National Library of Energy BETA

Sample records for gas wells operated

  1. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect (OSTI)

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  2. Demonstration of the enrichment of medium quality gas from gob wells through interactive well operating practices. Final report, June--December, 1995

    SciTech Connect (OSTI)

    Blackburn, S.T.; Sanders, R.G.; Boyer, C.M. II; Lasseter, E.L.; Stevenson, J.W.; Mills, R.A.

    1995-12-01

    Methane released to the atmosphere during coal mining operations is believed to contribute to global warming and represents a waste of a valuable energy resource. Commercial production of pipeline-quality gob well methane through wells drilled from the surface into the area above the gob can, if properly implemented, be the most effective means of reducing mine methane emissions. However, much of the gas produced from gob wells is vented because the quality of the gas is highly variable and is often below current natural gas pipeline specifications. Prior to the initiation of field-testing required to further understand the operational criteria for upgrading gob well gas, a preliminary evaluation and assessment was performed. An assessment of the methane gas in-place and producible methane resource at the Jim Walter Resources, Inc. No. 4 and No. 5 Mines established a potential 15-year supply of 60 billion cubic feet of mien methane from gob wells, satisfying the resource criteria for the test site. To understand the effect of operating conditions on gob gas quality, gob wells producing pipeline quality (i.e., < 96% hydrocarbons) gas at this site will be operated over a wide range of suction pressures. Parameters to be determined will include absolute methane quantity and methane concentration produced through the gob wells; working face, tailgate and bleeder entry methane levels in the mine; and the effect on the economics of production of gob wells at various levels of methane quality. Following this, a field demonstration will be initiated at a mine where commercial gob gas production has not been attempted. The guidelines established during the first phase of the project will be used to design the production program. The economic feasibility of various utilization options will also be tested based upon the information gathered during the first phase. 41 refs., 41 figs., 12 tabs.

  3. California Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) California Natural ...

  4. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Mississippi Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  9. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  10. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  12. Maximize revenue from gas condensate wells

    SciTech Connect (OSTI)

    Hall, S.R.

    1988-07-01

    A computerized oil/gas modeling program called C.O.M.P. allows operators to select the economically optimum producing equipment for a given gas-condensate well-stream. This article, the first of two, discusses use of the model to analyze performance of six different production system on the same wellstream and at the same wellhead conditions. All producing equipment options are unattended wellhead facilities designed for high volume gas-condensate wells and are not gas plants. A second article to appear in September will discuss operating experience with one of the producing systems analyzed, integrated multi-stage separation with stabilization and compression (the HERO system), which was developed by U.S. Enertek, Inc. This equipment was chosen for the wellstream analyzed because of the potential revenue increase indicated by the model.

  13. Number of Producing Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2009 2010 2011 2012 2013 2014 View History U.S. 493,100 487,627 514,637 482,822 484,994 514,786 1989-2014 Alabama 6,913 7,026 7,063 6,327 6,165 6,118 1989-2014 Alaska 261 269 277 185 159 170 1989-2014 Arizona 6 5 5 5 5 5 1989-2014 Arkansas 6,314 7,397 8,388 8,538 9,843 10,150 1989-2014 California 1,643 1,580 1,308 1,423 1,335 1,118 1989-2014

  14. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  15. Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  16. California--State Offshore Natural Gas Withdrawals from Gas Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  17. Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7,021 6,303 6,870 ...

  18. Missouri Natural Gas Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals from Gas Wells (Million Cubic Feet) Missouri Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 1 ...

  19. Ohio Natural Gas Withdrawals from Gas Wells (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Ohio Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,138 11,794 12,855 ...

  20. Montana Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 4,561 3,826 4,106 ...

  1. Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 425,704 369,500 ...

  2. Florida Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Florida Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - ...

  3. Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 40 37 39 38 37 36 35 ...

  4. Indiana Natural Gas Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals from Gas Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21 18 ...

  5. California Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) California Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,569 12,155 ...

  6. Michigan Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9,579 8,593 ...

  7. Tennessee Natural Gas Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Tennessee Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 ...

  8. Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 507,274 440,015 ...

  9. Oklahoma Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 163,978 147,543 ...

  10. Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals from Gas Wells (Million Cubic Feet) Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 5 ...

  11. Oregon Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Gas Wells (Million Cubic Feet) Oregon Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 246 244 232 ...

  12. Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 14,797 13,076 ...

  13. Pennsylvania Natural Gas Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Pennsylvania Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,538 12,153 ...

  14. Colorado Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 15,390 18,697 ...

  15. Nebraska Natural Gas Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Nebraska Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9 10 11 6 9 8 10 9 8 ...

  16. ,"New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Annual",2014 ,"Release...

  17. Adaptive control system for gas producing wells

    SciTech Connect (OSTI)

    Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko

    2015-03-10

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.

  18. Maximize revenue from gas condensate wells

    SciTech Connect (OSTI)

    Hall, S.R. )

    1988-09-01

    A computerized oil/gas modeling program called C.O.M.P. was used to analyze comparative recovery, losses and revenues from six different producing systems on a given wellstream as tested on initial completion. A multi-stage separation/stabilization/compression system (HERO system) manufactured by U.S. Enertek, Inc., was subsequently installed to produce the well, plus five other wells in the immediate area. This article compares theoretical gains forecast by the modeling program with actual gains recorded during later testing of the same well with a two-stage separation hookup and the multi-stage unit. The test using two-stage separation was run as a basis for comparison. Operating temperatures and pressures for each test are shown.

  19. Natural Gas Wells Near Project Rulison

    Office of Legacy Management (LM)

    for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 ...

  20. Dewatering of coalbed methane wells with hydraulic gas pump

    SciTech Connect (OSTI)

    Amani, M.; Juvkam-Wold, H.C.

    1995-12-31

    The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

  1. Horizontal well replaces hydraulic fracturing in North Sea gas well

    SciTech Connect (OSTI)

    Reynolds, D.A.; Seymour, K.P. )

    1991-11-25

    This paper reports on excessive water production from hydraulically fractured wells in a poor quality reservoir in the North SEa which prompted the drilling of a horizontal well. Gas production from the horizontal well reached six times that of the offset vertical wells, and no water production occurred. This horizontal well proved commercial the western section of the Anglia field. Horizontal drilling in the North SEa is as an effective technology to enhance hydrocarbon recovery from reservoirs that previously had proven uncommercial with other standard techniques. It is viable for the development of marginal reservoirs, particularly where conditions preclude stimulation from hydraulic fracturing.

  2. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect (OSTI)

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01

    This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage through a successful ''proof-of-concept'' downhole application in a natural gas storage field observation well. The next phase of the project will demonstrate the technology in a pressurized storage field well.

  3. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Other States Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Other States Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 72,328 63,451 67,732 63,118 62,276 59,557 ...

  7. Controls for offshore high pressure corrosive gas wells

    SciTech Connect (OSTI)

    Bailliet, R.M.

    1982-01-01

    In September 1981, Shell Oil Company began production from its first high-pressure corrosive gas well in the Gulf of Mexico. The extreme pressures and corrosive nature of the gas required the installation of a 20,000 psi low alloy steel christmas tree, equipped with 12 hydraulically operated safety and control valves. This study describes the instrumentation and control system developed to operate this complex well. Similar wells have been produced on shore, but the limited space available on an offshore platform has required the development of new techniques for operating these wells. The instrumentation system described utilizes conventional pneumatics and hydraulics for control plus intrinsically-safe electronics for data acquisition. The use of intrinsically-safe field wiring provided maximum safety while avoiding the need for explosion-proof conduit and wiring methods in division one hazardous areas.

  8. Hydrate Control for Gas Storage Operations

    SciTech Connect (OSTI)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  9. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 Next Release Date: 2292016 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross Withdrawals and Production Natural Gas Gross...

  10. Trip report for field visit to Fayetteville Shale gas wells.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2007-09-30

    This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

  11. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect (OSTI)

    Cayard, M.S.; Kane, R.D.

    1996-08-01

    Coiled tubing is an extremely useful tool in many well logging and workover applications in oil and gas production operations. Several important concerns regarding its use include the need for improved guidelines for the assessment of mechanical integrity, fatigue damage, and the effects of hydrogen sulfide in sour oil and gas production environments. This paper provides information regarding the use of coiled tubing in sour environments with particular emphasis on sulfide stress cracking, hydrogen induced cracking and stress-oriented hydrogen induced cracking and how they work synergistically with cyclic cold working of the steel tubing.

  12. Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011 Year Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, and Shale Gas Wells Natural Gas Well Productivity Texas 1 Louisiana 1 Oklahoma Other States 1 Federal Gulf of Mexico 2 Total Onshore Offshore Total Gross With- drawals From Natural Gas Wells 3 Producing Wells 4 Average Productivity Federal State Total Million Cubic Feet Million Cubic Feet Million Cubic Feet Number Cubic Feet per Well 1960 6,964,900

  13. Inspecting coiled tubing for well operations

    SciTech Connect (OSTI)

    Gard, M.F.; Pasternack, E.S.; Smith, L.J.

    1992-02-18

    This patent describes improvement in a coiled tubing system for insertion of a substantially continuous bendable length of metal tubing into and withdrawal from a wellbore, the system including a tubing injection unit disposed for injecting the length of tubing into the well bore and storage means for dispensing the length of tubing and receiving the length of tubing from the injection unit. The improvement includes: tubing inspection apparatus for substantially continuously inspecting the wall section of the tubing to detect cracks and structural defects which may lead to tubing failure, the apparatus comprising: a source of electromagnetic radiation mounted in proximity to the tubing between the injection unit and a wellhead into which the tubing is injected; a radiation detector unit for receiving signals from the source which have been projected through the wall of the tubing; means for receiving signals form the detector unit for monitoring the structural integrity o the wall of the tubing during one of injecting and withdrawing the tubing with respect to the wellhead; and housing means supported for rotation about a longitudinal axis of the tubing.

  14. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

  15. Horizontal underbalanced drilling of gas wells with coiled tubing

    SciTech Connect (OSTI)

    Cox, R.J.; Li, J.; Lupick, G.S.

    1999-03-01

    Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

  16. North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 61 1990's 103 100 104 101 104 99 108 104 99 96 2000's 94 95 100 117 117 148 200 200 194 196 2010's 188 239 211 200 200 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  17. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18 1990's 19 16 16 18 19 17 18 17 15 19 2000's 17 20 18 15 15 15 14 18 21 24 2010's 26 24 27 26 28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  18. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 1990's 111 110 112 113 104 100 102 141 148 99 2000's 152 170 165 195 224 227 231 239 261 261 2010's 269 277 185 159 170 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  19. South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 1990's 54 54 38 47 55 56 61 60 59 60 2000's 71 68 69 61 61 69 69 71 71 89 2010's 102 100 95 65 68 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  20. Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 700 1990's 690 650 600 505 460 420 2000's 380 350 400 430 280 400 330 305 285 310 2010's 230 210 212 1,089 1,024 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  1. Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 1990's 356 373 382 385 390 372 370 372 185 300 2000's 280 300 225 240 251 316 316 43 45 51 2010's 50 40 40 34 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  2. Operational testing of geopressure geothermal wells on the Gulf Coast

    SciTech Connect (OSTI)

    Goldsberry, F.L.

    1983-01-01

    A combined-cycle electric-power and pipeline-gas production process is proposed for the exploitation of the geopressured geothermal resource. It allows the operator to shift a portion of the production between the electric grid and the gas pipeline markets. On-site equipment and operating labor requirements are minimized. Thermal efficiencies are based upon sound application of thermodynamic principles and are competitive with large-scale plant operations. The economics presented are based upon 1983 avoided power costs and NGPA Section 102 gas prices.

  3. The oil and gas joint operating agreement

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This book covers the following topics: introduction to the AAPL model form operating agreement; property provisions of the operating agreement; Article 6---the drilling and development article; duties and obligations revisited---who bear what risk of loss; operator's liens; accounting procedure joint operations; insurance; taking gas in kind absent a balancing agreement; RMMLF Form 5 Gas Balancing Agreement; tax partnerships for nontax professionals; alternative agreement forms.

  4. Using coiled tubing in HP/HT corrosive gas wells

    SciTech Connect (OSTI)

    1997-06-01

    High-yield-strength (100,000 psi) coiled tubing (CT) material has allowed for CT intervention in Mobile Bay Norphlet completions. These wells are approximately 22,000-ft-vertical-depth, high-pressure, hydrogen sulfide (H{sub 2}S) gas wells. Operations performed on the Norphlet wells include a scale cleanout to approximately 22,000 ft, a hydrochloric acid (HCl) job at 415 F, and buildup removal from a safety valve. The scale cleanout was performed first with a spiral wash tool. The well was killed with 10-lbm/gal sodium bromide (NaBr) brine; the same brine was used for cleanout fluid. Cost savings of 60% were realized. A HCl matrix acid job at 415 F was performed next, followed by a scale cleanout across the downhole safety valve. The safety valve was cleared of debris in 1 operational day. Estimated cost of the CT operation was 5 to 10% less than that of a rig workover. The 100,000-psi-yield Ct material used for the Mobile Bay operations does not comply with the (NACE) Standard MR-0175. But on the basis of extensive laboratory testing by the CT manufacturer, the decision was made that the material would pass a modified test performed with decreased H{sub 2}S levels. A maximum level of 400 ppm H{sub 2}S was determined as the safe working limit. Because the maximum H{sub 2}S content in the wells described later was 120 ppm, the risk of sulfide-stress cracking (SSC) was considered acceptably low. Elevated bottomhole temperatures (BHT`s) increase the corrosion rate of metals exposed to corrosives. Extensive laboratory testing of corrosion inhibitors allowed for design of a matrix-acidizing treatment to remove near-wellbore damage caused by lost zinc bromide (ZnBr) completion brine.

  5. ,"New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Annual",2014 ,"Release...

  6. Monitoring Results Natural Gas Wells Near Project Rulison

    Office of Legacy Management (LM)

    Natural Gas Wells Near Project Rulison Third Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 12, 2013 Background: ...

  7. Costs of Crude Oil and Natural Gas Wells Drilled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003...

  8. New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,087 1990's 17,124 20,021 18,040 20,846 23,292 23,510 24,134 27,421 28,200 26,007 2000's 33,948 35,217 35,873 37,100 38,574 40,157 41,634 42,644 44,241 44,784 2010's 44,748 32,302 28,206 27,073 27,957 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  9. New York Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,304 1990's 5,525 5,737 5,906 5,757 5,884 6,134 6,208 5,731 5,903 6,422 2000's 5,775 5,913 6,496 5,878 5,781 5,449 5,985 6,680 6,675 6,628 2010's 6,736 6,157 7,176 6,902 7,119 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34,450 1990's 34,586 34,760 34,784 34,782 34,731 34,520 34,380 34,238 34,098 33,982 2000's 33,897 33,917 34,593 33,828 33,828 33,735 33,945 34,416 34,416 34,963 2010's 34,931 46,717 35,104 32,664 32,967 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 27,443 1990's 24,547 28,216 28,902 29,118 29,121 29,733 29,733 29,734 30,101 21,790 2000's 21,507 32,672 33,279 34,334 35,612 36,704 38,060 38,364 41,921 43,600 2010's 44,000 41,238 40,000 39,776 40,070 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  12. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 30,000 1990's 30,300 31,000 31,000 31,100 31,150 31,025 31,792 32,692 21,576 23,822 2000's 36,000 40,100 40,830 42,437 44,227 46,654 49,750 52,700 55,631 57,356 2010's 44,500 54,347 55,136 53,762 70,400 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  13. Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,700 1990's 2,607 2,802 2,890 3,075 2,940 2,918 2,990 3,071 3,423 3,634 2000's 3,321 4,331 4,544 4,539 4,971 5,751 6,578 6,925 7,095 7,031 2010's 6,059 6,477 6,240 5,754 5,754 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  14. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,701 1990's 2,362 3,392 3,350 3,514 3,565 3,526 4,105 4,156 4,171 4,204 2000's 4,359 4,597 4,803 5,157 5,526 5,523 6,227 6,591 6,860 6,913 2010's 7,026 7,063 6,327 6,165 6,118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  15. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,609 1990's 50,867 47,615 46,298 47,101 48,654 54,635 53,816 56,747 58,736 58,712 2000's 60,577 63,704 65,779 68,572 72,237 74,827 74,265 76,436 87,556 93,507 2010's 95,014 100,966 96,617 97,618 98,279 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  16. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,483 1990's 269,790 276,987 276,014 282,152 291,773 298,541 301,811 310,971 316,929 302,421 2000's 341,678 373,304 387,772 393,327 406,147 425,887 440,516 452,945 476,652 493,100 2010's 487,627 514,637 482,822 484,994 514,786 - = No Data Reported; -- = Not Applicable; NA

  17. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 834 1990's 822 913 1,006 1,061 1,303 1,127 1,339 1,475 1,643 1,978 2000's 4,178 4,601 3,005 3,220 3,657 4,092 4,858 5,197 5,578 5,774 2010's 6,075 6,469 6,900 7,030 7,275 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 752 1990's 819 886 1,153 1,426 1,470 1,671 1,671 2,046 2,388 2,752 2000's 3,051 3,521 3,429 3,506 3,870 4,132 5,179 5,735 6,426 7,303 2010's 7,470 7,903 7,843 7,956 7,961 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  19. West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 36,240 1990's 37,500 37,800 38,250 33,716 39,830 36,144 35,148 31,000 39,072 36,575 2000's 42,475 42,000 45,000 46,203 47,117 49,335 53,003 48,215 49,364 50,602 2010's 52,498 56,813 50,700 54,920 60,000 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  20. Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,830 1990's 2,952 2,780 3,500 3,500 3,500 3,988 4,020 3,700 3,900 3,650 2000's 4,000 4,825 6,755 7,606 3,460 3,462 3,814 4,773 5,592 6,314 2010's 7,397 8,388 8,538 9,843 10,150 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,125 1990's 5,741 5,562 5,912 6,372 7,056 7,017 8,251 12,433 13,838 13,838 2000's 22,442 22,117 23,554 18,774 16,718 22,691 20,568 22,949 25,716 27,021 2010's 28,813 30,101 32,000 32,468 38,346 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  2. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,310 1990's 1,307 1,334 1,333 1,336 1,348 1,347 1,367 1,458 1,479 1,498 2000's 1,502 1,533 1,545 2,291 2,386 2,321 2,336 2,350 525 563 2010's 620 914 819 921 895 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,935 1990's 16,980 17,948 18,400 19,472 19,365 22,020 21,388 21,500 21,000 17,568 2000's 15,206 15,357 16,957 17,387 18,120 18,946 19,713 19,713 17,862 21,243 2010's 22,145 25,758 24,697 23,792 24,354 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, Carol T.; Bender, Donald A.; Bowman, Barry R.; Burnham, Alan K.; Chesnut, Dwayne A.; Comfort, III, William J.; Guymon, Lloyd G.; Henning, Carl D.; Pedersen, Knud B.; Sefcik, Joseph A.; Smith, Joseph A.; Strauch, Mark S.

    1993-01-01

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  5. Oil/gas separator for installation at burning wells

    DOE Patents [OSTI]

    Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

    1993-03-09

    An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

  6. Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  7. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  8. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  9. Oil and Gas Well Drilling | Open Energy Information

    Open Energy Info (EERE)

    Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Oil and Gas Well Drilling Author Jeff Tester Published NA, 2011 DOI Not Provided Check for...

  10. Monitoring Results Natural Gas Wells Near Project Rulison third...

    Office of Legacy Management (LM)

    5 November 2015 Doc. No. S13372 Page 1 of 6 Monitoring Results Natural Gas Wells Near Project Rulison Third Quarter 2015 U.S. Department of Energy Office of Legacy Management Grand ...

  11. Monitoring Results Natural Gas Wells Near Project Rulison Fourth...

    Office of Legacy Management (LM)

    Fourth Quarter 2015 February 2016 Doc. No. S13825 Page 1 of 6 Monitoring Results Natural Gas Wells Near Project Rulison Fourth Quarter 2015 U.S. Department of Energy Office of Legacy ...

  12. Monitoring Results for Natural Gas Wells Near Project Rulison...

    Office of Legacy Management (LM)

    2nd Quarter FY 2015, Rulison Site October 2015 Doc. No. S13368 Page 1 of 6 Monitoring Results for Natural Gas Wells Near Project Rulison, 2nd Quarter, Fiscal Year 2015 U.S. ...

  13. Midcontinent well operators learn advantages of coiled-tubing techniques

    SciTech Connect (OSTI)

    Lyle, D.

    1995-07-01

    From well cleanup to velocity strings to squeeze jobs, more Midcontinent operators are adding coiled-tubing methods to their oilfield techniques. The advantages of these techniques are discussed.

