide a consistent baseline that would aid in evaluating technologies.

Daryl Haefner

2007-02-01T23:59:59.000Z

54

Development of Gold-Catalyzed Oxidative Alkene Heteroarylation and of Enantioselective Reactions Enabled by Phase Separation  

E-Print Network (OSTI)

concentrated. The us colorless oil: 1 H residue NMR (500S1.1 yield) a viscous oil: H NMR 5.83 (ddt, J = 16.9, 10.3,MHz, CDCl MHz, CDCl colorless oil: H NMR (500 MHz, CDCl 3 )

Lackner, Aaron D.

2013-01-01T23:59:59.000Z

55

International market integration for natural gas? : a cointegration analysis of priced in Europe, North America and Japan  

E-Print Network (OSTI)

We examine the degree of natural gas market integration in Europe, North America and Japan, between the mid 1990?s and 2002. Our hypothesis is that there was a certain split of prices between Europe and North America. The ...

L'Hegaret, Guillaume

2004-01-01T23:59:59.000Z

56

author regarding possible amendments. Long Term Contracts vs. Short-Term Trade of Natural Gas A European Perspective  

E-Print Network (OSTI)

This paper analyses the economics of long-term gas contracts under changing institutional conditions, mainly gas sector liberalisation. The paper is motivated by the increasingly tense debate in continental Europe, UK and the US on the security of long-term gas supply. We discuss the main issues regarding long-term contracts, i.e. the changing role of the flexibility clause, the effect of abandoning the destination clause, and the strategic behaviour of producers between long-term sales and spot-sales. The literature suggests consumers and producers benefit from risk hedging through long-term contracts. Furthermore long-term contracts may reduce exercise of market power. Our analysis adds an additional benefit if the long-run demand elasticity is significantly higher than the short-run elasticity, both strategic producers and consumers benefit from lower prices and larger market volume. Some policy implications of the findings are also discussed.

Karsten Neuhoff; Christian Von Hirschhausen; Karsten Neuhoff; Christian Von Hirschhausen

2005-01-01T23:59:59.000Z

57

Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

10%, but brands vary. A colorless liquid should be reported in cups E, F, or G. (Student error is to be expected) 2. Measure 1 ml of water in an eye dropper and use a permanent...

58

Phosphine-Mediated Multi-Component ?-Umpolung/Aldol/Wittig Cascade Reaction for the Synthesis of Functionalized Naphthalenes  

E-Print Network (OSTI)

84% yield) as a pale yellow oil; IR (film) ? max 3252, 2927,99% yield) as a pale yellow oil; IR (film) ? max 3277, 3031,87% yield) as a colorless oil; IR (film) ? max 3300, 3058,

Zhang, Kui

2013-01-01T23:59:59.000Z

59

554 J. Am. Chem. SOC.1993, 115, 554-562 161.12, 163.64;MS 248 (Mt +2), 246 (M+), 155, 126,84 (base peak).  

E-Print Network (OSTI)

peak). HRMS Calcd for C8Hl,N202Br:246.00039. Found: 246.0001. 3-[3-[[2-(Trimethylsilyl procedure as used for the synthesis of compound 32 and obtained as a colorless oil (32%) alone with 221 (8

Jones, William D.

60

Melamine-formaldehyde aerogels  

DOE Patents (OSTI)

Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.

Pekala, Richard W. (Pleasant Hill, CA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Melamine-formaldehyde aerogels  

DOE Patents (OSTI)

Organic aerogels that are transparent and essentially colorless are prepared from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porosity, ultrafine cell/pore sizes, and optical clarity. 3 figs.

Pekala, R.W.

1992-01-14T23:59:59.000Z

62

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Plant Net Stocks Natural Gas Plant Net Stocks Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Butylene (C4H8) An olefinic hydrocarbon recovered from refinery processes. Ethane (C2H6) A normally gaseous straight-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of -127.48º F. It is extracted from natural gas and refinery gas streams. Isobutane (C4H10) A normally gaseous branch-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of 10.9º F. It is extracted from natural gas or refinery gas streams. Liquefied Petroleum Gases (LPG) A group of hydrocarbon-based gases derived from crude oil refining or nautral gas fractionation. They include: ethane, ethylene, propane, propylene, normal butane, butylene, isobutane, and isobutylene. For convenience of transportation, these gases are liquefied through pressurization.

63

Microsoft Word - Zn-DTPA Insert_2 Pages.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

zinc trisodium injection contains the sodium salt of zinc diethylenetriaminepentaacetate. Pentetate zinc zinc trisodium injection contains the sodium salt of zinc diethylenetriaminepentaacetate. Pentetate zinc trisodium is also known as trisodium zinc diethylenetriaminepentaacetate and is commonly referred to as Zn- DTPA. It has a molecular formula of Na3ZnC14H18N3O10 and a molecular weight of 522.7 Daltons. It is represented by the following structural formula: Zn-DTPA is supplied as a clear, colorless, hyperosmolar (1260 mOsmol/kg) solution in a colorless ampoule containing 5 mL. The ampoule contents are sterile, non-pyrogenic and suitable for intravenous administration. Each mL of solution contains the equivalent of 200 mg pentetate zinc trisodium (obtained from 150.51 mg pentetic acid, 31.14 mg zinc oxide and NaOH) and water for injection, USP. The pH of the solution is adjusted

64

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Plant Field Production Plant Field Production Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Butylene (C4H8) An olefinic hydrocarbon recovered from refinery processes. Ethane (C2H6) A normally gaseous straight-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of -127.48º F. It is extracted from natural gas and refinery gas streams. Field Production Represents crude oil production on leases, natural gas liquids production at natural gas processing plants, new supply of other hydrocarbons/oxygenates and motor gasoline blending components, and fuel ethanol blended into finished motor gasoline. Isobutane (C4H10) A normally gaseous branch-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of 10.9º F. It is extracted from natural gas or refinery gas streams.

65

PROCESS FOR COLORING DIAMONDS  

DOE Patents (OSTI)

A process is given for coloring substantially colorless diamonds in the blue to blue-green range and comprises the steps of irradiating the colorless diamonds with electrons having an energy within the range 0.5 to 2 Mev to obtain an integrated electron flux of between 1 and 2 x 10/sup 18/ thc diamonds may be irradiated 1 hr when they take on a blue color with a slight green tint: After being heated at about 500 deg C for half an hour they become pure blue. Electrons within this energy range contam sufficient energy to displace the diamond atoms from their normal lattice sites into interstitial sites, thereby causing the color changes.

Dugdale, R.A.

1960-07-19T23:59:59.000Z

66

Copper mercaptides as sulfur dioxide indicators  

DOE Patents (OSTI)

Organophosphine copper(I) mercaptide complexes are useful as convenient and semiquantitative visual sulfur dioxide gas indicators. The air-stable complexes form 1:1 adducts in the presence of low concentrations of sulfur dioxide gas, with an associated color change from nearly colorless to yellow-orange. The mercaptides are made by mixing stoichiometric amounts of the appropriate copper(I) mercaptide and phosphine in an inert organic solvent.

Eller, Phillip G. (Los Alamos, NM); Kubas, Gregory J. (Los Alamos, NM)

1979-01-01T23:59:59.000Z

67

Farm scale electrical power production from animal waste. Volume I. Final report, 30 June 1981-30 December 1983  

DOE Green Energy (OSTI)

A 1 1/2 (dry) tons per day biodigester cogeneration plant has been designed and constructed. This project is part of a federal program to promote energy conservation and the use of non-conventional energy resources. The main purpose of the project is to demonstrate that a dairy farm can generate its own power and supply excess power to a local utility. Such a facility can produce significant energy savings to livestock farms and small communities by allowing them to get energy from raw animal and human waste. Also, an odorless by-product is produced that is nearly pathogenically free and has the possibility of several end uses such as: fertilizer and soil conditioner, protein-rich animal refeed, livestock bedding material, and aquatic food for fish farming. 53 references, 18 figures, 4 tables.

Carpenter, P.A.

1984-01-31T23:59:59.000Z

68

Haze Formation and Behavior in Liquid-Liquid Extraction Processes  

Science Conference Proceedings (OSTI)

Aqueous haze formation and behavior was studied in the liquid-liquid system tri-n-butyl phosphate in odorless kerosene and 3M nitric acid with uranyl nitrate and cesium nitrate representing the major solute and an impurity, respectively. A pulsed column, mixer-settler and centrifugal contactor were chosen to investigate the effect of different turbulence characteristics on the manifestation of haze since these contactors exhibit distinct mixing phenomena. The dispersive processes of drop coalescence and breakage, and water precipitation in the organic phase were observed to lead to the formation of haze drops of {approx}1 um in diameter. The interaction between the haze and primary drops of the dispersion was critical to the separation efficiency of the liquid-liquid extraction equipment. Conditions of high power input and spatially homogeneous mixing enabled the haze drops to become rapidly assimilated within the dispersion to maximize the scrub performance and separation efficiency of the equipment.

Arm, Stuart T.; Jenkins, J. A.

2006-07-31T23:59:59.000Z

69

Alternative Fuels Data Center: Natural Gas Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on AddThis.com... More in this section... Natural Gas Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Fuel Basics Photo of a natural gas fuel pump. Natural gas is an odorless, nontoxic, gaseous mixture of hydrocarbons-predominantly methane (CH4). It accounts for about a quarter

70

Coal liquefaction process  

DOE Patents (OSTI)

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

71

Coal liquefaction process  

DOE Green Energy (OSTI)

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

72

QCD in terms of gauge-invariant dynamical variables  

E-Print Network (OSTI)

For a complete description of the physical properties of low-energy QCD, it might be advantageous to first reformulate QCD in terms of gauge-invariant dynamical variables, before applying any approximation schemes. Using a canonical transformation of the dynamical variables, which Abelianises the non-Abelian Gauss-law constraints to be implemented, such a reformulation can be achieved for QCD. The exact implementation of the Gauss laws reduces the colored spin-1 gluons and spin-1/2 quarks to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields and colorless Rarita-Schwinger fields respectively. The obtained physical Hamiltonian can then be rewritten into a form, which separates the rotational from the scalar degrees of freedom, and admits a systematic strong-coupling expansion in powers of lambda=g^{-2/3}, equivalent to an expansion in the number of spatial derivatives. The leading-order term in this expansion corresponds to non-interacting hybrid-glueballs, whose low-lying masses can be ...

Pavel, Hans-Peter

2013-01-01T23:59:59.000Z

73

Preparation of brightness stabilization agent for lignin containing pulp from biomass pyrolysis oils  

DOE Patents (OSTI)

A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.

Agblevor, Foster A. (Blacksburg, VA); Besler-Guran, Serpil (Flemington, NJ)

2001-01-01T23:59:59.000Z

74

The Screech Owl  

NLE Websites -- All DOE Office Websites (Extended Search)

Screech Owl Screech Owl Nature Bulletin No. 100 January 25, 1947 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Superintendent of Conservation THE SCREECH OWL At the foot of a dead oak where we hoped to find some winter mushrooms beneath the grass and fallen leaves, we spied several pellets about the size and shape of the end of your thumb. They were clean and odorless, each containing the skull and bones of a mouse tightly wrapped in a layer of the animal's fur. Owls and hawks swallow their prey whole or in large pieces and later spit out the indigestible matter in the form of pellets. Up in this tree was a woodpecker hole from which the round unwinking yellow eyes of a screech owl glared at us. A screech owl, about the size of a robin but much chunkier, is our only small owl with ear tufts like "horns". They prey on mice, chipmunks and ground squirrels, fish, crayfish, amphibians, small snakes, angleworms, and large insects. When other food is scarce, and their fuzzy white young -- usually four in number -- require much food, they frequently kill birds but apparently not enough to seriously affect the bird population. No owl, of any species, should be killed.

75

Fermilab | Science at Fermilab | Experiments & Projects | Intensity  

NLE Websites -- All DOE Office Websites (Extended Search)

Intensity Frontier Intensity Frontier Experiments at the Intensity Frontier ArgoNeuT MINERvA MiniBooNE MINOS NOvA LBNE Cosmic Frontier Proposed Projects and Experiments ArgoNeuT ArgoNeut detector at Proton Assembly Building Intensity Frontier ArgoNeuT The Argon Neutrino Teststand or ArgoNeuT detector, nicknamed for Jason and the Argonauts of Greek mythology, is a liquid argon neutrino detector at Fermilab. Argon is a noble, non-toxic element that in its gaseous form constitutes about 1 percent of air. It exists as a colorless liquid only in the narrow temperature range of minus 186 to minus 189 degrees Celsius. Neutrinos passing through a large volume of argon can interact with an argon atom, producing secondary particles such as muons and protons, which then ionize other argon atoms. An electric field within the detector causes

76

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for ETHYLBENZENE Condensed Toxicity Summary for ETHYLBENZENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. Prepared by: Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation Group in the Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge National Laboratory*. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Ethylbenzene is a colorless, flammable liquid with a pungent odor (Cavender 1994). The water solubility of ethylbenzene is 0.014 g/100 mL and its vapor

77

Data Safer than Ever with FM-200 Installation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Safer than Ever with FM-200 Installation Data Safer than Ever with FM-200 Installation Data Safer than Ever with FM-200 Installation October 22, 2013 - 6:04pm Addthis What does this project do? Goal 2. Preserve, protect, and share records and information The consolidated data center at the Legacy Management Business Center (LMBC) in Morgantown, West Virginia, is now guarded by a state-of-the-art FM-200® Fire Suppression System. Installation of the new system began on June 11, 2013, and the system became operational on July 18. FM-200® Fire Suppression System The "Clean Agent" system offers several advantages over traditional fire suppression. FM-200 is a clean, colorless, and environmentally friendly fire suppressant that is electronically non-conductive and safe for humans. The fire suppression system extinguishes flames primarily

78

Alternative Fuels Data Center: P-Series  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

P-Series to someone by P-Series to someone by E-mail Share Alternative Fuels Data Center: P-Series on Facebook Tweet about Alternative Fuels Data Center: P-Series on Twitter Bookmark Alternative Fuels Data Center: P-Series on Google Bookmark Alternative Fuels Data Center: P-Series on Delicious Rank Alternative Fuels Data Center: P-Series on Digg Find More places to share Alternative Fuels Data Center: P-Series on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels P-Series P-Series fuels are blends of natural gas liquids (pentanes plus), ethanol, and methyltetrahydrofuran (MeTHF), a biomass co-solvent. P-Series fuels are clear, colorless, 89-93 octane, liquid blends used either alone or mixed with gasoline in any proportion in flexible fuel vehicles. These fuels are

79

Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii  

Open Energy Info (EERE)

Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii Abstract During the drilling of injection well KS-13 in 2005 at the Puna Geothermal Venture (PGV) well field, on the island of Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m. At a depth of 2488 m a melt of dacitic composition was encountered. The melt flowed up the well bore and was repeatedly re-drilled over a depth interval of 8 m, producing several kilograms of clear, colorless vitric cuttings at the surface. The dacitic glass cuttings have a perlitic texture, a silica content of 67 wgt.%, are enriched in alkalis and nearly

80

Definition: Ethanol | Open Energy Information  

Open Energy Info (EERE)

Ethanol Ethanol A colorless, flammable liquid produced by fermentation of sugars. While it is also the alcohol found in alcoholic beverages, it can be denatured for fuel use. Fuel ethanol is used principally for blending in low concentrations with motor gasoline as an oxygenate or octane enhancer. In high concentrations, it is used to fuel alternative-fuel vehicles specially designed for its use.[1][2][3] View on Wikipedia Wikipedia Definition Ethanol fuel is ethanol (ethyl alcohol), the same type of alcohol found in alcoholic beverages. It is most often used as a motor fuel, mainly as a biofuel additive for gasoline. World ethanol production for transport fuel tripled between 2000 and 2007 from 17 billion to more than 52 billion liters. From 2007 to 2008, the share of ethanol in global gasoline type

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Moss Animals  

NLE Websites -- All DOE Office Websites (Extended Search)

Moss Animals Moss Animals Nature Bulletin No. 138 January 17, 1948 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation MOSS ANIMALS Last summer, several visitors in the forest preserves were puzzled by finding masses of jelly-like substance stuck to sunken sticks in certain ponds and lakes. These masses were usually round or egg-shaped, ranging in size from that of a tennis ball to that of a football. On the outside they were covered by a grayish scum with faint lines in a coarse design. Inside there was apparently nothing but a clear colorless jelly that quivered and shook like a well-chilled gelatin dessert. One man guessed that it was some sort of garbage; another, reasonably, that it was some strange plant growth.

82

Diffraction at HERA  

E-Print Network (OSTI)

Between 1992 and 2007, the HERA accelerator provided $ep$ collisions at center of mass energies beyond $300 \\ {\\rm GeV}$ at the interaction points of the H1 and ZEUS experiments. Interesting results to emerge relate to the newly accessed field of perturbative strong interaction physics at low Bjorken-$x$, where parton densities become extremely large. Questions arise as to how and where non-linear dynamics tame the parton density growth and challenging features such as geometric scaling are observed. Central to this low $x$ physics landscape is a high rate of diffractive processes, in which a colorless exchange takes place and the proton remains intact. A review is given for main results obtained by H1 and ZEUS experiments in this field.

Schoeffel, Laurent

2011-01-01T23:59:59.000Z

83

Thermalization of heavy quarks in the quark-gluon plasma  

E-Print Network (OSTI)

Charm- and bottom-quark rescattering in a quark-gluon plasma (QGP) is investigated with the objective of assessing the approach toward thermalization. Employing a Fokker-Planck equation to approximate the collision integral of the Boltzmann equation we augment earlier studies based on perturbative parton cross sections by introducing resonant heavy-light quark interactions. The latter are motivated by recent QCD lattice calculations that indicate the presence of "hadronic" states in the QGP. We model these states by colorless (pseudo-) scalar and (axial-) vector D and B mesons within a heavy-quark effective theory framework. We find that the presence of these resonances at moderate QGP temperatures substantially accelerates the kinetic equilibration of c quarks as compared to using perturbative interactions. We also comment on consequences for D-meson observables in ultrarelativistic heavy-ion collisions.

van Hees, H.; Rapp, Ralf.

2005-01-01T23:59:59.000Z

84

STATEMENT OF CONSIDERATIONS REQUEST BY 3M COMPANY FOR AN ADVANCE WAIVER OF DOMESTIC AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOMESTIC AND DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE- EE0003837, W(A)-2011-057, CH-1633 The Petitioner, 3M Company (3M) was awarded this cooperative agreement for the performance of work entitled , "Polymeric Multilayer Infrared Reflecting Film Development". The pu rpose of the agreement is to develop a polymeric multilayer infrared reflecting film that is essentially clear and colorless in the visible portion of the electromagnetic spectra (visible light transmission of about 89%) while reflecting 90-95% of the infrared energy in the 850 nm to 1830 nm specified spectra. The film will have a nominal thickness of 3 mils, be polymeric in nature (contains no metals, metal oxides, or other material types) and be essentially clear in appearance.

85

Data Safer than Ever with FM-200 Installation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Safer than Ever with FM-200 Installation Data Safer than Ever with FM-200 Installation Data Safer than Ever with FM-200 Installation October 22, 2013 - 6:04pm Addthis What does this project do? Goal 2. Preserve, protect, and share records and information The consolidated data center at the Legacy Management Business Center (LMBC) in Morgantown, West Virginia, is now guarded by a state-of-the-art FM-200® Fire Suppression System. Installation of the new system began on June 11, 2013, and the system became operational on July 18. FM-200® Fire Suppression System The "Clean Agent" system offers several advantages over traditional fire suppression. FM-200 is a clean, colorless, and environmentally friendly fire suppressant that is electronically non-conductive and safe for humans. The fire suppression system extinguishes flames primarily

86

Transportation Technologies: Implications for Planning  

E-Print Network (OSTI)

Clean Air Program: Compressed Natural Gas Safety in Transitmay be higher. Natural gas: a fuel in compressed (CNG) or

Deakin, Elizabeth; Kim, Songju

2001-01-01T23:59:59.000Z

87

Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers  

E-Print Network (OSTI)

L. (1990). Natural Gas Engineering: Production and Storage.experience with natural gas ?a, storage in aquifers in the

Garcia, Julio Enrique

2003-01-01T23:59:59.000Z

88

Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Ice Ice Nature Bulletin No. 661-A january 7, 1978 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation ICE There was a time when ice, cut on frozen ponds and lakes, was transported by fast clipper ships from New England to New Orleans where it was worth its weight in gold. Nowadays this cold brittle colorless substance is commonplace everywhere. Few people, however, know that ice is one of the strangest of all solids; and that, because of its unique properties, life on earth is what it is. Those properties are due to the distinctive structure of a molecule of water, formed of three elemental particles or atoms -- two of hydrogen and one of oxygen -- expressed by the familiar symbol, H2O. The three atoms are held together by two chemical bonds expressed by another symbol, H-O-H. Briefly, the unique properties of water, water vapor, and ice arise from that bonding and the arrangement of electron pairs around the oxygen atom.

89

Lichens  

NLE Websites -- All DOE Office Websites (Extended Search)

Lichens Lichens Nature Bulletin No. 131 November 15, 1947 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation LICHENS When winter comes with its fogs, rains, and melting snow, the lichens flourish. In the country we find them on the bark of trees, boulders and patches of barren earth, but rarely in cities because they are very sensitive to poisonous gases in the smoky air. In Iceland and Greenland, and the vast tundras of the arctics, they are the dominant forms of plant life. A lichen is the partnership of a colorless plant and a green one: a fungus and an alga. The two exchange food materials. Fungus has remarkable power to absorb and store moisture. The alga, using that water, and using carbon dioxide from the air, manufactures food. The fungus absorbs the excess food and produces an acid which eats into the earth or wood or rock upon which it grows, anchoring it firmly in place.

90

Intra-Arterial Calcium Gluconate Treatment After Hydrofluoric Acid Burn of the Hand  

Science Conference Proceedings (OSTI)

Hydrofluoric acid (HF) is a colorless corrosive acid used in different industrial branches. Exposure to HF typically results from spills, and most often the hand or fingers are involved. Tissue damage through cutaneous HF exposure occurs through corrosive burns due to the free hydrogen ions and through skin penetration of the fluoride ions, causing a depletion of calcium in the deep tissue layers, ultimately leading to cell death and tissue necrosis. Treatment of HF burns consists of thoroughly flushing the exposed area with water and applying calcium gluconate gel to the skin. If topical treatment does not suffice, subcutaneous injections, as well as intravascular-both intravenous and intra-arterial-calcium gluconate therapy, have been advocated. We report for the first time a case of HF burn of the hand and digits associated with vasospasm. Pain and vasospasm were successfully treated by repeated intra-arterial calcium gluconate injection. We conclude that intra-arterial calcium gluconate injection is a successful and well-tolerated therapy for HF burn associated with Raynaud's syndrome. Intra-arterial injection allows for well-controlled delivery of therapy as well as assessment of the vascular status.

Thomas, D., E-mail: daniel.thomas@ukb.uni-bonn.de; Jaeger, U. [Radiologische Universitaetsklinik, Universitaet Bonn (Germany); Sagoschen, I. [Klinikum der Johannes Gutenberg Universitaet, Poison Control Center, Medizinische Klinik und Poliklinik II (Germany); Lamberti, C. [Universitaet Bonn, Medizinische Klinik und Poliklinik I (Germany); Wilhelm, K. [Radiologische Universitaetsklinik, Universitaet Bonn (Germany)

2009-01-15T23:59:59.000Z

91

Can nothing be a superconductor and a superfluid?  

E-Print Network (OSTI)

A superconductor is a material that conducts electric current with no resistance. Superconductivity and magnetism are known to be antagonistic phenomena: superconductors expel weak external magnetic field (the Meissner effect) while a sufficiently strong magnetic field, in general, destroys superconductivity. In a seemingly contradictory statement, we show that a very strong magnetic field can turn an empty space into a superconductor. The external magnetic field required for this effect should be about 10^{16} Tesla (eB ~ 1 GeV^2). The physical mechanism of the exotic vacuum superconductivity is as follows: in strong magnetic field the dynamics of virtual quarks and antiquarks is effectively one-dimensional because these electrically charged particles tend to move along the lines of the magnetic field. In one spatial dimension a gluon-mediated attraction between a quark and an antiquark of different flavors inevitably leads to formation of a colorless spin-triplet bound state (a vector analogue of the Cooper pair) with quantum numbers of an electrically charged rho meson. Such quark-antiquark pairs condense to form an anisotropic inhomogeneous superconducting state similar to the Abrikosov vortex lattice in a type-II superconductor. The onset of the superconductivity of the charged rho mesons should also induce an inhomogeneous superfluidity of the neutral rho mesons. The vacuum superconductivity should survive at very high temperatures of typical Quantum Chromodynamics (QCD) scale of 10^{12} K (T ~ 100 MeV). We propose the phase diagram of QCD in the plane "magnetic field - temperature".

M. N. Chernodub

2011-04-22T23:59:59.000Z

92

Higgs friends and counterfeits at hadron colliders  

SciTech Connect

We consider the possibility of 'Higgs counterfeits' - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving 'Higgs friends,' fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW,ZZ,{gamma}{gamma}, or even {gamma}Z, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with 'effective Z's,' where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.

Fox, Patrick J.; /Fermilab; Tucker-Smith, David; /New York U., CCPP /New York U. /Williams Coll. /Princeton, Inst. Advanced Study; Weiner, Neal; /New York U., CCPP /New York U. /Princeton, Inst. Advanced Study

2011-04-01T23:59:59.000Z

93

Higgs friends and counterfeits at hadron colliders  

E-Print Network (OSTI)

We consider the possibility of "Higgs counterfeits" - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving "Higgs friends," fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW, ZZ, gamma gamma, or even gamma Z, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with "effective Z's," where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.

Patrick J. Fox; David Tucker-Smith; Neal Weiner

2011-04-28T23:59:59.000Z

94

Assessing a Spectroelectrochemical Sensor's Performance for Detecting [Ru(bpy)3]2+ in Natural and Treated Water  

Science Conference Proceedings (OSTI)

A spectroelectrochemical sensor that combines three modes of selectivity in a single device was evaluated in natural and treated water samples using tris-(2,2-bipyridyl) ruthenium(II) dichloride hexahydrate, [Ru(bpy)3]2+, as a model analyte. The sensor was an optically transparent indium tin oxide (ITO) electrode coated with a thin film of partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SSEBS). As the potential of the ITO electrode was cycled from +0.7 to +1.3 V, the analyte changed from the colored [Ru(bpy)3]2+ complex to colorless [Ru(bpy)3]3+ complex and the change in absorbance at 450 nm was used as the optical signal for quantification. Calibration curves were obtained for [Ru(bpy)3]2+ in natural well water, river water and treated tap water with detection limits of 108, 139 and 264 nM, respectively. A standard addition method was developed to determine an *unknown* spike addition concentration of [Ru(bpy)3]2+ in well water. The spectroelectrochemical sensor determined the concentration of [Ru(bpy)3]2+ spiked into a sample of Hanford well water to be 0.39*0.03 mM versus the actual concentration of 0.40 mM.

Abu, Eme A.; Bryan, Samuel A.; Seliskar, Carl J.; Heineman, William R.

