Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Costs of Crude Oil and Natural Gas Wells Drilled  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCosts of Crude Oil and Natural Gas

2

Costs of Crude Oil and Natural Gas Wells Drilled  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539PetroleumNatural Gas Usage Form 2003Costs of

3

Crude Oil and Natural Gas Exploratory and Development Wells  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539PetroleumNatural Gas Usage

4

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 PropaneDevelopmental WellsWells(Thousand

5

U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWells Drilled (Feet

6

U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWells Drilled (FeetDrilled

7

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

SciTech Connect (OSTI)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

Wood, John H.; Grape, Steven G.; Green, Rhonda S.

1998-12-01T23:59:59.000Z

8

US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report  

SciTech Connect (OSTI)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

Not Available

1993-10-18T23:59:59.000Z

9

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

SciTech Connect (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

10

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

SciTech Connect (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

11

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per  

E-Print Network [OSTI]

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

Phillips, David

12

Testing for market integration crude oil, coal, and natural gas  

SciTech Connect (OSTI)

Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

2006-07-01T23:59:59.000Z

13

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...  

Gasoline and Diesel Fuel Update (EIA)

demonstrate the possibility of an expanding role for domestic natural gas and crude oil in meeting both current and projected U.S. energy demands. Shale gas development in...

14

Crude Oil and Natural Gas Drilling Activity  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539PetroleumNatural Gas Usage Form267,273Jun-14

15

Separation of anthracene from crude anthracene using gas antisolvent recrystallization  

SciTech Connect (OSTI)

Pure anthracene is mostly used for conversion to anthraquinone, an intermediate for the synthesis of very powerful vat dyestuffs. A coal tar distillate, crude anthracene, which contains 30% anthracene, 25% phenanthrene, 15% carbazole, and other impurities, was used as the model mixture. In this study, 90% by weight purity anthracene was obtained using gas antisolvent (GAS) recrystallization. The GAS process induces the separation of solids by introducing an antisolvent, carbon dioxide (or the supercritical fluid), into acetone which was used as the liquid solvent. The dissolution of the compressed gas into the solute-laden solution selectively lowers the solubilities of solid solutes and salts them out. The results showed that high purity anthracene was obtained at a high feed concentration and high pressure conditions. The separation factor of anthracene versus phenanthrene is close to 30.07.

Yuchung Liou; Chiehming Chang (Yuan-Ze Inst. of Tech., Neili (Taiwan))

1992-08-01T23:59:59.000Z

16

Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices  

E-Print Network [OSTI]

Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices Ahmed distributed lags (NARDL) mod- el to examine the pass-through of crude oil prices into gasoline and natural gas the possibility to quantify the respective responses of gasoline and natural gas prices to positive and negative

Paris-Sud XI, Université de

17

Crude oil and crude oil derivatives transactions by oil and gas producers.  

E-Print Network [OSTI]

??This study attempts to resolve two important issues. First, it investigates the diversification benefit of crude oil for equities. Second, it examines whether or not… (more)

Xu, He

2007-01-01T23:59:59.000Z

18

Number of Producing Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear Jan Feb

19

Oil and Gas Wells: Regulatory Provisions (Kansas)  

Broader source: Energy.gov [DOE]

It shall be unlawful for any person, firm or corporation having possession or control of any natural gas well, oil well or coalbed natural gas well, whether as a contractor, owner, lessee, agent or...

20

Natural Gas Gross Withdrawals from Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 4 Week6-2015

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Production Trends of Shale Gas Wells  

E-Print Network [OSTI]

To obtain better well performance and improved production from shale gas reservoirs, it is important to understand the behavior of shale gas wells and to identify different flow regions in them over a period of time. It is also important...

Khan, Waqar A.

2010-01-14T23:59:59.000Z

22

The relationship between crude oil and natural gas spot prices and its stability over time  

E-Print Network [OSTI]

The historical basis for a link between crude oil and natural gas prices was examined to determine whether one has existed in the past and exists in the present. Physical bases for a price relationship are examined. An ...

Ramberg, David J. (David John)

2010-01-01T23:59:59.000Z

23

Factors Affecting the Relationship between Crude Oil and Natural Gas Prices (released in AEO2010)  

Reports and Publications (EIA)

Over the 1995-2005 period, crude oil prices and U.S. natural gas prices tended to move together, which supported the conclusion that the markets for the two commodities were connected. Figure 26 illustrates the fairly stable ratio over that period between the price of low-sulfur light crude oil at Cushing, Oklahoma, and the price of natural gas at the Henry Hub on an energy-equivalent basis.

2010-01-01T23:59:59.000Z

24

Footage Drilled for Crude Oil and Natural Gas Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4.

25

Average Depth of Crude Oil and Natural Gas Wells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis,Technologies Available Site

26

Footage Drilled for Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for the current861 ANNUALUSFootage

27

Average Depth of Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539Petroleum &D O E / EAdministration

28

Crude Oil and Natural Gas Exploratory and Development Wells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on γ-Al2O3.Winter (Part267,273 280,958Exploratory and

29

Optimization of fractured well performance of horizontal gas wells  

E-Print Network [OSTI]

In low-permeability gas reservoirs, horizontal wells have been used to increase the reservoir contact area, and hydraulic fracturing has been further extending the contact between wellbores and reservoirs. This thesis presents an approach...

Magalhaes, Fellipe Vieira

2009-06-02T23:59:59.000Z

30

U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet per Well)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWells Drilled (Feet per

31

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network [OSTI]

Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only...

Yusuf, Nurudeen

2008-10-10T23:59:59.000Z

32

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network [OSTI]

Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only...

Yusuf, Nurudeen

2009-05-15T23:59:59.000Z

33

Program solves for gas well inflow performance  

SciTech Connect (OSTI)

A Windows-based program, GasIPR, can solve for the gas well inflow performance relationship (IPR). The program calculates gas producing rates at various pressures and is applicable for both turbulent and non-turbulent flow. It also has the following capabilities: computes PVT properties {gamma}{sub g}, P{sub c}, T{sub c}, heating value, Z, {mu}{sub g}, B{sub g}, and {rho}{sub g} from input gas composition data; calculates the Reynolds number (N{sub Re}) and shows the gas flow rates at the sandface at which the turbulence effect must be considered; helps the user to optimize the net perforation interval (h{sub p}) so that the turbulence effect can be minimized; and helps the user to evaluate the sensitivity of formation permeability on gas flow rate for a new play. IPR is a critical component in forecasting gas well deliverability. IPRs are used for sizing optimum tubing configurations and compressors, designing gravel packs, and solving gas well loading problems. IPR is the key reference for nodal analysis.

Engineer, R. [AERA Energy LLC, Bakersfield, CA (United States); Grillete, G. [Bechtel Petroleum Operations Inc., Tupman, CA (United States)

1997-10-20T23:59:59.000Z

34

Natural Gas and Crude Oil Prices in AEO (released in AEO2009)  

Reports and Publications (EIA)

If oil and natural gas were perfect substitutes in all markets where they are used, market forces would be expected to drive their delivered prices to near equality on an energy-equivalent basis. The price of West Texas Intermediate (WTI) crude oil generally is denominated in terms of barrels, where 1 barrel has an energy content of approximately 5.8 million Btu. The price of natural gas (at the Henry Hub), in contrast, generally is denominated in million Btu. Thus, if the market prices of the two fuels were equal on the basis of their energy contents, the ratio of the crude oil price (the spot price for WTI, or low-sulfur light, crude oil) to the natural gas price (the Henry Hub spot price) would be approximately 6.0. From 1990 through 2007, however, the ratio of natural gas prices to crude oil prices averaged 8.6; and in the Annual Energy Outlook 2009 projections from 2008 through 2030, it averages 7.7 in the low oil price case, 14.6 in the reference case, and 20.2 in the high oil price case.

2009-01-01T23:59:59.000Z

35

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil  

E-Print Network [OSTI]

Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production for the Minas light crude oil (34?API). The studies on steam-propane were specifically...

Yudishtira, Wan Dedi

2003-01-01T23:59:59.000Z

36

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect (OSTI)

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

37

Gas well operation with liquid production  

SciTech Connect (OSTI)

Prediction of liquid loading in gas wells is discussed in terms of intersecting tubing or system performance curves with IPR curves and by using a more simplified critical velocity relationship. Different methods of liquid removal are discussed including such methods as intermittent lift, plunger lift, use of foam, gas lift, and rod, jet, and electric submersible pumps. Advantages, disadvantages, and techniques for design and application of the methods of liquid removal are discussed.

Lea, J.F.; Tighe, R.E.

1983-02-01T23:59:59.000Z

38

ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT  

SciTech Connect (OSTI)

As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger--Holditch Reservoir Technologies (H-RT) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are beta-testing the final stages of our new Microsoft{trademark} Access/Excel based software. We have processed all well information and identified potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, the final technical report is almost finished and a draft version is being reviewed by Gary Covatch.

Charles M. Boyer II; Ronald J. MacDonald P.G.

2002-04-01T23:59:59.000Z

39

Well performance under solutions gas drive  

SciTech Connect (OSTI)

A fully implicit black-oil simulator was written to predict the drawdown and buildup responses for a single well under Solution Gas Drive. The model is capable of handling the following reservoir behaviors: Unfractured reservoir, Double-Porosity system, and Double Permeability-Double Porosity model of Bourdet. The accuracy of the model results is tested for both single-phase liquid flow and two-phase flow. The results presented here provide a basis for the empirical equations presented in the literature. New definitions of pseudopressure and dimensionless time are presented. By using these two definitions, the multiphase flow solutions correlate with the constant rate liquid flow solution for both transient and boundary-dominated flow. For pressure buildup tests, an analogue for the liquid solution is constructed from the drawdown pseudopressure, similar to the reservoir integral of J. Jones. The utility of using the producing gas-oil ration at shut in to compute pseudopressures and pseudotimes is documented. The influence of pressure level and skin factor on the Inflow Performance Relationship (IPR) of wells producing solution gas drive systems is examined. A new definition of flow efficiency that is based on the structure of the deliverability equations is proposed. This definition avoids problems that result when the presently available methods are applied to heavily stimulated wells. The need for using pseudopressures to analyze well test data for fractured reservoirs is shown. Expressions to compute sandface saturations for fractured systems are presented.

Camacho-Velazquez, R.G.

1987-01-01T23:59:59.000Z

40

Consortium for Petroleum & Natural Gas Stripper Wells  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Drafting and releasing the 2007 Request for Proposals; (2) Securing a meeting facility, scheduling and drafting plans for the 2007 Spring Proposal Meeting; (3) Conducting elections and announcing representatives for the four 2007-2008 Executive Council seats; (4) 2005 Final Project Reports; (5) Personal Digital Assistant Workshops scheduled; and (6) Communications and outreach.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

E-Print Network [OSTI]

.S. natural gas proved reserves 2 --estimated as "wet" gas which includes natural gas plant liquids Federal Offshore, California, Alaska, and North Dakota) in 2009. Texas had the largest proved reserves to render the gas unmarketable. Natural gas plant liquids may be recovered from volumes of natural gas, wet

Boyer, Elizabeth W.

42

ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT  

SciTech Connect (OSTI)

As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft{trademark} Access/Excel based software. We are continuing to process the information and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway. During this quarter, we have presented our project and discussed the software to numerous Petroleum Technology Transfer Council (PTTC) workshops located in various regions of the United States.

Charles M. Boyer II; Ronald J. MacDonald P.G.

2002-01-01T23:59:59.000Z

43

IMPROVED NATURAL GAS STORAGE WELL REMEDIATION  

SciTech Connect (OSTI)

This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage through a successful ''proof-of-concept'' downhole application in a natural gas storage field

James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

2001-12-01T23:59:59.000Z

44

Natural Gas Gross Withdrawals from Oil Wells  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 4

45

Natural Gas Gross Withdrawals from Coalbed Wells  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 4 Week 52002-2015

46

Federal Offshore California Natural Gas Withdrawals from Gas Wells (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96Nebraska NuclearDecade2003Cubic Feet) Gas Wells

47

Gas condensate damage in hydraulically fractured wells  

E-Print Network [OSTI]

of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas...

Reza, Rostami Ravari

2004-11-15T23:59:59.000Z

48

The effect of high-pressure injection of gas on the reservoir volume factor of a crude oil  

E-Print Network [OSTI]

THE EFFECT OF HIGH-PRESSURE INJECTION OF GAS ON THE RESERVOIR VOLUME FACTOR OF A CRUDE OIL A Thesis By+ BAXTER DS'kONEYCUTT o Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August, i957 Major Subject: Petroleum Engineering THE EFFECT OF HIGH-PRESSURE INJECTION OF GAS ON THE RESERVOIR VOLUME FACTOR OF A CRUDE OIL A Thesis By BAXTER D. HONEYCUTT Appro d as to style...

Honeycutt, Baxter Bewitt

1957-01-01T23:59:59.000Z

49

Natural Gas Horizontal Well Control Act (West Virginia)  

Broader source: Energy.gov [DOE]

The Natural Gas Horizontal Well Control Act regulates the construction, alteration, enlargement, abandonment and removal of horizontal wells and associated water and wastewater use and storage. The...

50

Natural Gas Gross Withdrawals from Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 4 Week6-20156-2015

51

Natural Gas Gross Withdrawals from Shale Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 41-2015 Illinois

52

Natural Gas Gross Withdrawals from Shale Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 41-2015

53

U.S. Crude Oil Developmental Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWellsWellsU.S.20,798Year Jan

54

U.S. Crude Oil Exploratory Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWellsWellsU.S.20,798Year

55

Crude Oil Analysis Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

Shay, Johanna Y.

56

How perforation shot density affects gas well performance  

SciTech Connect (OSTI)

The single gas well model is formulated using the systems analysis approach and is composed of three main modules. The first module is the modified inflow performance relationship (IPR). This IPR accounts for pressure drops through the reservoir, laminar skin and damaged, compacted zone around casing perforations. The second module is the tubing outflow performance computed via the Cullender and Smith method. The third module is the gas material balance equation for computing average well pressure with a given gas production level. By coupling this equation with the computed inflow and outflow results, future gas deliverability and economic return of a gas well can then be projected.

Cheng, A.M.C.

1988-03-01T23:59:59.000Z

57

U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb Mar Apr MayFeet)Oil Wells

58

U.S. Average Depth of Crude Oil Exploratory and Developmental Wells Drilled  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWells Drilled (Feet per(Feet

59

U.S. Footage Drilled for Crude Oil Developmental Wells (Thousand Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 PropaneDevelopmental Wells (Thousand

60

U.S. Footage Drilled for Crude Oil Exploratory Wells (Thousand Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 PropaneDevelopmental Wells (Thousand

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. Footage Drilled for Crude Oil Exploratory and Developmental Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 PropaneDevelopmental Wells

62

Dewatering of coalbed methane wells with hydraulic gas pump  

SciTech Connect (OSTI)

The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

Amani, M.; Juvkam-Wold, H.C. [Texas A& M Univ., College Station, TX (United States)

1995-12-31T23:59:59.000Z

63

Illinois Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawalsDecade Year-0YearVentedGas

64

Oil/gas separator for installation at burning wells  

SciTech Connect (OSTI)

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait`s oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R. [and others

1991-12-31T23:59:59.000Z

65

Oil/gas separator for installation at burning wells  

DOE Patents [OSTI]

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

1993-03-09T23:59:59.000Z

66

Oil/gas separator for installation at burning wells  

DOE Patents [OSTI]

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, Carol T. (Orinda, CA); Bender, Donald A. (Dublin, CA); Bowman, Barry R. (Livermore, CA); Burnham, Alan K. (Livermore, CA); Chesnut, Dwayne A. (Pleasanton, CA); Comfort, III, William J. (Livermore, CA); Guymon, Lloyd G. (Livermore, CA); Henning, Carl D. (Livermore, CA); Pedersen, Knud B. (Livermore, CA); Sefcik, Joseph A. (Tracy, CA); Smith, Joseph A. (Livermore, CA); Strauch, Mark S. (Livermore, CA)

1993-01-01T23:59:59.000Z

67

Fraced horizontal well shows potential of deep tight gas  

SciTech Connect (OSTI)

Successful completion of a multiple fraced, deep horizontal well demonstrated new techniques for producing tight gas sands. In Northwest Germany, Mobil Erdgas-Erdoel GmbH drilled, cased, and fraced the world`s deepest horizontal well in the ultra-tight Rotliegendes ``Main`` sand at 15,687 ft (4,783 m) true vertical depth. The multiple frac concept provides a cost-efficient method to economically produce significant gas resources in the ultra-tight Rotliegendes ``Main`` sand. Besides the satisfactory initial gas production rate, the well established several world records, including deepest horizontal well with multiple fracs, and proved this new technique to develop ultra-tight sands.

Schueler, S. [Mobil Erdgas-Erdoel GmbH, Celle (Germany); Santos, R. [Mobil Erdgas-Erdoel GmbH, Hamburg (Germany)

1996-01-08T23:59:59.000Z

68

Indiana Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb Mar

69

Indiana Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb MarYear Jan Feb Mar

70

Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15IndustrialVehicle Fuel PriceDecade Year-0

71

Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15IndustrialVehicle Fuel PriceDecade

72

Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0ThousandYear

73

Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0ThousandYearYear Jan Feb Mar

74

Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb Mar Apr MayFeet) Decade

75

Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb Mar Apr MayFeet)

76

Missouri Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15YearThousandDecade Year-0 Year-1 Year-2

77

Missouri Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15YearThousandDecade Year-0 Year-1

78

Optimization of well rates under gas coning conditions  

E-Print Network [OSTI]

production rates under gas caning conditions. This new method applies to an oil reservoir overlain by a large gas cap containing multiple wells. The cases consider have a limit on the maximum field production rate for both oil and gas. It was found... that the optimal p~ion rates are achieved when Eq. 1 is satisfied for any pair of wells i and j: ) I = constant i = 1, . . . , n dqo This condition minimizes the f ield gas production rate when the maximum field production rate for oil is met, and maximizes...

Urbanczyk, Christopher Henry

1989-01-01T23:59:59.000Z

79

Fully Coupled Well Models for Fluid Injection and Production...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well...

80

An MBendi Profile: World: Oil And Gas Industry -Peak Oil: an Outlook on Crude Oil Depletion -C.J.Campbell -Revised February 2002 Search for  

E-Print Network [OSTI]

An MBendi Profile: World: Oil And Gas Industry - Peak Oil: an Outlook on Crude Oil Depletion - C - Contact Us - Newsletter Register subscribe to our FREE newsletter World: Oil And Gas Industry - Peak Oil the subsequent decline. q Gas, which is less depleted than oil, will likely peak around 2020. q Capacity limits

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Trip report for field visit to Fayetteville Shale gas wells.  

SciTech Connect (OSTI)

This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

Veil, J. A.; Environmental Science Division

2007-09-30T23:59:59.000Z

82

General inflow performance relationship for solution-gas reservoir wells  

SciTech Connect (OSTI)

Two equations are developed to describe the inflow performance relationship (IPR) of wells producing from solution-gas drive reservoirs. These are general equations (extensions of the currently available IPR's) that apply to wells with any drainage-area shape at any state of completion flow efficiency and any stage of reservoir depletion. 7 refs.

Dias-Couto, L.E.; Golan, M.

1982-02-01T23:59:59.000Z

83

Horizontal Well Placement Optimization in Gas Reservoirs Using Genetic Algorithms  

E-Print Network [OSTI]

University Co-Chairs of Advisory Committee, Dr. Ding Zhu Dr. Hadi Nasrabadi Horizontal well placement determination within a reservoir is a significant and difficult step... optimization is an important criterion during the reservoir development phase of a horizontal-well project in gas reservoirs, but it is less significant to vertical wells in a homogeneous reservoir. It is also shown that genetic algorithms are an extremely...

