National Library of Energy BETA

Sample records for gas wellhead city

  1. Natural Gas Wellhead Price

    Gasoline and Diesel Fuel Update (EIA)

    Quantity of Production Imputed Wellhead Value Wellhead Price Marketed Production Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 4.48 3.95 2.66 NA NA NA 1922-2015 Alabama 4.46 1967-2010 Alaska 3.17 1967-2010 Arizona 4.11 1967-2010 Arkansas 3.84 1967-2010 California 4.87 1967-2010 Colorado 3.96 1967-2010 Florida NA 1967-2010

  2. Natural Gas Wellhead Price

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price Marketed Production Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. NA NA NA NA NA NA 1973-2015

  3. Natural Gas Wellhead Price

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  4. Nevada Natural Gas Wellhead (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Nevada Natural Gas Wellhead Value and Marketed Production

  5. Nevada Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Wellhead Price Nevada Natural Gas Prices Natural Gas Wellhead Price

  6. Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.29 0.13 1970's 0.24 0.23 0.22 0.24 0.30 0.33 0.34 0.40 1980's 3.75 3.50 3.75 3.75 3.75 3.50 1990's 1.57 1.32 1.56 1.57 1.49 1.70 1.56 1.70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  7. Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.16 1970's 0.30 0.32 0.34 0.54 0.97 0.98 1.09 1.39 1.57 1980's 1.73 2.71 2.46 2.33 2.57 2.43 1.20 1.68 1.53 2.05 1990's 2.25 2.46 2.51 2.17 1.28 1.24 2000's NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.13 0.14 1970's 0.16 0.18 0.28 0.35 0.40 0.70 0.99 1.20 1.29 1.86 1980's 1.90 2.47 2.62 2.84 2.78 2.77 2.57 2.24 2.19 2.15 1990's 2.11 2.17 2.15 2.30 2.40 2000's NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.00 1980's 2.40 2.60 3.33 3.33 2.78 2.40 2.00 1.45 1.60 1.40 1990's 1.39 1.42 1.29 1.70 2.06 0.93 2.26 2.19 2.38 2.52 2000's 2.69 3.66 3.97 4.48 3.89 4.25 NA 5.27 5.33 4.00 2010's 4.92 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.28 0.28 0.28 1970's 0.28 0.27 0.30 0.42 0.44 0.67 0.68 0.80 0.86 1.33 1980's 2.13 2.33 2.80 3.00 3.25 3.16 2.50 2.25 2.15 2.40 1990's 2.35 2.20 1.95 2.71 2.76 2.84 2000's NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.30 0.30 0.30 1970's 0.31 0.31 0.32 0.33 0.51 0.51 1.14 1.26 1.31 1.68 1980's 2.85 2.15 3.69 3.30 3.00 3.02 2.45 2.08 2.08 2.19 1990's 2.30 1.88 1.85 2.29 2.15 1.72 2000's NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.18 1970's 0.18 0.21 0.27 0.23 0.29 0.50 0.71 0.73 1.15 1.60 1980's 2.32 3.21 3.91 3.78 3.47 3.17 2.13 1.94 1.86 1.97 1990's 1.76 1.66 1.64 1.73 1.49 1.24 1.66 1.73 1.42 1.63 2000's 3.30 3.93 3.06 5.13 5.83 8.54 6.84 6.70 8.80 3.73 2010's 4.17 - = No Data Reported; -- = Not

  13. Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.08 0.09 0.10 1970's 0.10 0.12 0.12 0.24 0.25 0.43 0.45 0.72 0.85 1.21 1980's 1.45 1.91 2.15 2.41 2.46 2.39 2.05 1.80 1.70 1.55 1990's 1.79 1.66 1.62 1.55 1.46 1.36 1.41 1.59 1.53 1.68 2000's 2.84 3.12 2.39 3.73 4.51 6.57 5.53 5.72 7.50 3.16 2010's 3.64 - = No Data Reported; -- = Not Applicable;

  14. Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.18 0.17 1970's 0.17 0.18 0.18 0.18 0.34 0.54 0.51 0.65 0.68 0.85 1980's 0.83 1.45 1.99 2.93 2.24 3.01 2.82 2.42 2.66 2.23 1990's 2.26 2.06 1.78 1.81 1.60 1.19 1.43 1.53 1.30 1.36 2000's 2.26 2.16 1.52 3.17 3.22 4.29 NA 4.86 6.22 2.97 2010's 3.98 - = No Data Reported; -- = Not Applicable;

  15. Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.14 1970's 0.15 0.16 0.16 0.18 0.20 0.26 0.48 0.81 0.84 1.41 1980's 1.47 1.97 3.17 3.38 3.43 2.90 2.05 1.76 1.59 1.52 1990's 1.55 1.41 1.37 1.61 1.39 0.95 1.37 2.23 1.90 2.18 2000's 3.67 3.84 2.41 4.54 5.21 7.43 6.12 4.57 6.94 3.21 2010's 3.96 - = No Data Reported; -- = Not Applicable;

  16. Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.23 0.24 0.23 1970's 0.24 0.25 0.15 0.14 0.14 0.39 0.52 0.69 0.71 1.05 1980's 1.35 2.08 1.55 2.09 3.38 2.51 1.23 1.71 1.57 1.71 1990's 2.01 1.72 2.01 2.09 1.97 1.90 2.30 2.18 2.09 2.19 2000's 3.51 3.28 3.11 5.41 6.30 9.11 6.01 5.78 7.58 4.05 2010's 4.13 - = No Data Reported; -- = Not Applicable;

  17. Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.14 0.14 1970's 0.14 0.14 0.14 0.16 0.17 0.17 0.42 0.48 0.57 0.76 1980's 0.77 0.92 1.51 1.57 1.49 1.27 1.21 1.15 1.36 1.44 1990's 1.56 1.37 1.54 1.80 1.60 1.36 1.92 2.05 1.70 1.80 2000's 3.21 3.66 2.61 4.33 4.94 6.51 5.61 5.69 6.85 3.16 2010's 4.23 - = No Data Reported; -- = Not Applicable;

  18. Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.25 1970's 0.25 0.25 0.25 0.35 0.50 0.54 0.55 0.55 0.58 0.95 1980's 0.89 1.01 1.52 1.51 1.70 2.39 1.88 1.82 2.56 2.13 1990's 2.24 2.03 1.92 2.28 2.24 1.64 2.55 2.66 2.39 2.07 2000's 3.16 4.78 3.01 4.54 5.26 6.84 8.83 7.35 8.42 NA 2010's 4.47 - = No Data Reported; -- = Not Applicable;

  19. Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.19 0.20 0.20 0.22 0.31 0.42 0.46 0.70 0.84 1.11 1980's 1.61 2.07 2.60 2.67 2.73 2.66 2.21 1.78 1.81 1.82 1990's 1.83 1.73 1.73 2.14 2.08 1.58 2.33 2.36 2.02 2.22 2000's 3.68 3.99 3.20 5.64 5.96 8.72 6.93 7.02 8.73 3.82 2010's 4.23 - = No Data Reported; -- = Not

  20. Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.26 0.25 1970's 0.25 0.24 0.21 0.23 0.24 0.27 0.32 0.39 0.61 1.04 1980's 0.46 0.48 0.78 0.55 0.55 0.59 0.65 0.55 0.93 0.85 1990's 1.14 1.55 1.91 2.44 1.37 1.42 2.23 2.60 2.73 2000's 3.75 4.15 5.98 4.50 6.25 7.43 NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not

  1. Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.25 0.26 1970's 0.27 0.26 0.31 0.39 0.50 0.63 0.89 1.01 1.20 1.74 1980's 2.35 2.86 3.19 3.58 3.76 3.60 3.60 3.24 3.18 3.16 1990's 3.00 2.79 2.71 2.38 1.96 1.67 2.21 2.19 1.77 1.77 2000's 2.44 3.47 2.16 4.01 3.85 5.30 NA NA 5.63 3.92 2010's 3.79 - = No Data Reported; -- = Not Applicable; NA

  2. Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.13 1970's 0.14 0.15 0.35 0.38 0.74 0.87 0.99 1.47 1.50 2.04 1980's 3.19 4.77 3.44 4.28 3.73 3.71 2.89 2.97 2.65 2.72 1990's 2.75 2.33 2.29 2.46 2.17 1.82 2.62 2.67 2.21 2.32 2000's 3.99 4.23 3.48 5.93 6.66 9.28 7.57 7.44 9.65 4.32 2010's 4.46 - = No Data Reported; -- = Not Applicable;

  3. Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.25 0.25 1970's 0.25 0.24 0.15 0.15 0.17 0.30 0.39 0.40 0.52 0.52 1980's 0.73 0.62 0.63 0.73 0.73 0.74 0.50 0.94 1.27 1.36 1990's 1.38 1.48 1.41 1.42 1.27 1.64 1.61 1.82 1.32 1.37 2000's 1.76 1.99 2.13 2.41 3.42 4.75 5.79 5.63 7.39 2.93 2010's 3.17 - = No Data Reported; -- = Not Applicable;

  4. Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.18 1970's 0.17 0.18 0.18 0.18 0.20 0.28 0.28 0.33 0.37 0.41 1980's 2.59 3.08 2.90 1.80 1990's 1.20 1.50 1.85 1.30 1.40 1.20 1.65 2.40 1.88 2.08 2000's 3.50 4.12 2.60 4.33 5.12 6.86 5.70 5.98 7.09 3.19 2010's 4.11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.16 1970's 0.16 0.17 0.17 0.18 0.26 0.35 0.53 0.58 0.75 0.96 1980's 0.70 1.81 2.13 2.29 2.54 2.55 2.51 2.29 1.94 2.41 1990's 2.06 1.92 2.15 2.81 2.65 3.02 3.82 4.03 3.92 4.10 2000's 5.23 4.99 4.43 5.17 5.68 7.26 6.43 6.61 8.72 3.43 2010's 3.84 - = No Data Reported; -- = Not Applicable;

  6. California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.30 0.31 0.31 1970's 0.32 0.33 0.37 0.37 0.44 0.70 0.94 1.17 1.36 1.70 1980's 2.17 2.57 3.09 3.57 3.80 3.36 2.89 2.37 2.39 2.32 1990's 2.36 2.46 2.34 2.38 1.50 1.73 1.82 2.41 1.97 2.36 2000's 4.81 6.93 2.92 5.04 5.65 7.45 6.47 6.62 8.38 3.96 2010's 4.87 - = No Data Reported; -- = Not

  7. Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.32 0.30 0.35 0.44 0.51 0.74 1.64 1.70 1980's 1.76 2.55 3.00 2.50 3.50 2.48 1.78 1.31 1.50 1.65 1990's 1.65 1.72 1.79 2.65 2.16 1.54 2.54 2.55 2.15 2.28 2000's 4.09 3.60 3.41 5.22 6.90 9.55 6.78 6.63 8.85 3.83 2010's 4.35 - = No Data Reported; -- = Not

  8. Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.14 0.14 1970's 0.14 0.16 0.16 0.20 0.31 0.52 0.72 0.90 0.99 1.23 1980's 1.56 1.87 2.17 2.36 2.45 2.33 1.65 1.47 1.51 1.53 1990's 1.57 1.59 1.77 2.09 1.89 1.61 2.29 2.48 2.06 2.31 2000's 3.93 4.12 3.16 5.18 5.83 7.55 6.60 6.98 8.51 3.81 2010's 4.70 - = No Data Reported; -- = Not Applicable; NA

  9. Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.26 1970's 0.27 0.34 0.39 0.43 0.48 0.71 1.02 1.40 1.57 1.81 1980's 1.98 2.17 2.71 3.24 3.19 3.08 2.84 2.58 2.55 2.55 1990's 2.54 2.38 2.35 2.46 2.43 2.33 2.63 2.70 2.95 2.43 2000's 4.06 4.54 4.52 5.90 6.65 9.03 7.75 7.59 7.88 4.36 2010's 4.63 - = No Data Reported; -- = Not Applicable; NA

  10. Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.14 0.15 1970's 0.16 0.16 0.16 0.19 0.28 0.32 0.50 0.79 0.90 1.12 1980's 1.51 1.88 2.74 2.83 2.72 2.47 1.71 1.47 1.55 1.59 1990's 1.57 1.47 1.70 1.88 1.70 1.44 2.21 2.32 1.77 2.05 2000's 3.63 4.03 2.94 4.97 5.52 7.21 6.32 6.24 7.56 3.53 2010's 4.71 - = No Data Reported; -- = Not Applicable;

  11. Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.15 0.15 0.16 0.18 0.25 0.34 0.41 0.64 0.79 1.13 1980's 1.92 2.77 3.22 3.18 3.32 3.01 2.52 1.76 1.53 1.24 1990's 1.16 1.06 1.13 1.99 2.05 1.78 2.57 2.42 1.78 1.97 2000's 3.34 3.49 2.70 4.13 4.96 6.86 5.85 4.65 6.86 3.40 2010's 4.30 - = No Data Reported; -- = Not Applicable;

  12. Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.16 0.15 1970's 0.15 0.17 0.17 0.19 0.41 0.48 0.50 0.61 0.64 0.72 1980's 1.12 1.10 3.06 3.40 4.08 3.52 2.90 1.88 2.39 1.58 1990's 1.70 1.54 1.63 1.77 1.54 1.15 1.39 1.86 1.73 1.93 2000's 3.28 3.52 1.99 4.11 5.24 7.16 5.49 NA 6.15 3.38 2010's 4.23 - = No Data Reported; -- = Not Applicable; NA =

  13. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Snow, N.J. Jr.

    1983-12-06

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

  14. Imputed Wellhead Value of Natural Gas Marketed Production

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Dollars) Data Series: Quantity of Production Imputed Wellhead Value Wellhead Price Marketed Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 2013 View History U.S. 1989-2006 Alabama 2,489,704 1,020,599 994,688 0 0 0 1989-2013 Alaska 2,944,546 1,163,554 1,185,249 0 0 0 1989-2013 Arizona 3,710 2,269 753 0 0 0 1989-2013 Arkansas 3,891,921

  15. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Sinclair, B.W.

    1984-07-31

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a wellhead; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; separating LPG from gas vapors of the refrigerated natural gas; storing the separated LPG in a storage tank with a vapor space therein; and recirculating a portion of the LPG vapors in the storage tank with the natural gas exiting the wellhead to enhance recovery of LPG. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for refrigerating the compressed gases therefrom; at least one product separator downstream of the refrigerator unit for receiving refrigerated and compressed gases discharged from the refrigerator unit and separating LPG therein from gases remaining in vapor form; and a storage tank for receiving and storing the separated LPG therein, the storage tank having a vapor space therein connected upstream of the gas compressor through a pressure regulator allowing recirculation of some LPG vapors with the natural gases through said system.

  16. ,"Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Nevada Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"New Mexico Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"New York Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. ,"Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  8. ,"Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. ,"Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  11. ,"West Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  12. ,"Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  13. ,"Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  14. ,"Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  15. ,"Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  16. ,"Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. ,"Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  8. ,"Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",1997 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.11 1980's 2.75 3.08 3.37 3.67 2.51 2.46 2.71 1.95 1.11 1990's 1.56 1.12 1.79 2.13 1.73 1.59 2.09 2.47 2.13 2000's 3.56 3.42 2.95 4.98 5.49 7.44 6.40 7.22 7.94 NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  10. West Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) West Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.26 0.27 1970's 0.25 0.26 0.30 0.31 0.33 0.37 0.57 0.61 0.66 1.05 1980's 3.00 3.00 3.20 3.10 3.45 3.85 3.90 3.85 3.05 3.11 1990's 3.19 2.97 3.01 3.50 2.62 2.22 2000's NA -- NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. ,"U.S. Natural Gas Wellhead Value and Marketed Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Value and Marketed Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Wellhead Value and Marketed Production",4,"Annual",2015,"6/30/1900" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  12. New Mexico Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.14 1970's 0.14 0.15 0.19 0.24 0.31 0.40 0.56 0.81 0.99 1.37 1980's 1.76 2.13 2.47 2.68 2.71 2.62 1.87 1.66 1.70 1.56 1990's 1.69 1.37 1.60 1.79 1.58 1.26 1.67 1.76 1.76 2.11 2000's 3.43 3.89 2.68 4.56 4.97 6.91 6.18 6.88 8.40 4.17 2010's 5.32 - = No Data Reported; -- = Not

  13. New York Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) New York Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.31 0.30 0.30 1970's 0.30 0.30 0.33 0.35 0.55 0.74 1.13 1.16 1.19 1.27 1980's 1.95 2.67 3.75 3.85 4.00 3.37 3.39 2.00 2.30 2.20 1990's 2.20 2.15 2.25 2.40 2.35 2.30 2.56 2.56 2.16 2000's 3.75 5.00 3.03 5.78 6.98 7.78 7.13 8.85 8.94 4.21 2010's 4.65 - = No Data Reported; -- = Not Applicable; NA =

  14. North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.16 1970's 0.16 0.17 0.17 0.20 0.20 0.23 0.34 0.35 0.46 1.28 1980's 1.19 1.94 2.30 2.27 2.26 1.90 1.35 1.30 2.00 1.78 1990's 1.79 1.67 1.97 1.84 2.16 2.14 2.32 2000's 3.94 3.53 2.73 3.53 5.73 8.40 6.52 6.67 8.55 3.74 2010's 3.92 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Mudline subsea wellhead system

    SciTech Connect (OSTI)

    Milberger, L.J.; Thames, E.E.

    1993-08-31

    In a subsea wellhead system, an improved means is described for allowing the well to be drilled with a mudline suspension system and completed with a subsea pressure control system, comprising in combination: an outer wellhead housing for location on a subsea floor, having a lower end adapted to be secured to a conductor pipe extending into the well; conductor connector means for releasably securing a string of conductor riser to the outer wellhead housing to extend to the surface; a cement return port extending through the outer wellhead housing; an inner wellhead housing having a lower end adapted to be secured to a string of outer casing, the inner wellhead housing having a bore containing an internal landing shoulder; outer casing connector means for connecting the inner wellhead housing to outer casing riser and for lowering the outer casing riser and inner wellhead housing through the conductor riser with the inner wellhead housing landing in the outer wellhead housing; seal means for sealing the inner wellhead housing to the outer wellhead housing above the cement return port; a first casing hanger having an internal mudline latch profile; intermediate casing connector means; a second casing hanger having an external latch that latches into the internal mudline latch profile in the first casing hanger; inner casing connector means; and the conductor riser, outer casing riser, intermediate casing riser, and inner casing riser allowing the well to be drilled with a mudline suspension system and pressure control equipment at the surface, the inner casing connector means, intermediate casing connector means, outer casing connector means, and conductor connector means being subsequently releasable to remove the inner casing riser, intermediate casing riser, outer casing riser and conductor riser for subsea pressure control completion.

