Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 152 170 165 195 224 Production (million cubic feet)...

2

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 280 300 225 240 251 Production (million cubic feet)...

3

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 22,442 22,117 23,554 18,774 16,718 Production...

4

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

2004 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year... 341,678 373,304 387,772 393,327 405,048 Production...

5

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 1,169 1,244 1,232 1,249 1,272 Production (million...

6

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

7

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

8

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

9

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

10

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

11

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

12

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

13

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

14

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

15

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

16

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

17

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

18

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

19

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

20

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

22

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

23

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

24

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

25

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

26

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

27

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

28

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

29

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

30

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

31

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

32

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

33

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

34

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

35

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

36

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

37

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

38

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

39

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

40

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

42

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

43

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

44

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

45

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

46

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

47

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

48

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

49

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

50

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

51

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

52

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

53

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

54

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

55

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

56

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

57

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

58

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,948 35,217 35,873 37,100 38,574 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,484,269 1,484,856 1,432,966 1,391,916 1,397,934 From Oil Wells.................................................. 229,437 227,534 222,940 224,263 246,804 Total................................................................... 1,713,706 1,712,390 1,655,906 1,616,179 1,644,738 Repressuring ...................................................... 15,280 20,009 20,977 9,817 8,674 Vented and Flared.............................................. 3,130 3,256 2,849 2,347 3,525 Wet After Lease Separation................................

59

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

60

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

62

Number of Producing Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Producing Gas Wells Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2007 2008 2009 2010 2011 2012 View History U.S. 452,945 476,652 493,100 487,627 514,637 482,822 1989-2012 Alabama 6,591 6,860 6,913 7,026 7,063 6,327 1989-2012 Alaska 239 261 261 269 277 185 1989-2012 Arizona 7 6 6 5 5 5 1989-2012 Arkansas 4,773 5,592 6,314 7,397 8,388 8,538 1989-2012 California 1,540 1,645 1,643 1,580 1,308 1,423 1989-2012 Colorado 22,949 25,716 27,021 28,813 30,101 32,000 1989-2012 Gulf of Mexico 2,552 1,527 1,984 1,852 1,559 1,474 1998-2012 Illinois 43 45 51 50 40 40 1989-2012 Indiana 2,350 525 563 620 914 819 1989-2012 Kansas

63

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 15:

64

Mississippi Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

65

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

66

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

67

Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

68

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

69

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

70

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

71

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

72

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

73

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

74

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

75

Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

76

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

77

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

78

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Count) Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

79

North Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

80

West Virginia Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

New York Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

82

New Mexico Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

83

South Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas...

84

U.S. Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

85

Missouri Natural Gas Number of Gas and Gas Condensate ...  

U.S. Energy Information Administration (EIA)

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

86

Coal gas openhole completion well effectiveness in the Piceance Basin, Colorado: Preliminary results, South Shale Ridge [number sign]11-15 well  

SciTech Connect

Since 1983, the Deep Coal Seam Project (DCSP) and the Western Cretaceous Coal Seam Project (WCCSP) of the Gas Research institute has funded research efforts in the Piceance and San Juan basins of Colorado and New Mexico to further the knowledge of all facets of commercial coalbed natural gas reservoir development. Because of WCCSP research into openhole completion well effectiveness in the Fruitland play, and the need to complete a successful Cameo coal openhole well, the South Shale Ridge [number sign]11-15 well was deemed to be an excellent chance for technology transfer and evaluation. Because of implementation of carefully designed air mist drilling and controlled openhole completion techniques, along with a sufficient magnitude of cleat permeability, it appears that the [number sign]11-15 well is commercial. The cavity was installed without major problems. The initial gas production test rate of roughly 280 MCFGPD is one of the best in South Shale Ridge. The [number sign]11-15 well case study is quite important in that it may serve to emphasize the point that the conservative attitude towards commercialization of previously untapped petroleum resources is often not correct. It is now an open question as to whether the conventional wisdom that most of the Cameo coal gas play is too tight to enable commercial production is indeed true, or if by analogy with Fruitland openhole wells, Cameo coal wells that have been hydraulic fracture stimulated are commonly very poorly connected to the cleat permeability of the reservoir. There is no significant reason to believe that the South Shale Ridge area is geologically unique, and thus there is a distinct possibility that more widespread Cameo coal production than has been previously recorded can be achieved.

Close, J.C. (Resource Enterprises, Salt Lake City, UT (United States)); Dowden, D. (Conquest Oil Co., Greeley, CO (United States))

1992-01-01T23:59:59.000Z

87

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

88

Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and...  

Annual Energy Outlook 2012 (EIA)

Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements)...

89

Rigs Drilling Gas Wells Are At  

U.S. Energy Information Administration (EIA)

The increasing number of resulting gas well completions have been expanding production in major producing States, such as Texas. For the year 2000, ...

90

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA)

Natural Gas Gross Withdrawals and Production (Volumes in Million Cubic Feet) Data Series: ... coalbed production data are included in Gas Well totals.

91

Optimization of fractured well performance of horizontal gas wells  

E-Print Network (OSTI)

In low-permeability gas reservoirs, horizontal wells have been used to increase the reservoir contact area, and hydraulic fracturing has been further extending the contact between wellbores and reservoirs. This thesis presents an approach to evaluate horizontal well performance for fractured or unfractured gas wells and a sensitivity study of gas well performance in a low permeability formation. A newly developed Distributed Volumetric Sources (DVS) method was used to calculate dimensionless productivity index for a defined source in a box-shaped domain. The unique features of the DVS method are that it can be applied to transient flow and pseudo-steady state flow with a smooth transition between the boundary conditions. In this study, I conducted well performance studies by applying the DVS method to typical tight sandstone gas wells in the US basins. The objective is to determine the best practice to produce horizontal gas wells. For fractured wells, well performance of a single fracture and multiple fractures are compared, and the effect of the number of fractures on productivity of the well is presented based on the well productivity. The results from this study show that every basin has a unique ideal set of fracture number and fracture length. Permeability plays an important role on dictating the location and the dimension of the fractures. This study indicated that in order to achieve optimum production, the lower the permeability of the formation, the higher the number of fractures.

Magalhaes, Fellipe Vieira

2007-08-01T23:59:59.000Z

92

Texas Natural Gas Number of Industrial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of...

93

Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well ...  

U.S. Energy Information Administration (EIA)

Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, ... Total (Gross Withdrawals ... natural gas wells divided by the number of producing wells, ...

94

South Dakota Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers...

95

South Dakota Natural Gas Number of Residential Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential...

96

South Dakota Natural Gas Number of Industrial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers...

97

Natural Gas Gross Withdrawals from Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

98

Natural Gas Gross Withdrawals from Oil Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

99

Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Gas Wells...

100

South Dakota Natural Gas Withdrawals from Gas Wells (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) South Dakota Natural Gas Withdrawals from Gas Wells...

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Natural Gas Gross Withdrawals from Shale Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

102

Natural Gas Gross Withdrawals from Shale Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

103

Natural Gas Gross Withdrawals from Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

104

Dry Gas-Well Capacity per New Gas-Well Completions  

U.S. Energy Information Administration (EIA)

Appendix C Dry Gas-Well Capacity per New Gas-Well Completion Dry gas-well gas productive capacity of about one billion cubic feet per day is added per 1,000 new gas ...

105

Pennsylvania 1995 Vintage Gas Well History  

U.S. Energy Information Administration (EIA)

Pennsylvania 1995 Vintage Gas Well History. Energy Information Administration (U.S. Dept. of Energy)

106

West Virginia 1995 Vintage Gas Well History  

U.S. Energy Information Administration (EIA)

West Virginia 1995 Vintage Gas Well History. Energy Information Administration (U.S. Dept. of Energy)

107

North Dakota 1995 Vintage Gas Well History  

U.S. Energy Information Administration (EIA)

North Dakota 1995 Vintage Gas Well History. Energy Information Administration (U.S. Dept. of Energy)

108

Utah Natural Gas Number of Commercial Consumers (Number of Elements...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

109

Utah Natural Gas Number of Industrial Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

110

Utah Natural Gas Number of Residential Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

111

California Natural Gas Number of Industrial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

112

California Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

113

Ohio Natural Gas Number of Commercial Consumers (Number of Elements...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

114

Ohio Natural Gas Number of Residential Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

115

Ohio Natural Gas Number of Industrial Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

116

Wisconsin Natural Gas Number of Industrial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

117

Wisconsin Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

118

Wisconsin Natural Gas Number of Commercial Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

119

Michigan Natural Gas Number of Residential Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

120

Michigan Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Idaho Natural Gas Number of Industrial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

122

Idaho Natural Gas Number of Commercial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

123

Idaho Natural Gas Number of Residential Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

124

Connecticut Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

125

Hawaii Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

126

Kentucky Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

127

Tennessee Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

128

Maryland Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

129

Louisiana Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

130

Alabama Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

131

Oklahoma Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

132

Alaska Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

133

Kansas Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

134

Illinois Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

135

Maine Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

136

Florida Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

137

Iowa Natural Gas Number of Residential Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

138

Georgia Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

139

Arkansas Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

140

Missouri Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Montana Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

142

Nevada Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

143

Mississippi Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

144

Arizona Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

145

Pennsylvania Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

146

Nebraska Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

147

Minnesota Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

148

Massachusetts Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

149

Delaware Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

150

Vermont Natural Gas Number of Residential Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

151

Vermont Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

152

Vermont Natural Gas Number of Commercial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

153

Colorado Natural Gas Number of Industrial Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

154

Colorado Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

155

Colorado Natural Gas Number of Commercial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

156

Illinois Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

157

New Mexico Natural Gas Number of Industrial Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

158

New Mexico Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

(Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

159

New Mexico Natural Gas Number of Commercial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

(Number of Elements) New Mexico Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's...

160

Texas Natural Gas Number of Commercial Consumers (Number of Elements...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Texas Natural Gas Number of Residential Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

162

Natural Gas Prices: Well Above  

Gasoline and Diesel Fuel Update (EIA)

context, defined as the average, +- 2 standard deviations). EIA's forecast has natural gas prices gradually declining after the winter heating season, but still remaining high...

163

Rigs Drilling Gas Wells Are At - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The increasing number of resulting gas well completions have been expanding production in major producing States, such as Texas. For the year 2000, ...

164

Production Trends of Shale Gas Wells  

E-Print Network (OSTI)

To obtain better well performance and improved production from shale gas reservoirs, it is important to understand the behavior of shale gas wells and to identify different flow regions in them over a period of time. It is also important to understand best fracture and stimulation practice to increase productivity of wells. These objectives require that accurate production analysis be performed. For accurate production analysis, it is important to analyze the production behavior of wells, and field production data should be interpreted in such a way that it will identify well parameters. This can be done by performing a detailed analysis on a number of wells over whole reservoirs. This study is an approach that will lead to identifying different flow regions in shale gas wells that include linear and bilinear flow. Important field parameters can be calculated from those observations to help improve future performance. The detailed plots of several wells in this study show some good numbers for linear and bilinear flow, and some unique observations were made. The purpose of this work is to also manage the large amount of data in such a way that they can be used with ease for future studies. A program was developed to automate the analysis and generation of different plots. The program can also be used to perform the simple calculations to calculate different parameters. The goal was to develop a friendly user interface that would facilitate reservoir analysis. Examples were shown for each flow period, i.e. linear and bilinear flow. Different plots were generated (e.g; Bob Plot (square root of time plot) and Fourth Root of Time Plot, that will help in measuring slopes and thus reservoir parameters such as fracture permeability and drainage area. Different unique cases were also observed that show a different behavior of well in one type of plot from another.

Khan, Waqar A.

2008-12-01T23:59:59.000Z

165

Gas well deliquification. 2nd. ed.  

Science Conference Proceedings (OSTI)

Chapter 1: Introduction; Chapter 2: Recognizing Symptoms of Liquid Loading in Gas Wells; Chapter 3: Critical Velocity; Chapter 4: Systems Nodal Analysis; Chapter 5: Sizing Tubing; Chapter 6: Compression; Chapter 7: Plunger Lift; Chapter 8: Use of Foam to Deliquefy Gas Wells; Chapter 9: Hydraulic Pumping; Chapter 10: Use of Beam Pumps to Deliquefy Gas Wells; Chapter 11: Gas Lift; Chapter 12: Electric Submersible Pumps; Chapter 13: Progressing Cavity Pumps; Chapter 14: Coal Bed Methane; Chapter 15: Production Automation. Chapter 14, by David Simpson, based in the San Juan Basin, addresses issues in coal bed methane, low pressure operations, gas compression, gas measurement, oil field construction, gas well deliquification and project management.

James Lea; Henry Nickens; Mike Wells [Texas Technical University, TX (United States). Petroleum Engineering Department

2008-03-15T23:59:59.000Z

166

Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

167

Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

168

Alabama--State Offshore Natural Gas Withdrawals from Gas Wells...  

Gasoline and Diesel Fuel Update (EIA)

Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

169

California--State Offshore Natural Gas Withdrawals from Gas Wells...  

Annual Energy Outlook 2012 (EIA)

Gas Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

170

Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Gas Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 40 37 39 38 37 36 35...

171

Texas--State Offshore Natural Gas Withdrawals from Gas Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

172

,"New Mexico Number of Natural Gas Consumers"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Residential" "Sourcekey","NA1501SNM8","NA1508SNM8","NA1509SNM8" "Date","New Mexico Natural Gas Number of Residential Consumers (Count)","New Mexico Natural Gas Number of...

173

Natural Gas Prices: Well Above Recent Averages  

U.S. Energy Information Administration (EIA)

The recent surge in spot prices at the Henry Hub are well above a typical range for 1998 ... gas prices gradually declining after the winter heating . ...

174

Natural Gas Gross Withdrawals from Oil Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

175

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 241: 1990's: 356: 373: 382: 385: 390: 372: 370: 372: 185: 300: 2000's: 280: 300 ...

176

California Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

930: 847: 1,152: 2000's: 1,169: 1,244: 1,232: 1,249: 1,272: 1,356: 1,451: 1,540: 1,645: 1,643: 2010's: 1,580: 1,308-= No Data Reported; --= Not Applicable; NA = Not ...

177

,"North Dakota Natural Gas Gross Withdrawals from Gas Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas...

178

Ohio Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Ohio Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1960's: 34,291: 33,742 ...

179

,"New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:28:48 PM" "Back to Contents","Data 1: New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)" "Sourcekey","N9011NM2"...

180

Distribution and Production of Oil and Gas Wells by State  

Gasoline and Diesel Fuel Update (EIA)

Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Release date: January 7, 2011 | Next Release Date: To be determined Distribution tables of oil and gas wells by production rate for all wells, including marginal wells, are now available for most states for the years 1995 to 2009. Graphs displaying historical behavior of well production rate are also available. To download data for all states and all years, including years prior to 1995, in an Excel spreadsheet XLS (4,000 KB). The quality and completeness of data is dependent on update lag times and the quality of individual state and commercial source databases. Undercounting of the number of wells occurs in states where data is sometimes not available at the well level but only at the lease level. States not listed below will be added later as data becomes available.

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural Gas Development and Grassland Songbird Abundance in Southwestern Saskatchewan: The Impact of Gas Wells and Cumulative Disturbance .  

E-Print Network (OSTI)

??The quantity and quality of remaining grasslands in southwestern Saskatchewan, Canada, are threatened by expansion of natural gas development. The number of natural gas wells (more)

Bogard, Holly Jayne Kalyn

2011-01-01T23:59:59.000Z

182

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

183

Gas condensate damage in hydraulically fractured wells  

E-Print Network (OSTI)

This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production Company. The well was producing from a gas condensate reservoir. Questions were raised about whether flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant effect. In the most recent work done by Adedeji Ayoola Adeyeye, this subject was studied when the effects of reservoir depletion were minimized by introduction of an injector well with fluid composition the same as the original reservoir fluid. He also used an infinite conductivity hydraulic fracture along with a linear model as an adequate analogy. He concluded that the skin due to liquid build-up is not enough to prevent lower flowing bottomhole pressures from producing more gas. This current study investigated the condensate damage at the face of the hydraulic fracture in transient and boundary dominated periods when the effects of reservoir depletion are taken into account. As a first step, simulation of liquid flow into the fracture was performed using a 2D 1-phase simulator in order to help us to better understand the results of gas condensate simulation. Then during the research, gas condensate models with various gas compositions were simulated using a commercial simulator (CMG). The results of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture.

Reza, Rostami Ravari

2004-08-01T23:59:59.000Z

184

California Natural Gas Number of Residential Consumers (Number of Elements)  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Number of Natural Gas Residential

185

Gas condensate damage in hydraulically fractured wells  

E-Print Network (OSTI)

This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production Company. The well was producing a gas condensate reservoir and questions were raised about how much drop in flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant effect. Previous attempts to answer these questions have been from the perspective of a radial model. Condensate builds up in the reservoir as the reservoir pressure drops below the dewpoint pressure. As a result, the gas moving to the wellbore becomes leaner. With respect to the study by El-Banbi and McCain, the gas production rate may stabilize, or possibly increase, after the period of initial decline. This is controlled primarily by the condensate saturation near the wellbore. This current work has a totally different approach. The effects of reservoir depletion are minimized by introduction of an injector well with fluid composition the same as the original reservoir fluid. It also assumes an infinite conductivity hydraulic fracture and uses a linear model. During the research, gas condensate simulations were performed using a commercial simulator (CMG). The results of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture.

Adeyeye, Adedeji Ayoola

2003-12-01T23:59:59.000Z

186

Advanced Technologies For Stripper Gas Well Enhancement  

SciTech Connect

Stripper gas and oil well operators frequently face a dilemma regarding maximizing production from low-productivity wells. With thousands of stripper wells in the United States covering extensive acreage, it is difficult to identify easily and efficiently marginal or underperforming wells. In addition, the magnitude of reviewing vast amounts of data places a strain on an operator's work force and financial resources. Schlumberger DCS, in cooperation with the National Energy Technology Laboratory (NETL) and the U.S. Department of Energy (DOE), has created software and developed in-house analysis methods to identify remediation potential in stripper wells relatively easily. This software is referred to as Stripper Well Analysis Remediation Methodology (SWARM). SWARM was beta-tested with data pertaining to two gas fields located in northwestern Pennsylvania and had notable results. Great Lakes Energy Partners, LLC (Great Lakes) and Belden & Blake Corporation (B&B) both operate wells in the first field studied. They provided data for 729 wells, and we estimated that 41 wells were candidates for remediation. However, for reasons unbeknownst to Schlumberger these wells were not budgeted for rework by the operators. The second field (Cooperstown) is located in Crawford, Venango, and Warren counties, Pa and has more than 2,200 wells operated by Great Lakes. This paper discusses in depth the successful results of a candidate recognition study of this area. We compared each well's historical production with that of its offsets and identified 339 underperformers before considering remediation costs, and 168 economically viable candidates based on restimulation costs of $50,000 per well. From this data, we prioritized a list based on the expected incremental recoverable gas and 10% discounted net present value (NPV). For this study, we calculated the incremental gas by subtracting the volumes forecasted after remediation from the production projected at its current configuration. Assuming that remediation efforts increased production from the 168 marginal wells to the average of their respective offsets, approximately 6.4 Bscf of gross incremental gas with a NPV approximating $4.9 million after investment, would be made available to the domestic market. Seventeen wells have successfully been restimulated to date and have already obtained significant production increases. At the time of this report, eight of these wells had enough post-rework production data available to forecast the incremental gas and verify the project's success. This incremental gas is estimated at 615 MMscf. The outcome of the other ten wells will be determined after more post-refrac production data becomes available. Plans are currently underway for future restimulations. The success of this project has shown the value of this methodology to recognize underperforming wells quickly and efficiently in fields containing hundreds or thousands of wells. This contributes considerably to corporate net income and domestic natural gas and/or oil reserves.

Ronald J. MacDonald; Charles M. Boyer; Joseph H. Frantz Jr; Paul A. Zyglowicz

2005-04-01T23:59:59.000Z

187

Gas lift utilizing a liquefiable gas introduced into a well  

SciTech Connect

A gas lift method is disclosed for lifting a well fluid from a well, the method comprising feeding liquid lifting medium into a first well conduit of the well to maintain a liquid column of liquid lifting medium in the first well conduit to provide a significant liquid column pressure at the downhole region of the well for lifting medium to pass into a second well conduit to mix with well fluid therein and cause lifting of well fluid in the second well conduit.

Kalina, A.

1983-08-09T23:59:59.000Z

188

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network (OSTI)

Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only to conventional consolidated reservoirs (with constant formation compressibility) but also to unconsolidated reservoirs (with variable formation compressibility) by including geomechanics, permeability deterioration and compartmentalization to estimate the OGIP and performance characteristics of each compartment in such reservoirs given production data. A geomechanics model was developed using available correlation in the industry to estimate variable pore volume compressibility, reservoir compaction and permeability reduction. The geomechanics calculations were combined with gas material balance equation and pseudo-steady state equation and the model was used to predict well performance. Simulated production data from a conventional gas Simulator was used for consolidated reservoir cases while synthetic data (generated by the model using known parameters) was used for unconsolidated reservoir cases. In both cases, the Compartmentalized Depletion Model was used to analyze data, and estimate the OGIP and Jg of each compartment in a compartmentalized gas reservoir and predict the subsequent reservoir performance. The analysis was done by history-matching gas rate with the model using an optimization technique. The model gave satisfactory results with both consolidated and unconsolidated reservoirs for single and multiple reservoir layers. It was demonstrated that for unconsolidated reservoirs, reduction in permeability and reservoir compaction could be very significant especially for unconsolidated gas reservoirs with large pay thickness and large depletion pressure.