Gibbs, Trevor Howard

2011-08-08T23:59:59.000Z

84

U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb Mar Apr MayFeet) Sales(Thousand

85

U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb Mar Apr MayFeet)Oil

86

U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb MarRevision2009(Million CubicDollars

87

U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb MarRevision2009(Million

88

U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales (Million

89

U.S. Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales (MillionElements)

90

U.S. Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales

91

U.S. Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0SalesDrilled (Number of

92

U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast- Analysis of

93

U.S. Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast- AnalysisElements)

94

U.S. Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast-

95

U.S. Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast-Drilled (Number of

96

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

SciTech Connect (OSTI)

Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

2012-03-31T23:59:59.000Z

97

Apparatus for operating a gas and oil producing well  

SciTech Connect (OSTI)

Apparatus is disclosed for automatically operating a gas and oil producing well of the plunger lift type, including a comparator for comparing casing and tubing pressures, a device for opening the gas delivery valve when the difference between casing and tubing pressure is less than a selected minimum value, a device for closing the gas discharge valve when casing pressure falls below a selected casing bleed value, an arrival sensor switch for initially closing the fluid discharge valve when the plunger reaches the upper end of the tubing, and a device for reopening the fluid discharge valve at the end of a given downtime period in the event that the level of oil in the tubing produces a pressure difference greater than the given minimum differential value, and the casing pressure is greater than lift pressure. The gas discharge valve is closed if the pressure difference exceeds a selected maximum value, or if the casing pressure falls below a selected casing bleed value. The fluid discharge valve is closed if tubing pressure exceeds a maximum safe value. In the event that the plunger does not reach the upper end of the tubing during a selected uptime period, a lockout indication is presented on a visual display device, and the well is held shut-in until the well differential is forced down to the maximum differential setting of the device. When this occurs, the device will automatically unlock and normal cycling will resume.

Wynn, S. R.

1985-07-02T23:59:59.000Z

98

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil.  

E-Print Network [OSTI]

??Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production… (more)

Yudishtira, Wan Dedi

2012-01-01T23:59:59.000Z

99

Effects of flow paths on tight gas well performance  

E-Print Network [OSTI]

, r? (3-10) Derivative is then defined as, ~PwD d(inr. ) (3-1 I) The late radial flow regime will develop when the pressure transient reaches the top and bottom boundaries. At that time the pressure transient will stop moving in vertical... 2001 Major Subject: Petroleum Engineering EFFECTS OF FLOW PATHS ON TIGHT GAS WELL PERFORMANCE A Thesis by SAMEER VASANT GANPULE Submitted to Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

Ganpule, Sameer Vasant

2001-01-01T23:59:59.000Z

100

Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96Nebraska NuclearDecade2003Cubic Feet) Gas WellsCubic

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Natural Gas Development and Grassland Songbird Abundance in Southwestern Saskatchewan: The Impact of Gas Wells and Cumulative Disturbance .  

E-Print Network [OSTI]

??The quantity and quality of remaining grasslands in southwestern Saskatchewan, Canada, are threatened by expansion of natural gas development. The number of natural gas wells… (more)

Bogard, Holly Jayne Kalyn

2011-01-01T23:59:59.000Z

102

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (Million CubicTotal(Billion

103

U.S. Onshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (MillionElements) Decade

104

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NAElements) Gas and Gas

105

Economic analysis of shale gas wells in the United States  

E-Print Network [OSTI]

Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

Hammond, Christopher D. (Christopher Daniel)

2013-01-01T23:59:59.000Z

106

Gas flow to a barometric pumping well in a multilayer unsaturated Kehua You,1  

E-Print Network [OSTI]

Gas flow to a barometric pumping well in a multilayer unsaturated zone Kehua You,1 Hongbin Zhan,1. [1] When an open well is installed in an unsaturated zone, gas can flow between the subsurface and the well depending on the gas pressure gradient near the well. This well is called a barometric pumping

Zhan, Hongbin

107

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

108

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 PropaneDevelopmental WellsWells

109

The Performance of Fractured Horizontal Well in Tight Gas Reservoir  

E-Print Network [OSTI]

?, including tight gas, gas/oil shale, oil sands, and coal-bed methane. North America has a substantial growth in its unconventional oil and gas market over the last two decades. The primary reason for that growth is because North America, being a mature...

Lin, Jiajing

2012-02-14T23:59:59.000Z

110

Natural Gas Gross Withdrawals from Coalbed Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 4 Week

111

Natural Gas Gross Withdrawals from Oil Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 41-2015 Illinois NA

112

U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory and  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWells Drilled

113

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 PropaneDevelopmentalDevelopmental Wells

114

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1 Year-2 Year-3FuelElements) Gas

115

Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear JanWellheadProvedDecadeElements) Gas and

116

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear JanSeparation, Proved ReservesReservesGrossElements) Gas and

117

U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14Deliveries (MillionYearElements) Gas

118

Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 Kentucky -Provedoff)CubicElements) Gas and

119

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 KentuckyYear Jan FebInputElements) Gas and

120

Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (Million Barrels)Reserves%Foot)Elements) Gas

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric...

122

Pressure Transient Analysis and Production Analysis for New Albany Shale Gas Wells  

E-Print Network [OSTI]

and approaches special for estimating rate decline and recovery of shale gas wells were developed. As the strategy of the horizontal well with multiple transverse fractures (MTFHW) was discovered and its significance to economic shale gas production...

Song, Bo

2010-10-12T23:59:59.000Z

123

Fractured gas well analysis: evaluation of in situ reservoir properties of low permeability gas wells stimulated by finite conductivity hydraulic fractures  

E-Print Network [OSTI]

FRACTURED GAS WELL ANALYSIS - EVALUATION OF IN SITU RESERVOIR PROPERTIES OF LOW PERMEABILITY GAS WELLS STIMULATED BY FINITE CONDUCTIVITY HYDRAULIC FRACTURES A Thesis by CHARLES ADOIZA MAKOJU Submitted to the Graduate College of Texas AQ1... BY FINITE CONDUCTIVITY HYDRAULIC FRACTURES A Thesis by CHARLES ADOIZA MAKOJU Approved as to style and content by: C a~ an o ommsttee Member Member em er Hea o Department December 1978 ABSTRACT FRACTURED GAS HELL ANALYSIS - EVALUATION OF IN SITU...

Makoju, Charles Adoiza

1978-01-01T23:59:59.000Z

124

Underground Natural Gas Storage Wells in Bedded Salt (Kansas)  

Broader source: Energy.gov [DOE]

These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

125

Analysis of gas deliverability curves for predicting future well performance  

E-Print Network [OSTI]

is how to use backpressure test data to determine reservoir characteristics and predict fu tu re reservoir p er f orma nc e. The commonly used deliverability equation does not adequately consider the effects of real gas behavior or non-Darcy flow.... These factors cause the gas deliverability curves to deviate from the expected straight line and to shi ft position with time. To investigate these problems, a pseudosteady-state flow model was used to simulate backpressure tests for known reservoirs...

Corbett, Thomas Gary

1985-01-01T23:59:59.000Z

126

Integrated Multi-Well Reservoir and Decision Model to Determine Optimal Well Spacing in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Optimizing well spacing in unconventional gas reservoirs is difficult due to complex heterogeneity, large variability and uncertainty in reservoir properties, and lack of data that increase the production uncertainty. Previous methods are either...

Ortiz Prada, Rubiel Paul

2012-02-14T23:59:59.000Z

127

Optimal fracture treatment design for dry gas wells maximizes well performance in the presence of non-Darcy flow effects  

E-Print Network [OSTI]

This thesis presents a methodology based on Proppant Number approach for optimal fracture treatment design of natural gas wells considering non-Darcy flow effects in the design process. Closure stress is taken into account, by default, because...

Lopez Hernandez, Henry De Jesus

2004-11-15T23:59:59.000Z

128

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling  

E-Print Network [OSTI]

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular review of shale gas drilling in New York State, as well as the most comprehensive collection of data

Manning, Sturt

129

Increasing Well Productivity in Gas Condensate Wells in Qatar's North Field  

E-Print Network [OSTI]

Condensate blockage negatively impacts large natural gas condensate reservoirs all over the world; examples include Arun Field in Indonesia, Karachaganak Field in Kazakhstan, Cupiagua Field in Colombia,Shtokmanovskoye Field in Russian Barents Sea...

Miller, Nathan

2010-07-14T23:59:59.000Z

130

Effects of fracturing fluid recovery upon well performance and ultimate recovery of hydraulically fractured gas wells  

E-Print Network [OSTI]

on Clean-Up Mobile Water Phase 84 17 Effects of Hystexesis on Clean-Up immobile Water Phase 84 18 Effects of Initial Flow Conditions on Gas Production Initial Resexvor Pressure = 11, 700 psi ? Single Phase . . . 95 Table 19 21 22 23 24 25... Effects of Initial How Conditions on Gas Pmduction Initial Reservor Pressure = 7, 800 psi - Single Phase Effects of Initial Flow Conditions on Productivity With No Water Injection Initial Reservoir Pressure = 11, 700 psi ? Initial Cr = 10 Effects...

Berthelot, Jan Marie

1990-01-01T23:59:59.000Z

131

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated June 23, 2011  

E-Print Network [OSTI]

://www.netl.doe.gov/technologies/oil-gas/publications/EPreports/Shale_Gas_Primer_2009.pdf Good of shale gas drilling in New York State, as well as the most comprehensive collection of data and consultant-supplied analyses Addressing the Environmental Risks from Shale Gas Development (2010) Worldwatch

132

Data Bias in Rate Transient Analysis of Shale Gas Wells  

E-Print Network [OSTI]

) ......................................................................................................... 10 6 Rate and time relationship developed by Gentry (1972) ............................ 11 7 Fetkovich type-curves ................................................................................ 13 8 Gas type-curves developed by Carter (1985... the production data analyst to the proper use of superposition diagnostic plots ? To program a VBA program that performs proper use of superposition time functions according to the proposed work flow. 5 1.4 Organization of the thesis This report...

Agnia, Ammar Khalifa Mohammed

2012-07-16T23:59:59.000Z

133

Control structure design for stabilizing unstable gas-lift oil wells  

E-Print Network [OSTI]

Control structure design for stabilizing unstable gas-lift oil wells Esmaeil Jahanshahi, Sigurd valve is the recommended solution to prevent casing-heading instability in gas-lifted oil wells. Focus to be effective to stabilize this system. Keywords: Oil production, two-phase flow, gas-lift, controllability, H

Skogestad, Sigurd

134

Predicting horizontal well performance in solution-gas drive reservoirs  

E-Print Network [OSTI]

of these wells were located in France and the fourth was located in waters off the coast cf Italy. Horizontal sections over 1000 ft were drilled and well productivities of up to twenty times those of r eighboring ve !ical wel!s were reported In 1979, ARCO...

Plahn, Sheldon Von

1986-01-01T23:59:59.000Z

135

Polarity characterization of crude oils predicts treatment trends in field development  

SciTech Connect (OSTI)

A method for determining crude oil polarity using inverse gas chromatography proved successful for classifying crudes as well as for assessing their ability to form stable emulsions with water. Polarity determinations have been applied to the formation test crude oil samples collected in Albacora and Marlim deepwater fields of the Campos Basin, Rio de Janeiro, Brazil. The results have been compared with the polarities of the first produced crudes of the Basin and showed that the emulsion separation problems tend to increase. Polarity results provided substantial data to help production field development decisions.

Andrade Bruening, I.M.R. de

1995-11-01T23:59:59.000Z

136

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb MarYear Jan Feb MarOil

137

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb MarYear Jan Feb

138

Kansas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion2009

139

Kansas Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion2009Feet) Year

140

Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreases

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreasesFeet) Year Jan Feb

142

Kentucky Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15IndustrialVehicle Fuel PriceDecadeDecade

143

Kentucky Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15IndustrialVehicle Fuel

144

Louisiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0

145

Louisiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0Feet) Year Jan Feb Mar

146

Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0Feet) Decade Year-0

147

Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0Feet) Decade

148

Michigan Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3 1979-2013Alaska

149

Michigan Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3 1979-2013AlaskaFeet) Year

150

Mississippi Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb Mar Apr May JunFeet)

151

Mississippi Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb Mar Apr May

152

Mississippi Natural Gas Gross Withdrawals from Oil Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb Mar Apr

153

Mississippi Natural Gas Gross Withdrawals from Oil Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb Mar AprFeet) Year Jan

154

Missouri Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0 0U.S.Feet)

155

Missouri Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0

156

Montana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388

157

Montana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388Feet) Year Jan Feb Mar

158

Colorado Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYear Jan Feb

159

Colorado Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYear Jan FebFeet)

160

Florida Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 Adjustments 0

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Florida Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 Adjustments 0Feet) Year

162

Illinois Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (MillionSep-14Alaska

163

Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawalsDecade

164

Indiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005.

165

Indiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005.Feet) Year Jan Feb

166

SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1.Report No.:GasThe VBA

167

Reservoir-Wellbore Coupled Simulation of Liquid Loaded Gas Well Performance  

E-Print Network [OSTI]

Liquid loading of gas wells causes production difficulty and reduces ultimate recovery from these wells. In 1969, Turner proposed that existence of annular two-phase flow at the wellhead is necessary for the well to avoid liquid loading...

Riza, Muhammad Feldy

2013-11-12T23:59:59.000Z

168

Lagrangian Relaxation Based Decompositon for Well Scheduling in Shale-gas Systems  

E-Print Network [OSTI]

Lagrangian Relaxation Based Decompositon for Well Scheduling in Shale-gas Systems Brage Rugstad of mid and late-life wells in shale-gas systems. This state of the wells can be prevented by performing. In this paper, we present a Lagrangian relaxation based scheme for shut-in scheduling of distributed shale multi

Grossmann, Ignacio E.

169

U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWellsWells Drilled (Feet per

170

The Effect of Well Trajectory on Production Performance of Tight Gas Wells  

E-Print Network [OSTI]

been studied. The aim of this research is to investigate the effect of the trajectory angle on pressure drop in horizontal wells. In addition, the contribution of water flow to pressure drop is a part of this research. Generally, water comes from...

Aldousari, Mohammad

2012-02-14T23:59:59.000Z

171

The integrity of oil and gas wells Robert B. Jacksona,b,1  

E-Print Network [OSTI]

COMMENTARY The integrity of oil and gas wells Robert B. Jacksona,b,1 a Department of Environmental concerns about oil and natural gas extraction these days inevitably turn to hydraulic fracturing, where--nearer the surface--emphasizing risks from spills, wastewater disposal, and the integrity of oil and natural gas

Jackson, Robert B.

172

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwestInformation GreatersourceOhmsettZipWell

173

The elimination of liquid loading problems in low productivity gas wells  

E-Print Network [OSTI]

investigated. The Beggs and Brill multiphase pressure drop correlation was programmed and used as a basis to generate tubing performance curves and to study the effects of various parameters on long term gas production. Turner's method for predicting... the known methods of analyzing liquid loading problems in gas wells. A computer program will be developed to aid in generating tubing performance curves along with calculated gas velocity profiles. The calculated gas velocity profile...

Neves, Toby Roy

1987-01-01T23:59:59.000Z

174

Analysis of selected energy security issues related to US crude oil and natural gas exploration, development, production, transportation and processing. Final report, Task 13  

SciTech Connect (OSTI)

In July 1989, President Bush directed the Secretary of Energy to initiate the development of a comprehensive National Energy Strategy (NES) built upon a national consensus. The overall principle for the NES, as defined by the President and articulated by the Economic Policy Council (EPC), is the continuation of the successful policy of market reliance, consistent with the following goals: Balancing of energy, economic, and environmental concerns; and reduced dependence by the US and its friends and allies on potentially unreliable energy suppliers. The analyses presented in this report draw upon a large body of work previously conducted for DOE/Office of Fossil Energy, the US Department of Interior/Minerals Management Service (DOI/MMS), and the Gas Research Institute (GRI), referenced throughout the text of this report. This work includes assessments in the following areas: the potential of advanced oil and gas extraction technologies as improved through R&D, along with the successful transfer of these technologies to the domestic petroleum industry; the economic and energy impacts of environmental regulations on domestic oil and gas exploration, production, and transportation; the potential of tax incentives to stimulate domestic oil and gas development and production; the potential environmental costs associated with various options for leasing for US oil and gas resources in the Outer Continental Shelf (OCS); and the economic impacts of environmental regulations affecting domestic crude oil refining.

Not Available

1990-10-01T23:59:59.000Z

175

Review article Oil and gas wells and their integrity: Implications for shale and  

E-Print Network [OSTI]

Review article Oil and gas wells and their integrity: Implications for shale and unconventional by Elsevier Ltd. 1. Introduction The rapid expansion of shale gas and shale oil exploration and exploitation xxx Keywords: Shale Fracking Integrity Barrier Integrity Wells a b s t r a c t Data from around

Jackson, Robert B.

176

Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network [OSTI]

Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight/shale gas systems featuring a horizontal well with multiple hydraulic fractures. Despite a small...

Freeman, Craig M.

2010-07-14T23:59:59.000Z

177

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

E-Print Network [OSTI]

fingerprinting | fracking | hydrology and ecology Unconventional sources of gas and oil are transforming energy and horizontal drilling are also growing (4, 5). These concerns include changes in air quality (6), human health the greenhouse gas balance (8, 9). Perhaps the biggest health concern remains the potential for drinking water

Jackson, Robert B.

178

Factors Contributing to Petroleum Foaming. 2. Synthetic Crude Oil Systems  

E-Print Network [OSTI]

to the petroleum industry. Nonaqueous foams occur in the production of and refining of crude oil. Crude oil foamsFactors Contributing to Petroleum Foaming. 2. Synthetic Crude Oil Systems Nael N. Zaki, Michael K can pose major problems for operators of gas/oil separation plants, causing a loss of crude

Kilpatrick, Peter K.

179

Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan, and Bjarne Foss  

E-Print Network [OSTI]

Observer Design for Gas Lifted Oil Wells Ole Morten Aamo, Gisle Otto Eikrem, Hardy Siahaan flow systems is an area of increasing interest for the oil and gas industry. Oil wells with highly related to oil and gas wells exist, and in this study, unstable gas lifted wells will be the area

Foss, Bjarne A.

180

Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment  

SciTech Connect (OSTI)

The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

Dosch, M.W.; Hodgson, S.F.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ACTIVE CONTROL STRATEGY FOR DENSITY-WAVE IN GAS-LIFTED WELLS  

E-Print Network [OSTI]

Saint-Pierre Pierre Lem´etayer CAS, ´Ecole des Mines de Paris, France CSTJF, TOTAL Exploration-Production: Process Control, Gas-Lifted Well, Density-wave, Stabilization. 1. INTRODUCTION Producing oil from deep) and the production pipe (tubing, point D) where it enters. Oil produced from the reservoir (point F) and injected gas

182

ANALYSIS OF GAS PRODUCTION FROM HYDRAULICALLY FRACTURED WELLS IN THE HAYNESVILLE SHALE USING SCALING METHODS  

E-Print Network [OSTI]

ANALYSIS OF GAS PRODUCTION FROM HYDRAULICALLY FRACTURED WELLS IN THE HAYNESVILLE SHALE USING P. Marder University of Texas at Austin ABSTRACT The Haynesville Shale is one of the largest. The reservoir temperature is also high, up to 3000 F. These pressures are uniquely high among shale gas

Patzek, Tadeusz W.