2012-07-01T23:59:59.000Z

95

DPMJET version II.5, code manual  

E-Print Network (OSTI)

DPMJET samples hadron-hadron, hadron-nucleus, nucleus-nucleus and neutrino-nucleus interactions at high energies. The two-component Dual Parton Model is used with multiple soft chains and multiple minijets at each elementary interaction. Particle production is realized by the fragmentation of colorless parton-parton chains constructed from the quark content of the interacting hadrons. DPMJET-II.5 includes the cascading of secondaries within the target as well as projectile nuclei which is suppressed by the formation time concept. The excitation energy of the remaining target and projectile nuclei is calculated and using this nuclear evaporation is included into the model. It is possible to use the model up to primary energies of 10${}^{21}$ eV (per nucleon) in the lab. frame. DPMJET can also be applied to neutrino nucleus collisions. It extends the neutrino-nucleon models qel (quasi elastic neutrino interactions) and lepto (deep inelastic neutrino nucleon collisions) to neutrino collisions on nuclear targets.

J. Ranft

1999-11-04T23:59:59.000Z

96

Inhalation developmental toxicology studies: Developmental toxicity of chloroprene vapors in New Zealand white rabbits. Final report  

Science Conference Proceedings (OSTI)

Chloroprene, 2-chloro-1,3-butadiene, is a colorless liquid with a pungent ethereal odor that is primarily used as an intermediate in the manufacture of neoprene rubber, and has been used as such since about 1930. This study addressed the potential for chloroprene to cause developmental toxicity in New Zealand white rabbits following gestational exposure to 0, 10, 40, or 175 ppm chloroprene vapors, 6h/dy, 7dy/wk. Each treatment group consisted of 15 artificially inseminated females exposed on 6 through 28 days of gestation (dg). Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice on 29 dg. Implants were enumerated and their status recorded and live fetuses were examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. There were no overt signs of maternal toxicity and the change in maternal body weight over the course of the study was not affected. Exposure of pregnant rabbits to chloroprene vapors on 6-28 dg had no effect on the number of implantation, the mean percent of live pups per litter, or on the incidence of resorptions per litter. The incidence of fetal malformations was not increased by exposure to chloroprene. Results of this study indicate that gestational exposure of New Zealand white rabbits to 10, 40, or 175 ppm chloroprene did not result in observable toxicity to either the dam or the offspring.

Mast, T.J.; Evanoff, J.J.; Westerberg, R.B.; Rommereim, R.L.; Weigel, R.J.

1994-04-01T23:59:59.000Z

97

Blood  

NLE Websites -- All DOE Office Websites (Extended Search)

Blood Blood Nature Bulletin No. 584-A December 6, 1975 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation BLOOD Not all blood is red. We are so accustomed to the idea that blood is red that some of us are surprised to learn that it comes in other colors. It is true that all animals with backbones have red blood -- mammals, birds, turtles, snakes, frogs, salamanders and fish. However, among lower animals we find blood that is colorless, blue or green -- as well as a few with red blood. If an animal is large enough to be seen with the naked eye, it is almost certain to have some sort of a circulatory system. Usually, this is a plumbing system with pipes, valves and pumps which brings nourishment and oxygen to the living cells of the animal's body and carries away waste products. The fluid flowing in this plumbing system is blood. In man and the higher animals this blood stream is completely enclosed in the heart, arteries, veins and their smaller branches. That is called a closed circulatory system.

98

Durability  

NLE Websites -- All DOE Office Websites (Extended Search)

defect assessment criteria will be adapted to take into account an increasing percentage of hydrogen in natural gas *A durability assessment tool will be developed to...

99

1 Egg Industry Data  

Science Conference Proceedings (OSTI)

... papers published as early as the 1970s show that ... primary trade association of the oil and gas ... a profit-maximizing entity, so the supply behavior may ...

2012-11-16T23:59:59.000Z

100

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

is pyrolysized to produce shale oil, gas, a solid referredshale, and aqueous effluents known as retort water and gasoil shale process waters were studied: retort water and gas

Fox, J.P.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

See also Combined heat and power (CHP) plant and Electricity only plant. Electric utility: ... Pipeline (natural gas): A continuous pipe conduit, ...

102

BLOCKAGE DETECTION IN NATURAL GAS PIPELINES BY TRANSIENT ANALYSIS.  

E-Print Network (OSTI)

??Pipelines are the most reliable means for the transportation of natural gas. A major problem of flow assurance in natural gas pipelines is solid deposition (more)

ADELEKE, NAJEEM

2010-01-01T23:59:59.000Z

103

Melting and Refining Technology of High-Temperature Steels and ...  

Science Conference Proceedings (OSTI)

n outlook into the future position of the various melting and .... Inert Gas carburization. Continuous Casting. In Reactor Vessel: - Inert Gas a Arc Remelting (PAR).

104

Evolution of simple configurations of gravitating gas  

E-Print Network (OSTI)

We considered the dynamics of gravitating gas - a continuous media with peculiar properties. The exact solutions of its Euler equations for simple initial conditions is obtained.

G. P. Pronko

2011-04-23T23:59:59.000Z

105

Platinum Nanoclusters Out-Perform Single Crystals  

NLE Websites -- All DOE Office Websites (Extended Search)

gas, a reactant involved in many important industrial catalytic processes, including the Fischer-Tropsch process for making liquid hydrocarbons, the oxidation process in...

106

Energy Crossroads: Utility Energy Efficiency Programs South Carolina...  

NLE Websites -- All DOE Office Websites (Extended Search)

Suggest a Listing South Carolina Electric & Gas (a SCANA Corporation) Information for Businesses Duke Energy (South Carolina) Information for Businesses Progress Energy (Carolinas)...

107

On environmental lifecycle assessment for policy selection  

E-Print Network (OSTI)

increase the price of coal relative to natural gas as ancoal and energy for natural gas, a change in relative prices

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

108

Water and Energy Interactions  

E-Print Network (OSTI)

cooling, 2002 ace Natural gas a Tower, combined cycle Tower,steam Tower, combined cycle with CCS Once-through cooling

McMahon, James E.

2013-01-01T23:59:59.000Z

109

Crude Oil Watch - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Crude Oil Watch April 19, 2000 Energy Information Administration Office of Oil & Gas A large stockbuild in crude oil inventories contributed to blunt crude oil inputs ...

110

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... of the life cycle GHG footprint associated with natural gas production (Howarth et al ... Is natural gas a cleaner fuel source than coal (or oil) in terms of ...

2013-02-28T23:59:59.000Z

111

Kinetic Model for Gaz-liquid Extraction of Boron from Solar Silicon  

Science Conference Proceedings (OSTI)

Abstract Scope, To predict the rate of purification of liquid silicon in liquid/gas ... A New Centrifuge CVD Reactor that will Challenge the Siemens Process.

112

DISSOLUTION OF FB-LINE METAL RESIDUES CONTAINING BERYLLIUM IN H-CANYON  

DOE Green Energy (OSTI)

Scrap materials containing plutonium (Pu) metal from FB-Line vaults are currently being dissolved in HB-Line for subsequent disposition through the H-Canyon facility. However, milestone and schedule commitments may require the dissolution of material containing Pu and beryllium (Be) metals in H-Canyon. To support this option, a flowsheet for dissolving Pu and Be metals in H-Canyon was demonstrated using a 4 M nitric acid (HNO{sub 3}) solution containing 0.3 M fluoride (F{sup -}). The F{sup -} was added as calcium fluoride (CaF{sub 2}). The dissolving solution also contained 2.5 g/L boron (B), a nuclear safety contingency for the H-Canyon dissolver, and 3.9 g/L iron (Fe) to represent the dissolution of carbon steel cans. The solution was heated to 90-95 C during the 8 h dissolution cycle. Dissolution of the Be metal appeared to begin as soon as the samples were added to the dissolver. Clear, colorless bubbles generated on the surface were observed and were attributed primarily to the generation of hydrogen (H{sub 2}) gas. The generation of nitrogen dioxide (NO{sub 2}) gas was also evident from the color of the solution. Essentially all of the Pu and Be dissolved during the first hour of the dissolution as the solution was heated to 90-95 C. The amount of residual solids collected following the dissolution was < 2% of the total metal charged to the dissolver. Examination of residual solids by scanning electron microscopy (SEM) showed that the largest dimension of the particles was less than 50 {micro}m with particles of smaller dimensions being more abundant. Energy dispersive spectra from spots on some of the particles showed the solids consisted of a small amount of undissolved material, corrosion products from the glassware, and dried salts from the dissolving solution.

Rudisill, T; Mark Crowder, M; Michael Bronikowski, M

2005-07-15T23:59:59.000Z

113

Evidence for high mass exclusive dijet production in the D0 experiment  

SciTech Connect

Exclusive diffractive Higgs boson production is an interesting process which could be studied at the Large Hadron Collider. While the cross section for the Higgs boson production at the Fermilab Tevatron Collider is too low for this channel, it is important to check if the class of exclusive diffraction events exists. We present the evidence for the high mass exclusive dijet production in the D0 experiment. Hard diffractive processes are usually described by the exchange of a colorless object called Pomeron. In diffractive hadron hadron collisions, the hadrons will exchange the Pomeron and either one or both hadrons will not dissolve. The events are identified by either a presence of a large forward region of the detector devoid of any activity (rapidity gap) or by a tagging of the intact beam hadron(s). A subset of diffractive events is called exclusive when the whole Pomeron energy is used to produce the diffractive state, i.e there are no Pomeron remnants. Exclusive diffractive production (EDP) of the Higgs boson or any other new final state X pp {yields} p + X + p has been recently proposed as a search channel at the LHC. The cross section for the Higgs boson production is too low at the Tevatron (0.2fb is predicted for a Higgs boson mass of 120 GeV), but it is important to check if this class of events exists in this kinematic region. The CDF Collaboration has recently confirmed the existence of EDP in several channels. In this report, we present the evidence for the exclusive production of high dijet invariant mass events, i.e. a dijet event accompanied by large rapidity gaps on both sides of the calorimeter.

Hubacek, Zdenek; /Prague, Tech. U.

2010-10-01T23:59:59.000Z

114

Ties That Do Not Bind: Russia and the International Liberal Order  

E-Print Network (OSTI)

it less dependent on Russian gas, such as LNG and shale gas.in the extraction of shale gas, which is extracted fromboast large reserves of shale gas. A report by the Baker

Krickovic, Andrej

2012-01-01T23:59:59.000Z

115

ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network (OSTI)

wt. %) from the oil shale to the water, gas and oil are Cd,waters, oils and gases from in situ oil shale processes andretorting produces shale oil, a low BTU gas, a sol'id waste

Cairns, E.L.

2011-01-01T23:59:59.000Z

116

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

117

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

Price elasticity of demand for crude oil: estimates for 2327] Krichene, N. World crude oil and natural gas: a demandIn contrast to synthetic crude oils produced from the above

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

118

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

119

2010 Interim Laws and Regulations Pub 15  

Science Conference Proceedings (OSTI)

... are made from natural resources; oil and gas, a 0.92 g ... Not all oil is the same; brands differ. ... of product, state budgetary issues and the outlook of the ...

2013-07-23T23:59:59.000Z

120

AMO Industrial Distributed Energy: Combine Heat and Power: A...  

NLE Websites -- All DOE Office Websites (Extended Search)

capacity. Finally, the economics of CHP are improving as a result of the changing outlook in the long-term supply and price of North American natural gas - a preferred fuel...

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Transportation Technologies: Implications for Planning  

E-Print Network (OSTI)

mixes, natural gas (methane, CNG/LNG), and electric power (gas: a fuel in compressed (CNG) or liquefied (LNG) form.The CNG form, more common in the transportation sector, is

Deakin, Elizabeth; Kim, Songju

2001-01-01T23:59:59.000Z

122

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

Model of the Global Crude Oil Market and the U.S. RetailNoureddine. 2002. World crude oil and natural gas: a demandanalysis of the demand for oil in the Middle East. Energy

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

123

How much does it cost to produce crude oil and natural gas? - FAQ ...  

U.S. Energy Information Administration (EIA)

How much does it cost to produce crude oil and natural gas? A measure of the total cost to produce crude oil and natural gas is the upstream costs.

124

ALASKA NORTH SLOPE OIL AND GAS RESOURCES  

NLE Websites -- All DOE Office Websites (Extended Search)

Task 222.01.01 Alaska North Slope Oil and Gas A Promising Future or an Area in Decline? DOENETL-20071279 Full Report August 2007 Disclaimer This report was prepared as an account...

125

Russias Natural Gas Export Potential up to 2050  

E-Print Network (OSTI)

Recent increases in natural gas reserve estimates and advances in shale gas technology make natural gas a fuel with good prospects to serve a bridge to a low-carbon world. Russia is an important energy supplier as it holds ...

Paltsev, Sergey

126

9 Treatment of Metal-Bearing Effluents: Removal and  

E-Print Network (OSTI)

conveyed by means of gravity water jets or centrifugal umps. Lift Maximum safe vertical distance hrough the operation of contactors and auxiliary de vices of an electric system. Natural gas A gaseous fuel occurring

Volesky, Bohumil

127

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network (OSTI)

Natural Gas Natural Gas a) Urban power plants (continued)Natural Gas Natural Gas b) rural power plants (continued)Haynes Natural Gas Los Angeles a) Urban power plants (

McKone, Thomas E.

2011-01-01T23:59:59.000Z

128

China energy, environment, and climate study: Background issues paper  

E-Print Network (OSTI)

Incentives needed for foreign participation in Chinas natural gasNatural gas prices need to be set to provide incentives forincentive to switch from coal to gas. A clear policy for imported pipeline and liquefied natural

Sinton, Jonathan E.; Fridley, David G.; Logan, Jeffrey; Guo, Yuan; Wang, Bangcheng; Xu, Qing

2000-01-01T23:59:59.000Z

129

Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications  

E-Print Network (OSTI)

cases outside of EGS, CCS and Oil and Gas. a. Mining. NeededCan geothermal, CCS, oil and gas reasonably be expected tosequestration, and enhanced oil and gas recovery have a

Majer, E.L.

2011-01-01T23:59:59.000Z

130

The Atlantic Alliance and Geopolitics: New Realities and New Challenges  

E-Print Network (OSTI)

and produce only 10% of oil and gas. (Exxon Mobile, Chevron,has also secured itself oil and gas supplies from everywhereto Kazak and Turkmen oil and gas. A pipeline from Kazakhstan

Lie, Kai Olaf

2009-01-01T23:59:59.000Z

131

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Grain-Scale Study of Hydrate Formation in Sediments from Methane Gas: A Coupled Fluid-Solid Interaction Model Grain-Scale Study of Hydrate Formation in Sediments from Methane Gas:...

132

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network (OSTI)

of Control Technology for Shale Oil Wastewaters,~~ inpyrolysized to produce shale oil, gas, a solid referred towaters are co-produced with shale oil and separated from it

Fox, J.P.

2013-01-01T23:59:59.000Z

133

ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network (OSTI)

fly ash (coal) Raw shale oil Spent shale Geothermal Boron inshale retorting produces shale oil, a low BTU gas, a sol'idl As on Spent Shale ppm Shale Oil ppm t Retort Water ppm Ba

Cairns, E.L.

2011-01-01T23:59:59.000Z

134

Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas: Gas in place at the time that a reservoir was converted to use as an underground storage reservoir, as in contrast to injected gas volumes. Natural Gas: A gaseous mixture...

135

Victoria University of Wellington StaffandStudent  

E-Print Network (OSTI)

annually). DMSP released by marine algae into the water column can be taken up and used by microorganisms to production of hydrogen gas, a potential biofuel, by the phototroph Rhodospeudomonas palustris. We have real

Frean, Marcus

136

Wednesday Afternoon Sessions - TMS  

Science Conference Proceedings (OSTI)

The sulfur is evolved as SO2, and recovered as H2SO4 from a rich SO2 gas. ... A shortage of landfill space and growing environmental concerns in Mexico are...

137

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C2. Energy Consumption Estimates for Major Energy Sources in Physical Units, 2011 State Coal Natural Gas a Petroleum Nuclear Electric Power Hydro- electric Power f Fuel Ethanol g...

138

PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED "ODDERON SEARCHES AT RHIC" (VOLUME 76)  

SciTech Connect

The Odderon, a charge-conjugation-odd partner of the Pomeron, has been a puzzle ever since its introduction in 1973. The Pomeron describes a colorless exchange with vacuum quantum numbers in the t-channel of hadronic scattering at high energies. The concept was originally formulated for the non-perturbative regime of Quantum Chromodynamics (QCD). In perturbation theory, the simplest picture of the Poineron is that of a two-gluon exchange process, whereas an Odderon can be thought of as an exchange of three gluons. Both the Pomeron and the Odderon are expected in QCD. However, while there exists plenty of experimental data that could be successfully described by Pomeron exchanges (for example in electron-proton and hadron-hadron scattering at high energies), no experimental sign of the Odderon has been observed. One of the very few hints so far is the difference in the diffractive minima of elastic proton-proton and proton-antiproton scattering measured at the ISR. The Odderon has recently received renewed attention by QCD researchers, mainly for the following two reasons. First of all, RHIC has entered the scene, offering exciting unique new opportunities for Odderon searches. RHIC provides collisions of nuclei at center-of-mass energies far exceeding those at all previous experiments. RHIC also provides collisions of protons of the highest center-of-mass energy, and in the interval, which has not been explored previously in p {bar p} collisions. In addition, it also has the unique feature of polarization for the proton beams, promising to become a crucial tool in Odderon searches. Indeed, theorists have proposed possible signatures of the Odderon in some spin asymmetries measurable at RHIC. Qualitatively unique signals should be seen in these observables if the Odderon coupling is large. Secondly, the Odderon has recently been shown to naturally emerge from the Color Glass Condensate (CGC), a theory for the high-energy asymptotics of QCD. It has been argued that saturation/CGC effects tend to decrease the Odderon intercept, possibly providing an explanation for the lack of experimental evidence for the Odderon so far. This has added further motivation for pursuing searches for the Odderon. During the workshop the status of the Odderon in QCD and its phenomenology were reviewed. The participants also agreed on the most promising observables for the Odderon search at RHIC, which we list. The conclusion of the workshop is that the best available setup to address experimental questions related to the search for the Odderon at RHIC is the proposed combination of STAR experiment and Roman pots of pp2pp experiment, described in the proposal ''Physics with Tagged Forward Protons with the STAR detector at RHIC''.

ORGANIZERS: GURYN, W.; KOVCHEGOV, Y.; VOGELSANG, W.; TRUEMAN, L.

2005-10-25T23:59:59.000Z

139

Apparatus for the liquefaction of natural gas and methods relating to same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.

Turner, Terry D. (Ammon, ID); Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID)

2009-09-22T23:59:59.000Z

140

Corrosion Resistance of Zinc  

Science Conference Proceedings (OSTI)

Table 15 Compatibility of untreated zinc with various media...free Excellent Gas (a) Towns, natural, propane, butane Excellent Glycerine . . . Excellent Inks Printing Excellent Aqueous writing Not recommended Insecticides Dry Excellent In solution Not recommended Lubricants Mineral, acid free Excellent Organic Not recommended Paraffin . . . Excellent...

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Woodland Carbon Code  

E-Print Network (OSTI)

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

142

Increasing Gas Prices: Good Economics, but Bad Public Relations Rising gasoline prices captured the attention of the press and politicians in recent months,  

E-Print Network (OSTI)

, on a willingness to pay basis. Absent a higher pump price, the public faces implicit gas rationing whereby gas a rerun of the unhappy events during the two OPEC-induced oil price spikes in 1973-74 and 1979-80. Why did boosted the demand for oil products. Second, the major oil companies did not build new oil refineries

Ahmad, Sajjad

143

From: Edward D. Perrotti Sent: Saturday, September 23, 2006 9:18 PM  

E-Print Network (OSTI)

panels and a new hydrogen fuel cell unit at your home, would be a great way to generate electricity cell. The fuel cell unit would be like a Trane unit and take natural gas and make electricity. I heat with natural gas, a forced hot air system using a very efficient Lennox gas furnace. This model is also

144

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

1991-01-01T23:59:59.000Z

145

Journal of Policy Modeling 31 (2009) 404424 Available online at www.sciencedirect.com  

E-Print Network (OSTI)

assumptions about nuclear power growth and the future price of natural gas. A main determinant of the future. 1 The EPPA sub-model of fossil resource depletion, particularly of coal and natural gas (HTRN) Energy Coal (COAL) Crude Oil (OIL) Refined Oil (ROIL) Natural Gas (GAS) Electric: Fossil (ELEC

146

MIT Joint Program on the Science and Policy of Global Change  

E-Print Network (OSTI)

nuclear power growth and the future price of natural gas. A main determinant of the future of coal Japan can substitute natural gas for coal in the EPPA model (see footnote 8). With "Low gas prices", CCS and 2100 under alternative assumptions about CO2 prices, nuclear expansion and prices of natural gas

147

Analysis of the Coal Sector under Carbon Constraints  

E-Print Network (OSTI)

As an input to the MIT study of The Future of Coal (Ansolabehere et al., 2007) the MIT Emissions Prediction and Policy Analysis (EPPA) model was applied to an assessment of the fate of the coal industry under various scenarios of greenhouse gas mitigation and alternative assumptions about nuclear power growth and the future price of natural gas. A main determinant

James R. Mcfarl; Sergey Paltsev; Henry D. Jacoby

2008-01-01T23:59:59.000Z

148

Ris Energy Report 3 Hydrogen is a gas at ambient temperatures and pressures,  

E-Print Network (OSTI)

5.2 Risø Energy Report 3 Hydrogen is a gas at ambient temperatures and pressures, but it can be stored as a gas, a liquid or a solid. In the case of solid storage, the hydrogen exists as a chemical. Compared to fossil fuels such as gasoline, hydrogen has a very obvious shortfall in the amount of energy

149

Qingguo Zhang David R. Noble  

E-Print Network (OSTI)

, or landfill gas 1 . Current dry low emissions technology primarily focuses on burning natural gas, a fuel in utilizing coal-derived syngas or fuels from other sources, such as biomass, landfill gas, or process gas to 40%. The primary constituents of landfill or sewage gas are typically CH4 and CO2 4

Lieuwen, Timothy C.

150

www.swinburne.edu.au Issue 8 | December 2009  

E-Print Network (OSTI)

Hink' mAy Help drivers WHo don't david adaMs 08 lAndFill GAs needs A proFit indicAtor accurately predicting how much gas a landfill site is likely to deliver over its lifespan is a challenge one civil

Liley, David

151

Inductively heated particulate matter filter regeneration control system  

Science Conference Proceedings (OSTI)

A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

2012-10-23T23:59:59.000Z

152

60 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 27, NO. 1, FEBRUARY 1999 Plasmoid Formation and Multiple Steady States in a  

E-Print Network (OSTI)

60 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 27, NO. 1, FEBRUARY 1999 Plasmoid Formation in a low pressure inductively coupled plasma in chlorine gas. A bowl-shaped bright structure with sharply was chilled with a water- Manuscript received July 7, 1998. This work was supported by the National Science

Economou, Demetre J.

153

Corrosion Resistance of Zinc  

Science Conference Proceedings (OSTI)

Table 15   Compatibility of untreated zinc with various media...Sulfur free Excellent Gas (a) Towns, natural, propane, butane Excellent Glycerine ? Excellent Inks Printing Excellent Aqueous writing Not recommended Insecticides Dry Excellent In solution Not recommended Lubricants Mineral, acid free Excellent Organic Not recommended Paraffin ? Excellent...

154

North America and Japan  

E-Print Network (OSTI)

the public and private sectors in the U.S. and internationally. The views experessed herein are those of the authors and do not necessarily reflect those of the Massachusetts Institute of Technology. Energy Economics 27 (2005) 603615 www.elsevier.com/locate/eneco International market integration for natural gas? A cointegration analysis of prices in Europe,

Boriss Siliverstovs Guillaume; Anne Neumann; Christian Von Hirschhausen; Boriss Siliverstovs A; Guillaume Lhgaret B; Anne Neumann C; Christian Von Hirschhausen A

2005-01-01T23:59:59.000Z

155

ECONOMIC FEASIBILITY ANALYSIS OF HYDROGEN PRODUCTION BY  

E-Print Network (OSTI)

steps (syngas generation, shift conversion and hydrogen purification) necessary for hydrogen production for this process option. O2 H2 air N.G. + Steam Hydrogen H2-depleted syngas OTM Reactor HTM Reactor syngas Figure 1- gas. A portion of natural gas also reacts with steam to form syngas. Additional hydrogen is formed

156

Developments in Petroleum Science, 29 compressibilityof sandstones  

E-Print Network (OSTI)

.T. SILVIA and E.A. ROBINSON DECONVOLUTION OF GEOPHYSICAL TIME SERIES IN THE EXPLORATION FOR OIL AND NATURAL AND ANALYSES 18A A.P. SZILAS PRODUCTION AND TRANSPORT OF OIL AND GAS A. FLOW MECHANICS AND PRODUCTION second completely revisededition 18B A.P. SZILAS PRODUCTION AND TRANSPORT OF OIL AND GAS B. GATHERING

Santos, Juan

157

Exploiting heavy oil reserves  

E-Print Network (OSTI)

the behaviour of oil and gas prices and the fruits of future exploration. The rate of technological progress. How optimistic are you that the North Sea remains a viable source of oil and gas? A) Our new researchNorth Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen

Levi, Ran

158

IITM CSC Article #48 15 February 2013  

E-Print Network (OSTI)

over waters and seabed to protect marine life and the abundant deposits of oil and gas a cable trailing of a Vietnamese oil exploration ship; and Chinese naval ships using weapons to threaten threatening Philippines oil exploration vessel; Chinese fighter jets flying over the Philippines territory

Bhashyam, Srikrishna

159

Synthesis, crystal structure and photoluminescence of a new Eu-doped Sr containing sialon (Sr{sub 0.94}Eu{sub 0.06})(Al{sub 0.3}Si{sub 0.7}){sub 4}(N{sub 0.8}O{sub 0.2}){sub 6}  

SciTech Connect

Colorless transparent platelet single crystals of a novel Eu{sup 2+}-doped strontium silicon aluminum oxynitride, (Sr{sub 0.94}Eu{sub 0.06})(Al{sub 0.3}Si{sub 0.7}){sub 4}(N{sub 0.8}O{sub 0.2}){sub 6}, were prepared at 1800 Degree-Sign C and 0.92 MPa of N{sub 2}. Fundamental reflections of electron and X-ray diffraction of the crystals were indexed with a face-centered orthorhombic unit cell (a=5.8061(5) A, b=37.762(3) A, c=9.5936(9) A). Diffuse streaks elongated in the b-axis direction were observed around the fundamental reflections hkl with h=2n+1 of the electron and X-ray diffraction, indicating stacking faults of (0 1 0)[1 0 0]/2. A crystal structure model without the stacking faults was obtained using the X-ray diffraction data of the fundamental reflections with the space group Fdd2. A SiN{sub 4}-tetrahedron double layer of [SiN{sub 2}]{sub 2} and a Sr/Eu double layer of [(Sr{sub 0.94}Eu{sub 0.06})Al{sub 1.2}Si{sub 0.8}N{sub 0.8} O{sub 1.2}]{sub 2} are stacked alternately along the b-axis direction. The title compound showed an emission with a peak wavelength of 490 nm under 334 nm excitation at room temperature. - Graphical abstract: Single crystals of a novel Eu{sup 2+}-doped strontium silicon aluminum oxynitride, (Sr{sub 0.94}Eu{sub 0.06})(Al{sub 0.3}Si{sub 0.7}){sub 4}(N{sub 0.8}O{sub 0.2}){sub 6}, having stacking faults on the (0 1 0) plane of an orthorhombic cell, were prepared at 1800 Degree-Sign C and 0.92 MPa of N{sub 2}. The compound showed emission with a peak wavelength of 490 nm under 334 nm excitation at room temperature. Highlights: Black-Right-Pointing-Pointer A new compound Eu{sup 2+}-doped (Sr{sub 0.94}Eu{sub 0.06})(Al{sub 0.3}Si{sub 0.7}){sub 4}(N{sub 0.8}O{sub 0.2}){sub 6} was prepared. Black-Right-Pointing-Pointer Stacking faults in the compound were clarified by electron and X-ray diffraction. Black-Right-Pointing-Pointer A basic crystal structure model was obtained based on the X-ray diffraction data. Black-Right-Pointing-Pointer An emission of 490 nm under 334 nm excitation at room temperature was observed.