Yusuf, Nurudeen

2007-12-01T23:59:59.000Z

189

Controlling annular gas flow in deep wells  

SciTech Connect

This article reports on the phenomenon of annular gas channeling. It can occur during primary cementing in wells with formations containing gas. Such channeling may lead to interzonal communication down hole, or even gas migration to the surface. Formation gas is normally contained by the cement slurry's hydrostatic pressure. Annular gas channeling usually results from volumetric changes associated with: cement hydration and fluid loss, poor cement placement techniques, high cement free water, cementing gelling properties, and excessive thickening times. Initially, the cement slurry acts as a true fluid, transmitting hydrostatic pressure to the formation gas and preventing its flow into the cement matrix. However, as the cement begins to set, changing from a fluid state to a rigid state, it gradually begins to lose its ability to transmit hydrostatic pressure. This period of change is usually referred to as the ''transition period.'' Shrinkage of the cement volume compounds the problem and eventually can lead to poor binding between the cement and formation, thereby allowing gas to flow through gaps at the formation-cement interface.

Matthews, S.M.; Copeland, J.C.

1987-03-01T23:59:59.000Z

190

Natural Gas Gross Withdrawals from Oil Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

191

Natural Gas Gross Withdrawals from Coalbed Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

192

U.S. Crude Oil Developmental Wells Drilled (Number of Elements)  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil Developmental Wells Drilled (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ... Crude Oil and Natural Gas Exploratory and ...

193

Horizontal Well Placement Optimization in Gas Reservoirs Using Genetic Algorithms  

E-Print Network (OSTI)

Horizontal well placement determination within a reservoir is a significant and difficult step in the reservoir development process. Determining the optimal well location is a complex problem involving many factors including geological considerations, reservoir and fluid properties, economic costs, lateral direction, and technical ability. The most thorough approach to this problem is that of an exhaustive search, in which a simulation is run for every conceivable well position in the reservoir. Although thorough and accurate, this approach is typically not used in real world applications due to the time constraints from the excessive number of simulations. This project suggests the use of a genetic algorithm applied to the horizontal well placement problem in a gas reservoir to reduce the required number of simulations. This research aims to first determine if well placement optimization is even necessary in a gas reservoir, and if so, to determine the benefit of optimization. Performance of the genetic algorithm was analyzed through five different case scenarios, one involving a vertical well and four involving horizontal wells. The genetic algorithm approach is used to evaluate the effect of well placement in heterogeneous and anisotropic reservoirs on reservoir recovery. The wells are constrained by surface gas rate and bottom-hole pressure for each case. This project's main new contribution is its application of using genetic algorithms to study the effect of well placement optimization in gas reservoirs. Two fundamental questions have been answered in this research. First, does well placement in a gas reservoir affect the reservoir performance? If so, what is an efficient method to find the optimal well location based on reservoir performance? The research provides evidence that well placement optimization is an important criterion during the reservoir development phase of a horizontal-well project in gas reservoirs, but it is less significant to vertical wells in a homogeneous reservoir. It is also shown that genetic algorithms are an extremely efficient and robust tool to find the optimal location.

Gibbs, Trevor Howard

2010-05-01T23:59:59.000Z

194

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

for for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

195

Rod Pumping, Gas Well Dewatering and Gas Lift  

NLE Websites -- All DOE Office Websites (Extended Search)

new in artificial new in artificial lift? Production technology Part 1: In this first of two monthly reports, new innovations that improve operations and/or reduced expenses are described in the categories of Beam/ Rod Pumping, Gas Well Dewatering and Gas Lift ŝ ŝ JAMES F. LEA, PL Tech LLC; and HERALD W. WINKLER, Texas Tech University It has been another banner year for ar- tificial lift innovations. The offerings have been prolific enough, that we have split this year's report into two halves. This first-half report will cover eight develop- ments in Beam/Rod Pumping, Gas Lift and Gas Well Dewatering. In beam/rod pumping, a "three-in- one" solution is discussed, whereby coiled tubing is not only used as a pumping string, but as a means for the operator to preventively treat the well. Another item

196

Virginia Natural Gas Gross Withdrawals from Oil Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

312013 Next Release Date: 8302013 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Virginia Natural Gas Gross Withdrawals and Production Natural Gas Gross...

197

Pennsylvania Natural Gas Withdrawals from Oil Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

2013 Next Release Date: 11292013 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Pennsylvania Natural Gas Gross Withdrawals and Production Natural Gas Gross...

198

Virginia Natural Gas Gross Withdrawals from Oil Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

2013 Next Release Date: 11292013 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Virginia Natural Gas Gross Withdrawals and Production Natural Gas Gross...

199

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

2013 Next Release Date: 11292013 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Indiana Natural Gas Gross Withdrawals and Production Natural Gas Gross...

200

Illinois Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

Annual Energy Outlook 2012 (EIA)

Date: 8302013 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Illinois Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from...

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Crude Oil and Natural Gas Exploratory and Development Wells  

Gasoline and Diesel Fuel Update (EIA)

Wells Drilled (Number) Exploratory and Development NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA NA...

202

Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Texas Natural Gas Withdrawals from Oil Wells (Million Cubic...

203

South Dakota Natural Gas Withdrawals from Oil Wells (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) South Dakota Natural Gas Withdrawals from Oil Wells...

204

Natural Gas Prices: Well Above Recent Averages  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The recent surge in spot prices at the Henry Hub are well above a typical range for 1998-1999 (in this context, defined as the average, +/- 2 standard deviations). Past price surges have been of short duration. The possibility of a downward price adjustment before the end of next winter is a source of considerable risk for storage operators who acquire gas at recent elevated prices. Storage levels in the Lower 48 States were 7.5 percent below the 5-year average (1995-1999) by mid-August (August 11), although the differential is only 6.4 percent in the East, which depends most heavily on storage to meet peak demand. Low storage levels are attributable, at least in part, to poor price incentives: high current prices combined with only small price

205

Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals...

206

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Well Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Oil and Gas Well Drilling Author Jeff Tester Published NA, 2011 DOI Not...

207

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE  

E-Print Network (OSTI)

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT Contract Number: #500 GAS PIPELINE ASSESSMENT #50010050 Legal Notice This information was prepared by Gas Technology;CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT #50010050 Task 3Summary Report AssessmentofCurrentlyAvailablePipeline

208

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE  

E-Print Network (OSTI)

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT Contract Number: #500 GAS PIPELINE ASSESSMENT #500-10-050 Legal Notice This information was prepared by Gas Technology;CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT #500-10-050 Baseline Technology Assessment for Pipeline Integrity

209

Utah Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Utah Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

210

West Virginia Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

West Virginia Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

211

Mississippi Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Mississippi Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

212

Federal Gulf Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

Federal Gulf Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

213

Alabama Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Alabama Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

214

North Dakota Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

North Dakota Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

215

Pennsylvania Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

Pennsylvania Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

216

Florida Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Florida Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

217

United States Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

United States Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

218

Alaska Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

219

Texas Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Texas Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

220

Crude Oil and Natural Gas Exploratory and Development Wells  

Gasoline and Diesel Fuel Update (EIA)

Exploratory and Development Wells Exploratory and Development Wells Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 Dec-12 View History Wells Drilled (Number) Exploratory and Development NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA NA NA NA NA NA 1973-2012 Exploratory NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA NA NA NA NA NA 1973-2012 Development Wells Drilled NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

New Mexico Natural Gas Number of Underground Storage Depleted...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Number of Elements) New Mexico Natural Gas Number of Underground Storage Depleted Fields Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

222

New Mexico Natural Gas Number of Residential Consumers - Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Number of Elements) New Mexico Natural Gas Number of Residential Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

223

New Mexico Natural Gas Number of Commercial Consumers - Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

- Sales (Number of Elements) New Mexico Natural Gas Number of Commercial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

224

New Mexico Natural Gas Number of Residential Consumers - Transported...  

U.S. Energy Information Administration (EIA) Indexed Site

Transported (Number of Elements) New Mexico Natural Gas Number of Residential Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

225

New Mexico Natural Gas Number of Commercial Consumers - Transported...  

U.S. Energy Information Administration (EIA) Indexed Site

Transported (Number of Elements) New Mexico Natural Gas Number of Commercial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

226

New Mexico Natural Gas Number of Underground Storage Acquifers...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Number of Elements) New Mexico Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

227

New Mexico Natural Gas Number of Industrial Consumers - Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

228

New Mexico Natural Gas Number of Industrial Consumers - Transported...  

U.S. Energy Information Administration (EIA) Indexed Site

Transported (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

229

Oil and Gas Wells: Regulatory Provisions (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Wells: Regulatory Provisions (Kansas) Oil and Gas Wells: Regulatory Provisions (Kansas) Oil and Gas Wells: Regulatory Provisions (Kansas) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment It shall be unlawful for any person, firm or corporation having possession or control of any natural gas well, oil well or coalbed natural gas well, whether as a contractor, owner, lessee, agent or manager, to use or permit the use of gas by direct well pressure. Any person or persons, firm, company or corporation violating any of the provisions of this act shall be deemed guilty of a misdemeanor, and upon conviction shall be fined in any

230

STABILIZATION OF GAS LIFTED WELLS Gisle Otto Eikrem  

E-Print Network (OSTI)

STABILIZATION OF GAS LIFTED WELLS Gisle Otto Eikrem Bjarne Foss Lars Imsland Bin Hu Michael, e-mail: (hubin mgolan)@ipt.ntnu.no Abstract: Increased production from gas lifted oil wells can be achieved by use of feedback control. Without control the well system may have large oscillations

Foss, Bjarne A.

231

Mixed Integer Model Predictive Control of Multiple Shale Gas Wells.  

E-Print Network (OSTI)

?? Horizontal wells with multistage hydraulic fracturing are today the most important drilling technology for shale gas extraction. Considered unprofitable before, the production has now (more)

Nordsveen, Espen T

2012-01-01T23:59:59.000Z

232

Ohio Percent of Historical Gas Well Production (BOE) by Production ...  

U.S. Energy Information Administration (EIA)

Ohio Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

233

West Virginia Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

West Virginia Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

234

Oklahoma Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Oklahoma Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

235

Pennsylvania Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Pennsylvania Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

236

186 Wireline Failures in Oil & Gas Wells - Case Studies  

Science Conference Proceedings (OSTI)

Presentation Title, 186 Wireline Failures in Oil & Gas Wells - Case Studies ..... 202 Microstructure Exploration of High Strength High Ductility Iron-Based Glassy

237

Texas Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Texas Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

238

United States Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

United States Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

239

Michigan Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Michigan Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

240

Alaska Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

South Dakota Natural Gas Gross Withdrawals from Coalbed Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) No chart available. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1...

242

South Dakota Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

South Dakota Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

243

South Dakota Natural Gas Gross Withdrawals from Coalbed Wells...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) No chart available. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr...

244

New Mexico Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

New Mexico Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

245

Navigating the Numbers: Greenhouse Gas Data and International...  

Open Energy Info (EERE)

Tool Summary Name: Navigating the Numbers: Greenhouse Gas Data and International Climate Policy AgencyCompany Organization: World Resources Institute Sector: Energy, Land...

246

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

E-Print Network (OSTI)

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas Pennsylvania, ex- amining natural gas concentrations and isotopic signatures with proximity to shale gas wells this transformation, with shale gas and other unconventional sources now yielding more than one- half of all US

Jackson, Robert B.

247

Montana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Montana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

248

Utah Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Utah Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

249

Virginia Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Virginia Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

250

Kansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

251

Alabama Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Alabama Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

252

Michigan Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Michigan Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

253

Maryland Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Maryland Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

254

Arkansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Arkansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

255

Iowa Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Iowa Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

256

Colorado Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Colorado Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

257

Illinois Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Illinois Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

258

Nebraska Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Nebraska Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

259

Texas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Texas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

260

Ohio Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Ohio Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Missouri Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Missouri Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

262

Oklahoma Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oklahoma Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

263

Indiana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Indiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

264

Wyoming Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Wyoming Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

265

Oregon Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oregon Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

266

Kentucky Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kentucky Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

267

Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

268

Laser Oil & Gas Well Drilling [Laser Applications Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

benefit in reducing the high costs of operating a drill rig. Today, a typical land-based oil or gas well costs around 400,000 to drill, while costs for an offshore well average...

269

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

270

Pennsylvania Natural Gas Withdrawals from Oil Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Pennsylvania Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

271

Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Oil Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1 1 1 1 1 1 2 1 1 1 1...

272

Texas--State Offshore Natural Gas Withdrawals from Oil Wells...  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

273

Oil/gas separator for installation at burning wells  

DOE Patents (OSTI)

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, Carol T. (Orinda, CA); Bender, Donald A. (Dublin, CA); Bowman, Barry R. (Livermore, CA); Burnham, Alan K. (Livermore, CA); Chesnut, Dwayne A. (Pleasanton, CA); Comfort, III, William J. (Livermore, CA); Guymon, Lloyd G. (Livermore, CA); Henning, Carl D. (Livermore, CA); Pedersen, Knud B. (Livermore, CA); Sefcik, Joseph A. (Tracy, CA); Smith, Joseph A. (Livermore, CA); Strauch, Mark S. (Livermore, CA)

1993-01-01T23:59:59.000Z

274

Oil/gas separator for installation at burning wells  

DOE Patents (OSTI)

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait`s oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R. [and others

1991-12-31T23:59:59.000Z

275

Oil/gas separator for installation at burning wells  

DOE Patents (OSTI)

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

1993-03-09T23:59:59.000Z

276

Utah Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

754,554 778,644 794,880 810,442 821,525 830,219 1987-2011 Sales 754,554 821,525 830,219 1997-2011 Commercial Number of Consumers 55,821 57,741 59,502 60,781 61,976 62,885 1987-2011...

277

Michigan Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

1997-2011 Commercial Number of Consumers 254,923 253,139 252,382 252,017 249,309 249,456 1987-2011 Sales 236,447 217,325 213,995 1998-2011 Transported 18,476 31,984 35,461...

278

New Jersey Number of Natural Gas Consumers  

U.S. Energy Information Administration (EIA)

Number of Consumers: 8,245: 8,036: 7,680: 7,871: 7,505: 7,391: 1987-2011: Sales: 7,248 : 6,282: 6,036: 1998-2011: Transported: 997 : 1,223: 1,355: 1998-2011: Average ...

279

Wisconsin Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

,611,772 1,632,200 1,646,644 1,656,614 1,663,583 1,671,834 1987-2011 Sales 1,611,772 1,663,583 1,671,834 1997-2011 Transported 0 0 0 1997-2011 Commercial Number of Consumers...

280

Michigan Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

3,193,920 3,188,152 3,172,623 3,169,026 3,152,468 3,153,895 1987-2011 Sales 3,066,542 2,952,550 2,946,507 1997-2011 Transported 127,378 199,918 207,388 1997-2011 Commercial Number...

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Idaho Number of Natural Gas Consumers  

U.S. Energy Information Administration (EIA) Indexed Site

23,114 336,191 342,277 346,602 350,871 353,963 1987-2012 Sales 346,602 350,871 353,963 1997-2012 Commercial Number of Consumers 33,767 37,320 38,245 38,506 38,912 39,202 1987-2012...

282

Vermont Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

34,081 34,937 35,929 37,242 38,047 38,839 1987-2011 Sales 34,081 38,047 38,839 1997-2011 Commercial Number of Consumers 4,861 4,925 4,980 5,085 5,137 5,256 1987-2011 Sales 4,861...

283

Colorado Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

,558,911 1,583,945 1,606,602 1,622,434 1,634,587 1,645,716 1986-2011 Sales 1,558,908 1,634,582 1,645,711 1997-2011 Transported 3 5 5 1997-2011 Commercial Number of Consumers...

284

Illinois Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

,812,121 3,845,441 3,869,308 3,839,438 3,842,206 3,855,997 1987-2011 Sales 3,619,628 3,568,120 3,594,102 1997-2011 Transported 192,493 274,086 261,895 1997-2011 Commercial Number...

285

A New Parameter Identification Method for Hydraulic Fractured Gas Wells  

Science Conference Proceedings (OSTI)

The relaxation search algorithm to identify the parameters of hydraulic fractured gas wells is developed in this paper based on the inductive matrix. According to the optimization theory and parallel computation method, the parameters to be identified ... Keywords: Gas Wells, hydraulic fracturing, formation parameters, parameter identification, historic fitting

Li Tiejun; Guo Dali; Min Chao

2010-12-01T23:59:59.000Z

286

Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remote Gas Well Monitoring Technology Applied to Marcellus Shale Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site February 10, 2012 - 12:00pm Addthis Washington, DC - A technology to remotely monitor conditions at energy-rich Marcellus Shale gas wells to help insure compliance with environmental requirements has been developed through a research partnership funded by the U.S. Department of Energy (DOE). NETL-RUA researcher Dr. Michael McCawley hasdeveloped a technology to remotely monitor theenvironment around energy-rich Marcellus Shale gas wells. Photo courtesy of West Virginia University.The technology - which involves three wireless monitoring modules to measure volatile organic compounds, dust, light and sound - is currently being tested at a Marcellus

287

Fraced horizontal well shows potential of deep tight gas  

SciTech Connect

Successful completion of a multiple fraced, deep horizontal well demonstrated new techniques for producing tight gas sands. In Northwest Germany, Mobil Erdgas-Erdoel GmbH drilled, cased, and fraced the world`s deepest horizontal well in the ultra-tight Rotliegendes ``Main`` sand at 15,687 ft (4,783 m) true vertical depth. The multiple frac concept provides a cost-efficient method to economically produce significant gas resources in the ultra-tight Rotliegendes ``Main`` sand. Besides the satisfactory initial gas production rate, the well established several world records, including deepest horizontal well with multiple fracs, and proved this new technique to develop ultra-tight sands.

Schueler, S. [Mobil Erdgas-Erdoel GmbH, Celle (Germany); Santos, R. [Mobil Erdgas-Erdoel GmbH, Hamburg (Germany)

1996-01-08T23:59:59.000Z

288

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Discharge Water Management for Discharge Water Management for Horizontal Shale Gas Well Development Final Report Start Date: October 1, 2009 End Date: March 31, 2012 Authors: Paul Ziemkiewicz, PhD Jennifer Hause Raymond Lovett, PhD David Locke Harry Johnson Doug Patchen, PG Report Date Issued: June 2012 DOE Award #: DE-FE0001466 Submitting Organization: West Virginia Water Research Institute West Virginia University PO Box 6064 Morgantown, WV 26506-6064 FilterSure, Inc. PO Box 1277 McLean, VA 22101 ShipShaper, LLP PO Box 2 Morgantown, WV 26507 2 | P a g e Acknowledgment "This material is based upon work supported by the Department of Energy under Award Number DE-FE0001466." Disclaimer "This report was prepared as an account of work sponsored by an agency of the United States

289

The Effect of Well Trajectory on Production Performance of Tight Gas Wells  

E-Print Network (OSTI)

Horizontal wells are a very important element in oil and gas industry due to their distinguished advantages. Horizontal wells are not technically horizontal. This is because of the structural nature of reservoir formations and drilling procedures. In response to the reservoir rocks strength, the horizontal well deviates upward and downward while being drilled forming an undulating path instead of a horizontal. In this study, horizontal wells with an undulating trajectory within a gas reservoir have been studied. The aim of this research is to investigate the effect of the trajectory angle on pressure drop in horizontal wells. In addition, the contribution of water flow to pressure drop is a part of this research. Generally, water comes from different sources like an aquifer or a water flood job. In low permeability horizontal wells, hydraulic fracturing introduces water to gas wells. Water distribution is an important issue in gas wells production. In order to achieve the goal of this study, a model has been developed to simulate different situations for a horizontal well with an undulating trajectory in gas reservoirs. This study is a step forward to understand well performance in low permeability gas reservoirs.

Aldousari, Mohammad

2011-12-01T23:59:59.000Z

290

Navigating the Numbers: Greenhouse Gas Data and International Climate  

Open Energy Info (EERE)

Navigating the Numbers: Greenhouse Gas Data and International Climate Navigating the Numbers: Greenhouse Gas Data and International Climate Policy Jump to: navigation, search Tool Summary Name: Navigating the Numbers: Greenhouse Gas Data and International Climate Policy Agency/Company /Organization: World Resources Institute Sector: Energy, Land Topics: Co-benefits assessment, GHG inventory, Policies/deployment programs Resource Type: Publications Website: pdf.wri.org/navigating_numbers.pdf References: Navigating the Numbers: Greenhouse Gas Data and International Climate Policy[1] Overview "This report examines greenhouse gas (GHG) emissions at the global, national, sectoral, and fuel levels and identifies implications of the data for international cooperation on global climate change. Emissions are assessed within the broader socioeconomic context faced by countries,

291

U.S. Crude Oil and Natural Gas Active Well Service Rigs in ...  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9;

292

STABILIZATION OF GAS LIFTED WELLS BASED ON STATE ESTIMATION  

E-Print Network (OSTI)

STABILIZATION OF GAS LIFTED WELLS BASED ON STATE ESTIMATION Gisle Otto Eikrem Lars Imsland Bjarne well. Two different controllers are investigated, PI control using the estimated downhole pressure in the well, and nonlinear model based control of the total mass in the system. Both control structures rely

Foss, Bjarne A.