  16. Simplified subsea production wellhead

    SciTech Connect (OSTI)

    Lewis, H.R.

    1980-10-28

    A simplified subsea production wellhead which permits (1) pumpdown tool operations for routine well maintenance and (2) vertical entry to the wellbore for major workover operations. The wellhead can be lowered by the production pipeline to a wellhead site on the sea floor. The production wellhead includes a diverter spool for releasably attaching to a subsea well. Pumpdown tools can be used with the diverter spool. If vertical entry of the subsea well is required, the diverter spool can be released, raised and moved horizontally to one side of the subsea well, giving vertical entry. After workover operations, the diverter spool is again moved over the subsea well and reattached.

  17. Hybrid Rotor Compression for Multiphase and Liquids-Rich Wellhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    but also allows for compression of wet gas, or gas that contains liquid content. At many natural gas wellheads, liquids-typically heavier hydrocarbons and water-are present in the...

  18. Natural Gas Wellhead Price

    Gasoline and Diesel Fuel Update (EIA)

    NA NA NA NA NA NA 1973

  19. Natural Gas Wellhead Price

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 4.48 3.95 2.66 NA NA NA 1922-2015 Alabama 4.46 1967-2010 Alaska 3.17 1967-2010 Arizona 4.11 1967-2010 Arkansas 3.84 1967-2010 California 4.87 1967-2010 Colorado 3.96 1967-2010 Florida NA 1967-2010 Illinois NA 1967-2010 Indiana 4.13 1967-2010 Kansas 4.23 1967-2010 Kentucky 4.47 1967-2010

  20. Subsea wellhead seal assembly

    SciTech Connect (OSTI)

    Gullion, S.D.

    1988-07-26

    An annular subsea wellhead seal assembly is described for sealing against the walls in a subsea wellhead annulus above a landing seat at the lower end of the annulus comprising: an annular body having an outwardly and downwardly flaring outer skirt and an inwardly and downwardly flaring inner skirt extending from it slower surface, a landing ring having lower landing surface for landing on a landing seat at the lower end of the subsea wellhead annulus in which the assembly is to seal, and an upper flat reaction surface which is positioned immediately under and engagable with the lower ends of the skirts; and means connecting the body and the landing ring for relative movement toward each other; downward movement of the body with respect to the landing ring spreading the skirts outward and inward, respectively, into a substantially horizontal digging engagement set position with the walls of the annulus to be sealed.

  1. Wellhead with non-ferromagnetic materials

    DOE Patents [OSTI]

    Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2009-05-19

    Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.

  2. Florida City Gas- Residential Energy Smart Rebate Program

    Broader source: Energy.gov [DOE]

    Florida City Gas (FCG) encourages residential customers to become more energy efficient by offering various rebates for the purchase and installation of efficient natural gas appliances. Rebate...

  3. City in Colorado Fueling Vehicles with Gas Produced from Wastewater

    Office of Environmental Management (EM)

    Treatment Facility | Department of Energy City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility April 29, 2015 - 6:05pm Addthis Grand Junction's CNG station fuels the city's fleets and county buses and is available to fuel public vehicles as well. Pictured above, a Grand Valley Transit bus is preparing to refuel. Grand Junction's CNG station fuels the city's fleets and

  4. Clean Cities Moving Fleets Forward with Liquefied Natural Gas | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Cities Moving Fleets Forward with Liquefied Natural Gas Clean Cities Moving Fleets Forward with Liquefied Natural Gas May 30, 2013 - 2:52pm Addthis Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help from the Energy Department's Clean Cities initiative. | Photo courtesy of New Haven Clean Cities Coalition. Waste hauler Enviro Express converted its fleet of

  5. Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Cities Make the Clean Switch to Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas on Google Bookmark Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas on Delicious Rank Alternative Fuels Data Center: Cities Make the

  6. Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Save Money Natural Gas School Buses Help Kansas City Save Money to someone by E-mail Share Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Facebook Tweet about Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Twitter Bookmark Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Google Bookmark Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on

  7. New Jersey: Atlantic City Jitneys Running on Natural Gas | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy New Jersey: Atlantic City Jitneys Running on Natural Gas New Jersey: Atlantic City Jitneys Running on Natural Gas November 6, 2013 - 12:45pm Addthis In 2009, the New Jersey Clean Cities Coalition was one of 25 recipients to receive funding from the EERE Clean Cities' Alternative Fuel and Advanced Technology Vehicles Pilot Program. The approximately $15 million in funding allowed he city to purchase nearly 300 compressed natural gas vehicles, including 190 Atlantic City

  8. New Jersey: Atlantic City Jitneys Running on Natural Gas | Department of

    Office of Environmental Management (EM)

    Energy New Jersey: Atlantic City Jitneys Running on Natural Gas New Jersey: Atlantic City Jitneys Running on Natural Gas November 6, 2013 - 12:00am Addthis In 2009, the New Jersey Clean Cities Coalition was one of 25 recipients to receive funding from the EERE Clean Cities' Alternative Fuel and Advanced Technology Vehicles Pilot Program. The approximately $15 million in funding allowed he city to purchase nearly 300 compressed natural gas vehicles, including 190 Atlantic City

  9. Concrete Company Moving to Natural Gas with Clean Cities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Concrete Company Moving to Natural Gas with Clean Cities Concrete Company Moving to Natural Gas with Clean Cities March 10, 2015 - 10:25am Addthis Concrete mixing in the Great Lakes region is increasingly fueled by compressed natural gas (CNG), thanks to the help of the Vehicle Technologies Office's Clean Cities program. In 2010, the Chicago Area Clean Cities Coalition's American Recovery and Reinvestment Act project covered the incremental cost of 14 CNG cement mixing vehicles for

  10. Non intrusive sensors -- An answer to annulus pressure monitoring in subsea wellhead equipment

    SciTech Connect (OSTI)

    Adamek, F.C.; Jennings, C.; Aarskog, A.

    1995-12-01

    On offshore platform and jackup surface wellhead completions, there is the potential for leakage from the high pressure production tubing and casing strings into the low pressure outer casing string, or from poor cementing jobs. Historically, these completions maintain the capability of regularly monitoring wellhead annulus pressure so that appropriate action can be taken should a leak be detected. In the past, subsea completions have been oil producers, however, gas production, extreme reservoir pressures, and deeper waters are becoming common place. Although subsea wellhead technology and reliability have significantly improved with the introduction of the metal-to-metal sealing system, the potential for annulus pressure buildup still exists. Up to the present, the ability to monitor pressure beyond the first casing string has been virtually non-existent. This paper describes the design, development, testing, and application of non intrusive sensor technology for pressure measurement in subsea wellheads and production trees. The data and test results define and describe the phenomenon of ``inverse magnetostriction``. This phenomenon allows magnetic sensors to non intrusively penetrate three to four inches of steel in a subsea wellhead housing and measure annulus pressure from less than 30 psi to more than 15,000 psi. In addition, test data, charts, and graphs illustrate the sensor`s capability of differentiating between pressure, tension, compression, and bending stress imposed on the wellhead. The electronic interface description details how the data is obtained from the sensors, stored, and later transmitted to existing control systems or to the user interface at the surface via an ROV.

  11. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    on December 9, falling from somewhat higher intraweek levels. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage dropped 64 Bcf during the...

  12. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    and October 2010 contracts all fell by less than 1 cent. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas inventories set a new record,...

  13. City in Colorado Fueling Vehicles with Gas Produced from Wastewater...

    Office of Environmental Management (EM)

    ... the city of Dallas has improved the efficiency of more than 200 city-owned buildings, saving 1 million a year in energy costs. | Photo courtesy of the City of Dallas. ...

  14. SEP Success Story: City in Colorado Fueling Vehicles with Gas Produced from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wastewater Treatment Facility | Department of Energy City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility SEP Success Story: City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility April 29, 2015 - 8:00pm Addthis Grand Junction's CNG station fuels the city's fleets and county buses and is available to fuel public vehicles as well. Pictured above, a Grand Valley Transit bus is preparing to refuel. Grand Junction's CNG station

  15. Independent load support in an 18 3/4-in. , 15,000-psi subsea wellhead

    SciTech Connect (OSTI)

    Cowan, W.S.

    1993-03-01

    Previous-generation subsea wellhead equipment was conceived as an extension of well-known surface wellhead equipment. Contemporary performance criteria for subsea wellhead equipment require new technology from the designer/manufacturer. This paper describes the role of a single design concept, independent load support, in addressing these criteria and illustrates the resulting configuration of a severe-service subsea wellhead system.

  16. Standardized wellheads proven economical for subsea operations

    SciTech Connect (OSTI)

    Moreira, C.C.; Silva Paulo, C.A. )

    1994-05-02

    A standardization program for subsea wellheads and completion equipment has made development of Brazil's offshore fields more economical and efficient. The resulting operational flexibility associated with the use of field-proven equipment and procedures saves rig time and can reduce production loss during workovers. Additionally, investments can be rationalized economically by installing part of the completion equipment at the end of the drilling job and then delaying purchase and installation of the christmas tree and the flow lines until installation of the production platform. Savings are also realized from the reduction in the number of spare parts and tools. Moreover, the savings related to improved operations exceed considerably those from equipment acquisition and storage. Thus, the greatest benefit is the operational flexibility. The paper discusses initial standards, the subsea programs, philosophy, implementation, diver-assisted trees, diverless trees, and economics.

  17. SEP Success Story: City in Colorado Fueling Vehicles with Gas...

    Energy Savers [EERE]

    April 29, 2015 - 8:00pm Addthis Grand Junction's CNG station fuels the city's fleets and ... Pictured above, a Grand Valley Transit bus is preparing to refuel. Grand Junction's CNG ...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    gas in storage, as well as decreases in the price of crude oil. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,905 Bcf as of...

  19. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of natural gas into storage, despite robust inventories. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,258 Bcf as of...

  20. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

  1. Natural Gas | Open Energy Information

    Open Energy Info (EERE)

    133. Lower 48 Natural Gas Production and Wellhead Prices by Supply Region Table 134. Oil and Gas End-of-Year Reserves and Annual Reserve Additions Table 135. Natural Gas...

  2. Clean Cities Program saves 375 million gallons of gas in 2006 - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Clean Cities Program saves 375 million gallons of gas in 2006 NREL reports a 50 percent increase in gasoline displaced over previous year September 28, 2007 Clean Cities coalitions around the nation displaced the equivalent of 375 million gallons of gasoline in 2006, according to a recent report from the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). The amount of gasoline displaced in 2006 was 50 percent more than the 250 million gallons in

  3. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    and October 2010 contracts all fell by less than 1 cent. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas inventories set a new record,...

  4. Arizona Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Arizona Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 26 10 0 0 0 0 1,360 1990's 2,125 1,225 730 548 691 500 405 401 411 439 2000's 332 266 243 426 306 211 588 634 503 695 2010's 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  5. Maryland Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Maryland Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 60 39 20 44 29 34 1990's 22 29 33 28 26 22 0 118 63 18 2000's 34 32 22 48 34 46 NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Missouri Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Missouri Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4 4 4 4 4 4 1990's 7 19 27 14 8 16 25 5 0 2000's 0 0 0 0 0 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  7. Illinois Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Illinois Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,030 1,530 1,324 1,887 1,371 1,338 1,477 1990's 677 466 346 250 333 0 0 0 0 0 2000's 0 0 NA 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Indiana Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Indiana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 135 394 367 365 217 412 416 1990's 399 232 174 192 107 249 360 526 615 855 2000's 899 1,064 1,309 1,464 3,401 3,135 2,921 3,606 4,701 4,927 2010's 6,802 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  9. Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality

    SciTech Connect (OSTI)

    Blake, D.R.; Rowland, F.S.

    1995-08-18

    Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

  10. Clean Cities Moving Fleets Forward with Liquefied Natural Gas...

    Broader source: Energy.gov (indexed) [DOE]

    Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help...

  11. Using geographic information systems in the delineation of wellhead protection areas

    SciTech Connect (OSTI)

    Shafer, J.M. . Earth Sciences and Resources Inst.); Horton, C.A. . Dept. of Civil Engineering)

    1994-03-01

    The 1986 amendments to the Safe Drinking Water Act established the nationwide wellhead protection program to be administered by the US Environmental Protection Agency. Although individual states have the responsibility to implement wellhead protection, the US EPA provides technical guidance, and approves each wellhead protection plan prepared by the states. A major aspect of wellhead protection strategies is the delineation of wellhead protection areas. These are zones around municipal water supply wells that receive special land use considerations intended to minimize the threat of contamination of the wells. The US EPA has recommended several technical approaches to delineating wellhead protection areas, ranging in sophistication from simple concentric circles around wells to irregular areas determined from groundwater flow and transport analyses. Regardless of the wellhead protection area delineation technique, the resulting area surrounding the municipal well must be accurately mapped. A geographic information system (GIS) approach to mapping the results of wellhead protection area delineation is demonstrated. Using hypothetical groundwater flow regimes, each EPA recommended approach to wellhead protection area delineation is presented in a GIS format. A visual comparison of delineation techniques in terms of area and configuration of the resulting wellhead protection areas is made. Finally, the advantages of using a GIS for representing wellhead protection areas is provided.

  12. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9.34 per MMBtu, a decrease of about 0.32 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,517 Bcf as of...

  13. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    a decrease of about 0.36, or 6.9 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage totaled 2,213 Bcf as...

  14. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    by 0.409 or 8 percent per MMBtu to 4.850 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,796 Bcf as of...

  15. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    supply disruptions during the remainder of the hurricane season. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage was 2,461 Bcf as of Friday,...

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    (August 5) and the low price of 2.804 (August 21) per MMBtu. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,323 Bcf as of...

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    2009 contract, which closed at 12.987 per MMBtu on May 28. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 1,701 Bcf as of...

  18. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7.02 per MMBtu, an increase of about 0.24 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 3,488 Bcf as of...

  19. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    5.06 per MMBtu, a decrease of only 0.01 per MMBtu on the week. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,762...

  20. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a decrease of about 0.09, or 1.7 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,737 Bcf as of...

  1. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    decreasing about 0.23, or 4.4 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,840...

  2. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    MMBtu lower than the final price of the November 2009 contract. Wellhead Prices Annual Energy Review More Price Data Storage As of Friday, September 24, working natural gas in...

  3. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    fell 31 cents, from 5.554 last Wednesday to 5.239 yesterday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,165...

  4. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    expectations of robust storage inventories in the coming months. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,886 Bcf as of...

  5. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    38 cents per MMBtu, or about 7 percent, during the report week. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,996 Bcf as of...

  6. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    January 2009 contract, which closed at 12.74 per MMBtu on May 14. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 1,529 Bcf as of...

  7. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 to September 2009 posting declines of more than 30 cents. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,116 Bcf as of...

  8. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    a decrease of about 0.25, or 5.1 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 1,823 Bcf as of...

  9. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    since last week, ending trading yesterday at 5.084 per MMBtu. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 2,089 Bcf as of...

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    was 62 percent below the level reported last year at this time. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,013 Bcf as of...

  11. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    at 7.39 per MMBtu, which is 76 cents lower than last week. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,198 Bcf as of...

  12. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9.08 per MMBtu, an increase of about 0.32 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,757 Bcf as of...

  13. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    per MMBtu, 22 cents or 4.3 percent lower than last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,615 Bcf as of...

  14. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    2009 contract, which closed at 13.84 per MMBtu on June 25. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,033 Bcf as of...

  15. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    settled at 7.737 per MMBtu, only 0.001 per MMBtu lower on the week. Recent Natural Gas Market Data Estimated Average Wellhead Prices Sept-04 Oct-04 Nov-04 Dec-04 Jan-05...