  14. NMOSE Artesian Well Plan of Operations | Open Energy Information

    Open Energy Info (EERE)

    Well Plan of OperationsLegal Published NA Year Signed or Took Effect 2011 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org...

  15. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Kentucky Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  16. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Maryland Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  17. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Nebraska Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  18. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Gas Wells Nevada Natural Gas Gross Withdrawals and

  19. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

  20. Missouri Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,465 16,034 19,428 2000's 30,481 32,805 29,911 21,778 24,574 31,831 32,480 41,067 43,009 29,807 2010's 40,216 37,626 50,538 37,119 34,825 40,10

    NA NA NA NA 9 9 1967-2014 From Gas Wells NA NA NA NA 8 8 1967-2014 From Oil Wells NA NA NA NA 1 * 2007-2014 From Shale Gas Wells NA NA NA NA 0 0 2007-2014 From Coalbed Wells NA NA NA NA 0 0 2007-2014 Repressuring NA NA NA NA 0 0 2007-2014 Vented and Flared

  1. Nevada Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 75,656 84,093 89,954 2000's 121,054 108,510 109,605 115,960 136,945 147,743 166,867 171,473 180,668 192,049 2010's 175,837 162,778 189,291 181,326 167,916 207,145

    4 3 4 3 3 1991-2014 From Gas Wells 0 0 0 0 0 3 2006-2014 From Oil Wells 4 4 3 4 3 * 1991-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0

  2. Oregon Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24,171 52,846 49,661 2000's 69,451 82,542 55,854 74,400 88,734 87,998 75,186 101,503 116,637 108,705 2010's 108,827 60,252 81,444 101,930 90,099 113,988

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0

  3. Crude Oil and Natural Gas Exploratory and Development Wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History Wells Drilled (Number) Exploratory and Development NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA...

  4. Crude Oil and Natural Gas Exploratory and Development Wells

    Gasoline and Diesel Fuel Update (EIA)

    Wells Drilled (Number) Exploratory and Development NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA NA NA...

  5. Geothermal Well Stimulated Using High Energy Gas Fracturing

    SciTech Connect (OSTI)

    Chu, T.Y.; Jacobson, R.D.; Warpinski, N.; Mohaupt, Henry

    1987-01-20

    This paper reports the result of an experimental study of the High Energy Gas Fracturing (HEGF) technique for geothermal well stimulation. These experiments demonstrated that multiple fractures could be created to link a water-filled borehole with other fractures. The resulting fracture network and fracture interconnections were characterized by flow tests as well as mine back. Commercial oil field fracturing tools were used successfully in these experiments. 5 refs., 2 tabs., 5 figs.

  6. Virginia Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19,038 37,808 41,230 2000's 36,700 33,118 34,936 35,256 48,784 66,951 60,321 90,573 76,983 94,829 2010's 139,755 142,284 189,848 171,588 158,672 243,116

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 140,738 147,255 151,094 146,405 139,382 131,885 1967-2014 From Gas Wells 16,046 23,086 20,375 21,802 26,815 27,052 1967-2014 From Oil Wells 0 0 0 9 9 9 2006-2014 From Shale Gas Wells 18,284

  7. ,"Minnesota Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:41 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Minnesota Natural Gas in ...

  8. ,"Michigan Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Michigan Natural Gas in ...

  9. ,"Louisiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:38 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Louisiana Natural Gas in ...

  10. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:50 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Oklahoma Natural Gas in ...

  11. ,"Tennessee Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:54 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Tennessee Natural Gas in ...

  12. ,"Alaska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Alaska Natural Gas in ...

  13. ,"Missouri Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:43 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Missouri Natural Gas in ...

  14. ,"Arkansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:28 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Arkansas Natural Gas in ...

  15. ,"Maryland Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Maryland Natural Gas in ...

  16. ,"Kansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:36 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Kansas Natural Gas in ...

  17. ,"Ohio Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:49 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Ohio Natural Gas in ...

  18. ,"Illinois Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:34 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Illinois Natural Gas in ...

  19. ,"Nebraska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:46 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Nebraska Natural Gas in ...

  20. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:30:00 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Wyoming Natural Gas in ...

  1. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:56 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Utah Natural Gas in ...

  2. ,"Kentucky Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:37 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Kentucky Natural Gas in ...

  3. ,"Virginia Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:57 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Virginia Natural Gas in ...

  4. ,"California Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:29 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","California Natural Gas in ...

  5. ,"Mississippi Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:44 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Mississippi Natural Gas in ...

  6. Transient aspects of unloading oil and gas wells with coiled tubing

    SciTech Connect (OSTI)

    Gu, H.

    1995-12-31

    Unloading oil and gas wells with coiled tubing (CT) conveyed nitrogen circulation is a transient process in which the original heavier fluid in a wellbore is displaced by nitrogen and lighter reservoir fluid. The transient aspects need to be considered when determining nitrogen volume and operation time for unloading a well. A computer wellbore simulator has been developed and used to study the transient effects. The simulator includes transient multiphase mass transport and takes into account the different fluids in the wellbore and from the reservoir. The simulator also includes the gas rise in the wellbore liquid below the CT and can be used for gas well unloading. The transient results of oil and gas well unloading are presented. The effects of CT size and depth, workover fluid, and nitrogen rate and volume on unloading are discussed. Unlike continuous gas lift, the total gas volume needed and the operation time in an unloading process can only be determined and optimized based on a transient analysis.

  7. Florida Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 338,858 323,771 365,587 2000's 364,245 374,311 521,868 535,099 585,841 630,410 741,759 772,968 797,266 913,672 2010's 981,750 1,043,786 1,138,771 1,034,288 1,047,683 1,160,140

    290 13,938 17,129 18,681 18,011 21,259 1971-2014 From Gas Wells 0 0 0 17,182 16,459 19,742 1996-2014 From Oil Wells 290 13,938 17,129 1,500 1,551 1,517 1971-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0

  8. Indiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,661 13,678 12,515 2000's 14,513 17,777 35,104 26,672 22,946 35,376 27,213 37,871 34,312 36,576 2010's 61,242 85,298 115,328 81,013 80,411 127,365

    4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Gas Wells 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0

  9. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 15,524 21,515 22,842 2000's 28,926 17,520 22,273 10,995 12,045 20,478 21,830 23,079 19,910 18,039 2010's 30,728 21,136 49,211 24,556 20,844 39,632

    43 43 34 44 32 20 1967-2014 From Gas Wells 43 43 34 44 32 20 1967-2014 From Oil Wells 0 0 0 0 0 0 2006-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0

  10. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,687 5,080 4,582 2000's 5,522 4,290 4,947 4,593 3,340 8,066 7,787 10,908 7,230 3,331 2010's 3,949 4,223 7,696 5,080 4,132 4,634

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 2,916 2,255 1,980 1,328 1,032 402 1967-2014 From Gas Wells 2,734 2,092 1,854 1,317 1,027 400 1967-2014 From Oil Wells 182 163 126 11 5 1 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0

  11. West Virginia Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 569 515 499 2000's 516 2,620 1,885 2,084 1,406 2,287 3,664 3,849 1,889 1,109 2010's 1,480 2,579 2,361 2,840 6,816 13,277

    65,174 394,125 539,860 741,853 1,040,250 1,318,822 1967-2015 From Gas Wells 151,401 167,113 193,537 167,118 242,241 1967-2014 From Oil Wells 0 0 1,477 2,660 1,643 1967-2014 From Shale Gas Wells 113,773 227,012 344,847 572,076 796,366 2007-2014 From Coalbed Wells 0 0 0 0 0

  12. Wyoming Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95 271 167 2000's 1,843 2,727 3,764 2,484 532 576 827 2,024 1,088 1,079 2010's 592 418 496 535 W 706

    ,514,657 2,375,301 2,225,622 2,047,757 1,997,666 1,979,094 1967-2015 From Gas Wells 1,787,599 1,709,218 1,762,095 1,673,667 1,671,442 1967-2014 From Oil Wells 151,871 152,589 24,544 29,134 38,974 1967-2014 From Shale Gas Wells 5,519 4,755 9,252 16,175 25,387 2007-2014 From Coalbed Wells 569,667

  13. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,731 2,865 2,527 2000's 3,607 4,496 1,265 2,264 1,676 3,567 3,345 4,235 2,632 918 2010's 1,600 1,589 2,465 4,911 3,189 7,083

    12,927 12,540 12,449 15,085 16,205 15,307 1967-2014 From Gas Wells 1,561 1,300 933 14,396 15,693 15,005 1967-2014 From Oil Wells 11,366 11,240 11,516 689 512 303 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0

  14. Tennessee Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,636 6,213 5,875 2000's 5,250 2,479 2,596 5,621 2,262 5,627 6,691 7,291 4,411 3,668 2010's 22,156 26,314 62,961 36,613 45,019 69,830

    5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Gas Wells 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented

  15. Colorado Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 26,802 32,640 40,879 2000's 63,253 85,954 78,171 77,895 83,369 92,629 92,927 123,788 106,454 115,234 2010's 92,657 85,015 86,309 89,508 98,269 92,757

    1,589,664 1,649,306 1,709,376 1,604,860 1,631,390 1,671,787 1967-2015 From Gas Wells 526,077 563,750 1,036,572 801,749 779,042 1967-2014 From Oil Wells 338,565 359,537 67,466 106,784 177,305 1967-2014 From Shale Gas Wells 195,131 211,488 228,796 247,046

  16. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,194 5,782 5,686 2000's 4,202 4,433 13,712 3,667 4,833 17,181 12,287 19,376 9,584 8,399 2010's 19,284 15,575 31,194 14,536 26,919 52,015

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 113,300 135,330 124,243 106,122 94,665 78,737 1967-2014 From Gas Wells 111,782 133,521 122,578 106,122 94,665 78,737 1967-2014 From Oil Wells 1,518 1,809 1,665 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0

  17. Mississippi Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 73,170 76,447 106,302 2000's 100,643 149,432 163,664 96,081 107,432 135,562 139,918 182,996 167,345 183,344 2010's 235,250 244,051 291,341 234,274 221,910 331,496

    352,888 401,660 443,351 452,915 59,272 54,440 1967-2014 From Gas Wells 337,168 387,026 429,829 404,457 47,385 43,091 1967-2014 From Oil Wells 8,934 8,714 8,159 43,421 7,256 7,150 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014

  18. Oklahoma Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 135,487 181,191 177,045 2000's 175,758 173,893 194,770 196,710 199,907 242,178 278,602 286,686 282,942 284,689 2010's 288,986 264,178 317,867 247,556 207,993 254,706

    1,827,328 1,888,870 2,023,461 1,993,754 2,310,114 2,499,599 1967-2015 From Gas Wells 1,140,111 1,281,794 1,394,859 1,210,315 1,456,519 1967-2014 From Oil Wells 210,492 104,703 53,720 71,515 106,520 1967-2014 From Shale Gas Wells 406,143

  19. ,"New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  20. ,"North Dakota Natural Gas Gross Withdrawals from Gas Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  1. Pennsylvania Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,430 30,240 31,353 2000's 20,597 22,632 50,251 41,238 76,186 80,640 100,946 143,954 141,011 210,542 2010's 245,559 306,266 393,775 362,349 390,816 439,248

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 572,902 1,310,592 2,256,696 3,259,042 4,214,643 4,768,848 1967-2015 From Gas Wells 173,450 242,305 210,609 207,872 174,576 1967-2014 From Oil Wells 0 0 3,456 2,987 3,564 1967-2014

  2. Modeling coiled-tubing velocity strings for gas wells

    SciTech Connect (OSTI)

    Martinez, J.; Martinez, A.

    1998-02-01

    Because of its ability to prolong well life, its relatively low expense, and the relative ease with which it is installed, coiled tubing has become a preferred remedial method of tubular completion for gas wells. Of course, the difficulty in procuring wireline-test data is a drawback to verifying the accuracy of the assumptions and predictions used for coiled-tubing selection. This increases the importance of the prediction-making process, and, as a result, places great emphasis on the modeling methods that are used. This paper focuses on the processes and methods for achieving sound multiphase-flow predictions by looking at the steps necessary to arrive at coiled-tubing selection. Furthermore, this paper examines the variables that serve as indicators of the viability of each tubing size, especially liquid holdup. This means that in addition to methodology, emphasis is placed on the use of a good wellbore model. The computer model discussed is in use industry wide.

  3. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 92 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  4. Zero Discharge Water Management for Horizontal Shale Gas Well...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of...

  5. ,"Texas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...010TX2","N5020TX2","N5070TX2","N5050TX2","N5060TX2" "Date","Texas Natural Gas Underground Storage Volume (MMcf)","Texas Natural Gas in Underground Storage (Base Gas) (MMcf)","Texas ...

  6. U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 5,682 1950's 5,466 5,497 6,071 5,654 6,059 5,964 6,301 6,898 6,657 6,613 1960's 6,298 6,457 6,728 6,370 7,547 7,295 8,321 7,478 7,697 8,092 1970's 7,695 7,649 7,400 6,596 6,456 6,748 6,777 6,625 6,662 6,630 1980's 6,604 6,772 6,921 6,395 6,502 6,787 6,777 6,698 6,683 6,606 1990's 7,100 7,122 6,907 6,482 6,564

  7. Combination gas producing and waste-water disposal well

    DOE Patents [OSTI]

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  8. Multi-zone methods to predict gas well performance

    SciTech Connect (OSTI)

    Blanchard, L.A.; Newhouse, J.R.

    1982-01-01

    The contributing elements of a formula developed for accurately predicting the performance of gas wells which include a high permeability zone interbedded with one or more low permeability zones are discussed. The theory assumes the existence of 3 conditions: (1) the well depletes without water encroachment; (2) each zone remains discreet from every other - that is, without cross flow among zones when the well is producing; and (3) each zone has either a hydraulic fracture or some skin effect. As a practical matter in using the model, only one of these reservoir conditions need to be met - freedom from water encroachment. The model developed does not adapt to reservoirs that have limited cross flow between zones. It also adapts to those with a hydraulic fracture in only some of the zones and includes equations which help to calculate matrix permeability whenever a known hydraulic fracture does exist. The functions of the model are illustrated by assuming the existence of a shaley-sand, 6-zone reservoir and by ascribing to it certain characteristics. The use of the model is examined and its results are discussed.

  9. NEW AND NOVEL FRACTURE STIMULATION TECHNOLOGIES FOR THE REVITALIZATION OF EXISTING GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Unknown

    1999-12-01

    Gas storage wells are prone to continued deliverability loss at a reported average rate of 5% per annum (in the U.S.). This is a result of formation damage due to the introduction of foreign materials during gas injection, scale deposition and/or fines mobilization during gas withdrawal, and even the formation and growth of bacteria. As a means to bypass this damage and sustain/enhance well deliverability, several new and novel fracture stimulation technologies were tested in gas storage fields across the U.S. as part of a joint U.S. Department of Energy and Gas Research Institute R&D program. These new technologies include tip-screenout fracturing, hydraulic fracturing with liquid CO{sub 2} and proppant, extreme overbalance fracturing, and high-energy gas fracturing. Each of these technologies in some way address concerns with fracturing on the part of gas storage operators, such as fracture height growth, high permeability formations, and fluid sensitivity. Given the historical operator concerns over hydraulic fracturing in gas storage wells, plus the many other unique characteristics and resulting stimulation requirements of gas storage reservoirs (which are described later), the specific objective of this project was to identify new and novel fracture stimulation technologies that directly address these concerns and requirements, and to demonstrate/test their potential application in gas storage wells in various reservoir settings across the country. To compare these new methods to current industry deliverability enhancement norms in a consistent manner, their application was evaluated on a cost per unit of added deliverability basis, using typical non-fracturing well remediation methods as the benchmark and considering both short-term and long-term deliverability enhancement results. Based on the success (or lack thereof) of the various fracture stimulation technologies investigated, guidelines for their application, design and implementation have been developed. A final research objective was to effectively deploy the knowledge and experience gained from the project to the gas storage industry at-large.

  10. U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

  12. U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled...

    Gasoline and Diesel Fuel Update (EIA)

    Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

  13. Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 5,335 4,954 5,465 5,228 5,405 5,163 4,817 5,652 5,165 5,347 4,814 5,420 2004 5,684 5,278 5,822 5,570 5,758 5,500 5,132 6,022 5,502 5,697 5,129 5,774 2005 5,889 5,469 6,033 5,771 5,967 5,699 5,318 6,240 5,702 5,903 5,315 5,983 2006 16,225 14,883 16,627 15,979 16,802 16,447 16,891

  14. Tennessee Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    340 340 340 340 340 340 1997-2016 Base Gas 340 340 340 340 340 340 1997-2016 Working Gas 1997-2011 Net Withdrawals 1998-2006 Injections 1997-2005 Withdrawals 1997-2006 Change in Working Gas from Same Period Previous Year Volume 1997-2011 Percent 1997-2011

  15. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 112,311 131,508 228,878 212,895 209,013 214,414 222,000 212,673 2000's 201,081 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA

  16. Alaska--State Offshore Natural Gas Withdrawals from Gas Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54,124 56,893 1980's 49,396 57,951 54,298 56,371 57,052 53,042 53,460 53,234 57,878 72,430 1990's 94,642 100,733 110,067 127,834 99,801 105,867 118,996 115,934 125,231 118,902 2000's 114,881 113,870 102,972 85,606 73,457 74,928 62,156 48,876 43,079 40,954 2010's 42,034 36,202 32,875

  17. Texas--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gas Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166,983 204,717 1980's 251,122 232,143 242,856 143,948 108,091 104,052 112,154 95,053 95,944 108,398 1990's 107,409 96,885 76,638 77,883 83,577 62,381 62,624 63,903 59,732 48,537 2000's 40,883 53,285 54,672 52,206 44,630 36,532 24,529 29,121 46,657 36,820 2010's 27,421 23,791 15,953 13,650

  18. US--Federal Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gas Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,515,143 3,972,095 4,452,146 1980's 4,516,781 4,613,422 4,372,744 3,720,437 4,183,582 3,614,786 3,585,537 4,134,700 4,249,592 4,286,261 1990's 4,562,144 4,314,407 4,258,686 4,215,015 4,373,962 4,288,219 4,558,997 4,586,352 4,381,022 4,225,452 2000's 4,092,681 4,146,993 3,722,249 3,565,614

  19. US--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gas Wells (Million Cubic Feet) US--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 657,821 97,934 1980's 697,311 652,049 641,977 498,196 456,001 390,052 344,768 3,472,980 355,370 376,033 1990's 383,544 359,112 415,486 470,487 550,079 460,659 563,746 559,098 577,177 527,126 2000's 481,322 508,374 485,126 456,090 401,662 363,652 321,261 276,117 297,565 259,848 2010's 234,236

  20. Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 79,294 86,515 117,308 143,353 152,055 194,677 170,320 163,763 2000's 160,208 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  1. Federal Offshore--Louisiana Natural Gas Withdrawals from Gas Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,428,342 3,725,728 3,902,074 1980's 3,839,367 3,854,440 3,522,247 2,904,722 3,288,820 2,784,091 2,542,447 2,913,949 2,992,004 2,970,536 1990's 3,140,870 2,946,749 2,867,842 2,883,761 2,995,676 2,937,666 3,166,015 3,194,743 3,115,154 3,009,296 2000's 2,919,128 NA NA NA NA NA NA NA

  2. Federal Offshore--Texas Natural Gas Withdrawals from Gas Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 86,801 246,367 550,072 1980's 677,414 758,982 850,497 811,729 875,842 799,468 1,015,811 1,197,326 1,239,657 1,303,479 1990's 1,405,634 1,351,194 1,297,602 1,234,121 1,249,914 1,199,326 1,235,419 1,192,672 1,091,583 1,049,619 2000's 1,006,022 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0

  3. Oil and Gas Lease Equipment and Operating Costs 1994 Through...

    Gasoline and Diesel Fuel Update (EIA)

    ... processing requirements for each of these flow rates. ... Well servicing - land Marine food services Well servicing - offshore Natural gas prices Wellheads Oil sales ...

  4. Microsoft Word - RUL_2Q2011_Gas_Samp_Results_7Wells_23June2011

    Office of Legacy Management (LM)

    23 June 2011 Purpose: The purpose of this environmental sample collection is to monitor natural gas and production water from natural gas wells drilled near the Project Rulison...

  5. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2014,"06301935" ,"Release Date:","09302015" ,"Next Release Date:","10302015" ,"Excel File...

  6. Gas characterization system operation, maintenance, and calibration plan

    SciTech Connect (OSTI)

    Tate, D.D.

    1996-03-04

    This document details the responsibilities and requirements for operation, maintenance, and calibration of the Gas Characterization Systems (GCS) analytical instrumentation. It further, defines the division of responsibility between the Characterization Monitoring Development organization and Tank Farms Operations.