Yamane, Hisanori, E-mail: yamane@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Shimooka, Satoshi; Uheda, Kyota [Mitsubishi Chemical Group, Science and Technology Research Center, Inc. 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502 (Japan)

2012-06-15T23:59:59.000Z

160

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Renewable Boost for Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Renewable Boost for Natural Gas A Renewable Boost for Natural Gas A Renewable Boost for Natural Gas April 24, 2013 - 3:45pm Addthis The new hybrid solar-natural gas system from Pacific Northwest National Laboratory (PNNL) works through concentrating solar power, which uses a reflecting surface to concentrate the sun's rays like a magnifying glass. In the case of the new system from PNNL, a mirrored parabolic dish directs sunbeams to a central point, where a device absorbs the solar heat to make syngas.| Photo courtesy of PNNL. The new hybrid solar-natural gas system from Pacific Northwest National Laboratory (PNNL) works through concentrating solar power, which uses a reflecting surface to concentrate the sun's rays like a magnifying glass. In the case of the new system from PNNL, a mirrored parabolic dish directs

162

Apparatus for the liquefaction of natural gas and methods relating to same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.

Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Carney, Francis H. (Idaho Falls, ID)

2009-09-29T23:59:59.000Z

163

Apparatus for the liquefaction of a gas and methods relating to same  

DOE Patents (OSTI)

Apparatuses and methods are provided for producing liquefied gas, such as liquefied natural gas. In one embodiment, a liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream may sequentially pass through a compressor and an expander. The process stream may also pass through a compressor. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. A portion of the liquid gas may be used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line.

Turner, Terry D. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID)

2009-12-29T23:59:59.000Z

164

 

Gasoline and Diesel Fuel Update (EIA)

8) 8) June 2010 State Energy Price and Expenditure Estimates 1970 Through 2008 2008 Price and Expenditure Summary Tables Table S1a. Energy Price Estimates by Source, 2008 (Dollars per Million Btu) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and

165

Gas insulated transmission line having tapered particle trapping ring  

DOE Patents (OSTI)

A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

Cookson, Alan H. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

166

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities. 3 figs.

Becker, F.E.; Smolensky, L.S.; Balsavich, J.

1989-11-01T23:59:59.000Z

167

Methanol synthesis gas from catalytic steam reforming of wood  

DOE Green Energy (OSTI)

Laboratory studies were successful in developing catalyst systems and operating conditions for generation of a methanol synthesis gas, a mixture of hydrogen, carbon monoxide and carbon dioxide. Some methane remained in the gas mixture. Wood was reacted with steam at a steam-to-wood weight ratio of about 0.9 and a temperature of 750/sup 0/C (1380/sup 0/F) in the presence of several catalysts. Results are presented for two different catalyst systems.

Mudge, L.K.; Mitchell, D.H.; Robertus, R.J.; Weber, S.L.; Sealock, L.J. Jr.

1981-01-01T23:59:59.000Z

168

Word Pro - S1.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

Cost of Fuels to End Users in Real (1982-1984) Dollars Costs, 1960-2012 Costs, August 2013 Residential Electricity, a Monthly Motor Gasoline, a Monthly Residential Natural Gas, a Monthly 14 U.S. Energy Information Administration / Monthly Energy Review November 2013 Residential Heating Oil b 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 5 10 15 20 25 30 Dollars per Million Btu Residential Electricity a Motor Gasoline a Residential Natural Gas a J F M A M J J A S O N D 0 2 4 6 8 Dollars per Kilowatthour 2011 2012 2013 Electricity a 15.68 12.59 6.89 Residential Motor Residential 0 3 6 9 12 15 18 Dollars per Million Btu Gasoline a Natural Gas a J F M A M J J A S O N D 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Dollars per Gallon 2011 2012 2013 J F M A M J J A S O N D 0 2 4 6 8 10 Dollars per Thousand Cubic Feet 2011 2012 2013 a Includes taxes. b Excludes taxes.

169

Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs  

E-Print Network (OSTI)

Previous experiments - injecting pure CO2 into carbonate cores - showed that the process is a win-win technology, sequestrating CO2 while recovering a significant amount of hitherto unrecoverable natural gas that could help defray the cost of CO2 sequestration. In this thesis, I report my findings on the effect of flue gas ??impurities?? on the displacement of natural gas during CO2 sequestration, and results on unconfined compressive strength (UCS) tests to carbonate samples. In displacement experiments, corefloods were conducted at 1,500 psig and 70??C, in which flue gas was injected into an Austin chalk core containing initially methane. Two types of flue gases were injected: dehydrated flue gas with 13.574 mole% CO2 (Gas A), and treated flue gas (N2, O2 and water removed) with 99.433 mole% CO2 (Gas B). The main results of this study are as follows. First, the dispersion coefficient increases with concentration of ??impurities??. Gas A exhibits the largest dispersion coefficients, 0.18-0.25 cm2/min, compared to 0.13-0.15 cm2/min for Gas B, and 0.15 cm2/min for pure CO2. Second, recovery of methane at breakthrough is relatively high, ranging from 86% OGIP for pure CO2, 74-90% OGIP for Gas B, and 79-81% for Gas A. Lastly, injection of Gas A would sequester the least amount of CO2 as it contains about 80 mole% nitrogen. From the view point of sequestration, Gas A would be least desirable while Gas B appears to be the most desirable as separation cost would probably be cheaper than that for pure CO2 with similar gas recovery. For UCS tests, corefloods were conducted at 1,700 psig and 65??C in such a way that the cell throughput of CO2 simulates near-wellbore throughput. This was achieved through increasing the injection rate and time of injection. Corefloods were followed by porosity measurement and UCS tests. Main results are presented as follows. First, the UCS of the rock was reduced by approximately 30% of its original value as a result of the dissolution process. Second, porosity profiles of rock samples increased up to 2.5% after corefloods. UCS test results indicate that CO2 injection will cause weakening of near-wellbore formation rock.

Nogueira de Mago, Marjorie Carolina

2005-08-01T23:59:59.000Z

170

Apparatus for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

1988-01-01T23:59:59.000Z

171

NETL: LabNotes - July 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2012 July 2012 NETL's Recently Patented Technologies NETL Patent Addresses Catalyst Deactivation, Diesel Reformation When NETL researchers patented a unique hexaaluminate catalyst, they advanced the technology a long way toward solving problems associated with catalyst deactivation--a problem that had long inhibited processes such as diesel fuel reforming. Hexaaluminate unit cell illustration. Hexaaluminate unit cell illustration. Until the NETL patent, researchers wrestled with the problem that commercially available catalysts would deactivate in the presence of sulfur and aromatic compounds. As a result, the presence of those compounds in diesel fuel represented a major problem in reforming the fuel. If researchers were to successfully convert diesel fuel into synthesis gas--a

172

Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas  

DOE Patents (OSTI)

A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

Morrow, Thomas B. (San Antonio, TX); Kelner, Eric (San Antonio, TX); Owen, Thomas E. (Helotes, TX)

2008-07-08T23:59:59.000Z

173

Thermal engine driven heat pump for recovery of volatile organic compounds  

DOE Patents (OSTI)

The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

Drake, Richard L. (Schenectady, NY)

1991-01-01T23:59:59.000Z

174

Heat treatment of organics for increasing anaerobic biodegradability. Quarterly progress report, July 1, 1979-September 30, 1979  

DOE Green Energy (OSTI)

The objective of this study is to evaluate thermochemical pretreatment as a method for increasing the anaerobic biodegradability of organic materials so that they can be more completely fermented to methane gas, a potential source of fuel. The current study has four specific phases: (1) biological conversion of lignocellulose to methane, (2) biodegradation of lignin and lignin fractions, (3) pretreatment of nitrogenous organics for increasing biodegradability, (4) biodegradation of lignin aromatic compounds, and (5) biochemical methane potential and toxicity testing. Results are reported for phases one, two, and three. No new information is available for phases four and five at this time.

Stuckey, D.; Colberg, P.J.; Baugh, K.; Young, L.Y.; McCarty, P.L.

1979-01-01T23:59:59.000Z

175

Low exhaust temperature electrically heated particulate matter filter system  

DOE Patents (OSTI)

A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI); Bhatia, Garima (Bangalore, IN)

2012-02-14T23:59:59.000Z

176

Electrically heated particulate filter with reduced stress  

DOE Patents (OSTI)

A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

Gonze, Eugene V.

2013-03-05T23:59:59.000Z

177

Wireless zoned particulate matter filter regeneration control system  

DOE Patents (OSTI)

An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.

Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA

2011-10-04T23:59:59.000Z

178

Systems and method for delivering liquified gas to an engine  

DOE Patents (OSTI)

A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

179

Methods For Delivering Liquified Gas To An Engine  

DOE Patents (OSTI)

A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2003-09-16T23:59:59.000Z

180

Methods For Delivering Liquified Gas To An Engine  

DOE Patents (OSTI)

A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2005-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project  

DOE Green Energy (OSTI)

The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

NONE

1996-05-01T23:59:59.000Z

182

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Rateman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klinger, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2005-11-08T23:59:59.000Z

183

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2005-05-03T23:59:59.000Z

184

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2003-06-24T23:59:59.000Z

185

Apparatus for the liquefaction of natural gas and methods relating to same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2007-05-22T23:59:59.000Z

186

Energy Department Authorizes Additional Volume at Proposed Freeport LNG  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Volume at Proposed Freeport Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas November 15, 2013 - 3:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department announced today that it has conditionally authorized Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC (Freeport) to export additional volumes of domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States from the Freeport LNG Terminal in Quintana Island, Texas. Freeport previously received approval to export 1.4 billion cubic feet of natural gas a day (Bcf/d) of LNG from this facility to non-FTA countries on May 17, 2013. The Freeport Expansion

187

Definition: Therm | Open Energy Information  

Open Energy Info (EERE)

Therm Therm Jump to: navigation, search Dictionary.png Therm A unit of heat containing 100,000 British thermal units (Btu).[1][2] View on Wikipedia Wikipedia Definition Natural Gas is usually measured by volume in the United States and is stated in cubic feet. A cubic foot of gas is the amount of gas needed to fill a volume of one cubic foot under set conditions of pressure and temperature. To measure larger amounts of natural gas, a "therm" is used to denote 100 cubic feet, and "mcf" is used to denote 1,000 cubic feet. To provide greater accuracy in comparing fuels, energy content is measured in terms of "British Thermal Units (BTU's). " A BTU is the amount of heat required to raise one pound of water (approximately a pint), one degree

188

ALASKA NORTH SLOPE OIL AND GAS RESOURCES  

NLE Websites -- All DOE Office Websites (Extended Search)

FFf Task 222.01.01 FFf Task 222.01.01 ADDENDUM REPORT Alaska North Slope Oil and Gas A Promising Future or an Area in Decline? DOE/NETL-2009/1385 April 2009 ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe probably owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

189

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Used as Feedstock for Hydrogen Production Natural Gas Used as Feedstock for Hydrogen Production Definitions Key Terms Definition Hydrogen The lightest of all gases, occurring chiefly in combination with oxygen in water; exists also in acids, bases, alcohols, petroleum, and other hydrocarbons. Natural Gas A gaseous mixture of hydrocarbon compounds, the primary one being methane. Petroleum Administration for Defense (PAD) Districts Geographic aggregations of the 50 States and the District of Columbia into five districts by the Petroleum Administration for Defense in 1950. These districts were originally defined during World War II for purposes of administering oil allocation. Description and maps of PAD Districts and Refining Districts. For definitions of related energy terms, refer to the EIA Energy Glossary.

190

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

5 5 Energy Information Administration / Natural Gas Annual 1998 Glossary Balancing Item: Represents differences between the sum of the components of natural gas supply and the sum of the components of natural gas disposition. These differ- ences may be due to quantities lost or to the effects of data-reporting problems. Reporting problems include dif- ferences due to the net result of conversions of flow data metered at varying temperature and pressure bases and converted to a standard temperature and pressure base; the effect of variations in company accounting and billing practices; differences between billing cycle and calendar period time frames; and imbalances resulting from the merger of data-reporting systems that vary in scope, for- mat, definitions, and type of respondents. Biomass Gas: A medium Btu gas containing methane and carbon dioxide, resulting from the action

191

An effective loading method of americium targets in fast reactors  

Science Conference Proceedings (OSTI)

Recently, the development of target fuel with high americium (Am) content has been launched for the reduction of the overall fuel fabrication cost of the minor actinide (MA) recycling. In the framework of the development, this study proposes an effective loading method of Am targets in fast reactors. As a result of parametric survey calculations, we have found the ring-shaped target loading pattern between inner and outer core regions. This loading method is satisfactory both in core characteristics and in MA transmutation property. It should be noted that the Am targets can contribute to the suppression of the core power distribution change due to burnup. The major drawback of Am target is the production of helium gas. A target design modification by increasing the cladding thickness is found to be the most feasible measure to cope with the helium production. (authors)

Ohki, Shigeo; Sato, Isamu; Mizuno, Tomoyasu; Hayashi, Hideyuki; Tanaka, Kenya [Japan Atomic Energy Agency, 4002, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

2007-07-01T23:59:59.000Z

192

Filter for isotopic alteration of mercury vapor  

DOE Green Energy (OSTI)

A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucestor, MA)

1989-01-01T23:59:59.000Z

193

Filter for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

A filter is described for enriching the [sup 196]Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The [sup 196]Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is, less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter. 9 figs.

Grossman, M.W.; George, W.A.

1989-06-13T23:59:59.000Z

194

Method and apparatus for cutting and abrading with sublimable particles  

DOE Patents (OSTI)

A gas delivery system provides a first gas as a liquid under extreme pressure and as a gas under intermediate pressure. Another gas delivery system provides a second gas under moderate pressure. The second gas is selected to solidify at a temperature at or above the temperature of the liquefied gas. A nozzle assembly connected to the gas delivery systems produces a stream containing a liquid component, a solid component, and a gas component. The liquid component of the stream consists of a high velocity jet of the liquefied first gas. The high velocity jet is surrounded by a particle sheath that consists of solid particles of the second gas which solidifies in the nozzle upon contact with the liquefied gas of the high velocity jet. The gas component of the stream is a high velocity flow of the first gas that encircles the particle sheath, forming an outer jacket. 6 figs.

Bingham, D.N.

1995-10-10T23:59:59.000Z

195

Natural Gas - CNG & LNG  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas Natural gas pump Natural gas, a fossil fuel comprised mostly of methane, is one of the cleanest burning alternative fuels. It can be used in the form of compressed natural gas (CNG) or liquefied natural gas (LNG) to fuel cars and trucks. Dedicated natural gas vehicles are designed to run on natural gas only, while dual-fuel or bi-fuel vehicles can also run on gasoline or diesel. Dual-fuel vehicles allow users to take advantage of the wide-spread availability of gasoline or diesel but use a cleaner, more economical alternative when natural gas is available. Since natural gas is stored in high-pressure fuel tanks, dual-fuel vehicles require two separate fueling systems, which take up passenger/cargo space. Natural gas vehicles are not available on a large scale in the U.S.-only

196

C:\ANNUAL\Vol2chps.v8\ANNUAL2.VP  

Gasoline and Diesel Fuel Update (EIA)

7 7 Glossary Aquifer Field: A sub-surface facility for storing natural gas consisting of water-bearing sands topped by an imper- meable cap rock. Balancing Item: Represents differences between the sum of the components of natural gas supply and the sum of the components of natural gas disposition. These differences may be due to quantities lost or to the effects of data-reporting problems. Reporting problems include differences due to the net result of conversions of flow data metered at varying temperature and pressure bases and con- verted to a standard temperature and pressure base; the effect of variations in company accounting and billing practices; differences between billing cycle and calendar period time frames; and imbalances resulting from the merger of data-reporting systems that vary in scope, format, definitions, and type of respondents. Biomass Gas: A medium Btu

197

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

International & Interstate Movements by State International & Interstate Movements by State Definitions Key Terms Definition Deliveries The physical transfer of natural, synthetic, and/or supplemental gas from facilities operated by the responding company to facilities operated by others or to consumers. Exports Natural Gas deliveries out of the Continental United States and Alaska to foreign countries. Imports Natural Gas received in the Continental United States (including Alaska) from a foreign country. Natural Gas A gaseous mixture of hydrocarbon compounds, the primary one being methane. Net Imports and Receipts The amount by which imports and receipts exceed exports and deliveries. Receipts Deliveries of fuel to an electric plant ; Purchases of fuel ; All revenues received by an exporter for the reported quantity exported.

198

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Underground Storage - All Operators Underground Storage - All Operators Definitions Key Terms Definition AGA Eastern Consuming Region All States east of the Mississippi River less Mississippi and Alabama, plus Iowa, Nebraska and Missouri. AGA Western Consuming Region All States west of the Mississippi River less the Producing Region and Iowa, Nebraska and Missouri. AGA Producing Region Alabama, Arkansas, Kansas, Louisiana, Mississippi, New Mexico, Oklahoma, and Texas. Base (cushion) Gas The volume of gas needed as a permanent inventory to maintain adequate reservoir pressures and deliverability rates throughout the withdrawal season. All native gas is included in the base gas volume. Natural Gas A gaseous mixture of hydrocarbon compounds, the primary one being methane. Net Withdrawals The amount by which storage withdrawals exceed storage injections.

199

NETL: News Release -  

NLE Websites -- All DOE Office Websites (Extended Search)

, 2006 , 2006 DOE-Funded Technology to Upgrade Low-Quality Natural Gas Commercialized Research Targets Subquality Gas Resource Comprising a Third of U.S. Gas Reserves TULSA, OK- A new Department of Energy-funded technology to upgrade low-quality natural gas-a resource that accounts for almost one-third of America's known gas reserves-has been successfully commercialized and is now a multimillion-dollar business. A large portion of the nation's natural gas production stream comes out of the ground contaminated by water, carbon dioxide, hydrogen sulfide, or nitrogen and other inert gases. These contaminants must be removed from the production stream in order to provide pipeline-quality natural gas for delivery to consumers. This low-quality natural gas resource has been estimated at more than 60 trillion cubic feet (Tcf) of the Nation's total proved gas reserves of more than 192 Tcf.

200

Energy Department Authorizes Additional Volume at Proposed Freeport LNG  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Authorizes Additional Volume at Proposed Freeport Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas November 15, 2013 - 3:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department announced today that it has conditionally authorized Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC (Freeport) to export additional volumes of domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States from the Freeport LNG Terminal in Quintana Island, Texas. Freeport previously received approval to export 1.4 billion cubic feet of natural gas a day (Bcf/d) of LNG from this

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

FE Carbon Capture and Storage News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

carbon-capture-storage-news Office of Fossil Energy carbon-capture-storage-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution http://energy.gov/articles/energy-department-invests-drive-down-costs-carbon-capture-support-reductions-greenhouse-gas <a href="/articles/energy-department-invests-drive-down-costs-carbon-capture-support-reductions-greenhouse-gas" class="title-link">Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution

202

NREL: News - Release Archives 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Printable Version News Release Archives 2008 News releases covering laboratory activities, scientific discoveries, projects and more are archived below, chronologically. For more information about NREL and its research in renewable energy and energy efficiency technologies, e-mail public_affairs@nrel.gov. December 11, 2008 Alternative Fuels and Advanced Vehicle Data Center Creates New Tool to Calculate Ways to Cut Gas Use A business owner with a fleet of 10 heavy-duty diesel trucks wants to cut diesel use by 10 percent. Would using a biodiesel blend or investing in onboard power sources that reduce engine idling achieve the biggest drop in petroleum use? An average driver, using 600 gallons of gas a year in a typical sedan, wants to reduce gas consumption by 20 percent. Would using

203

One Man's Trash is Another Man's Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Man's Trash is Another Man's Fuel One Man's Trash is Another Man's Fuel One Man's Trash is Another Man's Fuel September 16, 2010 - 7:08pm Addthis Dennis A. Smith Director, National Clean Cities The average American throws away more than 900 pounds of trash every year. Organic waste degrading in landfills produces methane gas - a gas 21 times more potent as a greenhouse gas than carbon dioxide. Although most landfills vent this gas in the atmosphere, some facilities are exploring how to use it to fuel trash haulers and other vehicles. The Department of Energy's Clean Cities program recognizes the potential of these new facilities to generate sustainable fuel from methane gas and thus is working to support landfill gas projects across the country. Landfill gas is a type of biogas, a natural gas produced by biological

204

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 State Energy Data 2011: Consumption Table C11. Energy Consumption by Source, Ranked by State, 2011 Rank Coal Natural Gas a Petroleum b Retail Electricity Sales State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,695.2 Texas 3,756.9 Texas 5,934.3 Texas 1,283.1 2 Indiana 1,333.4 California 2,196.6 California 3,511.4 California 893.7 3 Ohio 1,222.6 Louisiana 1,502.9 Louisiana 1,925.7 Florida 768.0 4 Pennsylvania 1,213.0 New York 1,246.9 Florida 1,680.3 Ohio 528.0 5 Illinois 1,052.2 Florida 1,236.6 New York 1,304.0 Pennsylvania 507.6 6 Kentucky 1,010.6 Pennsylvania 998.6 Pennsylvania 1,255.6 New York 491.5

205

NETL: News Release - Energy Department Awards $66.7 Million for Large-Scale  

NLE Websites -- All DOE Office Websites (Extended Search)

29, 2008 29, 2008 DOE Report: Alaska North Slope Has Plenty of Potential Report Examines Future of Oil and Natural Gas Resources in Arctic Alaska Washington, D.C. - The U.S. Department of Energy's Office of Fossil Energy has issued a comprehensive new report Alaska North Slope Oil and Gas: A Promising Future or an Area in Decline? To answer this question, the report examines the potential for Arctic Alaska to remain a major contributor to the Nation's domestic energy supply under different development scenarios. MORE INFO Read the Summary Report [PDF-3MB] Read the Full Report [PDF-7MB] Future projections were viewed from two perspectives, an oil-centered near term (2005 to 2015) and a long term (2015 to 2050) marked by the emergence of gas as a major factor in exploration and development activities. Key

206

Business Owners: Prepare for Utility Disruptions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Utility Disruptions for Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other hazard knocks out your business's electricity or natural gas service. Identify energy utilities-The utilities that are absolutely necessary to running your business. How might a disaster impact the availability of those utilities? Determine backup options-Contact your utility companies to discuss potential backup options, such as portable generators to provide power. Learn how and when to turn off utilities-For example, if you turn off your natural gas, a professional technician must turn it back on. Learn more Consider using backup generators-Generators can power the most important aspects of your business in an emergency. This will involve:

207

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

U.S. Underground Storage by Type U.S. Underground Storage by Type Definitions Key Terms Definition Base (cushion) gas The volume of gas needed as a permanent inventory to maintain adequate reservoir pressures and deliverability rates throughout the withdrawal season. All native gas is included in the base gas volume. Gas in storage The sum of base gas plus working gas. Injections The volume of gas injected into storage reservoirs. Natural Gas A gaseous mixture of hydrocarbon compounds, the primary one being methane. Net Withdrawals The amount by which storage withdrawals exceed storage injections. Salt Cavern Storage Field A storage facility that is a cavern hollowed out in either a salt "bed" or "dome" formation. Withdrawals The volume of gas withdrawn from storage reservoirs.

208

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Futures Prices Futures Prices Definitions Key Terms Definition Contract 1 A futures contract specifying the earliest delivery date. Natural gas contracts expire three business days prior to the first calendar day of the delivery month. Thus, the delivery month for Contract 1 is the calendar month following the trade date. Contract 2-4 Represent the successive delivery months following Contract 1. Futures Price The price quoted for delivering a specified quantity of a commodity at a specified time and place in the future. Natural Gas A gaseous mixture of hydrocarbon compounds, the primary one being methane. NGL Composite Price The natural gas liquids (NGL) composite price is derived from daily Bloomberg spot price data for natural gas liquids at Mont Belvieu, Texas, weighted by gas processing plant production volumes of each product as reported on Form EIA-816, "Monthly Natural Gas Liquids Report."

209

C:\ANNUAL\VENTCHAP.V8\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

51 51 Glossary Balancing Item: Represents differences between the sum of the components of natural gas supply and the sum of the components of natural gas disposition. These differ- ences may be due to quantities lost or to the effects of data-reporting problems. Reporting problems include dif- ferences due to the net result of conversions of flow data metered at varying temperature and pressure bases and converted to a standard temperature and pressure base; the effect of variations in company accounting and billing practices; differences between billing cycle and calendar period time frames; and imbalances resulting from the merger of data-reporting systems that vary in scope, for- mat, definitions, and type of respondents. Biomass Gas: A medium Btu gas containing methane and carbon dioxide, resulting from the action of microor- ganisms on organic materials such as a landfill.

210

Glossary Balancing Item: Represents  

Gasoline and Diesel Fuel Update (EIA)

Balancing Balancing Item: Represents differences between the sum of the components of natural gas supply and the sum of the components of natural gas disposition. These differences may be due to quantities lost or to the effects of data-report- ing problems. Reporting problems include differences due to the net result of conversions of flow data metered at varying temperature and pressure bases and converted to a standard temperature and pressure base; the effect of vari- ations in company accounting and billing practices; differ- ences between billing cycle and calendar period time frames; and imbalances resulting from the merger of data- reporting systems that vary in scope, format, definitions, and type of respondents. Biomass Gas: A medium Btu gas containing methane and carbon dioxide, resulting from the action of microorganisms on organic materials such as a landfill. British Thermal

211

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Supplies Supplemental Supplies Definitions Key Terms Definition Biomass Gas A medium Btu gas containing methane and carbon dioxide, resulting from the action of microorganisms on organic materials such as a landfill. Blast-furnace Gas The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within steel works. British Thermal Unit (Btu) The quantity of heat required to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest density (approximately 39 degrees Fahrenheit). Coke-oven Gas The mixture of permanent gases produced by the carbonization of coal in a coke oven at temperatures in excess of 1,000 degrees Celsius.