  16. Alabama Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 59,051 56,685 42,925 34,164 35,674 45,488 41,614 1990's 37,229 35,972 51,219 75,474 70,489 54,964 493,069 583,370 560,414 544,020 2000's 521,215 376,241 370,753 348,722 304,212 285,237 274,176 259,062

  17. Alaska Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alaska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alaska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 211,569 211,579 222,637 304,841 271,120 228,284 192,760 1990's 191,798 200,557 206,259 224,786 201,891 227,797 193,278 191,017 192,982 186,727 2000's 189,896 197,735 200,871 199,616 413,667 502,887 494,323

  18. Arkansas Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Arkansas Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 78,097 75,575 86,552 68,206 42,688 102,046 42,226 1990's 99,456 83,864 85,177 122,596 24,326 180,117 76,671 71,449 61,012 54,382 2000's 55,057 16,901 161,871 166,329 183,299 190,533 193,491 269,886 446,551 680,613

  19. Michigan Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Michigan Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138,910 144,537 131,855 127,287 146,996 146,145 155,988 1990's 106,193 189,497 190,637 199,746 216,268 238,203 245,740 305,950 278,076 277,364 2000's 296,556 275,036 274,476 236,987 259,681 261,112 NA NA 153,130

  20. Mississippi Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Mississippi Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 211,116 206,871 178,426 197,217 195,299 196,912 148,167 1990's 149,012 126,637 129,340 131,450 105,646 95,349 88,805 98,075 88,723 83,232 2000's 70,965 76,986 112,979 133,901 145,692 52,923 60,531 73,460 96,641

  1. Montana Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Montana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,751 47,534 46,113 42,203 42,814 47,748 52,044 1990's 45,998 48,075 50,359 58,810 51,953 46,739 46,868 50,409 51,967 55,780 2000's 67,294 78,493 86,075 86,027 90,771 101,666 106,843 110,942 802,619 293,941 2010's

  2. Nebraska Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Nebraska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,091 2,300 1,944 1,403 1,261 910 878 1990's 793 785 1,177 1,375 2,098 1,538 1,332 1,194 1,285 1,049 2000's 879 883 892 1,168 1,172 1,172 NA 1,555 3,082 2,908 2010's 2,231 - = No Data Reported; -- = Not Applicable;

  3. New Mexico Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) New Mexico Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 884,517 925,298 880,307 676,886 790,639 752,629 833,593 1990's 949,735 1,029,824 1,274,220 1,489,052 1,510,804 1,480,327 1,553,103 1,540,157 1,483,370 1,511,671 2000's 1,685,664 1,670,644 1,614,045 1,576,639

  4. New York Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) New York Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,836 25,200 31,561 22,964 25,676 23,455 20,433 1990's 25,023 21,704 22,543 20,620 19,684 17,325 0 15,415 15,415 15,426 2000's 17,166 27,187 35,941 35,044 45,436 54,377 55,344 54,942 50,320 44,849 2010's 35,241 -

  5. North Dakota Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) North Dakota Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 69,319 60,111 62,371 58,593 51,671 21,240 12,290 1990's 11,537 5,138 3,994 4,420 0 0 0 52,401 53,185 52,862 2000's 48,714 57,949 57,015 57,808 59,513 57,972 53,675 54,745 52,469 59,369 2010's 81,837 - = No Data

  6. Ohio Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Ohio Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 149,096 184,651 180,458 180,287 164,960 166,690 159,730 1990's 154,619 146,189 143,381 135,939 130,855 125,085 119,251 116,246 108,542 102,505 2000's 98,551 97,272 103,158 120,081 119,847 83,523 86,315 88,095 84,858

  7. Oklahoma Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Oklahoma Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,730,061 1,985,869 1,936,341 1,917,493 2,004,797 2,106,632 2,185,204 1990's 2,186,153 2,119,161 1,937,224 2,005,971 1,879,257 1,765,788 1,751,487 1,452,233 1,644,531 1,577,961 2000's 1,612,890 1,477,058 1,456,375

  8. Oregon Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Oregon Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 2,790 4,080 4,600 3,800 4,000 2,500 1990's 2,815 2,741 2,580 4,003 3,221 1,923 1,439 1,173 1,067 1,291 2000's 1,214 1,069 837 688 467 433 NA 390 751 751 2010's 1,376 - = No Data Reported; -- = Not Applicable; NA =

  9. Pennsylvania Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Pennsylvania Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 118,372 166,342 150,234 159,889 163,318 167,089 191,774 1990's 177,609 152,500 138,675 189,443 187,113 177,139 0 0 0 0 2000's 0 0 0 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA =

  10. South Dakota Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) South Dakota Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,846 1,947 2,558 2,231 3,431 3,920 4,369 1990's 881 93 1,006 854 1,000 848 0 687 772 702 2000's 648 563 531 550 531 446 455 422 1,099 NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available;

  11. Tennessee Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Tennessee Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 5,144 - = No Data Reported; --

  12. Texas Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Texas Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,227,995 6,630,246 6,367,936 6,465,964 6,414,021 6,386,544 6,276,968 1990's 6,476,032 6,066,256 5,893,069 5,769,437 5,834,671 5,592,323 4,684,140 4,716,304 4,777,945 5,719,128 2000's 5,869,901 5,159,233 5,166,315

  13. Utah Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Utah Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,158 74,698 52,324 21,491 48,654 49,378 58,356 1990's 57,098 62,241 86,682 93,894 154,907 153,804 168,944 174,275 190,230 194,413 2000's 218,283 215,527 250,118 202,784 250,261 267,766 319,268 NA 276,340 389,830

  14. Virginia Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Virginia Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,342 8,928 15,041 15,427 19,223 18,424 17,935 1990's 14,283 14,906 24,734 37,840 50,259 49,818 0 0 0 0 2000's 0 0 0 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. California Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) California Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 282,639 343,079 361,739 329,366 346,720 327,399 283,509 1990's 275,738 211,841 195,515 76,381 199,649 263 37,823 219,216 264,810 382,715 2000's 323,864 328,778 309,399 293,691 276,520 274,817 278,933 268,016

  16. Colorado Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Colorado Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 139,820 143,552 126,037 163,684 164,557 191,544 216,737 1990's 242,997 271,159 314,105 388,016 441,343 511,513 559,473 637,375 696,321 705,477 2000's 735,332 800,712 819,205 989,678 1,058,383 1,106,993 1,170,819

  17. Florida Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Florida Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 25,630 18,897 13,162 3,004 1,893 1,883 1,437 1990's 1,443 2,096 3,849 2,612 4,940 3,545 0 0 0 0 2000's 0 0 NA 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  18. Kansas Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Kansas Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 366,189 494,641 532,092 465,695 458,426 577,815 588,757 1990's 555,187 630,155 640,583 668,640 714,659 721,436 712,796 678,652 603,586 553,419 2000's 525,430 480,145 454,901 418,893 397,121 377,229 372,029 366,859

  19. Kentucky Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Kentucky Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,720 61,518 73,126 80,195 70,125 44,725 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,868 76,770 2000's 81,545 81,723 88,259 87,609 94,259 92,795 95,320 95,437 114,116 NA 2010's 135,355

  20. Louisiana Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Louisiana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,149,192 3,650,412 3,179,306 2,986,468 3,243,795 3,158,903 3,066,789 1990's 3,780,551 3,355,867 3,404,963 3,454,646 3,562,360 3,709,015 3,976,305 5,398,216 5,410,523 5,265,670 2000's 3,587,815 1,529,733 1,365,925

  1. West Virginia Quantity of Production Associated with Reported Wellhead

    U.S. Energy Information Administration (EIA) Indexed Site

    Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) West Virginia Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 130,078 143,730 144,883 135,431 160,000 174,942 177,192 1990's 95,271 198,605 202,775 171,024 55,756 50,439 0 0 0 0 2000's 0 0 NA 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable;

  2. Wyoming Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Wyoming Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 395,656 447,615 416,565 352,858 407,863 471,095 623,915 1990's 690,356 711,799 765,254 63,667 14,283 12,449 27,821 719,933 1,004,020 1,079,375 2000's 1,240,038 1,359,868 1,533,724 1,561,322 1,724,725 1,729,760

  3. Urban leakage of liquefied petroleum gas and its potential impact of Mexico City air quality

    SciTech Connect (OSTI)

    Blake, D.R.; Rowland, F.S.

    1995-12-01

    Seventy eight whole air samples were collected at various park locations throughout Mexico City and later assayed for methane, carbon monoxide, 20 halocarbons and 40 C{sub 2}-C{sub 10} hydrocarbons. Propane had the highest median mixing ratio value of all assayed non-methane hydrocarbon compounds (NMHCs) with a concentration as high as 0.1 ppmv. The concentration of n-butane, i-butane, n-pentane and i-pentane were all notably elevated as well. The only significant identified source of propane in Mexico City is liquefied petroleum gas (LPG), which also has a strong component of C{sub 4} and C{sub 5} alkanes. All of these alkanes were present at concentrations well above those observed in other cities where LPG is not the main domestic fuel. Data strongly suggest that as much as 50% of total Mexico City NMHCs is a result of losses associated with the transfer, storage and delivery of LPG. Additionally, using median concentrations and laboratory determined hydroxyl reaction rate constants, LPG emissions account for about 20% of initial reactivities. This suggests that LPG losses may significantly impact photochemical oxidant levels in Mexico City.

  4. Quantity of Natural Gas Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2005 2006 2007 2008 2009 2010 View History U.S. 15,425,867 15,981,421 1980-2006 Alabama 285,237 274,176 259,062 246,747 225,666 212,769 1983-2010 Alaska 502,887 494,323 368,344 337,359 397,077 316,546 1983-2010 Arizona 211 588 634 503 695 165 1983-2010 Arkansas 190,533 193,491 269,886 446,551 680,613 936,600 1983-2010 California 274,817 278,933

  5. U.S. Natural Gas Wellhead Value and Marketed Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. Federal Offshore Gulf of Mexico Alabama Alaska Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Louisiana Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New Mexico New York North Dakota Ohio Oklahoma Oregon Pennsylvania South Dakota Tennessee Texas Utah Virginia West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  6. Gas revenue increasingly significant

    SciTech Connect (OSTI)

    Megill, R.E.

    1991-09-01

    This paper briefly describes the wellhead prices of natural gas compared to crude oil over the past 70 years. Although natural gas prices have never reached price parity with crude oil, the relative value of a gas BTU has been increasing. It is one of the reasons that the total amount of money coming from natural gas wells is becoming more significant. From 1920 to 1955 the revenue at the wellhead for natural gas was only about 10% of the money received by producers. Most of the money needed for exploration, development, and production came from crude oil. At present, however, over 40% of the money from the upstream portion of the petroleum industry is from natural gas. As a result, in a few short years natural gas may become 50% of the money revenues generated from wellhead production facilities.

  7. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

  8. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    gas in storage, as well as decreases in the price of crude oil. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,905 Bcf as of...

  9. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    economic incentive to inject natural gas into underground storage. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 1,943 Bcf as of...

  10. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    to replenish inventory levels of natural gas held in storage. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 3,052...

  11. A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

    SciTech Connect (OSTI)

    Nigel N. Clark; Byron l. Rapp; Mridul Gautam; Wenguang Wang; Donald W. Lyons

    1998-10-19

    New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these was for street collection and transporting the refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines. Five trucks were equipped with electronically controlled Detroit Diesel Series 50 lean burn engines, while another five were powered by Caterpillar stoichiometric burn 3306 natural gas engines, The Ca terpillar engines employed an exhaust oxygen sensor feedback and three way catalysts. Since the refuse haulers had automatic Allison transmissions, and since they were employed in stop-and-go city service, initial emissions measurements were made using the Central Business Cycle (SAE Jl376) for buses at 42,000 pound test weight. Some additional measurements were made using an ad hoc cycle that has been designed to be more representative of the real refuse hauler use that included several compaction cycles. The Cummins powered natural gas vehicles showed oxides of nitrogen and carbon monoxide emission variations typically associated with variable fuel mixer performance. In the first Year of testing, the stoichiometric Caterpillar engines yielded low emission levels, but in later years two of these refuse haulers had high carbon monoxide attributed to failure of the feedback system. For example, carbon monoxide on these two vehicles rose from 1.4 g/mile and 10 g/mile in 1995 to 144.9 g/mile and 57.8 g/mile in 1996. These stoichiometric engines were also less fuel efficient than their lean burn counterparts. The Detroit Diesel Series 50 powered refuse haulers produced high levels of oxides of nitrogen. However, it was found that changing the shifting patterns of the transmission lowered the oxides of nitrogen. All three engine types showed the potential for low emissions operation and the particulate matter reduction advantage offered by natural gas was evident from the results.

  12. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    SciTech Connect (OSTI)

    Wang, M.Q.; Marr, W.W.

    1994-02-10

    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

  13. Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study

    SciTech Connect (OSTI)

    Christopher Orme

    2012-08-01

    Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

  14. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    9.34 per MMBtu, a decrease of about 0.32 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,517 Bcf as of...

  15. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    2009 to September 2009 posting declines of more than 30 cents. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,116 Bcf as of...

  16. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a decrease of about 0.36, or 6.9 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage totaled 2,213 Bcf as...

  17. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    per MMBtu, 22 cents or 4.3 percent lower than last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 1,615 Bcf as of...

  18. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    at 7.39 per MMBtu, which is 76 cents lower than last week. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 3,198 Bcf as of...

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    by 0.409 or 8 percent per MMBtu to 4.850 since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage increased to 2,796 Bcf as of...

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a decrease of about 0.25, or 5.1 percent, since last Wednesday. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 1,823 Bcf as of...

  1. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    than the expiration price of 6.136 for the January 2009 contract. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage was 2,736 Bcf as of Friday,...

  2. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    MMBtu lower than the final price of the November 2009 contract. Wellhead Prices Annual Energy Review More Price Data Storage As of Friday, September 24, working natural gas in...

  3. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    since last week, ending trading yesterday at 5.084 per MMBtu. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage totaled 2,089 Bcf as of...

  4. U.S. Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) U.S. Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,159,365 17,042,578 16,025,662 14,556,226 16,121,625 15,247,466 14,823,587 15,283,764 15,419,723 15,432,773 1990's 16,408,437 15,770,393 15,852,090 15,480,352 15,513,667 15,557,464 14,822,258 17,105,855 17,653,795

  5. EIA's Natural Gas Production Data

    Reports and Publications (EIA)

    2009-01-01

    This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

  6. Geothermal rotary separator turbine: wellhead power system tests at Milford, Utah

    SciTech Connect (OSTI)

    Hughes, E.E.

    1983-08-01

    Through development of a separator/expander engine EPRI is improving the efficiency of single flash geothermal power systems. Under cost-shared contracts with Biphase Energy Systems and Utah Power and Light Company (UP and L), a wellhead power generating system has been built and tested. The wellhead unit has been operated for 4000 hours at Roosevelt Hot Springs near Milford, Utah. Phillips Petroleum Company operates the geothermal field at this site. The rotary separator turbine (RST) is a separating expander that increases the resource utilization efficiency by extracting power upstream of a steam turbine in either a 1-stage or 2-stage flash power system. The first power output was achieved October 28, 1981, six weeks after arrival of the RST at the site. The RST system produced 3270 MWh(e) gross and 2770 MWh(e) net to the UP and L grid. Total equivalent power produced by the wellhead RST (actual power output of the RST plus the power obtainable from the steam flow out of the RST) is 15 to 20 percent above the power that would be produced by an optimum 1-stage direct flash plant operated on the same geothermal well.

  7. ,"U.S. Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    2:10:31 PM" "Back to Contents","Data 1: U.S. Natural Gas Prices" "Sourcekey","N9190US3",...,"N3035US3","N3035US4","N3045US3" "Date","U.S. Natural Gas Wellhead Price (Dollars per ...

  8. ,"U.S. Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...10US3","N3020US3","N3035US3","N3045US3" "Date","U.S. Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic ...

  9. ,"U.S. Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    2:10:31 PM" "Back to Contents","Data 1: U.S. Natural Gas Prices" "Sourcekey","N9190US3",...035US4","NA1570NUS3","N3045US3" "Date","U.S. Natural Gas Wellhead Price (Dollars per ...

  10. Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market

    Gasoline and Diesel Fuel Update (EIA)

    Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e.,

  11. Emission factors for domestic use of L.P. gas in the metropolitan area of Mexico City

    SciTech Connect (OSTI)

    Molina, M.M.; Schifter, I.; Ontiveros, L.E.; Salinas, A.; Moreno, S.; Melgarejo, L.A.; Molina, R.; Krueger, B.

    1998-12-31

    One of the main problems found in air pollution in the Metropolitan Area of Mexico City (MAMC) is the presence of high concentrations of ozone at ground level in the atmosphere. The official Mexican standard for ozone concentration in the air (0.11 ppm, one hour, once every 3 years) has been exceeded more than 300 days per year. Ozone is formed due to the emissions of nitrogen oxides and hydrocarbons originated from either combustion processes or vapors emanating from fuel handling operations. The results of an evaluation of several domestic devices like stoves and water heaters with L.P. gas as fuel are presented. A method for the evaluation of hydrocarbon emission was developed. A prototype of domestic installation was constructed. The prototype includes L.P. gas tank, domestic stove, water heater, piping and instrumentation. Several combinations of stoves and water heaters were evaluated. The sampling and analysis of hydrocarbons were performed using laboratory equipment originally designed for the evaluation of combustion and evaporative emissions in automobiles: a SHED camera (sealed room equipped with an hydrocarbon analyzer) was used to measure leaks in the prototype of domestic installation and a Constant Volume Sampler (CVS) for the measurement of incomplete combustion emissions. Emission factors were developed for each domestic installation.

  12. Natural gas 1995: Issues and trends

    SciTech Connect (OSTI)

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  13. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  14. Natural Gas Transmission and Distribution Module

    Gasoline and Diesel Fuel Update (EIA)

    www.eia.gov Joe Benneche July 31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO NOT QUOTE OR CITE Overview 2 Joe Benneche, Washington, DC, July 31, 2012 * Replace regional natural gas wellhead price projections with regional spot price projections * Pricing of natural gas vehicles fuels (CNG and LNG) * Methodology for modeling exports of LNG * Assumptions on charges related

  15. Clean Cities: Honolulu Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    County; City of Honolulu Designated: August 29, 1995 Alternative Fueling Stations: Biodiesel (B20 and above): 3 Natural Gas: 1 Ethanol (E85): 3 Electric: 250 Hydrogen: 2 Propane:...

  16. Fuel Use and Greenhouse Gas Emissions from the Natural Gas System; Sankey Diagram Methodology

    Broader source: Energy.gov [DOE]

    As natural gas travels through infrastructure, from well-head to customer meter, small portions are routinely used as fuel, vented, flared, or inadvertently leaked to the atmosphere. This paper describes the analytical and methodological basis for three diagrams that illustrate the natural gas losses and greenhouse gas emissions that result from these processes. The paper examines these emissions in some detail, focusing in particular on the production, processing, transmission and storage, and distribution segments of natural gas infrastructure.

  17. BEST CITIES

    Energy Science and Technology Software Center (OSTI)

    003034MLTPL00 Benchmarking and Energy Saving Tool for Low Carbon Cities (BEST Cities) http://china.lbl.gov/tools-guidebooks/best-cities

  18. U.S. Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1920's 0.11 0.10 0.09 0.09 0.10 0.09 0.09 0.08 1930's 0.08 0.07 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 1940's 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.07 0.06 1950's 0.07 0.07 0.08 0.09 0.10 0.10 0.11 0.11 0.12 0.13 1960's 0.14 0.15 0.16 0.16 0.15 0.16 0.16 0.16 0.16 0.17 1970's 0.17 0.18 0.19 0.22 0.30 0.44 0.58 0.79 0.91 1.18 1980's 1.59 1.98 2.46 2.59 2.66 2.51 1.94 1.67 1.69 1.69 1990's 1.71 1.64 1.74 2.04 1.85

  19. U.S. Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA NA 1974 NA NA NA NA NA NA NA NA NA NA NA NA 1975 NA NA NA NA NA NA NA NA NA NA NA NA 1976 0.54 0.54 0.54 0.55 0.55 0.58 0.58 0.60 0.60 0.62 0.63 0.64 1977 0.67 0.71 0.75 0.77 0.77 0.82 0.83 0.82 0.83 0.84 0.83 0.84 1978 0.87 0.88 0.89 0.88 0.91 0.91 0.89 0.91 0.92 0.92 0.93 0.96 1979 1.02 1.05 1.10 1.11 1.15 1.17 1.20 1.24 1.24 1.28 1.29 1.31 1980 1.37 1.42 1.46 1.51 1.56 1.57 1.64 1.64 1.69 1.71 1.76 1.74

  20. ,"U.S. Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","12312015" ,"Next Release Date:","01292016" ,"Excel File Name:","n9190us3m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghistn9190us3m.htm"...

  1. ,"U.S. Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","12312015" ,"Next Release Date:","01292016" ,"Excel File Name:","n9190us3a.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghistn9190us3a.htm"...

  2. World Natural Gas Model

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based onmore » a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.« less

  3. Maximize revenue from gas condensate wells

    SciTech Connect (OSTI)

    Hall, S.R.