  7. California Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    538,318 544,899 563,608 557,909 513,822 473,606 1990-2016 Base Gas 225,550 225,550 225,845 225,845 225,845 225,845 1990-2016 Working Gas 312,769 319,349 337,762 332,064 287,977 ...

  8. Michigan Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas 394,117 394,117 394,117 386,427 387,027 385,038 1990-2015 Working Gas 241,221 323,709 398,647 488,022 563,188 622,544 1990-2015 Net Withdrawals -82,150 -82,493 -74,938...

  9. Maryland Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    ,818 62,080 61,590 61,074 57,082 54,789 1990-2016 Base Gas 45,677 45,677 45,677 45,677 45,677 45,677 1990-2016 Working Gas 16,141 16,403 15,913 15,396 11,405 9,111 1990-2016 Net ...

  10. Wyoming Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    91,886 90,669 90,354 91,501 92,834 94,020 1990-2015 Base Gas 67,815 67,798 67,815 67,815 67,815 67,815 1990-2015 Working Gas 24,071 22,871 22,539 23,686 25,018 26,205 1990-2015 Net...

  11. U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0...

  12. U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. Two-Dimensional Electron Gas in Monolayer InN Quantum Wells....

    Office of Scientific and Technical Information (OSTI)

    Two-Dimensional Electron Gas in Monolayer InN Quantum Wells. Citation Details In-Document Search Title: Two-Dimensional Electron Gas in Monolayer InN Quantum Wells. Abstract not...

  14. Application of new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells

    SciTech Connect (OSTI)

    1995-04-01

    Based on the information presented in this report, our conclusions regarding the potential for new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells are as follows: New and improved gas storage well revitalization methods have the potential to save industry on the order of $20-25 million per year by mitigating deliverability decline and reducing the need for costly infill wells Fracturing technologies have the potential to fill this role, however operators have historically been reluctant to utilize this approach due to concerns with reservoir seal integrity. With advanced treatment design tools and methods, however, this risk can be minimized. Of the three major fracturing classifications, namely hydraulic, pulse and explosive, two are believed to hold potential to gas storage applications (hydraulic and pulse). Five particular fracturing technologies, namely tip-screenout fracturing, fracturing with liquid carbon dioxide, and fracturing with gaseous nitrogen, which are each hydraulic methods, and propellant and nitrogen pulse fracturing, which are both pulse methods, are believed to hold potential for gas storage applications and will possibly be tested as part of this project. Field evidence suggests that, while traditional well remediation methods such as blowing/washing, mechanical cleaning, etc. do improve well deliverability, wells are still left damaged afterwards, suggesting that considerable room for further deliverability enhancement exists. Limited recent trials of hydraulic fracturing imply that this approach does in fact provide superior deliverability results, but further RD&D work is needed to fully evaluate and demonstrate the benefits and safe application of this as well as other fracture stimulation technologies.

  15. Performance of wells in solution-gas-drive reservoirs

    SciTech Connect (OSTI)

    Camacho-V, R.G. ); Raghavan, R. )

    1989-12-01

    The authors examine buildup responses in solution-gas-drive reservoirs. The development presented here parallels the development for single-phase liquid flow. Analogs from pseudopressures and time transformations are presented and gas-drive-solutions are correlated with appropriate liquid-flow solutions. The influence of the skin region is documented. The basis for the success of the producing GOR method to compute the saturation distribution at shut-in is presented. The consequences of using the Perrine-Martin analog to analyze buildup data are discussed.

  16. Oregon Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    28,025 29,347 28,207 25,868 24,021 23,538 1990-2016 Base Gas 11,186 11,186 11,186 11,186 11,186 11,186 1990-2016 Working Gas 16,839 18,162 17,021 14,682 12,835 12,352 1990-2016 Net Withdrawals -1,482 -1,330 1,139 2,338 1,845 481 1990-2016 Injections 1,488 1,395 294 143 402 336 1990-2016 Withdrawals 5 65 1,433 2,481 2,246 817 1990-2016 Change in Working Gas from Same Period Previous Year Volume -1,177 -359 494 -578 787 993 1990-2016 Percent -6.5 -1.9 3.0 -3.8 6.5 8.7 1990

  17. Minnesota Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    6,573 6,835 6,984 6,973 6,658 6,531 1990-2016 Base Gas 4,848 4,848 4,848 4,848 4,848 4,848 1990-2016 Working Gas 1,725 1,987 2,136 2,125 1,810 1,683 1990-2016 Net Withdrawals -219 -262 -149 10 315 127 1990-2016 Injections 219 262 149 1990-2015 Withdrawals 10 315 127 1990-2016 Change in Working Gas from Same Period Previous Year Volume -18 -50 -8 78 100 228 1990-2016 Percent -1.0 -2.4 -0.4 3.8 5.8 15.7

  18. Mississippi Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    65,864 279,888 285,012 285,765 249,528 242,509 1990-2016 Base Gas 116,600 116,614 116,610 116,609 116,505 116,483 1990-2016 Working Gas 149,263 163,275 168,402 169,157 133,023 126,026 1990-2016 Net Withdrawals -16,234 -14,206 -4,892 -723 36,129 6,944 1990-2016 Injections 25,043 27,504 18,183 12,623 5,837 12,939 1990-2016 Withdrawals 8,808 13,297 13,291 11,901 41,966 19,883 1990-2016 Change in Working Gas from Same Period Previous Year Volume 30,111 29,317 32,006 27,918 27,861 60,981 1990-2016

  19. Missouri Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    13,933 14,186 14,382 14,338 13,891 14,044 1990-2016 Base Gas 7,845 7,845 7,845 7,845 7,845 7,845 1990-2016 Working Gas 6,088 6,341 6,537 6,493 6,045 6,198 1990-2016 Net Withdrawals -581 -268 -212 28 433 -168 1990-2016 Injections 581 268 216 91 786 726 1990-2016 Withdrawals 4 119 1,219 557 1990-2016 Change in Working Gas from Same Period Previous Year Volume 475 429 321 423 137 1,572 1990-2016 Percent 8.5 7.3 5.2 7.0 2.3 34.0

  20. Nebraska Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    32,639 33,828 33,615 32,634 30,842 30,290 1990-2016 Base Gas 20,031 20,031 22,197 22,197 22,197 22,197 1990-2016 Working Gas 12,608 13,797 11,418 10,438 8,645 8,093 1990-2016 Net Withdrawals -1,296 -1,193 212 979 1,788 549 1990-2016 Injections 1,354 1,230 387 188 442 1990-2016 Withdrawals 58 37 598 1,167 1,788 991 1990-2016 Change in Working Gas from Same Period Previous Year Volume -290 328 -1,332 -1,425 -1,224 5 1991-2016 Percent -2.3 2.4 -10.4 -12.0 -12.4 0.1

  1. Alaska Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    8,740 38,792 38,658 38,516 38,492 38,987 2013-2016 Base Gas 14,197 14,197 14,197 14,197 14,197 14,197 2013-2016 Working Gas 24,543 24,595 24,461 24,319 24,295 24,790 2013-2016 Net Withdrawals 92 -52 197 140 -50 -459 2013-2016 Injections 682 824 756 717 496 748 2013-2016 Withdrawals 774 772 953 857 446 289 2013-2016 Change in Working Gas from Same Period Previous Year Volume 723 881 189 -679 -515 164 2013-2016 Percent 3.0 3.7 0.8 -2.7 -2.1 0.7 2013

  2. Texas Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    725,652 767,699 769,020 762,592 705,870 681,323 1990-2016 Base Gas 297,542 297,441 297,427 293,580 294,440 294,196 1990-2016 Working Gas 428,110 470,258 471,593 469,012 411,431 387,127 1990-2016 Net Withdrawals -35,276 -41,913 -2,086 6,424 56,721 24,128 1990-2016 Injections 50,816 56,019 26,996 31,787 17,953 21,048 1990-2016 Withdrawals 15,540 14,106 24,910 38,211 74,674 45,176 1990-2016 Change in Working Gas from Same Period Previous Year Volume 121,603 103,543 86,959 94,731 103,720 154,836

  3. Arkansas Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    12,342 13,063 13,345 13,472 13,037 12,709 1990-2016 Base Gas 9,648 10,841 11,213 11,664 11,664 11,652 1990-2016 Working Gas 2,694 2,222 2,132 1,808 1,374 1,057 1990-2016 Net Withdrawals -141 -212 -283 -127 434 328 1990-2016 Injections 150 225 372 538 127 208 1990-2016 Withdrawals 9 12 89 411 562 537 1990-2016 Change in Working Gas from Same Period Previous Year Volume -10 -494 -325 -461 -464 -214 1990-2016 Percent -0.4 -18.2 -13.2 -20.3 -25.3 -16.8

  4. Type IV COPV Cold Gas Operation Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transition temperatures of many common polymers HDPE DBT 200K (set lower operating ... started preliminary testing of baseline polymers from -129C to room temperature ...

  5. Virginia Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals -623 -545 -270 48 1,612 17 1995-2016 Injections 1,146 1,077 722 392 1,258 1,471 1997-2016 Withdrawals 523 533 451 440 2,870 1,488 1997-2016 Change in Working Gas ...

  6. Ohio Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas 181,373 192,681 184,926 165,463 118,381 86,221 1990-2016 Net Withdrawals -22,886 -11,308 7,717 19,441 47,082 32,160 1990-2016 Injections 23,451 13,257 2,530 1,632 70 ...

  7. Illinois Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals 746 1,354 17,147 47,497 72,099 52,482 1990-2016 Change in Working Gas from Same Period Previous Year Volume -4,131 -6,939 5,451 10,834 4,759 12,589 1990-2016 Percent ...

  8. Oklahoma Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    345,498 358,954 354,984 346,618 319,836 309,723 1990-2016 Base Gas 184,522 185,345 185,530 183,624 183,624 183,624 1990-2016 Working Gas 160,976 173,608 169,454 162,995 136,212 126,100 1990-2016 Net Withdrawals -8,189 -13,483 3,951 8,250 26,725 10,070 1990-2016 Injections 11,609 14,397 6,360 7,073 2,701 4,518 1990-2016 Withdrawals 3,420 914 10,310 15,323 29,426 14,589 1990-2016 Change in Working Gas from Same Period Previous Year Volume 34,288 22,870 25,764 34,802 38,649 59,569 1990-2016 Percent

  9. Pennsylvania Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    693,267 724,856 730,680 719,217 631,739 569,313 1990-2016 Base Gas 343,975 344,161 343,997 343,965 343,818 343,699 1990-2016 Working Gas 349,293 380,696 386,683 375,251 287,921 225,614 1990-2016 Net Withdrawals -38,785 -31,589 -5,821 11,466 87,473 62,426 1990-2016 Injections 42,529 37,962 24,482 17,010 5,148 8,852 1990-2016 Withdrawals 3,744 6,373 18,662 28,476 92,621 71,278 1990-2016 Change in Working Gas from Same Period Previous Year Volume 6,781 -1,466 20,561 38,300 34,424 64,473 1990-2016

  10. Kansas Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    73,140 279,038 271,202 259,809 233,257 221,342 1990-2016 Base Gas 164,273 164,258 164,258 164,242 164,231 164,229 1990-2016 Working Gas 108,867 114,780 106,944 95,567 69,026 57,112 1990-2016 Net Withdrawals -14,045 -5,912 7,836 11,377 26,541 11,914 1990-2016 Injections 14,623 8,529 4,047 6,394 1,222 3,898 1990-2016 Withdrawals 578 2,617 11,883 17,770 27,763 15,812 1990-2016 Change in Working Gas from Same Period Previous Year Volume 13,639 10,295 14,194 11,455 3,373 17,845 1990-2016 Percent 14.3

  11. Kentucky Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    07,126 216,591 218,322 210,369 190,694 181,000 1990-2016 Base Gas 112,971 112,969 112,966 112,965 112,965 112,964 1990-2016 Working Gas 94,155 103,623 105,355 97,404 77,729 68,036 1990-2016 Net Withdrawals -7,783 -9,465 -1,730 7,953 19,675 9,656 1990-2016 Injections 8,646 10,282 4,072 2,105 575 1,883 1990-2016 Withdrawals 863 817 2,342 10,058 20,250 11,540 1990-2016 Change in Working Gas from Same Period Previous Year Volume 21,477 19,192 23,473 17,237 11,014 21,500 1990-2016 Percent 29.6 22.7

  12. Louisiana Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    0,054 650,392 665,923 656,992 600,979 579,744 1990-2016 Base Gas 276,497 276,513 276,521 276,536 274,129 274,174 1990-2016 Working Gas 333,557 373,879 389,402 380,456 326,850 305,571 1990-2016 Net Withdrawals -33,722 -40,257 -15,244 8,860 56,058 21,175 1990-2016 Injections 41,820 49,042 32,808 21,664 10,677 23,206 1990-2016 Withdrawals 8,098 8,785 17,564 30,524 66,735 44,381 1990-2016 Change in Working Gas from Same Period Previous Year Volume 70,687 60,975 83,685 85,831 88,848 140,857 1990-2016

  13. Montana Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    03,416 204,466 202,011 198,390 193,997 191,940 1990-2016 Base Gas 178,500 178,500 178,501 178,501 178,501 178,501 1990-2016 Working Gas 24,916 25,966 23,510 19,890 15,496 13,439 1990-2016 Net Withdrawals -2,101 -1,050 2,456 3,620 4,394 2,057 1990-2016 Injections 2,260 1,313 153 50 12 55 1990-2016 Withdrawals 159 264 2,609 3,670 4,406 2,112 1990-2016 Change in Working Gas from Same Period Previous Year Volume 2,931 2,239 3,471 3,197 3,391 4,649 1990-2016 Percent 13.3 9.4 17.3 19.2 28.0 52.9

  14. Alabama Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    2,501 32,916 34,133 34,382 29,595 30,309 1995-2016 Base Gas 9,640 9,640 9,640 9,640 9,640 9,640 1995-2016 Working Gas 22,861 23,276 24,493 24,742 19,955 20,669 1995-2016 Net Withdrawals -2,416 -415 -1,217 -249 4,787 -713 1993-2016 Injections 3,800 1,746 3,084 1,867 1,260 3,081 1994-2016 Withdrawals 1,384 1,331 1,867 1,618 6,047 2,367 1994-2016 Change in Working Gas from Same Period Previous Year Volume 6,998 4,187 5,725 4,628 4,615 13,768 1996-2016 Percent 44.1 21.9 30.5 23.0 30.1 199.5 1

  15. Washington Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    5,053 45,877 42,090 39,380 37,900 32,046 1990-2016 Base Gas 22,300 22,300 22,300 22,300 22,300 22,300 1990-2016 Working Gas 22,753 23,577 19,790 17,080 15,600 9,746 1990-2016 Net Withdrawals -2,976 -792 3,788 2,710 1,480 5,854 1990-2016 Injections 3,653 1,967 1,065 1,968 1,951 503 1990-2016 Withdrawals 677 1,175 4,853 4,678 3,431 6,357 1990-2016 Change in Working Gas from Same Period Previous Year Volume -747 -154 -2,386 -4,419 -1,484 -2,626 1990-2016 Percent -3.2 -0.6 -10.8 -20.6 -8.7 -21.2

  16. Colorado Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    107,087 111,229 109,428 100,007 90,208 87,796 1990-2016 Base Gas 58,465 58,457 58,448 58,446 58,435 58,428 1990-2016 Working Gas 48,622 52,772 50,980 41,561 31,772 29,368 1990-2016 Net Withdrawals -5,250 -4,141 1,802 9,420 9,800 2,412 1990-2016 Injections 8,268 7,903 4,028 3,164 1,835 3,933 1990-2016 Withdrawals 3,018 3,762 5,829 12,584 11,635 6,345 1990-2016 Change in Working Gas from Same Period Previous Year Volume 2,152 2,342 3,520 3,415 -434 2,740 1990-2016 Percent 4.6 4.6 7.4 9.0 -1.3 10.3

  17. Indiana Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    102,095 104,142 105,406 103,836 97,724 92,441 1990-2016 Base Gas 77,198 77,198 77,198 77,198 77,171 77,164 1990-2016 Working Gas 24,897 26,944 28,208 26,638 20,553 15,277 1990-2016 Net Withdrawals -3,878 -2,047 -1,236 1,569 6,106 5,259 1990-2016 Injections 3,907 2,068 1,525 213 166 119 1990-2016 Withdrawals 29 21 289 1,783 6,272 5,378 1990-2016 Change in Working Gas from Same Period Previous Year Volume 2,031 1,518 3,001 3,981 3,736 3,953 1990-2016 Percent 8.9 6.0 11.9 17.6 22.2 34.9

  18. Iowa Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    263,036 277,160 272,523 255,967 236,541 225,867 1990-2016 Base Gas 197,897 197,897 197,897 197,897 197,897 197,897 1990-2016 Working Gas 65,140 79,263 74,626 58,071 38,644 27,970 1990-2016 Net Withdrawals -16,136 -14,124 4,637 16,556 19,427 10,674 1990-2016 Injections 16,146 15,050 4,798 548 122 1 1990-2016 Withdrawals 10 926 9,435 17,104 19,548 10,675 1990-2016 Change in Working Gas from Same Period Previous Year Volume -1,735 824 6,178 4,955 78 534 1991-2016 Percent -2.6 1.1 9.0 9.3 0.2 1.9

  19. SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS

    U.S. Energy Information Administration (EIA) Indexed Site

    The VBA code provided at the bottom of this document is an updated version (from ArcGIS ... but with "smu" suffix added to name. The first layer must contain the well points ...

  20. Shallow gas well drilling with coiled tubing in the San Juan Basin

    SciTech Connect (OSTI)

    Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

    1996-12-31

    Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

  1. Louisiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 279,258 320,034 322,360 2000's 304,791 243,017 323,804 236,408 245,361 285,022 195,927 224,419 236,543 222,486 2010's 270,528 293,245 322,632 267,629 290,020 342,742 Thousand Cubic Feet)

    (Price) From All Countries (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Exports (Price) From All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  2. Michigan Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 142,946 148,126 150,258 2000's 134,870 133,054 146,133 103,319 133,186 130,601 109,230 123,641 93,453 83,805 2010's 113,245 112,783 181,235 110,694 102,166 174,770

    Exports (No Intransit Deliveries) (Million Cubic Feet) Michigan Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 9,113 3,257

  3. Montana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 420 522 291 2000's 192 161 116 259 195 213 544 1,000 513 656 2010's 705 4,681 5,370 4,906 6,421 7,847

    Exports (No Intransit Deliveries) (Million Cubic Feet) Montana Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 162 136 127 178 90 40 39 82 1990's 75 41 14 106 3,087 1,510 2000's 1,606 2,978 16,036

  4. North Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1 0 0 2000's 0 3 1 0 3 1 2 2 1 1 2010's 2 0 1 337 40 3,671 Thousand Cubic Feet)

    (Price) All Countries (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Exports (Price) All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -- 2000's -- -- -- 5.15 -- -- -- -- -- -- 2010's -- -- -- -- 14.71 - = No Data

  5. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect (OSTI)

    1997-06-01

    Hydrogen sulfide (H{sub 2}S) can reduce useful coiled-tubing (CT) life by strength degradation through a combination of hydrogen blistering, hydrogen-induced cracking (HIC), stress-oriented hydrogen-induced cracking (SOHIC), sulfide-stress cracking (SSC), and possible weight-loss corrosion. These effects may work synergistically with the cyclic cold working of the steel that takes place during spooling and running. Prior studies on carbon steels have shown that cold work may significantly reduce the SSC threshold stresses. To develop a CT performance database, CLI Intl. Inc. conducted a multiclient program to increase understanding of the combined effects of strain cycling and resistance of CT to cracking in H{sub 2}S environments. The program was supported by 14 sponsors consisting of major oil and gas companies, service companies, CT manufacturers, and materials suppliers.

  6. NREL Document Profiles Natural Gas Fueling, Fleet Operation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Profiles Natural Gas Fueling, Fleet Operation Media may contact: George Douglas, 303-275-4096 email: George Douglas Steve Ginter, Mack, 610-709-3259 Golden, Colo., June 7, 2000 - A unique and successful natural gas fueling and fleet operation involving trash haulers is discussed in a recent document issued by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The NREL document, Waste Management's LNG Truck Fleet Start-Up Experience, offers solid evidence that

  7. Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Presented at ...

  8. Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs

    Broader source: Energy.gov [DOE]

    An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy

  9. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of

    Energy Savers [EERE]

    Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions | Department of Energy Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions A complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW)

  10. Microsoft Word - RUL_3Q2010_Rpt_Gas_Samp_Results_18Wells.doc

    Office of Legacy Management (LM)

    Monitoring Results Natural Gas Wells near the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 July 2010 ...