293

,"North Dakota Natural Gas Gross Withdrawals from Oil Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas...

294

Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) No chart available. Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

295

Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) No chart available. Texas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

296

,"New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:28:51 PM" "Back to Contents","Data 1: New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)" "Sourcekey","N9012NM2"...

297

Trip report for field visit to Fayetteville Shale gas wells.  

Science Conference Proceedings (OSTI)

This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

Veil, J. A.; Environmental Science Division

2007-09-30T23:59:59.000Z

298

Increasing Well Productivity in Gas Condensate Wells in Qatar's North Field  

E-Print Network (OSTI)

Condensate blockage negatively impacts large natural gas condensate reservoirs all over the world; examples include Arun Field in Indonesia, Karachaganak Field in Kazakhstan, Cupiagua Field in Colombia,Shtokmanovskoye Field in Russian Barents Sea, and North Field in Qatar. The main focus of this thesis is to evaluate condensate blockage problems in the North Field, Qatar, and then propose solutions to increase well productivity in these gas condensate wells. The first step of the study involved gathering North Field reservoir data from previously published papers. A commercial simulator was then used to carry out numerical reservoir simulation of fluid flow in the North Field. Once an accurate model was obtained, the following three solutions to increasing productivity in the North Field are presented; namely wettability alteration, horizontal wells, and reduced Non Darcy flow. Results of this study show that wettability alteration can increase well productivity in the North Field by adding significant value to a single well. Horizontal wells can successfully increase well productivity in the North Field because they have a smaller pressure drawdown (compared to vertical wells). Horizontal wells delay condensate formation, and increase the well productivity index by reducing condensate blockage in the near wellbore region. Non Darcy flow effects were found to be negligible in multilateral wells due to a decrease in fluid velocity. Therefore, drilling multilateral wells decreases gas velocity around the wellbore, decreases Non Darcy flow effects to a negligible level, and increases well productivity in the North Field.

Miller, Nathan

2009-12-01T23:59:59.000Z

299

Target-rate Tracking for Shale-gas Multi-well Pads by Scheduled Shut-ins  

E-Print Network (OSTI)

Target-rate Tracking for Shale-gas Multi-well Pads by Scheduled Shut-ins Brage R. Knudsen Bjarne, Yorktown Heights, NY, USA. Abstract: The recent success of shale-gas production relies on drilling of long caused by water accumulation in the wells. Shale-gas recovery requires a large number of wells in order

Foss, Bjarne A.

300

New and existing gas wells promise bountiful LPG output in Michigan  

SciTech Connect

Michigan remains the leading LP-gas producer in the Northeast quadrant of the U.S. This paper reports that boosted by a number of new natural gas wells and a couple of new gas processing plants, the state is firmly anchored in the butane/propane production business. Since 1981, more than 100 deep gas wells, most in excess of 8000 feet in depth, have been completed as indicated producers in the state. Many of these are yielding LPG-grade stock. So, combined with LPG-grade production from shallower geologic formations, the supply picture in this area looks promising for the rest of the country.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Well Productivity in Gas-Condensate and Volatile Oil Reservoirs:  

E-Print Network (OSTI)

Wells in gas condensate reservoirs usually exhibit complex behaviours due to condensate deposit as the bottomhole pressure drops below the dew point. The formation of this liquid saturation can lead to a severe loss of well productivity and therefore lower gas recovery. A similar behaviour is observed in volatile oil reservoirs below the bubble point. Understanding these behaviours and extracting values of controlling parameters is necessary to evaluate well potential and design effective programmes to improve productivity. The Centre of Petroleum Studies at Imperial College London has been involved in research in these areas since 1997, sponsored mainly by consortia of oil companies. Results from this work have already greatly improved the understanding of well behaviour in gas condensate and volatile oil reservoirs and the ability to interpret well tests in such reservoirs. Work to-date has focused on vertical and horizontal wells in sandstone reservoirs. Much work remains to understand the behaviours of fractured wells and wells in naturally fractured reservoirs. The objective of this proposal is to complete the work performed to-date in sandstone reservoirs and to extend it to new well and reservoir characteristics, in order to develop a better understanding of near-wellbore effects in gas condensate and volatile oil reservoirs from well testing, and to use this understanding to develop new methods for predicting and improving well productivity in such reservoirs. The work will be performed by staff, MSc and PhD students from the Centre for Petroleum Studies at Imperial College, with input and guidance from industry partners.

Prof A. C. Gringarten

2004-01-01T23:59:59.000Z

302

Average Depth of Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

Depth of Crude Oil and Natural Gas Wells Depth of Crude Oil and Natural Gas Wells (Feet per Well) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History Exploratory and Development Wells 5,426 5,547 5,508 5,613 6,064 5,964 1949-2008 Crude Oil 4,783 4,829 4,836 4,846 5,111 5,094 1949-2008 Natural Gas 5,616 5,757 5,777 5,961 6,522 6,500 1949-2008 Dry Holes 5,744 5,848 5,405 5,382 5,578 5,540 1949-2008 Exploratory Wells 6,744 6,579 6,272 6,187 6,247 6,322 1949-2008 Crude Oil 6,950 8,136 8,011 7,448 7,537 7,778 1949-2008 Natural Gas 6,589 5,948 5,732 5,770 5,901 5,899 1949-2008 Dry Holes 6,809 6,924 6,437 6,340 6,307 6,232 1949-2008

303

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network (OSTI)

experience from the natural gas storage industry. In: Rokkeof the underground natural gas storage wells in operation inof the underground natural gas storage wells in the EU. The

Benson, Sally M.

2010-01-01T23:59:59.000Z

304

U.S. Distribution and Production of Oil and Gas Wells | OpenEI  

Open Energy Info (EERE)

Distribution and Production of Oil and Gas Wells Distribution and Production of Oil and Gas Wells Dataset Summary Description Distribution tables of oil and gas wells by production rate for all wells, including marginal wells, are available from the EIA for most states for the years 1919 to 2009. Graphs displaying historical behavior of well production rate are also available. The quality and completeness of data is dependent on update lag times and the quality of individual state and commercial source databases. Undercounting of the number of wells occurs in states where data is sometimes not available at the well level but only at the lease level. States not listed below will be added later as data becomes available. Source EIA Date Released January 07th, 2011 (3 years ago) Date Updated Unknown Keywords

305

Footage Drilled for Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

Footage Drilled for Crude Oil and Natural Gas Wells Footage Drilled for Crude Oil and Natural Gas Wells (Thousand Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History Exploratory and Development Wells 176,867 203,997 240,969 285,398 308,210 331,740 1949-2008 Crude Oil 38,495 42,032 51,511 63,649 66,527 88,382 1949-2008 Natural Gas 115,833 138,503 164,353 193,595 212,753 212,079 1949-2008 Dry Holes 22,539 23,462 25,104 28,154 28,931 31,280 1949-2008 Exploratory Wells 17,785 22,382 25,955 29,630 36,534 35,585 1949-2008 Crude Oil 2,453 3,141 4,262 4,998 6,271 7,389 1949-2008 Natural Gas 6,569 9,998 12,347 14,945 19,982 17,066 1949-2008 Dry Holes

306

FIELD OBSERVATIONS OF GAS-CONDENSATE WELL TESTING  

E-Print Network (OSTI)

, a commercial simulator was used to perform phase- equilibrium and property calculations based on the PengFIELD OBSERVATIONS OF GAS- CONDENSATE WELL TESTING A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY-point pressure is impacted severely due to condensate banking around the wellbore. Condensate banking also

307

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

SciTech Connect

Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

2012-03-31T23:59:59.000Z

308

SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS  

U.S. Energy Information Administration (EIA) Indexed Site

The VBA code provided at the bottom of this document is an updated version The VBA code provided at the bottom of this document is an updated version (from ArcGIS 9.0 to ArcGIS 9.2) of the polygon smoothing algorithm described below. A bug that occurred when multiple wells had the same location was also fixed. SMOOTH OIL & GAS FIELD OUTLINE POLYGONS MADE FROM BUFFERED WELLS Why smooth buffered field outlines? See the issues in the figure below: [pic] The smoothing application provided as VBA code below does the following: Adds area to the concave portions; doesn't add area to convex portions to maintain buffer spacing Fills in non-field "islands" smaller than buffer size Joins separate polygon rings with a "bridge" if sufficiently close Minimizes increase in total field area Methodology: creates trapezoids between neighboring wells within an oil/gas

309

Monitoring Results Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

Natural Gas Wells Near Project Rulison Third Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 12, 2013 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterwards, the site was shut down, then remediated and the emplacement well (R-E) and reentry well (R-Ex) plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

310

Costs of Crude Oil and Natural Gas Wells Drilled  

Gasoline and Diesel Fuel Update (EIA)

Costs of Crude Oil and Natural Gas Wells Drilled Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003 2004 2005 2006 2007 View History Thousand Dollars per Well All (Real*) 1,011.9 1,127.4 1,528.5 1,522.3 1,801.3 3,481.8 1960-2007 All (Nominal) 1,054.2 1,199.5 1,673.1 1,720.7 2,101.7 4,171.7 1960-2007 Crude Oil (Nominal) 882.8 1,037.3 1,441.8 1,920.4 2,238.6 4,000.4 1960-2007 Natural Gas (Nominal) 991.9 1,106.0 1,716.4 1,497.6 1,936.2 3,906.9 1960-2007 Dry Holes (Nominal) 1,673.4 2,065.1 1,977.3 2,392.9 2,664.6 6,131.2 1960-2007 Dollars per Foot All (Real*) 187.46 203.25 267.28 271.16 324.00 574.46 1960-2007 All (Nominal) 195.31 216.27 292.57 306.50 378.03 688.30 1960-2007

311

Grant Title: WELLS FARGO GRANT PROGRAM Funding Opportunity Number: N/A  

E-Print Network (OSTI)

Grant Title: WELLS FARGO GRANT PROGRAM Funding Opportunity Number: N/A Agency/Department: Wells: Organizations with tax-exempt status under Section 501(c)(3) of the U.S. Internal Revenue Code, as well as qualified tribal and governmental agencies, including public school systems. Summary: Wells Fargo makes

Farritor, Shane

312

Gas release during salt well pumping: model predictions and comparisons to laboratory experiments  

DOE Green Energy (OSTI)

The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Nineteen of these SSTs have been placed on the Flammable Gas Watch List (FGWL) because they are known or suspected, in all but one case, to retain these flammable gases. Salt well pumping to remove the interstitial liquid from SSTs is expected to cause the release of much of the retained gas, posing a number of safety concerns. Research at the Pacific Northwest National Laboratory (PNNL) has sought to quantify the release of flammable gases during salt well pumping operations. This study is being conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. Understanding and quantifying the physical mechanisms and waste properties that govern gas release during salt well pumping will help to resolve the associated safety issues.

Peurrung, L.M.; Caley, S.M.; Bian, E.Y.; Gauglitz, P.A.

1996-09-01T23:59:59.000Z

313

Horizontal underbalanced drilling of gas wells with coiled tubing  

Science Conference Proceedings (OSTI)

Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

Cox, R.J.; Li, J.; Lupick, G.S.

1999-03-01T23:59:59.000Z

314

Resolving discrepancies in predicting critical rates in low pressure stripper gas wells.  

E-Print Network (OSTI)

??The minimum gas rate for unloading liquids from a gas well has been the subject of much interest, especially in old gas producing fields with (more)

Awolusi, Olufemi S.

2005-01-01T23:59:59.000Z

315

Conserved number fluctuations in a hadron resonance gas model  

E-Print Network (OSTI)

Net-baryon, net-charge and net-strangeness number fluctuations in high energy heavy-ion collisions are discussed within the framework of a hadron resonance gas (HRG) model. Ratios of the conserved number susceptibilities calculated in HRG are being compared to the corresponding experimental measurements to extract information about the freeze-out condition and the phase structure of systems with strong interactions. We emphasize the importance of considering the actual experimental acceptances in terms of kinematics (pseudorapidity ($\\eta$) and transverse momentum ($p_{T}$)), the detected charge state, effect of collective motion of particles in the system and the resonance decay contributions before comparisons are made to the theoretical calculations. In this work, based on HRG model, we report that the net-baryon number fluctuations are least affected by experimental acceptances compared to the net-charge and net-strangeness number fluctuations.

P. Garg; D. K. Mishra; P. K. Netrakanti; B. Mohanty; A. K. Mohanty; B. K. Singh; N. Xu

2013-04-26T23:59:59.000Z

316

Integrated Multi-Well Reservoir and Decision Model to Determine Optimal Well Spacing in Unconventional Gas Reservoirs  

E-Print Network (OSTI)

Optimizing well spacing in unconventional gas reservoirs is difficult due to complex heterogeneity, large variability and uncertainty in reservoir properties, and lack of data that increase the production uncertainty. Previous methods are either suboptimal because they do not consider subsurface uncertainty (e.g., statistical moving-window methods) or they are too time-consuming and expensive for many operators (e.g., integrated reservoir characterization and simulation studies). This research has focused on developing and extending a new technology for determining optimal well spacing in tight gas reservoirs that maximize profitability. To achieve the research objectives, an integrated multi-well reservoir and decision model that fully incorporates uncertainty was developed. The reservoir model is based on reservoir simulation technology coupled with geostatistical and Monte Carlo methods to predict production performance in unconventional gas reservoirs as a function of well spacing and different development scenarios. The variability in discounted cumulative production was used for direct integration of the reservoir model with a Bayesian decision model (developed by other members of the research team) that determines the optimal well spacing and hence the optimal development strategy. The integrated model includes two development stages with a varying Stage-1 time span. The integrated tools were applied to an illustrative example in Deep Basin (Gething D) tight gas sands in Alberta, Canada, to determine optimal development strategies. The results showed that a Stage-1 length of 1 year starting at 160-acre spacing with no further downspacing is the optimal development policy. It also showed that extending the duration of Stage 1 beyond one year does not represent an economic benefit. These results are specific to the Berland River (Gething) area and should not be generalized to other unconventional gas reservoirs. However, the proposed technology provides insight into both the value of information and the ability to incorporate learning in a dynamic development strategy. The new technology is expected to help operators determine the combination of primary and secondary development policies early in the reservoir life that profitably maximize production and minimize the number of uneconomical wells. I anticipate that this methodology will be applicable to other tight and shale gas reservoirs.

Ortiz Prada, Rubiel Paul

2010-12-01T23:59:59.000Z

317

Well fracturing method using liquefied gas as fracturing fluid  

SciTech Connect

A method is described for fracturing an oil well or gas well with a mixture of liquid carbon dioxide and liquid petroleum gas. The objective is to be able to inject the liquid into the well bore at a relatively high pumping rate without causing the liquid to boil. Prior to injection, both the liquid CO/sub 2/ and the LPG are held in separate supply tanks at a temperature and pressure at which the liquid phase will not boil. The temperature of the LPG is substantially higher than the liquid CO/sub 2/. During the pumping operation, part of the liquid CO/sub 2/ and all of the LPG are fed through a heat exchanger. In the exchanger, the amount of heat transferred from the LPG to the liquid CO/sub 2/ is enough to vaporize the liquid. The CO/sub 2/ vapor is then circulated back into the CO/sub 2/ tank. The recycled vapor thus maintains the liquid-vapor phase in the tank at equilibrium, so that the liquid will not boil at the desired pumping rate. (4 claims)

Zingg, W.M.; Grassman, D.D.

1974-10-22T23:59:59.000Z

318

Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 5,166 5,431 1980's 5,900 12,763 17,751 20,182 27,443 33,331 31,799 31,380 31,236 38,545 1990's 34,332 35,391 41,284 41,532 42,497 46,916 61,276 69,084 71,019 75,034 2000's 68,752 67,034 64,735 56,363 53,805 53,404 38,313 43,379 43,300 40,023 2010's 39,444 35,020 12,703 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

319

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network (OSTI)

Blowout rates for oil and gas wells in operation in theWF, A history of oil- and gas-well blowouts in California,California Oil and Gas District 4 Inactive wells Blowouts/

Benson, Sally M.

2010-01-01T23:59:59.000Z

320

Service Identification in TCP/IP: Well-Known versus Random Port Numbers  

E-Print Network (OSTI)

The sixteen-bit well-known port number is often overlooked as a network identifier in Internet communications. Its purpose at the most fundamental level is only to demultiplex flows of traffic. Several unintended uses of ...

Masiello, Elizabeth

2006-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Direct gas in mud measurement at the well site  

Science Conference Proceedings (OSTI)

A patented process developed by Datalog provides a direct quantitative gas measurement from the drilling fluid, eliminates the gas trap (degasser) and the conversion to gas-in-air measurements associated with traditional gas detection methods. Quantitative hydrocarbon gas measurement can be performed at the wellsite through the use of this gas detection system called GasWizard. This is achieved with a passive device containing a gas permeable membrane that is immersed in the drilling fluid. The device extracts a gas sample that is directly proportional to the actual gas concentration in the drilling fluid. Through this simple process, the gas measurement is equally effective in conventional water or oil-base drilling muds or in underbalanced drilling fluids such as foam, air or nitrogen.

Hawker, D. [Datalog, Calgary, Alberta (Canada)

1999-09-01T23:59:59.000Z

322

Data Bias in Rate Transient Analysis of Shale Gas Wells  

E-Print Network (OSTI)

Superposition time functions offer one of the effective ways of handling variable-rate data. However, they can also be biased and misleading the engineer to the wrong diagnosis and eventually to the wrong analysis. Since the superposition time functions involve rate as essential constituent, the superposition time is affected greatly with rate issues. Production data of shale gas wells are usually subjected to operating issues that yield noise and outliers. Whenever the rate data is noisy or contains outliers, it will be hard to distinguish their effects from common regime if the superposition time functions are used as plotting time function on log-log plots. Such deceiving presence of these flow regimes will define erroneous well and reservoir parameters. Based on these results and with the upsurge of energy needs there might be some costly decisions will be taken such as refracting or re-stimulating the well especially in tight formations. In this work, a simple technique is presented in order to rapidly check whether there is data bias on the superposition-time specialized plots or not. The technique is based on evaluating the kernel of the superposition time function of each flow regime for the maximum production time. Whatever beyond the Kernel-Equivalent Maximum Production Time (KEMPT) it is considered as biased data. The hypothesis of this technique is that there is no way to see in the reservoir more than what has been seen. A workflow involving different diagnostic and filtering techniques has been proposed to verify proposed notion. Different synthetic and field examples were used in this study. Once the all problematic issues have been detected and filtered out, it was clear that whatever went beyond the KEMPT is a consequence of these issues. Thus, the proposed KEMPT technique can be relied on in order to detect and filter out the biased data points on superposition-time log-log plots. Both raw and filtered data were analyzed using type-curve matching of linear flow type-curves for calculating the original gas in-place (OGIP). It has been found that biased data yield noticeable reduced OGIP. Such reduction is attributed to the early fictitious onset of boundary dominated flow, where early false detection of the drainage boundaries defines less gas in-place occupied in these boundaries.

Agnia, Ammar Khalifa Mohammed

2012-05-01T23:59:59.000Z

323

Assessment of API Thread Connections Under Tight Gas Well Conditions  

E-Print Network (OSTI)

The modern oil and gas industry of America has seen most of the high quality, easily obtainable resources, already produced, thus causing wells to be drilled deeper in search for unconventional resources. This means Oil Country Tubular Goods (OCTG) must improve in order to withstand harsher conditions; especially the ability of connections to effectively create leak tight seals. This study investigates the use of thread connections in tight gas fields; therefore, an insight into their potential to contribute to fulfilling the energy demands is necessary. Also, a survey of completed projects done in tight gas fields can provide vital information that will establish the minimum requirements thread connection must meet to perform its functions. To make suitable adjustments to ensure safe and efficient operations we must thoroughly understand the many aspects of thread connections. To have this understanding, a review of previous works was carried out that highlights the capabilities and imitations of thread connections. In addition to reviewing previous work done on thread connections; this study measured the viscosity of thread compounds under variable conditions. It was found that viscosity of thread compound falls in the range of 285,667 cP and 47,758 cP when measured between 32.9 degrees F and 121.5 degrees F. This can be very important because thread compound is essential to the function of thread connections. The knowledge of its viscosity can help choose the most suitable compound. By knowing the value of the viscosity of a thread compound it can also be used to form an analytical assessment of the grooved plate method by providing a means to calculate a pressure gradient which impacts the leakage.