    1988-07-01

    A computerized oil/gas modeling program called C.O.M.P. allows operators to select the economically optimum producing equipment for a given gas-condensate well-stream. This article, the first of two, discusses use of the model to analyze performance of six different production system on the same wellstream and at the same wellhead conditions. All producing equipment options are unattended wellhead facilities designed for high volume gas-condensate wells and are not gas plants. A second article to appear in September will discuss operating experience with one of the producing systems analyzed, integrated multi-stage separation with stabilization and compression (the HERO system), which was developed by U.S. Enertek, Inc. This equipment was chosen for the wellstream analyzed because of the potential revenue increase indicated by the model.

  4. Elk City Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Station Biomass Facility Jump to: navigation, search Name Elk City Station Biomass Facility Facility Elk City Station Sector Biomass Facility Type Landfill Gas Location Douglas...

  5. Installation of 200 kW UTC PC-25 Natural Gas Fuel Cell At City of Anaheim Police Station

    SciTech Connect (OSTI)

    Dina Predisik

    2006-09-15

    The City of Anaheim Public Utilities Department (Anaheim) has been providing electric service to Anaheim residents and businesses for over a century. As a city in a high-growth region, identifying sources of reliable energy to meet demand is a constant requirement. Additionally, as more power generation is needed, locating generating stations locally is a difficult proposition and must consider environmental and community impacts. Anaheim believes benefits can be achieved by implementing new distributed generation technologies to supplement central plants, helping keep pace with growing demand for power. If the power is clean, then it can be delivered with minimal environmental impact. Anaheim started investigating fuel cell technology in 2000 and decided a field demonstration of a fuel cell power plant would help determine how the technology can best serve Anaheim. As a result, Anaheim completed the project under this grant as a way to gain installation and operating experience about fuel cells and fuel cell capabilities. Anaheim also hopes to help others learn more about fuel cells by providing information about this project to the public. Currently, Anaheim has hosted a number of requested tours at the project site, and information about the project can be found on Anaheim Public Utilities RD&D Project website. The Anaheim project was completed in four phases including: research and investigation, purchase, design, and construction. The initial investigative phase started in 2000 and the construction of the project was completed in February 2005. Since acceptance and startup of the fuel cell, the system has operated continuously at an availability of 98.4%. The unit provides an average of about 4,725 kilowatthours a day to the Utilities' generation resources. Anaheim is tracking the operation of the fuel cell system over the five-year life expectancy of the fuel stack and will use the information to determine how fuel cells can serve Anaheim as power generators.

  6. Opportunities for Efficiency Improvements in the U.S. Natural Gas

    Broader source: Energy.gov (indexed) [DOE]

    Transmission, Storage and Distribution System | Department of Energy This report provides an in-depth review of the opportunities for energy efficiency in the U.S. natural gas transmission, storage and distribution system, from gas gathering at wellheads to final delivery to consumers. A number of technical efficiency opportunities throughout the natural gas infrastructure system have yet to be fully realized, including: improvements in compressors, prime movers (gas engines/turbines and

  7. Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003

    U.S. Energy Information Administration (EIA) Indexed Site

    Productive Capacity for the Lower-48 States 1985 - 2003 EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003 Printer-Friendly Version gascapdata.xls ratiodata.xls wellcountdata.xls Executive Summary This analysis examines the availability of effective productive capacity to meet the projected wellhead demand for natural gas through 2003. Effective productive capacity is defined as the maximum production available

  8. Opportunities for Efficiency Improvements in the U.S. Natural Gas

    Energy Savers [EERE]

    Transmission, Storage and Distribution System | Department of Energy Opportunities for Efficiency Improvements in the U.S. Natural Gas Transmission, Storage and Distribution System Opportunities for Efficiency Improvements in the U.S. Natural Gas Transmission, Storage and Distribution System This report provides an in-depth review of the opportunities for energy efficiency in the U.S. natural gas transmission, storage and distribution system, from gas gathering at wellheads to final delivery

  9. Local Energy Assurance Planning Selected Cities

    Office of Environmental Management (EM)

    Selected Cities

  10. Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gas Salt Lake City Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Salt Lake City Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data

  11. ENERGYWORKS KC BUILDS CAPACITY IN KANSAS CITY

    Broader source: Energy.gov [DOE]

    In 2008, Kansas City, Missouri, formally adopted a Climate Protection Plan with greenhouse gas reduction targets for 2020 and 2050 and specific energy efficiency recommendations. Using $20 million...

  12. Alternative Fuels Data Center: Kansas City Greens Its Fleet With Natural

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gas and Biodiesel Kansas City Greens Its Fleet With Natural Gas and Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Kansas City Greens Its Fleet With Natural Gas and Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Kansas City Greens Its Fleet With Natural Gas and Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Kansas City Greens Its Fleet With Natural Gas and Biodiesel on Google Bookmark Alternative Fuels Data Center: Kansas City Greens Its

  13. Clean Cities

    Broader source: Energy.gov [DOE]

    Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

  14. Clean Cities: Utah Clean Cities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cities Coalition as the Communications and Northern Coordinator in July 2015. Her formal education is in Organizational Communications and she earned her degree at the University...

  15. EERE Success Story-New Jersey: Atlantic City Jitneys Running on Natural

    Office of Environmental Management (EM)

    Gas | Department of Energy Atlantic City Jitneys Running on Natural Gas EERE Success Story-New Jersey: Atlantic City Jitneys Running on Natural Gas November 6, 2013 - 12:45pm Addthis In 2009, the New Jersey Clean Cities Coalition was one of 25 recipients to receive funding from the EERE Clean Cities' Alternative Fuel and Advanced Technology Vehicles Pilot Program. The approximately $15 million in funding allowed he city to purchase nearly 300 compressed natural gas vehicles, including 190

  16. kansas city

    National Nuclear Security Administration (NNSA)

    Kansas City team was singled out for safely and securely relocating to the LEED Gold certified facility from 2012-2014. The move was completed one month ahead of schedule...

  17. Clean Cities Now, Vol. 15, No. 1, April 2011 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on electric vehicle deployment, renewable natural gas, and articles on Clean Cities coalition successes across the country.

  18. How to save money on monthly gas utility bills for public-housing agencies: A simple step-by-step procedure

    SciTech Connect (OSTI)

    Ryan, R.S.

    1990-01-01

    This manual gives a step-by-step procedure that managers of HUD-associated housing projects can use to buy gas at the wellhead and have it transported to the point of use via the pipeline and the local distribution company. This procedure can be used to reduce the costs of natural gas used at public-housing units. The concept is commonly referred to as 'carriage gas'.

  19. Clean Cities Internships

    Broader source: Energy.gov [DOE]

    Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

  20. Boise Buses Running Strong with Clean Cities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boise Buses Running Strong with Clean Cities Boise Buses Running Strong with Clean Cities May 28, 2013 - 12:05pm Addthis Working with Republic Services, the city of Boise and Valley Regional Transit, Treasure Valley Clean Cities built four compressed natural gas (CNG) fueling stations that allowed all three organizations to transition to CNG vehicles. | Photo courtesy of Valley Regional Transit. Working with Republic Services, the city of Boise and Valley Regional Transit, Treasure Valley Clean

  1. Reforming natural gas markets: the antitrust alternative

    SciTech Connect (OSTI)

    Lambert, J.D.; Gilfoyle, N.P.

    1983-05-12

    Although the centerpiece of the Department of Energy's proposed legislation is gradual decontrol of all wellhead natural gas prices by Jan. 1, 1986, it also addresses the structural problems that have contributed to the current market disorder. Intended to promote increased competition in the marketing of natural gas, the provisions are based on fundamental tenets of antitrust law. This review of relevant antitrust principles as they relate to the natural gas industry places the remedial features of the proposed legislation in legal context. These features concern the pipelines' contract carrier obligation, gas purchase contract modifications, and limitations on passthrough of purchase gas costs. Should the legislation fail to pass, private antitrust litigation will remain as an inducement to structural and economic reform in the gas industry.

  2. Clean Cities: Ann Arbor Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Cities Coalition in April 2015. She served as Clean Cities intern for both the Detroit and Ann Arbor Clean Cities Coalitions from the fall 2013 through the winter 2015 and...

  3. Clean Cities: Los Angeles Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    took on the role of Clean Cities Coordinator. His major job duties focus on mobile source air pollution reduction programs. He has managed the City's Interdepartmental Alternative...

  4. Clean Cities: Southern Colorado Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado Clean Cities coalition Contact Information Kyle Lisek 303-847-0271 klisek@lungs.org Coalition Website Clean Cities Coordinator Kyle Lisek Kyle Lisek is coordinator of...

  5. Clean Cities: Denver Metro Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Coalition Website Clean Cities Coordinator Tyler Svitak Photo of Tyler Svitak...

  6. Illinois Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Prices (Dollars per Thousand Cubic Feet) Wellhead NA 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.52 5.09 4.11 4.43 6.28 3.82 1984-2015 Residential 9.39 8.78 8.26 8.20 9.59 7.95 1967-2015 Commercial 8.76 8.27 7.78 7.57 8.86 7.26 1967-2015 Industrial 7.13 6.84 5.63 6.00 7.75 5.36 1997-2015 Vehicle Fuel 7.22 11.61 11.39 1990-2012 Electric Power 5.14 W W W W W 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 50 40 40 34 36 1989-2014 Gross Withdrawals 1,702

  7. Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding

    Energy Savers [EERE]

    Natural Gas Operations | Department of Energy Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding Natural Gas Operations Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding Natural Gas Operations August 6, 2014 - 1:35pm Addthis A UPS delivery truck is refueled with compressed natural gas. UPS plans to deploy 1,000 liquefied natural gas vehicles. | Photo by Pat Corkery, National Renewable Energy Laboratory A UPS delivery truck is refueled with

  8. ALTERNATE CITY:

    Office of Legacy Management (LM)

    E;;;: 61c F &&I-&&- ALTERNATE --___-----~~~~~-----~~~~~~~--~~~~~~~--- CITY: w _______ STATE:-&- -------- - NAfiE: +~;--- c I 7-b-q Current: Owner contacted 0 yes m no; if yes, date contacted TYPE OF OPERATION ~~_-----~~~~----- q Research & Development cl Facility Type 0 Production sgale testing 0 Pilat Scale 0 Manufacturing 0 Bench Scale Process r~ University i Theoretical Studies 0 Research Organization 0 Government Sponsored Facility Sample & Analysis f$ Other -U-h-

  9. CITY, Aa.

    Office of Legacy Management (LM)

    c I..:.. : - I) ",A;' ,: /iL;L#d -___-___-_--~~~--~-- CITY, Aa. ;:.--w-e- ____ )kk- ________ STAT%d$ ___ Current: -----------------------__- if Yee, date contacted __ TYPE OF OPERATION ~~---~~--~---__-- IJ Research & Development I n Facility Type I 0 Production scale testing a Pilat scale 0 Bench Scale Process i Theoretical Studies Sample SC Analysis * ~~oy~~~"4 Io.*l--t r-J Manufacturing 0 University 0 Research Organization 0 Government Sponsored Facility 0 Other

  10. Boise Buses Running Strong with Clean Cities | Department of...

    Energy Savers [EERE]

    Cities built four compressed natural gas (CNG) fueling stations that allowed all three organizations to transition to CNG vehicles. | Photo courtesy of Valley Regional Transit. ...

  11. Oklahoma City, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    congressional district and Oklahoma's 5th congressional district.12 US Recovery Act Smart Grid Projects in Oklahoma City, Oklahoma Oklahoma Gas and Electric Company Smart...

  12. Mexico City Climate Action Program | Open Energy Information

    Open Energy Info (EERE)

    of greenhouse gas emissions, reduce the vulnerability of the city to the effects of global warming, and heighten our adaptation. To this end, the Program considers related...

  13. City of Kennett, Missouri (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Website: clgw.net Facebook: https:www.facebook.compagesKennett-City-Light-Gas-Water-CLGW1382677045301607 Outage Hotline: After Hours 573-888-2888 References: EIA Form...

  14. Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons

    SciTech Connect (OSTI)

    Wells, Arthur W.; Diehl, J. Rodney; Strazisar, Brian R.; Wilson, Thomas; H Stanko, Dennis C.

    2012-05-01

    Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period of 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 2030% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.

  15. Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet: Vehicle Infrastructure Cash-Flow Estimation -- VICE 2.0; Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    Gonzales, John

    2015-04-02

    Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.

  16. Kansas City Buses Provide a Clean Ride for Kids | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kansas City Buses Provide a Clean Ride for Kids Kansas City Buses Provide a Clean Ride for Kids March 18, 2011 - 2:25pm Addthis Kansas City Buses Provide a Clean Ride for Kids Dennis A. Smith Director, National Clean Cities What does this project do? Creates infrastructure such as fueling stations to support compressed natural gas vehicles. Saves the Kansas City, Kansas School District money Reduces pollution Educates students about natural gas technologies. On Wednesday March 16, the Kansas

  17. Clean Cities: Denver Metro Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Janna West-Heiss 303-847-0276 jwheiss@lungs.org Coalition Website Clean Cities...

  18. Clean Cities: Wisconsin Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as co-director for South Shore Clean Cities of Northern Indiana from 2005-2011. Her dedication to the Clean Cities' mission extends north to Wisconsin where she has served as...

  19. Conference on natural gas use state regulation and market dynamics in the Post 636/Energy Policy Act Era: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Reports in this Record of Proceedings explore a wide variety of issues related to the regulation of natural gas and its future role as one of the critical fuels that powers the economy of the United States. The focus is mainly on problems, obstacles, barriers, and the incredibly complex system created to bring a fuel from wellhead to burner tip. Individual papers have been cataloged separately.

  20. Transcontinental Gas Pipeline Corp. v. Oil and Gas Board of Mississippi: the demise of state ratable-take requirements

    SciTech Connect (OSTI)

    Frankenburg, K.M.

    1988-01-01

    Natural gas was not widely used until the 1930s when the development of seamless pipe enabled gas to be delivered at high compression to markets far from the wellhead. Now the availability and relatively low cost of natural gas have resulted in its widespread use in both home heating and industry. Regulation of this important fuel is consequently a hotly debated issue. The scope and fundamental purpose of the Natural Gas and Policy Act of 1978 (NGPA) was recently the subject of the Supreme Court's opinion in Transcontinental Gas Pipeline Corp v. Oil and Gas Board of Mississippi (Transcontinental). In a five-to-four decision, the Court held that the NGPA pre-empted the enforcement of a state ratable-take requirement. This Note examines Justice Blackmun's majority opinion and the persuasive dissent presented by Justice Rehnquist in the court's decision. The effects of the decision, the Court's first interpretation of NPGA, will undoubtedly be quite significant.

  1. Natural gas productive capacity for the lower 48 states 1984 through 1996, February 1996

    SciTech Connect (OSTI)

    1996-02-09

    This is the fourth wellhead productive capacity report. The three previous ones were published in 1991, 1993, and 1994. This report should be of particular interest to those in Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas. The EIA Dallas Field Office has prepared five earlier reports regarding natural gas productive capacity. These reports, Gas Deliverability and Flow Capacity of Surveillance Fields, reported deliverability and capacity data for selected gas fields in major gas producing areas. The data in the reports were based on gas-well back-pressure tests and estimates of gas-in-place for each field or reservoir. These reports use proven well testing theory, most of which has been employed by industry since 1936 when the Bureau of Mines first published Monograph 7. Demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. Natural gas production requirements in the lower 48 States have been increasing during the last few years while drilling has remained at low levels. This has raised some concern about the adequacy of future gas supplies, especially in periods of peak heating or cooling demand. The purpose of this report is to address these concerns by presenting a 3-year projection of the total productive capacity of natural gas at the wellhead for the lower 48 States. Alaska is excluded because Alaskan gas does not enter the lower-48 States pipeline system. The Energy Information Administration (EIA) generates this 3-year projection based on historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included.

  2. GE Global Research in Oklahoma City

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oklahoma City, USA Oklahoma City, USA GE's first sector-specific global research center is dedicated to developing and accelerating innovative oil and gas technologies. Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Visit the Careers page to search and apply for Global Research jobs in Oklahoma City. We also welcome

  3. Clean Cities: North Dakota Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities. Moffitt is the communications director for the Clean Fuel & Vehicle Technology program of the American Lung Association of the Upper Midwest. He joined the...

  4. City of Webster City, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City, Iowa (Utility Company) Jump to: navigation, search Name: City of Webster City Place: Iowa Phone Number: (515) 832-9151 Website: www.webstercity.comindex.php Twitter:...

  5. Rapid Assessment of City Emissions (RACE): Case of Batangas City...

    Open Energy Info (EERE)

    Rapid Assessment of City Emissions (RACE): Case of Batangas City, Philippines Jump to: navigation, search Tool Summary Name: Rapid Assessment of City Emissions (RACE): Case of...

  6. City of Jewett City, Connecticut (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Jewett City, Connecticut (Utility Company) Jump to: navigation, search Name: Jewett City City of Place: Connecticut Phone Number: (860) 376-2877 Website: jewettcitydpu.com Outage...

  7. City of Cuba City, Wisconsin (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Cuba City, Wisconsin (Utility Company) Jump to: navigation, search Name: City of Cuba City Place: Wisconsin Phone Number: (608) 744-8735 Website: www.cubacitylightandwater.org...

  8. City of Gas City, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 6993 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  9. City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities

    Broader source: Energy.gov [DOE]

    The report analyzes and presents information learned from a sample of 20 cities across the United States, from New York City to Park City, Utah, including a diverse sample of population size, utility type, region, annual greenhouse gas reduction targets, vehicle use, and median household income. The report compares climate, sustainability, and energy plans to better understand where cities are taking energy-related actions and how they are measuring impacts. Some common energy-related goals focus on reducing city-wide carbon emissions, improving energy efficiency across sectors, increasing renewable energy, and increasing biking and walking.

  10. Natural Gas Summary from the Short-Term Energy Outlook

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    generation (to run air-conditioners) turns out to be moderate, the wellhead price could once more dip below 3.00 per MMBtu. Wellhead prices are expected to average 2.81 per MMBtu...

  11. Global Cool Cities Alliance

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the...

  12. Clean Cities Program Contacts

    SciTech Connect (OSTI)

    2015-07-31

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  13. Bioenergy & Clean Cities

    Broader source: Energy.gov [DOE]

    DOE's Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  14. What is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  15. What Is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-04-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    (LNG) arena, where imports increased to over 1.3 Bcf per day due to a plant performance test being conducted last week. Wellhead Prices Annual Energy Review More Price Data Storage...