212

Liquefied Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Natural gas plays a vital role in the U.S. energy supply and in achieving the nation's economic and environmental goals. One of several supply options involves increasing imports of liquefied natural gas (LNG) to ensure that American consumers have adequate supplies of natural gas for the future. Natural gas consumption in the United States is expected to increase slightly from about 24.3 trillion cubic feet (Tcf) in 2011 to 26.6 Tcf by 2035. Currently, most of the demand for natural gas in the United States is met with domestic production and imports via pipeline from Canada. A small percentage of gas supplies are imported and received as liquefied natural gas. A significant portion of the world's natural gas resources are

213

Photo of the Week: A Driving Force for Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Driving Force for Natural Gas A Driving Force for Natural Gas Photo of the Week: A Driving Force for Natural Gas September 28, 2012 - 3:04pm Addthis Since 1977, the people of the U.S. Department of Energy have been delivering the science, innovation and expertise required to advance America's energy, economic and national security. In this photo taken in June 1988, former Secretary of Energy John Herrington takes the wheel of a clean natural gas vehicle in front of the Energy Department in Washington, DC. Today, natural gas powers over 112,000 vehicles in the United States and roughly 14.8 million vehicles worldwide. Natural gas vehicles, which can run on compressed natural gas, are a good option for high-mileage, centrally-fueled fleets that operate within a limited area. | Photo courtesy of the Department of Energy.

214

Feynman diagrams versus Fermi-gas Feynman emulator  

E-Print Network (OSTI)

Precise understanding of strongly interacting fermions, from electrons in modern materials to nuclear matter, presents a major goal in modern physics. However, the theoretical description of interacting Fermi systems is usually plagued by the intricate quantum statistics at play. Here we present a cross-validation between a new theoretical approach, Bold Diagrammatic Monte Carlo (BDMC), and precision experiments on ultra-cold atoms. Specifically, we compute and measure with unprecedented accuracy the normal-state equation of state of the unitary gas, a prototypical example of a strongly correlated fermionic system. Excellent agreement demonstrates that a series of Feynman diagrams can be controllably resummed in a non-perturbative regime using BDMC. This opens the door to the solution of some of the most challenging problems across many areas of physics.

K. Van Houcke; F. Werner; E. Kozik; N. Prokofev; B. Svistunov; M. J. H. Ku; A. T. Sommer; L. W. Cheuk; A. Schirotzek; M. W. Zwierlein

2011-10-17T23:59:59.000Z

215

Feynman diagrams versus Feynman quantum emulator  

E-Print Network (OSTI)

Precise understanding of strongly interacting fermions, from electrons in modern materials to nuclear matter, presents a major goal in modern physics. However, the theoretical description of interacting Fermi systems is usually plagued by the intricate quantum statistics at play. Here we present a cross-validation between a new theoretical approach, Bold Diagrammatic Monte Carlo (BDMC), and precision experiments on ultra-cold atoms. Specifically, we compute and measure with unprecedented accuracy the normal-state equation of state of the unitary gas, a prototypical example of a strongly correlated fermionic system. Excellent agreement demonstrates that a series of Feynman diagrams can be controllably resummed in a non-perturbative regime using BDMC. This opens the door to the solution of some of the most challenging problems across many areas of physics.

Van Houcke, K; Kozik, E; Prokofev, N; Svistunov, B; Ku, M; Sommer, A; Cheuk, L W; Schirotzek, A; Zwierlein, M W

2011-01-01T23:59:59.000Z

216

Nonthermal aftertreatment of diesel engine exhaust  

DOE Green Energy (OSTI)

The ultimate objective of this work has been to develop a nonthermal plasma process to reduce NO{sub x} in diesel exhaust gas. A secondary objective has been to study the possibility of particulate matter (soot) reduction by the same technique. The early work revealed a fundamental difficulty with this NO{sub x} reduction approach in the gas environment of the diesel engine exhaust. These observations necessitated a thorough study of the unfavorable chemistry in the hope that knowledge of the chemical mechanism would offer an opportunity to make the approach useful for NO{sub x} reduction. Whereas fundamental understanding of the mechanism has been obtained, the authors have not found any measure that would make the approach meet its original objective.

Wallman, P.H.; Hsiao, M.C.; Merritt, B.T.; Penetrante, B.M.; Vogtlin, G.E.

1995-09-22T23:59:59.000Z

217

Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels  

DOE Patents (OSTI)

A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

2013-04-30T23:59:59.000Z

218

ECUT energy data reference series: ammonia synthesis energy-use and capital stock information  

SciTech Connect

Energy requirements for ammonia synthesis totaled 0.55 quadrillion Btu of natural gas in 1980 and 28,500 MMBtu (8.3 x 10/sup 6/ kWh) of electricity. Efficiencies ranged from 0.72 to 0.8 for natural gas and 0.65 for electricity. Ammonia production in 1980 is estimated at 21 million tones. In the year 2000, U.S. ammonia production is estimated to be between 27 to 34 million tones with 19 to 31 million tons being produced using natural gas. A most likely value of 25 million tons of ammonia from natural gas feedstock is projected. As much as 20% of the energy from natural gas fuel could be saved if a more active catalyst could be developed that would reduce the operating pressure of ammonia synthesis to 1 atm.

Young, J.K.; Johnson, D.R.

1984-07-01T23:59:59.000Z

219

Method of detecting leakage of reactor core components of liquid metal cooled fast reactors  

DOE Patents (OSTI)

A method of detecting the failure of a sealed non-fueled core component of a liquid-metal cooled fast reactor having an inert cover gas. A gas mixture is incorporated in the component which includes Xenon-124; under neutron irradiation, Xenon-124 is converted to radioactive Xenon-125. The cover gas is scanned by a radiation detector. The occurrence of 188 Kev gamma radiation and/or other identifying gamma radiation-energy level indicates the presence of Xenon-125 and therefore leakage of a component. Similarly, Xe-126, which transmutes to Xe-127 and Kr-84, which produces Kr-85.sup.m can be used for detection of leakage. Different components are charged with mixtures including different ratios of isotopes other than Xenon-124. On detection of the identifying radiation, the cover gas is subjected to mass spectroscopic analysis to locate the leaking component.

Holt, Fred E. (Richland, WA); Cash, Robert J. (Richland, WA); Schenter, Robert E. (Richland, WA)

1977-01-01T23:59:59.000Z

220

Hydraulic accumulator-compressor for geopressured enhanced oil recovery  

DOE Patents (OSTI)

A hydraulic accumulator-compressor vessel using geothermal brine under pressure as a piston to compress waste (CO.sub.2 rich) gas is used in a system having a plurality of gas separators in tandem to recover pipeline quality gas from geothermal brine. A first high pressure separator feeds gas to a membrance separator which separates low pressure waste gas from high pressure quality gas. A second separator produces low pressure waste gas. Waste gas from both separators is combined and fed into the vessel through a port at the top as the vessel is drained for another compression cycle. High pressure brine is then admitted into the vessel through a port at the bottom of the vessel. Check valves control the flow of low pressure waste gas into the vessel and high pressure waste gas out of the vessel.

Goldsberry, Fred L. (Spring, TX)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

How refinery fuel indexes have varied  

Science Conference Proceedings (OSTI)

Refinery fuels costs have endured a steady incline since 1993, except for a period in 1993. As shown in the accompanying table, these increases in cost have occurred for residual fuel oil costs in three of the five PADD districts. The cost for natural gas for refinery usage also dropped steadily during the 3-year study. These conclusions are based on costs of an average refinery fuel consisting of 1 bbl each of PADD Districts 1--5 and an average US cost of 4.4 MMscf natural gas (a 1 bbl equivalent on a BTU content basis). Raw residual fuel oil and natural gas prices come from publications put out by the US Department of Labor.

Farrar, G.

1997-01-06T23:59:59.000Z

222

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA); Bagheri, Reza (Bethlehem, PA)

1997-12-02T23:59:59.000Z

223

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figures.

McInnis, E.L.; Scharff, R.P.; Bauman, B.D.; Williams, M.A.

1995-01-17T23:59:59.000Z

224

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

Bauman, B.D.; Williams, M.A.; Bagheri, R.

1997-12-02T23:59:59.000Z

225

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

McInnis, Edwin L. (Allentown, PA); Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

1996-04-09T23:59:59.000Z

226

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

McInnis, E.L.; Bauman, B.D.; Williams, M.A.

1996-04-09T23:59:59.000Z

227

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

McInnis, Edwin L. (Allentown, PA); Scharff, Robert P. (Louisville, KY); Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

1995-01-01T23:59:59.000Z

228

Gas turbine topping combustor  

DOE Patents (OSTI)

A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

Beer, Janos (Winchester, MA); Dowdy, Thomas E. (Orlando, FL); Bachovchin, Dennis M. (Delmont, PA)

1997-01-01T23:59:59.000Z

229

Coal gasification construction materials: an overview  

SciTech Connect

Materials performance test results are presented for two coal gasification processes, HYGAS SNG process, which converts any type of coal to substitute natural gas (SNG), and U-GAS fuel gas process, which converts coal to a low- or medium-heat value gas. A description of the pilot plant for each process and discussion of some experiences with materials and components used in plant construction is presented. Metals performance inside the gasifier reactors and in off-gas locations depended upon the character of the process. At moderate operating temperatures (427/sup 0/C), low-carbon steels are advisable. Very high-temperature environments may not only require use of exotic alloys, clads, and/or coatings but may also preclude extensive use of internal piping/valving in scale-up designs. Inconel 182, 600, and Monel 400 have all performed erratically in the plants; but in quench and purification sections, austenitic stainless steels performed well. 9 references. (BLM)

Arnold, J.M. (Inst. of Gas Tech., Chicago, IL); Laurens, R.M.; Danyluk, S.

1981-12-01T23:59:59.000Z

230

Systems for delivering liquified natural gas to an engine  

DOE Patents (OSTI)

A fuel delivery system includes a fuel tank configured to receive liquid natural gas. A first conduit extends from a vapor holding portion of the fuel tank to an economizer valve. A second conduit extends from a liquid holding portion of the fuel tank to the economizer valve. Fluid coupled to the economizer valve is a vaporizer which is heated by coolant from the engine and is positioned below the fuel tank. The economizer valve selectively withdraws either liquid natural gas or vaporized natural gas from the fuel tank depending on the pressure within the vapor holding portion of the fuel tank. A delivery conduit extends from the vaporizer to the engine. A return conduit having a check valve formed therein extends from the delivery conduit to the vapor holding portion of the fuel tank for pressurizing the fuel tank.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Siahpush, Ali S. (Idaho Falls, ID); Brown, Kevin B. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

231

System and method for converting wellhead gas to liquefied petroleum gases (LPG)  

SciTech Connect

A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

May, R.L.; Snow, N.J. Jr.

1983-12-06T23:59:59.000Z

232

Qatar chooses Snam to market LNG in Europe  

Science Conference Proceedings (OSTI)

This paper reports that Qatar has chosen Italy's Snam SpA as its European partner to sell liquefied natural gas to Europe from a $4.8 billion joint venture project involving supergiant North offshore gas field. State owned Qatar General petroleum Corp. (QGPC) and Snam signed an agreement in Doha to create a joint company owned 65% by QGPC and the remainder by Snam. Italy's state electricity monopoly, ENEL, which is seeking Qatari gas a fuel for its power plants, may later acquire part of Snam's interest in the project. The joint venture will transport and market North LNG to Europe. Exports to Europe by Snam via Italy, to begin in 1997, are expected to be 283 bcf/year at first and may climb to 459 bcf/year, depending upon demand.

Not Available

1992-06-15T23:59:59.000Z

233

R and D on Proton Extinction Monitor for COMET Project  

Science Conference Proceedings (OSTI)

The COMET experiment searches for a muon to electron conversion process that is one of the lepton flavor violation processes. We use an 8-GeV pulsed proton beam. The proton extinction ratio is an important parameter. In order to measure this ratio pulse-by-pulse, we are developing a monitoring device. This device is called Proton Extinction Monitor and is a gas Cerenkov detector with gating photomultiplier tubes(PMT). The result of the investigation is that ethane is a promising gas for the Cerenkov radiator gas. A gating PMT is under development. We fabricated a divider circuit which switches at 10-kHz and has a cutoff ratio of 10{sup -6}.

Nakadozono, N.; Masaharu, A.; Kuno, Y.; Sato, A.; Yano, T.; Ito, N. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Taniguchi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)

2010-03-30T23:59:59.000Z

234

One more experiment on "fast-light"  

E-Print Network (OSTI)

Contemporary observational and theoretical studies on the temporal nature of microscopic measurements renewed the discussion about the fundamental constants, leading to the possibility of light speed variation and superluminal pulse propagation. Gain assisted experiments using anomalous dispersion near an absorption line in atomic gas, a "fast - light" medium, seem to lead to a wave group velocity vG exceeding c, the vacuum speed of light; moreover, definition of the information velocity vi sets the question of interpretation of the three speeds: one view is that vi = vG, but this violates Causality; another view is that vi = c in all situations, but this limits, a priori, the transport of information. Another view is that vi, vG and c are distinct. This contribution follows the last possibility. A draft discussion on space-time is given.

R Assumpcao

2003-12-11T23:59:59.000Z

235

Dark Energy and Search for the Generalized Second Law  

E-Print Network (OSTI)

The discovery of accelerated Hubble expansion in the SNIa data and the observed power spectrum of the microwave background radiation provide an ample support for Dark energy and Dark matter. Except for the so far well-known facts that cold dark matter (or simply dark matter) is pressureless, and dark energy has a negative pressure, the nature of these two still remains a complete mystery. The mystery facilitates different consideration. In one hand, dark matter and dark energy are assumed as distinct entities, and other interpretation is that both are different manifestation of a common structure, often referred as quartessence. Chaplygin gas, a perfect fluid also favours the second interpretation. Here, we consider modified chaplygin gas as dark energy candidate. Taking into account the existence of the observer's event horizon in accelerated universe, we find the condition where the generalized second law of gravitational thermodynamics is valid and the positivity of the temperature of the phantom fluid remains intact.

Balendra Kr. Dev Choudhury; Julie Saikia

2009-06-03T23:59:59.000Z

236

Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities  

E-Print Network (OSTI)

Recent downsizing and consolidation of Department of Defense (DOD) facilities provides an opportunity to upgrade remaining facilities with more efficient and less polluting equipment. Use of air compressors by the DOD is widespread and the variety of tools and machinery that operate on compressed air is increasing. The energy cost of operating a natural gas engine-driven air compressor (NGEDAC) is usually lower than the cost of operating an electric-driven air compressor. Initial capital costs are offset by differences in prevailing utility rates, efficiencies of partial load operation, reductions in peak demand, heat recovery, and avoiding the cost of back-up generators. Natural gas, a clean-burning fuel, is abundant and readily available. In an effort to reduce its over-all environmental impact and energy consumption, the U.S. Army plans to apply NGEDAC technology in support of fixed facilities compressed air systems. Site assessment and demonstration results are presented in this paper.

Lin, M.; Aylor, S. W.; Van Ormer, H.

2002-04-01T23:59:59.000Z

237

Effects of natural gas composition on ignition delay under diesel conditions  

DOE Green Energy (OSTI)

Effects of variations in natural gas composition on autoignition of natural gas under direct-injection (DI) diesel engine conditions were studied experimentally in a constant-volume combustion vessel and computationally using a chemical kinetic model. Four fuel blends were investigated: pure methane, a capacity weighted mean natural gas, a high ethane content natural gas, and a natural gas with added propane typical of peak shaving conditions. Experimentally measured ignition delays were longest for pure methane and became progressively shorter as ethane and propane concentrations increased. At conditions characteristic of a DI compression ignition natural gas engine at Top Dead Center (CR=23:1, p = 6.8 MPa, T = 1150K), measured ignition delays for the four fuels varied from 1.8 ms for the peak shaving and high ethane gases to 2.7 ms for pure methane. Numerically predicted variations in ignition delay as a function of natural gas composition agreed with these measurements.

Naber, J.D.; Siebers, D.L. [Sandia National Labs., Livermore, CA (United States); Di Julio, S.S. [California State Univ., Northridge, CA (United States). Dept. of Mechanical Engineering; Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

1993-12-03T23:59:59.000Z

238

Container and method for absorbing and reducing hydrogen concentration  

DOE Patents (OSTI)

A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.

Wicks, George G. (Aiken, SC); Lee, Myung W. (North Augusta, SC); Heung, Leung K. (Aiken, SC)

2001-01-01T23:59:59.000Z

239

Controlled differential pressure system for an enhanced fluid blending apparatus  

DOE Patents (OSTI)

A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

Hallman, Jr., Russell Louis (Knoxville, TN)

2009-02-24T23:59:59.000Z

240

Comparative analysis of hydrogen fire and explosion incidents: quarterly report No. 2, December 1, 1977--February 28, 1978  

DOE Green Energy (OSTI)

Additional hydrogen incident reports compiled during this quarter have increased the size of the computerized data base to a current total of 280 incidents. Listings of 165 incidents that have occurred in industrial and transportation operations since 1968 are presented here. Sample case histories in six different cause categories are provided together with a discussion of common safety problems contributing to these incidents. Some of these problems are inadequate detection measures for hydrogen leaks and fires and ineffective purging with inert gas. A preliminary comparison of losses due to natural gas fires/explosions and hydrogen incidents indicates that hydrogen explosions have been, on the average, four-to-six times as damaging as natural gas explosions. Some tentative explanations for this result are presented but await confirmation from a more sophisticated statistical analysis.

Zalosh, R.G.; Short, T.P.

1978-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Capacity Capacity Definitions Key Terms Definition Aquifer Storage Field A sub-surface facility for storing natural gas, consisting of water-bearing sands topped by an impermeable cap rock. Depleted Reservoir Storage Field A sub-surface natural geological reservoir, usually a depleted gas or oil field, used for storing natural gas. Natural Gas A gaseous mixture of hydrocarbon compounds, the primary one being methane. Salt Dome Storage Field (Salt Cavern) A storage facility that is a cavern hollowed out in either a salt "bed" or "dome" formation. Storage Capacity The present developed maximum operating capacity. Working Gas Capacity The volume of total natural gas storage capacity that contains natural gas available for withdrawal. For definitions of related energy terms, refer to the EIA Energy Glossary.

242

Definition: Natural gas | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Natural gas Jump to: navigation, search Dictionary.png Natural gas A hydrocarbon gas obtained from underground sources, often in association with petroleum and coal deposits.[1] View on Wikipedia Wikipedia Definition Natural gas is a naturally occurring hydrocarbon gas mixture consisting primarily of methane, but commonly includes varying amounts of other higher alkanes and even a lesser percentage of carbon dioxide, nitrogen, and hydrogen sulfide. Natural gas is an energy source often used for heating, cooking, and electricity generation. It is also used as fuel for vehicles and as a chemical feedstock in the manufacture of plastics and other commercially important organic chemicals. Natural gas is found in

243

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Institute Technologies Institute EE DE-EE0003779 Power & Vehicles Technologies 2011,2012,2013, Perf Pd. 9/202010-3/30/2013 Alan Blosser Integrated CHP Systems Corp. 50 Washington Rd. Princeton Junction Area of Interest 3 Deployment of FlexCHP System (FOA0000016) Mercer Co., New Jersey 08550 Validation phase of the FlexCHP Combined Heat and Power system, testing a microturbine coupled to an Ultra Low NOx burner,, and a boiler to burn the exhaust gas a second time to reduce emissions. 06 25 2010 Alan L. Blosser Digitally signed by Alan L. Blosser DN: cn=Alan L. Blosser, o=Power and Vehicle Technologies Division, ou=NETL-DOE, email=alan.blosser@netl.doe.gov, c=US Reason: I am the author of this document Date: 2010.06.25 11:03:58 -04'00' 06 30 2010 Mark Lusk

244

Modeling of ultra-high recycling divertors with the PLANET code  

SciTech Connect

The handling of power carried by the charged particles into the scrape-off layer of a tokamak reactor remains a major obstacle for its continuous and reliable operation. Ways of reducing this power through radiation have been studied numerically using fluid models for both the plasma and neutral gas. A new model for the combined plasma and neutral gas 2-D transport capable of simultaneously representing regions of fully-ionized plasma, partially ionized plasma, and pure neutral gas has been assembled and implemented in the PLANET code. Divertor plasma temperatures of just below 1 eV have been achieved in a pure hydrogen plasma, resulting in an ionization-free region together with ionization and recombination fronts detached from the material walls. In this regime energy reaches the walls almost exclusively in the form of radiation which, in principle, solves the divertor heat load problems.

Petravic, M.

1993-07-01T23:59:59.000Z

245

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

DOE Green Energy (OSTI)

The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

Gerald P. Huffman

2004-09-30T23:59:59.000Z

246

Questions and Answers - What is plasma?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why do protons and neutronshave the same mass? Why do protons and neutrons<br>have the same mass? Previous Question (Why do protons and neutrons have the same mass?) Questions and Answers Main Index Next Question (How do you know plasma is real if you can't see it?) How do you know plasmais real if you can't see it? What is plasma? Plasma is the fourth state of matter. Many places teach that there are three states of matter; solid, liquid and gas, but there are actually four. The fourth is plasma. To put it very simply, a plasma is an ionized gas, a gas into which sufficient energy is provided to free electrons from atoms or molecules and to allow both species, ions and electrons, to coexist. The funny thing about that is, that as far as we know, plasmas are the most common state of matter in the universe. They are even common here on earth.

247

Mid-range energy-forecasting system: structure, forecasts, and critique  

SciTech Connect

The Mid-Range Energy Forecasting System (MEFS) is a large-scale, interdisciplinary model of the US energy system maintained by the US Department of Energy. MEFS provides long-run regional forecasts of delivered prices for electricity, coal, gasoline, residual, distillate, and natural gas. A number of sets of MEFS forecasts are usually issued, each set corresponding to a different scenario. Because it forecasts prices and since these forecasts are regularly disseminated, MEFS is of considerable practical interest. A critical guide of the model's output for potential users is provided in this paper. The model's logic is described, the latest forecasts from MEFS are presented, and the reasonableness of both the forecasts and the methodology are critically evaluated. The manner in which MEFS interfaces with the Oil Market Simulation Model, which forecasts crude oil price, is also discussed. The evaluation concludes that while there are serious problems with MEFS, selective use can prove very helpful. 17 references, 1 figure, 2 tables.

DeSouza, G.

1980-01-01T23:59:59.000Z

248

Gasification of carbonaceous solids  

DOE Patents (OSTI)

A process and apparatus for converting coal and other carbonaceous solids to an intermediate heating value fuel gas or to a synthesis gas. A stream of entrained pulverized coal is fed into the combustion stage of a three-stage gasifier along with a mixture of oxygen and steam at selected pressure and temperature. The products of the combustion stage pass into the second or quench stage where they are partially cooled and further reacted with water and/or steam. Ash is solidified into small particles and the formation of soot is suppressed by water/steam injections in the quench stage. The design of the quench stage prevents slag from solidifying on the walls. The products from the quench stage pass directly into a heat recovery stage where the products pass through the tube, or tubes, of a single-pass, shell and tube heat exchanger and steam is generated on the shell side and utilized for steam feed requirements of the process.

Coates, Ralph L. (Provo, UT)

1976-10-26T23:59:59.000Z

249

Passive sampling and analyses of common dissolved fixed gases in groundwater  

SciTech Connect

An in situ passive sampler and gas chromatographic protocol for analysis of the major and several minor fixed gases in groundwater was developed. A gas-tight syringe, mated to a short length of silicone tubing, was equilibrated with dissolved gases in groundwater by immersing in monitoring wells and was used to transport and to inject a 0.5 mL gas sample into a gas chromatograph. Using Ar carrier gas, a HaySep DB porous polymer phase, and sequential thermal conductivity and reductive gas detectors allowed good sensitivity for He, Ne, H2, N2, O2, CO, CH4, CO2, and N2O. Within 4 days of immersion in groundwater, samplers initially filled with either He or air attained the same and constant gas composition at an Oak Ridge, Tennessee, site heavily impacted by uranium, acidity, and nitrate. Between June 2006 and July 2007, 12 permanent groundwater wells were used to test the passive samplers in groundwater contaminated by a group of four closed radioactive wastewater seepage ponds; over a thousand passive gas samples from these wells averaged 56% CO2, 32.4% N2, 2.5% O2, 2.5% N2O, 0.20% CH4, 0.096% H2, and 0.023% CO with an average recovery of 95 14% of the injected gas volume.

Spalding, Brian Patrick [ORNL; Watson, David B [ORNL

2008-01-01T23:59:59.000Z

250

Stability of spinor Fermi gases in tight waveguides  

Science Conference Proceedings (OSTI)

The two- and three-body correlation functions of the ground state of an optically trapped ultracold spin-(1/2) Fermi gas (SFG) in a tight waveguide [one-dimensional (1D) regime] are calculated in the plane of even- and odd-wave coupling constants, assuming a 1D attractive zero-range odd-wave interaction induced by a 3D p-wave Feshbach resonance, as well as the usual repulsive zero-range even-wave interaction stemming from 3D s-wave scattering. The calculations are based on the exact mapping from the SFG to a 'Lieb-Liniger-Heisenberg' model with delta-function repulsions depending on isotropic Heisenberg spin-spin interactions, and indicate that the SFG should be stable against three-body recombination in a large region of the coupling constant plane encompassing parts of both the ferromagnetic and antiferromagnetic phases. However, the limiting case of the fermionic Tonks-Girardeau gas, a spin-aligned 1D Fermi gas with infinitely attractive p-wave interactions, is unstable in this sense. Effects due to the dipolar interaction and a Zeeman term due to a resonance-generating magnetic field do not lead to shrinkage of the region of stability of the SFG.

Campo, A. del; Muga, J. G. [Departamento de Quimica-Fisica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain); Girardeau, M. D. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

2007-07-15T23:59:59.000Z

251

In situ parametric study of alkali release in pulverized coal combustion: Effects of operating conditions and gas composition  

Science Conference Proceedings (OSTI)

This work concerns a parametric study of alkali release in a lab-scale, pulverized coal combustor (drop tube reactor) at atmospheric pressure. Measurements were made at steady reactor conditions using excimer laser fragmentation fluorescence (ELIF) and with direct optical access to the flue gas pipe. In this way, absolute gas-phase alkali species could be determined in situ, continuously, with sub-ppb sensitivity, directly in the flue gas. A hard coal was fired in the range 1000-1300{sup o}C, for residence times in the range 3-5 s and for air numbers {lambda} (air/fuel ratios) from 1.15 to 1.50. In addition, the amount of chlorine, water vapor and sulfur, respectively, was increased in known amounts by controlled dosing of HCl, H{sub 2}O and SO{sub 2} into the combustion gas to determine effects of these components on release or capture of the alkali species. The experimental results are also compared with values calculated using ash/fuel analyses and sequential extraction to obtain a fuller picture of alkali release in pulverized fuel combustion. 27 refs., 7 figs., 1 tab.