183

Underground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies & Practicality.  

E-Print Network [OSTI]

environments and are very salty, like the Marcellus shale and other oil and gas formations underlying the areaUnderground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies), Region 3. Marcellus Shale Educational Webinar, February 18, 2010 (Answers provide below by Karen Johnson

Boyer, Elizabeth W.

184

Decision matrix for liquid loading in gas wells for cost/benefit analyses of lifting options  

E-Print Network [OSTI]

rotation using an electric motor at the surface. Fig. 2.9 – PCP system (Schlumberger, 2007). Applications PCP can be applied to the wells producing sand-laden heavy oil and bitumen, high water-cut wells, and in the gas wells that require...

Park, Han-Young

2008-10-10T23:59:59.000Z

185

Improved Upscaling & Well Placement Strategies for Tight Gas Reservoir Simulation and Management  

E-Print Network [OSTI]

, with opportunities for improved reservoir simulation & management, such as simulation model design, well placement. Our work develops robust and efficient strategies for improved tight gas reservoir simulation and management. Reservoir simulation models are usually...

Zhou, Yijie

2013-07-29T23:59:59.000Z

186

Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota)  

Broader source: Energy.gov [DOE]

The Department of Natural Resources is given the authority to create and promulgate regulations related to spacing, pooling, and utilization of oil and gas wells. However, as of September 2012, no...

187

An investigation into the inflow performance characteristics of high-rate gravel-packed gas wells  

E-Print Network [OSTI]

AN INVESTIGATION INTO THE INFLOW PERFORMANCE CHARACTERISTICS OF HIGH-RATE GRAVEL-PACKED GAS WELLS A Thesis by DOUGLAS LEE JORDAN Submitted to the Graduate College of Texas ARM University in par'tial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December, 1984 Major Subject: Petroleum Engineering AN INVESTIGATION INTO THE INFLOW PERFORMANCE CHARACTERISTICS OF HIGH-RATE GRAVEL-PACKED GAS WELLS A Thesis by DOUGLAS LEE JORDAN Approved as to style and content by...

Jordan, Douglas Lee

1984-01-01T23:59:59.000Z

188

The analysis of liquid loading problems in hydraulically fractured gas wells  

E-Print Network [OSTI]

THE ANALYSIS OF LIQUID LOADING PROBLEMS IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by CHARLES EDWARD PIETSCH g~ e~q) Submitted to the Graduate College of Texas A & M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1986 Major Subject: Petroleum Engineering THE ANALYSIS OF LIQUID LOADING PROBLEMS IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by CHARLES EDWARD PIETSCH Approved as to style and content by: Stephen A. Holditch (Chairman...

Pietsch, Charles Edward

1986-01-01T23:59:59.000Z

189

Simulating the Effect of Water on the Fracture System of Shale Gas Wells  

E-Print Network [OSTI]

SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2010 Major Subject: Petroleum Engineering SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate...

Hamam, Hassan Hasan H.

2011-10-21T23:59:59.000Z

190

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

191

Understanding Crude Oil Prices  

E-Print Network [OSTI]

per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

192

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

193

CASING-HEADING PHENOMENON IN GAS-LIFTED WELL AS A LIMIT CYCLE OF A  

E-Print Network [OSTI]

, France CSTJF, TOTAL Exploration-Production, Pau, France Abstract: Oil well instabilities cause production losses. One of these instabilities, referred to as the "casing-heading" is an oscillatory: Process Control, Dynamic Systems, Limit Cycles, Switching System, Gas-Lifted Well. 1. INTRODUCTION

194

Kansas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion2009Feet)

195

Kansas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion2009Feet)Year

196

Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0Feet) Year Jan Feb

197

Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0Feet) Year Jan FebYear

198

Michigan Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3 1979-2013AlaskaFeet)

199

Michigan Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3 1979-2013AlaskaFeet)Year

200

Montana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388Feet) Year Jan Feb

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Montana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388Feet) Year Jan FebYear

202

Colorado Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYear Jan

203

Colorado Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYear JanYear Jan Feb Mar

204

Florida Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 Adjustments 0Feet)

205

Florida Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 Adjustments 0Feet)Year

206

A mechanistic model for computing fluid temperature profiles in gas-lift wells  

SciTech Connect (OSTI)

In a continuous-flow gas-lift operation, gas is injected down the annulus into the tubing near the top of perforations. The intrinsic idea is to aerate the liquid column, thus providing the necessary stimulus for fluid flow. Because the volumetric gas rate is dependent upon both the pressure and temperature at the depth of injection, accurate knowledge of these entities cannot be overemphasized for an efficient lift. In particular, the behavior of the nitrogen gas charged in the dome is critically dependent upon the temperature prediction for the optimal performance of the bellows-charged gas-lift valves. Current practice entails use of a linear temperature profile for the annular fluid while applying empirical correlations for the tubing fluids. Improved temperature predictions are now possible for fluids in both conduits by modeling the heat and fluid flow problem at hand from first principles. In this work, they present a mechanistic model for the flowing temperature of the annular gas and the gas/liquid two-phase mixture in the tubing as a function of both well depth and production time, regardless of the well deviation angle. The model is based on energy balance between the formation and fluids flowing through each conduit. While flowing down the annulus, the cold gas injected at the wellhead continues to gain heat. The heat-transfer rate for the annular gas depends on the relative temperatures of the formation and the tubing fluid. They assume unsteady-state heat transfer in the formation and steady-state heat transfer in the tubular for a continuous-flow gas-lift operation.

Hasan, A.R. [Univ. of North Dakota, Grand Forks, ND (United States); Kabir, C.S. [Chevron Overseas Petroleum Technology Co. (Kuwait)

1996-08-01T23:59:59.000Z

207

NEW AND NOVEL FRACTURE STIMULATION TECHNOLOGIES FOR THE REVITALIZATION OF EXISTING GAS STORAGE WELLS  

SciTech Connect (OSTI)

Gas storage wells are prone to continued deliverability loss at a reported average rate of 5% per annum (in the U.S.). This is a result of formation damage due to the introduction of foreign materials during gas injection, scale deposition and/or fines mobilization during gas withdrawal, and even the formation and growth of bacteria. As a means to bypass this damage and sustain/enhance well deliverability, several new and novel fracture stimulation technologies were tested in gas storage fields across the U.S. as part of a joint U.S. Department of Energy and Gas Research Institute R&D program. These new technologies include tip-screenout fracturing, hydraulic fracturing with liquid CO{sub 2} and proppant, extreme overbalance fracturing, and high-energy gas fracturing. Each of these technologies in some way address concerns with fracturing on the part of gas storage operators, such as fracture height growth, high permeability formations, and fluid sensitivity. Given the historical operator concerns over hydraulic fracturing in gas storage wells, plus the many other unique characteristics and resulting stimulation requirements of gas storage reservoirs (which are described later), the specific objective of this project was to identify new and novel fracture stimulation technologies that directly address these concerns and requirements, and to demonstrate/test their potential application in gas storage wells in various reservoir settings across the country. To compare these new methods to current industry deliverability enhancement norms in a consistent manner, their application was evaluated on a cost per unit of added deliverability basis, using typical non-fracturing well remediation methods as the benchmark and considering both short-term and long-term deliverability enhancement results. Based on the success (or lack thereof) of the various fracture stimulation technologies investigated, guidelines for their application, design and implementation have been developed. A final research objective was to effectively deploy the knowledge and experience gained from the project to the gas storage industry at-large.

Unknown

1999-12-01T23:59:59.000Z

208

A study of the effects of stimulation on Devonian Shale gas well performance  

E-Print Network [OSTI]

of actual production data from producing Devonian Shale gas wells throughout the Appalachian Basin. These comparisons are of limited use, however, because they fail to take into account recently developed stimulation technologies and because compari... by analysis of these data. Unfortunately, too little data are available for wells stimulated using current technologies. This study included no production data from wells stimulated by radial (tailored-pulse) fracturing methods. These data are vital...

Zuber, Michael Dean

1985-01-01T23:59:59.000Z

209

Case study of a horizontal well in a layered Rotliegendes gas field  

SciTech Connect (OSTI)

A horizontal well was drilled in the Ravenspurn North field to drain a thin gas column above the aquifer. The field has a significant variation in reservoir quality, with most of the wells requiring stimulation by hydraulic fracturing. The reservoir is formed from a stacked sequence of aeolian dune and fluvial sandstones with a wide permeability range. The horizontal well was chosen as an alternative to stimulation by hydraulic fracturing to avoid water production from the aquifer. The well was successful, flowing at higher gas rates than expected with no water production. Production, core, and production logging data were used to demonstrate greater than expected lateral heterogeneity in the field. The horizontal well was found to be appropriate for the very specific conditions found in one part of the reservoir; however, the overall development strategy of using hydraulic fracture remains the preferred technique.

Catterall, S.J.A.; Yaliz, A. (Hamilton Oil Co. Ltd., London (United Kingdom))

1995-02-01T23:59:59.000Z

210

Inflow performance relationship for perforated wells producing from solution gas drive reservoir  

SciTech Connect (OSTI)

The IPR curve equations, which are available today, are developed for open hole wells. In the application of Nodal System Analysis in perforated wells, an accurate calculation of pressure loss in the perforation is very important. Nowadays, the equation which is widely used is Blount, Jones and Glaze equation, to estimate pressure loss across perforation. This equation is derived for single phase flow, either oil or gas, therefore it is not suitable for two-phase production wells. In this paper, an IPR curve equation for perforated wells, producing from solution gas drive reservoir, is introduced. The equation has been developed using two phase single well simulator combine to two phase flow in perforation equation, derived by Perez and Kelkar. A wide range of reservoir rock and fluid properties and perforation geometry are used to develop the equation statistically.

Sukarno, P. [Inst. Teknologi Bandung (Indonesia); Tobing, E.L.

1995-10-01T23:59:59.000Z

211

Understanding Crude Oil Prices  

E-Print Network [OSTI]

consumption would be reduced and incentives for production increased whenever the price of crude oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

212

U.S. Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 WellsDecadeCubicYear Jan FebYearDecade

213

Federal Offshore--Louisiana Natural Gas Withdrawals from Gas Wells (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWells (Million Cubic Feet)Feet)

214

Federal Offshore--Texas Natural Gas Withdrawals from Gas Wells (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWells (MillionProduction (MillionCubic Feet)

215

Analysis and forecasting of gas well performanc: a rigorous approach using decline curve analysis  

E-Print Network [OSTI]

. . . . . . . . . . . . 146 Normalized Flow Rate Profile versus Material Balance Pseudotimes for Well C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 138 139 6. 35 6, 36 6. 37 A-1 A-2 A-3 149 186 Type Curve Match...ANALYSIS AND FORECASTING OF GAS WELL PERFORMANCE A RIGOROUS APPROACH USING DECLINE CURVE ANALYSIS A Thesis by JUAN CARLOS PALACIO URAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

Palacio Uran, Juan Carlos

1993-01-01T23:59:59.000Z

216

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011  

E-Print Network [OSTI]

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011. References to popular press and advocacy groups, both of which are numerous and described in detail elsewhere of Hydraulic Fracturing in the Shale Plays (2010). Tudor Pickering Holt & Co with Reservoir Research Partners

Manning, Sturt

217

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network [OSTI]

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded natural

218

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network [OSTI]

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra of energy use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded

Jackson, Robert B.

219

Predicting instabilities in gas-lifted wells simulation Laure Sin`egre, Nicolas Petit  

E-Print Network [OSTI]

of instabilities occurring in practical applications of gas-lifted oil wells. The model underlying our analysis the drilling pipe (casing, point B) and the production pipe (tubing, point D) where it enters. Oil produced explained. The best identified instability is the "casing-heading". It consists of a succession of pressure

220

Gas-surface scattering with multiple collisions in the physisorption potential well Guoqing Fan and J. R. Manson  

E-Print Network [OSTI]

Gas-surface scattering with multiple collisions in the physisorption potential well Guoqing Fan The problem of gas-surface collisions is developed in terms of a theoretical formalism that allows calcula gas distributions are considered, a monoenergetic incident beam and an equilibrium gas appropriate

Manson, Joseph R.

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Factors Contributing to Petroleum Foaming. 1. Crude Oil Systems  

E-Print Network [OSTI]

of the crude oil and the type of separation scheme used, foaming problems can curtail crude oil productionFactors Contributing to Petroleum Foaming. 1. Crude Oil Systems Michael K. Poindexter,*, Nael N, Raleigh, North Carolina 27695 Received August 28, 2001 Gas/oil separation can often be accompanied

Kilpatrick, Peter K.

222

Stopping a water crossflow in a sour-gas producing well  

SciTech Connect (OSTI)

Lacq is a sour-gas field in southwest France. After maximum production of 774 MMcf/D in the 1970`s, production is now 290 MMcf/D, with a reservoir pressure of 712 psi. Despite the loss of pressure, production is maintained by adapting the surface equipment and well architecture to reservoir conditions. The original 5-in. production tubing is being replaced with 7-in. tubing to sustain production rates. During openhole cleaning, the casing collapsed in Well LA141. The primary objective was to plug all possible hydraulic communication paths into the lower zones. The following options were available: (1) re-entering the well from the top and pulling the fish before setting cement plugs; (2) sidetracking the well; and (3) drilling a relief well to intercept Well LA141 above the reservoirs. The decision was made to start with the first option and switch to a sidetrack if this option failed.

Hello, Y. Le [Elf Aquitaine Production (Norway); Woodruff, J. [John Wight Co. (United States)

1998-09-01T23:59:59.000Z

223

Environmental baseline monitoring in the area of general crude oil - Department of Energy Pleasant Bayou Number 2: a geopressured geothermal test well, 1979. Annual report, Volume I  

SciTech Connect (OSTI)

A program to monitor baseline air and water quality, subsidence, microseismic activity, and noise in the vicinity of Brazoria County geopressured geothermal test wells, Pleasant Bayou No. 1 and No. 2, has been underway since March 1978. The initial report on environmental baseline monitoring at the test well contained descriptions of baseline air and water quality, a noise survey, an inventory of microseismic activity, and a discussion of the installation of a liquid tilt meter (Gustavson, 1979). The following report continues the description of baseline air and water quality of the test well site, includes an inventory of microseismic activity during 1979 with interpretations of the origin of the events, and discusses the installation and monitoring of a liquid tilt meter at the test well site. In addition, a brief description of flooding at the test site is presented.

Gustavson, T.C.; Howard, R.C.; McGookey, D.

1980-01-01T23:59:59.000Z

224

SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT, MOCANE-LAVERNE FIELD, OKLAHOMA  

SciTech Connect (OSTI)

In 1996, Advanced Resources International (ARI) began performing R&D targeted at enhancing production and reserves from natural gas fields. The impetus for the effort was a series of field R&D projects in the early-to-mid 1990's, in eastern coalbed methane and gas shales plays, where well remediation and production enhancement had been successfully demonstrated. As a first step in the R&D effort, an assessment was made of the potential for restimulation to provide meaningful reserve additions to the U.S. gas resource base, and what technologies were needed to do so. That work concluded that: (1) A significant resource base did exist via restimulation (multiples of Tcf). (2) The greatest opportunities existed in non-conventional plays where completion practices were (relatively) complex and technology advancement was rapid. (3) Accurate candidate selection is the greatest single factor that contributes to a successful restimulation program. With these findings, a field-oriented program targeted at tight sand formations was initiated to develop and demonstrate successful candidate recognition technology. In that program, which concluded in 2001, nine wells were restimulated in the Green River, Piceance and East Texas basins, which in total added 2.9 Bcf of reserves at an average cost of $0.26/Mcf. In addition, it was found that in complex and heterogeneous reservoirs (such as tight sand formations), candidate selection procedures should involve a combination of fundamental engineering and advanced pattern recognition approaches, and that simple statistical methods for identifying candidate wells are not effective. In mid-2000, the U.S. Department of Energy (DOE) awarded ARI an R&D contract to determine if the methods employed in that project could also be applied to stripper gas wells. In addition, the ability of those approaches to identify more general production enhancement opportunities (beyond only restimulation), such as via artificial lift and compression, was also sought. A key challenge in this effort was that, whereas the earlier work suggested that better (producing) wells tended to make better restimulation candidates, stripper wells are by definition low-volume producers (either due to low pressure, low permeability, or both). Nevertheless, the potential application of this technology was believed to hold promise for enhancing production for the thousands of stripper gas wells that exist in the U.S. today. The overall procedure for the project was to select a field test site, apply the candidate recognition methodology to select wells for remediation, remediate them, and gauge project success based on the field results. This report summarizes the activities and results of that project.

Scott Reeves; Buckley Walsh

2003-08-01T23:59:59.000Z

225

TI-59 helps predict IPRs for gravel-packed gas wells  

SciTech Connect (OSTI)

The inflow performance relationship (IPR) is an important tool for reservoir and production engineers. It helps optimize completion, tubing, gas lift, and storm choke design. It facilitates accurate rate predictions that can be used to evaluate field development decisions. The IPR is the first step of the systems analysis that translates reservoir rock and fluid parameters into predictable flow rates. Use of gravel packing for sand control complicates the calculation that predicts a well's IPR curve, particularly in gas wells where high velocities in the formation and through gravel-filled perforation tunnels can cause turbulent flow. The program presented in this article calculates the pressure drop and the flowing bottomhole pressures at varying flow rates for gravel-packed gas wells. The program was written for a Texas Instruments TI-59 programmable calculator with a PC-100 printer. Program features include: Calculations for in-casing gravel packs, open-hole gravel packs, or ungravel packed wells. Program prompts for the required data variables. Easy change of data values to run new cases. Calculates pressures for an unlimited number of flow rates. Results show the total pressure drop and the relative magnitude of its components.

Capdevielle, W.C.

1983-12-01T23:59:59.000Z

226

Demonstration of the enrichment of medium quality gas from gob wells through interactive well operating practices. Final report, June--December, 1995  

SciTech Connect (OSTI)

Methane released to the atmosphere during coal mining operations is believed to contribute to global warming and represents a waste of a valuable energy resource. Commercial production of pipeline-quality gob well methane through wells drilled from the surface into the area above the gob can, if properly implemented, be the most effective means of reducing mine methane emissions. However, much of the gas produced from gob wells is vented because the quality of the gas is highly variable and is often below current natural gas pipeline specifications. Prior to the initiation of field-testing required to further understand the operational criteria for upgrading gob well gas, a preliminary evaluation and assessment was performed. An assessment of the methane gas in-place and producible methane resource at the Jim Walter Resources, Inc. No. 4 and No. 5 Mines established a potential 15-year supply of 60 billion cubic feet of mien methane from gob wells, satisfying the resource criteria for the test site. To understand the effect of operating conditions on gob gas quality, gob wells producing pipeline quality (i.e., < 96% hydrocarbons) gas at this site will be operated over a wide range of suction pressures. Parameters to be determined will include absolute methane quantity and methane concentration produced through the gob wells; working face, tailgate and bleeder entry methane levels in the mine; and the effect on the economics of production of gob wells at various levels of methane quality. Following this, a field demonstration will be initiated at a mine where commercial gob gas production has not been attempted. The guidelines established during the first phase of the project will be used to design the production program. The economic feasibility of various utilization options will also be tested based upon the information gathered during the first phase. 41 refs., 41 figs., 12 tabs.

Blackburn, S.T.; Sanders, R.G.; Boyer, C.M. II; Lasseter, E.L.; Stevenson, J.W.; Mills, R.A.