  17. What is Clean Cities? October 2011 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Brochure describes the Clean Cities program and includes the contact information for its 85 coalitions. Sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program (VTP), Clean Cities is a government-industry partnership that reduces petroleum consumption in the transportation sector. Clean Cities contributes to the energy, environmental, and economic security of the United States by supporting local decisions to reduce our dependence on imported petroleum. Established in 1993 in response to the Energy Policy Act (EPAct) of 1992, the partnership provides tools and resources for voluntary, community-centered programs to reduce consumption of petroleum-based fuels. In nearly 100 coalitions, government agencies and private companies voluntarily come together under the umbrella of Clean Cities. The partnership helps all parties identify mutual interests and meet the objectives of reducing the use of petroleum, developing regional economic opportunities, and improving air quality. Clean Cities deploys technologies and practices developed by VTP. These include idle-reduction equipment, electric-drive vehicles, fuel economy measures, and renewable and alternative fuels, such as natural gas, liquefied petroleum gas (propane), electricity, hydrogen, biofuels, and biogas. Idle-reduction equipment is targeted primarily to buses and heavy-duty trucks, which use more than 2 billion gallons of fuel every year in the United States while idling. Clean Cities fuel economy measures include public education on vehicle choice and fuel-efficient driving practices.

  18. New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eberts, E.; Eudy, L.

    2006-01-01

    This report focuses on the evaluation of compressed natural gas (CNG) and diesel hybrid electric bus propulsion systems in New York City Transit's transit buses.

  19. Category:Atlantic City, NJ | Open Energy Information

    Open Energy Info (EERE)

    16 files are in this category, out of 16 total. SVFullServiceRestaurant Atlantic City NJ Public Service Elec & Gas Co.png SVFullServiceRestauran... 63 KB SVMidriseApartment...

  20. Clean Cities: Long Beach Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    15 years. Tedtaotao was appointed co-coordinator of Long Beach Clean Cities in January, 2014. LA County Public Works 2275 Alcazar St Los Angeles, CA 90033 Search Coalitions Search...

  1. Clean Cities: Clean Cities-Georgia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atlanta was designated as the first Clean Cities coalition in the nation at the Georgia Dome in 1993. Prior to being elected as the coalition's executive director, Francis served...

  2. Clean Cities: Central Oklahoma Clean Cities (Oklahoma City) coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 8,825 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based greenhouse gas savings. Annual...

  3. Case Study - Liquefied Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Environmental Science Enviro Express Kenworth LNG tractor. Connecticut Clean Cities Future Fuels Project Case Study - Liquefied Natural Gas As a part of the U.S. Department of Energy's broad effort to develop cleaner transportation technologies that reduce U.S. dependence on imported oil, this study examines advanced 2011 natural gas fueled trucks using liquefied natural gas (LNG) replacing older diesel fueled trucks. The trucks are used 6 days per week in regional city-to-landfill long hauls of

  4. Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency

    SciTech Connect (OSTI)

    Not Available

    1985-07-04

    A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

  5. Maryland Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead NA 1967-2010 Imports 5.37 5.30 13.82 15.29 8.34 1999-2014 Pipeline and Distribution Use 1967-2005 Citygate 6.49 6.26 5.67 5.37 6.36 4.99 1984-2015 Residential 12.44 12.10 12.17 11.67 12.21 12.05 1967-2015 Commercial 9.87 10.29 10.00 10.06 10.52 10.00 1967-2015 Industrial 9.05 8.61 8.01 8.47 9.94 NA 1997-2015 Vehicle Fuel 5.99 5.09 -- 1993-2012 Electric Power 5.77 5.44 W W 5.35 4.06 1997-2015 Production (Million Cubic Feet) Number of Producing Gas Wells 7 8 9 7 7 1989-2014 Gross

  6. Future City Competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future City Competition The New Mexico Regional Competition is an unique opportunity for middle school children to combine skills in engineering, environmental science, and art to create a vision for the future. Exercising your imagination and sharing your ideas are not only fun but essential for ensuring sustainable growth for our communities. Students work as a team with an educator and engineer mentor to plan cities using SimCity(tm) software: research and write solutions to an engineering

  7. Future City Competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future City Competition The New Mexico Regional Competition is an unique opportunity for middle school children to combine skills in engineering, environmental science, and art to...

  8. Clean Cities & Transportation Tools

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation, presented on July 28, 2010, was on the DOE Clean Cities program to promote the use of alternative fuels and reduce petroleum consumption.

  9. Clean Cities: Tulsa Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 9,014 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based greenhouse gas savings. Annual...

  10. Clean Cities: Rogue Valley Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 24,799 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based greenhouse gas savings. Annual...

  11. EERE Success Story-Concrete Company Moving to Natural Gas with Clean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cities | Department of Energy Concrete Company Moving to Natural Gas with Clean Cities EERE Success Story-Concrete Company Moving to Natural Gas with Clean Cities March 10, 2015 - 10:25am Addthis Concrete mixing in the Great Lakes region is increasingly fueled by compressed natural gas (CNG), thanks to the help of the Vehicle Technologies Office's Clean Cities program. In 2010, the Chicago Area Clean Cities Coalition's American Recovery and Reinvestment Act project covered the incremental

  12. City of Hill City, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Hill City, Kansas (Utility Company) Jump to: navigation, search Name: City of Hill City Place: Kansas Phone Number: (785) 421-3438 Website: www.discoverhillcity.comBusin Outage...

  13. City of Phoenix- Design Standards for City Buildings

    Broader source: Energy.gov [DOE]

    The City of Phoenix has had energy standards for public buildings in place since 2005. In June 2005, the Phoenix City Council adopted a policy requiring all new city buildings built with 2006 bond...

  14. City of Elizabeth City, North Carolina (Utility Company) | Open...

    Open Energy Info (EERE)

    Elizabeth City, North Carolina (Utility Company) Jump to: navigation, search Name: City of Elizabeth City Place: North Carolina Phone Number: (252) 337-6870 or (252) 335-2196...

  15. City of Central City, Nebraska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Central City, Nebraska (Utility Company) Jump to: navigation, search Name: Central City Municipal Power Place: Nebraska Phone Number: 308.946.3806 Website: www.cc-ne.com...

  16. City of Big Stone City, South Dakota (Utility Company) | Open...

    Open Energy Info (EERE)

    City, South Dakota (Utility Company) Jump to: navigation, search Name: City of Big Stone City Place: South Dakota Phone Number: (605) 862-8121 Website: www.bigstonecitysd.govoffice...

  17. Clean Cities: Alamo Area Clean Cities (San Antonio) coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamo Area Clean Cities (San Antonio) Coalition The Alamo Area Clean Cities (San Antonio) coalition works with vehicle fleets, fuel providers, community leaders, and other...

  18. City of David City, Nebraska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    David City, Nebraska (Utility Company) Jump to: navigation, search Name: David City Municipal Power Place: Nebraska Phone Number: 402.367.3135 Website: davidcityne.comutilities...

  19. Clean Cities: Connecticut Southwestern Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connecticut Southwestern Area Clean Cities Coalition The Connecticut Southwestern Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and...

  20. Clean Cities: Capitol Clean Cities of Connecticut coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capitol Clean Cities of Connecticut Coalition The Capitol Clean Cities of Connecticut coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders...

  1. Smart Cities Innovation Summit

    Broader source: Energy.gov [DOE]

    The Smart Cities Innovation Summit is the leading summit for policy, technology, and resource management to meet with leading solution providers in transportation, energy, water, healthcare, education, and more.

  2. kansas city plant

    National Nuclear Security Administration (NNSA)

    accolades for an outstanding safety record during the move to its new, state-of-the art facility in Kansas City, Mo. In 2013, the NSC achieved its best safety performance on...

  3. Clean Cities: Coalition Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ficicchia Empire Clean Cities Northeast 212-839-7728 Christina Ficicchia See Bio 55 Water St, 9th Fl New York, NY 10041 Website New York David Keefe Genesee Region Clean...

  4. Comparing Price Forecast Accuracy of Natural Gas Models andFutures Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-06-30

    The purpose of this article is to compare the accuracy of forecasts for natural gas prices as reported by the Energy Information Administration's Short-Term Energy Outlook (STEO) and the futures market for the period from 1998 to 2003. The analysis tabulates the existing data and develops a statistical comparison of the error between STEO and U.S. wellhead natural gas prices and between Henry Hub and U.S. wellhead spot prices. The results indicate that, on average, Henry Hub is a better predictor of natural gas prices with an average error of 0.23 and a standard deviation of 1.22 than STEO with an average error of -0.52 and a standard deviation of 1.36. This analysis suggests that as the futures market continues to report longer forward prices (currently out to five years), it may be of interest to economic modelers to compare the accuracy of their models to the futures market. The authors would especially like to thank Doug Hale of the Energy Information Administration for supporting and reviewing this work.

  5. Smart Cities - Smart Growth

    Energy Savers [EERE]

    Smart Cities - Smart Growth The United States Secretaries of Commerce will co-lead a Business Development Mission to China from April 12-17, 2015. This mission will promote U.S. clean technology products and services in the areas of green building/construction, energy efficiency, carbon capture, utilization and storage (CCUS) and environmental technologies in support of the Smart Cities-Smart Growth theme. On November 12, President Obama and President Xi jointly announced the two countries'

  6. Natural gas productive capacity for the lower 48 States, 1980 through 1995

    SciTech Connect (OSTI)

    Not Available

    1994-07-14

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970`s the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980`s, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system`s performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply.

  7. What is Clean Cities? (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  8. Clean Cities: Southeast Florida Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Designated: May 5, 1994 Alternative Fueling Stations: Biodiesel (B20 and above): 2 Natural Gas: 12 Ethanol (E85): 30 Electric: 414 Propane: 27 Petroleum and GHG Savings* Total...

  9. Clean Cities Conference to Rev Up Alternative Fuels Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Cities Conference to Rev Up Alternative Fuels Market For more information contact: George Douglas, 303-275-4096 email: George Douglas Golden, Colo., Jan. 26, 2001 - Cleaner air and greater energy security are possible through the use of alternative fuel vehicles. The U.S. Department of Energy's 7th National Clean Cities Conference and Expo will showcase how the use of vehicles powered by fuels such as electricity, natural gas, biodiesel, propane or ethanol can both reduce pollution and cut

  10. Hybrid Solar-Wind Generates Savings for South Dakota City | Department of

    Energy Savers [EERE]

    Energy Hybrid Solar-Wind Generates Savings for South Dakota City Hybrid Solar-Wind Generates Savings for South Dakota City July 19, 2010 - 4:05pm Addthis What does this project do? The projects will reduce the city's natural gas and electric bills by an estimated $2,700. An array of six solar panels, similar to the ones shown, will be installed at Colton, S.D.'s city hall. | Photo courtesy of Colton. The city of Colton, South Dakota. is a small, agriculturally-based community. So small that

  11. Clean Cities Program Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Coordinators Each Clean Cities coalition is led by a coordinator. Contact a coordinator to find out more about Clean Cities activities in your area. AL-Alabama Mark Bentley 205-402-2755 mark@alabamacleanfuels.org AR-Arkansas Patti Springs 501-682-8065 psprings@arkansasedc.com AZ-Valley of the Sun (Phoenix) Bill Sheaffer 480-314-0360 bill@cleanairaz.org AZ-Tucson Colleen Crowninshield 520-792-1093, x426 ccrowninshield@pagregion.com CA-Central Coast (San Luis Obispo) Melissa Guise 805-305-5491

  12. Summary of the engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect (OSTI)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  13. Engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  14. Construction progresses at GE's Oil & Gas Technology Center ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Construction progressing at GE's newest research center, the Oil & Gas Technology Center in Oklahoma City Click to email this to a friend (Opens in new window)...

  15. City of Forest City, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    .cityofforestcity.comdepar Facebook: https:www.facebook.compagesCity-of-Forest-City-IA142928346092 Outage Hotline: (641) 585-3574 or (641) 585-4343 References: EIA Form...

  16. City of Tipp City, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Facebook: https:www.facebook.compagesCity-of-Tipp-City-Government141547651651?refts&frefts Outage Hotline: 937-667-8424 References: EIA Form EIA-861 Final Data File...

  17. City of Asheville- Efficiency Standards for City Buildings

    Broader source: Energy.gov [DOE]

    In April 2007, the Asheville City Council adopted carbon emission reduction goals and set LEED standards for new city buildings. The council committed to reducing carbon emissions by 2% per year...

  18. City of Baldwin City, Kansas (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Kansas Phone Number: 785-594-6907 or (785) 594-6427 Website: www.baldwincity.orgcity-hall Facebook: https:www.facebook.compagesCity-of-Baldwin-City-KS65411212171 Outage...

  19. What Is Clean Cities? Clean Cities, November 2009 (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  20. What is Clean Cities? Clean Cities, March 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  1. Clean Cities Tools

    SciTech Connect (OSTI)

    2014-12-19

    The U.S. Department of Energy's Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.

  2. Cities Leading through Energy Analysis and Planning

    Broader source: Energy.gov [DOE]

    The Cities Leading through Energy Analysis and Planning (Cities-LEAP) project delivers standardized, localized energy data and analysis that enables cities to lead clean energy innovation and...

  3. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    SciTech Connect (OSTI)

    Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, William Payton

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  4. City of Eugene- Solar Standards

    Broader source: Energy.gov [DOE]

    The purpose of Eugene's Solar Standards, as described in sections 9.2780 through 9.2795 of the City of Eugene's City Code, is to create lot divisions, layouts and building configurations in a...

  5. cities | OpenEI Community

    Open Energy Info (EERE)

    cities CO2 emissions OpenEI suburbs US New research from the University of California-Berkeley shows that those who live in cities in the United States have significantly smaller...

  6. EA-1137: Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

    Broader source: Energy.gov [DOE]

    Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

  7. Total Energy Outcome City Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Outcome City Pilot 2014 Building Technologies Office Peer Review Targeted Energy Outcomes A New City Energy Policy for Buildings Ken Baker - kbaker@neea.org Northwest Energy Efficiency Alliance Project Summary Timeline: Key Partners: Start date: 09/01/2012 Planned end date: 08/31/2015 Key Milestones 1. Produce outcome based marketing collateral; 04/03/14 New Buildings Institute Two to three NW cities 2. Quantify and define participating city actions; 04/03/14 3. Quantify ongoing

  8. Hybrid Taxis Give Fuel Economy a Lift, Clean Cities, Fleet Experiences, April 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Clean Cities helped Boston, San Antonio, and Cambridge create hybrid taxi programs. The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids. Program leaders have learned some important lessons other cities can benefit from including learning a city's taxi structure, relaying benefits to drivers, and understanding the needs of owners.

  9. City of Phoenix- Renewable Energy Goal

    Broader source: Energy.gov [DOE]

    In 2008, the Phoenix City Council approved a renewable energy goal for the city. The city aims for 15% of the electricity used by the city to come from renewable energy sources by 2025. This goal...

  10. 350 City County Building

    Office of Legacy Management (LM)

    (. - ,- Department of Eilqgy Washington, DC20585 ,. i x \ .The Honorable Wellington E. Webb .' '. ' 350 City County Building / Denver, Colorado 80202 ., ; Dear Mayor Webb: ., ~, Secretary of Energy' Hazel O'Leary has announced's new approach to openness in the Department of Energy,(OOE) and its communications with the public. In support of this initiative, we,are pleased to forward the'enclosed'information related to the former Uhiversity of Denver Research Institute site in your, jurisdiction

  11. SITE NAME: CITY:

    Office of Legacy Management (LM)

    NAME: CITY: "";;' ::f' /&& j& __ __ O~ner-;~~~~&~d q -$$ L&,,r-i ~y::~' a,,;-~-i-~--~--------' - TYPE OF OPERATION ---~~_---~~~----_ n Research & Development n Facility Type 0 Production scale testing C! Pilot Scale 0 tlanuf acturing 0 Bench Scale Process 0 University 0 Theoretical Studies 0 Research Organization Cl Sample & Analysis 0 Government Sponsored Facility 0 Other --------------,------ & Praduction 0 Disposal /Storage $ Prime 0 m Subca-kractk-

  12. Texas Gas Service- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Texas Gas Service offers an incentive for its residential customers within the Austin and Sunset Valley city limits to install new central furnaces, hydronic water heaters, high efficiency gas...

  13. U.S. Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Wellhead Price 4.48 3.95 2.66 NA NA NA 1922-2015 Imports Price 4.52 4.24 2.88 3.83 5.30 3.24 1985-2015 By Pipeline 4.46 4.09 2.79 3.73 5.21 2.84 1985-2015 As Liquefied Natural Gas 4.94 5.63 4.27 6.80 8.85 7.37 1985-2015 Exports Price 5.02 4.64 3.25 4.08 5.51 3.07 1985-2015 By Pipeline 4.75 4.35 3.08 4.06 5.40 2.94 1985-2015 As Liquefied Natural Gas 9.53 10.54 12.82 13.36 15.66 10.92 1985-2015 Pipeline and Distribution Use Price 1967-2005 Citygate Price

  14. U.S. Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Prices (Dollars per Thousand Cubic Feet) Wellhead NA NA NA NA NA NA 1973-2015 Imports 2.66 2.74 2.75 3.23 2.40 2.28 1989-2015 By Pipeline 2.44 2.51 2.49 2.37 2.19 2.13 1997-2015 As Liquefied Natural Gas 4.53 3.45 6.03 12.38 4.20 4.02 1997-2015 Exports 3.06 3.09 2.92 2.73 2.63 2.57 1989-2015 By Pipeline 2.96 2.99 2.84 2.66 2.35 2.30 1997-2015 As Liquefied Natural Gas 8.10 7.91 7.17 6.53 16.67 15.95 1997-2015 Citygate 4.65 4.58 4.54 4.00 3.68

  15. The City of Union City | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Performance Services Energy Purchaser AEP - Indiana Michigan Power Location Union City IL...

  16. Clean Cities: Greater Lansing Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calnin has worked with the Clean Cities initiative since 2007, having supported the Detroit Area coalition as well as the Greater Lansing Area coalition. With a background that...

  17. Clean Cities: Greater New Haven Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative vehicle and fuel consultation and assistance to many organizations in Connecticut and outside the state, including several towns and cities, metropolitan transit...

  18. City of Berkeley - Green Building Standards for City Owned and...

    Broader source: Energy.gov (indexed) [DOE]

    State California Program Type Energy Standards for Public Buildings Summary The Berkeley City Council adopted Resolution 62284 on November 18, 2003 requiring that all...

  19. Clean Cities: San Diego Regional Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Kevin Wood Kevin Wood is an associate program manager for transportation at the California Center for Sustainable Energy. He joined the San Diego Regional Clean Cities...