H. Schuermann; P.B. Monkhouse; S. Unterberger; K.R.G. Hein [Universitaet Stuttgart, Stuttgart (Germany). Institut fuer Verfahrenstechnik und Dampfkesselwesen

2007-07-01T23:59:59.000Z

252

Microsoft PowerPoint - 04-10 DC_Ruhl.ppt [Compatibility Mode]  

U.S. Energy Information Administration (EIA) Indexed Site

Markets: The Long And The Markets: The Long And The Short Term Christof Rühl, Group Chief Economist, BP plc. Washington, April 2010 Outline Long term context Long term context Structural change in oil markets Natural gas: a new game   How does it matter? Conclusion © BP 2010 The Long Term: Real Commodity Prices 400 Oil Wheat Iron & Steel Index: average 1970-2008 = 100 300 350 200 250 100 150 0 50 © BP 2010 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2009 The Long Term: Contributions to Growth 5-year moving average GDP Primary energy 4% OECD Non-OECD OECD Non-OECD 2% 3% 1% 2% 0% © BP 2010 1993 1996 1999 2002 2005 2008 1993 1996 1999 2002 2005 2008 Energy Demand Growth Mboe/d Gas Oil Mboe/d Coal Mboe/d 70 80 90 OECD Non-OECD 70 80 90 OECD Non-OECD 70 80 90 OECD Non-OECD 50 60 70 50 60 70 50 60 70 2016 20 30 40 30 40 20 30 40 2008 1988 0 10 20 0 10 20 0 10

253

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies 2011,2012,2013 Vehicle Technologies 2011,2012,2013 Alan Blosser 9/1/2010 to 3/30/2013 Gas Technology Institute Area of Interest 3 Deployment of Flex CHP System (FOA 0000016) 1700 S. Mt. Prospect Rd. Des Plains, IL Validation phase of the Flex Combined Heat and Power system, testing a microturbine coupled to an Ultra Low NOx burner, and a boiler to burn the exhaust gas a second time to reduce emissions. 06 01 2010 Alan L. Blosser Digitally signed by Alan L. Blosser DN: cn=Alan L. Blosser, o=Power and Vehicle Technologies Division, ou=NETL-DOE, email=alan.blosser@netl.doe.gov, c=US Reason: I am the author of this document Date: 2010.06.01 11:24:21 -04'00' 06 21 2010 Mark Lusk Digitally signed by Mark Lusk DN: cn=Mark Lusk, o=NETL-DOE, ou=140 OPFC, email=mark.lusk@netl.doe.gov, c=US

254

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Technologies Vehicles Technologies 2011,2012,2013 Alan Blosser 9/01/2010 to 3/30/2013 Accu Chem Conversions Inc., 605 North 3rd Area of Interest 3 Deployment of Flex CHP System (FOA0000016) Street, El Centro, CA 92243 Validation phase of the Flex Combined Heat and Power system, testing a microturbine coupled to an Ultra Low NOx burner, and a boiler to burn the exhaust gas a second time to reduce emissions. 06 01 2010 Alan L. Blosser Digitally signed by Alan L. Blosser DN: cn=Alan L. Blosser, o=Power and Vehicle Technologies Division, ou=NETL-DOE, email=alan.blosser@netl.doe.gov, c=US Reason: I am the author of this document Date: 2010.06.01 14:11:37 -04'00' 06 21 2010 Mark Lusk Digitally signed by Mark Lusk DN: cn=Mark Lusk, o=NETL-DOE, ou=140 OPFC, email=mark.lusk@netl.doe.gov, c=US

255

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

1) 1) June 2013 State Energy Price and Expenditure Estimates 1970 Through 2011 2011 Price and Expenditure Summary Tables Table E1. Primary Energy, Electricity, and Total Energy Price Estimates, 2011 (Dollars per Million Btu) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 3.09 5.66 26.37 22.77 25.54 27.12 13.18 19.42 25.90 0.61 3.01 8.75 2.56 27.08 19.85 Alaska 3.64 6.70 29.33 23.12 29.76 31.60 20.07 34.62 26.61 - 14.42 20.85 6.36 47.13 25.17 Arizona 1.99 7.07 27.73 22.84 31.95 26.97 17.00 17.23 26.71 0.75 6.31 10.79 2.16 28.46 25.23 Arkansas 1.93 6.94 26.37 22.45 26.66 27.35 17.35 33.22

256

 

Gasoline and Diesel Fuel Update (EIA)

9) 9) June 2011 State Energy Price and Expenditure Estimates 1970 Through 2009 2009 Price and Expenditure Summary Tables Table E1. Primary Energy, Electricity, and Total Energy Price Estimates, 2009 (Dollars per Million Btu) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 2.81 6.63 16.38 12.88 21.25 17.63 9.62 13.88 16.73 0.55 2.82 6.88 2.24 26.23 16.18 Alaska 2.81 6.39 20.85 13.24 26.28 22.73 10.74 24.01 17.57 - 9.57 14.30 4.26 44.29 18.23 Arizona 1.83 6.38 16.14 12.50 27.59 18.28 - 11.60 17.18 0.59 7.83 7.67 2.04 28.01 19.66 Arkansas 1.73 7.82 16.07 12.42 20.51 17.40 6.65 21.59 17.08 0.66

257

U.S. Energy Information Administration State Energy Data  

Gasoline and Diesel Fuel Update (EIA)

21 21 Table CT1. Energy Consumption Estimates for Major Energy Sources in Physical Units, Selected Years, 1960-2011, United States Year Coal Net Imports of Coal Coke Natural Gas a Petroleum Nuclear Electric Power Hydro- electric Power f Fuel Ethanol g Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Million Short Tons Billion Cubic Feet Million Barrels Billion Kilowatthours Million Barrels 1960 398 (s) 11,967 685 136 227 1,453 559 525 3,586 1 149 NA 1965 472 -1 15,280 776 220 307 1,676 587 636 4,202 4 197 NA 1970 523 -2 21,139 927 353 447 2,111 804 722 5,364 22 251 NA 1971 502 -1 21,793 971 369 457 2,195 838 722 5,553 38 270 NA 1972 524 -1 22,101 1,066 382 520 2,334 926 762 5,990 54 276 NA 1973 563 (s) 22,049 1,129 387 529 2,436 1,030 807 6,317 83 275 NA 1974 558 2 21,223 1,076 363 513 2,386 963 777 6,078 114 304 NA 1975 563 1 19,538 1,041 365

258

Optimization for Design and Operation of Natural Gas Transmission Networks  

E-Print Network (OSTI)

This study addresses the problem of designing a new natural gas transmission network or expanding an existing network while minimizing the total investment and operating costs. A substantial reduction in costs can be obtained by effectively designing and operating the network. A well-designed network helps natural gas companies minimize the costs while increasing the customer service level. The aim of the study is to determine the optimum installation scheduling and locations of new pipelines and compressor stations. On an existing network, the model also optimizes the total flow through pipelines that satisfy demand to determine the best purchase amount of gas. A mixed integer nonlinear programming model for steady-state natural gas transmission problem on tree-structured network is introduced. The problem is a multi-period model, so changes in the network over a planning horizon can be observed and decisions can be made accordingly in advance. The problem is modeled and solved with easily accessible modeling and solving tools in order to help decision makers to make appropriate decisions in a short time. Various test instances are generated, including problems with different sizes, period lengths and cost parameters, to evaluate the performance and reliability of the model. Test results revealed that the proposed model helps to determine the optimum number of periods in a planning horizon and the crucial cost parameters that affect the network structure the most.

Dilaveroglu, Sebnem 1986-

2012-12-01T23:59:59.000Z

259

Evaluation of active transport membranes for carbon dioxide removal from hydrogen containing streams. Approved final topical report  

SciTech Connect

Air Products and Chemicals, Inc. is developing a new class of gas separation membranes called Active Transport Membranes (ATM). ATMs are unique in that they permeate acid gas components, via a reactive pathway, to the low pressure side of the membrane while retaining lighter, non-reactive gases at near feed pressure. This feature is intuitively attractive for hydrogen and synthesis gas processes where CO{sub 2} removal is desired and the hydrogen or synthesis gas product is to be used at elevated pressure. This report provides an overview of the technology status and reports on preliminary, order of magnitude assessments of ATMs for three applications requiring CO{sub 2} removal from gas streams containing hydrogen. The end uses evaluated are: CO{sub 2} removal in the COREX{reg_sign} Steel making process--upgrading export gas for a Direct Reducing Iron (DRI) process; CO{sub 2} removal for onboard hydrogen gas generators for mobile fuel cell applications; Bulk CO{sub 2} removal from hydrogen plant synthesis gas--a plant de-bottlenecking analysis for ammonia production. For each application, an overview of the process concept, rough equipment sizing and techno-economic evaluation against competing technologies is provided. Brief descriptions of US and world market conditions are also included.

Cook, P.J.; Laciak, D.V.; Pez, G.P.; Quinn, R.

1995-11-01T23:59:59.000Z

260

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

This report describes research conducted between January 1, 2004 and March 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. RTI has produced laboratory scale batches (approximately 300 grams) of supported sorbents (composed of 20 to 40% sodium carbonate) with high surface area and acceptable activity. Initial rates of weight gain of the supported sorbents when exposed to a simulated flue gas exceeded that of 100% calcined sodium bicarbonate. One of these sorbents was tested through six cycles of carbonation/calcination by thermogravimetric analysis and found to have consistent carbonation activity. Kinetic modeling of the regeneration cycle on the basis of diffusion resistance at the particle surface is impractical, because the evolving gases have an identical composition to those assumed for the bulk fluidization gas. A kinetic model of the reaction has been developed on the basis of bulk motion of water and carbon dioxide at the particle surface (as opposed to control by gas diffusion). The model will be used to define the operating conditions in future laboratory- and pilot-scale testing.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar energy collector including a weightless balloon with sun tracking means  

DOE Patents (OSTI)

A solar energy collector having a weightless balloon, the balloon including a transparent polyvinylfluoride hemisphere reinforced with a mesh of ropes secured to its outside surface, and a laminated reflector hemisphere, the inner layer being clear and aluminized on its outside surface and the outer layer being opaque, the balloon being inflated with lighter-than-air gas. A heat collection probe extends into the balloon along the focus of reflection of the reflective hemisphere for conducting coolant into and out of the balloon. The probe is mounted on apparatus for keeping the probe aligned with the sun's path, the apparatus being founded in the earth for withstanding wind pressure on the balloon. The balloon is lashed to the probe by ropes adhered to the outer surface of the balloon for withstanding wind pressures of 100 miles per hour. Preferably, the coolant is liquid sodium-potassium eutectic alloy which will not normally freeze at night in the temperate zones, and when heated to 4,000.degree. R exerts a pressure of only a few atmospheres.

Hall, Frederick F. (2452 Villaneuva Way, Mountain View, CA 94040)

1978-01-01T23:59:59.000Z

262

Final Technical Report: "New Tools for Physics with Low-energy Antimatter"  

SciTech Connect

The objective of this research is to develop new tools to manipulate antimatter plasmas and to tailor them for specific scientific and technical uses. The work has two specific objectives. One is establishing the limits for positron accumulation and confinement in the form of single-component plasmas in Penning-Malmberg traps. This technique underpins a wealth of antimatter applications. A second objective is to develop an understanding of the limits for formation of cold, bright positron beams. The research done in this grant focused on particular facets of these goals. One focus was extracting tailored beams from a high-field Penning-Malmberg trap from the magnetic field to form new kinds of high-quality electrostatic beams. A second goal was to develop the technology for colder trap-based beams using a cryogenically cooled buffer gas. A third objective was to conduct the basic plasma research to develop a new high-capacity multicell trap (MCT) for research with antimatter. Progress is reported here in all three areas. While the goal of this research is to develop new tools for manipulating positrons (i.e., the antiparticles of electrons), much of the work was done with test electron plasmas for increased data rate. Some of the techniques developed in the course of this work are also relevant to the manipulation and use of antiprotons.

Surko, Clifford M. [U. C. San Diego] [U. C. San Diego

2013-10-02T23:59:59.000Z

263

Successful test of new ESP technology for gassy oil wells  

Science Conference Proceedings (OSTI)

Problems producing high free-gas fractions through electric-submersible-pump (ESP) systems have been well-documented. When fluid flows through an ESP, gas bubbles tend to lag behind the liquid in the lower-pressure area of the impeller and gas accumulates in that area over a period of time. When the gas forms a long continuous column, the pump no longer generates a discharge pressure and the equipment shuts down because of amperage underload. The amount of gas a pump can handle without gas locking depends on stage designs and sizes. Smaller pumps with radial stages have been known to handle 10 to 15 vol% free gas, and larger pumps with mixed-flow staging can tolerate 20 to 25 vol%. Today many ESP applications require smaller pumps to handle 30 to 50 vol% free gas and larger pumps to handle 40 to 60 vol%. Wells in Lake Maracaibo have high gas/oil ratios, and their production by use of a standard ESP configuration was not considered a feasible option. The wells are currently on gas lift, but their production is declining and gas for gas lift is expensive. If a newly developed advanced gas-handling (AGH) system can enable an ESP to handle at least 40 vol% free gas, it would be a production option for these wells.

Castro, E. M.; Kalas, P.

1998-07-01T23:59:59.000Z

264

Is H3+ cooling ever important in primordial gas?  

E-Print Network (OSTI)

Studies of the formation of metal-free Population III stars usually focus primarily on the role played by H2 cooling, on account of its large chemical abundance relative to other possible molecular or ionic coolants. However, while H2 is generally the most important coolant at low gas densities, it is not an effective coolant at high gas densities, owing to the low critical density at which it reaches local thermodynamic equilibrium (LTE) and to the large opacities that develop in its emission lines. It is therefore possible that emission from other chemical species may play an important role in cooling high density primordial gas. A particularly interesting candidate is the H3+ molecular ion. This ion has an LTE cooling rate that is roughly a billion times larger than that of H2, and unlike other primordial molecular ions such as H2+ or HeH+, it is not easily removed from the gas by collisions with H or H2. It is already known to be an important coolant in at least one astrophysical context -- the upper atmo...

Glover, S C O

2008-01-01T23:59:59.000Z

265

Synthesis of higher alcohols from carbon monoxide and hydrogen in a slurry reactor  

DOE Green Energy (OSTI)

Higher, i.e. C{sub 2{sup +}}, alcohols are desired as gasoline additives, feedstocks for producing ethers and as alternative fuels for automobiles. In all cases, the backbone branching of an alcohol improves octane rating, which is essential for good engine performance. These types of branched, higher alcohols are the desired products for a process converting synthesis gas, a CO and H{sub 2} mixture, often generated from coal gasification. Based on this premise, promoted ZnCr oxide catalysts appear to be as one of the best avenues for further investigation. Once this investigation is complete, a natural extension is to replace the Cr in the ZnCr oxide catalyst with Mo and W, both in the same elemental triad with Cr. Mo has already been shown as an active HAS catalyst, both on a SiO{sub 2} support and in the MoS{sub 2} form. The three catalyst combinations, ZnMo, ZnW, and MnCr oxides will be tested in the stirred autoclave system. However, if none of the three indicate any comparable activity and/or selectivity toward higher alcohols as compared with other HAS catalysts, then an investigation of the effects of Cs promotion on the ZnCr oxide methanol catalysts will be executed.

McCutchen, M.S.

1992-08-28T23:59:59.000Z

266

Particle trap for compressed gas insulated transmission systems  

DOE Patents (OSTI)

A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.

Cookson, Alan H. (Pittsburgh, PA)

1985-01-01T23:59:59.000Z

267

Particle trap for compressed gas insulated transmission systems  

DOE Patents (OSTI)

A particle trap is provided for gas insulated transmission lines having a central high voltage conductor supported within an outer coaxial conductive sheath by a dielectric support member. A cavity between the inner conductor and outer sheath is filled with a dielectric insulating gas. A cone-like particle deflector, mounted to the inner conductor, deflects moving particles away from the support member, to radially outer portions of the cavity. A conductive shield is disposed adjacent the outer sheath to form a field-free region in radially outer portions of the cavity, between the shield and the sheath. Particles traveling along the cavity are deflected by the cone-like deflector into the field-free region where they are held immobile. In a vertical embodiment, particles enter the field-free region through an upper end of a gap formed between shield and sheath members. In a horizontal embodiment, the deflector cone has a base which is terminated radially internally of the shield. Apertures in the shield located adjacent the deflector allow passage of deflected particles into the field-free region. The dielectric support member is thereby protected from contaminating particles that may otherwise come to rest thereon.

Cookson, A.H.

1984-04-26T23:59:59.000Z

268

Source profiles for nonmethane organic compounds in the atmosphere of Cairo, Egypt.  

Science Conference Proceedings (OSTI)

Profiles of the sources of nonmethane organic compounds (NMOCs) were developed for emissions from vehicles, petroleum fuels (gasoline, liquefied petroleum gas (LPG), and natural gas), a petroleum refinery, a smelter, and a cast iron factory in Cairo, Egypt. More than 100 hydrocarbons and oxygenated hydrocarbons were tentatively identified and quantified. Gasoline-vapor and whole-gasoline profiles could be distinguished from the other profiles by high concentrations of the C{sub 5} and C{sub 6} saturated hydrocarbons. The vehicle emission profile was similar to the whole-gasoline profile, with the exception of the unsaturated and aromatic hydrocarbons, which were present at higher concentrations in the vehicle emission profile. High levels of the C{sub 2}-C{sub 4} saturated hydrocarbons, particularly n-butane, were characteristic features of the petroleum refinery emissions. The smelter and cast iron factory emissions were similar to the refinery emissions; however, the levels of benzene and toluene were greater in the former two sources. The LPG and natural gas emissions contained high concentrations of n-butane and ethane, respectively. The NMOC source profiles for Cairo were distinctly different from profiles for U.S. sources, indicating that NMOC source profiles are sensitive to the particular composition of petroleum fuels that are used in a location.

Doskey, P. V.; Fukui, Y.; Sultan, M.; Maghraby, A. A.; Taher, A.; Environmental Research; Cairo Univ.

1999-07-01T23:59:59.000Z

269

Gas utilization technologies  

SciTech Connect

One of the constant challenges facing the research community is the identification of technology needs 5 to 15 years from now. A look back into history indicates that the forces driving natural gas research have changed from decade to decade. In the 1970s research was driven by concerns for adequate supply; in the 1980s research was aimed at creating new markets for natural gas. What then are the driving forces for the 1990s? Recent reports from the natural gas industry have helped define a new direction driven primarily by market demand for natural gas. A study prepared by the Interstate Natural Gas Association of America Foundation entitled ``Survey of Natural Research, Development, and Demonstration RD&D Priorities`` indicated that in the 1990s the highest research priority should be for natural gas utilization and that technology development efforts should not only address efficiency and cost, but environmental and regulatory issues as well. This study and others, such as the report by the American Gas Association (A.G.A.) entitled ``Strategic Vision for Natural Gas Through the Year 2000,`` clearly identify the market sectors driving today`s technology development needs. The biggest driver is the power generation market followed by the industrial, transportation, appliance, and gas cooling markets. This is best illustrated by the GRI 1994 Baseline Projection on market growth in various sectors between the year 1992 and 2010. This paper highlights some of the recent technology developments in each one of these sectors.

Biljetina, R.

1994-09-01T23:59:59.000Z

270

Plasma wake field XUV radiation source  

DOE Patents (OSTI)

A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

Prono, Daniel S. (Los Alamos, NM); Jones, Michael E. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

271

Plasma properties of RF magnetron sputtering system using Zn target  

Science Conference Proceedings (OSTI)

In the present work, we investigate the fundamental properties of magnetron sputtering plasma using Zn target and its deposited Zn thin film. The magnetron sputtering plasma was produced using radio frequency (RF) power supply and Argon (Ar) as ambient gas. A Langmuir probe was used to collect the current from the plasma and from the current intensity, we calculate the electron density and electron temperature. The properties of Zn sputtering plasma at various discharge conditions were studied. At the RF power ranging from 20 to 100 W and gas pressure 5 mTorr, we found that the electron temperature was almost unchanged between 2-2.5 eV. On the other hand, the electron temperature increased drastically from 6 Multiplication-Sign 10{sup 9} to 1 Multiplication-Sign 10{sup 10}cm{sup -3} when the discharge gas pressure increased from 5 to 10 mTorr. The electron microscope images show that the grain size of Zn thin film increase when the discharge power is increased. This may be due to the enhancement of plasma density and sputtered Zn density.

Nafarizal, N.; Andreas Albert, A. R.; Sharifah Amirah, A. S.; Salwa, O.; Riyaz Ahmad, M. A. [Microelectronic and Nanotechnology - Shamsuddin Research Centre (MiNT-SRC), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

2012-06-29T23:59:59.000Z

272

Removing H/sub 2/S from natural gas using two-stage molecular sieves  

SciTech Connect

An integrated process for removal of hydrogen sulfide and water from a natural gas stream by contacting a natural gas stream containing hydrogen sulfide, water, and CO/sub 2/ with molecular sieves that act both as an adsorbent for hydrogen sulfide and water and as a catalyst for the reaction for conversion of hydrogen sulfide and carbon dioxide to carbonyl sulfide. About 92 to about 95 volume percent of an inlet natural gas stream is passed into contact with molecular sieves to produce a salable gas. A portion of this salable gas is used as regeneration fluid for the molecular sieve contactors and the regeneration gas effluent from the regeneration process is diluted with the remainder of the inlet gas stream and subjected to further adsorption/conversion contact with molecular sieves to produce salable gas that is mixed with the first treated gas stream. Depending upon the degree of compression of the regeneration gas effluent from the regenration operation, the integrated system can be operated with two phases of adsorption or with a single phase of adsorption of mixed streams of inlet gas and regeneration gas.

Larson, H. A.; Boehme, M. F.; Sheets, J. W.

1985-06-11T23:59:59.000Z

273

THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE  

Science Conference Proceedings (OSTI)

Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods. A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.

Sandra Meischen

2004-07-01T23:59:59.000Z

274

Coal gasification  

Science Conference Proceedings (OSTI)

A standard series of two staged gas generators (GG) has been developed in the United States for producing gas with a combustion heat from 4,700 to 7,600 kilojoules per cubic meter from coal (U). The diameter of the gas generators is from 1.4 to 3.65 meters and the thermal capacity based on purified cold gas is from 12.5 to 89 million kilojoules per hour. Certain standard sized gas generators have undergone experimental industrial tests which showed that it is most expedient to feed the coal into the gas generators pneumatically. This reduces the dimensions of the charging device, makes it possible to use more common grades of structural steels and reduces the cost of the gas. A double valve reliably prevents ejections of the gasification product and promotes the best distribution of the coal in the gas generator. The gas generators may successfully operate on high moisture (up to 36 percent) brown coal. Blasting with oxygen enriched to 38 percent made it possible to produce a gas with a combustion heat of 9,350 kilojoules per cubic meter. This supports a combustion temperature of 1,700C.

Rainey, D.L.

1983-01-01T23:59:59.000Z

275

Stokes injected Raman capillary waveguide amplifier  

DOE Patents (OSTI)

A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

Kurnit, Norman A. (Santa Fe, NM)

1980-01-01T23:59:59.000Z

276

Method for producing low-cost, high volume hydrogen from hydrocarbon sources  

DOE Patents (OSTI)

A method is described for the conversion of naturally-occurring or biomass-derived lower to higher hydrocarbon (C{sub x}H{sub y},where x may vary from 1--3 and y may vary from 4--8) to low-cost, high-volume hydrogen. In one embodiment, methane, the major component of natural gas, is reacted in a single reaction zone of a mixed-conducting ceramic membrane reactor to form hydrogen via simultaneous partial oxidation and water gas shift reactions at temperatures required for thermal excitations of the mixed-conducting membranes. The hydrogen is produced by catalytically reacting the hydrocarbon with oxygen to form synthesis gas (a mixture of carbon monoxide and hydrogen), followed by a water gas shift (WGS) reaction with steam, wherein both reactions occur in a single reaction zone having a multi-functional catalyst or a combination of catalysts. The hydrogen is separated from other reaction products by membrane-assisted transport or by pressure-swing adsorption technique. Membrane-assisted transport may occur via proton transfer or molecular sieving mechanisms.

Bose, Arun C.; Balachandran, Uthamalinga; Kleerfisch, Mark S.; Udovich, Carl A.; Stiegel, Gary J.

1997-12-01T23:59:59.000Z

277

Underbalanced coiled-tubing-drilled horizontal well in the North Sea  

Science Conference Proceedings (OSTI)

Maersk Olie and Gas A/S (Maersk Oil) has drilled a 3,309-ft-long near-horizontal drainhole with coiled tubing to a total measured depth (MD) of 11,000 ft in the Danish sector of the North Sea. The well was completed in may 1994 as a 3{1/2}-in. openhole producer in the Gorm field chalk reservoir. Part of the well was drilled at underbalanced conditions, and oil production rates of up to 1,100 STB/D were reached during drilling. Conventional well-test equipment was used for handling returns. A nearby process facilities platform supplied lift gas and received the produced hydrocarbons during the drilling phase. Worth noting are the penetration of several chert layers, the fairly long reach, and the application of geosteering. Indications were that the well productivity was significantly improved compared with that of a conventionally drilled well, but problems were experienced with borehole stability in a fractured region.

Wodka, P.; Tirsgaard, H.; Damgaard, A.P. [Maersk Oil, Copenhagen (Denmark); Adamsen, C.J. [Maersk Oil, Esbjerg (Denmark)

1996-05-01T23:59:59.000Z

278

Biological production of ethanol from coal  

DOE Green Energy (OSTI)

Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

Not Available

1992-12-01T23:59:59.000Z

279

Biological production of ethanol from coal. Final report  

DOE Green Energy (OSTI)

Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

Not Available

1992-12-01T23:59:59.000Z

280

Combined heat recovery and make-up water heating system  

Science Conference Proceedings (OSTI)

A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

Kim, S.Y.

1988-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DESIGN OF A CONTAINMENT VESSEL CLOSURE FOR SHIPMENT OF TRITIUM GAS  

SciTech Connect

This paper presents a design summary of the containment vessel closure for the Bulk Tritium Shipping Package (BTSP). This new package is a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The new design is based on changes in the regulatory requirements. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials that enhance the package's ability to withstand dynamic loading and thermal effects. This paper will specifically summarize the design philosophy and engineered features of the BTSP containment vessel closure. The closure design incorporates a concave closure lid, metallic C-Ring seals for containing tritium gas, a metal bellows valve and an elastomer O-Ring for leak testing. The efficient design minimizes the overall vessel height and protects the valve housing from damage during postulated drop and crush scenarios. Design features will be discussed.

Eberl, K; Paul Blanton, P

2007-07-03T23:59:59.000Z

282

HYDROGEN EFFECTS ON THE BURST PROPERTIES OF TYPE 304L STAINLESS STEEL FLAWED VESSELS  

DOE Green Energy (OSTI)

The effect of hydrogen on the burst properties Type 304L stainless steel vessels was investigated. The purpose of the study was to compare the burst properties of hydrogen-exposed stainless steel vessels burst with different media: water, helium gas, or deuterium gas. A second purpose of the tests was to provide data for the development of a predictive finite-element model. The burst tests were conducted on hydrogen-exposed and unexposed axially-flawed cylindrical vessels. The results indicate that samples burst pneumatically had lower volume ductility than those tested hydraulically. Deuterium gas tests had slightly lower ductility than helium gas tests. Burst pressures were not affected by burst media. Hydrogen-charged samples had lower volume ductility and slightly higher burst pressures than uncharged samples. Samples burst with deuterium gas fractured by quasi-cleavage near the inside wall. The results of the tests were used to improve a previously developed predictive finite-element model. The results show that predicting burst behavior requires as a material input the effect of hydrogen on the plastic strain to fracture from tensile tests. The burst test model shows that a reduction in the plastic strain to fracture of the material will result in lower volume ductility without a reduction in burst pressure which is in agreement with the burst results.