  11. Lightweight proppants for deep gas well stimulation. Final report

    SciTech Connect (OSTI)

    Cutler, R.A.; Ratsep, O.; Johnson, D.L.

    1984-01-01

    The need exists for lower density, less expensive proppants for use in hydraulic fracturing treatments. Ceramics, fabricated as fully sintered or hollow spheres, are the best materials for obtaining economical proppants due to their chemical/thermal stability and high strength. This report summarizes work performed during the fourth and final year of a Department of Energy research program to develop improved proppants for hydraulic fracturing applications. Hollow proppants with strengths intermediate between sand and bauxite were fabricated by spray drying. A counter current spray drying technique using a single fluid nozzle was able to make spherical ceramic proppants. The effect of spray-drying parameters on proppant strength is discussed. Further optimization of spray drying parameters is needed to achieve proppants with single, concentric voids and thick walls. Novel techniques for densifying proppants were investigated including plasma, microwave and radio frequency induction heating. Densification times were two orders of magnitude faster than conventional sintering cycles. The problems associated with ultrarapid densification are discussed as well as areas where this type of processing should be applied. A method of strengthening sand and other low strength proppants is discussed. Residual compressive surface stresses can be induced which strengthen the proppants which fail in tension. Accomplishments during the present research program are reviewed and areas of additional research which will lead to improved proppants are identified. 20 references, 23 figures, 19 tables.

  12. Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0

  13. VACASULF operation at Citizens Gas and Coke Utility

    SciTech Connect (OSTI)

    Currey, J.H.

    1995-12-01

    Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

  14. Natural Gas Transportation - Infrastructure Issues and Operational Trends

    Reports and Publications (EIA)

    2001-01-01

    This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

  15. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0

  16. U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  17. U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's...

  18. Coefficient indicates if rod pump can unload water from gas well

    SciTech Connect (OSTI)

    Hu Yongquan; Wu Zhijun

    1995-09-11

    A sucker rod pump can efficiently dewater gas wells if the separation coefficient is sufficiently high. To determine this separation coefficient, it is not sufficient to only know if the system meets the criteria of rod string stress, horsehead load, and crankshaft torque. This paper reviews water production and gas locking problems at the Sichuan gas field and identifies the methodologies used to optimize the pumping efficiency of the area wells.

  19. Wireless technology collects real-time information from oil and gas wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas

  20. Consortium for Petroleum & Natural Gas Stripper Wells PART 3 OF 3

    SciTech Connect (OSTI)

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings dedicated to technology transfer to showcase and review SWC-funded technology. The workshops were open to the stripper well industry.

  1. Consortium for Petroleum & Natural Gas Stripper Wells PART 2 OF 3

    SciTech Connect (OSTI)

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings dedicated to technology transfer to showcase and review SWC-funded technology. The workshops were open to the stripper well industry.

  2. Consortium for Petroleum & Natural Gas Stripper Wells PART 1 OF 3

    SciTech Connect (OSTI)

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings dedicated to technology transfer to showcase and review SWC-funded technology. The workshops were open to the stripper well industry.

  3. Alaska Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16,327 13,253 15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into

  4. Alaska Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -16,327 -13,253 -15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Net Withdrawals of Natural Gas

  5. South Carolina Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) South Carolina Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 80 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas

  6. Wisconsin Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into Underground

  7. Wisconsin Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -166 331 428 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Net Withdrawals of Natural Gas from

  8. Georgia Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 123 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into Underground

  9. Georgia Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -90 -339 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Net Withdrawals of Natural Gas from

  10. Idaho Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 112 395 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into Underground

  11. Idaho Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -112 -395 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Net Withdrawals of Natural Gas from Underground

  12. H. R. 4564: a bill to amend the Internal Revenue Code of 1954 to provide a deduction and special net operating loss rules with respect to certain losses on domestic crude oil, to increase tariffs on petroleum and petroleum products, to require the Strategic Petroleum Reserve to be filled with stripper well oil, and to eliminate certain restrictions on the sale of natural gas and on the use of natural gas and oil. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, April 10, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The Secure Energy Supply Act of 1986 amends the Internal Revenue Code of 1954. Title I provides a deduction and special net operating loss treatment for certain losses on crude oil. Title II increases tariffs on petroleum and petroleum products, the revenues of which will cover authorized refunds. Title III provides that only stripper well oil or oil exchanged for stripper well oil will be used to fill the Strategic Petroleum Reserve. Title IV removes wellhead price controls and repeals Natural Gas Act jurisdiction over certain first sales of natural gas. Later titles repeal certain restrictions on the use of natural gas and petroleum, repeal incremental pricing requirements, and promote flexibility in rescheduling or marking down troubled loans. The bill was referred to the House Committees on Ways and Means, Energy and Commerce, and Banking, Finance, and Urban Affairs.

  13. New and existing gas wells promise bountiful LPG output in Michigan

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Michigan remains the leading LP-gas producer in the Northeast quadrant of the U.S. This paper reports that boosted by a number of new natural gas wells and a couple of new gas processing plants, the state is firmly anchored in the butane/propane production business. Since 1981, more than 100 deep gas wells, most in excess of 8000 feet in depth, have been completed as indicated producers in the state. Many of these are yielding LPG-grade stock. So, combined with LPG-grade production from shallower geologic formations, the supply picture in this area looks promising for the rest of the country.

  14. Operating experience review of an INL gas monitoring system

    SciTech Connect (OSTI)

    Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.

    2015-03-12

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  15. Operating experience review of an INL gas monitoring system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.

    2015-03-01

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. Some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  16. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross Withdrawals

  17. Overview of SoCalGas/SDG&E System Design & Operations

    Broader source: Energy.gov (indexed) [DOE]

    Design & Operations SoCalGasSDG&E Gas Transmission System with Electric Generation Plants 2 SoCalGasSDG&E Gas Transmission System 24,100 square mile service territory ...

  18. Rhode Island Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into Underground Storage

  19. Table 4.5 Crude Oil and Natural Gas Exploratory and Development Wells, 1949-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Crude Oil and Natural Gas Exploratory and Development Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 21,352 3,363 12,597 37,312 66.2 79,428 12,437 43,754 135,619 3,720 3,698 3,473 3,635 1950 23,812 3,439 14,799 42,050 64.8 92,695 13,685 50,977 157,358 3,893 3,979 3,445

  20. Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 1,406 424 7,228 9,058 20.2 5,950 2,409 26,439 34,798 4,232 5,682 3,658 3,842 1950 1,583 431 8,292 10,306 19.5 6,862 2,356 30,957 40,175 4,335 5,466 3,733 3,898 1951 1,763 454 9,539

  1. Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Crude Oil and Natural Gas Development Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 19,946 2,939 5,369 28,254 81.0 73,478 10,028 17,315 100,821 3,684 3,412 3,225 3,568 1950 22,229 3,008 6,507 31,744 79.5 85,833 11,329 20,020 117,183 3,861 3,766 3,077 3,691 1951 21,416

  2. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles This report examines energy use and emissions from primary energy source ...

  3. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer: Eric Hass Total Project Funding: $724,000 April 22, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Project Objectives * Design, build, and operate low temperature, mobile, geothermal power plant capable of

  4. New York Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells New York Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  5. New Jersey Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) New Jersey Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 805 975 1,281 1970's 1,447 1,626 1,765 1,867 3,953 6,378 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  6. New Jersey Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) New Jersey Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6 -7 -206 1970's -439 -157 20 -404 -624 -3,869 1990's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  7. North Carolina Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) North Carolina Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 97 2,626 2,019 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections

  8. Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -174 -102 253 1970's -200 -96 -1,074 2,468 1,707 -2,185 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  9. Rhode Island Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 97 243 137 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of

  10. Rhode Island Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -6 411 541 1990's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Net Withdrawals of Natural

  11. Connecticut Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 683 740 746 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of

  12. Connecticut Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -242 501 1,271 1990's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Net Withdrawals of

  13. Delaware Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,274 1,500 179 1970's 391 189 255 2,012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections

  14. Delaware Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -294 -245 699 1970's 211 -189 -255 -549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Net

  15. ,"Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - All Operators",8,"Monthly","2/2016","01/15/1973" ,"Release Date:","04/29/2016" ,"Next Release Date:","05/31/2016" ,"Excel File

  16. Strings of liquid beads for gas-liquid contact operations

    SciTech Connect (OSTI)

    Hattori, Kenji; Ishikawa, Mitsukuni; Mori, Y.H. . Dept. of Mechanical Engineering)

    1994-12-01

    Energy recovery from hot gases exhausted from power plants, garbage incineration facilities, and many industrial processes has been growing due to demands for saving the primary-energy consumption. A novel device for gas-liquid contact operations is proposed to feed a liquid onto wires (or threads) hanging down in a gas stream is proposed. The liquid disintegrates into beads strung on each wire at regular intervals; if the wire is moderately wettable, a thin film forms to sheathe the wire, thereby interconnecting the beads. Since the beads fall down slowly, which possibly renews the film flowing down even more slowly, a sufficient gas-liquid contact time is available even in a contactor with considerably limited height. An approximate calculation method is developed for predicting the variation in the temperature effectiveness for the liquid (the fractional approach of the liquid exit temperature to the gas inlet temperature) with the falling distance, assuming an applicability of strings-of-beads contactors to thermal energy recovery from hot gas streams.

  17. In situ experiments of geothermal well stimulation using gas fracturing technology

    SciTech Connect (OSTI)

    Chu, T.Y.; Warpinski, N.; Jacobson, R.D.

    1988-07-01

    The results of an experimental study of gas fracturing technology for geothermal well stimulation demonstrated that multiple fractures could be created to link water-filled boreholes with existing fractures. The resulting fracture network and fracture interconnections were characterized by mineback as well as flow tests. Commercial oil field fracturing tools were used successfully in these experiments. Simple scaling laws for gas fracturing and a brief discussion of the application of this technique to actual geothermal well stimulation are presented. 10 refs., 42 figs., 4 tabs.

  18. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

  19. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect (OSTI)

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  20. Residual Gas Analysis for Long-Pulse, Advanced Tokamak Operation

    SciTech Connect (OSTI)

    Klepper, C Christopher; Hillis, Donald Lee; Bucalossi, J.; Douai, D.; OddonCEA, IRFM, P.; VartanianCEA-Cadarach, S.; Colas, L.; Manenc, L.; Pegourie, B.

    2010-01-01

    A shielded residual gas analyzer RGA system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This diagnostic RGA has been used in long-pulse up to 6 min discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H2 /D2 isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H2 injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses 4 min absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H2 could increase due to thermodesorption of overheated plasma facing components. 2010 American Institute of Physics.

  1. DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS

    SciTech Connect (OSTI)

    Johnson, F.; Fox, K.

    2013-10-02

    The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

  2. Workover well control. Part 4. Coiled-tubing pigs speed workover operations

    SciTech Connect (OSTI)

    Adams, N.

    1981-09-14

    Many workover operations can be completed quickly and efficiently by using coiled tubing instead of jointed tubing or conventional rigs. In general, coiled tubing is a continuous string of small-diameter tubing that can be run into the well without the necessity of making joint connections. The operations are safe, involve small amounts of rig time, and usually are more economical than other forms of concentric work. Coiled tubing work is usually conducted on producing wells, which necessitates pressure-control precautions. Applications for coiled tubing involve all aspects of workover operations except wire-line work. Coiled tubing can be used in initiating flow, cleaning out sand in tubing, and performing stimulation operations. In addition, drilling can be conducted with coiled tubing when down-hole motors are used.

  3. Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: Discover a blind, low-moderate temperature resource: Apply a combination of detailed sub-soil gas, hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion stratigraphy and fluid analyses to define a follow-up exploration drilling target; Create short term jobs and long term employment through resource exploration, development and power plant operation; Extend and adapt the DOE sub-soil 2 meter probe technology to gas sampling.

  4. Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska

    SciTech Connect (OSTI)

    Boswell, R.M.; Hunter, R.; Collett, T.; Digert, S. Inc., Anchorage, AK); Hancock, S.; Weeks, M. Inc., Anchorage, AK); Mt. Elbert Science Team

    2008-01-01

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

  5. Model operating permits for natural gas processing plants

    SciTech Connect (OSTI)

    Arend, C.

    1995-12-31

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  6. Utilization of endless coiled tubing and nitrogen gas in geothermal well system maintenance

    SciTech Connect (OSTI)

    McReynolds, A.S.; Maxson, H.L.

    1980-09-01

    The use of endless coiled tubing and nitrogen gas combine to offer efficient means of initiating and maintaining geothermal and reinjection well productivity. Routine applications include initial flashing of wells in addition to the surging of the formation by essentially the same means to increase production rates. Various tools can be attached to the tubing for downhole measurement purposes whereby the effectiveness of the tools is enhanced by this method of introduction to the well bore. Remedial work such as scale and fill removal can also be accomplished in an efficient manner by using the tubing as a work string and injecting various chemicals in conjunction with specialized tools to remedy downhole problems.

  7. Installation of 2 7/8-in. coiled-tubing tailpipes in live gas wells

    SciTech Connect (OSTI)

    Campbell, J.A.; Bayes, K.P.

    1994-05-01

    This paper describes a technique for installing 2 7/8-in. coiled tubing as tailpipe extensions below existing production packers in live gas wells. It also covers the use of coiled tubing as a way to complete wells. Large savings in rig time and deferred production have been realized with this technique. Fluid losses to the formation do not occur, and no expensive rig time is needed to kill or clean up the wells, as required for conventional workovers below existing production packers. This technique is particularly applicable in depleted reservoirs that could be impaired by traditional workover methods.

  8. Stopping a water crossflow in a sour-gas producing well

    SciTech Connect (OSTI)

    Hello, Y. Le; Woodruff, J.

    1998-09-01

    Lacq is a sour-gas field in southwest France. After maximum production of 774 MMcf/D in the 1970`s, production is now 290 MMcf/D, with a reservoir pressure of 712 psi. Despite the loss of pressure, production is maintained by adapting the surface equipment and well architecture to reservoir conditions. The original 5-in. production tubing is being replaced with 7-in. tubing to sustain production rates. During openhole cleaning, the casing collapsed in Well LA141. The primary objective was to plug all possible hydraulic communication paths into the lower zones. The following options were available: (1) re-entering the well from the top and pulling the fish before setting cement plugs; (2) sidetracking the well; and (3) drilling a relief well to intercept Well LA141 above the reservoirs. The decision was made to start with the first option and switch to a sidetrack if this option failed.

  9. Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)

    SciTech Connect (OSTI)

    Paul Glavinovich

    2002-11-01

    Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the mineral industry for use in the exploration of unconventional gas in rural Alaska. These techniques have included the use of diamond drilling rigs that core small diameter (< 3.0-inch) holes coupled with wireline geophysical logging tools and pressure transient testing units capable of testing in these slimholes.

  10. ,"Midwest Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:21 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Midwest Region Natural Gas ...

  11. ,"West Virginia Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:59 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","West Virginia Natural Gas in ...

  12. ,"New York Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:48 AM" "Back to Contents","Data 1: Total Underground Storage" ... York Natural Gas in Underground Storage (Base Gas) (MMcf)","New York Natural Gas in ...

  13. ,"Mountain Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:22 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Mountain Region Natural Gas ...

  14. ,"Pacific Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Pacific Region Natural Gas ...

  15. ,"East Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:19 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","East Region Natural Gas in ...

  16. ,"New Mexico Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"N5020NM2","N5070NM2","N5050NM2","N5060NM2" "Date","New Mexico Natural Gas Underground Storage Volume (MMcf)","New Mexico Natural Gas in Underground Storage (Base Gas) ...

  17. Successful removal of zinc sulfide scale restriction from a hot, deep, sour gas well

    SciTech Connect (OSTI)

    Kenrick, A.J.; Ali, S.A.

    1997-07-01

    Removal of zinc sulfide scale with hydrochloric acid from a hot, deep, Norphlet Sandstone gas well in the Gulf of Mexico resulted in a 29% increase in the production rates. The zinc sulfide scale was determined to be in the near-wellbore area. The presence of zinc sulfide is explained by the production of 25 ppm H{sub 2}S gas, and the loss of 50--100 bbl of zinc bromide fluid to the formation. Although zinc sulfide scale has been successfully removed with hydrochloric acid in low-to-moderate temperature wells, no analogous treatment data were available for high temperature, high pressure (HTHP) Norphlet wells. Therefore laboratory testing was initiated to identify suitable acid systems for scale removal, and select a high quality corrosion inhibitor that would mitigate detrimental effects of the selected acid on downhole tubulars and surface equipment. This case history presents the first successful use of hydrochloric acid in removing zinc sulfide scale from a HTHP Norphlet sour gas well.

  18. Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

  19. ,"New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  20. ,"North Dakota Natural Gas Gross Withdrawals from Oil Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  1. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 0 0 3,194 350 0 0 0 0 2000's 0 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  2. Utah Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,079 5,945 6,478 2000's 10,544 15,141 15,439 14,484 9,423 12,239 28,953 56,438 55,374 49,984 2010's 48,399 40,138 47,138 49,562 58,499 55,797

    436,885 461,507 490,393 470,863 453,207 422,423 1967-2015 From Gas Wells 328,135 351,168 402,899 383,216 360,587 1967-2014 From Oil Wells 42,526 49,947 31,440 36,737 44,996 1967-2014 From Shale Gas Wells 0 0 1,333 992 1,003 2007-2014 From Coalbed Wells 66,223

  3. Gas-liquid separator and method of operation

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev; Whitt, David Brandon

    2009-07-14

    A system for gas-liquid separation in electrolysis processes is provided. The system includes a first compartment having a liquid carrier including a first gas therein and a second compartment having the liquid carrier including a second gas therein. The system also includes a gas-liquid separator fluidically coupled to the first and second compartments for separating the liquid carrier from the first and second gases.

  4. Ohio Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,491 7,981 11,388 2000's 10,123 10,545 22,722 18,774 18,258 27,941 23,184 37,292 23,493 37,668 2010's 58,161 92,845 171,590 161,174 175,466 210,460

    78,122 78,858 84,482 166,017 518,767 1,014,848 1967-2015 From Gas Wells 73,459 30,655 65,025 55,583 78,204 1967-2014 From Oil Wells 4,651 45,663 6,684 10,317 13,037 1967-2014 From Shale Gas Wells 11 2,540 12,773 100,117 427,525 2007-2014 From Coalbed

  5. Well blowout rates in California Oil and Gas District 4--Update and Trends

    SciTech Connect (OSTI)

    Jordan, Preston D.; Benson, Sally M.

    2009-10-01

    Well blowouts are one type of event in hydrocarbon exploration and production that generates health, safety, environmental and financial risk. Well blowouts are variously defined as 'uncontrolled flow of well fluids and/or formation fluids from the wellbore' or 'uncontrolled flow of reservoir fluids into the wellbore'. Theoretically this is irrespective of flux rate and so would include low fluxes, often termed 'leakage'. In practice, such low-flux events are not considered well blowouts. Rather, the term well blowout applies to higher fluxes that rise to attention more acutely, typically in the order of seconds to days after the event commences. It is not unusual for insurance claims for well blowouts to exceed US$10 million. This does not imply that all blowouts are this costly, as it is likely claims are filed only for the most catastrophic events. Still, insuring against the risk of loss of well control is the costliest in the industry. The risk of well blowouts was recently quantified from an assembled database of 102 events occurring in California Oil and Gas District 4 during the period 1991 to 2005, inclusive. This article reviews those findings, updates them to a certain extent and compares them with other well blowout risk study results. It also provides an improved perspective on some of the findings. In short, this update finds that blowout rates have remained constant from 2005 to 2008 within the limits of resolution and that the decline in blowout rates from 1991 to 2005 was likely due to improved industry practice.

  6. Systems acceptance and operability testing for rotary mode core sampling in flammable gas tanks

    SciTech Connect (OSTI)

    Corbett, J.E., Westinghouse Hanford

    1996-07-29

    This document provides instructions for the system acceptance and operability testing of the rotary mode core sampling system, modified for use in flammable gas tanks.

  7. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, III, William B.