1995-12-01T23:59:59.000Z

227

Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation  

E-Print Network [OSTI]

and handling of natural gas hydrate. GSC Bulletin, 544: 263-naturally occurring gas hydrates: the structures of methanefrom the Mount Elbert Gas Hydrate Stratigraphic Test Well,

Collett, T.J. Kneafsey, T.J., H. Liu, W. Winters, R. Boswell, R. Hunter, and T.S.

2012-01-01T23:59:59.000Z

228

Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling  

E-Print Network [OSTI]

and handling of natural gas hydrate. GSC Bulletin, 544: 263-naturally occurring gas hydrates: the structures of methaneDOE-USGS Mount Elbert gas hydrate stratigraphic test well:

Kneafsey, Timothy J.

2010-01-01T23:59:59.000Z

229

Analysis of error in using fractured gas well type curves for constant pressure production  

E-Print Network [OSTI]

of normalized time and normalized cumulative production is a large improvement over using a constant evaluation pressure. 0 imens ion less cumulative production type curves are particularly useful in modeling production for economic projections, such as re... of MASTER OF SCIENCE May 1987 Major Subject: Petroleum Engineering ANALYSIS OF ERROR IN USING FRACTURED GAS WELL TYPE CURVES FOR CONSTANT PRESSURE PRDDUCTION A Thesis by DAVID WAYNE SCHKADE Approved as to style and content by: S. A. Ho lditch...

Schkade, David Wayne

1987-01-01T23:59:59.000Z

230

Northwest Australia's Saladin crude assayed  

SciTech Connect (OSTI)

High-quality Saladin crude oil from offshore Western Australia has been assayed. The 48.2[degree] API, 0.02 wt % sulfur crude's characteristics--determined in 1990--are presented here for the first time. The estimated 30--40 million bbl field, south of Barrow Island, is produced from two platforms in 58 ft of water in block TP 3. Production began in late 1989 from three platforms with three wells each and from two wells drilled directionally from Thevenard Island. The paper lists data on the following properties: API gravity, density, sulfur content, pour point, flash point, viscosity, salinity, heat of combustion, ash content, asphaltene content, wax content, and metal content for the whole crude and various fractions.

Rhodes, A.K.

1993-10-18T23:59:59.000Z

231

Performance evaluation of Appalachian wells using a microcomputer gas simulation model  

SciTech Connect (OSTI)

The Appalachian Basin contains very low reservoir pressures (as low as 120 psi). To help solve these problems, a one-dimensional gas simulator has been developed for use on a microcomputer. The simulation program provides production engineers with tools to generate data and determine the inflow performance relationships (IPR) of Appalachian-type wells. These Appalachian well field case studies were conducted, whereby various production methods were analyzed using the Nodal analysis method. Consequently, improved design criteria were established for selecting compatible production methods and handling production problems in the Appalachian Basin.

Yu, J.P.; Mustafa, A. (West Virginia Univ., Morgantown (USA)); Hefner, M.H. (CNG Transmission Co., Clarksburg, WV (USA))

1990-04-01T23:59:59.000Z

232

Failure of a gas well to respond to a foam hydraulic fracturing treatment  

SciTech Connect (OSTI)

Well No. 1 (not the real name of the well) is not producing gas at maximum capacity following a foam hydraulic fracturing treatment performed upon completion of the well in 1987. The failure of the stimulation treatment, which has affected other wells throughout the field, was due to a combination of three factors: (1) downward fracture growth and proppant settling during injection (2) embedment due to a high pressure drawdown in the wellbore during flowback procedures, and (3) poor cleanup of the fracture fluid due to high capillary pressures. The following are recommendations to help improve future fracturing treatments throughout the field: (1) Fracture at lower treating pressures; (2) Improve perforating techniques; (3) Change flowback procedures; and (4) Evaluate using N{sub 2} as a fracture fluid.

Rauscher, B.D.

1996-12-31T23:59:59.000Z

233

The Use of Horizontal Wells in Gas Production from Hydrate Accumulations  

E-Print Network [OSTI]

E.D. Toward Production From Gas Hydrates: Current Status,International Conference on Gas Hydrates, Trondheim, Norway,for Gas Production from Gas Hydrate Reservoirs, J. Can. Pet.

Moridis, George J.

2008-01-01T23:59:59.000Z

234

Pixelized Gas Micro-well Detectors for Advanced Gamma-ray Telescopes  

E-Print Network [OSTI]

We describe possible applications of pixelized micro-well detectors (PMWDs) as three-dimensional charged particle trackers in advanced gamma-ray telescope concepts. A micro-well detector consists of an array of individual micro-patterned gas proportional counters opposite a planar drift electrode. When combined with pixelized thin film transistor (TFT) array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined by timing the drift of the ionization electrons. The primary advantage of this technique is the very low scattering that the charged particles experience in a gas tracking volume, and the very accurate determination of the initial particle momenta that is thus achieved. We consider two applications of PMWDs to gamma-ray astronomy: 1) A tracker for an Advanced Compton Telescope (ACT) in which the recoil electron from the initial Compton scatter may be accurately tracked, greatly reducing the telescope's point spread function and increasing its polarization sensitivity; and 2) an Advanced Pair Telescope (APT) whose angular resolution is limited primarily by the nuclear recoil and which achieves useful polarization sensitivity near 100 MeV. We have performed Geant4 simulations of both these concepts to estimate their angular resolution and sensitivity for reasonable mission designs.

P. F. Bloser; S. D. Hunter

2004-05-14T23:59:59.000Z

235

Consortium for Petroleum & Natural Gas Stripper Wells PART 2 OF 3  

SciTech Connect (OSTI)

The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings dedicated to technology transfer to showcase and review SWC-funded technology. The workshops were open to the stripper well industry.

Morrison, Joel

2011-12-01T23:59:59.000Z

236

Consortium for Petroleum & Natural Gas Stripper Wells PART 1 OF 3  

SciTech Connect (OSTI)

The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings dedicated to technology transfer to showcase and review SWC-funded technology. The workshops were open to the stripper well industry.

Morrison, Joel

2011-12-01T23:59:59.000Z

237

Consortium for Petroleum & Natural Gas Stripper Wells PART 3 OF 3  

SciTech Connect (OSTI)

The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industrydriven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings dedicated to technology transfer to showcase and review SWC-funded technology. The workshops were open to the stripper well industry.

Morrison, Joel

2011-12-01T23:59:59.000Z

238

Unloading using auger tool and foam and experimental identification of liquid loading of low rate natural gas wells  

E-Print Network [OSTI]

Low-pressure, low-producing natural gas wells commonly encounter liquid loading during production. Because of the decline in the reservoir pressure and the flow capacity, wells can fall below terminal velocity. Identifying and predicting the onset...

Bose, Rana

2007-09-17T23:59:59.000Z

239

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents [OSTI]

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

Vail, W.B. III

1997-05-27T23:59:59.000Z

240

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents [OSTI]

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

Vail, III, William B. (Bothell, WA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Shallow gas well drilling with coiled tubing in the San Juan Basin  

SciTech Connect (OSTI)

Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

1996-12-31T23:59:59.000Z

242

Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty,Portal,105.Electric FuelGas Wells

243

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network [OSTI]

geologic assessment of oil and gas in the San Joaquin BasinRates in California Oil and Gas District 4 – Update andoccurring in California Oil and Gas District 4 during the

Benson, Sally M.

2010-01-01T23:59:59.000Z

244

Development of general inflow performance relationships (IPR's) for slanted and horizontal wells producing heterogeneous solution-gas drive reservoirs  

SciTech Connect (OSTI)

Since 1968, the Vogel equation has been used extensively and successfully for analyzing the inflow performance relationship (IPR) of flowing vertical wells producing by solution-gas drive. Oil well productivity can be rapidly estimated by using the Vogel IPR curve and well outflow performance. With recent interests on horizontal well technology, several empirical IPRs for solution-gas drive horizontal and slanted wells have been developed under homogeneous reservoir conditions. This report presents the development of IPRs for horizontal and slanted wells by using a special vertical/horizontal/slanted well reservoir simulator under six different reservoir and well parameters: ratio of vertical to horizontal permeability, wellbore eccentricity, stratification, perforated length, formation thickness, and heterogeneous permeability. The pressure and gas saturation distributions around the wellbore are examined. The fundamental physical behavior of inflow performance for horizontal wells is described.

Cheng, A.M.

1992-04-01T23:59:59.000Z

245

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network [OSTI]

pub/oil/ Data_Catalog/Oil_and_Gas/Oil_?elds/CA_oil?elds.DAT.1993) A history of oil- and gas-well blowouts in California,Health Administration (2007), Oil and gas well drilling and

Jordan, Preston D.

2008-01-01T23:59:59.000Z

246

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is… (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

247

Ground state and excitations of a Bose gas: From a harmonic trap to a double well  

SciTech Connect (OSTI)

We determine the low-energy properties of a trapped Bose gas split in two by a potential barrier over the whole range of barrier heights and asymmetry between the wells. For either weak or strong coupling between the wells, our two-mode theory yields a two-site Bose-Hubbard Hamiltonian with the tunneling, interaction, and bias parameters calculated simply using an explicit form of two mode functions. When the potential barrier is relatively low, most of the particles occupy the condensate mode and our theory reduces to a two-mode version of the Bogoliubov theory, which gives a satisfactory estimate of the spatial shape and energy of the lowest collective excitation. When the barrier is high, our theory generalizes the standard two-site Bose-Hubbard model into the case of asymmetric modes, and correctly predicts a full separation of the modes in the limit of strong separation of the wells. We provide explicit analytic forms for the number squeezing and coherence as a function of particle number and temperature. We compare our theory to other two-mode theories for bosons in a double well and discuss their validity in different parameter regimes.

Japha, Y. [Department of Physics, Ben-Gurion University, Beer-Sheva 84105 (Israel); Band, Y. B. [Departments of Chemistry and Electro-Optics, and Ilse Katz Center for Nano-Science, Ben-Gurion University, Beer-Sheva 84105 (Israel)

2011-09-15T23:59:59.000Z

248

Land Use Greenhouse Gas Emissions from Conventional Oil  

E-Print Network [OSTI]

emissions of California crude and in situ oil sands production (crude refineryLand Use Greenhouse Gas Emissions from Conventional Oil Production and Oil Sands S O N I A Y E H and Alberta as examples for conventional oil production as well as oil sands production in Alberta

Turetsky, Merritt

249

Effect of oil and gas well drilling fluids on shallow groundwater in western North Dakota  

SciTech Connect (OSTI)

Upon completion of an oil and gas well in North Dakota, the drilling fluid is buried in the reserve pit at the site. Reclamation of the drill site is expedited by digging a series of trenches which radiate out from the reserve pit. The majority of buried drilling fluid is ultimately contained within these 5-7-metre deep trenches. These fluids are commonly salt-based, i.e., they contain a concentration of 300,000 +- 20,000 ppM NaCl. In addition, these drilling fluids also contain additives including toxic trace-metal compounds. Four reclaimed oil and gas well sites were chosen for study in western North Dakota. The ages of these sites ranged from 2 to 23 years. A total of 31 piezometers and 22 soil water samplers were installed in and around the drill sites, and quarterly groundwater samples were obtained from these instruments. The local groundwater flow conditions were also determined at these sites. Results of both the water analyses and earth resistivity surveys indicate that leachate is being generated at all of the study sites. Water obtained from the unsaturated zone beneath the buried drilling fluid at all of the four study sites exceeds some of the recommended concentration limits and maximum permissible concentration limits for trace elements and major ions (As, Cl/sup -/, Pb, Se, and NO/sub 3//sup -/). These values are greatly reduced in the unsaturated zone as the depth from the buried drilling fluid increases. This reduction is assumed to be the result of attenuation of these ions by cation exchange on Na montmorillonitic clays. Two of these study sites represent the typical geohydrologic setting for the majority of oil and gas well sites in this area. At these sites the saturated zone was not monitored. The reduction in ion concentration in the unsaturated zone suggests that there would be very little impact on the groundwater from this buried drilling fluid at these two sites. 46 references, 58 figures, 3 tables.

Murphy, E.C.; Kehew, A.E.

1984-01-01T23:59:59.000Z

250

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents [OSTI]

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

251

Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present  

DOE Patents [OSTI]

Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

Vail, III, William Banning (Bothell, WA)

2000-01-01T23:59:59.000Z

252

Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau  

SciTech Connect (OSTI)

Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

2013-04-01T23:59:59.000Z

253

Stimulation rationale for shale gas wells: a state-of-the-art report  

SciTech Connect (OSTI)

Despite the large quantities of gas contained in the Devonian Shales, only a small percentage can be produced commercially by current production methods. This limited production derives both from the unique reservoir properties of the Devonian Shales and the lack of stimulation technologies specifically designed for a shale reservoir. Since October 1978 Science Applications, Inc. has been conducting a review and evaluation of various shale well stimulation techniques with the objective of defining a rationale for selecting certain treatments given certain reservoir conditions. Although this review and evaluation is ongoing and much more data will be required before a definitive rationale can be presented, the studies to date do allow for many preliminary observations and recommendations. For the hydraulic type treatments the use of low-residual-fluid treatments is highly recommended. The excellent shale well production which is frequently observed with only moderate wellbore enlargement treatments indicates that attempts to extend fractures to greater distances with massive hydraulic treatments are not warranted. Immediate research efforts should be concentrated upon limiting production damage by fracturing fluids retained in the formation, and upon improving proppant transport and placement so as to maximize fracture conductivity. Recent laboratory, numerical modeling and field studies all indicate that the gas fracturing effects of explosive/propellant type treatments are the predominate production enhancement mechanism and that these effects can be controlled and optimized with properly designed charges. Future research efforts should be focused upon the understanding, prediction and control of wellbore fracturing with tailored-pulse-loading charges. 36 references, 7 figures, 2 tables.

Young, C.; Barbour, T.; Blanton, T.L.

1980-12-01T23:59:59.000Z

254

Identification of parameters influencing the response of gas storage wells to hydraulic fracturing with the aid of a neural network  

SciTech Connect (OSTI)

Performing hydraulic fractures on gas storage wells to improve their deliverability is a common practice in the eastern part of the United States. Most of the fields in this part of the country being used for storage are old. Reservoir characteristic data necessary for most reservoir studies and hydraulic fracture design and evaluation are scarce for these old fields. This paper introduces a new methodology by which parameters that influence the response of gas storage wells to hydraulic fracturing may be identified in the absence of sufficient reservoir data. Control and manipulation of these parameters, once identified correctly, could enhance the outcome of frac jobs in gas storage fields. The study was conducted on a gas storage field in the Clinton formation of Northeastern Ohio. It was found that well performance indicators prior to a hydraulic fracture play an important role in how good the well will respond to a new frac job. Several other important factors were also identified.

McVey, D.S.; Mohaghegh, S.; Aminian, K.

1994-12-31T23:59:59.000Z

255

Development and verification of new semi-analytical methods for the analysis and prediction of gas well performance  

E-Print Network [OSTI]

. We have developed two new relations (p² and (p/z)² results) that predict gas well rate-time performance within engineering accuracy of the rigorous solution. Unlike the pseudopressure-pseudotime relation, our new solutions require only knowledge...

Knowles, Robert Stephen

1999-01-01T23:59:59.000Z

256

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

simulation of reservoir depletion and oil flow from themodel included the oil reservoir and the well with a toppressures of the deep oil reservoir, to a two-phase oil-gas

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

257

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network [OSTI]

Oil and Gas District 4 from 1991 to 2005: implications for geological storage of carbon dioxide, Environmental Geology ,

Benson, Sally M.

2010-01-01T23:59:59.000Z

258

[Outlook for 1997 in the oil and gas industries of the US  

SciTech Connect (OSTI)

This section contains 7 small articles that deal with the outlook for the following areas: US rotary rigs (Moving back up, finally); US production (Crude decline continues, gas rising); producing oil wells (Oil stays steady); producing gas wells (Well numbers up again); drilling and producing depths (New measured depths records); and US reserves (Gas reserves jump; oil dips slightly).

NONE

1997-02-01T23:59:59.000Z

259

The Implications and Flow Behavior of the Hydraulically Fractured Wells in Shale Gas Formation  

E-Print Network [OSTI]

............................................................................................ 41 xii FIGURE Page 3.15 Matching the linear flow interval to evaluate Acm using the Shale Gas VBA... .................................................................................................... 42 3.16 After resetting the time to zero and matching the interval with gas lift effect, the same calculations were cared to evaluate Acm using the Shale Gas VBA...

Almarzooq, Anas Mohammadali S.

2012-02-14T23:59:59.000Z

260

Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology  

SciTech Connect (OSTI)

The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

Dinesh Agrawal; Paul Gigl; Mark Hunt; Mahlon Dennis

2007-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology  

SciTech Connect (OSTI)

The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

Dinesh Agrawal

2006-09-30T23:59:59.000Z

262

DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS  

SciTech Connect (OSTI)

The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

Johnson, F.; Fox, K.

2013-10-02T23:59:59.000Z

263

Understanding Crude Oil Prices  

E-Print Network [OSTI]

Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

264

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

265

Target-rate Tracking for Shale-gas Multi-well Pads by Scheduled Shut-ins  

E-Print Network [OSTI]

horizontal wells and stimulation with multistage hydraulic fracturing. This practice normally leads with hydraulic fracturing (HF) is therefore crucial for draining reasonable amounts of gas from the low permeable shale. Horizontal wells together with multistage hydraulic fracturing is by far the most common

Foss, Bjarne A.

266

Identification of Parameters Influencing the Response of Gas Storage Wells to Hydraulic Fracturing with the Aid of a Neural Network  

E-Print Network [OSTI]

75083-3836, U.S.A. Telex, 163245 SPEUT. Abstract Performing hydraulic fractures on gas storage wells necessary for most reservoir studies and hydraulic fracture design and evaluation are scarce for these old storage wells to hydraulic fracturing may be identified in the absence of sufficient reservoir data

Mohaghegh, Shahab

267

The effect of condensate dropout on pressure transient analysis of a high-pressure gas condensate well  

E-Print Network [OSTI]

'or the degree of MASTER OF SCIENCE August 1986 Major Subject : Petr oleum Engineering THE EFFECT OF CONDENSATE DROPOUT ON PRESSURE TRANSIENT ANALYSIS OF A HIGH-PRESSURE GAS CONDENSATE WELL A thesis by FREDERIC JEAN-LOUiS SRIENS Approved as to style... Condensate Well. (August 1986) Frederic Jean~Louis Briens, ingenieur Ecole Centrale Chairman of Advisory Committee: Dr. Ching H. Wu Pressure transient analysis techniques are often used to determine the i'low proper ties of gas wells. Through the analysis...

Briens, Frederic Jean-Louis

1986-01-01T23:59:59.000Z

268

IMPROVED TUBULARS FOR BETTER ECONOMICS IN DEEP GAS WELL DRILLING USING MICROWAVE TECHNOLOGY  

SciTech Connect (OSTI)

The main objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Originally, it was proposed to accomplish this by developing an efficient and economically viable continuous microwave process to sinter continuously formed/extruded steel powder for the manufacture of seamless coiled tubing and other tubular products. However, based on the results and faced with insurmountable difficulties in the extrusion and de-waxing processes, the approach of achieving the goals of the program has been slightly changed. In the continuation proposal an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) is adopted. This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. Originally, the entire program was spread over three phases with the following goals: Phase I: Demonstration of the feasibility concept of continuous microwave sintering process for tubular steel products. Phase II: Design, building and testing of a prototype microwave system which shall be combined with a continuous extruder for steel tubular objects. Phase III: Execution of the plan for commercialization of the technology by one of the industrial partners. However, since some of the goals of the phase I were not completed, an extension of nine months was granted and we continued extrusion experiments, designed and built semicontinuous microwave sintering unit.