Morgan, M; Monica Hall, M; Ps Lam, P; Dean Thompson, D

2008-03-27T23:59:59.000Z

283

Gas turbine topping combustor  

DOE Patents (OSTI)

A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

1997-06-10T23:59:59.000Z

284

Current status of experimental breeder reactor-II [EBR-II] shutdown planning  

Science Conference Proceedings (OSTI)

The Experimental Breeder Reactor--II (EBR-II) at Argonne National Laboratory--West (ANL-W) in Idaho, was shutdown in September, 1994 as mandated by the US Department of Energy. This sodium cooled reactor had been in service since 1964, and was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the Sodium Process Facility. The sodium environment and the EBR-II configuration, combined with the radiation and contamination associated with thirty years of reactor operation, posed problems specific to liquid metal reactor deactivation. The methods being developed and implemented at EBR-II can be applied to other similar situations in the US and abroad.

McDermott, M. D.; Griffin, C. D.; Michelbacher, J. A.; Earle, O. K.

2000-05-08T23:59:59.000Z

285

Irrigation market for solar-thermal parabolic-dish systems  

Science Conference Proceedings (OSTI)

The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. A model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. Results indicate that the near-term market for such systems depends not only on the type of crop and method of irrigation, but also on the optimal utilization of each added module, which in turn depends on the price of conventional fuel, real discount rate, marginal cost of the solar thermal power system, local insolation level and parabolic dish system efficiency. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14% real discount rate is assumed to 220,000 modules when the real discount rate drops to 8%. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98% of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71%) of the total market.

Habib-agahi, H.; Jones, S.C.

1981-09-01T23:59:59.000Z

286

The Enbridge Consumers Gas "Steam Saver" Program ("As Found" Performance and Fuel Saving Projects from Audits of 30 Steam Plants)  

E-Print Network (OSTI)

In Canada, medium and large sized steam plants consume approximately 442 Billion Cubic Feet (12.5 Billion Cubic Meters) of natural gas annually. This is 25% of all natural gas delivered to all customers. (Small steam plants and Hydronic heating boilers consume another 15%) Enbridge Consumers Gas, a local gas distribution company located in Toronto, has approximately 400 Industrial and Institutional customers who own medium or large sized steam plants. During the past three years, Enbridge has developed a comprehensive steam energy efficiency program called "Steam Saver". This program is aimed at these 400 customers. The heart of this program is the boiler plant audit and performance test. This paper describes the fuel saving results for more than 30 medium and large sized boiler plants where audits have been completed and projects have been implemented. The savings in cubic feet per year of natural gas are broken down according to project or technology type. The financial payback is indicated for each category. Eleven of the larger plants have been "benchmarked". Plant efficiency, fuel consumption, steam costs and other performance variables are tabulated for these plants.

Griffin, B.

2000-04-01T23:59:59.000Z

287

Feasibility study for anaerobic digestion of agricultural crop residues. Dynatech report No. 1935  

DOE Green Energy (OSTI)

The objective of this study was to provide cost estimates for the pretreatment/digestion of crop residues to fuel gas. A review of agricultural statistics indicated that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of wheat straw, corn stover, and rice straw for small farm-, cooperative-, and industrial scales. The small farm scale processed the residue from an average size US farm (400 acres), and the other sizes were two and three orders of magnitude greater. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low cost chemicals can be utilized. Additional development is necessary in this area. Use of low cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed.

Ashare, E.; Buivid, M. G.; Wilson, E. H.

1979-07-31T23:59:59.000Z

288

Russias Natural Gas Export Potential up to 2050  

E-Print Network (OSTI)

Recent increases in natural gas reserve estimates and advances in shale gas technology make natural gas a fuel with good prospects to serve a bridge to a low-carbon world. Russia is an important energy supplier as it holds the world largest natural gas reserves and it is the worlds largest exporter of natural gas. Energy was one of the driving forces of Russias recent economic recovery from the economic collapse of 1990s. These prospects have changed drastically with a global recession and the collapse of oil and gas prices from their peaks of 2008. An additional factor is an ongoing surge in a liquefied natural gas (LNG) capacity and a development of Central Asias and the Middle East gas supplies that can compete with Russian gas in its traditional (European) and potential (Asian) markets. To study the long-term prospects for Russian natural gas, we employ the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy. While we consider the updated reserve estimates for all world regions, in this paper we focus on the results for Russian natural gas trade. The role of natural gas is explored in the context of several policy assumptions: with no greenhouse gas mitigation policy and scenarios of emissions targets in developed countries. Scenarios where Europe takes on an even more restrictive target of 80

Sergey Paltsev; Sergey Paltsev

2011-01-01T23:59:59.000Z

289

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Institute Technology Institute EE DE-EE0003779 Power & Vehicles Technologies 2011,2012,2013 Alan Blosser 9/1/2010 to 3/30/2013 Cannon Boiler, 510 Constitution Blvd. Area of Interest 3 Deployment of FlexCHP System (FOA 0000016) New Kensington PA 15068 Validation phase of the Flex Combined Heat and Power System, testing a microturbine coupled to an Ultra Low NOx burner, and a boiler to burn the exhaust gas a second time to reduce emissions. 06 25 2010 Alan L. Blosser Digitally signed by Alan L. Blosser DN: cn=Alan L. Blosser, o=Power and Vehicle Technologies Division, ou=NETL-DOE, email=alan.blosser@netl.doe.gov, c=US Reason: I am the author of this document Date: 2010.06.25 10:41:57 -04'00' 06 30 2010 Mark Lusk Digitally signed by Mark Lusk DN: cn=Mark Lusk, o=NETL-DOE, ou=140 OPFC, email=mark.lusk@netl.doe.gov, c=US

290

Liquid metal reactor deactivation as applied to the experimental breeder reactor - II.  

DOE Green Energy (OSTI)

The Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W) was shutdown in September, 1994. This sodium cooled reactor had been in service since 1964, and by the US Department of Energy (DOE) mandate, was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility (SPF) was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the SPF.

Earle, O. K.; Michelbacher, J. A.; Pfannenstiel, D. F.; Wells, P. B.

1999-05-28T23:59:59.000Z

291

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

State State Energy Data 2011: Consumption 11 Table C8. Transportation Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Retail Electricity Sales Net Energy Electrical System Energy Losses e Total Aviation Gasoline Distillate Fuel Oil Jet Fuel b LPG c Lubricants Motor Gasoline d Residual Fuel Oil Total Alabama ............. 0.0 23.5 0.4 124.4 13.4 0.3 2.3 316.3 6.7 463.7 0.0 487.2 0.0 487.2 Alaska ................. 0.0 3.5 0.8 44.4 118.2 (s) 0.4 32.9 0.4 197.2 0.0 200.7 0.0 200.7 Arizona ............... 0.0 15.6 1.0 111.3 21.5 0.8 1.6 318.2 0.0 454.5 0.0 470.1 0.0 470.1 Arkansas ............. 0.0 11.5 0.4 99.7 5.9 0.4 2.0 171.3 0.0 279.8 (s) 291.2 (s) 291.2 California ............ 0.0 25.7 1.9 440.9 549.7 3.8 13.3 1,770.1 186.9 2,966.5 2.8 2,995.1 5.5 3,000.5 Colorado ............. 0.0 14.7 0.6 83.2 58.3 0.3

292

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table C6. Commercial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric Power e Biomass Geothermal Retail Electricity Sales Net Energy g Electrical System Energy Losses h Total g Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste f Alabama ............. 0.0 25.5 7.0 (s) 2.7 0.2 0.0 10.0 0.0 0.9 0.0 75.9 112.4 144.8 257.2 Alaska ................. 9.4 16.9 10.1 0.1 0.6 0.7 0.0 11.5 0.0 0.3 0.1 9.7 48.0 20.2 68.2 Arizona ............... 0.0 33.1 6.8 (s) 1.5 0.7 0.0 8.9 0.0 0.5 (s) 100.7 143.2 202.3 345.5 Arkansas ............. 0.0 40.6 3.6 (s) 1.2 0.4 0.0 5.2 0.0 1.3 0.0 41.4 88.6 86.1 174.7 California ............ 0.0 250.9 47.9 0.1 8.7 1.4 0.0 58.1 (s) 17.4 0.7 418.9 746.2 809.9 1,556.1 Colorado ............. 3.2 57.6 5.9 (s) 2.9 0.2 0.0 9.1 0.0 1.2 0.2

293

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

7) 7) August 2009 State Energy Price and Expenditure Estimates 1970 Through 2007 2007 Price and Expenditure Summary Tables Table S1a. Energy Price Estimates by Source, 2007 (Nominal Dollars per Million Btu) State Primary Energy Electric Power Sector e,f Retail Electricity Total Energy e,g Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total e,f,g Distillate Fuel Oil Jet Fuel LPG b Motor Gasoline Residual Fuel Oil Other c Total Wood and Waste d Alabama 2.17 9.06 19.43 16.20 21.84 21.26 8.46 14.19 19.62 0.42 2.71 7.47 2.29 22.46 16.01 Alaska 2.34 5.76 19.43 16.35 28.63 22.14 11.51 23.69 17.97 - 10.51 14.88 4.94 38.96 17.87 Arizona 1.61 8.44 19.84 16.24 27.16 21.95 10.04 11.27 20.50 0.57 10.86 9.61 2.78 25.02 20.72 Arkansas 1.65 9.33 19.63 15.73 21.10 21.54 8.65 18.76 20.42 0.57 2.66 9.45 1.98 20.57

294

NETL: Gasification - Development of Ion-Transport Membrane Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Recovery Act: Development of Ion-Transport Membrane Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems Air Products and Chemicals, Inc. Project Number: FC26-98FT40343 Project Description Air Products and Chemicals, Inc. is developing, scaling-up, and demonstrating a novel air separation technology for large-scale production of oxygen (O2) at costs that are approximately one-third lower than conventional cryogenic plants. An Ion Transport Membrane (ITM) Oxygen plant co-produces power and oxygen. A phased technology RD&D effort is underway to demonstrate all necessary technical and economic requirements for scale-up and industrial commercialization. The ITM Oxygen production technology is a radically different approach to producing high-quality tonnage oxygen and to enhance the performance of integrated gasification combined cycle and other advanced power generation systems. Instead of cooling air to cryogenic temperatures, oxygen is extracted from air at temperatures synergistic with power production operations. Process engineering and economic evaluations of integrated gasification combined cycle (IGCC) power plants comparing ITM Oxygen with a state-of-the-art cryogenic air separation unit are aimed to show that the installed capital cost of the air separation unit and the installed capital of IGCC facility are significantly lower compared to conventional technologies, while improving power plant output and efficiency. The use of low-cost oxygen in combustion processes would provide cost-effective emission reduction and carbon management opportunities. ITM Oxygen is an enabling module for future plants for producing coal derived shifted synthesis gas (a mixture of hydrogen [H2] and carbon dioxide [CO2]) ultimately for producing clean energy and fuels. Oxygen-intensive industries such as steel, glass, non-ferrous metallurgy, refineries, and pulp and paper may also realize cost and productivity benefits as a result of employing ITM Oxygen.

295

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4. Electric Power Sector Energy Expenditure Estimates, 2011 4. Electric Power Sector Energy Expenditure Estimates, 2011 (Million Dollars) State Coal Natural Gas a Petroleum Nuclear Fuel Biomass Electricity Imports c Total Energy d Distillate Fuel Oil Petroleum Coke Residual Fuel Oil Total Wood and Waste b Alabama 1,681.9 1,494.8 24.0 - - 24.0 250.1 11.2 - 3,462.0 Alaska 20.0 210.4 76.7 - 30.5 107.3 - - (s) 337.7 Arizona 889.7 908.5 13.0 - - 13.0 245.4 5.8 21.1 2,083.4 Arkansas 574.1 506.2 10.3 - 1.6 11.9 95.7 3.2 - 1,191.1 California 43.5 2,904.0 8.7 32.1 0.2 41.0 270.9 248.2 266.1 3,773.8 Colorado 622.0 422.5 5.9 - - 5.9 - 2.2 (s) 1,052.6 Connecticut 22.4 549.2 5.9 - 27.1 33.0 107.6 30.4 99.7 842.3 Delaware 61.0 196.7 6.6 - 1.3 7.9 - 4.3 - 269.9 Dist. of Col. - 5.1 35.2 - - 35.2 - - - 40.3 Florida 1,905.3 6,116.6 102.6 79.9 173.7 356.3 177.9 122.0 - 8,678.0 Georgia 2,271.3 927.4 21.5 - 1.5 23.1 252.5 7.0 - 3,481.3 Hawaii

296

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

E9. Total End-Use Energy Expenditure Estimates, 2011 E9. Total End-Use Energy Expenditure Estimates, 2011 (Million Dollars) State Primary Energy Retail Electricity Total Energy g Coal Natural Gas a Petroleum Biomass Total g Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 327.8 1,585.7 4,101.1 304.0 326.5 8,674.5 175.9 741.8 14,323.8 396.0 16,633.3 7,846.1 24,479.3 Alaska 36.2 324.0 2,412.4 2,733.2 38.5 1,093.7 7.6 74.8 6,360.2 14.2 6,734.6 1,004.6 7,739.3 Arizona 27.5 1,073.0 4,197.6 491.8 291.8 8,720.8 0.7 363.3 14,066.0 19.6 15,186.1 7,278.6 22,464.7 Arkansas 18.1 1,286.3 3,545.7 133.0 251.0 4,803.7 2.2 330.9 9,066.5 229.2 10,600.1 3,446.6 14,046.7 California 129.5 11,451.7 15,459.5 12,374.8 2,059.9 54,072.7 3,910.0 2,397.4 90,274.3 321.9 102,177.3 33,919.1 136,096.4 Colorado 15.0 1,906.7 3,007.6 1,306.2 607.7

297

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 State Energy Data 2011: Consumption Table C7. Industrial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power e Biomass Geo- thermal Retail Electricity Sales Net Energy h,i Electrical System Energy Losses j Total h,i Distillate Fuel Oil LPG b Motor Gasoline c Residual Fuel Oil Other d Total Wood and Waste f Losses and Co- products g Alabama ............. 65.0 179.1 23.9 3.7 3.3 6.7 46.3 83.9 0.0 147.2 0.0 (s) 115.1 590.4 219.5 810.0 Alaska ................. 0.1 253.8 19.2 0.1 1.0 0.0 27.1 47.4 0.0 0.1 0.0 0.0 4.5 306.0 9.4 315.4 Arizona ............... 10.0 22.0 33.2 1.4 4.6 (s) 18.4 57.6 0.0 1.4 3.1 0.2 42.1 136.5 84.7 221.2 Arkansas ............. 5.6 93.1 31.1 2.6 4.0 0.1 17.4 55.1 0.0 72.7 0.0 (s) 58.0 284.5 120.5 405.0 California ............ 35.6 767.4 77.2 23.9 29.6 (s) 312.5

298

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

. Primary Energy, Electricity, and Total Energy Price Estimates, 2011 . Primary Energy, Electricity, and Total Energy Price Estimates, 2011 (Dollars per Million Btu) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 3.09 5.66 26.37 22.77 25.54 27.12 13.18 19.42 25.90 0.61 3.01 8.75 2.56 27.08 19.85 Alaska 3.64 6.70 29.33 23.12 29.76 31.60 20.07 34.62 26.61 - 14.42 20.85 6.36 47.13 25.17 Arizona 1.99 7.07 27.73 22.84 31.95 26.97 17.00 17.23 26.71 0.75 6.31 10.79 2.16 28.46 25.23 Arkansas 1.93 6.94 26.37 22.45 26.66 27.35 17.35 33.22 27.02 0.64 3.31 10.54 2.13 22.02 19.63 California 3.13 7.08 27.34 22.51 31.21 30.02 20.92 21.45 27.51 0.71 4.88 17.99 3.32 38.35 24.14 Colorado 1.73 6.79 26.86 22.41 26.35

299

S  

Office of Legacy Management (LM)

S S o u t h w e s t e r n R a d i o l o g i Depatfment oi ~ i e a l t h , . c a l I i e a l t h L a b o r a t o r y E d u c a t i o n & W e l f a r e Pt1b1.i.c ileal C h S e r v i c e DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. TABLE OF CONTENTS OPERATIONAL GUIDE A . K e s p o n s i b i l i t i e s n r B . O r g a n i z a t i o n 1 . C r i t e r i a rx\ A( r:- A x r Sampling B \ : ~ D T S ime tr L J no. 1 C. M i l 9 Sampling 6 l i D. Water Sampling 7 L L t E . A n i m z l - a n d A J i l d l i f e Sampling 8 F. vegetatiotk/dncl S o i l Sampling I L - J \ G. Gas ~ a m ~ ~ f i i @ ~ 8 H. A e r i a l ~ o n i t o r ~ i ' ; r & 8 \\ I V . SUPPORT REQUIREFENTS"., 9 \si A . F l e t e r o l n g i c a l S u p p o r t 9 (~3 B. S p e c i a l 'Jkansportat20.n=~-, 9 C . Plume Marking - 2 10 i"l D. R a d i o C o n m ~ u n i c a t i o n Nctwork 1 0

300

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

1. Commercial Sector Energy Expenditure Estimates, 2011 1. Commercial Sector Energy Expenditure Estimates, 2011 (Million Dollars) State Primary Energy Retail Electricity Total Energy f Coal Natural Gas a Petroleum Biomass Total f Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste e Alabama - 310.9 164.6 0.3 63.1 6.3 - 234.3 4.0 549.2 2,331.4 2,880.6 Alaska 36.0 146.0 268.7 3.1 14.9 21.0 - 307.8 1.8 491.7 430.9 922.6 Arizona - 326.0 168.7 0.1 36.7 17.7 - 223.1 2.6 551.7 2,802.8 3,354.5 Arkansas - 355.9 86.2 (s) 28.7 10.2 - 125.1 5.8 486.7 911.1 1,397.8 California - 2,038.0 1,205.8 4.6 216.1 40.6 - 1,467.2 49.6 3,554.8 16,018.1 19,572.9 Colorado 8.2 437.8 138.1 0.5 62.7 6.1 - 207.4 8.0 661.4 1,878.0 2,539.4 Connecticut - 380.2 325.3 1.5 92.5 6.2 0.8 426.2 4.3 810.7 2,037.9 2,848.6 Delaware - 142.3 23.7 0.3 26.6 1.0 - 51.6 0.8 194.7 453.2 647.8 Dist. of Col. 0.2

302

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 State Energy Data 2011: Consumption Table C9. Electric Power Sector Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Nuclear Electric Power Hydroelectric Power b Biomass Geothermal Solar/PV d Wind Net Electricity Imports e Total f Distillate Fuel Oil Petroleum Coke Residual Fuel Oil Total Wood and Waste c Alabama ............. 586.1 349.4 1.1 0.0 0.0 1.1 411.8 86.3 4.6 0.0 0.0 0.0 0.0 1,439.3 Alaska ................. 6.0 42.3 3.3 0.0 1.5 4.8 0.0 13.1 0.0 0.0 0.0 0.1 (s) 66.3 Arizona ............... 449.9 183.9 0.6 0.0 0.0 0.6 327.3 89.1 2.4 0.0 0.8 2.5 1.5 1,057.9 Arkansas ............. 300.5 109.2 0.5 0.0 0.1 0.6 148.5 28.7 1.3 0.0 0.0 0.0 0.0 588.9 California ............ 19.7 630.1 0.4 11.1 (s) 11.5 383.6 413.4 69.0 122.0 8.4 75.3 20.1 1,753.1 Colorado ............. 362.4 88.1 0.3 0.0 0.0 0.3 0.0 20.2 0.9

303

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

E2. Total End-Use Energy Price Estimates, 2011 E2. Total End-Use Energy Price Estimates, 2011 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy g Coal Natural Gas a Petroleum Biomass Total g Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 5.05 8.14 26.40 22.77 25.54 27.12 13.18 19.42 25.91 3.03 17.63 27.08 19.85 Alaska 3.81 8.66 29.58 23.12 29.76 31.60 17.33 34.62 26.69 14.42 23.53 47.13 25.17 Arizona 2.75 11.12 27.75 22.84 31.95 26.97 17.00 17.23 26.72 11.92 23.93 28.46 25.23 Arkansas 3.25 8.63 26.39 22.45 26.66 27.35 15.63 33.22 27.03 3.33 18.97 22.02 19.63 California 3.64 8.19 27.34 22.51 31.21 30.02 20.92 23.47 27.60 6.72 21.50 38.35 24.14 Colorado 2.31 7.47 26.87 22.41 26.35 27.21 - 19.97 26.25 14.80 19.48 27.61 21.07 Connecticut - 10.42 26.69 22.95 32.04 28.99 15.83 28.58 28.10 8.15 23.26

304

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

E7. Electric Power Sector Energy Price Estimates, 2011 E7. Electric Power Sector Energy Price Estimates, 2011 (Dollars per Million Btu) State Coal Natural Gas a Petroleum Nuclear Fuel Biomass Electricity Imports c,d Total Energy e Distillate Fuel Oil Petroleum Coke Residual Fuel Oil Total Wood and Waste b Alabama 2.87 4.28 22.05 - - 22.05 0.61 2.43 - 2.56 Alaska 3.35 4.97 23.21 - 20.89 22.50 - - 12.44 6.36 Arizona 1.98 4.94 23.18 - - 23.18 0.75 2.43 12.44 2.16 Arkansas 1.91 4.64 21.73 - 20.44 21.55 0.64 2.43 - 2.13 California 2.21 4.61 23.74 2.88 25.21 3.56 0.71 3.60 12.44 3.32 Colorado 1.72 4.80 23.63 - - 23.63 - 2.43 12.44 2.33 Connecticut 3.68 4.97 22.15 - 17.75 18.40 0.65 2.43 12.44 2.76 Delaware 3.41 4.94 21.93 - 17.24 20.99 - 2.43 - 4.51 Dist. of Col. - 4.98 21.93 - - 21.93 - - - 15.33 Florida 3.53 5.77 21.99 3.82 17.27 9.99 0.77 2.43 - 4.53 Georgia 3.75 4.64 22.85 - 19.14 22.56 0.75 2.43 - 3.03 Hawaii 1.66 -

305

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

E4. Commercial Sector Energy Price Estimates, 2011 E4. Commercial Sector Energy Price Estimates, 2011 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy f Coal Natural Gas a Petroleum Biomass Total f Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste e Alabama - 12.17 23.42 25.42 23.23 27.12 - 23.46 11.31 15.30 30.70 25.76 Alaska 3.82 8.66 26.53 30.13 23.15 31.60 - 26.67 15.22 12.95 44.25 19.34 Arizona - 9.86 24.91 32.11 24.68 26.97 - 25.02 11.48 13.07 27.83 23.48 Arkansas - 8.77 23.87 25.91 23.68 27.35 - 24.08 10.40 10.50 21.98 15.92 California - 8.12 25.18 32.46 24.94 30.02 - 25.27 3.91 11.05 38.24 26.43 Colorado 2.58 7.60 23.44 26.09 21.42 27.21 - 22.89 15.22 9.40 27.67 18.37 Connecticut - 8.25 26.27 29.35 26.34 28.99 17.52 26.31 9.07 12.92 45.64 26.52 Delaware - 13.20 22.31 26.41 25.04 28.08 - 23.76 11.31 14.95 31.18 23.51

306

Data:Dc4f43be-be61-4b71-9d3c-a255e2e1abee | Open Energy Information  

Open Energy Info (EERE)

f43be-be61-4b71-9d3c-a255e2e1abee f43be-be61-4b71-9d3c-a255e2e1abee No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of College Station, Texas (Utility Company) Effective date: 2012/02/23 End date if known: Rate name: Schedule SRE - (Small Renewable Energy Customers Conencting Single Phase Distributed Generation from Renewable Sources less than or equal to twenty (20) kW) Sector: Description: Applicable to any retail customer receiving single phase electric service under a City of College Station electric rate schedule who owns and operates an on-site generating system powered by a renewable energy technology capable of producing not more than twenty (20) kW of power and who interconnects with the City of College Station's electric distribution system. Renewable energy technology is any technology that exclusively relies on an energy source that is naturally regenerated over a short time and derived directly from the sun, indirectly from the sun, or from moving water or other natural movements and mechanisms of the environment. Renewable energy technologies include those that rely on energy derived directly from the sun, wind, geothermal source, hydroelectric source, wave or tidal energy; or on biomass or biomass based waste products including landfill gas. A renewable energy technology does not rely on energy resources derived from fossil fuels, waste products from fossil fuels, or waste products from inorganic sources. This section applies to a retail customer owned generation system that primarily offsets part or all of the customer's electric service provided by the City of College Station.

307

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C4. Total End-Use Energy Consumption Estimates, 2011 C4. Total End-Use Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power f Biomass Geo- thermal Solar/PV i Retail Electricity Sales Net Energy j,k Electrical System Energy Losses l Total j,k Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste g Losses and Co- products h Alabama ........... 65.0 265.4 155.4 13.4 12.8 319.8 13.4 49.1 563.8 0.0 154.1 0.0 0.1 0.2 303.7 1,352.2 579.1 1,931.3 Alaska ............... 9.5 294.7 81.8 118.2 1.3 34.6 0.4 28.6 265.0 0.0 2.3 0.0 0.2 (s) 21.6 593.2 44.7 637.9 Arizona ............. 10.0 109.8 151.3 21.5 9.1 323.4 (s) 21.1 526.5 0.0 4.4 3.1 0.3 7.9 255.7 917.8 513.7 1,431.5 Arkansas ........... 5.6 179.4 134.5 5.9 9.4 175.6 0.1 19.8 345.4 0.0 82.6 0.0 0.7 0.2 163.5 777.4 339.8 1,117.1 California ..........

308

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

DOE Green Energy (OSTI)

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

309

Sampling and analysis of natural gas trace constituents  

DOE Green Energy (OSTI)

Major and minor components of natural gas are routinely analyzed by gas chromatography (GC), using a thermal conductivity (TC). The best results obtained by these methods can report no better than 0.01 mole percent of each measured component. Even the extended method of analysis by flame ionization detector (FID) can only improve on the detection limit of hydrocarbons. The gas industry needs better information on all trace constituents of natural gas, whether native or inadvertently added during gas processing that may adversely influence the operation of equipment or the safety of the consumer. The presence of arsenic and mercury in some gas deposits have now been documented in international literature as causing not only human toxicity but also damaging to the field equipment. Yet, no standard methods of sampling and analysis exist to provide this much needed information. In this paper the authors report the results of a three-year program to develop an extensive array of sampling and analysis methods for speciation and measurement of trace constituents of natural gas. A cryogenic sampler operating at near 200 K ({minus}99 F) and at pipeline pressures up to 12.4 {times} 10{sup 6}Pa (1800 psig) has been developed to preconcentrate and recover all trace constituents with boiling points above butanes. Specific analytical methods have been developed for speciating and measurement of many trace components (corresponding to US EPA air toxics) by GC-AED and GC-MS, and for determining various target compounds by other techniques. Moisture, oxygen and sulfur contents are measured on site using dedicated field instruments. Arsenic, mercury and radon are sampled by specific solid sorbents for subsequent laboratory analysis.