    1997-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

  8. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, W.B. III

    1997-05-27

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

  9. Alaska--State Offshore Natural Gas Withdrawals from Oil Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Oil Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18,689 15,053 1980's 13,959 13,526 12,554 12,405 11,263 9,412 9,547 16,422 43,562 50,165 1990's 49,422 70,932 106,311 105,363 124,501 7,684 7,055 7,919 7,880 6,938 2000's 149,077 149,067 190,608 236,404 260,667 305,641 292,660 325,328 345,109 316,537 2010's 328,114 328,500 274,431

  10. Texas--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Oil Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,236 1,773 1980's 1,874 3,278 2,770 3,382 3,391 3,491 2,347 2,997 1,601 2,503 1990's 995 1,608 1,625 1,350 996 801 716 625 565 380 2000's 312 364 2,391 1,363 316 400 255 108 130 991 2010's 1,153 0 552 386 299 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. US--Federal Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Oil Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 417,053 383,647 369,968 1980's 385,573 377,245 400,129 461,796 523,200 570,733 599,978 537,101 497,072 485,150 1990's 484,516 535,250 513,058 550,850 622,235 653,870 687,424 729,162 804,290 905,293 2000's 951,088 989,969 893,193 939,828 840,852 730,830 681,869 654,334 524,965 606,403 2010's

  12. US--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Oil Wells (Million Cubic Feet) US--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 97,850 682,977 1980's 50,432 50,716 51,200 54,414 57,278 56,185 58,282 59,079 78,841 83,584 1990's 79,108 99,688 136,809 136,948 154,390 28,917 33,493 31,717 38,072 31,566 2000's 174,287 170,206 211,778 254,150 279,249 321,019 308,391 341,925 356,139 327,105 2010's 341,365 340,182 284,838

  13. Federal Offshore--Louisiana Natural Gas Withdrawals from Oil Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 410,179 375,593 360,533 1980's 360,906 348,113 357,671 408,632 461,821 502,000 529,453 470,493 426,945 403,144 1990's 408,654 455,052 436,493 467,340 518,305 522,437 523,155 566,210 643,886 722,750 2000's 752,296 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported;

  14. Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,457 2,888 4,004 1980's 18,767 16,369 24,707 32,982 33,936 35,402 38,726 35,228 38,891 43,461 1990's 41,530 44,807 35,281 41,978 58,240 84,167 102,993 93,867 89,384 107,509 2000's 130,040 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported; -- = Not Applicable; NA =

  15. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells

    Gasoline and Diesel Fuel Update (EIA)

    Drilled (Feet per Well) Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,568 1950's 3,691 3,851 3,999 3,880 3,905 3,904 3,880 3,966 3,907 3,999 1960's 4,020 4,064 4,227 4,193 4,179 4,288 4,112 4,004 4,328 4,431 1970's 4,610 4,480 4,590 4,687 4,249 4,285 4,214 4,404 4,421 4,374 1980's 4,166 4,209 4,225 4,004 4,125

  16. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells

    Gasoline and Diesel Fuel Update (EIA)

    Drilled (Feet per Well) Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,842 1950's 3,898 4,197 4,476 4,557 4,550 4,632 4,587 4,702 4,658 4,795 1960's 4,770 4,953 4,966 5,016 5,174 5,198 5,402 5,388 5,739 5,924 1970's 5,885 5,915 6,015 5,955 5,777 5,842 5,825 5,798 5,978 5,916 1980's 5,733 5,793 5,597 5,035 5,369 5,544 5,680 5,563

  17. U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per

    Gasoline and Diesel Fuel Update (EIA)

    Well) Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,412 1950's 3,766 3,837 4,015 4,373 4,365 4,339 4,734 4,950 4,801 5,120 1960's 5,321 5,145 5,186 5,198 5,171 5,337 5,474 5,629 5,716 5,531 1970's 5,644 5,670 5,259 5,286 5,173 5,238 4,960 5,053 5,066 5,082 1980's 5,093 5,149 5,453 5,187 5,158 5,193 5,080 5,112 5,155 5,038 1990's

  18. U.S. Average Depth of Natural Gas Exploratory and Developmental Wells

    Gasoline and Diesel Fuel Update (EIA)

    Drilled (Feet per Well) and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,698 1950's 3,979 4,056 4,342 4,599 4,670 4,672 5,018 5,326 5,106 5,396 1960's 5,486 5,339 5,408 5,368 5,453 5,562 5,928 5,898 5,994 5,918 1970's 5,860 5,890 5,516 5,488 5,387 5,470 5,220 5,254 5,262 5,275 1980's 5,275 5,351 5,617 5,319 5,276

  19. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Underground Storage",6,"Monthly","72015","01151973" ,"Data 2","Change in Working Gas from Same Period Previous Year",2,"Monthly","72015","01151973" ,"Release...

  20. Statement of Work for Drilling Four CERCLA Groundwater Monitoring Wells During Fiscal Year 2006, 300-FF-5 Operable Unit

    SciTech Connect (OSTI)

    Williams, Bruce A.

    2005-10-10

    This document contains the statement of work required to drill, characterize, and construct the proposed groundwater monitoring wells at 300-FF-5 Operable Unit during FY 2006.

  1. AGA Producing Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    1,689,895 1,688,206 1,865,696 2,041,963 2,126,724 2,176,332 1994-2015 Base Gas 1,087,170 1,084,178 1,084,148 1,086,406 1,088,335 1,088,465 1994-2015 Working Gas 602,725 604,028...

  2. Midwest Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    375 2,180,135 2,319,830 2,461,785 2,582,258 2,578,619 2014-2015 Base Gas 1,496,379 1,496,378 1,488,687 1,489,658 1,487,866 1,487,894 2014-2015 Working Gas 564,995 683,757 831,144...

  3. AGA Producing Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    1,863,519 1,917,665 2,042,184 2,206,064 2,200,189 2,159,737 1994-2014 Base Gas 1,083,436 1,087,842 1,089,725 1,089,543 1,089,660 1,089,228 1994-2014 Working Gas 780,084 829,824...

  4. South Central Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    225 2,109,107 2,154,799 2,265,050 2,381,950 2,393,620 2014-2015 Base Gas 1,058,973 1,059,103 1,058,987 1,058,721 1,060,652 1,061,199 2014-2015 Working Gas 1,002,252 1,050,004...

  5. Internal combustion engine for natural gas compressor operation

    DOE Patents [OSTI]

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  6. Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Hydrogen Produced with Nuclear Energy

    SciTech Connect (OSTI)

    Wu, Ye; Wang, Michael Q.; Vyas, Anant D.; Wade, David C.; Taiwo, Temitope A.

    2004-07-01

    A fuel-cycle model-called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model-has been developed at Argonne National Laboratory to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H{sub 2}) production pathways for fuel-cell vehicles (FCVs) applications. In this effort, the GREET model was expanded to include four nuclear H{sub 2} production pathways: (1) H{sub 2} production at refueling stations via electrolysis using Light Water Reactor (LWR)-generated electricity; (2) H{sub 2} production in central plants via thermo-chemical water cracking using steam from High Temperature Gas cooled Reactor (HTGR); (3) H{sub 2} production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam; and (4) H{sub 2} production at refueling stations via electrolysis using HTGR-generated electricity The WTW analysis of these four options include these stages: uranium ore mining and milling; uranium ore transportation; uranium conversion; uranium enrichment; uranium fuel fabrication; uranium fuel transportation; electricity or H{sub 2} production in nuclear power plants; H{sub 2} transportation; H{sub 2} compression; and H{sub 2} FCVs operation. Due to large differences in electricity requirements for uranium fuel enrichment between gas diffusion and centrifuge technologies, two scenarios were designed for uranium enrichment: (1) 55% of fuel enriched through gaseous diffusion technology and 45% through centrifuge technology (the current technology split for U.S. civilian nuclear power plants); and (2) 100% fuel enrichment using the centrifuge technology (a future trend). Our well-to-pump (WTP) results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H{sub 2} compared to natural gas-based H{sub 2} production via steam methane reforming for a unit of H{sub 2} delivered at refueling stations. In particular, 73-98% of GHG emissions and 81- 99% of fossil energy use are reduced by nuclear-based H{sub 2} relative to natural gas-based H{sub 2}, depending on the uranium enrichment technology and type of nuclear reactor used. When H{sub 2} is applied to FCVs, the WTW results also show large benefit in reducing fossil energy use and GHG emissions. (authors)

  7. Combination gas-producing and waste-water disposal well. [DOE patent application

    DOE Patents [OSTI]

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  8. Stimulation rationale for shale gas wells: a state-of-the-art report

    SciTech Connect (OSTI)

    Young, C.; Barbour, T.; Blanton, T.L.

    1980-12-01

    Despite the large quantities of gas contained in the Devonian Shales, only a small percentage can be produced commercially by current production methods. This limited production derives both from the unique reservoir properties of the Devonian Shales and the lack of stimulation technologies specifically designed for a shale reservoir. Since October 1978 Science Applications, Inc. has been conducting a review and evaluation of various shale well stimulation techniques with the objective of defining a rationale for selecting certain treatments given certain reservoir conditions. Although this review and evaluation is ongoing and much more data will be required before a definitive rationale can be presented, the studies to date do allow for many preliminary observations and recommendations. For the hydraulic type treatments the use of low-residual-fluid treatments is highly recommended. The excellent shale well production which is frequently observed with only moderate wellbore enlargement treatments indicates that attempts to extend fractures to greater distances with massive hydraulic treatments are not warranted. Immediate research efforts should be concentrated upon limiting production damage by fracturing fluids retained in the formation, and upon improving proppant transport and placement so as to maximize fracture conductivity. Recent laboratory, numerical modeling and field studies all indicate that the gas fracturing effects of explosive/propellant type treatments are the predominate production enhancement mechanism and that these effects can be controlled and optimized with properly designed charges. Future research efforts should be focused upon the understanding, prediction and control of wellbore fracturing with tailored-pulse-loading charges. 36 references, 7 figures, 2 tables.

  9. New Mexico Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    69,930 72,188 74,320 74,935 73,367 71,954 1990-2016 Base Gas 29,362 29,362 29,362 29,362 29,362 29,362 1990-2016 Working Gas 40,568 42,826 44,957 45,573 44,005 42,592 1990-2016 Net ...

  10. Lower 48 States Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    5,996,949 5,804,144 6,125,877 6,622,606 6,984,761 7,267,318 2011-2015 Base Gas 4,345,006 4,345,836 4,345,412 4,347,895 4,356,082 4,357,143 2011-2015 Working Gas 1,651,943 1,458,308...

  11. Lower 48 States Underground Natural Gas Storage - All Operators

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6,741,759 6,001,076 5,807,400 6,129,063 6,618,656 6,979,043 2011-2015 Base Gas 4,349,713 4,348,946 4,349,770 4,349,352 4,347,895 4,356,096 2011-2015 Working Gas 2,392,046 1,652,130...

  12. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOE Patents [OSTI]

    Vail, III, William Banning

    2000-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

  13. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect (OSTI)

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  14. Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Oil Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3,459 3,117 3,336 1,781 1,806 1,881 1,841 1,820 1,781 1,699 1,247 1,228 1992 4,284 3,872 4,141 4,027 4,047 3,883 3,964 3,957 3,892 4,169 4,146 4,334 1993 4,123 3,693 4,049 3,865 3,942 3,786 3,915 3,924 3,861 4,146 4,114 4,200 1994 3,639 3,242 3,557 3,409 3,488 3,384 3,552 3,643 3,597 3,796 3,818 3,991 1995 3,937 3,524

  15. California--State Offshore Natural Gas Withdrawals from Oil Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Oil Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11,226 12,829 1980's 11,634 11,759 12,222 12,117 12,525 13,378 12,935 10,962 9,728 8,243 1990's 7,743 7,610 7,242 6,484 7,204 5,904 6,309 7,171 6,883 6,738 2000's 7,808 7,262 7,068 6,866 6,966 6,685 6,654 6,977 6,764 5,470 2010's 5,483 4,904 4,411 5,057 5,530 - = No Data Reported;

  16. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  17. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  18. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2003-10-01

    This report documents work performed in the fourth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: second field test; test data analysis for the first field test; operational optimization plans.

  19. Pacific Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    617,976 638,832 628,206 579,071 535,527 521,897 2014-2016 Base Gas 259,036 259,331 259,331 259,331 259,331 259,331 2014-2016 Working Gas 358,941 379,501 368,875 319,740 276,196 262,566 2014-2016 Net Withdrawals -11,035 -20,831 10,625 49,135 43,542 13,538 2014-2016 Injections 22,413 27,233 13,622 8,742 7,399 8,534 2014-2016 Withdrawals 11,378 6,402 24,246 57,876 50,941 22,072 2014-2016 Change in Working Gas from Same Period Previous Year Volume 40,921 33,861 29,674 -2,781 219 -10,585 2014-2016

  20. New Claus tail-gas process proved in German operation

    SciTech Connect (OSTI)

    Kettner, R.; Liermann, N.

    1988-01-11

    A process for removing sulfur components from Claus-plant tail gases increases sulfur-recovery rates to 99.5%. It has been in use for more than 4 years. In December 1983, a tail-gas cleaning unit was started up for the sulfur-recovery plants of the Nordeutsche Erdgas Aufbereitungsgesellschaft (NEAG) natural-gas treating complex at Voigten, West Germany. NEAG, a joint venture of Exxon, Shell, and Mobil Oil, desulfurizes 7.7 million normal cu m/day (approximately 271.2 million cfd) of sour gas in three plants. Up to 1,050 tons/day of elemental sulfur are produced (Fig. 1). Mobil Oil AG developed the process which has been dubbed the Mobil direct-oxidation process (Modop).

  1. Wetland treatment of oil and gas well waste waters. Final report

    SciTech Connect (OSTI)

    Kadlec, R.; Srinivasan, K.

    1995-08-01

    Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

  2. East Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals 7,271 12,466 45,095 85,288 232,321 162,639 2014-2016 Change in Working Gas from Same Period Previous Year Volume 53,666 26,264 82,451 113,777 93,945 141,451 2014-2016 ...

  3. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-03-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and qualitatively demonstrated in tests on three different integral engine/compressors in natural gas transmission service.

  4. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-08-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infracture''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and tested on four different integral engine/compressors in natural gas transmission service.

  5. Cliffs Minerals, Inc. Eastern Gas Shales Project, Ohio No. 5 well - Lorain County. Phase II report. Preliminary laboratory results

    SciTech Connect (OSTI)

    1980-04-01

    The US Department of Energy is funding a research and development program entitled the Eastern Gas Shales Project designed to increase commercial production of natural gas in the eastern United States from Middle and Upper Devonian Shales. The program's objectives are as follows: (1) to evaluate recoverable reserves of gas contained in the shales; (2) to enhanced recovery technology for production from shale gas reservoirs; and (3) to stimulate interest among commercial gas suppliers in the concept of producing large quantities of gas from low-yield, shallow Devonian Shale wells. The EGSP-Ohio No. 5 well was cored under a cooperative cost-sharing agreement between the Department of Energy (METC) and Columbia Gas Transmission Corporation. Detailed characterization of the core was performed at the Eastern Gas Shale Project's Core Laboratory. At the well site, suites of wet and dry hole geophysical logs were run. Characterization work performed at the Laboratory included photographic logs, lithologic logs, fracture logs, measurements of core color variation, and stratigraphic interpretation of the cored intervals. In addition samples were tested for physical properties by Michigan Technological University. Physical properties data obtained were for: directional ultrasonic velocity; directional tensile strength; strength in point load; and trends of microfractures.

  6. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  7. New York Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    222,715 229,136 229,215 226,969 202,549 188,208 1990-2016 Base Gas 115,037 114,966 115,001 114,992 114,956 114,913 1990-2016 Working Gas 107,677 114,170 114,214 111,977 87,594 73,296 1990-2016 Net Withdrawals -8,417 -6,422 -87 2,247 21,931 14,573 1990-2016 Injections 9,955 7,781 5,194 4,288 351 2,066 1990-2016 Withdrawals 1,538 1,359 5,107 6,535 22,282 16,639 1990-2016 Change in Working Gas from Same Period Previous Year Volume 10,173 5,616 12,599 15,508 8,898 11,045 1990-2016 Percent 10.4 5.2

  8. Mountain Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    626,924 638,383 633,170 611,934 582,516 569,950 2014-2016 Base Gas 423,698 423,690 425,847 426,205 426,151 426,075 2014-2016 Working Gas 203,226 214,692 207,323 185,729 156,365 143,875 2014-2016 Net Withdrawals -16,112 -11,462 5,213 21,235 29,411 12,562 2014-2016 Injections 19,990 16,279 8,918 5,903 4,057 9,286 2014-2016 Withdrawals 3,878 4,817 14,131 27,138 33,468 21,849 2014-2016 Change in Working Gas from Same Period Previous Year Volume 28,615 27,317 32,540 33,887 25,398 27,993 2014-2016

  9. West Virginia Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    70,454 479,640 476,839 452,957 390,894 355,238 1990-2016 Base Gas 269,975 269,978 269,978 269,983 269,908 269,801 1990-2016 Working Gas 200,479 209,662 206,862 182,973 120,986 85,437 1990-2016 Net Withdrawals -22,820 -9,186 2,845 23,846 62,042 35,655 1990-2016 Injections 22,967 11,101 5,919 3,512 734 2,318 1990-2016 Withdrawals 147 1,915 8,764 27,358 62,776 37,974 1990-2016 Change in Working Gas from Same Period Previous Year Volume 13,738 5,456 18,992 25,179 21,224 26,766 1990-2016 Percent 7.4

  10. Operation of cover-gas system during SLSF tests. [LMFBR

    SciTech Connect (OSTI)

    Braid, T.H.; Harper, H.A.; Wilson, R.E.

    1982-01-01

    During two tests in the Sodium Loop Safety Facility (W1 and P4), high resolution gamma-ray spectroscopy was used to detect pin failure by observing radioactive fission product isotopes of Kr and Xe from exposed fuel. A continuous stream of argon cover gas from the in-pile loop was transferred to a shielded sample volume. Two germanium crystal spectrometers continuously recorded spectra of gamma rays in the energy range 80 keV to approx. 2.7 MeV. A very wide range of signal strength was accommodated without saturation by dilution of the sample, reduction of the sample chamber volume and insertion of detecter collimators. The cover gas system provided an unambiguous indication of fuel failure during a series of boiling tests in W1. In P4, spectra were recorded after a power transient that released molten fuel and from a mass of exposed fuel at a range of reactor power levels. Gamma rays were observed from isotopes of Kr and Xe with half-lives from 3.8 m to 5.2 d.

  11. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalle; Ralph E. Harris; Gary D. Bourn

    2003-07-01

    This report documents work performed in the third quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: first field test; test data analysis.

  12. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-01-01

    This report documents work performed in the fifth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: completion of analysis of data from first visit to second site; preparation for follow-up testing.

  13. Microsoft Word - RUL_1Q2011_Gas_Samp_Results_7Wells

    Office of Legacy Management (LM)

    The produced water from the Spring Creek drip tank was collected using a drop tube and peristaltic pump. Gas produced by Noble Energy in the Battlement Mesa field passes through ...

  14. Well-To-Wheels Energy and Greenhouse Gas Analysis of Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ii This page intentionally left blank. iii CONTENTS ACKNOWLEDGMENTS ........................................................................................................ xi NOTATION .............................................................................................................................. xiii EXECUTIVE SUMMARY ...................................................................................................... 1 ES.1 CD Operation of Gasoline PHEVs and BEVs

  15. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    planning information that will assist in maintaining the operational integrity and reliability of pipeline service, as well as providing gas-fired power plant operators with...

  16. H.R. 577: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    1995-12-31

    This document contains H.R. 577, A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. This Bill was introduced in the House of Representatives, 104th Congress, First Session, January 19, 1995.

  17. S.32: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    1995-12-31

    This bill would establish tax credits for the production of oil and natural gas from existing marginal oil or gas wells, and from new oil and gas wells. It does so by adding a section to the Internal Revenue Code of 1986 which spells out the rules, the credit amounts, the scope of the terms used to define such facilities, and other rules.

  18. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    SciTech Connect (OSTI)

    Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

    2008-05-15

    Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

  19. Exploration for deep gas in the Devonian Chaco Basin of Southern Bolivia: Sequence stratigraphy, predictions, and well results

    SciTech Connect (OSTI)

    Williams, K.E.; Radovich, B.J.; Brett, J.W.

    1995-12-31

    In mid 1991, a team was assembled in Texaco`s Frontier Exploration Department (FED) to define the hydrocarbon potential of the Chaco Basin of Southern Bolivia. The Miraflores No. 1 was drilled in the fall of 1992, for stratigraphic objectives. The well confirmed the predicted stratigraphic trap in the Mid-Devonian, with gas discovered in two highstand and transgressive sands. They are low contrast and low resistivity sands that are found in a deep basin `tight gas` setting. Testing of the gas sands was complicated by drilling fluid interactions at the well bore. Subsequent analysis indicated that the existing porosity and permeability were reduced, such that a realistic test of reservoir capabilities was prevented.

  20. Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)

    SciTech Connect (OSTI)

    Finger, J.T.; Jacobson, R.D.

    1992-06-01

    This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

  1. Methods of operation of apparatus measuring formation resistivity from within a cased well having one measurement and two compensation steps

    DOE Patents [OSTI]

    Vail, III, William B.