Dinesh Agrawal; Paul Gigl; Mahlon Dennis; Roderic Stanley

2005-03-01T23:59:59.000Z

269

A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation  

SciTech Connect (OSTI)

Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities for geothermal resources have been hindered. To increase the effective regional implementation of geothermal resources as an energy source for power production requires meeting several objectives. These include: 1) Expand (oil and gas as well as geothermal) industry awareness of an untapped source of geothermal energy within deep permeable strata of sedimentary basins; 2) Identify and target specific geographic areas within sedimentary basins where deeper heat sources can be developed; 3) Increase future geothermal field size from 10 km2 to many 100’s km2 or greater; and 4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

Erdlac, Richard J., Jr.

2006-10-12T23:59:59.000Z

270

Molecular Characterization of Wax Isolated from a Variety of Crude Oils  

E-Print Network [OSTI]

. It can aid emulsification of the crude in the production and refining of crudes, as well as in oil spillsMolecular Characterization of Wax Isolated from a Variety of Crude Oils Barbara J. Musser and Peter Carolina 27695-7905 Received November 5, 1997 Petroleum waxes from sixteen different crude oils were

Kilpatrick, Peter K.

271

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the  

E-Print Network [OSTI]

12, 2014 (received for review November 27, 2013) Horizontal drilling and hydraulic fracturing have triggered by horizontal drilling or hydraulic fracturing. noble gas geochemistry | groundwater contamination and hydraulic fracturing have substantially increased hydrocarbon recovery from black shales and other

Jackson, Robert B.

272

Minimizing Water Production from Unconventional Gas Wells Using a Novel Environmentally Benign Polymer Gel System  

E-Print Network [OSTI]

Excess water production is a major economic and environmental problem for the oil and gas industry. The cost of processing excess water runs into billions of dollars. Polymer gel technology has been successfully used in controlling water influx...

Gakhar, Kush

2012-02-14T23:59:59.000Z

273

The impact of gravity segregation on multiphase non-Darcy flow in hydraulically fractured gas wells  

E-Print Network [OSTI]

Solution for Uniform Influx................................. 28 2.5 Effect of Stress on Non-Darcy Flow with Uniform Influx............................. 40 2.6 Hydraulically Fractured Reservoir with Two-Phase Flow ............................. 45 2... ............................................................................................................... 21 2.6 Gas expansion factor divided by gas viscosity Eg/µg = 1/(Bµ), which is roughly constant at or above pressures of 6,000 psi. .................................... 22 2.7 Relative permeability functions from Table 2.1 normalized...

Dickins, Mark Ian

2008-10-10T23:59:59.000Z

274

Identification of parameters influencing the response of gas storage wells to hydraulic fracturing with the aid of a neural network  

SciTech Connect (OSTI)

Performing hydraulic fractures on gas storage wells to improve their deliverability is a common practice in the eastern part of the US. Most fields used for storage in this region are old, and the reservoir characteristic data necessary for most reservoir studies and hydraulic fracture design and evaluation are scarce. This paper introduces a new method by which parameters that influence the response of gas storage wells to hydraulic fracturing may be identified in the absence of sufficient reservoir data. Control and manipulation of these parameters, once identified correctly, could enhance the outcome of frac jobs in gas storage fields. The authors conducted the study on a gas storage field in the Clinton formation of northeastern Ohio. They found that well-performance indicators before a hydraulic fracture play an important role in how good the well will respond to a new frac job. They also identified several other important factors. The identification of controlling parameters serves as a foundation for improved frac job design in the fields where adequate engineering data are not available. Another application of this type of study could be the enhancement of selection criteria among the candidate wells for hydraulic fracturing. To achieve the objective of this study, the authors designed, trained, and applied an artificial neural network. The paper will discuss the results of the incorporation of this new technology in hydraulic fracture design and evaluation.

McVey, D.S. [East Ohio Gas Co., North Canton, OH (United States); Mohaghegh, S.; Aminian, K.; Ameri, S. [West Virginia Univ., Morgantown, WV (United States)

1996-04-01T23:59:59.000Z

275

Multiphysics modeling of carbon gasification processes in a well-stirred reactor with detailed gas-phase chemistry  

E-Print Network [OSTI]

Multiphysics modeling of carbon gasification processes in a well-stirred reactor with detailed gas: Coal gasification Carbon gasification Detailed chemistry Heterogeneous surface reactions Radiation Multi-physics numerical modeling a b s t r a c t Fuel synthesis through coal and biomass gasification

Qiao, Li

276

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network [OSTI]

) Note: PSAT included after-treatment thermal efficiency penalty to the diesel fuel economy · CD ElectricWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad engine vehicles (ICEVs) Regular hybrid electric vehicles (HEVs) Plug-in hybrid electric vehicles (PHEVs

277

Distributed delay model for density wave dynamics in gas lifted wells Laure Sin`egre, Nicolas Petit  

E-Print Network [OSTI]

Distributed delay model for density wave dynamics in gas lifted wells Laure Sin`egre, Nicolas Petit in the tubing D. dynamical choking is used to stabilise the density wave instability. In this paper, we propose instabilities cause production losses. One of these instabilities, referred to as the "density-wave

278

Review of critical factors affecting crude corrosivity  

SciTech Connect (OSTI)

Lower quality opportunity crudes are now processed in most refineries and the source of the crudes may vary daily. These feedstocks, if not properly handled, can result in reduction in service life of equipment as well as costly failure and downtime. Analytical tools are needed to predict their high temperature corrosivity toward distillation units. Threshold in total sulfur and total acid number (TAN) have been used for many years as rules of thumb for predicting crude corrosivity, However, it is now realized that they are not accurate in their predictive ability. Crudes with similar composition and comparable with respect to process considerations have been found to be entirely different in their impact on corrosion. Naphthenic acid content, sulfur content, velocity, temperature, and materials of construction are the main factors affecting the corrosion process, Despite progress made in elucidating the role of the different parameters on the crude corrosivity process, the main problem is in calculating their combined effect, especially when the corroding stream is such a complex mixture. The TAN is usually related directly to naphthenic acid content. However, discrepancies between analytical methods and interference of numerous components of the crude itself lead to unreliable reported content of naphthenic acid. The sulfur compounds, with respect to corrosivity, appear to relate more to their decomposition at elevated temperature to form hydrogen sulfide than to their total content in crude. This paper reviews the present situation regarding crude corrosivity in distillation units, with the aim of indicating the extent of available information, and areas where further research is necessary.

Tebbal, S.; Kane, R.D. [CLI International, Inc., Houston, TX (United States)

1996-08-01T23:59:59.000Z

279

Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology  

SciTech Connect (OSTI)

The objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration. The current process of the manufacture long tubular steel products consists of shaping the tube from flat strip, welding the seam and sections into lengths that can be miles long, and coiling onto reels. However, the welds, that are a weak point, now limit the performance of the coil tubing. This is not only from a toughness standpoint but also from a corrosion standpoint. By utilizing the latest developments in the sintering of materials with microwave energy and powder metal extrusion technology for the manufacture of seamless coiled tubing and other tubular products, these problems can be eliminated. The project is therefore to develop a continuous microwave process to sinter continuously steel tubulars and butt-join them using microwave/induction process. The program started about three years ago and now we are in the middle of Phase II. In Phase I (which ended in February 2005) a feasibility study of the extrusion process of steel powder and continuously sinter the extruded tubing was conducted. The research program has been based on the development of microwave technology to process tubular specimens of powder metals, especially steels. The existing microwave systems at the Materials Research Laboratory (MRL) and Dennis Tool Company (DTC) were suitably modified to process tubular small specimens. The precursor powder metals were either extruded or cold isostatically pressed (CIP) to form tubular specimens. After conducting an extensive and systematic investigation of extrusion process for producing long tubes, it was determined that there were several difficulties in adopting extrusion process and it cannot be economically used for producing thousands of feet long green tubing. Therefore, in the Phase II the approach was modified to the microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave). This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. This report summarizes the progress made to-date in this new approach. The final steel composition matching with the Quality tubing's QT-16Cr80 was short listed and used for all experiments. Bonding experiments using 4 different braze powders were conducted and the process optimized to obtain high degree of bonding strength. For fabrication of green tubulars a large CIP unit was acquired and tested. This equipment is located at the Dennis Tool facility in Houston. Microwave sintering experiments for continuous processing of the CIPed tubes are under progress in order to identify the optimum conditions. There have been some reproducibility problems and we are at present working to resolve these problems.

Dinesh Agrawal; Paul Gigl; Mahlon Dennis

2006-02-01T23:59:59.000Z

280

Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska  

SciTech Connect (OSTI)

In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

Boswell, R.M.; Hunter, R. (ASRC Energy Services, Anchorage, AK); Collett, T. (USGS, Denver, CO); Digert, S. (BP Exploration (Alaska) Inc., Anchorage, AK); Hancock, S. (RPS Energy Canada, Calgary, Alberta, Canada); Weeks, M. (BP Exploration (Alaska) Inc., Anchorage, AK); Mt. Elbert Science Team

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Competitiveness of Mexican crude  

SciTech Connect (OSTI)

Mexico is under great pressure to maintain oil export revenue levels if it is to avoid a reversal in its economic recovery program. While the country's vulnerability to a price plunge is also applicable to OPEC countries, the North Sea producers, and others, Mexico does have an ace. The ace is that its heavier, metals-ridden and sulfur-laden Maya crude, which had to be pushed on customers until about 1981, is now in strong demand. Comparisons are presented of the market value of five crude oils refined in the US Gulf Coast: West Texas Intermediate (or WTI, a 40/sup 0/ API, light), Arabian Light and Isthmus (both 34/sup 0/ medium-light), Alaska North Slope (or ANS, a 27/sup 0/ API, a medium), and Maya (22/sup 0/ API, medium-heavy). In this mix, the heavier the crude, the greater is the refining margin (except for Arabian Light, for which freight cost and product yield provide lower margins than those derived from WTI). The sacrifice by OPEC and other producers cutting crude oil prices was to the benefit to refiners' improved margins during the first half of 1983. Those cuts were on the lighter-quality oils. But prices for heavier Venezuelan, Californian, and Mexican crudes increased during the second half of 1983, due to developing refinery technologies in extracting favorable product yields from them. This issue of Energy Detente presents their fuel price/tax series and industrial fuel prices for December 1983 for countries of the Western Hemisphere.

Not Available

1983-12-28T23:59:59.000Z

282

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect (OSTI)

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

283

Kansas Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions

284

Kansas Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear Jan Feb Mar Apr May

285

Louisiana Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0Feet) Year Jan

286

Louisiana Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0Feet) Year JanYear Jan

287

Maryland Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0Feet) DecadeDecade

288

Maryland Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0Feet)

289

Michigan Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3

290

Michigan Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb Mar Apr May Jun Jul

291

Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0Decade Year-0

292

Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0Decade Year-0Year

293

Montana Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388Feet) Year Jan

294

Montana Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388Feet) Year JanYear Jan

295

Colorado Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYear JanYear Jan Feb

296

Colorado Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYear JanYear Jan FebYear

297

Florida Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 Adjustments

298

Florida Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 AdjustmentsYear Jan Feb Mar

299

Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)  

SciTech Connect (OSTI)

Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the mineral industry for use in the exploration of unconventional gas in rural Alaska. These techniques have included the use of diamond drilling rigs that core small diameter (< 3.0-inch) holes coupled with wireline geophysical logging tools and pressure transient testing units capable of testing in these slimholes.

Paul Glavinovich

2002-11-01T23:59:59.000Z

300

Detection of water or gas entry into horizontal wells by using permanent downhole monitoring systems  

E-Print Network [OSTI]

distributed temperature sensors (DTS) in intelligent completions. Analyzing such changes will potentially aid the diagnosis of downhole flow conditions. In vertical wells, temperature logs have been used successfully to diagnose the downhole flow conditions...

Yoshioka, Keita

2007-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Investigation of flow modifying tools for the continuous unloading of wet-gas wells  

E-Print Network [OSTI]

decreasing backpressure on wells and increasing production. This thesis evaluates this technology for use in the wellbore, where a tool is introduced at the bottom of the tubing string. Laboratory experiments were conducted using a 125-ft vertical flow...

Ali, Ahsan Jawaid

2012-06-07T23:59:59.000Z

302

A Modified Genetic Algorithm Applied to Horizontal Well Placement Optimization in Gas Condensate Reservoirs  

E-Print Network [OSTI]

location could be determined as the center of the reservoir, but when considering the complexity of a heterogeneous reservoir with initial compositional variation, the well placement dilemma does not produce such a simple result. In this research, a...

Morales, Adrian

2011-02-22T23:59:59.000Z

303

Crude Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (MillionExpectedChangesAdministration Cost and

304

Production-data analysis of single-phase (gas) coalbed-methane wells  

SciTech Connect (OSTI)

The current work illustrates how single-well production-data-analysis (PDA) techniques, such as type curve, flowing material balance (FMB), and pressure-transient (PT) analysis, may be altered to analyze single-phase CBM wells. Examples of how reservoir inputs to the PDA techniques and subsequent calculations are modified to account for CBM-reservoir behavior are given. This paper demonstrates, by simulated and field examples, that reasonable reservoir and stimulation estimates can be obtained from PDA of CBM reservoirs only if appropriate reservoir inputs (i.e., desorption compressibility, fracture porosity) are used in the analysis. As the field examples demonstrate, type-curve, FMB, and PT analysis methods for PDA are not used in isolation for reservoir-property estimation, but rather as a starting point for single-well and multiwell reservoir simulation, which is then used to history match and forecast CBM-well production (e.g., for reserves assignment). To study the effects of permeability anisotropy upon production, a 2D, single-phase, numerical CBM-reservoir simulator was constructed to simulate single-well production assuming various permeability-anisotropy ratios. Only large permeability ratios ({lt} 16:1) appear to have a significant effect upon single-well production characteristics. Multilayer reservoir characteristics may also be observed with CBM reservoirs because of vertical heterogeneity, or in cases where the coals are commingled with conventional (sandstone) reservoirs. In these cases, the type-curve, FMB, and PT analysis techniques are difficult to apply with confidence. Methods and tools for analyzing multilayer CBM (plus sand) reservoirs are presented. Using simulated and field examples, it is demonstrated that unique reservoir properties may be assigned to individual layers from commingled (multilayer) production in the simple two-layer case.

Clarkson, C.R.; Bustin, R.M.; Seidle, J.P. [ConocoPhillips Canada, Calgary, AB (Canada)

2007-06-15T23:59:59.000Z

305

U.S. Average Depth of Natural Gas Exploratory and Developmental Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWellsWells Drilled (Feet

306

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

for estimates of the oil and gas flow rate from the Macondoteam and carried out oil and gas flow simulations using theoil-gas system. The flow of oil and gas was simulated using

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

307

Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1Cubic Feet)Feet) Oil Wells

308

U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWells

309

U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 Wells (Thousand Feet) U.S. Footage

310

U.S. Footage Drilled for Natural Gas Exploratory and Developmental Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 Wells (Thousand Feet) U.S.

311

U.S. Natural Gas Developmental Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 WellsDecadeCubicYear Jan Feb Mar Apr May

312

U.S. Natural Gas Exploratory Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 WellsDecadeCubicYear Jan Feb Mar Apr

313

U.S. Natural Gas Exploratory and Developmental Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 WellsDecadeCubicYear Jan Feb Mar

314

U.S. Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 WellsDecadeCubicYear Jan FebYear

315

U.S. Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 WellsDecadeCubicYear Jan

316

California--State Offshore Natural Gas Withdrawals from Oil Wells (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil Wells (Million

317

Federal Offshore--Louisiana Natural Gas Withdrawals from Oil Wells (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWells (Million Cubic Feet)Feet)Cubic

318

Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWells (MillionProduction (MillionCubic

319

Comparative laboratory selection and field testing of polymers for selective control of water production in gas wells  

SciTech Connect (OSTI)

Intensive comparative feasibility studies were performed in different laboratories in order to select the most promising polymer based technology for water control in gas production and storage wells exhibiting low matrix permeability, high temperature and high produced brine salinity. Core flow experiments performed under reservoir conditions with different commercially available chemical systems have pointed to the superiority of two relatively low-molecular-weight vinyl sulfonated/vinyl amide/acrylamide terpolymers over other polymers to decrease selectively and effectively the water permeability without affecting the gas flow. These polymers have excellent compatibility with all types of reservoir brines and good thermal stability up to 150 C. Furthermore, because of their high shear resistance, and excellent injectability even in low permeability cores, solutions of these polymers can be pumped at high injection rates with a moderate wellhead pressure.

Ranjbar, M. [Technical Univ., Clausthal (Germany); Czolbe, P. [DBI-GUT, Freiberg (Germany); Kohler, N. [IFP, Rueil-Malmaison (France)

1995-11-01T23:59:59.000Z

320

AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions  

SciTech Connect (OSTI)

The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

Meeks, E.; Grcar, J.F.; Kee, R.J. [Sandia National Labs., Livermore, CA (United States). Thermal and Plasma Processes Dept.] [Sandia National Labs., Livermore, CA (United States). Thermal and Plasma Processes Dept.; Moffat, H.K. [Sandia National Labs., Albuquerque, NM (United States). Surface Processing Sciences Dept.] [Sandia National Labs., Albuquerque, NM (United States). Surface Processing Sciences Dept.

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Important Norwegian crude assays updated  

SciTech Connect (OSTI)

New assays on two important Norwegian North Sea crude oils, Statfjord and Gullfaks, are presented. Both are high-quality, low-sulfur crudes that will yield a full range of good-quality products. All assay data came from industry-standard test procedures. The Statfjord field is the largest in the North Sea. Production started in 1979. Statfjord is a typical North Sea crude, produced from three separate platforms and three separate loading buoys with interconnecting lines. Current production is about 700,000 b/d. Gullfaks is produced from a large field in Block 34/10 of the Norwegian sector of the North Sea production area. Gullfaks crude oil is more biodegraded than other crudes from the region. Biodegradation has removed most of the waxy normal paraffins, resulting in a heavier, more naphthenic and aromatic crude.

Corbett, R.A

1990-03-12T23:59:59.000Z

322

Gas release during salt-well pumping: Model predictions and laboratory validation studies for soluble and insoluble gases  

SciTech Connect (OSTI)

The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Of these, 67 are known or suspected to have leaked liquid from the tanks into the surrounding soil. Salt-well pumping, or interim stabilization, is a well-established operation for removing drainable interstitial liquid from SSTs. The overall objective of this ongoing study is to develop a quantitative understanding of the release rates and cumulative releases of flammable gases from SSTs as a result of salt-well pumping. The current study is an extension of the previous work reported by Peurrung et al. (1996). The first objective of this current study was to conduct laboratory experiments to quantify the release of soluble and insoluble gases. The second was to determine experimentally the role of characteristic waste heterogeneities on the gas release rates. The third objective was to evaluate and validate the computer model STOMP (Subsurface Transport over Multiple Phases) used by Peurrung et al. (1996) to predict the release of both soluble (typically ammonia) and insoluble gases (typically hydrogen) during and after salt-well pumping. The fourth and final objective of the current study was to predict the gas release behavior for a range of typical tank conditions and actual tank geometry. In these models, the authors seek to include all the pertinent salt-well pumping operational parameters and a realistic range of physical properties of the SST wastes. For predicting actual tank behavior, two-dimensional (2-D) simulations were performed with a representative 2-D tank geometry.