Attari, A.; Chao, S.

1993-09-01T23:59:59.000Z

310

Removal of mercury from powder river basin coal by low-temperature thermal treatment  

Science Conference Proceedings (OSTI)

This report describes work conducted at Western Research Institute (WRI) to remove mercury from Powder River Basin (PRB) coal as part of the research performed under Task 2.1, Development and Optimization of a Process for the Production of a Premium Solid Fuel from Western US Coals, of the 1993 Annual Project Plan. In the tests minus 16 mesh PRB coal was fed to a bench-scale fluidized-bed reactor where it was heated by contact with carbon dioxide fluidizing gas. A side stream of the gas from the reactor was passed through traps containing activated carbon where mercury driven from the coal was collected. The feed coal (which contains about 0.062 milligrams of mercury/kilogram of coal), the fines elutriated from the reactor, the activated carbon, and the condensed water from the reactor were analyzed for mercury. The solid products were analyzed using cold vapor atomic adsorption spectroscopy (ASTM D3684) while the water was analyzed using US Environmental Protection Agency (EPA) Method 245.1 which is based upon reduction of mercury to elemental form followed by adsorption at a wave length of 253.7 nanometers. The results of these tests show that about 70 to 80 wt % of the mercury is removed from the coal when the temperature is raised from about 300{degree}F (149{degree}C) to about 550{degree}F (288{degree}C). The remaining 20 wt % of the mercury remains in the char at temperatures up to about 1100{degree}F (593{degree}C). About 0.5 wt % of the mercury in the feed coal is condensed with water recovered from the coal. Nearly all of the mercury driven from the coal remains in the gas stream. Fines elutriated from the reactor contain about the same concentration of mercury as the feed coal.

Merriam, N.W.

1993-07-01T23:59:59.000Z

311

Testing the accuracy of the Hydro-PM approximation in numerical simulations of the Lyman-alpha forest  

E-Print Network (OSTI)

We implement the hydro-PM (HPM) technique (Gnedin & Hui 1998) in the hydrodynamical simulation code GADGET-II and quantify the differences between this approximate method and full hydrodynamical simulations of the Lyman-alpha forest in a concordance LCDM model. At redshifts z=3 and z=4, the differences between the gas and dark matter (DM) distributions, as measured by the one-point distribution of density fluctuations, the density power spectrum and the flux power spectrum, systematically decrease with increasing resolution of the HPM simulqation. However, reducing these differences to less than a few percent requires a significantly larger number of grid-cells than particles, with a correspondingly larger demand for memory. Significant differences in the flux decrement distribution remain even for very high resolution hydro-PM simulations, particularly at low redshift. At z=2, the differences between the flux power spectra obtained from HPM simulations and full hydrodynamical simulations are generally large and of the order of 20-30 %, and do not decrease with increasing resolution of the HPM simulation. This is due to the presence of large amounts of shock-heated gas, a situation which is not adequately modelled by the HPM approximation. We confirm the results of Gnedin & Hui (1998) that the statistical properties of the flux distribution are discrepant by > 5-20 % when compared to full hydrodynamical simulations. The discrepancies in the flux power spectrum are strongly scale- and redshift-dependent and extend to large scales. Considerable caution is needed in attempts to use calibrated HPM simulations for quantitative predictions of the flux power spectrum and other statistical properties of the Lyman-alpha forest.

Matteo Viel; Martin G. Haehnelt; Volker Springel

2005-04-28T23:59:59.000Z

312

Influence of process parameters on properties of reactively sputtered tungsten nitride thin films  

SciTech Connect

Tungsten nitride (WN{sub x}) thin films were produced by reactive dc magnetron sputtering of tungsten in an Ar-N{sub 2} gas mixture. The influence of the deposition power on the properties of tungsten nitride has been analyzed and compared with that induced by nitrogen content variation in the sputtering gas. A combined analysis of structural, electrical and optical properties on thin WN{sub x} films obtained at different deposition conditions has been performed. It was found that at an N{sub 2} content of 14% a single phase structure of W{sub 2}N films was formed with the highest crystalline content. This sputtering gas composition was subsequently used for fabricating films at different deposition powers. Optical analysis showed that increasing the deposition power created tungsten nitride films with a more metallic character, which is confirmed with resistivity measurements. At low sputtering powers the resulting films were crystalline whereas, with an increase of power, an amorphous phase was also present. The incorporation of an excess of nitrogen atoms resulted in an expansion of the W{sub 2}N lattice and this effect was more pronounced at low deposition powers. Infrared analysis revealed that in WN{sub x} films deposited at low power, chemisorbed N{sub 2} molecules did not behave as ligands whereas at high deposition power they clearly appeared as ligands around metallic tungsten. In this study, the influence of the most meaningful deposition parameters on the phase transformation reaction path was established and deposition conditions suitable for producing thermally stable and highly crystalline W{sub 2}N films were found.

Addonizio, Maria L.; Castaldo, Anna; Antonaia, Alessandro; Gambale, Emilia; Iemmo, Laura [ENEA, Portici Research Centre, Piazzale E. Fermi 1, I-80055, Portici (Italy)

2012-05-15T23:59:59.000Z

313

XMM-Newton and Chandra Spectroscopy of the Variable High-Energy Absorption of PG 1115+080: Refined Outflow Constraints  

E-Print Network (OSTI)

We present results from multi-epoch spectral analysis of XMM-Newton and Chandra observations of the mini broad absorption line (BAL) quasar PG 1115+080. This is one of the few X-ray detected mini-BAL quasars to date that is bright enough in the X-ray band, mostly due to large gravitational-lensing magnifications, to allow in-depth spectral analysis. The present XMM-Newton observations of PG 1115+080 have provided the highest signal-to-noise X-ray spectra of a mini-BAL quasar obtained to date. By modeling the spectra of PG 1115+080 we have obtained constraints on the column density and ionization state of its outflowing absorbing gas. A comparison between these constraints over several epochs indicates significant variability in the properties of the outflowing absorbers in PG 1115+080. The depths of the high-energy broad absorption features in PG 1115+080 show a significant decrease between the first two observation epochs separated by a rest-frame timescale of ~ 1 year. This variability supports the intrinsic nature of these absorbers. Assuming the interpretation that the high-energy absorption features arise from highly ionized Fe XXV we constrain the fraction of the total bolometric energy released by quasars PG 1115+080 and APM 08279+5225 into the IGM in the form of kinetic energy to be epsilon_k = 0.64(-0.40,+0.52) (68% confidence), and epsilon_k =0.09(-0.05,+0.07), respectively. According to recent theoretical studies this range of efficiencies is large enough to influence significantly the formation of the host galaxy and to regulate the growth of the central black hole.

G. Chartas; W. N. Brandt; S. C. Gallagher; D. Proga

2007-01-04T23:59:59.000Z

314

Materials technology for coal-conversion processes. Eleventh quarterly report, April--June 1977  

DOE Green Energy (OSTI)

Silicon-carbide refractories with various bond systems exposed to molten slag at 1500/sup 0/C for 500 h in Run 4 showed virtually no attack. The resistance of the silicon carbide to slag attack is attributed to large thermal fluxes induced by water-cooled chills applied to the cold faces. Magnesia-chromia refractories exposed to molten slag at 1500/sup 0/C for 500 h in Run 5 were somewhat less resistant to slag attack than the silicon-carbide refractories. In-situ erosive-wear measurements on the Bi-Gas A106B low-carbon steel main coal feed line were obtained during the present quarter, with initial indications of a nominal 5% wall-thickness reduction after approximately 200 h of exposure. Acoustic leak-detection tests were carried out at the Morgantown Energy Research Center Valve Test Facility. Uniaxial tensile data were generated on several specified alloys in an as-received condition at temperatures of 750, 871, and 982/sup 0/C. A generalized approach, based on thermodynamic equilibria of gas mixtures, has been developed to evaluate the chemical potentials of the reactive elements, i.e., O, S, C, H, and N in multicomponent gas streams. The results showed that the chemical potentials can be uniquely established by the total atomic ratios C/H, C/O, and C/S in the initial gas mixture. A work plan for the experimental phase of the erosion program will include initial short-term testing to characterize the erosive behavior of various candidate materials for coal-conversion plants and also longer-term tests to characterize combined erosion/corrosion. Failed components from the Synthane Plant (ballooned pipe, pump impeller shaft (GA-207), thermowell, purge piping (BB-1), and the Battelle Char-Burner (Thermowells) were examined. (LTN)

Ellingson, W A

1977-01-01T23:59:59.000Z

315

Power Burst Facility (PBF) severe fuel damage test 1-4 test results report  

DOE Green Energy (OSTI)

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1-4 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1-4 was the fourth and final test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel and control rod behavior, aerosol and hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (36,000 MWd/MtU) pressurized water-reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 silver-indium-cadmium control rods, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1.3-h transient at a coolant pressure of 6.95 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy and control rod absorber alloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 2100-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of on-line instrumentation, analysis of fission product and aerosol data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 40 refs., 160 figs., 31 tabs.

Petti, D.A.; Martinson, Z.R.; Hobbins, R.R.; Allison, C.M.; Carlson, E.R.; Hagrman, D.L.; Cheng, T.C.; Hartwell, J.K.; Vinjamuri, K.; Seifken, L.J.

1989-04-01T23:59:59.000Z

316

PBF (Power Burst Facility) severe fuel damage test 1--3 test results report  

Science Conference Proceedings (OSTI)

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1--3 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1--3 was the third test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel rod behavior, hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (38,000 MWd/tU) pressurized water reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 empty zircaloy guide tubes, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1-h transient at a nominal coolant pressure of 6.85 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 1340-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of online instrumentation, analysis of fission product data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 34 refs., 241 figs., 51 tabs.

Martinson, Z.R.; Gasparini, M.; Hobbins, R.R.; Petti, D.A.; Allison, C.M.; Hohorst, J.K.; Hagrman, D.L.; Vinjamuri, K. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1989-10-01T23:59:59.000Z

317

IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES  

DOE Green Energy (OSTI)

This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

Jason M. Keith

2005-02-01T23:59:59.000Z

318

Is H3+ cooling ever important in primordial gas?  

E-Print Network (OSTI)

Studies of the formation of metal-free Population III stars usually focus primarily on the role played by H2 cooling, on account of its large chemical abundance relative to other possible molecular or ionic coolants. However, while H2 is generally the most important coolant at low gas densities, it is not an effective coolant at high gas densities, owing to the low critical density at which it reaches local thermodynamic equilibrium (LTE) and to the large opacities that develop in its emission lines. It is therefore possible that emission from other chemical species may play an important role in cooling high density primordial gas. A particularly interesting candidate is the H3+ molecular ion. This ion has an LTE cooling rate that is roughly a billion times larger than that of H2, and unlike other primordial molecular ions such as H2+ or HeH+, it is not easily removed from the gas by collisions with H or H2. It is already known to be an important coolant in at least one astrophysical context -- the upper atmospheres of gas giants -- but its role in the cooling of primordial gas has received little previous study. In this paper, we investigate the potential importance of H3+ cooling in primordial gas using a newly-developed H3+ cooling function and the most detailed model of primordial chemistry published to date. We show that although H3+ is, in most circumstances, the third most important coolant in dense primordial gas (after H2 and HD), it is nevertheless unimportant, as it contributes no more than a few percent of the total cooling. We also show that in gas irradiated by a sufficiently strong flux of cosmic rays or X-rays, H3+ can become the dominant coolant in the gas, although the size of the flux required renders this scenario unlikely to occur.

S. C. O. Glover; D. W. Savin

2008-09-04T23:59:59.000Z

319

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark V. Scotto; Mark A. Perna

2010-05-30T23:59:59.000Z

320

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark Scotto

2010-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas  

DOE Green Energy (OSTI)

As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

Not Available

1993-12-01T23:59:59.000Z

322

Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production  

Science Conference Proceedings (OSTI)

We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a â??demonstrationâ?? size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

Lawal, Adeniyi [Stevens Institute of Technology, Castle Point Hoboken NJ 07030

2012-09-29T23:59:59.000Z

323

Partial oxidation process for producing a stream of hot purified gas  

DOE Patents (OSTI)

A partial oxidation process for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H.sub.2, CO, CO.sub.2, H.sub.2 O, CH.sub.4, NH.sub.3, HCl, HF, H.sub.2 S, COS, N.sub.2, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N.sub.2 and H.sub.2. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000.degree. F.

Leininger, Thomas F. (Chino Hills, CA); Robin, Allen M. (Anaheim, CA); Wolfenbarger, James K. (Torrance, CA); Suggitt, Robert M. (Wappingers Falls, NY)

1995-01-01T23:59:59.000Z

324

Partial oxidation process for producing a stream of hot purified gas  

DOE Patents (OSTI)

A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

1995-03-28T23:59:59.000Z

325

Modeling of thermal plasma arc technology FY 1994 report  

Science Conference Proceedings (OSTI)

The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces.

Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

1995-03-01T23:59:59.000Z

326

ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION  

Science Conference Proceedings (OSTI)

This document reviews the work performed during the quarter January-March 2003. The main objectives of the project are: To demonstrate the feasibility of the full-oxy combustion with flue gas recirculation on Babcock & Wilcox's 1.5MW pilot boiler, To measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection strategies, To perform an economical feasibility study, comparing this solution with alternate technologies, and To design a new generation, full oxy-fired boiler. The main objective of this quarter was to initiate the project, primarily the experimental tasks. The contractor and its subcontractors have defined a working plan, and the first tasks have been started. Task 1 (Site Preparation) is now in progress, defining the modifications to be implemented to the boiler and oxygen delivery system. The changes are required in order to overcome some current limitations of the existing system. As part of a previous project carried out in 2002, several changes have already been made on the pilot boiler, including the enrichment of the secondary and tertiary air with oxygen or the replacement of these streams with oxygen-enriched recycled flue gas. A notable modification for the current project involves the replacement of the primary air with oxygen-enriched flue gas. Consequently, the current oxygen supply and flue gas recycle system is being modified to meet this new requirement. Task 2 (Combustion and Emissions Performance Optimization) has been initiated with a preliminary selection of four series of tests to be performed. So far, the project schedule is on-track: site preparation (Task 1) should be completed by August 1st, 2003 and the tests (Task 2) are planned for September-October 2003. The Techno-Economic Study (Task 3) will be initiated in the following quarter.

Ovidiu Marin; Fabienne Chatel-Pelage

2003-04-01T23:59:59.000Z

327

Production and use of activated char for combined SO{sub 2}/NO{sub x} removal. [Quarterly] technical report, December 1, 1993--February 28, 1994  

SciTech Connect

During this reporting period, a thermogravimetric technique was developed to determine the kinetics of SO{sub 2} adsorption on a series of chars prepared from IBC-102 coal. Also, a temperature programmed desorption (TPD) method was developed to determine the nature and extent of carbon-oxygen (C-O) complexes formed on the surface of the char. An attempt was made to relate this information to observed SO{sub 2} adsorption behavior. An IBC-102 char prepared with an N{sub 2}-BET surface area of 10 m{sup 2}/g adsorbed significantly less SO{sub 2} than chars prepared with surface areas > 200 m{sup 2}/g. However, for chars with surface areas > 200 m{sup 2}/g, the amount of available surface area was not as important as the chemistry of the surface. A steam activated char adsorbed the most SO{sub 2}, comparable to the amount adsorbed by a commercial activated carbon. TPD performed on the steam activated char revealed the presence of CO-forming C-O complexes which were basic in nature. The other chars all contained significant amounts of more acidic CO{sub 2}-forming complexes. Because SO{sub 2} is an acid gas, a carbon adsorbent with a basic surface should adsorb more SO{sub 2}. To enhance SO{sub 2} adsorption, a novel char preparation method was devised to 2 create a basic surface with up to ten times more CO-forming C-O complexes than formed by steam activation.

Lizzio, A.A.; DeBarr, J.A.; Rostram-Abadi, M. [Illinois State Geological Survey, Champaign, IL (United States); Rood, M.J. [Illinois Univ., Urbana, IL (United States)

1994-06-01T23:59:59.000Z

328

Demonstration of the enrichment of medium quality gas from gob wells through interactive well operating practices. Final report, June--December, 1995  

SciTech Connect

Methane released to the atmosphere during coal mining operations is believed to contribute to global warming and represents a waste of a valuable energy resource. Commercial production of pipeline-quality gob well methane through wells drilled from the surface into the area above the gob can, if properly implemented, be the most effective means of reducing mine methane emissions. However, much of the gas produced from gob wells is vented because the quality of the gas is highly variable and is often below current natural gas pipeline specifications. Prior to the initiation of field-testing required to further understand the operational criteria for upgrading gob well gas, a preliminary evaluation and assessment was performed. An assessment of the methane gas in-place and producible methane resource at the Jim Walter Resources, Inc. No. 4 and No. 5 Mines established a potential 15-year supply of 60 billion cubic feet of mien methane from gob wells, satisfying the resource criteria for the test site. To understand the effect of operating conditions on gob gas quality, gob wells producing pipeline quality (i.e., < 96% hydrocarbons) gas at this site will be operated over a wide range of suction pressures. Parameters to be determined will include absolute methane quantity and methane concentration produced through the gob wells; working face, tailgate and bleeder entry methane levels in the mine; and the effect on the economics of production of gob wells at various levels of methane quality. Following this, a field demonstration will be initiated at a mine where commercial gob gas production has not been attempted. The guidelines established during the first phase of the project will be used to design the production program. The economic feasibility of various utilization options will also be tested based upon the information gathered during the first phase. 41 refs., 41 figs., 12 tabs.

Blackburn, S.T.; Sanders, R.G.; Boyer, C.M. II; Lasseter, E.L.; Stevenson, J.W.; Mills, R.A.

1995-12-01T23:59:59.000Z

329

Spitzer Observations of Star Formation in the Extreme Outer Disk of M83 (NGC5236)  

E-Print Network (OSTI)

Spitzer IRAC observations of two fields in the XUV-disk of M83 have been recently obtained,3R_{HII} away from the center of the galaxy (R_{HII)=6.6 kpc).GALEX UV images have shown the two fields to host in-situ recent star formation.The IRAC images are used in conjunction with GALEX data and new HI imaging from THINGS to constrain stellar masses and ages of the UV clumps in the fields,and to relate the local recent star formation to the reservoir of available gas. multi wavelength photometry in the UV and mid-IR bands of 136 UV clumps(spatial resolution >220pc) identified in the two target fields, together with model fitting of the stellar UV-MIR SED,suggest that the clumps cover a range of ages between a few Myr and >1Gyr with a median value around ages,for which only a small fraction of the mass in stars appears to have formed in the past ~10Myr, agrees with the dearth of Ha emission observed in these outer fiel ds. At the location of our IRAC fields, the HI map shows localized enhancement and clumping of atomic gas. A comparison of the observed star formation with the gas reservoir shows that the UV clumps follow the Schmidt--Kennicutt scaling law of star formation,and that star formation is occurring in regions with gas dens ities at approximately (within a factor of a few) the critical density value de -rived according to the Toomre Q gravitational stability criterion. The signifi cant 8 micron excess in several of the clumps (16% of the total by number accou nting for ~67% of the 8 micron flux)) provides evidence for the existence of dust in these remote fields, in agreement with results for other galaxies. Furt hermore, we observe a relatively small excess of emission at 4.5 micron in the clumps...

Hui Dong; Daniela Calzetti; Michael Regan; David Thilker; Luciana Bianchi; Gerhardt R. Meurer; Fabian Walter

2008-04-23T23:59:59.000Z

330

Process gas solidification system  

DOE Patents (OSTI)

It has been the practice to (a) withdraw hot, liquid UF.sub.6 from various systems, (b) direct the UF.sub.6 into storage cylinders, and (c) transport the filled cylinders to another area where the UF.sub.6 is permitted to solidify by natural cooling. However, some hazard attends the movement of cylinders containing liquid UF.sub.6, which is dense, toxic, and corrosive. As illustrated in terms of one of its applications, the invention is directed to withdrawing hot liquid UF.sub.6 from a system including (a) a compressor for increasing the pressure and temperature of a stream of gaseous UF.sub.6 to above its triple point and (b) a condenser for liquefying the compressed gas. A network containing block valves and at least first and second portable storage cylinders is connected between the outlet of the condenser and the suction inlet of the compressor. After an increment of liquid UF.sub.6 from the condenser has been admitted to the first cylinder, the cylinder is connected to the suction of the compressor to flash off UF.sub.6 from the cylinder, thus gradually solidifying UF.sub.6 therein. While the first cylinder is being cooled in this manner, an increment of liquid UF.sub.6 from the condenser is transferred into the second cylinder. UF.sub.6 then is flashed from the second cylinder while another increment of liquid UF.sub.6 is being fed to the first. The operations are repeated until both cylinders are filled with solid UF.sub.6, after which they can be moved safely. As compared with the previous technique, this procedure is safer, faster, and more economical. The method also provides the additional advantage of removing volatile impurities from the UF.sub.6 while it is being cooled.

Fort, William G. S. (Oak Ridge, TN); Lee, Jr., William W. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

331

Heat exchanger with transpired, highly porous fins  

DOE Patents (OSTI)

The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

Kutscher, Charles F. (Golden, CO); Gawlik, Keith (Boulder, CO)

2002-01-01T23:59:59.000Z

332

Magnetic fields and the dynamics of spiral galaxies  

E-Print Network (OSTI)

We investigate the dynamics of magnetic fields in spiral galaxies by performing 3D MHD simulations of galactic discs subject to a spiral potential. Recent hydrodynamic simulations have demonstrated the formation of inter-arm spurs as well as spiral arm molecular clouds provided the ISM model includes a cold HI phase. We find that the main effect of adding a magnetic field to these calculations is to inhibit the formation of structure in the disc. However, provided a cold phase is included, spurs and spiral arm clumps are still present if $\\beta \\gtrsim 0.1$ in the cold gas. A caveat to two phase calculations though is that by assuming a uniform initial distribution, $\\beta \\gtrsim 10$ in the warm gas, emphasizing that models with more consistent initial conditions and thermodynamics are required. Our simulations with only warm gas do not show such structure, irrespective of the magnetic field strength. Furthermore, we find that the introduction of a cold HI phase naturally produces the observed degree of disorder in the magnetic field, which is again absent from simulations using only warm gas. Whilst the global magnetic field follows the large scale gas flow, the magnetic field also contains a substantial random component that is produced by the velocity dispersion induced in the cold gas during the passage through a spiral shock. Without any cold gas, the magnetic field in the warm phase remains relatively well ordered apart from becoming compressed in the spiral shocks. Our results provide a natural explanation for the observed high proportions of disordered magnetic field in spiral galaxies and we thus predict that the relative strengths of the random and ordered components of the magnetic field observed in spiral galaxies will depend on the dynamics of spiral shocks.

C. L. Dobbs; D. J. Price

2007-10-18T23:59:59.000Z

333

Cooperative Research in C1 Chemistry  

DOE Green Energy (OSTI)

C1 chemistry refers to the conversion of simple carbon-containing materials that contain one carbon atom per molecule into valuable products. The feedstocks for C1 chemistry include natural gas, carbon dioxide, carbon monoxide, methanol and synthesis gas (a mixture of carbon monoxide and hydrogen). Synthesis gas, or syngas, is produced primarily by the reaction of natural gas, which is principally methane, with steam. It can also be produced by gasification of coal, petroleum coke, or biomass. The availability of syngas from coal gasification is expected to increase significantly in the future because of increasing development of integrated gasification combined cycle (IGCC) power generation. Because of the abundance of remote natural gas, the advent of IGCC, and environmental advantages, C1 chemistry is expected to become a major area of interest for the transportation fuel and chemical industries in the relatively near future. The CFFLS will therefore perform a valuable national service by providing science and engineering graduates that are trained in this important area. Syngas is the source of most hydrogen. Approximately 10 trillion standard cubic feet (SCF) of hydrogen are manufactured annually in the world. Most of this hydrogen is currently used for the production of ammonia and in a variety of refining and chemical operations. However, utilization of hydrogen in fuel cells is expected to grow significantly in the next century. Syngas is also the feedstock for all methanol and Fischer-Tropsch plants. Currently, world consumption of methanol is over 25 million tons per year. There are many methanol plants in the U.S. and throughout the world. Methanol and oxygenated transportation fuel products play a significant role in the CFFLS C1 program. Currently, the only commercial Fischer-Tropsch plants are overseas, principally in South Africa (SASOL). However, new plants are being built or planned for a number of locations. One possible location for future F-T plant development in the U.S. is in the Alaskan oil fields.

Gerald P. Huffman

2000-10-27T23:59:59.000Z

334

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

E5. Industrial Sector Energy Price Estimates, 2011 E5. Industrial Sector Energy Price Estimates, 2011 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy f Coal Natural Gas a Petroleum Biomass Total f Coking Coal Steam Coal Total Distillate Fuel Oil LPG b Motor Gasoline c Residual Fuel Oil Other d Total Wood and Waste e Alabama 6.55 3.51 5.05 5.47 23.50 20.64 27.12 15.33 16.04 19.15 2.86 7.07 18.31 9.35 Alaska - 3.14 3.14 3.79 29.30 28.31 31.60 - 16.62 29.00 1.68 28.83 46.04 31.77 Arizona - 2.75 2.75 6.77 24.82 30.18 26.97 17.00 11.76 20.94 1.73 15.37 19.21 16.60 Arkansas - 3.25 3.25 7.33 23.96 21.04 27.35 15.63 23.43 23.98 2.85 9.64 16.51 11.09 California - 3.64 3.64 6.91 25.09 30.50 30.02 15.24 16.13 22.74 2.78 10.53 29.62 13.48 Colorado - 2.05 2.05 6.23 24.57 27.92 27.21 - 12.42 21.99 1.73 12.77 20.69 15.14 Connecticut - - - 8.91 24.08 32.13 28.99 17.52 21.70 25.08 1.68

335

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

2. Industrial Sector Energy Expenditure Estimates, 2011 2. Industrial Sector Energy Expenditure Estimates, 2011 (Million Dollars) State Primary Energy Retail Electricity Total Energy f Coal Natural Gas a Petroleum Biomass Total f Coking Coal Steam Coal Total Distillate Fuel Oil LPG b Motor Gasoline c Residual Fuel Oil Other d Total Wood and Waste e Alabama 214.7 113.1 327.8 721.8 560.3 76.3 90.0 102.6 568.9 1,398.2 365.7 2,813.5 1,853.2 4,666.7 Alaska - 0.2 0.2 - 555.0 3.6 32.0 - 11.1 601.6 0.1 602.0 197.7 799.7 Arizona - 27.5 27.5 149.0 823.4 41.7 123.1 0.7 216.4 1,205.3 0.6 1,382.4 809.7 2,192.1 Arkansas - 18.1 18.1 543.6 742.2 54.6 109.1 2.2 175.7 1,083.7 185.6 1,831.1 841.7 2,672.8 California - 129.5 129.5 4,212.1 1,908.2 690.6 888.1 (s) 1,390.5 4,877.4 58.9 9,278.0 4,772.8 14,050.8 Colorado - 6.8 6.8 392.8 559.2 210.9 133.8 - 167.7 1,071.7 0.2 1,471.4 1,021.1 2,492.6 Connecticut - - - 237.4

336

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-01-01T23:59:59.000Z

337

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

338

METALLICITY-DEPENDENT QUENCHING OF STAR FORMATION AT HIGH REDSHIFT IN SMALL GALAXIES  

SciTech Connect

The star formation rates (SFRs) of low-metallicity galaxies depend sensitively on the gas metallicity, because metals are crucial to mediating the transition from intermediate-temperature atomic gas to cold molecular gas, a necessary precursor to star formation. We study the impact of this effect on the star formation history of galaxies. We incorporate metallicity-dependent star formation and metal enrichment in a simple model that follows the evolution of a halo main progenitor. Our model shows that including the effect of metallicity leads to suppression of star formation at redshift z > 2 in dark halos with masses {approx}< 10{sup 11} M{sub Sun }, with the suppression becoming near total for halos below {approx}10{sup 9.5}-10{sup 10} M{sub Sun }. We find that at high redshift, until z {approx} 2, the SFR cannot catch up with the gas inflow rate (IR), because the SFR is limited by the free-fall time, and because it is suppressed further by a lack of metals in small halos. As a result, in each galaxy the SFR is growing in time faster than the IR, and the integrated cosmic SFR density is rising with time. The suppressed in situ SFR at high-z makes the growth of stellar mass dominated by ex situ SFR, meaning stars formed in lower mass progenitor galaxies and then accreted, which implies that the specific SFR (sSFR) remains constant with time. The intensely accreted gas at high-z is accumulating as an atomic gas reservoir. This provides additional fuel for star formation in 10{sup 10}-10{sup 12} M{sub Sun} halos at z {approx} 1-3, which allows the SFR to exceed the instantaneous IR, and may enable an even higher outflow rate. At z < 1, following the natural decline in IR with time due to the universal expansion, the SFR and sSFR are expected to drop. We specify the expected dependence of sSFR and metallicity on stellar mass and redshift. At a given z, and below a critical mass, these relations are predicted to be flat and rising, respectively. Our model predictions qualitatively match some of the puzzling features in the observed star formation history.