  20. * City, State, Country:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2015 Information and/or Documents NEEDED to CREATE a NEW Event: Information needed: * Official Name of the Event * Name of Organizing Institution * Organizer Contact Name, email and phone number * Event's web site * Date(s) of event * Location the event will take place at * City, State, Country: * Per Diem amounts for lodging and M&IE (meals) * Three to four sentences on how this event is in support of SLAC/DOE and/or the Office of Science mission, therefore representation from SLAC

  1. Community Power Works Uses Housing Data to Make the Emerald City Even

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Greener" | Department of Energy Works Uses Housing Data to Make the Emerald City Even "Greener" Community Power Works Uses Housing Data to Make the Emerald City Even "Greener" In Seattle, Washington, owners of oil-heated homes are ineligible for city-sponsored electric and gas utility rebates. But that didn't stop the city's Better Buildings Neighborhood Program partner, Community Power Works, from using housing data to break through to this untapped market.

  2. New Mexico Future City Competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Future City Competition New Mexico Future City Competition WHEN: Jan 24, 2015 8:00 AM - 4:00 PM WHERE: National Museum of Nuclear Science and History 601 Eubank, Albuquerque CATEGORY: Environment INTERNAL: Calendar Login Event Description Future City Competition is focused on tackling challenges of our infrastructure and natural resources. New Mexico's ecosystem and climate are unique. Growing the next generation of innovators requires not only creative minds, but also teamwork,

  3. NREL: Technology Deployment - Clean Cities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Cities NREL assists the U.S. Department of Energy's Clean Cities program in supporting local actions to reduce petroleum use in transportation by providing technical assistance, educational and outreach publications, and coordinator support. Clean Cities is a national network of nearly 100 coalitions that bring together stakeholders in the public and private sectors to deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, idle-reduction measures, and new

  4. Clean Cities Around the World

    SciTech Connect (OSTI)

    Not Available

    2005-01-01

    This 2-page fact sheet provides general information regarding Clean Cities International, including background, successful activities, importance of partnerships, accomplishments, and plans.

  5. Property-rights application in utilization of natural resources: the case of Iran's natural gas

    SciTech Connect (OSTI)

    Abghari, M.H.

    1982-01-01

    The concessionaries produce more oil in Iran because of fear of nationalization, lower oil production costs in the Middle East, and more investment opportunities around the globe. This higher discount rate means more oil production and also, more natural gas, a joint product, is produced. Produced natural gas could have been used in the Iranian market, or exported. Low oil prices and high transportation costs of natural gas resulted in the low well-head value of natural gas. The fear of nationalization kept concessionaires from utilizing natural gas in Iran's domestic market. The high transportation costs of natural gas was a negative factor in export utilization. Also, if natural gas, which can be substituted for oil in many uses, were to be utilized, concessionaires would have had to produce less oil. Because oil had a well-established market, it would have been contrary to their interest to leave a lot of oil underground while their concessions ran out. Consequently, they chose to take the oil and flare natural gas. The Iranian government must take responsibility in this matter also. The country's rulers were not concerned with maximizing the country's wealth, but maximizing the security of their regimes, and their personal wealth and pleasure.

  6. Natural Gas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Natural Gas Many heavy-duty fleets depend on diesel fuel. But an increasing number of trucking companies are transitioning their vehicles to run on liquefied natural gas (LNG), reducing fuel costs and harmful emissions in the process. <a href="/node/655801">Learn more</a> about the Energy Department's work to advance natural gas vehicle technology. | Photo courtesy of New Haven Clean Cities Coalition. Many heavy-duty fleets depend on diesel fuel. But an

  7. Solar America Cities | Open Energy Information

    Open Energy Info (EERE)

    Cities Jump to: navigation, search Logo: Solar America Cities Name Solar America Cities AgencyCompany Organization U.S. Department of Energy Sector Energy Focus Area Solar Topics...

  8. Workplace Charging Challenge Partner: City of Sacramento

    Broader source: Energy.gov [DOE]

    In 2012, Sacramento's City Council adopted a resolution to proceed with a contract to implement "Electric Vehicle Charging Stations in Various City Public Parking Garages." The City of Sacramento...

  9. City of Geneseo | Open Energy Information

    Open Energy Info (EERE)

    Type Community Wind Facility Status In Service Owner City of Geneseo Developer Johnson Controls City of Geneseo Location Geneseo IL Coordinates 41.42597968,...

  10. Story City Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Story City Wind Facility Story City Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Hamilton Wind Energy...

  11. Mandaluyong City, Philippines: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Mandaluyong City, Philippines: Energy Resources Jump to: navigation, search Name Mandaluyong City, Philippines Equivalent URI DBpedia GeoNames ID 1701966 Coordinates 14.5832,...

  12. Corbin City Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Corbin City Utilities Comm Jump to: navigation, search Name: Corbin City Utilities Comm Place: Kentucky Phone Number: 606-528-4026 Website: corbinutilities.com Outage Hotline:...

  13. China City Investment Group | Open Energy Information

    Open Energy Info (EERE)

    China City Investment Group Jump to: navigation, search Name: China City Investment Group Place: Nanjing, Jiangsu Province, China Sector: Renewable Energy Product: China-based...

  14. Climate Financing for Cities | Open Energy Information

    Open Energy Info (EERE)

    Framework1 "Cities in a Post-2012 Climate Policy Framework: Climate Financing for City Development? Views from Local Governments, Experts, and Businesses" This study...

  15. Northern Colorado Clean Cities | Open Energy Information

    Open Energy Info (EERE)

    Cities Jump to: navigation, search Name: Northern Colorado Clean Cities Address: PO Box 759 Place: Johnstown, Colorado Zip: 80534 Region: Rockies Area Number of Employees:...

  16. Natural Gas as a Transportation Fuel: Benefits, Challenges, and Implementation (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2007-07-01

    Presentation for the Clean Cities Website highlighting the benefits, challenges, and implementation considerations when utilizing natural gas as a transportation fuel.

  17. City of Lake City, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Place: Minnesota Phone Number: (651) 345 - 5383 (8am to 4:30pm weekdays) Website: www.ci.lake-city.mn.usindex.a Outage Hotline: After Hours: (651) 345 - 4711 or (651) 345 -...

  18. City of Port Townsend Office of City Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Port Townsend Office of City Manager 250 Madison Street, 2, Port Townsend, WA 98368 Telephone: (360) 379-5047 Fax: (360) 385-4290 June 27, 2008 Mr. Mark Gendron Vice President...

  19. Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this...

  20. Education City | Department of Energy

    Energy Savers [EERE]

    Education City Education City November 15, 2005 - 2:44pm Addthis Remarks Prepared for Energy Secretary Samuel Bodman Let me begin by thanking my host for my visit to Qatar, His Excellency Abdullah Bin Hamad Al-Attiyah. It is truly a pleasure to be here with all of you at this very impressive facility. Two years ago, I traveled to Doha and visited Education City. I had the opportunity to see the first class that had entered the Weill-Cornell Medical School. It is amazing to come here two years

  1. City of Auburn Hills (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Auburn Hills (Text Version) City of Auburn Hills (Text Version) Narrator: Clean Energy Coalition is working under a grant from the United States Department of Energy in collaboration with Clean Cities of Greater Lansing, NextEnergy, and over forty other project partners (Aker Wade, Ann Arbor DDA, City of Ann Arbor, City of Auburn Hills, Chrysler, City of Dearborn, City of Detroit, City of Flint, City of Grand Rapids, City of Houghton, City of Lansing, City of Warren, Clipper Creek, Consumers

  2. City of Sebastopol- Solar Access

    Broader source: Energy.gov [DOE]

    As a condition of approval of a property subdivision parcel map, the City of Sebastopol has the right to ask for dedication of solar easements for the purpose of assuring that each parcel or unit...

  3. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008, and updated the policy in December 2014.* Net metering is available to any customer of...

  4. NORM Management in the Oil and Gas Industry

    SciTech Connect (OSTI)

    Cowie, Michael; Mously, Khalid; Fageeha, Osama; Nassar, Rafat

    2008-08-07

    It has been established that Naturally Occurring Radioactive Materials (NORM) accumulates at various locations along the oil/gas production process. Components such as wellheads, separation vessels, pumps, and other processing equipment can become NORM contaminated, and NORM can accumulate in sludge and other waste media. Improper handling and disposal of NORM contaminated equipment and waste can create a potential radiation hazard to workers and the environment. Saudi Aramco Environmental Protection Department initiated a program to identify the extent, form and level of NORM contamination associated with the company operations. Once identified the challenge of managing operations which had a NORM hazard was addressed in a manner that gave due consideration to workers and environmental protection as well as operations' efficiency and productivity. The benefits of shared knowledge, practice and experience across the oil and gas industry are seen as key to the establishment of common guidance on NORM management. This paper outlines Saudi Aramco's experience in the development of a NORM management strategy and its goals of establishing common guidance throughout the oil and gas industry.

  5. falls-city2.cdr

    Office of Legacy Management (LM)

    Falls City Disposal Site Uranium ore was processed near Falls City, Texas, between 1961 and 1982. The milling operations created process-related waste and tailings, a sandlike waste containing radioactive material and other contaminants. The U.S. Department of Energy (DOE) encapsulated the tailings in an engineered disposal cell in 1994. DOE established the LTSM Program in 1988 to provide stewardship of disposal cells that contain low-level radioactive material after completion of environmental

  6. Kansas City Summary of Reported Data | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Kansas City, Missouri. Kansas City Summary of Reported Data More Documents & Publications Michigan...

  7. What is Clean Cities? May 2011 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  8. NREL: MIDC/Elizabeth City State University (36.28 N, 76.22 W, 26 m, GMT-5)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elizabeth City State University

  9. Can Deployment of Renewable Energy and Energy Efficiency PutDownward Pressure on Natural Gas Prices

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2005-06-01

    High and volatile natural gas prices have increasingly led to calls for investments in renewable energy and energy efficiency. One line of argument is that deployment of these resources may lead to reductions in the demand for and price of natural gas. Many recent U.S.-based modeling studies have demonstrated that this effect could provide significant consumer savings. In this article we evaluate these studies, and benchmark their findings against economic theory, other modeling results, and a limited empirical literature. We find that many uncertainties remain regarding the absolute magnitude of this effect, and that the reduction in natural gas prices may not represent an increase in aggregate economic wealth. Nonetheless, we conclude that many of the studies of the impact of renewable energy and energy efficiency on natural gas prices appear to have represented this effect within reason, given current knowledge. These studies specifically suggest that a 1% reduction in U.S. natural gas demand could lead to long-term average wellhead price reductions of 0.8% to 2%, and that each megawatt-hour of renewable energy and energy efficiency may benefit natural gas consumers to the tune of at least $7.5 to $20.

  10. What is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions. PDF icon What is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) More Documents & Publications What is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) Technology Integration Overview Technology Integration Overview

  11. Sandia National Laboratories: 100 Resilient Cities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100 Resilient Cities - Sandia Challenge Facebook Twitter YouTube Flickr RSS 100 Resilient Cities - Sandia Challenge 100 Resilient Cities Helping leaders better assess resilience challenges Picture of global map and transportation Providing technical expertise to help cities better address the shocks & stresses of the 21st Century Solar panels Energy Researcher in lab Water Medical image Medical Red and green peppers Food Picture of globe Economy Map of city Risk Analysis Worker and machine

  12. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    April 2009 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT APRIL 2009 Page 2 WELCOME! Welcome to the April 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2009 and April 15, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  13. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    January 2009 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JANUARY 2009 Page 2 WELCOME! Welcome to the January 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 12, 2009 and January 30, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  14. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities Alternative Fuel Price Report July 2009 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2009 WELCOME! Welcome to the July 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 20, 2009 and July 31, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders.

  15. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    July 2008 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2008 Page 2 WELCOME! Welcome to the July 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 21, 2008 and July 31, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders.

  16. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    October 2008 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2008 Page 2 WELCOME! Welcome to the October 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 2, 2008 and October 16, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  17. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    9 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2009 Page 2 WELCOME! Welcome to the October 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 16, 2009 and October 26, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities

  18. Microsoft Word - DOE-ID-15-030 City College EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 SECTION A. Project Title: Experimental Investigation of Forced Convection and Natural Circulation Cooling of a VHTR Core under Normal Operation and Accident Scenarios - City College of New York SECTION B. Project Description City College of New York proposes to experimentally investigate the coolant flow and heat transfer behavior in a prismatic core of a Very High Temperature Gas-Cooled Reactor (VHTR) under accident conditions. The objectives of this proposal are to perform the following

  19. Clean Cities: Houston-Galveston Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 26,309 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based greenhouse gas savings. Annual...

  20. Breaking Ground for GE Oil & Gas Tech Center|GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Oklahoma City 125M global hub to accelerate innovation, expanding GE's R&D investment in oil and gas technology New agreement using GE's New Global Research Oil & Gas...

  1. Secretary Bodman Tours LNG Powered City Bus in Seoul | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNG Powered City Bus in Seoul Secretary Bodman Tours LNG Powered City Bus in Seoul December 13, 2006 - 9:46am Addthis Joins Secretary Gutierrez to Highlight Cooperation in Developing and Deploying Clean Energy Technologies SEOUL, KOREA - U.S. Secretary of Energy Samuel W. Bodman today joined U.S. Commerce Secretary Carlos Gutierrez in Seoul, Korea to view a city bus and industrial equipment powered by liquefied natural gas (LNG) built with U.S. technology. Secretaries Bodman and Gutierrez and

  2. Brigham City Hydro Generation Project

    SciTech Connect (OSTI)

    Ammons, Tom B.

    2015-10-31

    Brigham City owns and operates its own municipal power system which currently includes several hydroelectric facilities. This project was to update the efficiency and capacity of current hydro production due to increased water flow demands that could pass through existing generation facilities. During 2006-2012, this project completed efficiency evaluation as it related to its main objective by completing a feasibility study, undergoing necessary City Council approvals and required federal environmental reviews. As a result of Phase 1 of the project, a feasibility study was conducted to determine feasibility of hydro and solar portions of the original proposal. The results indicated that the existing Hydro plant which was constructed in the 1960’s was running at approximately 77% efficiency or less. Brigham City proposes that the efficiency calculations be refined to determine the economic feasibility of improving or replacing the existing equipment with new high efficiency equipment design specifically for the site. Brigham City completed the Feasibility Assessment of this project, and determined that the Upper Hydro that supplies the main culinary water to the city was feasible to continue with. Brigham City Council provided their approval of feasibility assessment’s results. The Upper Hydro Project include removal of the existing powerhouse equipment and controls and demolition of a section of concrete encased penstock, replacement of penstock just upstream of the turbine inlet, turbine bypass, turbine shut-off and bypass valves, turbine and generator package, control equipment, assembly, start-up, commissioning, Supervisory Control And Data Acquisition (SCADA), and the replacement of a section of conductors to the step-up transformer. Brigham City increased the existing 575 KW turbine and generator with an 825 KW turbine and generator. Following the results of the feasibility assessment Brigham City pursued required environmental reviews with the DOE and the U.S. Fish and Wildlife Services (USFWS) concurring with the National Environmental Policy Act of 1969 (NEPA) It was determined that Brigham City’s Upper Hydroelectric Power Plant upgrade would have no effect to federally listed or candidate species. However Brigham City has contributed a onetime lump sum towards Bonneville cutthroat trout conservation in the Northern Bonneville Geographic Management Unit with the intention to offset any impacts from the Upper Hydro Project needed to move forward with design and construction and is sufficient for NEPA compliance. No work was done in the river or river bank. During construction, the penstock was disconnected and water was diverted through and existing system around the powerhouse and back into the water system. The penstock, which is currently a 30-inch steel pipe, would be removed and replaced with a new section of 30-inch pipe. Brigham City worked with the DOE and was awarded a new modification and the permission to proceed with Phase III of our Hydro Project in Dec. 2013; with the exception to the modification of the award for the construction phase. Brigham City developed and issued a Request for Proposal for Engineer and Design vendor. Sunrise Engineering was selected for the Design and throughout the Construction Phase of the Upper Hydroelectric Power Plant. Brigham City conducted a Kickoff Meeting with Sunrise June 28, 2013 and received a Scope of Work Brigham City along with engineering firm sent out a RFP for Turbine, Generator and Equipment for Upper Hydro. We select Turbine/Generator Equipment from Canyon Industries located in Deming, WA. DOE awarded Brigham City a new modification and the permission to proceed with Phase III Construction of our Hydro Project. Brigham City Crews removed existing turbine/generator and old equipment alone with feeder wires coming into the building basically giving Caribou Construction an empty shell to begin demolition. Brigham City contracted with Caribou Construction from Jerome, Idaho for the Upper Power Plant construction. A kickoff meeting was June 24, 2014 and demolition was immediately started on building. Because of a delivery delay of Turbine, Generator and Equipment from Canyon Brigham City had to request another extension for the final date of completion. DOE awarded modification (.007) to Brigham City with a new completion date of August 1, 2015. The Turbine has had a few adjustments to help with efficiency; but the Generator had a slight vibration when generator got hot so Canyon Industries had U S Motor’s that manufactured the generator come to check out the issue. The other Equipment seems to be running normal. Brigham City, Sunrise Engineering and Canyon Industries met to determine what the vibration in the generator was and how to solve the issue Us Motor’s found some welds that failed: they have been repaired. U S Motor’s delivered the repaired generator Feb. 17, 2015. Canyon Industries arranged for a crane to installed generator in Power Plant. U S Motor’s balanced and wired generator. Plant Operators put the generator back on line. Canyon Industries returned and gave their approval to keep Hydro online. After Hydro was put back into operations it kept going off line because of overheating issues. Canyon Industries returned and replaced sensors and adjusted them to the proper settings for normal operations. Brigham City added additional steel screens to windows to increase air flow in Power Plant Building. After construction phase of the Upper Hydro Plant some landscaping has been restored around the building additional gravel brought in and leveled out and the road that was cut through for conduits to run wires. A retaining wall was installed to protect penstock. The Upper Hydro Plant is complete and in full operations. The final reimbursement was submitted.