Peurrung, L.M.; Caley, S.M.; Gauglitz, P.A.

1997-08-01T23:59:59.000Z

323

Coupled flow and geomechanical analysis for gas production in the Prudhoe Bay Unit L-106 well Unit C gas hydrate deposit in Alaska  

E-Print Network [OSTI]

2009. Toward Production From Gas Hydrates: Current Status,Geologic Controls on Gas Hydrate Occurrence in the MountCollett T.S. 1993. Natural Gas Hydrates of the Prudhoe Bay

Kim, J.

2014-01-01T23:59:59.000Z

324

Development of general inflow performance relationships (IPR`s) for slanted and horizontal wells producing heterogeneous solution-gas drive reservoirs  

SciTech Connect (OSTI)

Since 1968, the Vogel equation has been used extensively and successfully for analyzing the inflow performance relationship (IPR) of flowing vertical wells producing by solution-gas drive. Oil well productivity can be rapidly estimated by using the Vogel IPR curve and well outflow performance. With recent interests on horizontal well technology, several empirical IPRs for solution-gas drive horizontal and slanted wells have been developed under homogeneous reservoir conditions. This report presents the development of IPRs for horizontal and slanted wells by using a special vertical/horizontal/slanted well reservoir simulator under six different reservoir and well parameters: ratio of vertical to horizontal permeability, wellbore eccentricity, stratification, perforated length, formation thickness, and heterogeneous permeability. The pressure and gas saturation distributions around the wellbore are examined. The fundamental physical behavior of inflow performance for horizontal wells is described.

Cheng, A.M.

1992-04-01T23:59:59.000Z

325

Sandia National Laboratories Releases Literature Survey of Crude...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

supply is being produced from unconventional resources -- particularly light sweet crude oil from the Bakken shale in North Dakota, as well as the Eagle Ford and Permian Basins in...

326

A new technique to analyze simultaneous sandface flow rate and pressure measurements of gas wells with turbulence and damage  

SciTech Connect (OSTI)

Most of the problems associated with conventional gas well test are related to the nonlinearity of the equations describing real gas flow, the presence of the rate dependent (non-Darcy) skin, and the long shut-in time periods required to collect the data for the analysis in tight reservoirs in which the wellbore storage period can be excessively long. This paper presents a new pressure buildup technique that reduces the wellbore storage effects, eliminates the long shut-in periods experienced with conventional tests by using afterflow rate and pressure data, and most importantly provides a direct method to estimate non-Darcy skin. The proposed technique uses normalized pseudofunctions to avoid the nonlinearities of the governing equations and involves using two different plots. The formation permeability is obtained from the slope of the first plot. The mechanical and non-Darcy skin factors are obtained respectively from the slope and intercept of the second plot. A field example and two simulated cases are presented to illustrate the application of the new technique.

Nashawi, I.S. [Kuwait Univ. (Kuwait); Al-Mehaideb, R.A.

1995-10-01T23:59:59.000Z

327

Understanding Crude Oil Prices  

E-Print Network [OSTI]

Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

328

Crude Oil and Natural Gas Drilling Activity  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding

329

Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells  

SciTech Connect (OSTI)

Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

Maryn, S.

1994-03-01T23:59:59.000Z

330

Virent is Replacing Crude Oil  

Broader source: Energy.gov [DOE]

Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Virent is Replacing Crude Oil Randy Cortright, Founder & Chief Technology Officer, Virent

331

Assessment of the corrosivity of crude fractions from varying feedstock  

SciTech Connect (OSTI)

Crude corrosivity is becoming a critical issue because of frequent variation of feedstock based on spot market opportunities and high sulfur and naphthenic acid content of low cost crudes. The choice of remediation methods (blending, inhibition, upgrading, and/or process changes) depends on accurate prediction of the corrosivity of these crudes. This paper presents the results of autoclave and flow loop runs conducted to assess the corrosivity of Middle East, Shengli, and Bachequero-13 crudes fractions on several materials used in refinery construction. Autoclave tests were conducted in vacuum heater feed line (VHFL) and Asphalt`s fractions from each crude and in atmospheric gas oil (AGO) and heavy vacuum gas oil (HVGO) from the Bachequero-13. Flow loop tests were conducted only on the VHFL`s of each crude. As expected, the test results showed a major increase in corrosion rate with increasing temperature. Corrosion rates were generally less than 10 mpy for all materials at up to 300 C. At 400 C, corrosion rates on the low Cr steels (0 to 5 Cr) were generally around 100 mpy. For the Middle East and Shengli oils, the asphalt`s were more corrosive than the VHFL cuts. Only slight differences were found in the corrosivity of these two oils. By comparison, the Bachequero-13 fractions were generally more corrosive than those from the Shengli or the Middle Eastern crudes. At 200 ft/s (67 m/s), the corrosion rates of the carbon steel specimens were high in the Middle Eastern fraction compared to the Bachequero-13 and Shengli fractions.

Tebbal, S.; Kane, R.D. [CLI International, Inc., Houston, TX (United States); Yamada, Kazuo [Japan Energy Corp., Okayama (Japan)

1997-09-01T23:59:59.000Z

332

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

E-Print Network [OSTI]

and Englezos, P. , 2009. Gas hydrate formation in a variableDOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test WellFormation of natural gas hydrates in marine sediments. 1.

Kneafsey, T.J.

2012-01-01T23:59:59.000Z

333

S.1919: Federal Oil and Gas Stripper Well Preservation Act of 1998, introduced in the US Senate, One Hundred Fifth Congress, Second Session, April 2, 1998  

SciTech Connect (OSTI)

The purpose of this bill is to provide for the energy security of the Nation through encouraging the production of domestic oil and gas resources from stripper wells on Federal lands, and for other purposes. The law would authorize reduction of royalty rates for stripper wells on federal lands and suspend minimum royalty and per acre rental fees.

NONE

1998-12-31T23:59:59.000Z

334

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar 2014 View 1994

335

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar 2014 View 1994

336

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar 2014 View 1994

337

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar 2014 View 1994

338

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar 2014 View

339

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar 2014 View1997

340

Crude Oil Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539PetroleumNatural Gas Usage Form267,273 280,958

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

of natural gas in oil) STB Stock Tank Barrel ( one barrel oftank barrel (scf/STB). Gas solubility increases with pressure such that oilgas in oil is given by SGOR which has units of standard cubic feet per stock-tank

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

342

Pennsylvania's Natural Gas Future  

E-Print Network [OSTI]

1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

Lee, Dongwon

343

Documentation of the Oil and Gas Supply Module (OGSM)  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1998-01-01T23:59:59.000Z

344

Decision Matrix Screening Tool to Identify the Best Artificial Lift Method for Liquid-loaded Gas Wells  

E-Print Network [OSTI]

the additional gas production resulted from simulation to calculate economic yardsticks (the third round), NPV and IRR. Moreover, we made the decision matrix more complete by adding three more liquid unloading techniques to the decision matrix: velocity string...

Soponsakulkaew, Nitsupon

2010-10-12T23:59:59.000Z

345

Low pour crude oil compositions  

SciTech Connect (OSTI)

This patent describes and improvement in the process of transporting waxy crude oils through a pipeline. It comprises: incorporating into the crude oil an effective pour point depressant amount of an additive comprising a polymer selected from the group consisting of copolymers of ethylene and acrylonitrile, and terpolymers of ethylene, acrylonitrile and a third monomer selected from the group consisting of vinyl acetate, carbon monoxide, alkyl acrylates, alkyl methacrylates, alkyl vinyl ethers, vinyl chloride, vinyl fluoride, acrylic acid, and methacrylic acid, wherein the amount of third monomer in the terpolymer ranges from about 0.1 to about 10.0 percent by weight.

Motz, K.L.; Latham, R.A.; Statz, R.J.

1990-05-22T23:59:59.000Z

346

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

347

Standard guide for determining corrosivity of crude oils  

E-Print Network [OSTI]

1.1 This guide presents some generally accepted laboratory methodologies that are used for determining the corrosivity of crude oil. 1.2 This guide does not cover detailed calculations and methods, but rather a range of approaches that have found application in evaluating the corrosivity of crude oil. 1.3 Only those methodologies that have found wide acceptance in crude oil corrosivity evaluation are considered in this guide. 1.4 This guide does not address the change in oil/water ratio caused by accumulation of water at low points in a pipeline system. 1.5 This guide is intended to assist in the selection of methodologies that can be used for determining the corrosivity of crude oil under conditions in which water is present in the liquid state (typically up to 100°C). These conditions normally occur during oil and gas production, storage, and transportation in the pipelines. 1.6 This guide does not cover the evaluation of corrosivity of crude oil at higher temperatures (typically above 300°C) that oc...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

348

Geochemical and carbon isotopic studies of crude oil destruction, bitumen precipitation, and sulfate reduction in the deep Smackover Formation  

SciTech Connect (OSTI)

Crude oil generated by the Lower Smackover source facies migrated to Upper Smackover reservoirs where slow thermal cracking of crude oil resulted in the formation of gas-condensate and late solid bitumen. Ultimately, only pyrobitumen, methane, and nonhydrocarbon gases including hydrogen sulfide persist in the deepest Smackover reservoirs. The carbon isotopic compositions of crude oils became heavier during crude oil destruction. The carbon isotopic compositions of asphaltenes, NSO-compounds, and saturated hydrocarbons in late solid bitumen and the Lower Smackover source facies became isotopically lighter during crude oil destruction. It is suggested that some isotopically-light components from crude oils were incorporated in late solid bitumen by reactions involving thermochemical sulfate reduction. Thermochemical sulfate reduction and crude oil destruction occurred over a long span of geologic time at temperatures in the 120-150C range.

Sassen, R. (Louisiana State Univ., Baton Rouge (USA))

1988-01-01T23:59:59.000Z

349

Investigation of the Effect of Non-Darcy Flow and Multi-Phase Flow on the Productivity of Hydraulically Fractured Gas Wells  

E-Print Network [OSTI]

on the productivity of hydraulically fractured wells is conducted and an optimum fracture design is proposed for a tight gas formation in south Texas using the Unified Fracture Design (UFD) Technique to compensate for the mentioned effects by calculating the effective...

Alarbi, Nasraldin Abdulslam A.

2011-10-21T23:59:59.000Z

350

A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES..............................1 A2. VARIABILITY IN SHALE WELL PRODUCTION PERFORMANCE ............................1  

E-Print Network [OSTI]

basin, and of late the Eagle Ford shale located in southwest Texas. Figure A1 illustrates the growth reservoir pressure, total organic content, thermal maturity, porosity, the presence of natural fractures Eagle Ford Marcellus Haynesville Woodford Fayetteville Barnett Figure A1. Growth in natural gas

351

Performance analysis of compositional and modified black-oil models for rich gas condensate reservoirs with vertical and horizontal wells  

E-Print Network [OSTI]

It has been known that volatile oil and gas condensate reservoirs cannot be modeled accurately with conventional black-oil models. One variation to the black-oil approach is the modified black-oil (MBO) model that allows the use of a simple...

Izgec, Bulent

2004-09-30T23:59:59.000Z

352

Table 22. Domestic Crude Oil First Purchase Prices for Selected...  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-182, "Domestic Crude Oil First Purchase Report." 22. Domestic Crude Oil First Purchase Prices for Selected Crude Streams 44 Energy Information Administration...

353

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

354

Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve.  

SciTech Connect (OSTI)

Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be degassed and cooled in order to meet current delivery standards.

Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Lord, David L.

2005-08-01T23:59:59.000Z

355

Naphthenic acid corrosion by Venezuelan crudes  

SciTech Connect (OSTI)

Venezuelan crudes can contain levels of naphthenic acids that cause corrosion in distillation units designed for sweet crudes. This naphthenic acid corrosion can be mitigated in several ways, the most common of which is selective alloying. This paper will provide information from field experience on how various refineries worldwide have upgraded materials to run Venezuelan crudes in a cost effective way.

Hopkinson, B.E.; Penuela, L.E. [Lagoven, S.A., Judibana (Venezuela). Amuay Refinery

1997-09-01T23:59:59.000Z

356

EIA responds to Nature article on shale gas projections  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

357

Design of a high-pressure research flow loop for the experimental investigation of liquid loading in gas wells  

E-Print Network [OSTI]

2.5 (a) The optical acrylic and (b) inlet mixing section ................................... 16 2.6 (a) Slug catcher at the outlet of the test section and (b) gas/liquid (top) and oil/water separators... loops, the process is accompanied by the installation of major equipment and hardware that may include but is not limited to compressed air systems, water pumps, multiphase pumps and static vessels used as separators. Commercial and non...

Fernandez Alvarez, Juan Jose

2009-05-15T23:59:59.000Z

358

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network [OSTI]

2007) Crude oil production. http://tonto.eia.doe.gov/dnav/The majority of District 4’s oil production was by thermallythis leakage. Background Oil production from District 4 The

Jordan, Preston D.

2008-01-01T23:59:59.000Z

359

Maps of crude oil futures  

SciTech Connect (OSTI)

The Crude Oil Futures presentation shows their concept of the quantity of oil possibly present (the combination of conventional demonstrated reserves plus undiscovered recoverable resources) within the areas outlined. The Crude Oil Futures is not as an exploration map but as a perspective on the distribution of world oil. The occurrence of oil is, after all, a function of particular geologic factors that are not everywhere present. Furthermore, large amounts of oil can occur only where the several necessary independent variables (geologic factors) combine optimally. In the Western Hemisphere, similar minimal crude oil futures are shown for North America and South America. This similarity is a reflection not of similar geology but rather of the fact that most of the oil has already been produced from North America, whereas South America as a whole (except for Venezuela) possesses a geology less likely to produce oil. In Europe, Africa, and Asia, four regions are dominant: the Middle East, Libya, North Sea, and west Siberia. Paleogeography and source rock distribution were keys to this distribution - the Middle East and Libya reflecting the Tethyan association, and the North Sea and west Siberia benefitting from the Late Jurassic marine transgression into geographic environments where ocean circulation was restricted by tectonic events.

Masters, C.D.

1986-05-01T23:59:59.000Z

360

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

SciTech Connect (OSTI)

Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

2008-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Benchmark West Texas Intermediate crude assayed  

SciTech Connect (OSTI)

The paper gives an assay of West Texas Intermediate, one of the world's market crudes. The price of this crude, known as WTI, is followed by market analysts, investors, traders, and industry managers around the world. WTI price is used as a benchmark for pricing all other US crude oils. The 41[degree] API < 0.34 wt % sulfur crude is gathered in West Texas and moved to Cushing, Okla., for distribution. The WTI posted prices is the price paid for the crude at the wellhead in West Texas and is the true benchmark on which other US crudes are priced. The spot price is the negotiated price for short-term trades of the crude. And the New York Mercantile Exchange, or Nymex, price is a futures price for barrels delivered at Cushing.

Rhodes, A.K.

1994-08-15T23:59:59.000Z

362

Energy security and crude oil in Atlantic Canada Larry Hughes, PhD  

E-Print Network [OSTI]

(oil products, natural gas, and electricity). This energy is then distributed for conversion February 2012 (Amends version of 31 January 2012) Overview Unlike most of Canada which uses natural gas for refining in Atlantic Canada is imported The majority of the region's crude oil suppliers (both domestic

Hughes, Larry

363

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect (OSTI)

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

364

Assistance to state underground injection control programs and the oil and gas industry with class 2 injection well data management and technology transfer. Final technical report  

SciTech Connect (OSTI)

The Underground Injection Practices Research Foundation (UIPRF) administered a grant project funded by the US Department of Energy relating to Class 2 injection well operations in various primacy and direct implementation states throughout the country. This effort provided substantial benefits to state regulatory agencies and oil and gas producing companies. It enhanced the protection of the environment through the protection of ground water resources and improved oil and gas production operations within affected states. This project involved the following accomplishment: (1) Completed the design and installation of the only comprehensive, fully relational PC-Based Oil and Gas regulatory data management system (the Risk Based Data Management System) in the country. Additionally, training and data conversion was conduced and the RBDMS User`s Guide and the RBDMS Administrator`s Guide were completed. (2) State wide Area-Of-Review (AOR) workshop were held in California and Oklahoma and a national three-day workshop was held in Kansas City, Missouri where 24 state oil and gas agencies were represented.

Paque, M.J.

1995-11-23T23:59:59.000Z

365

Aqueous phase toxicity of West Texas crude oil as influenced by the Rhodococcus H13-A biosurfactant  

E-Print Network [OSTI]

Crude Oil PAHs into the aqueous phase. Gas chromatographic/mass spectrophotometric (GC/MS) analysis of the water soluble fraction (WSF) was used to determine the degree of PAH partitioning. The acute toxicity of the petroleum PAHs partitioned...

Lambert, Beatrice Lorraine

1995-01-01T23:59:59.000Z

366

Summary Statistics Table 1. Crude Oil Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Energy Information Administration, Form FEA-P110-M-1, "Refiners' Monthly Cost Allocation Report," January 1978 through June 1978; Form ERA-49, "Domestic Crude Oil Entitlements...

367

Process Considerations in the Biodesulfurization of Crude Oil  

SciTech Connect (OSTI)

Biodesulfurization offers an attractive alternative to conventional hydrodesulfurization due to the mild operating conditions and reaction specificity afforded by the biocatalyst. The enzymatic pathway existing in Rhodococcus has been demonstrated to oxidatively desulfhrize the organic sulfbr occurring in dibenzothiophene while leaving the hydrocarbon intact. In order for biodesulfiization to realize commercial success, a variety of process considerations must be addressed including reaction rate, emulsion formation and breakage, biocatalyst recovery, and both gas and liquid mass transport. This study compares batch stirred to electro-spray bioreactors in the biodesulfurization of both model organics and actual crudes in terms of their operating costs, ability to make and break emulsions, ability to effect efficient reaction rates and enhance mass transport. Further, sulfim speciation in crude oil is assessed and compared to the sulfur specificity of currently available biocatalyst.

Borole, A.P.; Kaufman, E.N.

1998-10-20T23:59:59.000Z

368

A Novel 9.4 Tesla FT-ICR Mass Spectrometer with Improved Sensitivity, Mass Resolution, and Mass Range, for Petroleum Heavy Crude Oil Analysis  

E-Print Network [OSTI]

organic mixtures. However, analysis of petroleum crude oil as well as upcoming biofuels requires continued NHMFL 9.4 T FT- species in petroleum crude oil and its products, extending to "heavy" crudes.4 tesla widebore FT-ICR mass spectrometer. Acknowledgements : Include all grant info; e.g. G.S. Boebinger

369

Patterns of crude demand: Future patterns of demand for crude oil as a func-  

E-Print Network [OSTI]

from the perspective of `peak oil', that is from the pers- pective of the supply of crude, and price#12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion is given on the problems within the value chain, with an explanation of the reasons why the price of oil

Langendoen, Koen

370

Focus on Venezuelan heavy crude: refining margins  

SciTech Connect (OSTI)

Of six crudes refined in the US Gulf Coast, heavy Venezuelan crude Lagunillas (15/sup 0/ API) provides the best margin per barrel. Data for end of December 1983 and the first three weeks of January show that margins on all crudes are on the rise in this market, due to a turnaround in product prices. The lighter crudes are showing the greatest increase in Gross Product Worth. This is having a modest shrinking effect on the margin differential between light and heavy crudes in this market. The domestic crude West Texas Intermediate, at 40/sup 0/ API, provides the highest GPW in this crude slate sample, over US $31 per barrel, compared to GPW of under US $28 per barrel for Lagunillas. Still, as Lagunillas cost about US $8 less than does WTI, refiners with sufficient residue conversion capacity can be earning about US $3.50 more in margin per barrel than they can with WTI. Although few refiners would be using a 15/sup 0/ API crude exclusively for any length of time, heavier oil's inclusion in modern refiners' diets is enhancing their competitive position more than any other single factor. This issue of Energy Detente presents the fuel price/tax series and industrial fuel prices for January 1984 for countries of the Western Hemisphere.