Bourne, Dwayne

2009-08-01T23:59:59.000Z

324

Optimal fracture treatment design for dry gas wells maximizes well performance in the presence of non-Darcy flow effects  

E-Print Network (OSTI)

This thesis presents a methodology based on Proppant Number approach for optimal fracture treatment design of natural gas wells considering non-Darcy flow effects in the design process. Closure stress is taken into account, by default, because it is the first factor decreasing propped pack permeability at in-situ conditions. Gel damage was also considered in order to evaluate the impact of incorporating more damaging factors on ultimate well performance and optimal geometry. Effective fracture permeability and optimal fracture geometry are calculated through an iterative process. This approach was implemented in a spreadsheet. Non-Darcy flow is described by the ? factor. All ? factor correlations available in the literature were evaluated. It is recommended to use the correlation developed specifically for the given type of proppant and mesh size, if available. Otherwise, the Pursell et al. or the Martins et al. equations are recommended as across the board reliable correlations for predicting non-Darcy flow effects in the propped pack. The proposed methodology was implemented in the design of 11 fracture treatments of 3 natural tight gas wells in South Texas. Results show that optimal fracture design might increase expected production in 9.64 MMscf with respect to design that assumes Darcy flow through the propped pack. The basic finding is that for a given amount of proppant shorter and wider fractures compensate the non-Darcy and/or gel damage effect. Dynamic programming technique was implemented in design of multistage fractures for one of the wells under study for maximizing total gas production. Results show it is a powerful and simple technique for this application. It is recommended to expand its use in multistage fracture designs.

Lopez Hernandez, Henry De Jesus

2004-08-01T23:59:59.000Z

325

Combination gas producing and waste-water disposal well  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, Raymond M. (McKeesport, PA)

1984-01-01T23:59:59.000Z

326

U.S. Distribution and Production of Oil and Gas Wells Distribution...  

Open Energy Info (EERE)

Distribution and Production of Oil and Gas Wells Distribution tables of oil and gas wells by production rate for all wells, including marginal wells, are available from the EIA for...

327

U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

328

U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars...  

Annual Energy Outlook 2012 (EIA)

Natural Gas Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

329

U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Annual Energy Outlook 2012 (EIA)

Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

330

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer (OSTI)

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

331

FLOW BEHAVIOR OF GAS-CONDENSATE WELLS A DISSERTATION  

E-Print Network (OSTI)

Simulation Input File 149 xi #12;xii #12;List of Tables 2.1 Four gas-condensate systems with different. . . . . . . . . . . . . . . . . . 63 5.1 Fluid characterization for a multicomponent gas-condensate system. . 113 xiii #12;xiv #12;List

332

Economic analysis of shale gas wells in the United States  

E-Print Network (OSTI)

Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

Hammond, Christopher D. (Christopher Daniel)

2013-01-01T23:59:59.000Z

333

Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Wells (Million Cubic Feet) Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 5,335 4,954 5,465 5,228 5,405 5,163 4,817 5,652 5,165 5,347 4,814 5,420 2004 5,684 5,278 5,822 5,570 5,758 5,500 5,132 6,022 5,502 5,697 5,129 5,774 2005 5,889 5,469 6,033 5,771 5,967 5,699 5,318 6,240 5,702 5,903 5,315 5,983 2006 65,302 59,484 66,007 63,071 65,663 63,437 65,249 65,951 62,242 65,271 63,215 64,841 2007 72,657 65,625 72,657 70,313 72,657 70,313 72,657 72,657 70,313 72,657 70,313 72,657 2008 75,926 71,027 75,926 73,476 75,926 73,476 75,926 75,926 73,476 75,926 73,476 75,926

334

Alaska--State Offshore Natural Gas Withdrawals from Gas Wells (Million  

Gasoline and Diesel Fuel Update (EIA)

Gas Wells (Million Cubic Feet) Gas Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54,124 56,893 1980's 49,396 57,951 54,298 56,371 57,052 53,042 53,460 53,234 57,878 72,430 1990's 94,642 100,733 110,067 127,834 99,801 105,867 118,996 115,934 125,231 118,902 2000's 114,881 113,870 102,972 85,606 73,457 74,928 62,156 48,876 43,079 40,954 2010's 42,034 36,202 32,875 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

335

Federal Offshore--Louisiana Natural Gas Withdrawals from Gas Wells (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (Million Cubic Feet) Gas Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,428,342 3,725,728 3,902,074 1980's 3,839,367 3,854,440 3,522,247 2,904,722 3,288,820 2,784,091 2,542,447 2,913,949 2,992,004 2,970,536 1990's 3,140,870 2,946,749 2,867,842 2,883,761 2,995,676 2,937,666 3,166,015 3,194,743 3,115,154 3,009,296 2000's 2,919,128 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

336

Federal Offshore--Texas Natural Gas Withdrawals from Gas Wells (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (Million Cubic Feet) Gas Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 86,801 246,367 550,072 1980's 677,414 758,982 850,497 811,729 875,842 799,468 1,015,811 1,197,326 1,239,657 1,303,479 1990's 1,405,634 1,351,194 1,297,602 1,234,121 1,249,914 1,199,326 1,235,419 1,192,672 1,091,583 1,049,619 2000's 1,006,022 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

337

Production optimization of a tight sandstone gas reservoir with well completions: A numerical simulation study.  

E-Print Network (OSTI)

??Tight gas sands have significant gas reserves, which requires cost-effective well completion technology and reservoir development plans for viable commercial exploitation. In this study, a (more)

Defeu, Cyrille W.

2010-01-01T23:59:59.000Z

338

Predicting the performance of horizontal wells in unconventional gas reservoirs.  

E-Print Network (OSTI)

??Unconventional gas has become an increasingly important component of total U.S. domestic production for the past decade. Currently, only numerical models (simulators) can be used (more)

Drinkard, Dylan Todd.

2009-01-01T23:59:59.000Z

339

Natural Gas Gross Withdrawals from Oil Wells (Summary)  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated electric ... Gas volumes delivered for vehicle fuel are included in the State monthly totals from January 2011 ...

340

Production decline analysis of horizontal well in gas shale reservoirs.  

E-Print Network (OSTI)

??The major factor influencing the increase of natural gas use is the rise in its global demand. Due to the relentlessly increasing demand, there have (more)

Adekoya, Folarin.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

US--Federal Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (Million Cubic Feet) Gas Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,515,143 3,972,095 4,452,146 1980's 4,516,781 4,613,422 4,372,744 3,720,437 4,183,582 3,614,786 3,585,537 4,134,700 4,249,592 4,286,261 1990's 4,562,144 4,314,407 4,258,686 4,215,015 4,373,962 4,288,219 4,558,997 4,586,352 4,381,022 4,225,452 2000's 4,092,681 4,146,993 3,722,249 3,565,614 3,214,488 2,474,076 2,272,669 2,204,379 1,849,891 1,878,928 2010's 1,701,665 1,355,489 1,028,474 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

342

Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network (OSTI)

Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight/shale gas systems featuring a horizontal well with multiple hydraulic fractures. Despite a small number of analytical models and published numerical studies there is currently little consensus regarding the large-scale flow behavior over time in such systems. The purpose of this work is to construct a fit-for-purpose numerical simulator which will account for a variety of production features pertinent to these systems, and to use this model to study the effects of various parameters on flow behavior. Specific features examined in this work include hydraulically fractured horizontal wells, multiple porosity and permeability fields, desorption, and micro-scale flow effects. The theoretical basis of the model is described in Chapter I, along with a validation of the model. We employ the numerical simulator to examine various tight gas and shale gas systems and to illustrate and define the various flow regimes which progressively occur over time. We visualize the flow regimes using both specialized plots of rate and pressure functions, as well as high-resolution maps of pressure distributions. The results of this study are described in Chapter II. We use pressure maps to illustrate the initial linear flow into the hydraulic fractures in a tight gas system, transitioning to compound formation linear flow, and then into elliptical flow. We show that flow behavior is dominated by the fracture configuration due to the extremely low permeability of shale. We also explore the possible effect of microscale flow effects on gas effective permeability and subsequent gas species fractionation. We examine the interaction of sorptive diffusion and Knudsen diffusion. We show that microscale porous media can result in a compositional shift in produced gas concentration without the presence of adsorbed gas. The development and implementation of the micro-flow model is documented in Chapter III. This work expands our understanding of flow behavior in tight gas and shale gas systems, where such an understanding may ultimately be used to estimate reservoir properties and reserves in these types of reservoirs.

Freeman, Craig M.

2010-05-01T23:59:59.000Z

343

An Enskog based Monte Carlo method for high Knudsen number non-ideal gas flows  

E-Print Network (OSTI)

high Knudsen number non-ideal gas flows References [1] Gad-121: [2] Bird GA. Molecular gas dynamics. Oxford: Clarendon1976. [3] Bird GA. Molecular Gas Dynamics and the Direct

Wang, Moran; Li, Zhixin

2007-01-01T23:59:59.000Z

344

Underground Natural Gas Storage Wells in Bedded Salt (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

345

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network (OSTI)

- matically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of drinking water associated with shale- gas extraction. In active gas-extraction areas (one or more gas wells methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry

346

Essential elements of modeling gas generation from well defined plutonium materials  

DOE Green Energy (OSTI)

Processing of excess plutonium oxide (and related) materials intended for long-term storage is addressed in DOE standard 3013-2000. The essential elements addressed by this standard are eliminating or reducing to an acceptable level the entities that lead to gas evolution and consequent pressurization of the intended storage container system. Based upon the need to adequately understand and quantify these relevant parameters we briefly describe the current scientific knowledge of gas evolution from such systems. These associated research efforts have included fundamental kinetic and thermodynamic studies of water interactions at actinide oxide surfaces, radiolytic reactions of adsorbed water, interfacial reactions of hydrogen and oxygen, and radiolytic helium production. Utilizing, where possible, experimental parameters for many of the aforementioned processes we have developed a mathematical model with a minimum number of essential components that successfully models gas generation from well-defined PuO{sub 2} materials with known amounts of deliberately added water. In this work we verify this model against real pressure versus time data (described at greater length in another manuscript in these conference proceedings) and subsequently assure the safety envelope of design criteria for both short- and long-term storage and transportation of these material classes. These modeling results predict pressures and gas phase mole fractions over well-defined DOE 3013 container test cases well in advance of actual long-term surveillance information and provide confidence in safe storage of plutonium oxide material classes.

Paffett, M. T. (Mark T.); Kelly, D. (Daniel)

2002-01-01T23:59:59.000Z

347

Alabama State Oil and Gas Board: Oil Well Records (2/9/11 - 3...  

Open Energy Info (EERE)

Alabama State Oil and Gas Board: Oil Well Records (2911 - 31811) The Alabama State Oil and Gas Board publishes well record permits to the public as they are approved. This...

348

U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars...  

Annual Energy Outlook 2012 (EIA)

Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

349

U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells...  

Annual Energy Outlook 2012 (EIA)

Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0...

350

Other States Natural Gas Gross Withdrawals from Gas Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Gas Wells (Million Cubic Feet) Gas Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 72,328 63,451 67,732 63,118 62,276 59,557 61,217 60,722 59,142 65,119 67,627 70,643 1992 66,374 62,007 65,284 63,487 63,488 60,701 62,949 63,036 61,442 66,259 65,974 68,514 1993 66,943 61,161 64,007 60,709 61,964 63,278 60,746 62,204 59,969 64,103 63,410 70,929 1994 65,551 60,458 63,396 60,438 60,965 61,963 60,675 62,160 59,730 63,444 62,373 68,990 1995 64,205 59,095 62,006 58,918 60,063 60,885 58,713 59,803 57,421 61,243 60,372 67,498 1996 64,824 61,742 66,951 60,806 62,653 59,952 61,102 62,970 61,239 65,475 67,324 68,206

351

Summary of tank information relating salt well pumping to flammable gas safety issues  

DOE Green Energy (OSTI)

The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Active use of these SSTs was phased out completely by November 1980, and the first step toward final disposal of the waste in the SSTs is interim stabilization, which involves removing essentially all of the drainable liquid from the tank. Stabilization can be achieved administratively, by jet pumping to remove drainable interstitial liquid, or by supernatant pumping. To date, 116 tanks have been declared interim stabilized; 44 SSTs have had drainable liquid removed by salt well jet pumping. Of the 149 SSTs, 19 are on the Flammable Gas Watch List (FGWL) because the waste in these tanks is known or suspected, in all but one case, to generate and retain mixtures of flammable gases, including; hydrogen, nitrous oxide, and ammonia. Salt well pumping to remove the drainable interstitial liquid from these SSTs is expected to cause the release of much of the retained gas, posing a number of safety concerns. The scope of this work is to collect and summarize information, primarily tank data and observations, that relate salt well pumping to flammable gas safety issues. While the waste within FGWL SSTs is suspected offering flammable gases, the effect of salt well pumping on the waste behavior is not well understood. This study is being conducted for the Westinghouse Hanford Company as part of the Flammable Gas Project at the Pacific Northwest National Laboratory (PNNL). Understanding the historical tank behavior during and following salt well pumping will help to resolve the associated safety issues.

Caley, S.M.; Mahoney, L.A.; Gauglitz, P.A.

1996-09-01T23:59:59.000Z

352

U.S. Average Depth of Natural Gas Exploratory Wells Drilled ...  

Annual Energy Outlook 2012 (EIA)

Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

353

U.S. Average Depth of Natural Gas Developmental Wells Drilled...  

Annual Energy Outlook 2012 (EIA)

Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

354

Mobil completes deep, tight, horizontal gas well in Germany  

Science Conference Proceedings (OSTI)

A completion and fracturing program for stimulating a horizontal well in the ultra-tight Rotliegendes sand onshore Germany included casing design, completion fluid selection, overbalanced perforation, analysis of the stimulation treatment, design modification, zone and fracture isolation, well testing and acid stimulation. This paper reviews the field geology, the well design, casing design, describes the completion fluids, perforation techniques, fracture treatment, and methods for zone isolation.

Abou-Sayed, I.S.; Chambers, M.R. [Mobil E and P Technical Center, Dallas, TX (United States); Mueller, M.W. [Mobil Erdgas-Erdoel GmbH, Celle (Germany)

1996-08-01T23:59:59.000Z

355

Single well seismic imaging of a gas-filled hydrofracture  

SciTech Connect

A single well seismic survey was conducted at the Lost Hills, Ca oil field in a monitoring well as part of a CO2 injection test. The source was a piezoelectric seismic source and the sensors were a string of hydrophones hanging below the source. The survey was processed using standard CMP reflection seismology techniques. A potential reflection event was observed and interpreted as being caused by a near vertical hydrofracture. The radial distance between the survey well and the hydrofracture is estimated from Kirchoff migration using a velocity model derived from cross well seismic tomography. The hydrofracture location imaged after migration agrees with the location of an existing hydrofracture.

Daley, Thomas M.; Gritto, Roland; Majer, Ernest L.

2003-08-19T23:59:59.000Z

356

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated June 23, 2011  

E-Print Network (OSTI)

://www.netl.doe.gov/technologies/oil-gas/publications/EPreports/Shale_Gas_Primer_2009.pdf Good of shale gas drilling in New York State, as well as the most comprehensive collection of data and consultant-supplied analyses Addressing the Environmental Risks from Shale Gas Development (2010) Worldwatch

357

Current Natural Gas Spot Prices:. Well Above the Recent Price ...  

U.S. Energy Information Administration (EIA)

The surge in spot prices at the Henry Hub since April has taken prices well above a typical range for 1998-1999 (in this context, defined as the average, +/- 2 ...

358

Control structure design for stabilizing unstable gas-lift oil wells  

E-Print Network (OSTI)

Control structure design for stabilizing unstable gas-lift oil wells Esmaeil Jahanshahi, Sigurd valve is the recommended solution to prevent casing-heading instability in gas-lifted oil wells. Focus to be effective to stabilize this system. Keywords: Oil production, two-phase flow, gas-lift, controllability, H

Skogestad, Sigurd

359

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling  

E-Print Network (OSTI)

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular testing in order to more specifically document potential impacts of Marcellus Shale gas development

Manning, Sturt

360

Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Florida Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005...

362

The Performance of Fractured Horizontal Well in Tight Gas Reservoir  

E-Print Network (OSTI)

Horizontal wells have been used to increase reservoir recovery, especially in unconventional reservoirs, and hydraulic fracturing has been applied to further extend the contact with the reservoir to increase the efficiency of development. In the past, many models, analytical or numerical, were developed to describe the flow behavior in horizontal wells with fractures. Source solution is one of the analytical/semi-analytical approaches. To solve fractured well problems, source methods were advanced from point sources to volumetric source, and pressure change inside fractures was considered in the volumetric source method. This study aims at developing a method that can predict horizontal well performance and the model can also be applied to horizontal wells with multiple fractures in complex natural fracture networks. The method solves the problem by superposing a series of slab sources under transient or pseudosteady-state flow conditions. The principle of the method comprises the calculation of semi-analytical response of a rectilinear reservoir with closed outer boundaries. A statistically assigned fracture network is used in the study to represent natural fractures based on the spacing between fractures and fracture geometry. The multiple dominating hydraulic fractures are then added to the natural fracture system to build the physical model of the problem. Each of the hydraulic fractures is connected to the horizontal wellbore, and the natural fractures are connected to the hydraulic fractures through the network description. Each fracture, natural or hydraulically induced, is treated as a series of slab sources. The analytical solution of superposed slab sources provides the base of the approach, and the overall flow from each fracture and the effect between the fractures are modeled by applying superposition principle to all of the fractures. It is assumed that hydraulic fractures are the main fractures that connect with the wellbore and the natural fractures are branching fractures which only connect with the main fractures. The fluid inside of the branch fractures flows into the main fractures, and the fluid of the main fracture from both the reservoir and the branch fractures flows to the wellbore. Predicting well performance in a complex fracture network system is extremely challenged. The statistical nature of natural fracture networks changes the flow characteristic from that of a single linear fracture. Simply using the single fracture model for individual fracture, and then adding the flow from each fracture for the network could introduce significant error. This study provides a semi-analytical approach to estimate well performance in a complex fracture network system.

Lin, Jiajing

2011-12-01T23:59:59.000Z

363

Wireless technology collects real-time information from oil and gas wells  

NLE Websites -- All DOE Office Websites (Extended Search)

Wireless technology collects real-time information from oil and gas Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells already producing oil and gas and drilling operations for new wells. One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells

364

Utah History of Stripper (< 15 BOE/Day) Gas Wells by Year  

U.S. Energy Information Administration (EIA)

Utah History of Stripper (< 15 BOE/Day) Gas Wells by Year. Energy Information Administration (U.S. Dept. of Energy)

365

Pennsylvania History of Stripper (< 15 BOE/Day) Gas Wells by Year  

U.S. Energy Information Administration (EIA)

Pennsylvania History of Stripper (< 15 BOE/Day) Gas Wells by Year. Energy Information Administration (U.S. Dept. of Energy)

366

Maryland History of Stripper (< 15 BOE/Day) Gas Wells by Year  

U.S. Energy Information Administration (EIA)

Maryland History of Stripper (< 15 BOE/Day) Gas Wells by Year. Energy Information Administration (U.S. Dept. of Energy)

367

Federal Gulf History of Stripper (< 15 BOE/Day) Gas Wells by Year  

U.S. Energy Information Administration (EIA)

Federal Gulf History of Stripper (< 15 BOE/Day) Gas Wells by Year. Energy Information Administration (U.S. Dept. of Energy)

368

North Dakota History of Stripper (< 15 BOE/Day) Gas Wells by Year  

U.S. Energy Information Administration (EIA)

North Dakota History of Stripper (< 15 BOE/Day) Gas Wells by Year. Energy Information Administration (U.S. Dept. of Energy)

369

Ohio History of Stripper (< 15 BOE/Day) Gas Wells by Year  

U.S. Energy Information Administration (EIA)

Ohio History of Stripper (< 15 BOE/Day) Gas Wells by Year. Energy Information Administration (U.S. Dept. of Energy)

370

Current Natural Gas Spot Prices: Well Above the Recent Price Range  

U.S. Energy Information Administration (EIA)

Current Natural Gas Spot Prices: Well Above the Recent Price Range. Previous slide: Next slide: Back to first slide: ... (generally borne out so far ...