  3. EA-358 Twin Cities Energy, LLC | Department of Energy

    Energy Savers [EERE]

    8 Twin Cities Energy, LLC EA-358 Twin Cities Energy, LLC Order authorizing Twin Cities Energy, LLC to export electric energy to Canada PDF icon EA-358 Twin Cities Energy, LLC More Documents & Publications Application to Export Electric Energy OE Docket No. EA-358 Twin Cities Energy, LLC EA-344 Twin Cities Power-Canada, LLC EA-344-A Twin Cities Power

  4. Understanding Energy Use in Cities Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding Energy Use in Cities Infographic Understanding Energy Use in Cities Infographic Understanding Energy Use in Cities Infographic This Cities Leading through Energy Analysis and Planning (Cities-LEAP) infographic describes the key points from the report, City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities. Download this infographic. Read the Report cities-leap paper cover.jpg Read City-Level Energy Decision Making: Data Use in

  5. Traverse City Light & Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    City Light & Power Wind Farm Jump to: navigation, search Name Traverse City Light & Power Wind Farm Facility Traverse City Light & Power Sector Wind energy Facility Type Community...

  6. Minnkota Power Cooperative Wind Turbine (Valley City) | Open...

    Open Energy Info (EERE)

    Valley City) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Valley City) Facility Minnkota Power Cooperative Wind Turbine (Valley City) Sector Wind...

  7. City of Pittsburgh Implementation Model: Green Initiatives Trust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City of Pittsburgh Implementation Model: Green Initiatives Trust Fund City of Pittsburgh implementation model, Green initiatives trust fund. Author: U. S. Department of Energy City ...

  8. City of Fort Collins Comment on Information Collection Extension...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City of Fort Collins Comment on Information Collection Extension, October 2011 City of Fort Collins Comment on Information Collection Extension, October 2011 The City of Fort...

  9. City of Holyoke, Massachusetts (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Holyoke, Massachusetts (Utility Company) Jump to: navigation, search Logo: Holyoke City of Name: Holyoke City of Abbreviation: HGED Place: Massachusetts Phone Number: (413)...

  10. Windy City Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Windy City Renewable Energy LLC Jump to: navigation, search Logo: Windy City Renewable Energy LLC Name: Windy City Renewable Energy LLC Place: Chicago, Illinois Zip: 60606 Sector:...

  11. Jiangxi Province Ruijin City Liujinba Hydro Development Co Ltd...

    Open Energy Info (EERE)

    Ruijin City Liujinba Hydro Development Co Ltd Jump to: navigation, search Name: Jiangxi Province Ruijin City Liujinba Hydro Development Co,. Ltd. Place: Ruijin city, Jiangxi...

  12. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

  13. SEP Success Story: City in Colorado Fueling Vehicles with Gas...

    Broader source: Energy.gov (indexed) [DOE]

    duty CNG fueling station officially opened on Earth Day. | Photo courtesy of Ivan Smith Furniture SEP Success Story: Louisiana Company Makes Switch to CNG, Helps Transform ...

  14. Oil & Gas Technology at Oklahoma City | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Like AlicePinneyinspirationV Getting inspired at the intersection of innovation and creativity Raymond-MurphyWaterV Researchers at OGTC Seek Sustainable Produced Water...

  15. Clean Cities: Western Riverside County Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    region of Riverside County. Designated: October 24, 1997 Alternative Fueling Stations: Natural Gas: 5 Electric: 34 Propane: 6 Petroleum and GHG Savings* Total Gallons Saved Total...

  16. Model Documentation Report: Natural Gas Transmission and Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    on the same source and analyst judgment. The production growth rate is adjusted using an additive factor based on the degree to which the average lower 48 wellhead price varies...

  17. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (LNG) arena, where imports increased to over 1.3 Bcf per day due to a plant performance test being conducted last week. Wellhead Prices Annual Energy Review More Price Data Storage...

  18. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    the rest of the winter and perhaps well into spring, with prices averaging 4.90 per MMBtu through March and 4.45 in April (Short-Term Energy Outlook, February 2003). Wellhead...

  19. Natural Gas Summary from the Short-Term Energy Outlook

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    the rest of the winter and the first part of spring, with prices averaging 5.19 per MMBtu through March and 4.58 in April (Short-Term Energy Outlook, February 2004). Wellhead...

  20. City of Santa Monica- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    The City of Santa Monica made history June 1, 1999, as green electricity began powering all municipal facilities -- including the Santa Monica Airport, City Hall and the Santa Monica Pier -- making...

  1. City Solar AG | Open Energy Information

    Open Energy Info (EERE)

    services for large-scale PV power plants, also has a division called City Solar Invest to develop its own plants. References: City Solar AG1 This article is a stub. You...

  2. Salt Lake City- High Performance Buildings Requirement

    Broader source: Energy.gov [DOE]

    Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

  3. La Porte City Utilities | Open Energy Information

    Open Energy Info (EERE)

    Porte City Utilities Jump to: navigation, search Name: La Porte City Utilities Place: Iowa Phone Number: (319)342-3139 or (319) 342-3160 Website: lpcia.comservices Facebook:...

  4. Sun City Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Logo: Sun City Solar Energy Name: Sun City Solar Energy Address: 20227 S. 137th E. Ave. Place: Bixby, Oklahoma Zip: 74008 Sector: Solar Product:...

  5. City of Philadelphia- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    *In contrast to renewable energy purchasing goals of many local governments, Philadelphia's initiative targets total electricity use within the city as opposed to only purchases made by the city ...

  6. SolarCity Corp | Open Energy Information

    Open Energy Info (EERE)

    Place: Foster City, California Zip: 94404 Sector: Solar Product: US-based designer and installer of solar systems for domestic and commercial use. References: SolarCity Corp1...

  7. Clean Cities Now Vol. 17, No. 1

    SciTech Connect (OSTI)

    2013-05-24

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  8. City of Gainesville- Public Facilities Siting

    Broader source: Energy.gov [DOE]

    The City of Gainesville requires the design process for public facilities within city limits to take into consideration current and future solar access. In addition, regulated trees may be removed...

  9. City of Ann Arbor- PACE Financing

    Broader source: Energy.gov [DOE]

    The City of Ann Arbor offers Property Assessed Clean Energy (PACE) financing for commercial properties located within the city. Projects will undergo a voluntary special assessment and may range ...

  10. City of Ann Arbor- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    The city came short of its 2010 goal, achieving 19.8% renewables by 2010. In April 2011, the City Council passed a new goal to reach 30% renewables by 2015 (compared to 2000 levels) in municipal...

  11. Kansas City Power & Light- Solar PV Rebates

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light and its affiliate Kansas City Power and Light Greater Missouri Operations (collectively referred to as KCP&L) offer rebates to their customers for the installation...

  12. City of Jacksonville- Sustainable Public Buildings

    Broader source: Energy.gov [DOE]

    In 2009, the Jacksonville City Office of Sustainability Initiatives announced the creation of the Sustainable Building Program. As part of the program, all new city-owned buildings must meet...

  13. Clean Cities Now Vol. 16.1

    SciTech Connect (OSTI)

    2012-05-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  14. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides contact information for program staff of the U.S. Department of Energy's Clean Cities program, as well as contact information for the nearly 100 local Clean Cities coalitions across the country.

  15. AeroCity LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: AeroCity LLC Place: Lake Katrine, New York Sector: Wind energy Product: Micro urban wind turbine maker based in New York State. References: AeroCity LLC1 This article...

  16. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  17. National Engineers Week: Future City Competition

    ScienceCinema (OSTI)

    None

    2012-06-14

    2011 Future Cities Competition inspires students all across South Carolina to pursue careers in environmental protection and engineering.

  18. What is Clean Cities? July 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 active coalitions.

  19. (Consultecnia, Guatemala City (Guatemala)); Altseimer, J.; Thayer...

    Office of Scientific and Technical Information (OSTI)

    Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion) 15 GEOTHERMAL ENERGY; 60 APPLIED LIFE SCIENCES; DEHYDRATORS; DESIGN; OPERATION; PERFORMANCE;...

  20. SSL Demonstration: Central Park, New York City

    SciTech Connect (OSTI)

    2012-11-01

    GATEWAY program report brief summarizing an SSL pathway lighting demonstration in Central Park in New York City.

  1. SSL Demonstration: Street Lighting, Kansas City, MO

    SciTech Connect (OSTI)

    2013-08-01

    GATEWAY program report brief summarizing an SSL street lighting demonstration at nine separate installations in Kansas City, MO.

  2. Clean Cities Reaches Across the Sea

    Broader source: Energy.gov [DOE]

    Clean Cities International collaborates with leaders from Kazakhstan and Sweden share best practices and accomplish mutual goals.

  3. What is Clean Cities? December 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 active coalitions.

  4. Clean Cities Coalition Regions | Department of Energy

    Office of Environmental Management (EM)

    Clean Cities Coalition Regions Clean Cities Coalition Regions Nearly 100 Clean Cities coalitions work to reduce petroleum use in communities across the country. Led by Clean Cities coordinators, coalitions are composed of businesses, fuel providers, vehicle fleets, state and local government agencies, and community organizations. These stakeholders come together to share information and resources, educate the public, help craft public policy, and collaborate on projects that reduce petroleum

  5. Falls City, Texas, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Falls City, Texas, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site located at Falls City, Texas. The site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Falls City Disposal Site Site Description and History The Falls City disposal site is the location of a former uranium-ore processing facility in Karnes County, Texas, approximately 40 miles southeast of San Antonio

  6. PRELIMINARY SURVEY OF TEXAS CITY CHEMICALS, INC.

    Office of Legacy Management (LM)

    TEXAS CITY CHEMICALS, INC. (BORDEN ct1Er4IcAL DIVISION 0~ BORDEN, INC.) TEXAS CITY, TEXAS Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program TEXAS CITY CHEMICALS, INC. (BORDEN CHEMICAL DIVISION 0~ BORDEN, INC. > TEXAS CITY, TEXAS At the request of the

  7. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    1 Clean Cities Alternative Fuel Price Report April 2011 Page 2 WELCOME! Welcome to the April 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2011 and April 15, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information

  8. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    0 Clean Cities Alternative Fuel Price Report January 2010 Page 2 WELCOME! Welcome to the January 2010 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 19, 2010 and January 29, 2010 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price

  9. Clean Cities Alternative Fuel Price Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    1 Clean Cities Alternative Fuel Price Report October 2011 Page 2 WELCOME! Welcome to the October 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between September 30, 2011 and October 14, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price

  10. Clean Cities Now, Vol. 18, No. 2

    SciTech Connect (OSTI)

    2015-01-19

    This is version 18.2 of Clean Cities Now, the official biannual newsletter of the Clean Cities program. Clean Cities is an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  11. Kansas City Data Dashboard | Department of Energy

    Energy Savers [EERE]

    Data Dashboard Kansas City Data Dashboard The data dashboard for Kansas City, a partner in the Better Buildings Neighborhood Program. File Kansas City Data Dashboard More Documents & Publications Camden, New Jersey Data Dashboard Washington -- SEP Data Dashboard Nevada -- SEP Data Dashboard

  12. Clean Cities White Paper Template

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    iii CONTENTS ACKNOWLEDGEMENTS ...................................................................................................... v GLOSSARY ............................................................................................................................. vii 1 INTRODUCTION TO HYDRAULIC FRACTURING AND SHALE GAS PRODUCTION ....................................................................................................... 1 1.1 Road and Well Pad Construction

  13. Clean Cities Designation Guide: A Resource for Developing, Implementing, and Sustaining Your Clean Cities Coalition

    SciTech Connect (OSTI)

    Not Available

    2008-04-01

    Document serves as an instruction manual for developing, implementing, and running a Clean Cities coalition.

  14. Clean Cities 2012 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

  15. SANBAG Natural Gas Truck Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Truck Project SANBAG Natural Gas Truck Project 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt044_kirkhoff_2010_p.pdf More Documents & Publications SANBAG - Ryder Natural Gas Vehicle Project SANBAG - Ryder Natural Gas Vehicle Project Vehicle Technologies Office Merit Review 2015: Clean Cities "Tiger Team" Technical and Problem Solving Assistance

  16. Development of a thermoacoustic natural gas liquefier.

    SciTech Connect (OSTI)

    Wollan, J. J.; Swift, G. W.; Backhaus, S. N.; Gardner, D. L.

    2002-01-01

    Praxair, in conjunction with the Los Alamos National Laboratory, is developing a new technology, thermoacoustic heat engines and refrigerators, for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems will be developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed. In February 2001 Praxair, Inc. purchased the acoustic heat engine and refrigeration development program from Chart Industries. Chart (formerly Cryenco, which Chart purchased in 1997) and Los Alamos had been working on the technology development program since 1994. The purchase included assets and intellectual property rights for thermoacoustically driven orifice pulse tube refrigerators (TADOPTR), a new and revolutionary Thermoacoustic Stirling Heat Engine (TASHE) technology, aspects of Orifice Pulse Tube Refrigeration (OPTR) and linear motor compressors as OPTR drivers. Praxair, in cooperation with Los Alamos National Laboratory (LANL), the licensor of the TADOPTR and TASHE patents, is continuing the development of TASHE-OPTR natural gas powered, natural gas liquefiers. The liquefaction of natural gas, which occurs at -161 C (-259 F) at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 TADOPTR invention by Drs. Greg Swift (LANL) and Ray Radebaugh (NIST) demonstrated the first technology to produce cryogenic refrigeration with no moving parts. Thermoacoustic engines and refrigerators use acoustic phenomena to produce refrigeration from heat. The basic driver and refrigerator consist of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. The liquefier development program is divided into two components: Thermoacoustically driven refrigerators and linear motor driven refrigerators (LOPTRs). LOPTR technology will, for the foreseeable future, be limited to natural gas liquefaction capacities on the order of hundreds of gallons per day. TASHE-OPTR technology is expected to achieve liquefaction capacities of tens of thousands of gallons per day. This paper will focus on the TASHE-OPTR technology because its natural gas liquefaction capacity has greater market opportunity. LOPTR development will be mentioned briefly. The thermoacoustically driven refrigerator development program is now in the process of demonstrating the technology at a capacity of about 500 gallon/day (gpd) i.e., approximately 42,000 standard cubic feet/day, which requires about 7 kW of refrigeration power. This capacity is big enough to illuminate the issues of large-scale acoustic liquefaction at reasonable cost and to demonstrate the liquefaction of about 70% of an input gas stream, while burning about 30%. Subsequent to this demonstration a system with a capacity of approximately 10{sup 6} standard cubic feet/day (scfd) = 10,000 gpd with a projected liquefaction rate of about 85% of the input gas stream will be developed. When commercialized, the TASHE-OPTRs will be a totally new type of heat-driven cryogenic refrigerator, with projected low manufacturing cost, high reliability, long life, and low maintenance. A TASHE-OPTR will be able to liquefy a broad range of gases, one of the most important being natural gas (NG). Potential NG applications range from distributed liquefaction of pipeline gas as fuel for heavy-duty fleet and long haul vehicles to large-scale liquefaction at on-shore and offshore gas wellheads. An alternative to the thermoacoustic driver, but with many similar technical and market advantages, is the linear motor compressor. Linear motors convert electrical power directly into oscillating linear, or axial, motion. Attachment of a piston to the oscillator results in a direct drive compressor. Such a compressor

  17. City Code Non-Transferable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    City Code Non-Transferable If the sales tax permit at this location becomes invalid then all associated permits will become invalid. If the business changes location or ownership or is discontinued for any reason, this permit must be returned to the Oklahoma Tax Commission for cancellation WITH AN EXPLANATION ON THE REVERSE SIDE. PLEASE POST IN CONSPICUOUS PLACE GENERAL ELECTRIC COMPANY 4211 METRO PKWY FORT MYERS FL 33916-9406 443111 8010 March 6, 2014 2102181888 Effective Expires Business

  18. Future City The Right Stuff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    City The Right Stuff NvE steps up for future technology. Marty Glasser takes over the security force. NSTec's Intellectual Property getting kudos. See page 6. See pages 4. New NNSS Weather Website Puts Site Conditions Center Stage On Jan. 7, the Nevada National Security Site (NNSS) weather organization, ARL/SORD, launched its new website, www.sord.nv.doe.gov. ARL/SORD is a Department of Commerce organization under the National Oceanic and Atmospheric Administration, Office of Oceanic and

  19. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  20. Clean Cities 2012 Vehicle Buyer's Guide (Brochure), Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2012 The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. This guide features a comprehensive list of vehicles set to hit the market in model year 2012. Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . . . . . . . . 5 Compressed Natural Gas . . . . . . . . . . . . 6

  1. Clean Cities Case Study: UPS delivers with Alternative Fuels

    SciTech Connect (OSTI)

    Frailey, M.

    1999-08-30

    In the fall of 1994, the UPS fleet in Landover, Maryland, began operating 20 vehicles on CNG. UPS selected CNG because natural gas is an abundant domestic resource that is available in almost every city in the US, and it also generally costs less than other fuels. The UPS project, funded by DOE through NREL and managed by TRI, was designed to test the feasibility of using CNG in a medium-duty pick-up and delivery fleet. This study is intended only to illustrate approaches that organizations could use in adopting AFVs into their fleets.

  2. H. R. 4564: a bill to amend the Internal Revenue Code of 1954 to provide a deduction and special net operating loss rules with respect to certain losses on domestic crude oil, to increase tariffs on petroleum and petroleum products, to require the Strategic Petroleum Reserve to be filled with stripper well oil, and to eliminate certain restrictions on the sale of natural gas and on the use of natural gas and oil. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, April 10, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The Secure Energy Supply Act of 1986 amends the Internal Revenue Code of 1954. Title I provides a deduction and special net operating loss treatment for certain losses on crude oil. Title II increases tariffs on petroleum and petroleum products, the revenues of which will cover authorized refunds. Title III provides that only stripper well oil or oil exchanged for stripper well oil will be used to fill the Strategic Petroleum Reserve. Title IV removes wellhead price controls and repeals Natural Gas Act jurisdiction over certain first sales of natural gas. Later titles repeal certain restrictions on the use of natural gas and petroleum, repeal incremental pricing requirements, and promote flexibility in rescheduling or marking down troubled loans. The bill was referred to the House Committees on Ways and Means, Energy and Commerce, and Banking, Finance, and Urban Affairs.