Krumholz, Mark R. [Astronomy Department, University of California, Santa Cruz, CA 95060 (United States); Dekel, Avishai, E-mail: krumholz@ucolick.edu, E-mail: dekel@phys.huji.ac.il [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

2012-07-01T23:59:59.000Z

339

Experimental Characterization and Molecular Study of Natural Gas Mixtures  

E-Print Network (OSTI)

Natural Gas (NG) plays an important role in the energy demand in the United States and throughout the world. Its characteristics as a clean, versatile and a sustainable source of energy makes it an important alternative within the spectra of energy resources. Addressing industrial and academic needs in the natural gas research area requires an integrated plan of research among experimentation, modeling and simulation. In this work, high accuracy PpT data have been measured with a high pressure single sinker magnetic suspension densimeter. An entire uncertainty analysis of this apparatus reveals that the uncertainty of the density data is less that 0.05% across the entire ranges of temperature (200 to 500) K and pressure (up to 200 MPa). These characteristics make the PpT data measured in this study unique in the world. Additionally, both a low pressure (up to 35 MPa) and a high pressure (up to 200 MPa) isochoric apparatus have been developed during the execution of this project. These apparatuses, in conjunction with a recently improved isochoric technique, allow determination of the phase envelope for NG mixtures with an uncertainty of 0.45% in temperature, 0.05% in pressure and 0.12% in density. Additionally, an innovative technique, based upon Coherent Anti-Stokes Raman Scattering (CARS) and Gas Chromatography (GC), was proposed in this research to minimize the high uncertainty introduced by the composition analyses of NG mixtures. The collected set of P?T and saturation data are fundamental for thermodynamic formulations of these mixtures. A study at the molecular level has provided molecular data for a selected set of main constituents of natural gas. A 50-50% methane-ethane mixture was studied by molecular dynamics simulations. The result of this study showed that simulation time higher than 2 ns was necessary to obtain reasonable deviations for the density determinations when compared to accurate standards. Finally, this work proposed a new mixing rule to incorporate isomeric effects into cubic equations of state.

Cristancho Blanco, Diego Edison

2010-05-01T23:59:59.000Z

340

Technology on In-Situ Gas Generation to Recover Residual Oil Reserves  

Science Conference Proceedings (OSTI)

This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency of the in-situ generated CO{sub 2} gas. A set of core flood experiments were conducted to define effect of surfactant on recovery efficiency. The results demonstrated obvious advantages of the foamy system over the brine solution in order to achieve higher sweep efficiency and recovery coefficient. It is shown that a slug injection is not an efficient method for mixing GY and GF solutions and it can't generate considerable gas inside the slim-tube.

Sayavur Bakhtiyarov

2008-02-29T23:59:59.000Z

Note: This page contains sample records for the topic "gas-a colorless odorless" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural gas pipeline technology overview.  

Science Conference Proceedings (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

342

Pyramid Resource Center-Green Energy Center  

DOE Green Energy (OSTI)

There are currently over 3,500 USA/Canadian landfills listed by the EPA/EC and like numbers in Europe that are producing methane-rich landfill gas (LFG). This gas is typically made up of 50-percent methane (CH4), 35-percent carbon dioxide (CO2), and 2 to 25% nitrogen and oxygen (N2 & O2), plus dozens of dilute contaminants. LFG is classified as a renewable fuel, because it is generated via biological decay of municipal solid waste, a constant byproduct of human activity. To date, most LFG has been allowed to escape into the atmosphere. On account of its high CH4 content, LFG may contribute to climate change, as CH4 is one of the most harmful greenhouse gases with 21 times the global warming potential of CO2. Of the landfills that collect LFG, most simply flare it. In the past decade, some landfills have begun to use LFG for electricity generation or for direct combustion as low Btu gas. Very few landfills upgrade LFG to high Btu gas. A patented CO2 WashTM process developed by Acrion Technologies Inc., and licensed to Firm Green Inc. shows promise as an economically and environmentally sustainable process to recover energy and prevent pollution from landfills. The CO2 WashTM has already been proven at lab-scale. It upgrades LFG, which consists of 50% methane (CH4) + 35% carbon dioxide (CO2) + 2 to 25% nitrogen + oxygen (N2+O2), 1 to 2% water vapor, and dozens of contaminants (which total a few hundred to a few thousand parts per million). CH4, which by itself has an energy content of 1,012 British thermal units (Btu) per standard cubic foot (SCF), is the only component in LFG that contributes to its energy content, which is therefore about 400-550 Btu/SCF. Accordingly, raw LFG is usually referred to as medium-Btu gas. To be salable, it is necessary to remove essentially all the components besides CH4, while keeping the vast majority of the revenue producing CH4. This is high-Btu gas, yielding 850 to 1,000 Btu/SCF. The CO2 WashTM process upgrades LFG to about 930 Btu/SCF, and reduces the contaminants to levels that make it salable as a vehicle fuel in the form of compressed natural gas (CNG).

Flory, Paul, D.

2011-09-02T23:59:59.000Z

343

INVESTIGATION ON THE FLAME EXTINCTION LIMIT OF FUEL BLENDS  

SciTech Connect

Lean flame extinction limits of binary fuel mixtures of methane (CH{sub 4}), propane (C{sub 3}H{sub 8}), and ethane (C{sub 2}H{sub 6}) were measured using a twin-flame counter-flow burner. Experiments were conducted to generate an extinction equivalence ratio vs. global stretch rate plot and an extrapolation method was used to calculate the equivalence ratio corresponding to an experimentally unattainable zero-stretch condition. The foregoing gases were selected because they are the primary constitutes of natural gas, which is the primary focus of the present study. To validate the experimental setup and methodology, the flame extinction limit of pure fuels at zero stretch conditions were also estimated and compared with published values. The lean flame extinction limits of methane (f{sub ext} = 4.6%) and propane (f{sub ext} = 2.25%) flames measured in the present study agreed with the values reported in the literature. It was observed that the flame extinction limit of fuel blends have a polynomial relation with the concentration of component fuels in the mixture. This behavior contradicts with the commonly used linear Le Chatelier's approximation. The experimentally determined polynomial relations between the flame extinction limits of fuel blends (i.e. methane-propane and methane-ethane) and methane concentration are as follows: (1) Methane-Propane--%f{sub ext} = (1.05 x 10{sup -9}) f{sup 5}-(1.3644 x 10{sup -7}) f{sup 4}+(6.40299 x 10{sup -6}) f{sup 3}-(1.2108459 x 10{sup -4}) f{sup 2}+(2.87305329 x 10{sup -3}) f+2.2483; (2) Methane-Ethane--%f{sub ext} = (2.1 x 10{sup -9})f{sup 5}-(3.5752 x 10{sup -7}) f{sup 4}+(2.095425 x 10{sup -5}) f{sup 3}-(5.037353 x 10{sup -4}) f{sup 2} + 6.08980409 f + 2.8923. Where f{sub ext} is the extinction limits of methane-propane and methane-ethane fuel blends, and f is the concentration (% volume) of methane in the fuel mixture. The relations were obtained by fitting fifth order curve (polynomial regression) to experimentally measured extinction limits at different mixture conditions. To extend the study to a commercial fuel, the flame extinction limit for Birmingham natural gas (a blend of 95% methane, 5% ethane and 5% nitrogen) was experimentally determined and was found to be 3.62% fuel in the air-fuel mixture.

Ahsan R. Choudhuri

2005-02-01T23:59:59.000Z

344

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

DOE Green Energy (OSTI)

The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure hydrogen and carbon nanotubes using binary Fe-based catalysts containing Mo, Ni, or Pd in a single step non-oxidative reaction. (7) Partial dehydrogenation of liquid hydrocarbons (cyclohexane and methyl cyclohexane) has been performed using catalysts consisting of Pt and other metals on stacked-cone carbon nanotubes. (8) An understanding of the catalytic reaction mechanisms of the catalysts developed in the CFFS C1 program is being achieved by structural characterization using multiple techniques, including XAFS and Moessbauer spectroscopy, XRD, TEM, NMR, ESR, and magnetometry.

Gerald P. Huffman

2003-09-30T23:59:59.000Z

345

Mercury Calibration System  

Science Conference Proceedings (OSTI)

U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on actual capabilities of the current calibration technology. As part of the current effort, WRI worked with Thermo Fisher elemental mercury calibrator units to conduct qualification experiments to demonstrate their performance characteristics under a variety of conditions and to demonstrate that they qualify for use in the CEM calibration program. Monitoring of speciated mercury is another concern of this research. The mercury emissions from coal-fired power plants are comprised of both elemental and oxidized mercury. Current CEM analyzers are designed to measure elemental mercury only. Oxidized mercury must first be converted to elemental mercury prior to entering the analyzer inlet in order to be measured. CEM systems must demonstrate the ability to measure both elemental and oxidized mercury. This requires the use of oxidized mercury generators with an efficient conversion of the oxidized mercury to elemental mercury. There are currently two basic types of mercuric chloride (HgCl{sub 2}) generators used for this purpose. One is an evaporative HgCl{sub 2} generator, which produces gas standards of known concentration by vaporization of aqueous HgCl{sub 2} solutions and quantitative mixing with a diluent carrier gas. The other is a device that converts the output from an elemental Hg generator to HgCl{sub 2} by means of a chemical reaction with chlorine gas. The Thermo Fisher oxidizer system involves reaction of elemental mercury vapor with chlorine gas at an elevated temperature. The draft interim protocol for oxidized mercury units involving reaction with chlorine gas requires the vendors to demonstrate high efficiency of oxidation of an elemental mercury stream from an elemental mercury vapor generator. The Thermo Fisher oxidizer unit is designed to operate at the power plant stack at the probe outlet. Following oxidation of elemental mercury from reaction with chlorine gas, a high temperature module reduces the mercuric chloride back to elemental mercury. WRI conducted work with a custom laboratory configured stand-alone oxidized mercury generator unit prov

John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

2009-03-11T23:59:59.000Z

346

Simultaneous Removal of NOx and Mercury in Low Temperature Selective Catalytic and Adsorptive Reactor  

SciTech Connect

The results of a 18-month investigation to advance the development of a novel Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR), for the simultaneous removal of NO{sub x} and mercury (elemental and oxidized) from flue gases in a single unit operation located downstream of the particulate collectors, are reported. In the proposed LTSCAR, NO{sub x} removal is in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The concomitant capture of mercury in the unit is achieved through the incorporation of a novel chelating adsorbent. As conceptualized, the LTSCAR will be located downstream of the particulate collectors (flue gas temperature 140-160 C) and will be similar in structure to a conventional SCR. That is, it will have 3-4 beds that are loaded with catalyst and adsorbent allowing staged replacement of catalyst and adsorbent as required. Various Mn/TiO{sub 2} SCR catalysts were synthesized and evaluated for their ability to reduce NO at low temperature using CO as the reductant. It has been shown that with a suitably tailored catalyst more than 65% NO conversion with 100% N{sub 2} selectivity can be achieved, even at a high space velocity (SV) of 50,000 h-1 and in the presence of 2 v% H{sub 2}O. Three adsorbents for oxidized mercury were developed in this project with thermal stability in the required range. Based on detailed evaluations of their characteristics, the mercaptopropyltrimethoxysilane (MPTS) adsorbent was found to be most promising for the capture of oxidized mercury. This adsorbent has been shown to be thermally stable to 200 C. Fixed-bed evaluations in the targeted temperature range demonstrated effective removal of oxidized mercury from simulated flue gas at very high capacity ({approx}>58 mg Hg/g adsorbent). Extension of the capability of the adsorbent to elemental mercury capture was pursued with two independent approaches: incorporation of a novel nano-layer on the surface of the chelating mercury adsorbent to achieve in situ oxidation on the adsorbent, and the use of a separate titania-supported manganese oxide catalyst upstream of the oxidized mercury adsorbent. Both approaches met with some success. It was demonstrated that the concept of in situ oxidation on the adsorbent is viable, but the future challenge is to raise the operating capacity beyond the achieved limit of 2.7 mg Hg/g adsorbent. With regard to the manganese dioxide catalyst, elemental mercury was very efficiently oxidized in the absence of sulfur dioxide. Adequate resistance to sulfur dioxide must be incorporated for the approach to be feasible in flue gas. A preliminary benefits analysis of the technology suggests significant potential economic and environmental advantages.

Neville G. Pinto; Panagiotis G. Smirniotis

2006-03-31T23:59:59.000Z

347

Direct Causticizing for Black Liquor Gasification in a Circulating Fluidized Bed  

Science Conference Proceedings (OSTI)

Gasification of black liquor (BLG) has distinct advantages over direct combustion in Tomlinson recovery boilers. In this project we seek to resolve causticizing issues in order to make pressurized BLG even more efficient and cost-effective. One advantage of BLG is that the inherent partial separation of sulfur and sodium during gasification lends itself to the use of proven high yield variants to conventional kraft pulping which require just such a separation. Processes such as polysulfide, split sulfidity, ASAQ, and MSSAQ can increase pulp yield from 1% to 10% over conventional kraft but require varying degrees of sulfur/sodium separation, which requires additional [and costly] processing in a conventional Tomlinson recovery process. However during gasification, the sulfur is partitioned between the gas and smelt phases, while the sodium all leaves in the smelt; thus creating the opportunity to produce sulfur-rich and sulfur-lean white liquors for specialty pulping processes. A second major incentive of BLG is the production of a combustible product gas, rich in H2 and CO. This product gas (a.k.a. syngas) can be used in gas turbines for combined cycle power generation (which is twice as efficient as the steam cycle alone), or it can be used as a precursor to form liquid fuels, such as dimethyl ether or Fischer Tropsh diesel. There is drawback to BLG, which has the potential to become a third major incentive if this work is successful. The causticizing load is greater for gasification of black liquor than for combustion in a Tomlinson boiler. So implementing BLG in an existing mill would require costly increases to the causticizing capacity. In situ causticizing [within the gasifier] would handle the entire causticizing load and therefore eliminate the lime cycle entirely. Previous work by the author and others has shown that titanate direct causticizing (i.e. in situ) works quite well for high-temperature BLG (950C), but was limited to pressures below about 5 bar. It is desirable however to operate BLG at 20-30 bar for efficiency reasons related to either firing the syngas in a turbine, or catalytically forming liquid fuels. This work focused on achieving high direct causticizing yields at 20 bars pressure. The titanate direct causticizing reactions are inhibited by CO2. Previous work has shown that the partial pressure of CO2 should be kept below about 0.5 bar in order for the process to work. This translates to a total reactor pressure limit of about 5 bar for airblown BLG, and only 2 bar for O2-blown BLG. In this work a process was developed in which the CO2 partial pressure could be manipulated to a level under 0.5 bar with the total system pressure at 10 bar during O2-blown BLG. This fell short of our 20 bar goal but still represents a substantial increase in the pressure limit. A material and energy balance was performed, as well as first-pass economics based on capital and utilities costs. Compared to a reference case of using BLG with a conventional lime cycle [Larson, 2003], the IRR and NVP were estimated for further replacing the lime kiln with direct causticizing. The economics are strongly dependent on the price of lime kiln fuel. At $6/mmBTU the lime cycle is the clear choice. At $8/mmBTU the NPV is $10M with IRR of 17%. At $12/mmBTU the NPV is $45M with IRR of 36%. To further increase the total allowable pressure, the CO2 could be further decreased by further decreasing the temperature. Testing should be done at 750C. Also a small pilot should be built.

Scott Sinquefield; Xiaoyan Zeng, Alan Ball

2010-03-02T23:59:59.000Z

348

Pressurized Oxidative Recovery of Energy from Biomass Final Technical Report  

DOE Green Energy (OSTI)

This study was conducted to evaluate the technical feasibility of using pressurized oxyfuel, the ThermoEnergy Integrated Power System (TIPS), to recover energy from biomass. The study was focused on two frontscomputer simulation of the TIPS plant and corrosion testing to determine the best materials of construction for the critical heat exchanger components of the process. The goals were to demonstrate that a successful strategy of applying the TIPS process to wood waste could be achieved. To fully investigate the technical and economic benefits of using TIPS, it was necessary to model a conventional air-fired biomass power plant for comparison purposes. The TIPS process recovers and utilizes the latent heat of vaporization of water entrained in the fuel or produced during combustion. This latent heat energy is unavailable in the ambient processes. An average composition of wood waste based on data from the Pacific Northwest, Pacific Southwest, and the South was used for the study. The high moisture content of wood waste is a major advantage of the TIPS process. The process can utilize the higher heating value of the fuel by condensing most of the water vapor in the flue gas and making the flue gas a useful source of heat. This is a considerable thermal efficiency gain over conventional power plants which use the lower heating value of the fuel. The elevated pressure also allows TIPS the option of recovering CO2 at near ambient temperatures with high purity oxygen used in combustion. Unlike ambient pressure processes which need high energy multi-stage CO2 compression to supply pipeline quality product, TIPS is able to simply pump the CO2 liquid using very little auxiliary power. In this study, a 15.0 MWe net biomass power plant was modeled, and when a CO2 pump was included it only used 0.1 MWe auxiliary power. The need for refrigeration is eliminated at such pressures resulting in significant energy, capital, and operating and maintenance savings. Since wood waste is a fuel with a high moisture and hydrogen content, it is one of the best applications for TIPS. The only way to fully utilize the latent heat is by using a pressurized system and the oxy-fuel approach allows for carbon capture and easier emission control. Pressurized operation also allows for easier emission control than atmospheric oxyfuel because presence of infiltration air in the atmospheric case. For the case of wood waste as the fuel however, the ability of TIPS to fully utilize the heat of condensation is the most valuable advantage of the process. The project research showed that titanium alloys were the best materials of construction for the heat exchangers. All other materials tested failed to withstand even brief periods in the harsh environment (high temperature, acidic, and oxidizing conditions). Titanium was able to survive due to the formation of a stable TiO2 passivation layer.

M. Misra

2007-06-10T23:59:59.000Z

349

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

DOE Green Energy (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

350

IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING  

DOE Green Energy (OSTI)

The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately, information and findings in the literature on the effect of mixing on anaerobic digestion are contradictory. One reason is the lack of measurement techniques for opaque systems such as digesters. Better understanding of the mixing and hydrodynamics of digesters will result in appropriate design, configuration selection, scale-up, and performance, which will ultimately enable avoiding digester failures. Accordingly, this project sought to advance the fundamental knowledge and understanding of the design, scale up, operation, and performance of cow manure anaerobic digesters with high solids loading. The project systematically studied parameters affecting cow manure anaerobic digestion performance, in different configurations and sizes by implementing computer automated radioactive particle tracking (CARPT), computed tomography (CT), and computational fluid dynamics (CFD), and by developing novel multiple-particle CARPT (MP-CARPT) and dual source CT (DSCT) techniques. The accomplishments of the project were achieved in a collaborative effort among Washington University, the Oak Ridge National Laboratory, and the Iowa Energy Center teams. The following investigations and achievements were accomplished: Systematic studies of anaerobic digesters performance and kinetics using various configurations, modes of mixing, and scales (laboratory, pilot plant, and commercial sizes) were conducted and are discussed in Chapter 2. It was found that mixing significantly affected the performance of the pilot plant scale digester ({approx}97 liter). The detailed mixing and hydrodynamics were investigated using computer automated radioactive particle tracking (CARPT) techniques, and are discussed in Chapter 3. A novel multiple particle tracking technique (MP-CARPT) technique that can track simultaneously up to 8 particles was developed, tested, validated, and implemented. Phase distribution was investigated using gamma ray computer tomography (CT) techniques, which are discussed in Chapter 4. A novel dual source CT (DSCT) technique was developed to measure the phase distribution of dyn

Washington University- St. Louis: Muthanna Al-Dahhan (Principal Investigator)

2007-03-26T23:59:59.000Z

351

The Disruption of Vessel-Spanning Bubbles with Sloped Fins in Flat-Bottom and 2:1 Elliptical-Bottom Vessels  

DOE Green Energy (OSTI)

Radioactive sludge was generated in the K-East Basin and K-West Basin fuel storage pools at the Hanford Site while irradiated uranium metal fuel elements from the N Reactor were being stored and packaged. The fuel has been removed from the K Basins, and currently, the sludge resides in the KW Basin in large underwater Engineered Containers. The first phase to the Sludge Treatment Project being led by CH2MHILL Plateau Remediation Company (CHPRC) is to retrieve and load the sludge into sludge transport and storage containers (STSCs) and transport the sludge to T Plant for interim storage. The STSCs will be stored inside T Plant cells that are equipped with secondary containment and leak-detection systems. The sludge is composed of a variety of particulate materials and water, including a fraction of reactive uranium metal particles that are a source of hydrogen gas. If a situation occurs where the reactive uranium metal particles settle out at the bottom of a container, previous studies have shown that a vessel-spanning gas layer above the uranium metal particles can develop and can push the overlying layer of sludge upward. The major concern, in addition to the general concern associated with the retention and release of a flammable gas such as hydrogen, is that if a vessel-spanning bubble (VSB) forms in an STSC, it may drive the overlying sludge material to the vents at the top of the container. Then it may be released from the container into the cells secondary containment system at T Plant. A previous study demonstrated that sloped walls on vessels, both cylindrical coned-shaped vessels and rectangular vessels with rounded ends, provided an effective approach for disrupting a VSB by creating a release path for gas as a VSB began to rise. Based on the success of sloped-wall vessels, a similar concept is investigated here where a sloped fin is placed inside the vessel to create a release path for gas. A key potential advantage of using a sloped fin compared to a vessel with a sloped wall is that a small fin decreases the volume of a vessel available for sludge storage by a very small fraction compared to a cone-shaped vessel. The purpose of this study is to quantify the capability of sloped fins to disrupt VSBs and to conduct sufficient tests to estimate the performance of fins in full-scale STSCs. Experiments were conducted with a range of fin shapes to determine what slope and width were sufficient to disrupt VSBs. Additional tests were conducted to demonstrate how the fin performance scales with the sludge layer thickness and the sludge strength, density, and vessel diameter based on the gravity yield parameter, which is a dimensionless ratio of the force necessary to yield the sludge to its weight.( ) Further experiments evaluated the difference between vessels with flat and 2:1 elliptical bottoms and a number of different simulants, including the KW container sludge simulant (complete), which was developed to match actual K-Basin sludge. Testing was conducted in 5-in., 10-in., and 23-in.-diameter vessels to quantify how fin performance is impacted by the size of the test vessel. The most significant results for these scale-up tests are the trend in how behavior changes with vessel size and the results from the 23-in. vessel. The key objective in evaluating fin performance is to determine the conditions that minimize the volume of a VSB when disruption occurs because this reduces the potential for material inside the STSC from being released through vents.

Gauglitz, Phillip A.; Buchmiller, William C.; Jenks, Jeromy WJ; Chun, Jaehun; Russell, Renee L.; Schmidt, Andrew J.; Mastor, Michael M.

2010-09-22T23:59:59.000Z

352

Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills  

Science Conference Proceedings (OSTI)

Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a marketable lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal of mercury from simulated flue gas. A business model was generated to summarize anti

J.G. Groppo; T.L. Robl

2005-09-30T23:59:59.000Z

353

Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills  

SciTech Connect

Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a marketable lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal of mercury from simulated flue gas. A business model was generated to summarize anti

J.G. Groppo; T.L. Robl

2005-09-30T23:59:59.000Z

354

Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado  

Science Conference Proceedings (OSTI)

The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal mounds for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade to nine components was to provide additional shear wave component data that might prove useful in delineating internal mound reservoir attributes. Also, Red Willow extended the P-wave portion of the survey to the northwest of the original 6 mi{sup 2} (15.6 km{sup 2}) 3D9C area in order to extend coverage further to the northwest to the Marble Wash area. In order to accomplish this scope of work, 3D9C seismic data set covering two known reservoirs was acquired and processed. Three-dimensional, zero-offset vertical seismic profile (VSP) data was acquired to determine the shear wave velocities for processing the sh3Dseismic data. Anisotropic velocity, and azimuthal AVO processing was carried out in addition to the conventional 3D P-wave data processing. All P-, PS- and S-wave volumes of the seismic data were interpreted to map the seismic response. The interpretation consisted of conventional cross-plots of seismic attributes vs. geological and reservoir engineering data, as well as multivariate and neural net analyses to assess whether additional resolution on exploration and engineering parameters could be achieved through the combined use of several seismic variables. Engineering data in the two reservoirs was used to develop a combined lithology, structure and permeability map. On the basis of the seismic data, a well was drilled into the northern mound trend in the project area. This well, Roadrunner No.9-2, was brought into production in late April 2006 and continues to produce modest amounts of oil and gas. As of the end of August 2007, the well has produced approximately 12,000 barrels of oil and 32,000 mcf of gas. A static reservoir model was created from the seismic data interpretations and well data. The seismic data was tied to various markers identified in the well logs, which in turn were related to lithostratigraphy. The tops and thicknesses of the various units were extrapolated from well control based upon the seismic data that was calibrated to the well picks. The reservoir engineering properties were available from a number of wel

Joe Hachey

2007-09-30T23:59:59.000Z