371

Texas History of Stripper (< 15 BOE/Day) Gas Wells by Year  

U.S. Energy Information Administration (EIA)

Texas History of Stripper (< 15 BOE/Day) Gas Wells by Year. Energy Information Administration (U.S. Dept. of Energy)

372

Ratio of produced gas to produced water from DOE's EDNA Delcambre No. 1 geopressured-geothermal aquifer gas well test  

DOE Green Energy (OSTI)

A paper presented by the Institute of Gas Technology (IGT) at the Third Geopressured-Geothermal Energy Conference hypothesized that the high ratio of produced gas to produced water from the No. 1 sand in the Edna Delcambre No. 1 well was due to free gas trapped in pores by imbibition over geological time. This hypothesis was examined in relation to preliminary test data which reported only average gas to water ratios over the roughly 2-day steps in flow rate. Subsequent public release of detailed test data revealed substantial departures from the previously reported computer simulation results. Also, data now in the public domain reveal the existence of a gas cap on the aquifier tested. This paper describes IGT's efforts to match the observed gas/water production with computer simulation. Two models for the occurrence and production of gas in excess of that dissolved in the brine have been used. One model considers the gas to be dispersed in pores by imbibition, and the other model considers the gas as a nearby free gas cap above the aquifier. The studies revealed that the dispersed gas model characteristically gave the wrong shape to plots of gas production on the gas/water ratio plots such that no reasonable match to the flow data could be achieved. The free gas cap model gave a characteristically better shape to the production plots and could provide an approximate fit to the data of the edge of the free gas cap is only about 400 feet from the well.Because the geological structure maps indicate the free gas cap to be several thousand feet away and the computer simulation results match the distance to the nearby Delcambre Nos. 4 and 4A wells, it appears that the source of the excess free gas in the test of the No. 1 sand may be from these nearby wells. The gas source is probably a separate gas zone and is brought into contact with the No. 1 sand via a conduit around the No. 4 well.

Rogers, L.A.; Randolph, P.L.

1979-01-01T23:59:59.000Z

373

Natural gas stripper wells accounted for over 11% of U.S. natural ...  

U.S. Energy Information Administration (EIA)

(In contrast, the number of oil stripper wells remained comparatively flat, as did their share of total oil well production until 2003, ...

374

U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's...

375

U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand...  

Annual Energy Outlook 2012 (EIA)

Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

376

US--State Offshore Natural Gas Withdrawals from Oil Wells (Million...  

Annual Energy Outlook 2012 (EIA)

Oil Wells (Million Cubic Feet) US--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

377

Some theoretical results useful in analyzing well performance under solution-gas drive  

SciTech Connect

This paper presents results pertinent to the analysis of well performance in solution-gas-drive systems. The characteristics of wells producing solution-gas-drive systems are documented. Procedures to correlate multiphase flow solutions with single-phase flow systems for both transient and boundary-dominated flows are presented.

Camacho, R.G. (National Univ. of Mexico/PEMEX (MX)); Raghavan, R. (Phillips Petroleum Co. (US))

1991-06-01T23:59:59.000Z

378

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network (OSTI)

high density of steam injection wells for thermal recovery.kilometres 20 miles Steam-injection wells per km 2 (mi 2 )average number of steam injection well blowouts and blowouts

Benson, Sally M.

2010-01-01T23:59:59.000Z

379

Microsoft Word - RUL_1Q2011_Gas_Samp_Results_7Wells  

Office of Legacy Management (LM)

31 March 2011 31 March 2011 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom-hole locations (BHLs) of the seven gas wells sampled are between 0.75 and 0.90 mile from the Project Rulison detonation point. All wells sampled are producing gas from the Williams Fork Formation. Background: Project Rulison was the second test under the Plowshare Program to stimulate natural-gas recovery from tight sandstone formations. On 10 September 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation. Samples Collected: * 7 gas samples from 7 wells * 7 produced water samples from 6 wells and 1 drip tank; one well was dry Findings:

380

Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas  

E-Print Network (OSTI)

We report the direct observation of sub-Poissonian number fluctuation for a degenerate Bose gas confined in an optical trap. Reduction of number fluctuations below the Poissonian limit is observed for average numbers that range from 300 to 60 atoms.

C. -S. Chuu; F. Schreck; T. P. Meyrath; J. L. Hanssen; G. N. Price; M. G. Raizen

2005-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Underground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies & Practicality.  

E-Print Network (OSTI)

environments and are very salty, like the Marcellus shale and other oil and gas formations underlying the areaUnderground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies), Region 3. Marcellus Shale Educational Webinar, February 18, 2010 (Answers provide below by Karen Johnson

Boyer, Elizabeth W.

382

Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment  

DOE Green Energy (OSTI)

The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

Dosch, M.W.; Hodgson, S.F.

1981-01-01T23:59:59.000Z

383

CASING-HEADING PHENOMENON IN GAS-LIFTED WELL AS A LIMIT CYCLE OF A  

E-Print Network (OSTI)

, France CSTJF, TOTAL Exploration-Production, Pau, France Abstract: Oil well instabilities cause activation to maintain the oil output at a commercial level. In the gas-lift activation technique (Brown). High yield setpoints (low gas and high oil output) lie in an unstable region (Jansen et al., 1999

384

Texas earthquakes may be linked to wells for gas mining By Dan Vergano, USA TODAY  

E-Print Network (OSTI)

Texas earthquakes may be linked to wells for gas mining By Dan Vergano, USA TODAY -- Saltwater study. "We usually only get small ones." Some suspicions centered on wells involved in "hydraulic. About 13 fracture wells have been drilled since 2002 near the locale, but the team found the epicenter

Huang, Shaopeng

385

Simulating the Effect of Water on the Fracture System of Shale Gas Wells  

E-Print Network (OSTI)

It was observed that many hydraulically fractured horizontal shale gas wells exhibit transient linear flow behavior. A half-slope on a type curve represents this transient linear flow behavior. Shale gas wells show a significant skin effect which is uncommon in tight gas wells and masks early time linear behavior. Usually 70-85 percent of frac water is lost in the formation after the hydraulic fracturing job. In this research, a shale gas well was studied and simulated post hydraulic fracturing was modeled to relate the effect of frac water to the early significant skin effect observed in shale gas wells. The hydraulically fractured horizontal shale gas well was described in this work by a linear dual porosity model. The reservoir in this study consisted of a bounded rectangular reservoir with slab matrix blocks draining into neighboring hydraulic fractures and then the hydraulic fractures feed into the horizontal well that fully penetrates the entire rectangular reservoir. Numerical and analytical solutions were acquired before building a 3D 19x19x10 simulation model to verify accuracy. Many tests were conducted on the 3D model to match field water production since initial gas production was matching the analytical solutions before building the 3D simulation model. While some of the scenarios tested were artificial, they were conducted in order to reach a better conceptual understanding of the field. Increasing the water saturation in the formation resulted in increasing water production while lowering gas production. Adding a fractured bottom water layer that leaked into the hydraulic fracture allowed the model to have a good match of water and gas production rates. Modeling trapped frac water around the fracture produced approximately the same amount of water produced by field data, but the gas production was lower. Totally surrounding the fracture with frac water blocked all gas production until some of the water was produced and gas was able to pass through. Finally, trapped frac water around the fracture as combined with bottom water showed the best results match. It was shown that frac water could invade the formation surrounding the hydraulic fracture and could cause formation damage by blocking gas flow. It was also demonstrated that frac water could partially block off gas flow from the reservoir to the wellbore and thus lower the efficiency of the hydraulic fracturing job. It was also demonstrated that frac water affects the square root of time plot. It was proven by simulation that the huge skin at early time could be caused by frac water that invades and gets trapped near the hydraulic fractures due to capillary pressure.

Hamam, Hassan Hasan H.

2010-08-01T23:59:59.000Z

386

U.S. Natural Gas Gross Withdrawals from Oil Wells (Million ...  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; ...

387

Review of Current Literature and Research on Gas Supersaturation and Gas Bubble Trauma: Special Publication Number 1, 1986.  

DOE Green Energy (OSTI)

This report presents recently published information and on-going research on the various areas of gas supersaturation. Growing interest in the effects of chronic gas supersaturation on aquatic animals has been due primarily to heavy mortality of salmonid species under hatchery conditions. Extensive examination of affected animals has failed to consistently identify pathogenic organisms. Water quality sampling has shown that chronic levels of gas supersaturation are commonly present during a significant period of the year. Small marine fish larvae are significantly more sensitive to gas supersaturation than salmonids. Present water quality criteria for gas supersaturation are not adequate for the protection of either salmonids under chronic exposure or marine fish larvae, especially in aquaria or hatcheries. To increase communication between interested parties in the field of gas supersaturation research and control, addresses and telephone numbers of all people responding to the questionnaire are included. 102 refs.

Colt, John; Bouck, Gerald R.; Fidler, Larry

1986-12-01T23:59:59.000Z

388

U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Number of ...  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1973: 1,219: 1,126: 1,049: 993 ...

389

Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells  

Open Energy Info (EERE)

Co-Produced Fluids from Oil and Gas Wells Co-Produced Fluids from Oil and Gas Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Coproduced Fluids for Oil and Gas Wells Project Description The geothermal organic Rankine cycle (ORC) system will be installed at an oil field operated by Encore Acquisition in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. The data and knowledge acquire during the O & M phase can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

390

Pressure Transient Analysis and Production Analysis for New Albany Shale Gas Wells  

E-Print Network (OSTI)

Shale gas has become increasingly important to United States energy supply. During recent decades, the mechanisms of shale gas storage and transport were gradually recognized. Gas desorption was also realized and quantitatively described. Models and approaches special for estimating rate decline and recovery of shale gas wells were developed. As the strategy of the horizontal well with multiple transverse fractures (MTFHW) was discovered and its significance to economic shale gas production was understood, rate decline and pressure transient analysis models for this type of well were developed to reveal the well behavior. In this thesis, we considered a Triple-porosity/Dual-permeability model and performed sensitivity studies to understand long term pressure drawdown behavior of MTFHWs. A key observation from this study is that the early linear flow regime before interfracture interference gives a relationship between summed fracture half-length and permeability, from which we can estimate either when the other is known. We studied the impact of gas desorption on the time when the pressure perturbation caused by production from adjacent transference fractures (fracture interference time) and programmed an empirical method to calculate a time shift that can be used to qualify the gas desorption impact on long term production behavior. We focused on the field case Well A in New Albany Shale. We estimated the EUR for 33 wells, including Well A, using an existing analysis approach. We applied a unified BU-RNP method to process the one-year production/pressure transient data and performed PTA to the resulting virtual constant-rate pressure drawdown. Production analysis was performed meanwhile. Diagnosis plots for PTA and RNP analysis revealed that only the early linear flow regime was visible in the data, and permeability was estimated both from a model match and from the relationship between fracture halflength and permeability. Considering gas desorption, the fracture interference will occur only after several centuries. Based on this result, we recommend a well design strategy to increase the gas recovery factor by decreasing the facture spacing. The higher EUR of Well A compared to the vertical wells encourages drilling more MTFHWs in New Albany Shale.

Song, Bo

2010-08-01T23:59:59.000Z

391

In situ experiments of geothermal well stimulation using gas fracturing technology  

DOE Green Energy (OSTI)

The results of an experimental study of gas fracturing technology for geothermal well stimulation demonstrated that multiple fractures could be created to link water-filled boreholes with existing fractures. The resulting fracture network and fracture interconnections were characterized by mineback as well as flow tests. Commercial oil field fracturing tools were used successfully in these experiments. Simple scaling laws for gas fracturing and a brief discussion of the application of this technique to actual geothermal well stimulation are presented. 10 refs., 42 figs., 4 tabs.

Chu, T.Y.; Warpinski, N.; Jacobson, R.D.

1988-07-01T23:59:59.000Z

392

NETL: News Release - DOE Selects Projects to Improve 'Stripper' Gas Well  

NLE Websites -- All DOE Office Websites (Extended Search)

June 13, 2000 June 13, 2000 DOE Selects Project to Improve 'Stripper' Gas Well Economics By Using Low-Cost Clean Coal Product to Filter Waste Water In its third and final round of competition for projects that can help sustain natural gas production from "stripper" wells, the U.S. Department of Energy has selected a proposal to test a coal-based filtering material that could sharply reduce the costs of disposing of waste water from these low-volume wells. The Western SynCoal Clean Coal Plant The Rosebud SynCoal® demonstration plant near Colstrip, Montana, was built in DOE's Clean Coal Technology Program. Its upgraded coal product, originally intended as a high quality fuel for power plants, may also be a low cost filter material for oil and gas well waste water.

393

Preliminary test results and geology of the DOE/Superior Hulin. number sign. 1 geopressured-geothermal well, Vermillion Parish, Louisiana  

Science Conference Proceedings (OSTI)

The DOE/Superior Hulin {number sign}1 well is the most recent of the current three geopressured-geothermal prospects being tested by the Department of Energy (DOE) under its geopressured-geothermal program initiated in 1975. The other prospects under evaluation are Gladys McCall {number sign}1 (Cameron Parish, LA) and Pleasant Bayou {number sign}2 (Brazoria County, TX). The main objective of this research program is to evaluate the commercial viability of energy production from high temperature (275{degrees}+F.), geopressured, natural-gas-saturated brine sandstone aquifers occur-ring in the Gulf Coast area. The DOE/Superior Hulin {number sign}1 well is located 7.5 mi (12 km) south of the town of Erath, Louisiana. It was originally drilled and later sidetracked as an exploration well by Superior Oil Company to a depth of 21,549 ft (6,568 m) and completed in 1979. The well produced 0.3 bcf gas in 19 months from the interval between 21,059 and 21,094 ft (6,419-6,429 m). Later, owing to production problems caused by tubing/casing failure, Superior abandoned production and transferred the well to DOE for testing under the geopressured-geothermal program. The well has recently been cleaned and recompleted by Eaton Operating Company, Houston, Texas, and plugged back to 20,725 ft (6,317 m). This well penetrates the deepest known Gulf Coast geopressured-geothermal reservoir and has a maximum recorded temperature of 338{degrees}F with a 560 ft (171 m) thick sandstone. Regional geologic work indicates that the Hulin sandstone represents either a submarine canyon or an unstable shelf delta type of environment. The well is presently perforated at the bottom of the sandstone from 20,610 to 20,690 ft (6282-6306 m) for preliminary short-term testing now in progress. Initial testing indicates the gas-brine ratio to be 31 SCF/STB.

John, C.J.; Stevenson, D.A.; Groat, C.G. (Louisiana Geological Survey, Baton Rouge (USA))

1990-09-01T23:59:59.000Z

394

A new generation of multilateral well enhances small gas field economics  

E-Print Network (OSTI)

The main objective of this study is to investigate the applicability of a new multilateral well architecture in the domain of small size and offshore gas fields. The new architecture completely reverses the current multilateral technology. The innovative concept suggests that laterals can be achieved like any conventional wells. They could be drilled from the surface and tied back to a common wellbore referred to as the mother well. Production would go through the toe of laterals into the mother well. The mother well could be as simple as a large diameter casing equipped with prepared connections to tie in feeder wells. This study looked past the mechanical challenge of achieving the new architecture. I demonstrated important benefits in terms of cost reduction, well completion and operations, and reservoir drainage. I looked at a typical field case, Phoenix, located in West Africa. Its actual development plan targets an ultimate recovery of 600 BCF with a total of four sub-vertical wells. I implemented a new development scenario with the innovative multilateral architecture. For comparison purposes, I achieved a reservoir simulation and a production forecast with both scenarios. The only simulation variable was the well architecture definition. As a main result, the new multilateral structure could produce as many as four vertical wells with three slim-hole laterals. I achieved a quantitative risk analysis on both development plans. I assessed the development cost of each scenario and performed a Monte Carlo simulation to account for cost uncertainties. In addition to the actual 70 MMSCFD gas contract, I simulated a progressive gas demand increase of 20 MMSCFD every five years and a 150 MMSCFD gas market. The study demonstrates the economic benefits of the new technology in the domain of offshore and small gas fields. This work also shows that this new generation of multilaterals brings new option values to the domain of multilateral technology.

Atse, Jean-Philippe

2003-12-01T23:59:59.000Z

395

Microsoft Word - RUL_2Q2011_Gas_Samp_Results_7Wells_23June2011  

Office of Legacy Management (LM)

23 June 2011 23 June 2011 Purpose: The purpose of this environmental sample collection is to monitor natural gas and production water from natural gas wells drilled near the Project Rulison test site. As part of the DOE's directive to protect human health and the environment, sample are collected and analyzed from producing gas wells to ensure no Rulison related radionuclides have migrated outside the DOE institution control boundary. Using the DOE Rulison Monitoring Plan as guidance, samples are collected on a frequency based on their respective distance from the site. The monitoring plan also specifies the type of analysis and the reporting thresholds. Background: Project Rulison was the second test under the Plowshare Program to stimulate natural-gas recovery from tight sandstone formations.

396

NEW AND NOVEL FRACTURE STIMULATION TECHNOLOGIES FOR THE REVITALIZATION OF EXISTING GAS STORAGE WELLS  

SciTech Connect

Gas storage wells are prone to continued deliverability loss at a reported average rate of 5% per annum (in the U.S.). This is a result of formation damage due to the introduction of foreign materials during gas injection, scale deposition and/or fines mobilization during gas withdrawal, and even the formation and growth of bacteria. As a means to bypass this damage and sustain/enhance well deliverability, several new and novel fracture stimulation technologies were tested in gas storage fields across the U.S. as part of a joint U.S. Department of Energy and Gas Research Institute R&D program. These new technologies include tip-screenout fracturing, hydraulic fracturing with liquid CO{sub 2} and proppant, extreme overbalance fracturing, and high-energy gas fracturing. Each of these technologies in some way address concerns with fracturing on the part of gas storage operators, such as fracture height growth, high permeability formations, and fluid sensitivity. Given the historical operator concerns over hydraulic fracturing in gas storage wells, plus the many other unique characteristics and resulting stimulation requirements of gas storage reservoirs (which are described later), the specific objective of this project was to identify new and novel fracture stimulation technologies that directly address these concerns and requirements, and to demonstrate/test their potential application in gas storage wells in various reservoir settings across the country. To compare these new methods to current industry deliverability enhancement norms in a consistent manner, their application was evaluated on a cost per unit of added deliverability basis, using typical non-fracturing well remediation methods as the benchmark and considering both short-term and long-term deliverability enhancement results. Based on the success (or lack thereof) of the various fracture stimulation technologies investigated, guidelines for their application, design and implementation have been developed. A final research objective was to effectively deploy the knowledge and experience gained from the project to the gas storage industry at-large.

Unknown

1999-12-01T23:59:59.000Z

397

Number  

Office of Legacy Management (LM)

' ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. Survey conditions of eeosure of personnel associated vith these chemical processes. 3. Obtain samples of atmospheric contaminants in the plant, as

398

Microsoft Word - RUL_3Q2010_Rpt_Gas_Samp_Results_18Wells.doc  

Office of Legacy Management (LM)

Monitoring Results Monitoring Results Natural Gas Wells near the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 July 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 18 gas wells sampled are within 1.1 miles of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background: Project Rulison is the Plowshare Program code name for the detonation of a 40-kiloton-yield nuclear device on 10 September 1969. The detonation point was 8,426 feet (about 1.6 miles) below ground surface in the Williams Fork Formation. The purpose of the test

399

Number of Producing Gas Wells (Summary) - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... sector. Monthly preliminary (from January 2012 to present) state-level data for the production series, except marketed production, ...

400

Investigation of flow modifying tools for the continuous unloading of wet-gas wells  

E-Print Network (OSTI)

Liquid loading in low production gas wells is a common problem faced in many producing regions around the world. Once gas rates fall below the minimum lift velocity, it is essential that some action be taken to maintain continuous operation of the well. Commonly applied solutions include: 1) reduction in wellhead pressure (compression); 2) reduction of tubing diameter (velocity strings); and 3) installation of artificial lift (plunger lift or sucker rod pumping). This thesis examines the use of a patented vortex flow modifier to lift liquids from low rate (stripper) gas wells. Vortex Flow LLC has developed a flow modifying tool using the patented EcoVeyor technology developed by EcoTech. This technology has been used successfully for almost a decade to transport solids in the coal and potash industries and is now being adapted to the oil and gas industries. Recent field tests in horizontal production pipelines have shown the ability to alter basic flow characteristics, significantly decreasing backpressure on wells and increasing production. This thesis evaluates this technology for use in the wellbore, where a tool is introduced at the bottom of the tubing string. Laboratory experiments were conducted using a 125-ft vertical flow loop of 2-in diameter clear PVC. In these experiments, the effects of the vortex device on gas and water flow was examined and compared with the behavior in normal pipe flow. An optimized tool was developed that alters the flow patterns in the pipe resulting in improved liquid unloading accompanied by a decrease in the tubing pressure loss by more than 15 percent. The optimized tool also lowered the minimum lift velocity required for liquid unloading. Visual observations at four locations along the test loop confirmed that the liquid phase is transported in an upward helical manner along the pipe wall, providing an improved flow path for the gas phase. Apart from assisting liquid unloading, the flow modifying tool enhances the operational envelope at low gas rates as well as forming smaller slugs during liquid unloading. Therefore the flow modifier can also reduce gas requirements during artificial gas lift and can also serve as a flow stabilizing device.