    1993-01-01

    Methods of operation of an apparatus having at least two pairs of voltage measurement electrodes vertically disposed in a cased well to measure the resistivity of adjacent geological formations from inside the cased well. During stationary measurements with the apparatus at a fixed vertical depth within the cased well, the invention herein discloses methods of operation which include a measurement step and subsequent first and second compensation steps respectively resulting in improved accuracy of measurement. First and second order errors of measurement are identified, and the measurement step and two compensation steps provide methods to substantially eliminate their influence on the results. A multiple frequency apparatus adapted to movement within the well is described which simultaneously provide the measurement and two compensation steps.

  2. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings. PDF icon low_gosnold_coproduced_fluids.pdf More Documents & Publications Electric Power Generation from Co-Produced and Other Oil Field Fluids AAPG Low-Temperature Webinar Low Temperature/Coproduced/Geopressured Subprogram Overview

  3. Hindered amine development and operating experience at Quirk Creek Gas Plant

    SciTech Connect (OSTI)

    Smart, P.; Devenny, I. [Imperial Oil Resources Ltd., Calgary, Alberta (Canada); Rendall, A. [Nalco/Exxon Energy Chemicals, Calgary, Alberta (Canada)

    1997-12-31

    The Imperial Oil Resources Limited Quirk Creek gas plant has a significant natural gas treating challenge. The natural gas feed contains H{sub 2}S, CO{sub 2}, carbonyl sulfide, mercaptans and elemental sulfur. The trace sulfur components are difficult to remove with conventional solvents. Over its 26 year history, three different solvents have been used. The latest solvent, a hybrid of a hindered amine and a physical solvent, has been operating for over two years, with better than expected performance. This high capacity solvent has lowered operating costs by over $500,000/yr by reducing solids formation. The development work, including pilot testing at Quirk Creek, and the operating history will be reviewed.

  4. An evaluation of the deep reservoir conditions of the Bacon-Manito geothermal field, Philippines using well gas chemistry

    SciTech Connect (OSTI)

    D'Amore, Franco; Maniquis-Buenviaje, Marinela; Solis, Ramonito P.

    1993-01-28

    Gas chemistry from 28 wells complement water chemistry and physical data in developing a reservoir model for the Bacon-Manito geothermal project (BMGP), Philippines. Reservoir temperature, THSH, and steam fraction, y, are calculated or extrapolated from the grid defined by the Fischer-Tropsch (FT) and H2-H2S (HSH) gas equilibria reactions. A correction is made for H2 that is lost due to preferential partitioning into the vapor phase and the reequilibration of H2S after steam loss.

  5. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-10-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a GMW10 engine/compressor after modifications to add high pressure Fuel and a Turbocharger. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  6. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-07-01

    This quarterly report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a turbocharged HBA-6T engine/compressor. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  7. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris

    2003-01-01

    This report documents work performed in the first quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: preparation and submission of the Research Management Plan; preparation and submission of the Technology Status Assessment; attendance at the Project Kick-Off meeting at DOE-NETL; formation of the Industry Advisory Committee (IAC) for the project; preparation of the Test Plan; acquisition and assembly of the data acquisition system (DAS).

  8. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley

    2003-04-01

    This report documents work performed in the second quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: preparation and submission of the Technology Status Assessment; formation of the Industry Advisory Committee (IAC) for the project; attendance at the first IAC meeting; preparation of the Test Plan; completion of the data acquisition system (DAS); plans for the first field test.

  9. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect (OSTI)

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

  10. Water and gas chemistry from HGP-A geothermal well: January 1980 flow test

    SciTech Connect (OSTI)

    Thomas, D.M.

    1980-09-01

    A two-week production test was conducted on the geothermal well HGP-A. Brine chemistry indicates that approximately six percent of the well fluids are presently derived from seawater and that this fraction will probably increase during continued production. Reservoir production is indicated to be from two chemically distinct aquifers: one having relatively high salinity and low production and the other having lower salinity and producing the bulk of the discharge.

  11. Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas

    SciTech Connect (OSTI)

    Eggington, W.J.; Stevens, P.M.; John, C.J.; Harder, B.J.; Lindstedt, D.M.

    1994-10-01

    The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selected for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.

  12. Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,231,541 1,440,704 1,444,716 2000's 1,577,563 1,506,112 1,550,292 1,453,858 1,394,408 1,466,263 1,463,658 1,473,555 1,440,043 1,387,421 2010's 1,348,656 1,454,413 1,516,946 1,422,600 1,427,565 1,646,330

    Exports (No Intransit Deliveries) (Million Cubic Feet) Texas Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

  13. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles traveled during CD operation is 25% for PHEV10 and 51% for PHEV40. Argonne's WTW analysis of PHEVs revealed that the following factors significantly impact the energy use and GHG emissions results for PHEVs and BEVs compared with baseline gasoline vehicle technologies: (1) the regional electricity generation mix for battery recharging and (2) the adjustment of fuel economy and electricity consumption to reflect real-world driving conditions. Although the analysis predicted the marginal electricity generation mixes for major regions in the United States, these mixes should be evaluated as possible scenarios for recharging PHEVs because significant uncertainties are associated with the assumed market penetration for these vehicles. Thus, the reported WTW results for PHEVs should be directly correlated with the underlying generation mix, rather than with the region linked to that mix.

  14. Two-dimensional electron gas in monolayer InN quantum wells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  15. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  16. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  17. Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Broader source: Energy.gov [DOE]

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

  18. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    SciTech Connect (OSTI)

    Meeks, E.; Grcar, J.F.; Kee, R.J.; Moffat, H.K.

    1996-02-01

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  19. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-28

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey test performed on an HBA-6 engine/compressor installed at Duke Energy's Bedford Compressor Station. This is one of several tests planned, which will emphasize identification and reduction of compressor losses. Additionally, this report presents a methodology for distinguishing losses in compressor attributable to valves, irreversibility in the compression process, and the attached piping (installation losses); it illustrates the methodology with data from the survey test. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  20. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  1. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2006-01-24

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report presents results of design analysis performed on the TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  2. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  3. ,"Rhode Island Natural Gas Underground Storage Injections All Operators (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Monthly","12/1996" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016"

  4. Identifying emerging smart grid impacts to upstream and midstream natural gas operations.

    SciTech Connect (OSTI)

    McIntyre, Annie

    2010-09-01

    The Smart Grid has come to describe a next-generation electrical power system that is typified by the increased use of communications and information technology in the generation, delivery and consumption of electrical energy. Much of the present Smart Grid analysis focuses on utility and consumer interaction. i.e. smart appliances, home automation systems, rate structures, consumer demand response, etc. An identified need is to assess the upstream and midstream operations of natural gas as a result of the smart grid. The nature of Smart Grid, including the demand response and role of information, may require changes in upstream and midstream natural gas operations to ensure availability and efficiency. Utility reliance on natural gas will continue and likely increase, given the backup requirements for intermittent renewable energy sources. Efficient generation and delivery of electricity on Smart Grid could affect how natural gas is utilized. Things that we already know about Smart Grid are: (1) The role of information and data integrity is increasingly important. (2) Smart Grid includes a fully distributed system with two-way communication. (3) Smart Grid, a complex network, may change the way energy is supplied, stored, and in demand. (4) Smart Grid has evolved through consumer driven decisions. (5) Smart Grid and the US critical infrastructure will include many intermittent renewables.

  5. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  6. Assessment of well-to-wheel energy use and greenhouse gas emissions of Fischer-Tropsch diesel.

    SciTech Connect (OSTI)

    Wang, M.

    2001-12-13

    The middle distillate fuel produced from natural gas (NG) via the Fischer-Tropsch (FT) process has been proposed as a motor fuel for compression-ignition (CI) engine vehicles. FT diesel could help reduce U.S. dependence on imported oil. The U.S. Department of Energy (DOE) is evaluating the designation of FT diesel as an alternative motor fuel under the 1992 Energy Policy Act (EPACT). As part of this evaluation, DOE has asked the Center for Transportation Research at Argonne National Laboratory to conduct an assessment of well-to-wheels (WTW) energy use and greenhouse gas (GHG) emissions of FT diesel compared with conventional motor fuels (i.e., petroleum diesel). For this assessment, we applied Argonne's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to conduct WTW analysis of FT diesel and petroleum diesel. This report documents Argonne's assessment. The results are presented in Section 2. Appendix A describes the methodologies and assumptions used in the assessment.

  7. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    SciTech Connect (OSTI)

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-12-15

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 {mu}F, 50 to 200 nH, and 1 to 3 kV, respectively.

  8. Use of Biostratigraphy to Increase Production, Reduce Operating Costs and Risks and Reduce Environmental Concerns in Oil Well Drilling

    SciTech Connect (OSTI)

    Edward Marks

    2005-09-09

    In the Santa Maria Basin, Santa Barbara County, California, four wells were processed and examined to determine the age and environment parameters in the oil producing sections. From west to east, we examined Cabot No. 1 Ferrero-Hopkins,from 3917.7 m (12850 ft) to 4032 m (13225 ft); Sun No. 5 Blair, from 3412 m (11190 ft) to 3722.5 m (12210 ft); Triton No. 10 Blair, from 1552 m (5090 ft) to 1863 m (6110 ft); and OTEC No. 1 Boyne, from 2058 m (6750 ft) to 2528 m (8293 ft). Lithic reports with lithic charts were prepared and submitted on each well. These tested for Sisquoc Fm lithology to be found in the Santa Maria area. This was noted in the OTEC No. 1 Boyne interval studied. The wells also tested for Monterey Fm. lithology, which was noted in all four wells examined. Composite samples of those intervals [combined into 9.15 m (30 foot) intervals] were processed for paleontology. Although the samples were very refractory and siliceous, all but one (Sun 5 Blair) yielded index fossil specimens, and as Sun 5 Blair samples below 3686 m (12090 ft) were processed previously, we were able to make identifications that would aid this study. The intervals examined were of the Sisquoc Formation, the Low Resistivity and the High Resistivity sections of the Monterey Formation. The Lower Sisquoc and the top of the late Miocene were identified by six index fossils: Bolivina barbarana, Gyroidina soldanii rotundimargo, Bulimina montereyana, Prunopyle titan, Axoprunum angelinum and Glyphodiscus stellatus. The Low Resistivity Monterey Fm. was identified by eight index fossils, all of which died out at the top of the late Miocene, late Mohnian: Nonion goudkoffi, Brizalina girardensis, Cibicides illingi, Siphocampe nodosaria, Stephanogonia hanzawai, Uvigerina modeloensis, Buliminella brevior, Tytthodiscus sp.and the wide geographic ranging index pelagic fossil, Sphaeroidinellopsis subdehiscens. The High Resistivity Monterey Fm. was identified by eight index fossils, all of which died out at the top of the late Miocene, early Mohnian: Bolivina aff hughesi, Rotalia becki, Suggrunda californica, Virgulina grandis, Virgulina ticensis, Bulimina ecuadorana, Denticula lauta and Nonion medio-costatum. Please see Appendix B, Fig. 1, Neogene Zones, p. 91 and Appendix C, chart 5, p. 99 By the use of Stratigraphy, employing both Paleontology and Lithology, we can increase hydrocarbon production, reduce operating costs and risks by the identification of the productive sections, and reduce environmental concerns by drilling less dry holes needlessly.

  9. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2015,"6/30/1935" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","ng_stor_sum_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_sum_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help,

  10. Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells

    SciTech Connect (OSTI)

    Maryn, S.

    1994-03-01

    Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

  11. Ten Years of Compressed Natural Gas (CNG) Operations at SunLine Transit Agency: April 2003--December 2004

    SciTech Connect (OSTI)

    Chandler, K.

    2006-01-01

    This report focuses on the lesson learned at the SunLine Transit Agency after it converted in 1994 its entire operating transit bus fleet to compressed natural gas (CNG).

  12. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    SciTech Connect (OSTI)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  13. 90 MW build/own/operate gas turbine combined cycle cogeneration project with sludge drying plant

    SciTech Connect (OSTI)

    Schroppe, J.T.

    1986-04-01

    This paper will discuss some of the unique aspects of a build/own/operate cogeneration project for an oil refinery in which Foster Wheeler is involved. The organization is constructing a 90 MW plant that will supply 55 MW and 160,000 lb/hr of 600 psi, 700F steam to the Tosco Corporation's 130,000 bd Avon Oil Refinery in Martinez, California. (The refinery is located about 45 miles northeast of San Francisco.) Surplus power production will be sold to the local utility, Pacific Gas and Electric Co. (PG and E). Many of the aspects of this project took on a different perspective, since the contractor would build, own and operate the plant.

  14. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    SciTech Connect (OSTI)

    Fairbank, Brian D.

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award be transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified the DOE on February 13, 2014 that it would not be able to complete the project objectives before the recovery act awards deadline and submitted a mutual termination request to the DOE which was accepted.

  15. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents tests performed on a KVG103 engine/compressor installed at Duke's Thomaston Compressor Station. This is the first series of tests performed on a four-stroke engine under this program. Additionally, this report presents results, which complete a comparison of performance before and after modification to install High Pressure Fuel Injection and a Turbocharger on a GMW10 at Williams Station 60. Quarterly Reports 7 and 8 already presented detailed data from tests before and after this modification, but the final quantitative comparison required some further analysis, which is presented in Section 5 of this report. The report further presents results of detailed geometrical measurements and flow bench testing performed on the cylinders and manifolds of the Laboratory Cooper GMVH6 engine being employed for two-stroke engine air balance investigations. These measurements are required to enhance the detailed accuracy in modeling the dynamic interaction of air manifold, exhaust manifold, and in-cylinder fuel-air balance.

  16. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions May 2005 Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Norman Brinkman, General Motors Corporation Michael Wang, Argonne National Laboratory Trudy Weber, General Motors Corporation Thomas Darlington, Air Improvement Resource, Inc. May

  17. Technical, economic, and environmental impact study of converting Uzbekistan transportation fleets to natural gas operation. Export trade information

    SciTech Connect (OSTI)

    1997-04-30

    This study, conducted by Radian International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility (technical, economic and environmental) of converting the Uzbek transportation fleets to natural gas operation. The study focuses on the conversion of high fuel use vehicles and locomotives to liquefied natural gas (LNG) and the conversion of moderate fuel use veicles to compressed natural gas (CNG). The report is divided into the following sections: Executive Summary; (1.0) Introduction; (2.0) Country Background; (3.0) Characterization of Uzbek Transportation Fuels; (4.0) Uzbek Vehicle and Locomotive Fleet Characterization; (5.0) Uzbek Natural Gas Vehicle Conversion Shops; (6.0) Uzbek Natural Gas Infrastructure; (7.0) Liquefied Natural Gas (LNG) for Vehicular Fuel in Uzbekistan; (8.0) Economic Feasibility Study; (9.0) Environmental Impact Analysis; References; Appendices A - S.

  18. Analysis of an industrial cogeneration unit driven by a gas engine. Part 1: Experimental testing under full and part-load operating conditions

    SciTech Connect (OSTI)

    De Lucia, M.; Lanfranchi, C.

    1994-12-31

    This paper describes and analyzes an industrial cogeneration plant driven by a gas fueled reciprocating engine installed in a textile factory. It presents the results of experimental testing conducted under full and part-load operating conditions, as well as first-law energy considerations. The experimental tests conducted on the cogeneration unit proved the validity of the plant design and also enabled evaluation of part-load performance, which is the most common operating mode in cogeneration plants in the small-size industries which typical of central Italy.

  19. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect (OSTI)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  20. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  1. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Ford A. Phillips; Danny M. Deffenbaugh

    2006-05-31

    This project has documented and demonstrated the feasibility of technologies and operational choices for companies who operate the large installed fleet of integral engine compressors in pipeline service. Continued operations of this fleet is required to meet the projected growth of the U.S. gas market. Applying project results will meet the goals of the DOE-NETL Natural Gas Infrastructure program to enhance integrity, extend life, improve efficiency, and increase capacity, while managing NOx emissions. These benefits will translate into lower cost, more reliable gas transmission, and options for increasing deliverability from the existing infrastructure on high demand days. The power cylinders on large bore slow-speed integral engine/compressors do not in general combust equally. Variations in cylinder pressure between power cylinders occur cycle-to-cycle. These variations affect both individual cylinder performance and unit average performance. The magnitude of the variations in power cylinder combustion is dependent on a variety of parameters, including air/fuel ratio. Large variations in cylinder performance and peak firing pressure can lead to detonation and misfires, both of which can be damaging to the unit. Reducing the variation in combustion pressure, and moving the high and low performing cylinders closer to the mean is the goal of engine balancing. The benefit of improving the state of the engine ''balance'' is a small reduction in heat rate and a significant reduction in both crankshaft strain and emissions. A new method invented during the course of this project is combustion pressure ratio (CPR) balancing. This method is more effective than current methods because it naturally accounts for differences in compression pressure, which results from cylinder-to-cylinder differences in the amount of air flowing through the inlet ports and trapped at port closure. It also helps avoid compensation for low compression pressure by the addition of excess fuel to achieve equalizing peak firing pressure, even if some of the compression pressure differences are attributed to differences in cylinder and piston geometry, clearance, and kinematics. The combination of high-pressure fuel injection and turbocharging should produce better mixing of fuel and air in lean mixtures. Test results documented modest improvements in heat rate and efficiency and significant improvements in emissions. The feasibility of a closed-loop control of waste-gate setting, which will maintain an equivalence ratio set point, has been demonstrated. This capability allows more direct tuning to enhance combustion stability, heat rate, or emissions. The project has documented the strong dependence of heat rate on load. The feasibility of directly measuring power and torque using the GMRC Rod Load Monitor (RLM) has been demonstrated. This capability helps to optimize heat rate while avoiding overload. The crankshaft Strain Data Capture Module (SDCM) has shown the sensitivity to changes in operating conditions and how they influence crankshaft bending strain. The results indicate that: balancing reduces the frequency of high-strain excursions, advanced timing directly increases crankshaft dynamic strain, reduced speed directly reduces strain, and high-pressure fuel injection reduces crankshaft strain slightly. The project demonstrated that when the timing is advanced, the heat rate is reduced, and when the timing is retarded, the heat rate is increased. One reason why timing is not advanced as much as it might be is the potential for detonation on hot days. A low-cost knock detector was demonstrated that allowed active control to use timing to allow the heat rate benefit to be realized safely. High flow resistance losses in the pulsation control systems installed on some compressors have been shown to hurt efficiency of both compressor and engine/compressor system. Improved pulsation control systems have the potential to recover almost 10% of available engine power. Integrity enhancements and reduced component failure probability will enhance aggregate

  2. Illinois DNR oil and gas division | Open Energy Information

    Open Energy Info (EERE)

    is the regulatory authority in Illinois for permitting, drilling, operating, and plugging oil and gas production wells. The Division implements the Illinois Oil and Gas Act and...

  3. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  4. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  5. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

  6. INTERNAL REPAIR OF GAS PIPLINES SURVEY OF OPERATOR EXPERIENCE AND INDUSTRY NEEDS REPORT

    SciTech Connect (OSTI)

    Ian D. Harris

    2003-09-01

    A repair method that can be applied from the inside of a gas transmission pipeline (i.e., a trenchless repair) is an attractive alternative to conventional repair methods since the need to excavate the pipeline is precluded. This is particularly true for pipelines in environmentally sensitive and highly populated areas. The objectives of the project are to evaluate, develop, demonstrate, and validate internal repair methods for pipelines; develop a functional specification for an internal pipeline repair system; and prepare a recommended practice for internal repair of pipelines. The purpose of this survey is to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. A total of fifty-six surveys were sent to pipeline operators. A total of twenty completed surveys were returned, representing a 36% response rate, which is considered very good given the fact that tailored surveys are known in the marketing industry to seldom attract more than a 10% response rate. The twenty survey responses produced the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water (e.g., lakes and swamps) in difficult soil conditions, under highways, under congested intersections, and under railway crossings. All these areas tend to be very difficult and very costly if, and where, conventional excavated repairs may be currently used. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem in a water/river crossing. (3) The typical travel distances required can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). In concept, these groups require pig-based systems; despooled umbilical systems could be considered for the first two groups. For the last group a self-propelled system with an onboard self-contained power and welding system is required. (4) Pipe size range requirements range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.) in diameter. The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.) diameter, with 95% using 558.8 mm (22 in.) diameter pipe.

  7. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect (OSTI)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  8. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    SciTech Connect (OSTI)

    Brinkman, Norman; Wang, Michael; Weber, Trudy; Darlington, Thomas

    2005-05-01

    An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  9. Task 23 - background report on subsurface environmental issues relating to natural gas sweetening and dehydration operations. Topical report, February 1, 1994--February 28, 1996

    SciTech Connect (OSTI)

    Sorensen, J.A.