Not Available

1984-01-25T23:59:59.000Z

371

Naphthenic acid corrosion in crude distillation units  

SciTech Connect (OSTI)

This paper summarizes corrosion experience in crude distillation units processing highly naphthenic California crude oils. Correlations have been developed relating corrosion rates to temperature and total acid number. There is a threshold acid number in the range of 1.5 to 2 mg KOH/g below which corrosion is minimal. High concentrations of hydrogen sulfide may raise this threshold value.

Piehl, R.L.

1988-01-01T23:59:59.000Z

372

Volatility Persistence in Crude Oil Markets Amlie CHARLES  

E-Print Network [OSTI]

announcements on production reduction or US announcements on crude inventories. We find that the crude oilVolatility Persistence in Crude Oil Markets Amélie CHARLES Audencia Nantes, School of Management on the volatility modelling process improve the understanding of volatility in crude oil markets. Keywords: Crude

Boyer, Edmond

373

Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis  

E-Print Network [OSTI]

m). As in all cases of gas hydrates (Moridis et al. , 2007;by destroying the secondary gas hydrate barrier (if such aInduced Gas Production From Class 1 Hydrate Deposits,” SPE

Moridis, G.

2011-01-01T23:59:59.000Z

374

A three-phase K-value study for pure hydrocarbons/water and crude oil/water systems  

E-Print Network [OSTI]

Steam distillation, or vaporization of crude oil in porous media is on of the major mechanisms responsible for high oil recovery by steamflooding from heavy oil as well as light oil reservoir systems. Several authors have reported steam dsitillation...-phase equilibrium data for hydrocarbon/water systems ranging from light to heavy crude oil fractions. ! Experimental data describing the phase behavior and the hydrocarbon/water separation process for multi-component hydrocarbon/water and crude oil...

Lanclos, Ritchie Paul

1990-01-01T23:59:59.000Z

375

U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars per Well)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb Mar Apr MayFeet) Sales

376

U.S. Average Depth of Crude Oil Developmental Wells Drilled (Feet per Well)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitions

377

Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments  

E-Print Network [OSTI]

M. World crude and natural gas reserves rebound in 2000. Oilto the conventional gas reserve of 0.15x10 15 m 3 methane (

Moridis, George J.; Sloan, E. Dendy

2006-01-01T23:59:59.000Z

378

Natural Gas Gross Withdrawals from Gas Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough 1996)2,022,228 2,010,17115,134,644

379

Crude Existence: The Politics of Oil in Northern Angola  

E-Print Network [OSTI]

and ranks 17th in crude oil production globally (EIA 2008).the country’s crude oil production averaged only 157,770s production of nearly 2 million barrels of crude oil per

Reed, Kristin

2009-01-01T23:59:59.000Z

380

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural Gas PipelinesBiodiesel30, to19571,157RefineryCORPORATIONProduct: Crude

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EIA model documentation: Documentation of the Oil and Gas Supply Module (OGSM)  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projects are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region.

NONE

1997-01-01T23:59:59.000Z

382

Evaluations of Radionuclides of Uranium, Thorium, and Radium Associated with Produced Fluids, Precipitates, and Sludges from Oil, Gas, and Oilfield Brine Injection Wells in Mississippi  

SciTech Connect (OSTI)

There is an unsurpassed lack of scientific data with respect to the concentrations and isotopic compositions of uranium, thorium, and radium in the produced formation fluids (brine), precipitates, and sludges generated with the operation of oil and gas wells in Mississippi. These radioactive elements when contained in the formation fluids have been given the term NORM, which is an acronym for naturally occurring radioactive materials. When they are technologically enhanced during oil and gas production activities resulting in the formation of scale (precipitates) and sludges they are termed TENORM (technologically enhanced naturally occurring radioactive materials). As used in this document, NORM and TENORM will be considered equivalent terms and the occurrence of NORM in the oilfield will be considered the result of production operations. As a result of the lack of data no scientifically sound theses may be developed concerning the presence of these radionuclides in the fluid brine, precipitate (scale), or sludge phases. Over the period of just one year, 1997 for example, Mississippi produced over 39,372,963,584 liters (10,402,368,186 gallons or 247,675,433 barrels) of formation water associated with hydrocarbon production from 41 counties across the state.

Ericksen, R.L.

1999-10-28T23:59:59.000Z

383

Determinants of official OPEC crude prices  

SciTech Connect (OSTI)

The hypothesis of this paper is that crude oil, like any other unfinished commodity, is valued for the products derived from it; the purpose is to offer an empirical explanation for changes in the crude price charged by the members of OPEC. The model results show that the market-clearing prices reported to prevail for petroleum products on the principal petroleum spot market at Rotterdam are the primary determinants of changes in official crude prices. A systematic relationship between offical and spot prices is argued to have prevailed since 1974. An appendix clarifies five types of data required for the model. 13 references, 4 tables.

Verleger, P.K. Jr.

1982-05-01T23:59:59.000Z

384

US Crude Oil Production Surpasses Net Imports | Department of...  

Office of Environmental Management (EM)

US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

385

Gas phase photocatalytic degradation on TiO{sub 2} pellets of volatile chlorinated organic compounds from a soil vapor extraction well  

SciTech Connect (OSTI)

The mineralization of trichloroethylene (TCE) and tetrachloroethylene (PCE) in gas stream from a soil vapor extraction (SVE) well was demonstrated with an annular photocatalytic reactor packed with porous TiO{sub 2} pellets in field trials at the Savannah River Site in Aiken, SC. The TiO{sub 2} pellets were prepared using a sol-gel method. The experiments were performed at 55 to 60{degree}C using space times of 10{sup 8} to 10{sup 10} g s/mol for TCE and PCE. Chloroform (CHCl{sub 3}) and carbon tetrachloride (CCl{sub 4}) were detected as minor products from side reactions. On a molar basis, CCl{sub 4} and CHCl{sub 3} produced were about 2% and 0.2 % of the reactants.

Yamazaki-Nishida, S.; Read, H.W.; Nagano, J.K.; Anderson, M.A. [Wisconsin Univ., Madison, WI (United States). Water Chemistry Program; Cervera-March, S. [Barcelona Univ., (Spain). Department of Chemical Engineering; Jarosch, T.R.; Eddy-Dilek, C.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

1993-05-20T23:59:59.000Z

386

Documentation of the Oil and Gas Supply Module (OGSM)  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2)). Projected production estimates of U.S. crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects U.S. domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1995-10-24T23:59:59.000Z

387

Membrane degumming of crude vegetable oil  

E-Print Network [OSTI]

Crude vegetable oils contain various minor substances like phospholipids, coloring pigments, and free fatty acids (FFA) that may affect quality of the oil. Reduction of energy costs and waste disposal are major concerns for many oil refiners who...

Lin, Lan

1997-01-01T23:59:59.000Z

388

Supercritical Water desulfurization of crude oil  

E-Print Network [OSTI]

Supercritical Water (SCW) desulfurization was investigated for both model sulfur compounds and Arab Heavy crude. In part 1, the reactions of alkyl sulfides in SCW were studied. During hexyl sulfide decomposition in SCW, ...

Kida, Yuko

2014-01-01T23:59:59.000Z

389

Summary Statistics Table 1. Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

"Monthly Foreign Crude Oil Acquisition Report"; and Form EIA-14, "Refiners' Monthly Cost Report." 0 6 12 18 24 30 J F M A M J J A S O N D 1998 Dollars per Barrel RAC First...

390

ERCB updates estimated reserves of crude bitumen and synthetic crude oil  

SciTech Connect (OSTI)

The Alberta Energy Resources Conservation Board prepares yearly updates of Alberta reserves of crude bitumen and synthetic crude oil. The latest figures are as of the end of 1985. Alberta's crude bitumen reserves are contained in designated deposits with the oil sand areas of Athabasca, Cold Lake, and Peace River. The total initial volume of crude bitumen in-place for the designated deposits at December 31, 1985 was estimated as 266.4 billion cubic meters. Within the potentially mineable areas, the initial mineable volume in-place of crude bitumen was established to be 11.9 billion cubic meters. After allowing for surface facilities (plant sites, tailings ponds, discard dumps), environmental protection corridors along major rivers, isolated mineable areas, and assuming a combined mining/extraction recovery factor of 0.78, the resulting initial established mineable reserve of crude bitumen is estimated to be 5.2 billion cubic meters. Data are presented in three tables.

Not Available

1986-09-01T23:59:59.000Z

391

Urethane coatings rehabilitate large crude oil pipeline  

SciTech Connect (OSTI)

Interprovincial Pipe Line Inc. (IPL) provides a vital transportation link for moving liquid petroleum resources from oil-producing areas of western Canada to refining centers and markets in eastern canada and the midwestern US. Together with Lakehead Pipe Line Co., Inc., the pipeline system consists of about 7,600 miles of pipe. Approximately 1.6 million bpd of crude oil and liquid hydrocarbons are transported by the system. Along with high-resolution inspection data, an in-house engineering critical assessment process based on Battelle`s NG-18 surface flaw equation was developed to identify corrosion anomalies needing structural reinforcement sleeve repairs. A majority of ht non-critical anomalies remained unearthed and were exposed to possible future growth which could become critical. Several rehabilitation methods were considered including on-going sleeve repair, selective pipe replacement, and coating reconditioning. Economics and logistics of sleeving programs and selective pipe replacement were well known at IPL. However, aspects of replacing a coating system over a relatively long length of pipe were not completely known. Preliminary cost estimates favored replacement of the coating over a massive sleeving program or pipe replacement. To gain further insight, IPL began a two-year pilot program to research long length coating replacement feasibility. Two sections of Line 3 ultimately were rehabilitated in this manner. This paper reviews the project.

Kresic, W. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

1995-10-01T23:59:59.000Z

392

Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide  

SciTech Connect (OSTI)

The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

Robert Weber; Norman Whitton

2010-09-30T23:59:59.000Z

393

Landed Costs of Imported Crude for Selected Crude Streams  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396After898 7012009

394

Costs of Imported Crude Oil for Selected Crude Streams  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar Apr May

395

Costs of Imported Crude Oil for Selected Crude Streams  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar Apr May 1995

396

Costs of Imported Crude Oil for Selected Crude Streams  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar Apr May 1995

397

Costs of Imported Crude Oil for Selected Crude Streams  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar Apr May 1995

398

Costs of Imported Crude Oil for Selected Crude Streams  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar Apr May 1995

399

Domestic Crude Oil First Purchase Prices for Selected Crude Streams  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and2,819 143,4362009 2010 2011 2012

400

Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation  

SciTech Connect (OSTI)

Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Impacts of the Venezuelan Crude Oil Production Loss  

Reports and Publications (EIA)

This assessment of the Venezuelan petroleum loss examines two areas. The first part of the analysis focuses on the impact of the loss of Venezuelan crude production on crude oil supply for U.S. refiners who normally run a significant fraction of Venezuelan crude oil. The second part of the analysis looks at the impact of the Venezuelan production loss on crude markets in general, with particular emphasis on crude oil imports, refinery crude oil throughput levels, stock levels, and the changes in price differences between light and heavy crude oils.

2003-01-01T23:59:59.000Z

402

,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPriceDry Natural GasCrudeCrude Oil + Lease

403

Using Decline Map Anlaysis (DMA) to Test Well Completion Influence on Gas Production Decline Curves in Barnett Shale (Denton, Wise, and Tarrant Counties)  

E-Print Network [OSTI]

reservoirs are a very favorable type of energy sources due to their low cost and long-lasting gas supply. In general, according to Ausubel (1996), natural gas serves as a transition stage to move from the current oil-based energy sources to future more stable...

Alkassim, Ibrahim

2010-01-14T23:59:59.000Z

404

Combination process for upgrading reduced crude  

SciTech Connect (OSTI)

A reduced crude conversion process is described for heavy oil feeds having Conradson carbon numbers above two, which process comprises contacting a heavy oil feed with a catalyst to form products comprising lower molecular weight hydrocarbons and coke-on-catalyst, the coke containing minor amounts of hydrogen, and thereafter regenerating the catalyst by removing at least a portion of the coke.

Hettinger, W.P. Jr.

1986-07-15T23:59:59.000Z

405

Development of reduced crude cracking catalysts  

SciTech Connect (OSTI)

In 1974 OPEC imposed an embargo on oil to the United States and caused a rapid rise in the price of a barrel of oil. At the time of the embargo, Ashland imported a considerable portion of its oil from the Middle East, thus raising the question of oil availability. As the problem increased in severity, Messrs. George Meyer, Oliver Zandona and Llyod Busch, began to explore alternative ways of squeezing more product from a given barrel of crude. After considering many alternatives, they arrived at the innovative thought that it might be possible to catalytically crack the 1050{degree}F plus fraction of the barrel directly to gasoline which would in effect, give them an additional volume of crude oil. Also, if vacuum fractionation were eliminated and if the entire 650{degree}F plus (reduced crude) portion of the barrel processed, this would further reduce operating costs. With these objectives and some new process innovations in mind, they began reduced crude cracking experimentation in a small 12,000 B/D FCC operating unit at Louisville. It was from these goals, concepts and a small operating unit, that the RCC process was born.

Hettinger, W.P. Jr. (Ashland Petroleum Company, KY (USA))

1987-08-01T23:59:59.000Z

406

OIL AND NATURAL GAS PRICES: TOGETHER AGAIN? 1 Prakash Loungani (International Monetary Fund)  

E-Print Network [OSTI]

Crude oil and natural gas are important energy sources. Their prices in the U.S. are volatile and nominal rigidity does not play an important role. In addition, the law of one price between German and the U.S. markets holds quite well in the sense that the relative price exhibits stationarity. However, the natural gas prices in the two markets have diverged recently. We show that this is due to structural changes in the U.S. natural gas market rather than long term based contract prices in Germany. Nonetheless we conjecture future recovery of the law of one price.

Akito Matsumoto (international Monetary Fund

407

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network [OSTI]

and/or changes in the safety culture in the oil and gasand/or changes in safety culture in the oil and gasand/or changes in safety culture in the oil and gas

Jordan, Preston D.

2008-01-01T23:59:59.000Z

408

E-Print Network 3.0 - atmospheric crude distillation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Problems Summary: and atmospheric distillations of crude-oil mixtures from charging tanks. The crude is then processed in order... of resources: crude marine vessels, storage...

409

EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI  

SciTech Connect (OSTI)

Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal should be reviewed. This investigation also suggests 23 specific components of best practice which are designed to provide a guide to safe handling of NORM in the hydrocarbon industry. The components of best practice include both worker safety and suggestions to maintain waste isolation from the environment.

Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

2004-03-01T23:59:59.000Z

410

Secretary Bodman Announces Sale of 11 Million Barrels of Crude...  

Energy Savers [EERE]

Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic...

411

Penrose Well Temperatures  

SciTech Connect (OSTI)

Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

Christopherson, Karen

2013-03-15T23:59:59.000Z

412

PERFORMANCE OF DIESEL ENGINE USING BLENDED CRUDE JATROPHA OIL  

E-Print Network [OSTI]

renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its

Kamarul Azhar Kamarudin; Nor Shahida; Akma Mohd Sazali; Ahmad Jais Alimin

2009-01-01T23:59:59.000Z

413

The Weak Tie Between Natural Gas and Oil Prices  

E-Print Network [OSTI]

Several recent studies establish that crude oil and natural gas prices are cointegrated, so that changes in the price of oil appear to translate into changes in the price of natural gas. Yet at times in the past, and very ...

Ramberg, David J.

414

[Page Intentionally Left Blank] Life Cycle Greenhouse Gas Emissions from  

E-Print Network [OSTI]

..........................................................................11 4.2 Conventional Jet Fuel from Crude Oil2 June #12;[Page Intentionally Left Blank] #12;Life Cycle Greenhouse Gas Emissions from Alternative .......................................5 3.1 Life cycle Greenhouse Gas Emissions

Reuter, Martin

415

Asphaltene Precipitation in Crude Oils: Theory and Experiments  

E-Print Network [OSTI]

of the production of crude oil in deep-water environments and the operations of enhanced oil recovery by miscible asphaltenes and resins. Asphaltenes are defined as the fraction separated from crude oil or petroleum productsAsphaltene Precipitation in Crude Oils: Theory and Experiments Eduardo Buenrostro

Wu, Jianzhong

416

MFR PAPER 1074 Effects of Prudhoe Bay Crude Oil on  

E-Print Network [OSTI]

MFR PAPER 1074 Effects of Prudhoe Bay Crude Oil on Molting Tanner Crabs, Chionoecetes bairdi JOHN F bairdi , from Alaska walers were exposed 10 Prudhoe Bay crude oil in sIalic bioassays ill Ih e laboralory. Crabs in bOlh slages were similarly susceplible 10 crude oil; Ihe eSlimaled 48-hour TLIIl (Illedian

417

Lactic acid fermentation of crude sorghum extract  

SciTech Connect (OSTI)

Crude extract from sweet sorghum supplemented with vetch juice was utilized as the carbohydrate source for fermentative production of lactic acid. Fermentation of media containing 7% (w/v) total sugar was completed in 60-80 hours by Lactobacillus plantarum, product yield averaging 85%. Maximum acid production rates were dependent on pH, initial substrate distribution, and concentration, the rates varying from 2 to 5 g/liter per hour. Under limited medium supplementation the lactic acid yield was lowered to 67%. The fermented ammoniated product contained over eight times as much equivalent crude protein (N x 6.25) as the original medium. Unstructured kinetic models were developed for cell growth, lactic acid formation, and substrate consumption in batch fermentation. With the provision of experimentally determined kinetic parameters, the proposed models accurately described the fermentation process. 15 references.

Samuel, W.A.; Lee, Y.Y.; Anthony, W.B.

1980-04-01T23:59:59.000Z

418

Reduced crude processing with Ashland's RCC process  

SciTech Connect (OSTI)

Ashland Oil has long recognized the need to improve the process for the direct conversion of residual feedstocks into transportation fuels and other lighter products. The reduced crude oil conversion (RCC) unit now under construction at the Catlettsburg, Kentucky, refinery was developed to meet these demands. The facility incorporates RCC process innovations and recent catalyst technology improvements, and provides increased operating flexibility. Heavier, higher-sulfur crude oils can be processed under several economically attractive scenarios. They allow for an excellent balance between the production of transportation fuels, and reduced amounts of heavy fractions. An outstanding feature of the RCC process is the highoctane quality of full-boiling-range gasoline that results when converting residual feedstocks.

Zandona, O.J.; Busch, L.E.; Hettinger, W.P.

1982-05-01T23:59:59.000Z

419

Effect of pore geometry in porous media on the miscibility of crude oil and carbon dioxide  

E-Print Network [OSTI]

or low pressure gas, capillary forces and interfacial tensions will result in the leaving behind of a fixed residual oil saturation. Therefore complete or total recovery of oil from an oil bearing for- mation is impossible, even though many pore...EFFECT OF PORE GEOMETRY IN POROUS MEDIA ON THE MISCIBILITY OF CRUDE OIL AND CARBON DIOXIDE A Thesis by HAMED SARKHOSH Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree...