Ali, Ahsan Jawaid

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Microsoft Word - RUL_1Q2009_Gas_Samp_Results_6wells_22Jan09  

Office of Legacy Management (LM)

09 09 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 22 January 2009 Purpose: The purpose of this environmental sample collection is to monitor natural gas and production water from natural gas wells drilled near the Project Rulison test site. As part of the Department of Energy's (DOE's) directive to protect human health and the environment, samples are collected from producing gas wells and analyzed to ensure no Rulison related radionuclides have migrated outside the DOE institutional-control boundary. These samples were collected before the DOE Rulison Monitoring Plan was released in July 2010. The Rulison Monitoring Plan provides guidance for sample collection frequency, based on distance from the Rulison

402

Microsoft Word - RUL_4Q2010_Rpt_Gas_Samp_Results_8Wells  

Office of Legacy Management (LM)

the Project Rulison Horizon the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 21 October 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 8 gas wells sampled are within 0.75 and 1.0 mile of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background: Project Rulison was the second Plowshare Program to try stimulation natural gas in tight sandstone formations using a nuclear device. On 10 September 1969, a 40- nuclear device was detonated 8,426 feet (about 1.6 miles) below ground surface in the Williams Fork Formation. Samples Collected:

403

High Rayleigh number turbulent convection in a gas near the gas-liquid critical point  

E-Print Network (OSTI)

$SF_6$ in the vicinity of its critical point was used to study turbulent convection up to exceptionally high Rayleigh numbers, $Ra$, (up to $5\\cdot 10^{14}$) and to verify for the first time the generalized scaling laws for the heat transport and the large scale circulation velocity as a function of $Ra$ and the Prandtl number, $Pr$, in very wide range of these parameters. The both scaling laws obtained are consistent with theoretical predictions by B.Shraiman and E.Siggia, Phys. Rev. {\\bf A 42}, 3650 (1990).

Sh. Ashkenazi; V. Steinberg

1999-03-16T23:59:59.000Z

404

Application of new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells  

SciTech Connect

Based on the information presented in this report, our conclusions regarding the potential for new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells are as follows: New and improved gas storage well revitalization methods have the potential to save industry on the order of $20-25 million per year by mitigating deliverability decline and reducing the need for costly infill wells Fracturing technologies have the potential to fill this role, however operators have historically been reluctant to utilize this approach due to concerns with reservoir seal integrity. With advanced treatment design tools and methods, however, this risk can be minimized. Of the three major fracturing classifications, namely hydraulic, pulse and explosive, two are believed to hold potential to gas storage applications (hydraulic and pulse). Five particular fracturing technologies, namely tip-screenout fracturing, fracturing with liquid carbon dioxide, and fracturing with gaseous nitrogen, which are each hydraulic methods, and propellant and nitrogen pulse fracturing, which are both pulse methods, are believed to hold potential for gas storage applications and will possibly be tested as part of this project. Field evidence suggests that, while traditional well remediation methods such as blowing/washing, mechanical cleaning, etc. do improve well deliverability, wells are still left damaged afterwards, suggesting that considerable room for further deliverability enhancement exists. Limited recent trials of hydraulic fracturing imply that this approach does in fact provide superior deliverability results, but further RD&D work is needed to fully evaluate and demonstrate the benefits and safe application of this as well as other fracture stimulation technologies.

NONE

1995-04-01T23:59:59.000Z

405

Geothermal Power Production from Brine Co-Produced from Oil and Gas Wells  

Science Conference Proceedings (OSTI)

Millions of barrels of water (brine) per day are co-produced from oil and gas wells. Currently, the oil and gas industry views this as a waste stream that costs millions of dollars per year to manage, through either treatment or disposal/reinjection. A significant percentage of the co-produced brine, however, flows at sufficient rate and temperature to generate power using a binary power plant, and this is viewed by some as a potential value stream. The value lies in that the co-produced water is "free" ...

2012-04-30T23:59:59.000Z

406

Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wells: Rules Relating to Spacing, Pooling, and Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota) Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting The Department of Natural Resources is given the authority to create and promulgate regulations related to spacing, pooling, and utilization of oil

407

Sampling and Analysis Procedures for Gas, Condensate, Brine, and Solids: Pleasant Bayou Well Test, 1988-Present  

Science Conference Proceedings (OSTI)

This section covers analyses performed on gas. Chemical analyses can only be related to well performance if the quantity of the various fluids are known. The IGT on-line data computer system measures the flowrate, the pressures, and the temperatures every 10 seconds. These values are automatically recorded over operator selected intervals both on magnetic media and on paper. This allows review of samples versus operating conditions. This paper covers analyses performed on gas, including: An approximate sampling schedule during flow tests; On-site sample handling and storage of gas samples; Addresses of laboratories that perform off site analyses; Sample shipping instructions; Data archiving; and Quality Control/Quality Assurance. It is expected that the above procedures will change as the flow test progresses, but deviations from the written procedures should be approved by C. Hayden of IGT and noted on the results of the analysis.

Hayden, Chris

1988-01-01T23:59:59.000Z

408

SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT, MOCANE-LAVERNE FIELD, OKLAHOMA  

Science Conference Proceedings (OSTI)

In 1996, Advanced Resources International (ARI) began performing R&D targeted at enhancing production and reserves from natural gas fields. The impetus for the effort was a series of field R&D projects in the early-to-mid 1990's, in eastern coalbed methane and gas shales plays, where well remediation and production enhancement had been successfully demonstrated. As a first step in the R&D effort, an assessment was made of the potential for restimulation to provide meaningful reserve additions to the U.S. gas resource base, and what technologies were needed to do so. That work concluded that: (1) A significant resource base did exist via restimulation (multiples of Tcf). (2) The greatest opportunities existed in non-conventional plays where completion practices were (relatively) complex and technology advancement was rapid. (3) Accurate candidate selection is the greatest single factor that contributes to a successful restimulation program. With these findings, a field-oriented program targeted at tight sand formations was initiated to develop and demonstrate successful candidate recognition technology. In that program, which concluded in 2001, nine wells were restimulated in the Green River, Piceance and East Texas basins, which in total added 2.9 Bcf of reserves at an average cost of $0.26/Mcf. In addition, it was found that in complex and heterogeneous reservoirs (such as tight sand formations), candidate selection procedures should involve a combination of fundamental engineering and advanced pattern recognition approaches, and that simple statistical methods for identifying candidate wells are not effective. In mid-2000, the U.S. Department of Energy (DOE) awarded ARI an R&D contract to determine if the methods employed in that project could also be applied to stripper gas wells. In addition, the ability of those approaches to identify more general production enhancement opportunities (beyond only restimulation), such as via artificial lift and compression, was also sought. A key challenge in this effort was that, whereas the earlier work suggested that better (producing) wells tended to make better restimulation candidates, stripper wells are by definition low-volume producers (either due to low pressure, low permeability, or both). Nevertheless, the potential application of this technology was believed to hold promise for enhancing production for the thousands of stripper gas wells that exist in the U.S. today. The overall procedure for the project was to select a field test site, apply the candidate recognition methodology to select wells for remediation, remediate them, and gauge project success based on the field results. This report summarizes the activities and results of that project.

Scott Reeves; Buckley Walsh

2003-08-01T23:59:59.000Z

409

Microsoft Word - RBL_3Q2010_Rpt_Gas_Samp_Results_3Wells  

Office of Legacy Management (LM)

near the Project Rio Blanco Horizon near the Project Rio Blanco Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 September 2010 Purpose: The purpose of this sample collection is to monitor natural gas wells for radionuclides from Project Rio Blanco. The bottom-hole locations (BHLs) of the 3 gas wells sampled are within 1.4 miles of the Project Rio Blanco detonation horizon. All wells sampled have produced or are producing gas from the Mesaverde Group. Background: Project Rio Blanco is the Plowshare Program code name for the near-simultaneous detonation of a three 33-kiloton-yield nuclear devices in one emplacement well (RB-E-01) on 17 May 1973. The devices were detonated at 5,839-feet, 6,230-feet, and 6,689-feet below the ground surface. The shallowest device (at 5,839 feet) was detonated in the lower part of the Fort Union Formation, the

410

Use of inhibitors for scale control in brine-producing gas and oil wells  

SciTech Connect

Field and laboratory work have shown that calcium-carbonate scale formation in waters produced with natural gas and oil can be prevented by injection of phosphonate inhibitor into the formation, even if the formation is sandstone without calcite binging material. Inhibitor squeeze jobs have been carried out on DOE's geopressured-geothermal Gladys McCall brine-gas well and GRI's co-production wells in the Hitchcock field. Following the inhibitor squeeze on Gladys McCall, the well produced over five million barrels of water at a rate of approximately 30,000 BPD without calcium-carbonate scaling. Before the inhibitor squeeze, the well could not be produced above 15,000 BPD without significant scale formation. In the GRI brine-gas co-production field tests, inhibitor squeezes have been used to successfully prevant scaling. Laboratory work has been conducted to determine what types of oil field waters are subject to scaling. This research has led to the development of a saturation index and accompanying nomographs which allow prediction of when scale will develop into a problem in brine production.

Tomson, M.B.; Prestwich, S.

1986-01-01T23:59:59.000Z

411

Demonstration of the enrichment of medium quality gas from gob wells through interactive well operating practices. Final report, June--December, 1995  

SciTech Connect

Methane released to the atmosphere during coal mining operations is believed to contribute to global warming and represents a waste of a valuable energy resource. Commercial production of pipeline-quality gob well methane through wells drilled from the surface into the area above the gob can, if properly implemented, be the most effective means of reducing mine methane emissions. However, much of the gas produced from gob wells is vented because the quality of the gas is highly variable and is often below current natural gas pipeline specifications. Prior to the initiation of field-testing required to further understand the operational criteria for upgrading gob well gas, a preliminary evaluation and assessment was performed. An assessment of the methane gas in-place and producible methane resource at the Jim Walter Resources, Inc. No. 4 and No. 5 Mines established a potential 15-year supply of 60 billion cubic feet of mien methane from gob wells, satisfying the resource criteria for the test site. To understand the effect of operating conditions on gob gas quality, gob wells producing pipeline quality (i.e., < 96% hydrocarbons) gas at this site will be operated over a wide range of suction pressures. Parameters to be determined will include absolute methane quantity and methane concentration produced through the gob wells; working face, tailgate and bleeder entry methane levels in the mine; and the effect on the economics of production of gob wells at various levels of methane quality. Following this, a field demonstration will be initiated at a mine where commercial gob gas production has not been attempted. The guidelines established during the first phase of the project will be used to design the production program. The economic feasibility of various utilization options will also be tested based upon the information gathered during the first phase. 41 refs., 41 figs., 12 tabs.

Blackburn, S.T.; Sanders, R.G.; Boyer, C.M. II; Lasseter, E.L.; Stevenson, J.W.; Mills, R.A.

1995-12-01T23:59:59.000Z

412

Improved Upscaling & Well Placement Strategies for Tight Gas Reservoir Simulation and Management  

E-Print Network (OSTI)

Tight gas reservoirs provide almost one quarter of the current U.S. domestic gas production, with significant projected increases in the next several decades in both the U.S. and abroad. These reservoirs constitute an important play type, with opportunities for improved reservoir simulation & management, such as simulation model design, well placement. Our work develops robust and efficient strategies for improved tight gas reservoir simulation and management. Reservoir simulation models are usually acquired by upscaling the detailed 3D geologic models. Earlier studies of flow simulation have developed layer-based coarse reservoir simulation models, from the more detailed 3D geologic models. However, the layer-based approach cannot capture the essential sand and flow. We introduce and utilize the diffusive time of flight to understand the pressure continuity within the fluvial sands, and develop novel adaptive reservoir simulation grids to preserve the continuity of the reservoir sands. Combined with the high resolution transmissibility based upscaling of flow properties, and well index based upscaling of the well connections, we can build accurate simulation models with at least one order magnitude simulation speed up, but the predicted recoveries are almost indistinguishable from those of the geologic models. General practice of well placement usually requires reservoir simulation to predict the dynamic reservoir response. Numerous well placement scenarios require many reservoir simulation runs, which may have significant CPU demands. We propose a novel simulation-free screening approach to generate a quality map, based on a combination of static and dynamic reservoir properties. The geologic uncertainty is taken into consideration through an uncertainty map form the spatial connectivity analysis and variograms. Combining the quality map and uncertainty map, good infill well locations and drilling sequence can be determined for improved reservoir management. We apply this workflow to design the infill well drilling sequence and explore the impact of subsurface also, for a large-scale tight gas reservoir. Also, we evaluated an improved pressure approximation method, through the comparison with the leading order high frequency term of the asymptotic solution. The proposed pressure solution can better predict the heterogeneous reservoir depletion behavior, thus provide good opportunities for tight gas reservoir management.

Zhou, Yijie

2013-08-01T23:59:59.000Z

413

A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES..............................1 A2. VARIABILITY IN SHALE WELL PRODUCTION PERFORMANCE ............................1  

E-Print Network (OSTI)

1 APPENDIX1 Contents A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES..............................1 A2. VARIABILITY IN SHALE WELL PRODUCTION PERFORMANCE ............................1 A3. GHG FOR FLOWBACK GAS CAPTURE IN SHALE PLAYS..9 A5. REFERENCES

414

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network (OSTI)

released from the BP oil well blowout, Nature Geoscience, 4:for the Deepwater Horizon /Macondo Well oil spill. Flow Ratecolumn of oil and gas in the well, it would imply the

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

415

California--State Offshore Natural Gas Withdrawals from Oil Wells (Million  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11,226 12,829 1980's 11,634 11,759 12,222 12,117 12,525 13,378 12,935 10,962 9,728 8,243 1990's 7,743 7,610 7,242 6,484 7,204 5,904 6,309 7,171 6,883 6,738 2000's 7,808 7,262 7,068 6,866 6,966 6,685 6,654 6,977 6,764 5,470 2010's 5,483 4,904 4,411 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals from Oil

416

Black Warrior: Sub-soil Gas and Fluid Inclusion Exploration and Slim Well  

Open Energy Info (EERE)

Warrior: Sub-soil Gas and Fluid Inclusion Exploration and Slim Well Warrior: Sub-soil Gas and Fluid Inclusion Exploration and Slim Well Drilling Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Black Warrior: Sub-soil Gas and Fluid Inclusion Exploration and Slim Well Drilling Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The project area encompasses 6,273 acres of both private and federal lands including water and surface rights. It is reasonable to expect a capacity of about 20 MW. GeothermEx estimated a potential capacity of 40 MW. Black Warrior is a large blind geothermal prospect near the Pyramid Lake Indian Reservation that was identified by reconnaissance temperature gradient drilling in the 1980s by Philips Petroleum but was never tested through deep exploration drilling. Although the 10 square miles of high heat flow in the area reveals significant energy potential it also makes selection of an optimal exploration drilling target difficult.

417

Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells (Million  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 30,264 26,439 1980's 22,965 22,153 23,654 26,510 30,099 29,904 33,453 28,698 23,950 22,673 1990's 20,948 19,538 21,631 23,750 21,690 14,528 19,414 16,002 22,744 17,510 2000's 17,089 13,513 11,711 9,517 11,299 8,294 8,822 9,512 4,137 4,108 2010's 6,614 6,778 5,443 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals from Oil

418

Federal Offshore--Louisiana Natural Gas Withdrawals from Oil Wells (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 410,179 375,593 360,533 1980's 360,906 348,113 357,671 408,632 461,821 502,000 529,453 470,493 426,945 403,144 1990's 408,654 455,052 436,493 467,340 518,305 522,437 523,155 566,210 643,886 722,750 2000's 752,296 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals from Oil

419

The Implications and Flow Behavior of the Hydraulically Fractured Wells in Shale Gas Formation  

E-Print Network (OSTI)

Shale gas formations are known to have low permeability. This low permeability can be as low as 100 nano darcies. Without stimulating wells drilled in the shale gas formations, it is hard to produce them at an economic rate. One of the stimulating approaches is by drilling horizontal wells and hydraulically fracturing the formation. Once the formation is fractured, different flow patterns will occur. The dominant flow regime observed in the shale gas formation is the linear flow or the transient drainage from the formation matrix toward the hydraulic fracture. This flow could extend up to years of production and it can be identified by half slop on the log-log plot of the gas rate against time. It could be utilized to evaluate the hydraulic fracture surface area and eventually evaluate the effectiveness of the completion job. Different models from the literature can be used to evaluate the completion job. One of the models used in this work assumes a rectangular reservoir with a slab shaped matrix between each two hydraulic fractures. From this model, there are at least five flow regions and the two regions discussed are the Region 2 in which bilinear flow occurs as a result of simultaneous drainage form the matrix and hydraulic fracture. The other is Region 4 which results from transient matrix drainage which could extend up to many years. The Barnett shale production data will be utilized throughout this work to show sample of the calculations. This first part of this work will evaluate the field data used in this study following a systematic procedure explained in Chapter III. This part reviews the historical production, reservoir and fluid data and well completion records available for the wells being analyzed. It will also check for data correlations from the data available and explain abnormal flow behaviors that might occur utilizing the field production data. It will explain why some wells might not fit into each model. This will be followed by a preliminary diagnosis, in which flow regimes will be identified, unclear data will be filtered, and interference and liquid loading data will be pointed. After completing the data evaluation, this work will evaluate and compare the different methods available in the literature in order to decide which method will best fit to analyze the production data from the Barnett shale. Formation properties and the original gas in place will be evaluated and compared for different methods.

Almarzooq, Anas Mohammadali S.

2010-12-01T23:59:59.000Z

420

Decision matrix for liquid loading in gas wells for cost/benefit analyses of lifting options  

E-Print Network (OSTI)

Field-proven solutions already exist to reduce the loss of gas production when liquid loading begins to occur. However, the choice of remedial technique, its feasibility, and its cost, vary considerably depending on a field's location, size export route, and the individual operator's experience. The selection of the best remedial technique and the timeframe within which the remedial action is undertaken are critical to a project's profitability. Although there are literature reviews available regarding solutions to liquid loading problems in gas wells, a tool capable of helping an operator select the best remedial option for a specific field case still does not exist. This thesis proposes a newly developed decision matrix to screen the possible remedial options available to the operator. The matrix can not only provide a critical evaluation of potential solutions to the problem of liquid loading in gas wells vis-a?-vis the existing technical and economic constraints, but can also serve as a reference to operators for investment decisions and as a quick screening tool for the selection of production optimisation strategies. Under its current status of development, this new tool consists of a decision algorithm built around a decision tree. Unlike other data mining techniques, decision trees quickly allow for subdividing large initial datasets into successively smaller sets by a series of decision rules. The rules are based on information available in the public domain. The effectiveness of the matrix is now ready to be tested against real field datasets.

Park, Han-Young

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Particle number fluctuations in nuclear collisions within excluded volume hadron gas model  

E-Print Network (OSTI)

The multiplicity fluctuations are studied in the van der Waals excluded volume hadron-resonance gas model. The calculations are done in the grand canonical ensemble within the Boltzmann statistics approximation. The scaled variances for positive, negative and all charged hadrons are calculated along the chemical freeze-out line of nucleus-nucleus collisions at different collision energies. The multiplicity fluctuations are found to be suppressed in the van der Waals gas. The numerical calculations are presented for two values of hard-core hadron radius, $r=0.3$ fm and 0.5 fm, as well as for the upper limit of the excluded volume suppression effects.

M. I. Gorenstein; M. Hauer; D. O. Nikolajenko

2007-02-26T23:59:59.000Z

422

,"Federal Offshore California Natural Gas Withdrawals from Oil Wells (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (MMcf)" Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Natural Gas Withdrawals from Oil Wells (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1030_r5f_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1030_r5f_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:15 AM"

423

Numerical modeling of well performance in shale gas reservoirs: the impact of fracture spacing on production of adsorbed gas .  

E-Print Network (OSTI)

??Shale gas became an important source of natural gas in the United States and is expected to contribute significantly to worldwide energy supply. This has (more)

Kalantarli, A.E.

2011-01-01T23:59:59.000Z

424

Alaska--State Offshore Natural Gas Withdrawals from Oil Wells (Million  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18,689 15,053 1980's 13,959 13,526 12,554 12,405 11,263 9,412 9,547 16,422 43,562 50,165 1990's 49,422 70,932 106,311 105,363 124,501 7,684 7,055 7,919 7,880 6,938 2000's 149,077 149,067 190,608 236,404 260,667 305,641 292,660 325,328 345,109 316,537 2010's 328,114 328,500 274,431 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

425

US--Federal Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 417,053 383,647 369,968 1980's 385,573 377,245 400,129 461,796 523,200 570,733 599,978 537,101 497,072 485,150 1990's 484,516 535,250 513,058 550,850 622,235 653,870 687,424 729,162 804,290 905,293 2000's 951,088 989,969 893,193 939,828 840,852 730,830 681,869 654,334 524,965 606,403 2010's 598,679 512,003 526,664 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

426

jet-compressible-gas-july25.tex 1 Liquid jet in a high Mach number air stream  

E-Print Network (OSTI)

jet-compressible-gas-july25.tex 1 Liquid jet in a high Mach number air stream T.Funada, D velocity airstream is studied assuming that the flow of the viscous gas and liquid is irrotational for the perturbations which depend on all the material properties of the incompressible liquid and compressible gas

Joseph, Daniel D.