    1998-12-31

    This report describes information pertaining to environmental issues, toxicity, environmental transport, and fate of alkanolamines and glycols associated with natural gas sweetening and dehydration operations. Waste management associated with the operations is also discussed.

  10. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    planning information that will assist in maintaining the operational integrity and reliability of pipeline service, as well as providing gas-fired power plant operators with...

  11. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis

    SciTech Connect (OSTI)

    Moridis, G.; Reagan, M.T.

    2011-01-15

    In the second paper of this series, we evaluate two additional well designs for production from permafrost-associated (PA) hydrate deposits. Both designs are within the capabilities of conventional technology. We determine that large volumes of gas can be produced at high rates (several MMSCFD) for long times using either well design. The production approach involves initial fluid withdrawal from the water zone underneath the hydrate-bearing layer (HBL). The production process follows a cyclical pattern, with each cycle composed of two stages: a long stage (months to years) of increasing gas production and decreasing water production, and a short stage (days to weeks) that involves destruction of the secondary hydrate (mainly through warm water injection) that evolves during the first stage, and is followed by a reduction in the fluid withdrawal rate. A well configuration with completion throughout the HBL leads to high production rates, but also the creation of a secondary hydrate barrier around the well that needs to be destroyed regularly by water injection. However, a configuration that initially involves heating of the outer surface of the wellbore and later continuous injection of warm water at low rates (Case C) appears to deliver optimum performance over the period it takes for the exhaustion of the hydrate deposit. Using Case C as the standard, we determine that gas production from PA hydrate deposits increases with the fluid withdrawal rate, the initial hydrate saturation and temperature, and with the formation permeability.

  12. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuels characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the projects objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

  13. Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009

    Gasoline and Diesel Fuel Update (EIA)

    Oil and Gas Field Code Master List With Data for 2015 | Release Date: February 24, 2016 | Next Release Date: February 2017 Previous Issues Year: 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1998 1997 1996 1995 Go Comprehensive listing of U.S. oil and gas field names. Oil and Gas Field Code Master List 2015 Definition of a Field A field is defined as "an area consisting of a single reservoir or multiple reservoirs all grouped on, or related to, the same

  14. Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995

    SciTech Connect (OSTI)

    Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

    1995-12-01

    A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

  15. Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Leslie Eudy ManTech Environmental Technology, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S.

  16. Sensitivity of natural gas HCCI combustion to fuel and operating parameters using detailed kinetic modeling

    SciTech Connect (OSTI)

    Aceves, S; Dibble, R; Flowers, D; Smith, J R; Westbrook, C K

    1999-07-19

    This paper uses the HCT (Hydrodynamics, Chemistry and Transport) chemical kinetics code to analyze natural gas HCCI combustion in an engine. The HCT code has been modified to better represent the conditions existing inside an engine, including a wall heat transfer correlation. Combustion control and low power output per displacement remain as two of the biggest challenges to obtaining satisfactory performance out of an HCCI engine, and these are addressed in this paper. The paper considers the effect of natural gas composition on HCCI combustion, and then explores three control strategies for HCCI engines: DME (dimethyl ether) addition, intake heating and hot EGR addition. The results show that HCCI combustion is sensitive to natural gas composition, and an active control may be required to compensate for possible changes in composition. The three control strategies being considered have a significant effect in changing the combustion parameters for the engine, and should be able to control HCCI combustion.

  17. Lightweight proppants for deep-gas-well stimulation. Third annual report, July 1, 1981-June 30, 1982

    SciTech Connect (OSTI)

    Cutler, R.A.; Enniss, D.O.; Swartz, G.C.; Jones, A.H.

    1983-04-01

    The need exists for lower-density, less-expensive proppants for use in hydraulic-fracturing treatments. Ceramics, fabricated as fully sintered or hollow spheres, are the best materials for obtaining economical proppants with adequate strength. Fabrication techniques are described for fabricating solid-porcelain proppants and hollow-ceramic proppants. Porcelain proppants made by mix-pelletization techniques have good characteristics for propping wells with closure stresses to 96.5 MPa (14,000 psi). The properties of porcelain proppants are compared with twelve commercially available or experimental proppants. Several of the proppants evaluated had adequate conductivity for most hydraulic-fracturing jobs and are less expensive than bauxite. A single-fluid nozzle, counter-current spray-drying technique was used to make hollow, spherical proppants. Alumina was used as the ceramic raw material for these spray-drying experiments, but the same technique can be used with other ceramic materials. Hollow proppants with strengths comparable to sand have been spray dried but further optimization of spray drying parameters is needed to achieve proppants with concentric voids and improved strength. Bauxite, mullite, alumina and mullite rods were fast fired in a plasma in order to see if it is feasible to sinter these materials rapidly. Fast firing appears to be an alternative method of sintering proppants and may reduce costs, thereby making proppants more cost competitive with sand. 42 figures, 20 tables.

  18. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  19. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and prevent oil and gas migration. The new rules would require operators to pressure-test casings used in Marcellus Shale wells; to use a minimum of two pressure barriers during...

  20. Genesis of a three-phase subsea metering system. [Oil and gas metering systems for subsea operations

    SciTech Connect (OSTI)

    Dowty, E.L.; Hatton, G.J.; Durrett, M.G. ); Dean, T.L.; Jiskoot, R.J.J.

    1993-08-01

    Periodic well flow testing is necessary to monitor well and reservoir performance over time to optimize decisions on well production rates and new well requirements through improved reservoir models, to determine the timing of well workovers, and to identify when wells become uneconomical to produce. A dedicated test separator' conventionally is used to meter individual wells. Fluids from a well are separated into the three component phases (oil, gas, and water) in a large vessel, and the flow rate of each phase is measured on the respective outlet lines from the vessel. The same method currently is used for subsea satellite developments by providing a dedicated test pipeline' from the subsea field to carry a selected well's production to a test separator for metering on the host platform. The capital cost of these systems rises rapidly with distance. Greater distances between the wellhead and flow test system increase the cost of the test pipeline and require larger and hence more expensive slug catchers and risers. Clearly, a subsea-based well-test system could result in large capital cost savings by eliminating the need for conventional test systems. This paper tracks the development of one subsea well test system from conception to field testing on the Tartan. A platform in the North Sea. This work defines the design requirements of the system, reviews system development and fabrication, describes modifications made as a result of initial field tests, and reports the results of topside tests completed through Dec. 1990.

  1. Natural Gas Gross Withdrawals from Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    14,414,287 13,247,498 12,291,070 12,504,227 10,759,545 10,384,119 1967-2014 U.S. State Offshore 259,848 234,236 208,970 204,667 186,887 159,337 1978-2014 Federal Offshore U.S....

  2. Natural Gas Gross Withdrawals from Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    14,414,287 13,247,498 12,291,070 12,504,227 10,759,545 10,384,119 1967-2014 U.S. State Offshore 259,848 234,236 208,970 204,667 186,887 159,337 1978-2014 Federal Offshore U.S. 1,878,928 1,701,665 1,355,489 1,028,474 831,636 720,400 1977-2014 Alaska 137,639 127,417 112,268 107,873 91,686 104,219 1967-2014 Alaska Onshore 96,685 85,383 76,066 74,998 64,537 81,565 1992-2014 Alaska State Offshore 40,954 42,034 36,202 32,875 27,149 22,654 1978-2014 Arkansas 164,316 152,108 132,230 121,684 107,666

  3. Natural Gas Gross Withdrawals from Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2015 Illinois NA NA NA NA NA NA 1991-2015 Indiana NA NA NA NA NA NA 1991-2015 Kentucky NA NA NA NA NA NA 1991-2015 Maryland NA NA NA NA NA NA 1991-2015 Michigan NA NA NA NA NA NA ...

  4. Natural Gas Gross Withdrawals from Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2016 Illinois NA NA NA NA NA NA 1991-2016 Indiana NA NA NA NA NA NA 1991-2016 Kentucky NA NA NA NA NA NA 1991-2016 Maryland NA NA NA NA NA NA 1991-2016 Michigan NA NA NA NA NA NA 1991-2016 Mississippi NA NA NA NA NA NA 1991-2016 Missouri NA NA NA NA NA NA 1991-2016 Nebraska NA NA NA NA NA NA 1991-2016 Nevada NA NA NA NA NA NA 1991-2016 New York NA NA NA NA NA NA 1991-2016 Oregon NA NA NA NA NA NA 1991

  5. Experience with pump gas seals

    SciTech Connect (OSTI)

    Nosowicz, J.; Schoepplein, W.

    1997-01-01

    The gas seal technology used in gas compressors has been successfully applied for emission-free sealing of liquid pumps in the past few years. The seals with pressurized gas supply systems are used as single or dual (tandem) seals. Gas seals, mainly as single seals, are frequently used as safety seals as well. Applying this non-contacting sealing system will result in reduced investment and operating cost. The paper discusses the sealing concept, operating performance, operating limits, gas-lubricated safety seals, field experience, and advantages.

  6. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Underground Storage",6,"Monthly","2/2016","1/15/1973" ,"Data 2","Change in Working Gas from Same Period Previous Year",2,"Monthly","2/2016","1/15/1973" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","ng_stor_sum_dcu_nus_m.xls" ,"Available from Web

  7. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect (OSTI)

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  8. Reduced gas pressure operation of sludge digesters: Expanded studies. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Previous investigations strongly suggested that the municipal anaerobic sludge digestion process could be enhanced by reactor operation with subatmospheric headspace pressures. Enhanced solids destruction and methane production along with increased process stability were observed in these earlier studies. However, due to the small scale of the anaerobic reactors used ( {approx}1.5 L), definitive steady-state measurements could not be obtained. These expanded studies were undertaken to verify and define the magnitude of the benefits that might be obtained with vacuum operation of sludge digesters. Four reactors ({approx}15.0 L) were fed municipal sludge at three different organic loading rates while being maintained with a 15-day solids retention time. One reactor had a constant headspace pressure of 1.02 atm; a second was maintained at 0.75 atm; and the remaining two reactors were operated for the majority of the day at 1.02 atm, and for part of the day with a 0.75 atm headspace pressure. Additional small-scale, batch experiments were performed to help identify controlling digestion mechanisms. The results of these expanded studies indicate that vacuum operation did not yield significant advantages over the organic loading range investigated (0.088 to 0.352 lb VSS/ft{sup 3}{center_dot}d).

  9. Texas Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Working Gas) ... Underground Working Natural Gas in Storage - All Operators Texas Underground Natural Gas ...

  10. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    DOE Patents [OSTI]

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  11. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    SciTech Connect (OSTI)

    Chan, L. S. Tan, D. Saboohi, S. Yap, S. L. Wong, C. S.

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup ?5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup ?4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  12. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    SciTech Connect (OSTI)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-15

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  13. A safety equipment list for rotary mode core sampling systems operation in single shell flammable gas tanks

    SciTech Connect (OSTI)

    SMALLEY, J.L.

    1999-05-18

    This document identifies all interim safety equipment to be used for rotary mode core sampling of single-shell flammable gas tanks utilizing Rotary Mode Core Sampling systems (RMCS). This document provides the safety equipment for RMCS trucks HO-68K-4600, HO-68K-4647, trucks three and four respectively, and associated equipment. It is not intended to replace or supersede WHC-SD-WM-SEL-023, (Kelly 1991), or WHC-SD-WM-SEL-032, (Corbett 1994), which classifies 80-68K-4344 and HO-68K-4345 respectively. The term ''safety equipment'' refers to safety class (SC) and safety significant (SS) equipment, where equipment refers to structures, systems and components (SSC's). The identification of safety equipment in this document is based on the credited design safety features and analysis contained in the Authorization Basis (AB) for rotary mode core sampling operations in single-shell flammable gas tanks. This is an interim safety classification since the AB is interim. This document will be updated to reflect the final RMCS equipment safety classification designations upon completion of a final AB which will be implemented with the release of the Final Safety Analysis Report (FSAR).

  14. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    SciTech Connect (OSTI)

    Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-06-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  15. Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling

    SciTech Connect (OSTI)

    Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

    2009-09-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  16. Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.

    SciTech Connect (OSTI)

    Sampath, Sanjay

    2015-04-02

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is being taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness and resulted in improved TBC lifetimes. Processing based approaches of identifying optimal processing regimes deploying advanced in-situ coating property measurements and in-flight diagnostic tools were used to develop process maps for bond coats. Having established a framework for the bond coat processing using the HVOF process, effort were channeled towards fabrication of APS and VPS bond coats with the same material composition. Comparative evaluation of the three deposition processes with regard to their microstrcuture , surface profiles and TBC performance were carried out and provided valuable insights into factors that require concurrent consideration for the development of bond coats for advanced TBC systems. Over the course of this program several advancements were made on the development of durable thermal barrier coatings. Process optimization techniques were utilized to identify processing regimes for both conventional YSZ as well as other TBC compositions such as Gadolinium Zirconate and other Co-doped materials. Measurement of critical properties for these formed the initial stages of the program to identify potential challenges in their implementation as part of a TBC system. High temperature thermal conductivity measurements as well as sintering behavior of both YSZ and GDZ coatings were evaluated as part of initial efforts to undersand the influence of processing on coating properties. By effectively linking fundamental coating properties of fracture toughness and elastic modulus to the cyclic performance of coatings, a durability strategy for APS YSZ coatings was developed. In order to meet the goals of fabricating a multimaterial TBC system further research was carried out on the development of a gradient thermal conductivity model and the evaluation of sintering behavior of multimaterial coatings. Layer optimization for desired properties in the multimaterial TBC was achieved by an iterative feedback approach utilizing process maps and in-situ and ex-situ coating property sensors. Addressing the challenges pertaining to the integration of the two materials YSZ and GDZ led to one of most the critical outcomes of this program, the development of durable multimaterial, multifunctional TBC systems.

  17. Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar...

  18. BUFFERED WELL FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output:

  19. Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing operations. Annual report, January 1--December 31, 1992

    SciTech Connect (OSTI)

    1992-12-31

    Natural gas hydrates are solid crystalline compounds which form when molecules smaller than n-butane contact molecules of water at elevated pressures and reduced temperatures, both above and below the ice point. Because these crystalline compounds plug flow channels, they are undesirable. In this project the authors proposed an alternate approach of controlling hydrate formation by preventing hydrate growth into a sizeable mass which could block a flow channel. The authors call this new technique kinetic inhibition, because while it allows the system to exist in the hydrate domain, it prevents the kinetic agglomeration of small hydrate crystals to the point of pluggage of a flow channel. In order to investigate the kinetic means of inhibiting hydrate formation, they held two consortium meetings, on June 1, 1990 and on August 31, 1990. At subsequent meetings, the authors determined the following four stages of the project, necessary to reach the goal of determining a new hydrate field inhibitor: (1) a rapid screening method was to be determined for testing the hydrate kinetic formation period of many surfactants and polymer candidates (both individually and combined), the present report presents the success of two screening apparatuses: a multi-reactor apparatus which is capable of rapid, high volume screening, and the backup screening method--a viscometer for testing with gas at high pressure; (2) the construction of two high, constant pressure cells were to experimentally confirm the success of the chemicals in the rapid screening apparatus; (3) in the third phase of the work, Exxon volunteered to evaluate the performance of the best chemicals from the previous two stages in their 4 inch I.D. Multiphase flow loop in Houston; (4) in the final phase of the work, the intention was to take the successful kinetic inhibition chemicals from the previous three stages and then test them in the field in gathering lines and wells from member companies.

  20. Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar power Finished groundwater well head with solar power How does LANL determine where to put a monitoring well? Project teams routinely review groundwater monitoring data to verify adequate placement of wells and to plan the siting of additional wells as needed. RELATED IMAGES

  1. Field Test Report: Preliminary Aquifer Test Characterization Results for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design

    SciTech Connect (OSTI)

    Spane, Frank A.; Newcomer, Darrell R.

    2009-09-23

    This report examines the hydrologic test results for both local vertical profile characterization and large-scale hydrologic tests associated with a new extraction well (well 299-W15-225) that was constructed during FY2009 for inclusion within the future 200-West Area Groundwater Treatment System that is scheduled to go on-line at the end of FY2011. To facilitate the analysis of the large-scale hydrologic test performed at newly constructed extraction well 299-W15-225 (C7017; also referred to as EW-1 in some planning documents), the existing 200-ZP-1 interim pump-and-treat system was completely shut-down ~1 month before the performance of the large-scale hydrologic test. Specifically, this report 1) applies recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of hydrologic test and pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses for a preliminary determination of large-scale hydraulic properties, and 3) provides an assessment of the vertical distribution of hydraulic conductivity in the vicinity of newly constructed extraction well 299-W15-225. The hydrologic characterization approach presented in this report is expected to have universal application for meeting the characterization needs at other remedial action sites located within unconfined and confined aquifer systems.

  2. Water management technologies used by Marcellus Shale Gas Producers.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  3. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  4. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect (OSTI)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  5. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  6. Use of data obtained from core tests in the design and operation of spent brine injection wells in geopressured or geothermal systems

    SciTech Connect (OSTI)

    Jorda, R.M.

    1980-03-01

    The effects of formation characteristics on injection well performance are reviewed. Use of data acquired from cores taken from injection horizons to predict injectivity is described. And methods for utilizing data from bench scale testing of brine and core samples to optimize injection well design are presented. Currently available methods and equipment provide data which enable the optimum design of injection wells through analysis of cores taken from injection zones. These methods also provide a means of identifying and correcting well injection problems. Methods described in this report are: bulk density measurement; porosity measurement; pore size distribution analysis; permeability measurement; formation grain size distribution analysis; core description (lithology) and composition; amount, type and distribution of clays and shales; connate water analysis; consolidatability of friable reservoir rocks; grain and pore characterization by scanning electron microscopy; grain and pore characterization by thin section analysis; permeability damage and enhancement tests; distribution of water-borne particles in porous media; and reservoir matrix acidizing effectiveness. The precise methods of obtaining this information are described, and their use in the engineering of injection wells is illustrated by examples, where applicable. (MHR)

  7. Development of a Low NOx Medium-Sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    2009-11-01

    Solar Turbines Inc., in collaboration with Pennsylvania State University and the University of Southern California, will develop injector technologies for gas turbine use of high-hydrogen content renewable and opportunity fuels derived from coal, biomass, industrial process waste, or byproducts. This project will develop low-emission technology for alternate fuels with high-hydrogen content, thereby reducing natural gas requirements and lowering carbon intensity.

  8. Lease Operations Environmental Guidance Document

    SciTech Connect (OSTI)

    Bureau of Land Management

    2001-02-14

    This report contains discussions in nine different areas as follows: (1) Good Lease Operating Practices; (2) Site Assessment and Sampling; (3) Spills/Accidents; (4) Containment and Disposal of Produced Waters; (5) Restoration of Hydrocarbon Impacted Soils; (6) Restoration of Salt Impacted Soils; (7) Pit Closures; (8) Identification, Removal and Disposal of Naturally Occurring Radioactive Materials (NORM); and (9) Site Closure and Construction Methods for Abandonment Wells/Locations. This report is primary directed towards the operation of oil and gas producing wells.

  9. A safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-SY-101: Hanford Site,Richland, Washington

    SciTech Connect (OSTI)

    Lentsch, J.W.

    1996-07-01

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101,which is located within the Hanford Site, Richland, Washington.The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  10. Safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-101-SY: Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Lentsch, J.W., Westinghouse Hanford

    1996-05-16

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101, which is located within the Hanford Site, Richland, Washington. The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  11. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  12. Monitoring well

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  13. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  14. Eastern Gas Shales Project: Pennsylvania No. 4 well, Indiana County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    1981-10-01

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Pennsylvania No. 4 well. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data presented was obtained from the study of approximately 891 feet of core retrieved from a well drilled in Indiana County of west-central Pennsylvania.

  15. Eastern Gas Shales Project: Pennsylvania No. 1 well, McKean County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    1981-10-01

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Pennsylvania No. 1 well. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data presented was obtained from the study of approximately 741 feet of core retrieved from a well drilled in MeKean County of north-central Pennsylvania.

  16. Cliff Minerals, Inc. Eastern Gas Shales Project, Ohio No. 6 wells - Gallia County. Phase III report. Summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    1981-07-01

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Ohio No. 6 wells. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. This data presented were obtained from a study of approximately 1522 feet of core retrieved from five wells drilled in Gallia County in southeastern Ohio.

  17. Eastern Gas Shales Project: Michigan No. 2 well, Otsego County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    1981-11-01

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Michigan No. 2 well. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data was obtained from the study of approximately 249 feet of core retrived from a well drilled in Otsego County of north-central Michigan (lower peninsula).