Sarkhosh, Hamed

1977-01-01T23:59:59.000Z

420

Refiners boost crude capacity; Petrochemical production up  

SciTech Connect (OSTI)

Continuing demand strength in refined products and petrochemical markets caused refiners to boost crude-charging capacity slightly again last year, and petrochemical producers to increase production worldwide. Product demand strength is, in large part, due to stable product prices resulting from a stabilization of crude oil prices. Crude prices strengthened somewhat in 1987. That, coupled with fierce product competition, unfortunately drove refining margins negative in many regions of the U.S. during the last half of 1987. But with continued strong demand for gasoline, and an increased demand for higher octane gasoline, margins could turn positive by 1989 and remain so for a few years. U.S. refiners also had to have facilities in place to meet the final requirements of the U.S. Environmental Protection Agency's lead phase-down rules on Jan. 1, 1988. In petrochemicals, plastics demand dept basic petrochemical plants at good utilization levels worldwide. U.S. production of basics such as ethylene and propylene showed solid increases. Many of the derivatives of the basic petrochemical products also showed good production gains. Increased petrochemical production and high plant utilization rates didn't spur plant construction projects, however. Worldwide petrochemical plant projects declined slightly from 1986 figures.

Corbett, R.A.

1988-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS  

E-Print Network [OSTI]

Oil, Gas, • . . 81 and Geothermal Well Tests (abstract) W.has been testing geothermal wells for about three years, andof Oil, Gas, and Geothermal Well Tests W. E. Brigham

Authors, Various

2011-01-01T23:59:59.000Z

422

Volatility in natural gas and oil markets  

E-Print Network [OSTI]

Using daily futures price data, I examine the behavior of natural gas and crude oil price volatility since 1990. I test whether there has been a significant trend in volatility, whether there was a short-term increase in ...

Pindyck, Robert S.

2003-01-01T23:59:59.000Z

423

EIS-0016: Cumulative Production/Consumption Effects of the Crude Oil Price Incentive Rulemakings, Programmatic  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this Final Statement to FEA-FES-77-7 to assess the environmental and socioeconomic implications of a rulemaking on crude oil pricing incentives as pertains to the full range of oil production technologies (present as well as anticipated.)

424

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network [OSTI]

regions with CO2-enhanced oil recovery (EOR) and natural gasstorage, thermally enhanced oil recovery, well leakage, wellstorage and CO 2 -enhanced oil recovery (EOR), had not been

Jordan, Preston D.

2008-01-01T23:59:59.000Z

425

Displacement of crude oil by carbon dioxide  

E-Print Network [OSTI]

by Carbon Dioxide (December 1980) Olusegun Omole, B. S. , University of Ibadan, Nigeria Chairman of Advisory Committee: Dr. J. S. Osoba It has long been recognized that carbon dioxide could be used as an oil recovery agent. Both laboratory and field...- tion. Crude oil from the Foster Field in West Texas, of 7 cp and 34 API, 0 was used as the oil in place. Oil displacements were conducted at pres- sures between 750 psig and 1800 ps1g, and at a temperature of 110 F. 0 Carbon dioxide was injected...

Omole, Olusegun

1980-01-01T23:59:59.000Z

426

Improved paving asphalt from Baku crudes  

SciTech Connect (OSTI)

An improved paving asphalt has been obtained from commercial BN-60/90 asphalt by adding certain components that are waste materials in petroleum refining: a still residue from the distillation of naphthenic acids to improve adhesion properties, asphalt obtained in deasphalting vacuum resid to improve ductility and impart freeze resistance, and a dialkylnaphthalene as a pour point depressant. Three different blend formulations were prepared by melting and mixing and analyzed for their physicochemical properties. The possibility was also investigated of expanding the raw material base for paving asphalts by including certain waste materials obtained in refining Baku crudes.

Allakhverdiev, A.A.; Kuliev, R.B.; Samedova, F.I.

1988-03-01T23:59:59.000Z

427

Crude Oil and Gasoline Price Monitoring  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. MichaelDecadeNet Withdrawals1992What drives crude oil prices? April

428

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network [OSTI]

abandoned or idle/shut-in at this time, and the reservoirabandoned-well blowout rate was not calculated on a ?uid volume basis, because estimates of the in-reservoir ?

Jordan, Preston D.

2008-01-01T23:59:59.000Z

429

Hanford wells  

SciTech Connect (OSTI)

Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

Chamness, M.A.; Merz, J.K.

1993-08-01T23:59:59.000Z

430

Net Withdrawals of Natural Gas from Underground Storage (Summary...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

431

Natural Gas Withdrawals from Underground Storage (Annual Supply...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

432

TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS  

SciTech Connect (OSTI)

Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

Lawrence J. Pekot; Ron Himes

2004-05-31T23:59:59.000Z

433

,"Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved ReservesPricePrice (Dollars perNetGas,CrudeCrude Oil

434

Dimensions of Wellness Staying Well  

E-Print Network [OSTI]

to protect your physical health by eating a well-balanced diet, getting plenty of physical activity-evaluation and self-assessment. Wellness involves continually learning and making changes to enhance your state) A state in which your mind is engaged in lively interaction with the world around you. Intellectual

Fernandez, Eduardo

435

The recovery of crude oil spilled on a ground water aquifer  

E-Print Network [OSTI]

over 25, 200 gallons of crude oil. The recovery well method of oil spill cleanup was analyzed for effectiveness at the Chadbourne Ranch. Draw- down measurements from observation wells and daily oil pro- duction data were recorded during the in... Lawn Memorial Park Spill. BACKGROUND . RESPONSE MECHANISM EQUIPMENT TECHNOLOGY NEW EQUIPMENT DEVELOPMENT Theory of Skimmer Operation ~ CHADBOURNE RANCH OIL SPILL CLEANUP ~ Site Stratigraphy . Methodology Selected for Oil Recovery . Equipment...

Malter, Paul Lawrence

1983-01-01T23:59:59.000Z

436

Anomalous magnetotransport properties of a ballistic non-interacting three-dimensional electron gas confined to narrow potential wells with corrugated barriers  

SciTech Connect (OSTI)

The classical dynamics of ballistic non-interacting electrons confined to a narrow electrostatic potential well with corrugated barriers in uniform magnetic field was numerically studied. Trajectories in phase space were analyzed and longitudinal and transversal resistivities were calculated. Commensurability oscillations and negative magnetoresistance similar to those found in antidot lattice devices were observed.

Sotomayor, N. M.; Davila, L. Y. D.; Lima, B. C. [Universidade Federal do Tocantins, Campus de Araguaina, Araguaina TO (Brazil); Gusev, G. M. [Instituto de Física da Universidade de São Paulo, 135960-170, São Paulo, SP (Brazil)

2013-12-04T23:59:59.000Z

437

BIODEGRADATION OF HIGH CONCENTRATIONS OF CRUDE OIL IN MICROCOSMS.  

E-Print Network [OSTI]

??Oil biodegradation at high concentrations was studied in microcosms. The experimental approach involved mixing clean sand with artificially weathered Alaska North Slope crude oil at… (more)

XU, YINGYING

2002-01-01T23:59:59.000Z

438

,"California Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

439

,"Indiana Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

440

,"Alaska Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"Illinois Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

442

,"Kentucky Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

443

,"Arkansas Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

444

,"Miscellaneous Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

445

,"Louisiana Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

446

,"Michigan Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

447

,"Florida Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

448

,"Mississippi Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

449

,"Alabama Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

450

,"Kansas Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

451

,"Colorado Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

452

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

453

Table 21. Domestic Crude Oil First Purchase Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

454

Table 22. Domestic Crude Oil First Purchase Prices for Selected...  

U.S. Energy Information Administration (EIA) Indexed Site

company data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information AdministrationPetroleum Marketing Annual...

455

Table 22. Domestic Crude Oil First Purchase Prices for Selected...  

U.S. Energy Information Administration (EIA) Indexed Site

company data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information Administration Petroleum Marketing...

456

CRUDE OIL PRICE SHOCKS AND GROSS DOMESTIC PRODUCT.  

E-Print Network [OSTI]

??This study uses ordinary least squares estimation to test multivariate models in order to find out whether or not crude oil price shocks are contractionary… (more)

Hernandez, Jordan

2012-01-01T23:59:59.000Z

457

Recovery of heavy crude oil or tar sand oil or bitumen from underground formations  

SciTech Connect (OSTI)

This patent describes a method of producing heavy crude oil or tar sand oil or bitumen from an underground formation. The method consists of utilizing or establishing an aqueous fluid communication path within and through the formation between an injection well or conduit and a production well or conduit by introducing into the formation from the injection well or conduit hot water and/or low quality steam at a temperature in the range about 60{sup 0}-130{sup 0}C and at a substantially neutral or alkaline pH to establish or enlarge the aqueous fluid communication path within the formation from the injection well or conduit to the production well or conduit by movement of the introduced hot water or low quality steam through the formation, increasing the temperature of the injected hot water of low quality steam to a temperature in the range about 110{sup 0}-180{sup 0}C while increasing the pH of the injected hot water or low quality steam to a pH of about 10-13 so as to bring about the movement or migration or stripping of the heavy crude oil or tar sand oil or bitumen from the formation substantially into the hot aqueous fluid communication path with the formation and recovering the resulting produced heavy crude oil or tar sand oil or bitumen from the formation as an emulsion containing less than about 30% oil or bitumen from the production well or conduit.

McKay, A.S.

1989-07-11T23:59:59.000Z

458

Monitoring well  

DOE Patents [OSTI]

A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

459

Monitoring well  

DOE Patents [OSTI]

A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

Hubbell, J.M.; Sisson, J.B.

1999-06-29T23:59:59.000Z

460

Monitoring well  

DOE Patents [OSTI]

The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

REVIEW PAPER Biodeterioration of crude oil and oil derived  

E-Print Network [OSTI]

, the majority of applied microbiologi- cal methods of enhanced oil recovery also dete- riorates oil and appearsREVIEW PAPER Biodeterioration of crude oil and oil derived products: a review Natalia A. Yemashova January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Biodeterioration of crude oil and oil

Appanna, Vasu

462

Hydrogen and Syngas Production from Biodiesel Derived Crude Glycerol  

E-Print Network [OSTI]

In the past decade, the production of biodiesel has increased dramatically. One of the major by-products of biodiesel production is crude glycerol, which is expensive to refine. As a result, the price of crude glycerol has plummeted to the point...

Silvey, Luke

2012-05-31T23:59:59.000Z

463

FEDERAL RESERVE BANK OF DALLASWhat Drives Natural Gas Prices?  

E-Print Network [OSTI]

Abstract: For many years, fuel switching between natural gas and residual fuel oil kept natural gas prices closely aligned with those for crude oil. More recently, however, the number of U.S. facilities able to switch between natural gas and residual fuel oil has declined, and over the past five years, U.S. natural gas prices have been on an upward trend with crude oil prices but with considerable independent movement. Natural gas market analysts generally emphasize weather and inventories as drivers of natural gas prices. Using an error-correction model, we show that when these and other additional factors are taken into account, movements in crude oil prices have a prominent role in shaping natural gas prices. Our findings imply a continuum of prices at which natural gas and petroleum products are substitutes.

Stephen P. A. Brown; Mine K. Yücel; Stephen P. A. Brown; Mine K. Yücel

2007-01-01T23:59:59.000Z

464

Oxford Institute for Energy Studies Natural Gas Research Programme  

E-Print Network [OSTI]

demand and price dynamics than by crude oil or oil product prices. The author, Dr Michelle Michot Foss, this means that as long as crude oil prices remain significantly in excess of $35/bbl, European gas markets ­ where prices are indexed to those of oil products ­ should be able to attract LNG supplies away from

Texas at Austin, University of

465

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

466

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

467

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

468

New Yumurtalik to Kirikkale crude-oil pipeline would boost Turkish industrial area  

SciTech Connect (OSTI)

Plans for a crude oil pipeline linking the 101 cm (40 in.) Iraq to Turkey pipeline terminal located in Yumurtalik to the site of a future refinery to be situated near Ankara are described. Designed for fully unattended operation, the ''brain'' of the system will be a telecom/telecontrol telemetry system. Support for data information exchanged between the master and local outstations will be a microwave radio carrier system, also permitting the transfer of telephone and telegraph traffic as well as facsimiles.

Simonnet, G.

1982-12-13T23:59:59.000Z

469

,"Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved ReservesPricePrice (Dollars perNetGas, WetShaleCrude

470

,"California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural Gas Expected Future ProductionCrude Oil +

471

,"California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural Gas ExpectedWellheadCrude Oil + Lease

472

,"California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural Gas ExpectedWellheadCrudeCoalbed

473

,"Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)" ,"ClickNonassociated Natural Gas,Crude Oil

474

,"New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice Sold toResidential ConsumptionNetGas, WetCrude Oil

475

Table 6: Crude oil and lease condensate proved reserves, reserves changes, and production, 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shale gas:: Crude

476

Table 7: Crude oil proved reserves, reserves changes, and production, 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shale gas:: Crude:

477

,"Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPriceDry Natural GasCrude Oil + Lease

478

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

479

Oil and gas journal databook, 1987 edition  

SciTech Connect (OSTI)

This book is an annual compendium of surveys and special reports reviewed by experts. The 1987 edition opens with a forward by Gene Kinney, co-publisher of the Oil and Gas Journal and includes the OGJ 400 Report, Crude Oil Assays, Worldwide Petrochemical Survey, the Midyear Forecast and Reviews, the Worldwide Gas Processing Report, the Ethylene Report, Sulfur Survey, the International Refining, Catalyst Compilation, Annual Refining Survey, Worldwide Construction Report, Pipeline Economics Report, Worldwide Production and Refining Report, the Morgan Pipeline Cost Index for Oil and Gas, the Nelson Cost Index, the Hughes Rig Count, the Smith Rig Count, the OGJ Production Report, the API Refinery Report, API Crude and Product Stocks, APU Imports of Crude and Products, and the complete Oil and Gas Journal 1986 Index of articles.

Not Available

1987-01-01T23:59:59.000Z

480

U.S. Crude Oil Developmental Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales (Million Barrels) U.S.

Note: This page contains sample records for the topic "gas wells crude" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

U.S. Crude Oil Exploratory Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales (Million Barrels) U.S.Decade

482

U.S. Crude Oil Exploratory and Developmental Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales (Million Barrels)

483

U.S. Crude Oil Exploratory and Developmental Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore

484

Fluorescent spectra of chromatographic fractions of crude oils  

E-Print Network [OSTI]

(ent (g) recosurends th t the investigat1on of crude sands by ultra violet light will give valuable results 5n determining depth of drilling and the correlation of oil sands. Crude oil $n sands& even xx?en in v. ry small amounts? is easily... diff, xsion. The color of the crude oil mey br1ng abo t a suppression of the amount o. fl orescent light o:ing to ab orption cf tho color p'. rticle, diffusion and reflect1on, lt is to bc noted th. t in previous -. ori no identification...

Dixon, William Samuel

1952-01-01T23:59:59.000Z

485

Hydrocarbon composition of crude oils near the Caspian depression  

SciTech Connect (OSTI)

The structural-group composition of hydrocarbons of Mesozoic crude oils near the Caspian depression was investigated by mass-spectrometry, followed by the analysis of the mass-spectra using a computer. The distribution of naphthenic hydrocarbons, according to the number of rings and of aromatic hydrocarbons, according to the degree of hydrogen unsaturation is similar for all the crude oils examined. The hydrocarbon composition of Mesozoic crude oils is characterized by a reduction in the content of aliphatic hydrocarbons and alkyl benzenes.

Botneva, T.A.; Khramova, E.V.; Nekhamkina, L.G.; Polyakova, A.A.

1983-01-01T23:59:59.000Z

486

Hydrocarbon composition of crude oil from Lam Bank  

SciTech Connect (OSTI)

The authors discuss the crude oil from a new offshore field called the Lam Bank in the Caspian Sea. A segregated commercial crude was distilled and the distillation data is shown. In order to determine the content of n-paraffins, the naphthenic-paraffinic part of the narrow cuts was subjected to adsorptive separation on CaA zeolite. Owing to the high contents of naphthenic and isoparaffinic hydrocarbons and the low content of aromatic hydrocarbons in the distillate part, this crude can be used to produce high-quality fuels and oils by the use of the dewaxing processes.

Samedova, F.I.; Agaeva, R.M.; Alieva, F.Z.; Valiev, M.A.

1987-07-01T23:59:59.000Z

487

E-Print Network 3.0 - arctic crude oil Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization 98 Time-varying Predictability in Crude Oil Markets: The Case of GCC Countries Summary: Time-varying Predictability in Crude Oil...

488

E-Print Network 3.0 - asphaltenic crude oils Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

18 A Novel Process for Demulsification of Water-in-Crude Oil Emulsions by Dense Carbon Dioxide Summary: of crude oil emulsions. Other means of destabilizing...

489

Table 23. Domestic Crude Oil First Purchase Prices by API Gravity  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-182, "Domestic Crude Oil First Purchase Report." 23. Domestic Crude Oil First Purchase Prices by API Gravity Energy Information Administration Petroleum...

490

DOE to Issue Second Solicitation for Purchase of Crude Oil for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Issue Second Solicitation for Purchase of Crude Oil for the Strategic Petroleum Reserve DOE to Issue Second Solicitation for Purchase of Crude Oil for the Strategic Petroleum...

491

Crude Oil Movements of Crude of by Rail between PAD Districts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude Oil Period-Unit: Monthly-Thousand Barrels

492

U.S. Crude Oil Production Forecast-Analysis of Crude Types  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast- Analysis of Crude Types

493

A study of natural gas extraction in Marcellus shale  

E-Print Network [OSTI]

With the dramatic increases in crude oil prices there has been a need to find reliable energy substitutions. One substitution that has been used in the United States is natural gas. However, with the increased use of natural ...

Boswell, Zachary (Zachary Karol)

2011-01-01T23:59:59.000Z

494

Outlook for U.S. shale oil and gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argus Americas Crude Summit January 22, 2014 | Houston, TX By Adam Sieminski, EIA Administrator Six key plays account for nearly all recent growth in oil and natural gas production...

495

Gas condensate damage in hydraulically fractured wells  

E-Print Network [OSTI]

), md 0.15 Porosity (g102), fraction 0.1 Water Saturation (S w ), fraction 0.16 Initial Pressure (p i ), psi 3,900 Injection Pressure (p inj ), psi 3,910 Dewpoint Pressure (p d ), psi 3,500 Temperature (T), o F 200 Total Compressibility (c g... simulation ..........................13 3.4 Permeability reduction normal to fracture face .........................................14 3.5 Quarter model for 80 acre drainage area....................................................15 3.6 Fracture face...

Adeyeye, Adedeji Ayoola

2004-09-30T23:59:59.000Z

496

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores" _ ,' ,:.' :r-2 . .for

497

Natural Gas Gross Withdrawals from Coalbed Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough 1996)2,022,228 2,010,171 1,916,762

498

Natural Gas Gross Withdrawals from Oil Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough 1996)2,022,2285,609,425 5,674,120

499

Number of Producing Gas Wells (Summary)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 12 7311,925Count) Data Series: Wellhead

500

Fully Coupled Well Models for Fluid Injection and Production  

SciTech Connect (OSTI)

Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.

White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

2013-08-05T23:59:59.000Z