427

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents (OSTI)

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

Vail, III, William B. (Bothell, WA)

1997-01-01T23:59:59.000Z

428

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents (OSTI)

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

Vail, W.B. III

1997-05-27T23:59:59.000Z

429

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network (OSTI)

geologic assessment of oil and gas in the San Joaquin BasinRates in California Oil and Gas District 4 Update andoccurring in California Oil and Gas District 4 during the

Benson, Sally M.

2010-01-01T23:59:59.000Z

430

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

431

Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

432

Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

433

,"U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Count)" Acquifers Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1392_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1392_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:23 PM"

434

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011  

E-Print Network (OSTI)

://www.state.nj.us/drbc/ Hydrologic conditions #12; Policies & regulations Natural gas related water withdrawal information associated with the industry The Future of Natural Gas (2011) MIT http://web.mit.edu/mitei/research/studies/natural-gas-2011.shtml An analysis of the role of natural gas in our energy future under a variety of possible

Manning, Sturt

435

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

436

StarWars Laser Technology Applied to Drilling and Completing Gas Wells  

NLE Websites -- All DOE Office Websites (Extended Search)

u' m .,. . Society of Petroleum Engineers u I SPE 49259 StarWars Laser Technology Applied to Drilling and Completing Gas Wells R.M. Graves, SPE, Colorado School of Mines; and D.G. O'Brien, PE, SPE, Solutions Engineering Copyr@ht 1998, Scdety of Petroleum Engineers, Inc. This paper was prapared for presentation at the 1998 SPE Annual Technicar Conference and Exhibition bald in New Orteans, Lcuisiana, 27-30 September 1998, This paper waa selected for presentation by en SPE Program Commiftee folrowing review of information contained in an abstract submitted by the author(a). Contents of the paper, as prasented, have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The materiar, as presented, does not necessarily reflect any position of the .%ciety of Petroleum Engineers, its officers, or members. Papers prasented at SPE meetings

437

Stimulation rationale for shale gas wells: a state-of-the-art report  

Science Conference Proceedings (OSTI)

Despite the large quantities of gas contained in the Devonian Shales, only a small percentage can be produced commercially by current production methods. This limited production derives both from the unique reservoir properties of the Devonian Shales and the lack of stimulation technologies specifically designed for a shale reservoir. Since October 1978 Science Applications, Inc. has been conducting a review and evaluation of various shale well stimulation techniques with the objective of defining a rationale for selecting certain treatments given certain reservoir conditions. Although this review and evaluation is ongoing and much more data will be required before a definitive rationale can be presented, the studies to date do allow for many preliminary observations and recommendations. For the hydraulic type treatments the use of low-residual-fluid treatments is highly recommended. The excellent shale well production which is frequently observed with only moderate wellbore enlargement treatments indicates that attempts to extend fractures to greater distances with massive hydraulic treatments are not warranted. Immediate research efforts should be concentrated upon limiting production damage by fracturing fluids retained in the formation, and upon improving proppant transport and placement so as to maximize fracture conductivity. Recent laboratory, numerical modeling and field studies all indicate that the gas fracturing effects of explosive/propellant type treatments are the predominate production enhancement mechanism and that these effects can be controlled and optimized with properly designed charges. Future research efforts should be focused upon the understanding, prediction and control of wellbore fracturing with tailored-pulse-loading charges. 36 references, 7 figures, 2 tables.

Young, C.; Barbour, T.; Blanton, T.L.

1980-12-01T23:59:59.000Z

438

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network (OSTI)

pub/oil/ Data_Catalog/Oil_and_Gas/Oil_?elds/CA_oil?elds.DAT.1993) A history of oil- and gas-well blowouts in California,Health Administration (2007), Oil and gas well drilling and

Jordan, Preston D.

2008-01-01T23:59:59.000Z

439

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents (OSTI)

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

Vail, III, William Banning (Bothell, WA)

2000-01-01T23:59:59.000Z

440

Gas Well Drilling and Water Resources Regulated by the Pennsylvania Oil and  

E-Print Network (OSTI)

! Background of Marcellus Shale Gas Play ! Current Events: The Case of PA ! Geography of Fracking in Study

Boyer, Elizabeth W.

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Predicting Well Stimulation Results in a Gas Storage Field in the Absence of Reservoir Data, Using Neural Networks  

E-Print Network (OSTI)

Sand. The Clinton is a tight gas-bearing sandstone. Natural fracturing is thought to account storage field located in Northeastern Ohio. The formation is a tight gas sandstone known as the Clinton for production in economic quantities. Sand occurs in lenses and is largely discontinuous from one well

Mohaghegh, Shahab

442

Wetland treatment of oil and gas well waste waters. Final report  

SciTech Connect

Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

Kadlec, R.; Srinivasan, K.

1995-08-01T23:59:59.000Z

443

Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3,459 3,117 3,336 1,781 1,806 1,881 1,841 1,820 1,781 1,699 1,247 1,228 1992 4,284 3,872 4,141 4,027 4,047 3,883 3,964 3,957 3,892 4,169 4,146 4,334 1993 4,123 3,693 4,049 3,865 3,942 3,786 3,915 3,924 3,861 4,146 4,114 4,200 1994 3,639 3,242 3,557 3,409 3,488 3,384 3,552 3,643 3,597 3,796 3,818 3,991 1995 3,937 3,524 3,842 3,679 3,731 3,591 3,683 3,710 3,597 3,747 3,778 3,937 1996 3,960 4,174 4,704 4,202 3,860 4,239 4,285 4,447 4,978 4,585 4,564 4,512 1997 4,656 4,105 4,501 4,102 4,135 4,047 4,273 4,190 3,962 4,213 3,959 3,830

444

Evidence of Reopened Microfractures in Production Data of Hydraulically Fractured Shale Gas Wells  

E-Print Network (OSTI)

Frequently a discrepancy is found between the stimulated shale volume (SSV) estimated from production data and the SSV expected from injected water and proppant volume. One possible explanation is the presence of a fracture network, often termed fracture complexity, that may have been opened or reopened during the hydraulic fracturing operation. The main objective of this work is to investigate the role of fracture complexity in resolving the apparent SSV discrepancy and to illustrate whether the presence of reopened natural fracture network can be observed in pressure and production data of shale gas wells producing from two shale formations with different well and reservoir properties. Homogeneous, dual porosity and triple porosity models are investigated. Sensitivity runs based on typical parameters of the Barnett and the Horn River shale are performed. Then the field data from the two shales are matched. Homogeneous models for the two shale formations indicate effective infinite conductivity fractures in the Barnett well and only moderate conductivity fractures in the Horn River shale. Dual porosity models can support effectively infinite conductivity fractures in both shale formations. Dual porosity models indicate that the behavior of the Barnett and Horn River shale formations are different. Even though both shales exhibit apparent bilinear flow behavior the flow behaviors during this trend are different. Evidence of this difference comes from comparing the storativity ratio observed in each case to the storativity ratio estimated from injected fluid volumes during hydraulic fracturing. In the Barnett shale case similar storativity ratios suggest fracture complexity can account for the dual porosity behavior. In the Horn River case, the model based storativity ratio is too large to represent only fluids from hydraulic fracturing and suggests presence of existing shale formation microfractures.

Apiwathanasorn, Sippakorn

2012-08-01T23:59:59.000Z

445

,"U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Count)" Depleted Fields Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:06 PM"

446

,"U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (Count)" Salt Caverns Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1393_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1393_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:34 PM"

447

Reservoir characteristics in Uinta basin gas wells. Final report, September 1, 1978-January 31, 1980  

SciTech Connect

Volumes of 29 lenticular tight gas sandstone reservoirs in the Uinta Basin, Utah have been approximated from long-term pressure buildups on 6 wells. Average reservoir volume was interpreted to be about 240,000 ft/sup 3/ per ft of net pay. Outcrop reservoir geometry studies indicate an average reservoir volume (without any reservoir interconnection assumed) of about 30% less than the average based upon production analysis. Therefore, some reservoir interconnection may exist. Results of this study are consistent with the Knutson lenticular reservoir model in which average reservoir width is 22 times the gross sand thickness, length is 10 times the width, and reservoir interconnection is a function of the sand fraction in the productive interval. Apparent reservoir permeabilities, assuming radial flow, range from .009 to .052 millidarcies and actual sandstone matrix permeabilities are interpreted to range from .06 to .21 millidarcies. Fracture half lengths are interpreted to be about 0.1 ft/bbl of fluid with an average proppant load of 1.2 to 1.7 lb/gal at injection rates of 18 to 24 BPM and injection pressures of 2,500 to 4,600 psi for each 100 ft of gross sand in the fracced interval.

Boardman, C.R.; Knutson, C.F.

1979-11-27T23:59:59.000Z

448

DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS  

Science Conference Proceedings (OSTI)

The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

Johnson, F.; Fox, K.

2013-10-02T23:59:59.000Z

449

Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology  

Science Conference Proceedings (OSTI)

The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

Dinesh Agrawal

2006-09-30T23:59:59.000Z

450

Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology  

Science Conference Proceedings (OSTI)

The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

Dinesh Agrawal; Paul Gigl; Mark Hunt; Mahlon Dennis

2007-07-31T23:59:59.000Z

451

Alabama State Oil and Gas Board: Oil Well Records (2/9/11 - 3/18/11) |  

Open Energy Info (EERE)

Alabama State Oil and Gas Board: Oil Well Records (2/9/11 - 3/18/11) Alabama State Oil and Gas Board: Oil Well Records (2/9/11 - 3/18/11) Dataset Summary Description The Alabama State Oil and Gas Board publishes well record permits to the public as they are approved. This dataset is comprised of 50 recent well record permits from 2/9/11 - 3/18/11. The dataset lists the well name, county, operator, field, and date approved, among other fields. State's make oil and gas data publicly available for a range of topics. Source Geological Survey of Alabama Date Released February 09th, 2011 (3 years ago) Date Updated March 18th, 2011 (3 years ago) Keywords Alabama board gas oil state well records Data application/vnd.ms-excel icon Well records 2/9/11 - 3/18/11 (xls, 28.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

452

Analysis of pressure data from the horizontal wells with multiple hydraulic fractures in shale gas.  

E-Print Network (OSTI)

??In the last several years, the unconventional gas reservoirs development has grown tremendously. Most of these unconventional reservoirs have very low permeability and are not (more)

Tabar, Essa M.

2011-01-01T23:59:59.000Z

453

DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK FOR HYDRAULICALLY FRACTURED HORIZONTAL WELLS IN TIGHT GAS SANDS.  

E-Print Network (OSTI)

??Increasing demand on fossil fuels and the decline in their production promote producing hydrocarbon from unconventional sources. Natural gas existing in tight reservoirs has a (more)

Kulga, Ihsan

2010-01-01T23:59:59.000Z

454

A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation  

DOE Green Energy (OSTI)

4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

Erdlac, Richard J., Jr.

2006-10-12T23:59:59.000Z

455

An analytical solution for transient gas flow in a multi-well system  

E-Print Network (OSTI)

with extraction and injection wells. The transient solutionthe extraction (or injection) well as a line sink (orwill be applied at the injection well. Although (11) and (

Shan, Chao

2006-01-01T23:59:59.000Z

456

The Application of Paraffin Deposition Model of Wellbore for Condensate Gas Well  

Science Conference Proceedings (OSTI)

The safety hazard caused by paraffin precipitation to normal oil and gas production cannot be ignored. Therefore, it is necessary to develop the paraffin precipitation, deposition mechanism, and variation discipline of phase state, prediction technology ... Keywords: deposition mechanism, paraffin precipitation, condensate gas reservoir

Xi-an Wang; Min Yang

2011-10-01T23:59:59.000Z

457

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network (OSTI)

6. 11. Skalle P, Podio AL, Trends extracted from 1,200 GulfGas District 4 Update and Trends a report by P r e s t o nDistrict 4 Update and Trends Figure 2: Oil and Gas Fields

Benson, Sally M.

2010-01-01T23:59:59.000Z

458

A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation  

Science Conference Proceedings (OSTI)

Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is mined. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities for geothermal resources have been hindered. To increase the effective regional implementation of geothermal resources as an energy source for power production requires meeting several objectives. These include: 1) Expand (oil and gas as well as geothermal) industry awareness of an untapped source of geothermal energy within deep permeable strata of sedimentary basins; 2) Identify and target specific geographic areas within sedimentary basins where deeper heat sources can be developed; 3) Increase future geothermal field size from 10 km2 to many 100s km2 or greater; and 4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

Erdlac, Richard J., Jr.

2006-10-12T23:59:59.000Z

459

IMPROVED TUBULARS FOR BETTER ECONOMICS IN DEEP GAS WELL DRILLING USING MICROWAVE TECHNOLOGY  

Science Conference Proceedings (OSTI)

The main objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Originally, it was proposed to accomplish this by developing an efficient and economically viable continuous microwave process to sinter continuously formed/extruded steel powder for the manufacture of seamless coiled tubing and other tubular products. However, based on the results and faced with insurmountable difficulties in the extrusion and de-waxing processes, the approach of achieving the goals of the program has been slightly changed. In the continuation proposal an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) is adopted. This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. Originally, the entire program was spread over three phases with the following goals: Phase I: Demonstration of the feasibility concept of continuous microwave sintering process for tubular steel products. Phase II: Design, building and testing of a prototype microwave system which shall be combined with a continuous extruder for steel tubular objects. Phase III: Execution of the plan for commercialization of the technology by one of the industrial partners. However, since some of the goals of the phase I were not completed, an extension of nine months was granted and we continued extrusion experiments, designed and built semicontinuous microwave sintering unit.

Dinesh Agrawal; Paul Gigl; Mahlon Dennis; Roderic Stanley

2005-03-01T23:59:59.000Z

460

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network (OSTI)

injected oil, gas and water, produced/injected produced/injected oil, gas and water, produced oil, gas (at welland cyclically produced oil/water/steam (at well head) Steam

Jordan, Preston D.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Shale gas in the southern central area of New York State: Part II. Experience of locating and drilling four shale-gas wells in New York State  

Science Conference Proceedings (OSTI)

Four shale-gas wells have been located and drilled in the south-central area of New York State as part of this project. The four wells that were drilled are: the Rathbone well, in Steuben County, was located on the north side of a graben, in an old shale-gas field; it penetrated the Rhinestreet, Geneseo and Marcellus shales. Artificial stimulation was performed in the Rhinestreet, without marked success, and in the Marcellus; the latter formation has a calculated open flow of 110 Mcf/day and appears capable of initial production of 100 Mcf/day against a back-pressure of 500 psi. The Dansville well, in Livingston County, tested the Geneseo and Marcellus shales at shallower depth. Artificial stimulation was performed in the Marcellus. The calculated open flow is 95 Mcf/day, and the well appears capable of initial production of 70 Mcf/day against a back-pressure of 300 psi. The Erwin and N. Corning wells, both near Corning in Steuben County, were designed to test the possibility of collecting gas from a fractured conduit layer connecting to other fracture systems in the Rhinestreet shale. The N. Corning well failed; the expected conduit was found to be only slightly fractured. The Erwin well encountered a good initial show of gas at the conduit, but the gas flow was not maintained; even after artificial stimulation the production is only 10 Mcf/day. The present conclusion is that the most likely source of shale gas in south-central New York is the Marcellus shale formation. Important factors not yet established are the decline rate of Marcellus production and the potential of the Geneseo after stimulation.

Not Available

1981-04-01T23:59:59.000Z

462

Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope  

Science Conference Proceedings (OSTI)

Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schlumbergers Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. All of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison groups consensus value for the initial perme- ability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSim, MH-21 HYDRES, STOMP-HYD, and TOUGHHYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the pre- dicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.33.9 ?C). This paper presents the approach and results of extrapolating regional forward production modeling from history-matching efforts on the results from a single well test.

Anderson, Brian; Kurihara, Masanori; White, Mark D.; Moridis, George J.; Wilson, Scott J.; Pooladi-Darvish, Mehran; Gaddipati, Manohar; Masuda, Yoshihiro; Collett, T. S.; Hunter, Robert B.; Narita, Hideo; Rose, Kelly K.; Boswell, Ray

2011-02-02T23:59:59.000Z

463

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network (OSTI)

District stabilised at the quadrennial average at the end ofTrends The annual and quadrennial average number of steamevents Total annual Total quadrennial average Modified from

Benson, Sally M.

2010-01-01T23:59:59.000Z

464

Well-to-Wheels Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions  

E-Print Network (OSTI)

for a given facility were divided by its throughput to develop emissions factors Distribution curves were and Storage (99%) Transportation, Storage, and Distribution of Gasoline (99.5%) MTBE or EtOH for Gasoline.5%) Steam or Electricity Export NA: North American nNA: non-North American NG: natural gas G.H2 Compression

Argonne National Laboratory

465

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

Analyzed distribution of vehicles by last trip ending time for each region Generated PHEVs load profiles PSAT were adjusted to on-road values for this analysis PHEV miles driven by grid electricity and onWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad

466

Eagle Ford oil and natural gas well starts rose sharply in first ...  

U.S. Energy Information Administration (EIA)

New well starts in the Eagle Ford region in Texas increased 110% from January through March 2012 compared to the same period in 2011, according to reporting and ...

467

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network (OSTI)

of well failures in diatomite reservoirs, Leading Edge ,geomechanical response of the diatomite reservoirs in thewell failures in the Belridge diatomite, SPE Paper 36698,

Benson, Sally M.

2010-01-01T23:59:59.000Z

468

Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska  

SciTech Connect

In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

Boswell, R.M.; Hunter, R. (ASRC Energy Services, Anchorage, AK); Collett, T. (USGS, Denver, CO); Digert, S. (BP Exploration (Alaska) Inc., Anchorage, AK); Hancock, S. (RPS Energy Canada, Calgary, Alberta, Canada); Weeks, M. (BP Exploration (Alaska) Inc., Anchorage, AK); Mt. Elbert Science Team

2008-01-01T23:59:59.000Z

469

Wetland treatment of oil and gas well wastewaters. Quarterly technical report, November 25, 1992--February 24, 1993  

SciTech Connect

During the first quarter of the above contract, all the elements of Task 1 were completed. The first quarterly report presented an overview of a wetland and its increasing use in industrial wastewater treatment. An idealized, reaction engineering description of wetlands was presented to demonstrate how the various processes that occur in a wetland can be modeled. Previous work on the use of wetlands to remove BOD, TSS, Phosphorus and Nitrogen was reviewed. Recent literature on the application of wetland technology to the treatment of petroleum-related wastewater was critically evaluated and an outline of the research plans for the first year was delineated. Further, our literature search (nominally completed under Task 1) unearthed more recent studies (some unpublished) and a summary was included in the second quarterly report. In the second quarterly report, results of our efforts on the construction of a laboratory-type wetland were also reported. Initial studies on the use of wetland amendments such as modified-clays and algae cells were presented and discussed. Adsorption of heavy metal ions, Cu{sup 2+} and Cr(VI) onto soils drawn from the laboratory-type wetland built as a part of this contract has been undertaken and these results are presented and discussed in this quarterly report. A number of studies on the design and preparation of modified-clays for the adsorption of Cr(VI) and {beta}-naphthoic acid (NA) has been carried out during this quarter and these are also described and discussed in this report. The choice of {beta}-naphthoic acid (NA) as an ionogenic organic compound was made on the basis of a recent personal communication to the Project Director that NA is a major contaminant in many oil and gas well wastewaters.

Kadlec, R.H.; Srinivasan, K.R.

1993-04-02T23:59:59.000Z

470

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil...

471

Natural Gas Consumption (Annual Supply & Disposition)  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil...

472

Shale gas in the southern central area of New York State. Volume III. Experience of drilling five shale-gas wells in New York State  

SciTech Connect

Five shale-gas wells have been located and drilled in the South-Central areas of New York State as part of this program. The program was undertaken by Arlington Exploration Company (AEC) during 1981 and 1982. The wells were drilled on educational properties in an attempt to demonstrate the economic prospect of natural gas for institutional and small commercial consumers to develop their own source of energy. All five wells were completed in the Marcellus section of the Devonian shale. Each of the five wells was connected to an appropriate heat load for the purpose of production testing. The project supports the theory that a well drilled anywhere in South-Central New York and completed in the Marcellus Shale using modern fracturing techniques (i.e. nitrogen foam) is likely to produce some gas. Important factors not yet predictable are the decline rate of Marcellus production and the volume of recoverable reserves. Depths to the Marcellus Shale generally increase from north (i.e. Houghton College) to south (i.e. Portville Central School).

Not Available

1983-03-01T23:59:59.000Z

473

Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

1 See "Footage Drilled" in Glossary. R=Revised. 2 See "Crude Oil Well" in Glossary. Notes: 2011 data for this table were not available in time for publication.

474

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

475

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

476

Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)  

Science Conference Proceedings (OSTI)

Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the mineral industry for use in the exploration of unconventional gas in rural Alaska. These techniques have included the use of diamond drilling rigs that core small diameter (< 3.0-inch) holes coupled with wireline geophysical logging tools and pressure transient testing units capable of testing in these slimholes.