  18. Eastern Gas Shales Project: West Virginia No. 7 well, Wetzel County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    1981-12-01

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-West Virginia No. 7 well. Information provided includes a stratigraphic summary and lithiology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technological University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data presented was obtained from the study of approximately 533 feet of core retrieved from a well drilled in Wetzel county of north-central West Virginia.

  19. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2002-01-01

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  20. HIGH PRESSURE GAS REGULATOR

    DOE Patents [OSTI]

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  1. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Energy Savers [EERE]

    Water Key Points: * As with conventional oil and gas development, requirements from eight federal (including the Clean Water Act) and numerous state and local environmental and public health laws apply to shale gas and other unconventional oil and gas development. Consequently, the fracturing of wells is a process that is highly engineered, controlled and monitored. * Shale gas operations use water for drilling; water is also the primary component of fracturing fluid. * This water is likely to

  2. Final report on Technical Demonstration and Economic Validation of Geothermally-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    SciTech Connect (OSTI)

    Luchini, Chris B.

    2015-06-01

    The initial geothermal brine flow rate and temperature from the re-worked well were insufficient, after 2.5 days of flow testing, to justify advancing past Phase I of this project. The flow test was terminated less than 4 hours from the Phase I deadline for activity, and as such, additional flow tests of 2+ months may be undertaken in the future, without government support.

  3. Well pump

    DOE Patents [OSTI]

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  4. Natural Gas Citygate Price

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas ... Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports ...

  5. Natural Gas Industrial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas ... Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports ...

  6. Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production

    SciTech Connect (OSTI)

    Carl Marcel Stoots; Lee Shunn; James O'Brien

    2010-06-01

    The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

  7. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  8. Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug

    SciTech Connect (OSTI)

    McIntyre, D.L.; Woodruff, S.D.; McMillian, M.H.; Richardson, S.W.; Gautam, Mridul

    2008-04-01

    To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.

  9. A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers

    SciTech Connect (OSTI)

    Barcellan, L.; Carugno, G.; Berto, E.; Galet, G.; Galeazzi, G.; Borghesani, A. F.

    2011-09-15

    We report on the design of a new type of hot-filament electron gun delivering fairly high current (a few hundreds of {mu} A) at high voltage (up to 100 kV) in continuous or pulsed mode. Its novel features are that the filament is heated by means of a pack of rechargeable batteries floated atop the high-voltage power supply in order to get rid of bulky isolation transformers, and that the filament current and, hence, the electron gun current, is controlled by a feedback circuit including a superluminescent diode decoupled from the high voltage by means of an optical fiber. This electron gun is intended for general purposes, although we have especially developed it to meet the needs of our experiment on the infrared emission spectroscopy of rare gas excimers. Our experiment requires that the charge injection into the sample is pulsed and constant and stable in time. The new electron gun can deliver several tens of nC per pulse of electrons of energy up to 100 keV into the sample cell. The new design also eliminates ripples in the emission current and ensures up to 12 h of stable performance.

  10. Natural Gas Gross Withdrawals from Oil Wells

    Gasoline and Diesel Fuel Update (EIA)

    5,674,120 5,834,703 5,907,919 4,965,833 5,404,699 5,922,088 1967-2014 U.S. State Offshore 327,105 341,365 340,182 284,838 318,431 355,472 1978-2014 Federal Offshore U.S. 606,403...

  11. Natural Gas Gross Withdrawals from Coalbed Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    2,010,171 1,916,762 1,779,055 1,539,395 1,425,783 1,285,189 2002-2014 Alaska 0 0 0 0 0 0 2002-2014 Alaska Onshore 0 0 0 0 0 0 2007-2014 Arkansas 0 0 0 0 0 0 2006-2014 California 0...

  12. Natural Gas Gross Withdrawals from Coalbed Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    2,010,171 1,916,762 1,779,055 1,539,395 1,425,783 1,285,189 2002-2014 Alaska 0 0 0 0 0 0 2002-2014 Alaska Onshore 0 0 0 0 0 0 2007-2014 Arkansas 0 0 0 0 0 0 2006-2014 California 0 0 0 0 0 0 2002-2014 Colorado 544,215 529,891 514,531 376,543 449,281 419,132 2002-2014 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 2002-2014 Kansas 43,661 38,869 35,924 31,689 28,244 25,365 2002-2014 Louisiana 0 0 0 0 0 0 2002-2014 Louisiana Onshore 0 0 0 0 0 0 2007-2014 Montana 12,376 9,920 6,691 3,731 1,623 5,766

  13. Natural Gas Gross Withdrawals from Oil Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    5,674,120 5,834,703 5,907,919 4,965,833 5,404,699 5,922,088 1967-2014 U.S. State Offshore 327,105 341,365 340,182 284,838 318,431 355,472 1978-2014 Federal Offshore U.S. 606,403 598,679 512,003 526,664 522,515 583,058 1977-2014 Alaska 3,174,747 3,069,683 3,050,654 3,056,918 3,123,671 3,064,346 1967-2014 Alaska Onshore 2,858,211 2,741,569 2,722,154 2,782,486 2,818,418 2,721,864 1992-2014 Alaska State Offshore 316,537 328,114 328,500 274,431 305,253 342,482 1978-2014 Arkansas 5,743 5,691 9,291

  14. Number of Producing Gas Wells (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries

  15. Natural Gas Gross Withdrawals from Oil Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    1-2015 Illinois NA NA NA NA NA NA 1991-2015 Indiana NA NA NA NA NA NA 1991-2015 Kentucky NA NA NA NA NA NA 1991-2015 Maryland NA NA NA NA NA NA 1991-2015 Michigan NA NA NA NA NA NA ...

  16. Natural Gas Gross Withdrawals from Coalbed Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    2002-2016 Alaska NA NA NA NA NA NA 2002-2016 Arkansas NA NA NA NA NA NA 2006-2016 California NA NA NA NA NA NA 2002-2016 Colorado NA NA NA NA NA NA 2002-2016 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2002-2016 Kansas NA NA NA NA NA NA 2002-2016 Louisiana NA NA NA NA NA NA 2002-2016 Montana NA NA NA NA NA NA 2002-2016 New Mexico NA NA NA NA NA NA 2002-2016 North Dakota NA NA NA NA NA NA 2002-2016 Ohio NA NA NA NA NA NA 2006-2016 Oklahoma NA NA NA NA NA NA 2002-2016 Pennsylvania NA NA NA

  17. Natural Gas Gross Withdrawals from Coalbed Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    2002-2016 Alaska NA NA NA NA NA NA 2002-2016 Arkansas NA NA NA NA NA NA 2006-2016 California NA NA NA NA NA NA 2002-2016 Colorado NA NA NA NA NA NA 2002-2016 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2002-2016 Kansas NA NA NA NA NA NA 2002-2016 Louisiana NA NA NA NA NA NA 2002-2016 Montana NA NA NA NA NA NA 2002-2016 New Mexico NA NA NA NA NA NA 2002-2016 North Dakota NA NA NA NA NA NA 2002-2016 Ohio NA NA NA NA NA NA 2006-2016 Oklahoma NA NA NA NA NA NA 2002-2016 Pennsylvania NA NA NA

  18. Natural Gas Gross Withdrawals from Oil Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    1-2016 Illinois NA NA NA NA NA NA 1991-2016 Indiana NA NA NA NA NA NA 1991-2016 Kentucky NA NA NA NA NA NA 1991-2016 Maryland NA NA NA NA NA NA 1991-2016 Michigan NA NA NA NA NA NA 1991-2016 Mississippi NA NA NA NA NA NA 1991-2016 Missouri NA NA NA NA NA NA 1991-2016 Nebraska NA NA NA NA NA NA 1991-2016 Nevada NA NA NA NA NA NA 1991-2016 New York NA NA NA NA NA NA 1991-2016 Oregon NA NA NA NA NA NA 1996

  19. New guidelines should enhance coiled tubing well control security

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II

    1997-12-01

    The use of coiled tubing (CT) technology in well servicing operations has expanded dramatically in recent years, becoming a staple of remedial and workover programs. The advantages of CT services are numerous and well defined. As a result, the capabilities of this continuous-length tube technology have been exploited in applications such as high-pressure CT (HPCT), pushing the performance envelope into critical operations. In recent years, the mechanical capability and limitations of CT equipment components have become further defined, enhancing the safe working conditions of the prescribed operations. However, safety in coiled tubing operations is not only the product of equipment design, but of proper planning and identification of potential hazards. The following article highlights safety guidelines related to CT well control stack components as published in API RP 5C7, Recommended Practice for Coiled Tubing Operations in Oil and Gas Well Services (Dec. 1, 1996). API standards are published to facilitate the broad availability of proven engineering and operating practices, and are not intended to obviate the need for applying sound engineering judgment regarding when and where these standards should be utilized. Therefore, these standards should be considered the minimum safety requirements for well service operations, both onshore and offshore. These recommended practice guidelines have been prepared to reflect use by both operators and contract personnel.

  20. Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

  1. Successful Oil and Gas Technology Transfer Program Extended to 2015

    Broader source: Energy.gov [DOE]

    The Stripper Well Consortium - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy.

  2. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and prevent oil and gas migration. The new rules would require operators to pressure-test casings used in Marcellus Shale wells; to use a minimum of two pressure barriers during...

  3. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  4. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  5. Historical Natural Gas Annual

    Gasoline and Diesel Fuel Update (EIA)

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  6. X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well

    SciTech Connect (OSTI)

    Kneafsey, T.J.; Rees, E.V.L.

    2010-03-01

    When maintained under hydrate-stable conditions, methane hydrate in laboratory samples is often considered a stable and immobile solid material. Currently, there do not appear to be any studies in which the long-term redistribution of hydrates in sediments has been investigated in the laboratory. These observations are important because if the location of hydrate in a sample were to change over time (e.g. by dissociating at one location and reforming at another), the properties of the sample that depend on hydrate saturation and pore space occupancy would also change. Observations of hydrate redistribution under stable conditions are also important in understanding natural hydrate deposits, as these may also change over time. The processes by which solid hydrate can move include dissociation, hydrate-former and water migration in the gas and liquid phases, and hydrate formation. Chemical potential gradients induced by temperature, pressure, and pore water or host sediment chemistry can drive these processes. A series of tests were performed on a formerly natural methane-hydrate-bearing core sample from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, in order to observe hydrate formation and morphology within this natural sediment, and changes over time using X-ray computed tomography (CT). Long-term observations (over several weeks) of methane hydrate in natural sediments were made to investigate spatial changes in hydrate saturation in the core. During the test sequence, mild buffered thermal and pressure oscillations occurred within the sample in response to laboratory temperature changes. These oscillations were small in magnitude, and conditions were maintained well within the hydrate stability zone.

  7. Pulse Wave Well Development Demonstration

    SciTech Connect (OSTI)

    Burdick, S.

    2001-02-23

    Conventional methods of well development at the Savannah River Site generate significant volumes of investigative derived waste (IDW) which must be treated and disposed of at a regulated Treatment, Storage, or Disposal (TSD) facility. Pulse Wave technology is a commercial method of well development utilizing bursts of high pressure gas to create strong pressure waves through the well screen zone, extending out into the formation surrounding the well. The patented process is intended to reduce well development time and the amount of IDW generated as well as to micro-fracture the formation to improve well capacity.

  8. Safety aspects of gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely.

  9. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  10. Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 621 864 978 1970's 813 214 244 298 133 93 75 82 88 28 1980's 68 56 36 31 60 39 20 44 29 34...

  11. Nebraska Natural Gas Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,180 5,681 4,739 1970's 3,990 3,028 2,779 2,610 2,194 1,605 899 627 766 578 1980's 566 622 477...

  12. Indiana Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 106 234 171 1970's 153 537 355 276 176 346 192 183 163 350 1980's 463 330 233 135 394 367 365...

  13. Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 139,608 136,972 133,105 1970's 123,737 107,727 94,320 90,776 76,295 74,367 73,138 84,993 135,283...

  14. Missouri Natural Gas Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 22 9 33 33 30 29 20 1980's 4 4 4 4 4 4 1990's 7 15 27 14 8 16 25 5 0 0 2000's 0 0...

  15. Florida Natural Gas Gross Withdrawals from Gas Wells (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 17,182 16,459 19,742...

  16. Oregon Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 5 5 3 3 2,790 4,080 4,600 3,800 4,000 2,500 1990's 2,815 2,741 2,580 4,003 4,200 2,520...

  17. Colorado Natural Gas Gross Withdrawals from Gas Wells (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 89,866 93,556 92,133 1970's 93,221 84,303 94,401 105,541 108,962 130,743 134,110 138,306 129,412...

  18. Ohio Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,291 33,742 38,540 1970's 39,694 61,845 72,765 76,931 77,114 85,810 89,780 99,657 115,239 124,665 1980's 138,856 141,134 138,391 151,300 186,480 182,245 182,072 166,593 166,690 159,730 1990's 154,619 147,651 144,815 137,285 132,151 126,336 119,251 116,246 108,542 103,541 2000's 98,551 97,272 97,154 87,993 85,018 77,819 81,155 82,812 79,769 83,511 2010's 73,459 30,655 65,025 55,583 78,204

  19. Pennsylvania Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 89,751 87,627 763 1970's 76,716 74,081 71,498 76,234 82,735 84,772 89,485 91,792 97,763 96,313 1980's 97,439 122,454 121,111 118,372 166,342 150,234 159,889 163,318 167,089 191,774 1990's 171,748 152,500 138,675 132,130 120,506 111,000 135,000 80,000 130,317 174,701 2000's 150,000 130,853 157,800 159,827 197,217 168,501 175,950 182,277 188,538 184,795 2010's 173,450 242,305 210,609 207,872 174,576

  20. New Mexico Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 774,007 873,211 837,521 1970's 832,771 861,520 944,463 954,632 944,515 915,370 939,491 935,731...

  1. Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 88,817 88,709 81,086 1970's 77,695 72,546 63,648 62,396 71,876 60,511 66,137 60,902 70,044 59,520 1980's 57,180 61,312 51,924 46,720 61,518 73,126 80,195 70,125 73,629 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,869 76,770 2000's 81,545 81,723 88,259 87,608 94,259 92,795 95,320 95,437 112,587 111,782 2010's 133,521 122,578 106,122 94,665 78,737

  2. Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 621 864 978 1970's 813 214 244 298 133 93 75 82 88 28 1980's 68 56 36 31 60 39 20 44 29 34 1990's 22 29 33 28 26 22 135 118 63 18 2000's 34 32 22 48 34 46 48 35 28 43 2010's 43 34 44 32 20

  3. Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 139,608 136,972 133,105 1970's 123,737 107,727 94,320 90,776 76,295 74,367 73,138 84,993 135,283 180,353 1980's 202,711 220,273 209,874 188,767 195,387 180,212 194,954 210,520 222,539 184,000 1990's 180,609 158,617 145,153 129,395 112,205 113,401 117,412 119,347 120,588 121,004 2000's 109,041 131,608 142,070 156,727 171,915 184,406 207,569 259,001 331,673 337,168 2010's 387,026 429,829 404,457 47,385

  4. Missouri Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 22 9 33 33 30 29 20 1980's 4 4 4 4 4 4 1990's 7 15 27 14 8 16 25 5 0 0 2000's 0 0 0 0 0 0 0 0 NA NA 2010's NA NA NA 8 8

  5. Natural Gas Gross Withdrawals from Shale Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    3,958,315 5,817,122 8,500,983 10,532,858 11,932,524 13,754,150 2007-2014 Arkansas 510,554 769,679 935,237 1,021,484 1,029,095 1,015,582 2007-2014 California 102,027 95,505 94,349 87,854 94,268 107,513 2007-2014 California Onshore 55,344 107,513 2012-2014 Colorado 180,310 195,131 211,488 228,796 247,046 255,911 2007-2014 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 2007-2014 Kansas 0 0 0 0 0 0 2007-2014 Louisiana 400,594 1,242,678 2,088,306 2,130,551 1,534,372 1,199,807 2007-2014 Louisiana Onshore

  6. Natural Gas Gross Withdrawals from Shale Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    958,315 5,817,122 8,500,983 10,532,858 11,932,524 13,754,150 2007-2014 Arkansas 510,554 769,679 935,237 1,021,484 1,029,095 1,015,582 2007-2014 California 102,027 95,505 94,349 87,854 94,268 107,513 2007-2014 California Onshore 55,344 107,513 2012-2014 Colorado 180,310 195,131 211,488 228,796 247,046 255,911 2007-2014 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 2007-2014 Kansas 0 0 0 0 0 0 2007-2014 Louisiana 400,594 1,242,678 2,088,306 2,130,551 1,534,372 1,199,807 2007-2014 Louisiana Onshore

  7. Nebraska Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,180 5,681 4,739 1970's 3,990 3,028 2,779 2,610 2,194 1,605 899 627 766 578 1980's 566 622 477 330 354 270 278 583 322 285 1990's 114 126 486 1,391 2,093 1,557 1,328 1,144 1,214 1,040 2000's 869 886 904 1,187 1,229 943 1,033 1,331 2,862 2,734 2010's 2,092 1,854 1,317 1,027 400

  8. New York Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    2,202 3,679 4,539 4,990 7,628 9,235 10,682 13,900 15,500 1980's 15,650 19,000 18,481 20,666 26,300 32,601 32,050 27,031 26,423 24,343 1990's 24,010 21,877 22,697 20,587 19,937...

  9. Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-6 Year-7 Year-8 Year-9 1960's 5,070,825 5,623,961 6,305,897 1970's 6,811,334 7,011,666 6,924,204 7,347,732 7,037,239 6,455,690 6,365,774 6,612,018 6,860,529 6,743,420...

  10. Natural Gas Gross Withdrawals from Shale Gas Wells (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,869,960 3,958,315 5,817,122 8,500,983 10,532,858 11,896,204 2007-2013 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 2007-2013 Alabama 0 0 0 0 0 0 2007-2013 Arizona 0 0 0 0 0 0...

  11. Natural Gas Gross Withdrawals from Shale Gas Wells (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2007-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2007-2015 Alabama NA NA NA NA NA NA 2007-2015 Arizona NA NA NA NA NA NA 2007-2015 Arkansas NA NA NA NA NA NA 2007-2015...

  12. Ohio Natural Gas Withdrawals from Gas Wells (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-9 1960's 34,291 33,742 38,540 1970's 39,694 61,845 72,765 76,931 77,114 85,810 89,780 99,657 115,239 124,665 1980's 138,856 141,134 138,391 151,300 186,480 182,245 182,072...

  13. Tennessee Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 99 25 20 17 27 47 263 468 941 1980's 478 521 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 NA 4,700 5,478 2010's 5,144 4,851 5,825 5,400 5,294

  14. Virginia Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,818 3,389 2,846 1970's 2,805 2,619 2,787 5,101 7,096 6,723 6,937 8,220 8,492 8,544 1980's 7,812 8,903 6,880 4,346 8,928 15,041 15,427 19,520 18,682 17,935 1990's 14,774 14,906 24,733 37,840 50,259 49,818 54,290 58,249 57,263 72,189 2000's 71,545 71,543 76,915 143,644 85,508 88,610 103,027 6,681 7,419 16,046 2010's 23,086 20,375 21,802 26,815 27,052

  15. Virginia Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  16. Pennsylvania Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  17. Tennessee Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  18. California Natural Gas Gross Withdrawals from Gas Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 287,681 505,605 294,026 1970's 296,001 293,254 304,049 291,984 222,673 173,499 174,477 171,600 220,373 172,776 1980's 152,441 207,476 162,550 186,044 235,002 243,263 225,007 193,394 174,698 146,771 1990's 146,252 170,242 154,055 120,205 113,525 93,808 86,431 78,800 81,097 89,842 2000's 94,465 94,790 92,050 90,368 79,823 87,599 94,612 93,249 91,460 82,288 2010's 73,017 63,902 91,904 88,203 75,684

  19. Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 199 183 158 1970's 198 498 1,194 1,638 1,436 1,440 1,556 1,003 1,159 1,585 1980's 1,334 1,282 993 858 1,400 1,228 1,446 1,156 1,157 1,268 1990's 653 453 337 330 323 325 289 224 203 189 2000's 183 180 174 169 165 161 165 1,389 1,188 1,438 2010's 1,697 2,114 2,125 2,887 2,626

  20. Indiana Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 106 234 171 1970's 153 537 355 276 176 346 192 183 163 350 1980's 463 330 233 135 394 367 365 217 412 416 1990's 399 232 174 192 107 249 360 526 615 855 2000's 899 1,064 1,309 1,464 3,401 3,135 2,921 3,606 4,701 4,927 2010's 6,802 9,075 8,814 7,938 6,616