Paul Glavinovich

2002-11-01T23:59:59.000Z

477

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch  Vladimir Koritarov  Matt Mahalik  Thomas Veselka  Audun Botterud  Jianhui Wang  Jason Wang 3 3 3 Scope of Argonne's PHEV WTW Analysis: Vehicle Powertrain Systems and Fuel Pathways 3  Vehicle powertrain systems:  Conventional international combustion engine vehicles (ICEVs)

478

A Case Based System for Oil and Gas Well Design with Risk Assessment  

Science Conference Proceedings (OSTI)

A case base system for a complex problem like oil field design needs to be richer than the usual case based reasoning system. Genesis, the system described in this paper contains large heterogeneous cases with metalevel knowledge. A multi-level indexing ... Keywords: case based systems, information extraction, knowledge sharing, oil well design, risk assessment

Simon Kravis; Rosemary Irrgang

2005-07-01T23:59:59.000Z

479

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network (OSTI)

not associated with oil) wells are the highest of any welldifferent from producing oil wells. This is due to the small1993) A history of oil- and gas-well blowouts in California,

Jordan, Preston D.

2008-01-01T23:59:59.000Z

480

Performance analysis of compositional and modified black-oil models for rich gas condensate reservoirs with vertical and horizontal wells  

E-Print Network (OSTI)

It has been known that volatile oil and gas condensate reservoirs cannot be modeled accurately with conventional black-oil models. One variation to the black-oil approach is the modified black-oil (MBO) model that allows the use of a simple, and less expensive computational algorithm than a fully compositional model that can result in significant timesaving in full field studies. The MBO model was tested against the fully compositional model and performances of both models were compared using various production and injection scenarios for a rich gas condensate reservoir. The software used to perform the compositional and MBO runs were Eclipse 300 and Eclipse 100 versions 2002A. The effects of black-oil PVT table generation methods, uniform composition and compositional gradient with depth, initialization methods, location of the completions, production and injection rates, kv/kh ratios on the performance of the MBO model were investigated. Vertical wells and horizontal wells with different drain hole lengths were used. Contrary to the common belief that oil-gas ratio versus depth initialization gives better representation of original fluids in place, initializations with saturation pressure versus depth gave closer original fluids in place considering the true initial fluids in place are given by the fully compositional model initialized with compositional gradient. Compared to the compositional model, results showed that initially there was a discrepancy in saturation pressures with depth in the MBO model whether it was initialized with solution gas-oil ratio (GOR) and oil-gas ratio (OGR) or dew point pressure versus depth tables. In the MBO model this discrepancy resulted in earlier condensation and lower oil production rates than compositional model at the beginning of the simulation. Unrealistic vaporization in the MBO model was encountered in both natural depletion and cycling cases. Oil saturation profiles illustrated the differences in condensate saturation distribution for the near wellbore area and the entire reservoir even though the production performance of the models was in good agreement. The MBO model representation of compositional phenomena for a gas condensate reservoir proved to be successful in the following cases: full pressure maintenance, reduced vertical communication, vertical well with upper completions, and producer set as a horizontal well.

Izgec, Bulent

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Onset and Subsequent Transient Phenomena of Liquid Loading in Gas Wells: Experimental Investigation Using a Large Scale Flow Loop  

E-Print Network (OSTI)

Liquid loading in gas wells is generally described as the inability of the well to lift the co-produced liquids up the tubing, which may ultimately kill the well. There is a lack of dedicated models that can mimic the transient features that are typical of liquid loading. Improved characterization of liquid loading in gas wells and enhanced prediction of future well performance can be achieved from the measurements and analyses resulting from this project. An experimental investigation was carried out to study the onset of liquid loading and the subsequent transient phenomena, using a large scale flow loop to visualize two-phase flow regimes, and to measure pressure and liquid holdup along a 42-m long vertical tube. From this investigation, it is possible to conclude that liquid loading should not be characterized based on onset criteria alone, and that it may not be a wellbore-only problem, as it would seem that the reservoir also plays a key role in determining if/when/how liquid loading manifests itself. Additionally, the results from the experimental campaign were used to compare the performance of different wellbore flow simulators. State-of-the-art simulators do not seem to fully capture the nature of liquid loading in vertical tubes. A simplified model is roposed here to evaluate the liquid transport during the transition from one flow regime to another, during the loading sequence.

Waltrich, Paulo

2012-08-01T23:59:59.000Z

482

Evolution of the deformation state and composition as a result of changes in the number of quantum wells in multilayered InGaN/GaN structures  

Science Conference Proceedings (OSTI)

The methods of high-resolution X-ray diffraction have been used to study the multilayered structures in an In{sub x}Ga{sub 1-x}N/GaN system grown by the method of metal-organic chemical-vapor deposition. A correlation between the strain state (relaxation) of the system, the indium content within quantum wells, the ratio of the barrier/well thicknesses, and the number of quantum wells in the active superlattice is established. It is shown that partial relaxation is observed even in a structure with one quantum well. The results we obtained indicate that the relaxation processes are bound to appreciably affect the optical characteristics of devices.

Kladko, V. P., E-mail: kladko@isp.kiev.ua; Kuchuk, A. V.; Safriuk, N. V.; Machulin, V. F.; Belyaev, A. E.; Konakova, R. V. [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductor Physics (Ukraine); Yavich, B. S. [ZAO Svetlana-Optoelectronics (Russian Federation); Ber, B. Ya.; Kazantsev, D. Yu. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)

2011-06-15T23:59:59.000Z

483

Decision Matrix Screening Tool to Identify the Best Artificial Lift Method for Liquid-loaded Gas Wells  

E-Print Network (OSTI)

Liquid loading is a serious problem in gas wells. Many proven artificial lift methods have been used to alleviate this problem. However, a complete workflow to determine the most suitable artificial lift method for given well conditions does not exist. In 2008, Han Young Park presented his thesis of decision matrix tool using a decision tree technique for data mining that determined the best artificial lift method for liquid loading in gas wells from seven artificial lift methods: plunger lift, gas lift, ESP, PCP, rod pump, jet pump, and piston pump. He determined the technical feasibility and the cost evaluation of these seven techniques. His workflow consisted of three rounds. The first round was the preliminary screening round. By using all input well conditions, the impractical techniques were screened out. In the second round, all the techniques from round one were graded and ranked. In the third round, the economic evaluation was performed by using cost for each artificial lift method and assuming the constant additional gas production per day to determine net present value (NPV) and internal rate of return (IRR). In this thesis, we propose an extended workflow from the Han-Youngs thesis for the decision matrix tool. We added integrated production simulations (reservoir to wellhead) step with commercial software in between the second and third round. We performed simulations of the various artificial lift methods to see the additional gains from each technique. We used the additional gas production resulted from simulation to calculate economic yardsticks (the third round), NPV and IRR. Moreover, we made the decision matrix more complete by adding three more liquid unloading techniques to the decision matrix: velocity string, foam injection, and heated tubing. We have also updated all screening conditions, the technical scores, and the costs for the decision matrix from the previous study using literature reviews, information from the projects sponsor, information from service company and our own judgment. The aim of the decision matrix is to allow operators to screen quickly and efficiently for the most suitable artificial lift method to solve the liquid loading problem under given well conditions.

Soponsakulkaew, Nitsupon

2010-08-01T23:59:59.000Z

484

Heat transfer in leading and trailing edge cooling channels of the gas turbine blade under high rotation numbers  

E-Print Network (OSTI)

The gas turbine blade/vane internal cooling is achieved by circulating the compressed air through the cooling passages inside the turbine blade. Leading edge and trailing edge of the turbine blade are two critical regions which need to be properly cooled. Leading edge region receives extremely hot mainstream flow and high heat transfer enhancement is required. Trailing edge region usually has narrow shaped geometry and applicable cooling techniques are restricted. Heat transfer will be investigated in the leading edge and trailing edge cooling channels at high rotation numbers close to the engine condition. Heat transfer and pressure drop has been investigated in an equilateral triangular channel (Dh=1.83cm) to simulate the cooling channel near the leading edge of the gas turbine blade. Three different rib configurations (45, inverted 45, and 90) were tested at four different Reynolds numbers (10000-40000), each with five different rotational speeds (0-400 rpm). By varying the Reynolds numbers (10000-40000) and the rotational speeds (0-400 rpm), the rotation number and buoyancy parameter reached in this study were 0-0.58 and 0-2.3, respectively. 45 angled ribs show the highest thermal performance at stationary condition. 90 ribs have the highest thermal performance at the highest rotation number of 0.58. Heat transfer coefficients are also experimentally measured in a wedge-shaped cooling channel (Dh =2.22cm, Ac=7.62cm2) to model an internal cooling passage near the trailing edge of a gas turbine blade where the coolant discharges through the slot to the mainstream flow. Tapered ribs are put on the leading and trailing surfaces with an angle of attack of 45. The ribs are parallel with staggered arrangement on opposite walls. The inlet Reynolds number of the coolant varies from 10,000 to 40,000 and the rotational speeds varies from 0 to 500 rpm. The inlet rotation number is from 0 - 1.0. The local rotation number and buoyancy parameter are determined by the rotational speeds and the local Reynolds number at each region. Results show that heat transfer is high near the regions where strong slot ejection exists. Both the rotation number and buoyancy parameter have been correlated to predict the rotational heat transfer enhancement.

Liu, Yao-Hsien

2008-12-01T23:59:59.000Z

485

Design of a high-pressure research flow loop for the experimental investigation of liquid loading in gas wells  

E-Print Network (OSTI)

Liquid loading in producing gas wells is the inability of the produced gas to remove produced liquids from the wellbore. A review of existing flow loops worldwide revealed that specialized areas of research such as liquid loading in gas wells are still lacking dedicated test facilities. This project presents the design of a new dedicated facility to be located at the TowerLab at the Richardson building with adequate operating conditions to reproduce the flow regimes encountered prior to and after the onset of liquid loading in gas wells. The facility consists of a compressed air system, pipelines for air and water, a pressure vessel containing glass beads, an injection manifold, and flow control and monitoring devices. Our results show that three compressors working in parallel is the most technical and economic configuration for the TowerLab based on the overall costs provided by the supplier, the footprint but most importantly the flexibility. The design of the pressure vessel required a cylindrical body with top and bottom welded-flat head covers with multiple openings to minimize its weight. The pipelines connecting major equipment and injection manifold located at the pressure vessel were selected based on the superficial velocities for air and water. These values also showed the need for independent injection using two manifolds instead of commingling flow through a tee joint. The use of digital pressure gauges with an accuracy of 0.05 to 25% and coriolis or vortex meters to measure air flowrate is also suggested. For the water line, installation of turbine meters results in the most economic approach.

Fernandez Alvarez, Juan Jose

2008-12-01T23:59:59.000Z

486

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network (OSTI)

for estimates of the oil and gas flow rate from the Macondoteam and carried out oil and gas flow simulations using theoil-gas system. The flow of oil and gas was simulated using

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

487

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network (OSTI)

Guerard Jr WF (1993) A history of oil- and gas-well blowoutsSociety (2007) The history of the oil industry (with

Jordan, Preston D.

2008-01-01T23:59:59.000Z

488

Energy Information Administration / Natural Gas Annual 2006 138  

Gasoline and Diesel Fuel Update (EIA)

8 Table 64. Summary Statistics for Natural Gas - Pennsylvania, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 40,830...

489

Energy Information Administration / Natural Gas Annual 2006 72  

Gasoline and Diesel Fuel Update (EIA)

2 Table 31. Summary Statistics for Natural Gas - Colorado, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 23,554...

490

Energy Information Administration / Natural Gas Annual 2005 72  

Annual Energy Outlook 2012 (EIA)

2 Table 31. Summary Statistics for Natural Gas - Colorado, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ... 22,117...

491

Operability test report for core sample truck {number_sign}1 flammable gas modifications  

SciTech Connect

This report primarily consists of the original test procedure used for the Operability Testing of the flammable gas modifications to Core Sample Truck No. One. Included are exceptions, resolutions, comments, and test results. This report consists of the original, completed, test procedure used for the Operability Testing of the flammable gas modifications to the Push Mode Core Sample Truck No. 1. Prior to the Acceptance/Operability test the truck No. 1 operations procedure (TO-080-503) was revised to be more consistent with the other core sample truck procedures and to include operational steps/instructions for the SR weather cover pressurization system. A draft copy of the operations procedure was used to perform the Operability Test Procedure (OTP). A Document Acceptance Review Form is included with this report (last page) indicating the draft status of the operations procedure during the OTP. During the OTP 11 test exceptions were encountered. Of these exceptions four were determined to affect Acceptance Criteria as listed in the OTP, Section 4.7 ACCEPTANCE CRITERIA.

Akers, J.C.

1997-09-15T23:59:59.000Z

492

Gas release during salt-well pumping: Model predictions and laboratory validation studies for soluble and insoluble gases  

DOE Green Energy (OSTI)

The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Of these, 67 are known or suspected to have leaked liquid from the tanks into the surrounding soil. Salt-well pumping, or interim stabilization, is a well-established operation for removing drainable interstitial liquid from SSTs. The overall objective of this ongoing study is to develop a quantitative understanding of the release rates and cumulative releases of flammable gases from SSTs as a result of salt-well pumping. The current study is an extension of the previous work reported by Peurrung et al. (1996). The first objective of this current study was to conduct laboratory experiments to quantify the release of soluble and insoluble gases. The second was to determine experimentally the role of characteristic waste heterogeneities on the gas release rates. The third objective was to evaluate and validate the computer model STOMP (Subsurface Transport over Multiple Phases) used by Peurrung et al. (1996) to predict the release of both soluble (typically ammonia) and insoluble gases (typically hydrogen) during and after salt-well pumping. The fourth and final objective of the current study was to predict the gas release behavior for a range of typical tank conditions and actual tank geometry. In these models, the authors seek to include all the pertinent salt-well pumping operational parameters and a realistic range of physical properties of the SST wastes. For predicting actual tank behavior, two-dimensional (2-D) simulations were performed with a representative 2-D tank geometry.

Peurrung, L.M.; Caley, S.M.; Gauglitz, P.A.

1997-08-01T23:59:59.000Z

493

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network (OSTI)

of total oil produced incrementally. The abandoned-welltotal number of producing and steam- injection wells California Oiltotal number of P&A wells reported by California Division of Oil,

Jordan, Preston D.

2008-01-01T23:59:59.000Z

494

Independent design review report for truck {number_sign}1 modifications for flammable gas tanks  

Science Conference Proceedings (OSTI)

The East and West Tank Farm Standing Order 97-01 requires that the PMST be modified to include purging of the enclosed space underneath the shielded receiver weather cover per National Fire Protection Association (NFPA) 496, Purged and Pressurized Enclosures for Electrical Equipment. The Standing Order also requires that the PMST be modified by replacing the existing electrical remote latch (RLU) unit with a mechanical remote latch unit. As the mechanical remote latch unit was exactly like the RLU installed on the Rotary Mode Core Sampler Trucks (RMCST) and the design for the RMCST went through formal design review, replacing the RLU was done utilizing informal design verification and was completed per work package ES-97-0028. As the weather cover purge was similar to the design for the RMCSTS, this design was reviewed using the independent review method with multiple independent reviewers. A function design criteria (WHC-SD-WM-FDC-048, Functional Design Criteria for Core Sampling in Flammable Gas Watch List Tanks) provided the criteria for the modifications. The review consisted of distributing the design review package to the reviewers and collecting and dispositioning the RCR comments. The review package included the ECNs for review, the Design Compliance Matrix, copies of all drawings affected, and copies of outstanding ECNs against these drawings. A final meeting was held to ensure that all reviewers were aware of the changes to ECNs from incorporation of RCR comments.

Wilson, G.W.

1997-05-09T23:59:59.000Z

495

Extracting the Chern number from the dynamics of a Fermi gas: Implementing a quantum Hall bar for cold atoms  

E-Print Network (OSTI)

We propose a scheme to measure the quantized Hall conductivity of an ultracold Fermi gas initially prepared in a topological (Chern) insulating phase, and driven by a constant force. We show that the time evolution of the center of mass, after releasing the cloud, provides a direct and clear signature of the topologically invariant Chern number. We discuss the validity of this scheme, highlighting the importance of driving the system with a sufficiently strong force to displace the cloud over measurable distances while avoiding band-mixing effects. The unusual shapes of the driven atomic cloud are qualitatively discussed in terms of a semi-classical approach.

Alexandre Dauphin; Nathan Goldman

2013-05-16T23:59:59.000Z

496

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

DOE Green Energy (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

497

Withdrawals of Liquefied Natural Gas from Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil...

498

Gas tracer composition and method. [Process to determine whether any porous underground methane storage site is in fluid communication with a gas producing well  

SciTech Connect

A process is described for determining whether any porous underground gaseous methane storage sites is in fluid communication with a gas producing well, and if there is fluid communication, determining which site is in the fluid communication comprising injecting a different gaseous tracer mixture into each of the sites at some location in each of the site in an amount such that the presence of the tracer mixture will be detectable in the gaseous methane stored therein, each of the mixture having the properties of (1) not occurring in natural supplies of methane, (2) diffusing through any underground methane storage site in a manner very similar in rate to methane, and (3) being substantially insoluble in petroleum distillates, after a period of time sufficient for each of the tracer mixtures to diffuse through the underground site from its injection location to the well, withdrawing a sample gaseous product from the well, testing the sample gaseous product for the presence of each of the tracer mixtures.

Malcosky, N.D.; Koziar, G.

1987-09-01T23:59:59.000Z

499

California GAMA Special Study: An isotopic and dissolved gas investigation of nitrate source and transport to a public supply well in California's Central Valley  

Science Conference Proceedings (OSTI)

This study investigates nitrate contamination of a deep municipal drinking water production well in Ripon, CA to demonstrate the utility of natural groundwater tracers in constraining the sources and transport of nitrate to deep aquifers in the Central Valley. The goal of the study was to investigate the origin (source) of elevated nitrate and the potential for the deep aquifer to attenuate anthropogenic nitrate. The site is ideal for such an investigation. The production well is screened from 165-325 feet below ground surface and a number of nearby shallow and deep monitoring wells were available for sampling. Furthermore, potential sources of nitrate contamination to the well had been identified, including a fertilizer supply plant located approximately 1000 feet to the east and local almond groves. A variety of natural isotopic and dissolved gas tracers including {sup 3}H-{sup 3}He groundwater age and the isotopic composition of nitrate are applied to identify nitrate sources and to characterize nitrate transport. An advanced method for sampling production wells is employed to help identify contaminant contributions from specific screen intervals. Nitrate transport: Groundwater nitrate at this field site is not being actively denitrified. Groundwater parameters indicate oxic conditions, the dissolved gas data shows no evidence for excess nitrogen as the result of denitrification, and nitrate-N and -O isotope compositions do not display patterns typical of denitrification. Contaminant nitrate source: The ambient nitrate concentration in shallow groundwater at the Ripon site ({approx}12 mg/L as nitrate) is typical of shallow groundwaters affected by recharge from agricultural and urban areas. Nitrate concentrations in Ripon City Well 12 (50-58 mg/L as nitrate) are significantly higher than these ambient concentrations, indicating an additional source of anthropogenic nitrate is affecting groundwater in the capture zone of this municipal drinking water well. This study provides two new pieces of evidence that the Ripon Farm Services Plant is the source of elevated nitrate in Ripon City Well 12. (1) Chemical mass balance calculations using nitrate concentration, nitrate isotopic composition, and initial tritium activity all indicate that that the source water for elevated nitrate to Ripon City Well 12 is a very small component of the water produced by City Well 12 and thus must have extremely high nitrate concentration. The high source water nitrate concentration ({approx}1500 mg/L as nitrate) required by these mass balance calculations precludes common sources of nitrate such as irrigated agriculture, dairy wastewater, and septic discharge. Shallow groundwater under the Ripon Farm Services RFS plant does contain extremely high concentrations of nitrate (>1700 mg/L as nitrate). (2) Nitrogen and oxygen isotope compositions of nitrate indicate that the additional anthropogenic nitrate source to Ripon City Well 12 is significantly enriched in {delta}{sup 18}O-NO{sub 3}, an isotopic signature consistent with synthetic nitrate fertilizer, and not with human or animal wastewater discharge (i.e. dairy operations, septic system discharge, or municipal wastewater discharge), or with organic fertilizer. Monitoring wells on and near the RFS plant also have high {delta}{sup 18}O-NO{sub 3}, and the plant has handled and stored synthetic nitrate fertilizer that will have this isotopic signature. The results described here highlight the complexity of attributing nitrate found in long screened, high capacity wells to specific sources. In this case, the presence of a very high concentration source near the well site combined with sampling using multiple isotopic tracer techniques and specialized depth-specific techniques allowed fingerprinting of the source in the mixed-age samples drawn from the production well.

Singleton, M J; Moran, J E; Esser, B K; Roberts, S K; Hillegonds, D J

2010-04-14T23:59:59.000Z

500

Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells  

Science Conference Proceedings (OSTI)

Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

Maryn, S.

1994-03-01T23:59:59.000Z