  3. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01-1556 In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit Robb A. Barnitt National Renewable Energy Laboratory - U.S. Department of Energy Copyright © 2008 SAE International ABSTRACT The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems' HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid

  4. Southeast Propane AutoGas Development Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt065_ti_jenkins_2011_p.pdf More Documents & Publications Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program State of Indiana/Greater IN Clean Cities Alternative Fuels Implementation Plan

  5. National Nuclear Security Administration Kansas City Field Office

    National Nuclear Security Administration (NNSA)

    Department of Energy National Nuclear Security Administration Kansas City Field Office 14520 Botts Road Kansas City, Missouri 64147 Kansas City Plant Related Web Pages Kansas City Plant Home Page - Provides background information and related news on the Kansas City Plant. Links to local site web page which contains information on plant history, technologies, and other related topics. http://www.nnsa.energy.gov/aboutus/ourlocations/kansas-city-plant Kansas City Plant Contracts - Contains the

  6. C:\ANNUAL\Vol2chps.v8\ANNUAL2.VP

    Gasoline and Diesel Fuel Update (EIA)

    0 1967 1970 1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 0 2 4 6 8 10 0 80 160 240 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Residential Commercial Industrial Electric Utilities City Gate Wellhead Note: Beginning in 1996, consumption of natural gas for agricultural use was classified as industrial use. In 1995 and earlier years, agricultural use was classified as commercial use. Sources: Electric Utilities: 1967-1977: Federal Power Commission (FPC). 1978-1993:

  7. Koyukuk City/Tribal Office Rehabilitation Project

    SciTech Connect (OSTI)

    Folger, Kathryn Kristi; Lolnitz, Darlene

    2015-09-30

    The goal of this project is to reduce energy costs at the City office Building in Koyukuk by at least 50% through Energy Efficiency and Weatherization measures.

  8. Prairie City Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titlePrairieCityBiomassFacility&oldid397964" Feedback Contact needs updating Image needs updating...

  9. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  10. Rebuilding It Better: Greensburg, Kansas, City Hall

    SciTech Connect (OSTI)

    D. Egan

    2010-04-13

    This document showcases the LEED-Platinum designed Greensburg City Hall, which was rebuilt green, after a massive tornado destroyed Greensburg, Kansas in May 2007.

  11. City of Charleston- CharlestonWISE Program

    Broader source: Energy.gov [DOE]

    CharlestonWISE is an energy efficiency program for homeowners within the City of Charleston. The program offers rebates on completed home performance improvements for qualified residential...

  12. City of Tallahassee Utilities- Grant Programs

    Broader source: Energy.gov [DOE]

    The City of Tallahassee Utilities offers multiple grant programs for e residents to improve the energy efficiency of homes and businesses. 

  13. clean cities | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and energy security by supporting local actions to reduce petroleum consumption in transportation. A national network of nearly 100 Clean Cities coalitions brings together...

  14. City of Ellensburg Renewable Energy Park

    Broader source: Energy.gov [DOE]

    This presentation was given at the March 19, 2013, CommRE webinar on Renewable Energy Parks by Robert Titus, City of Ellensburg, Washington special projects manager.

  15. Building Green in Greensburg: City Hall Building

    Broader source: Energy.gov [DOE]

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

  16. Reaching 100% Renewable Energy, City of Aspen

    SciTech Connect (OSTI)

    2015-08-01

    This brochure describes the analysis and process used by NREL to assist the City of Aspen in attaining its 100% renewable energy goal.

  17. SolarCity | Open Energy Information

    Open Energy Info (EERE)

    Drive Place: Foster City, California Zip: 94404 Region: Bay Area Sector: Solar Product: Solar installer Website: www.solarcity.com Coordinates: 37.563247, -122.277403 Show...

  18. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  19. Clean Cities Regional Support & Petroleum Displacement Awards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Support & Petroleum Displacement Awards Clean Cities Regional Support & Petroleum Displacement Awards 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  20. Energy Saver Heroes: Clean Cities Coordinators

    Broader source: Energy.gov [DOE]

    Clean Cities, the deployment arm of EERE’s Vehicle Technology Program, works to support local decisions to reduce petroleum consumption in transportation.

  1. Clean Cities Now, Vol. 10, No. 2

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Newsletter features articles on Clean Cities, such as coalition news, stakeholder success stories, and Technical Assistance projects. Industry news, EPAct updates, and new resources are also covered.

  2. Property:GBIG/City | Open Energy Information

    Open Energy Info (EERE)

    City Jump to: navigation, search This is a property of type String. Retrieved from "http:en.openei.orgwindex.php?titleProperty:GBIGCity&oldid509335...

  3. City of Scottsdale- Green Building Incentives

    Broader source: Energy.gov [DOE]

    Incentives include expedited plan review, green building inspections, lectures, workshops, a homeowner’s manual, recognition on the city web site, and free promotional green building materials,...

  4. Alice Solar City Consortium | Open Energy Information

    Open Energy Info (EERE)

    search Name: Alice Solar City Consortium Place: Alice Springs, Northern Territory, Australia Zip: NT 0871 Sector: Solar Product: A consortium repsonsible for developing the...

  5. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  6. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  7. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  8. Oklahoma City- Green Home Loan Program

    Broader source: Energy.gov [DOE]

    The loan program is administered through the city's Community Action Agency. Apply by calling the Agency at (405) 232-0199.

  9. City of Aspen- Energy Assessment Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Aspen encourages interested residents and businesses to increase the energy efficiency of homes and offices through the Energy Assessment Program. Participating homes and offices must...

  10. Clean Cities Now, Vol. 10, No. 3

    SciTech Connect (OSTI)

    Not Available

    2006-07-01

    Newsletter features articles on Clean Cities, such as coalition news, stakeholder success stories, and Technical Assistance projects. Industry news, EPAct updates, and new resources are also covered.

  11. PermaCity Corp | Open Energy Information

    Open Energy Info (EERE)

    search Name: PermaCity Corp Place: Commerce, California Zip: 90040 Sector: Buildings Product: US-based provider of turnkey PV and passive system installation for...

  12. Kansas City Completes Innovative Business Incubator | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The partners helped transform this once abandoned building on a brownfield site in the city's urban core into a LEED Gold certified and ENERGY STAR qualified structure. The ...

  13. Tuba City, Arizona, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    UMTRCA Title I UMTRCA Title I Page 1 of 3 Fact Sheet Tuba City, Arizona, Disposal Site This fact sheet provides information about the Tuba City, Arizona, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title I of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Tuba City, Arizona, Disposal Site Site Description and History The Tuba City, Arizona, Disposal Site is within the Navajo Nation and close to the Hopi

  14. Forest City Enterprises | Open Energy Information

    Open Energy Info (EERE)

    Enterprises Jump to: navigation, search Name: Forest City Enterprises Place: Denver, CO Zip: 80238 Website: www.forestcity.net Coordinates: 39.7564482, -104.8863279 Show Map...

  15. U.S. Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Jun-15 Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 View History Prices (Dollars per Thousand Cubic Feet) Wellhead NA NA NA NA NA NA 1973-2015 Imports 2.56 2.66 2.74 2.75 3.23 2.48 1989-2015...

  16. City of Denver- Green Building Requirement for City-Owned Buildings

    Broader source: Energy.gov [DOE]

    The updated Executive Order 123 states that “all buildings constructed, renovated, or maintained with City funds or using City bonding capacity are to be designed, constructed, operated, and main...

  17. Resource planning for gas utilities: Using a model to analyze pivotal issues

    SciTech Connect (OSTI)

    Busch, J.F.; Comnes, G.A.

    1995-11-01

    With the advent of wellhead price decontrols that began in the late 1970s and the development of open access pipelines in the 1980s and 90s, gas local distribution companies (LDCs) now have increased responsibility for their gas supplies and face an increasingly complex array of supply and capacity choices. Heretofore this responsibility had been share with the interstate pipelines that provide bundled firm gas supplies. Moreover, gas supply an deliverability (capacity) options have multiplied as the pipeline network becomes increasing interconnected and as new storage projects are developed. There is now a fully-functioning financial market for commodity price hedging instruments and, on interstate Pipelines, secondary market (called capacity release) now exists. As a result of these changes in the natural gas industry, interest in resource planning and computer modeling tools for LDCs is increasing. Although in some ways the planning time horizon has become shorter for the gas LDC, the responsibility conferred to the LDC and complexity of the planning problem has increased. We examine current gas resource planning issues in the wake of the Federal Energy Regulatory Commission`s (FERC) Order 636. Our goal is twofold: (1) to illustrate the types of resource planning methods and models used in the industry and (2) to illustrate some of the key tradeoffs among types of resources, reliability, and system costs. To assist us, we utilize a commercially-available dispatch and resource planning model and examine four types of resource planning problems: the evaluation of new storage resources, the evaluation of buyback contracts, the computation of avoided costs, and the optimal tradeoff between reliability and system costs. To make the illustration of methods meaningful yet tractable, we developed a prototype LDC and used it for the majority of our analysis.

  18. Elizabeth City State University: Elizabeth City, North Carolina (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    1985-09-25

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from July 1985 through December 1996. Funded by DOE, the six-station network provided 5-minute averaged measurements of direct normal, global, and diffuse horizontal solar irradiance. The data were processed at NREL to improve the assessment of the solar radiation resources in the southeastern United States. Historical HBCU data available online include quality assessed 5-min data, monthly reports, and plots. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network and data from the two remaining active stations, Bluefield State College and Elizabeth City State University, are collected by the NREL Measurement & Instrumentation Data Center (MIDC).

  19. Elizabeth City State University: Elizabeth City, North Carolina (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from July 1985 through December 1996. Funded by DOE, the six-station network provided 5-minute averaged measurements of direct normal, global, and diffuse horizontal solar irradiance. The data were processed at NREL to improve the assessment of the solar radiation resources in the southeastern United States. Historical HBCU data available online include quality assessed 5-min data, monthly reports, and plots. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network and data from the two remaining active stations, Bluefield State College and Elizabeth City State University, are collected by the NREL Measurement & Instrumentation Data Center (MIDC).

  20. What Is Clean Cities? Clean Cities Fact Sheet April 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  1. City-Level Energy Decision Making. Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities

    SciTech Connect (OSTI)

    Aznar, Alexandra; Day, Megan; Doris, Elizabeth; Mathur, Shivani; Donohoo-Vallett, Paul

    2015-07-08

    The Cities-LEAP technical report, City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities, explores how a sample of cities incorporates data into making energy-related decisions. This report provides the foundation for forthcoming components of the Cities-LEAP project that will help cities improve energy decision making by mapping specific city energy or climate policies and actions to measurable impacts and results.

  2. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  3. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  4. U.S. Department of Energy clean cities five-year strategic plan.

    SciTech Connect (OSTI)

    Cambridge Concord Associates

    2011-02-15

    Clean Cities is a government-industry partnership sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program, which is part of the Office of Energy Efficiency and Renewable Energy. Working with its network of about 100 local coalitions and more than 6,500 stakeholders across the country, Clean Cities delivers on its mission to reduce petroleum consumption in on-road transportation. In its work to reduce petroleum use, Clean Cities focuses on a portfolio of technologies that includes electric drive, propane, natural gas, renewable natural gas/biomethane, ethanol/E85, biodiesel/B20 and higher-level blends, fuel economy, and idle reduction. Over the past 17 years, Clean Cities coalitions have displaced more than 2.4 billion gallons of petroleum; they are on track to displace 2.5 billion gallons of gasoline per year by 2020. This Clean Cities Strategic Plan lays out an aggressive five-year agenda to help DOE Clean Cities and its network of coalitions and stakeholders accelerate the deployment of alternative fuel and advanced technology vehicles, while also expanding the supporting infrastructure to reduce petroleum use. Today, Clean Cities has a far larger opportunity to make an impact than at any time in its history because of its unprecedented $300 million allocation for community-based deployment projects from the American Recovery and Reinvestment Act (ARRA) (see box below). Moreover, the Clean Cities annual budget has risen to $25 million for FY2010 and $35 million has been requested for FY2011. Designed as a living document, this strategic plan is grounded in the understanding that priorities will change annually as evolving technical, political, economic, business, and social considerations are woven into project decisions and funding allocations. The plan does not intend to lock Clean Cities into pathways that cannot change. Instead, with technology deployment at its core, the plan serves as a guide for decision-making at both the national and local levels of Clean Cities over the next five years. The plan recognizes the need for flexibility and sets out a strategic direction that will build on the progress of current technologies and new opportunities presented in emerging fuels and technologies, such as hydrogen and fuel cells, as well as new niche markets such as off-road applications that build additional throughput at existing alternative fuel stations.

  5. Clean Cities 2016 Vehicle Buyer's Guide (Brochure), U.S. Department of Energy (DOE), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Buyer's Guide Clean Cities Biodiesel Ethanol Flex-Fuel Hybrid Electric Plug-In Hybrid All-Electric Hydrogen Fuel Cell Propane Natural Gas Disclaimers This report was prepared as an account of work sponsored by an agency of the United States govern- ment. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  6. Category:Cities | Open Energy Information

    Open Energy Info (EERE)

    category contains cities, towns, villages, etc. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "Cities" The following 200 pages are...

  7. Clean Cities Now Vol. 17, No. 2

    SciTech Connect (OSTI)

    2013-10-23

    The Fall 2013 issue of the biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on deployment of alternative fuels and advanced vehicles, and articles on Clean Cities coalition successes across the country.

  8. Clean Cities 2011 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.

    2012-12-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  9. Clean Cities Now, Vol. 18, No. 1

    SciTech Connect (OSTI)

    2014-04-30

    The Spring 2014 edition of the semi-annual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on deployment of alternative fuels and advanced vehicles, and articles on Clean Cities coalition successes across the country.

  10. Clean Cities Now Vol. 19, No. 2

    SciTech Connect (OSTI)

    2015-12-18

    Clean Cities Now is the official bi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  11. Clean Cities 2010 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.

    2012-10-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  12. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. Colorado Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  15. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  16. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  17. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. Tennessee Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  20. Mississippi Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  1. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. Illinois Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  3. Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    William Eleazer, PE Brown and Caldwell Project Design Manager St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids U.S Department of Energy - Biomass 2014 John Willis, PE, BCEE Brown and Caldwell Project Technical Supervisor Steven Marshall, PE St. Petersburg City Project Manager Eron Jacobson, PE Brown and Caldwell Gas Upgrade Systems Process Area Manager Project Summary Biogas to Recycled Natural Gas Technology Evaluation and Design Phase Future

  7. City of Tallahassee Innovative Energy Initiatives

    SciTech Connect (OSTI)

    Wilder, Todd; Moragne, Corliss L.

    2014-06-25

    The City of Tallahassee's Innovative Energy Initiatives program sought, first, to evaluate customer response and acceptance to in-home Smart Meter-enabled technologies that allow customers intelligent control of their energy usage. Additionally, this project is in furtherance of the City of Tallahassee's ongoing efforts to expand and enhance the City's Smart Grid capacity and give consumers more tools with which to effectively manage their energy consumption. This enhancement would become possible by establishing an "operations or command center" environment that would be designed as a dual use facility for the City's employees - field and network staff - and systems responsible for a Smart Grid network. A command center would also support the City's Office of Electric Delivery and Energy Reliability's objective to overcome barriers to the deployment of new technologies that will ensure a truly modern and robust grid capable of meeting the demands of the 2151 century.

  8. An evaluation of gas field rules in light of current conditions and production practices in the Panhandle non-associated gas fields

    SciTech Connect (OSTI)

    Brady, C.L.; O`Rear, C.H.

    1996-09-01

    During the early years of development in the Panhandle fields the Rule of Capture was king. Under the Rule of Capture each property owner has the right to drill as many wells as desired at any location. Adjacent property owners protect their rights by doing the same. Courts adopted the Rule of Capture to protect mineral owners from liability due to migration of oil and gas across property boundary lines. This general practice {open_quotes}to go and do likewise{close_quotes} generally leads to enormous economic and natural resource waste. Established to offset the waste created under the Rule of Capture is the doctrine of Correlative Rights. Correlative Rights is the fight of each mineral owner to obtain oil and gas from a common source of supply under lawful operations conducted from his property. However, each mineral owner has a duty to every other mineral owner not to extract oil and gas in a manner injurious to the common source of supply. This paper will examine the historical context of these common law principles with regard to the Panhandle non-associated gas fields. Discovered in 1917, the Panhandle fields are ideal to evaluate the merit of statutes and regulations enacted in response to production practices. As in many Texas fields, proration in the Panhandle fields is the primary mechanism to protect correlative rights and prevent waste. Signed and made effective May 1989, the current field rules pre-date much of the enhanced recovery techniques that use well-head vacuum compression. This paper reviews the gas rules in the 1989 Texas Railroad Commission order in light of current reservoir conditions and production practices.

  9. Fab City SPV India Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fab City SPV India Pvt Ltd Jump to: navigation, search Name: Fab City SPV India Pvt Ltd Place: India Product: Hyderabad-based company charged with setting up the Fab City SPV. Fab...

  10. National Nuclear Security Administration Kansas City Field Office

    National Nuclear Security Administration (NNSA)

    City Plant Related Web Pages Kansas City Plant Home Page - Provides background information and related news on the Kansas City Plant. Links to local site web page which contains ...

  11. FTCP Site Specific Information - Kansas City | Department of Energy

    Office of Environmental Management (EM)

    Kansas City FTCP Site Specific Information - Kansas City FTCP Agent Organization Name Phone E-Mail Kansas City Mark L. Holecek 816-488-3920 mark.holecek@nnsa.srs.gov

  12. Environmental Survey preliminary report, Kansas City Plant, Kansas City, Missouri

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE), Kansas City Plant (KCP), conducted March 23 through April 3, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the KCP. The Survey covers all environmental media and all areas of environmental regulations. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data observations of the operations performed at the KCP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by DOE's Argonne National Laboratory. When completed, the results will be incorporated into the KCP Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the KCP Survey. 94 refs., 39 figs., 55 tabs.

  13. Cities Leading Through Energy Analysis and Planning Infographic |

    Office of Environmental Management (EM)

    Department of Energy Cities Leading Through Energy Analysis and Planning Infographic Cities Leading Through Energy Analysis and Planning Infographic The Cities Leading through Energy Analysis and Planning (Cities-LEAP) project delivers standardized, localized energy data and analysis that enables cities to lead clean energy innovation and integrate strategic energy analysis into decision making. Two Cities-LEAP infographics catalog the programs and tools currently supporting local

  14. Dallas: Building a Greener City | Department of Energy

    Office of Environmental Management (EM)

    Dallas: Building a Greener City Dallas: Building a Greener City August 28, 2013 - 2:10pm Addthis Thanks to the Energy Department's Energy Efficiency and Conservation Block Grant Program, the city of Dallas has improved the efficiency of more than 200 city-owned buildings, saving $1 million a year in energy costs. | Photo courtesy of the City of Dallas. Thanks to the Energy Department's Energy Efficiency and Conservation Block Grant Program, the city of Dallas has improved the efficiency of more

  15. Alternative Fuels Data Center: Cities Clean up With Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Cities Clean up With Biofuels to someone by E-mail Share Alternative Fuels Data Center: Cities Clean up With Biofuels on Facebook Tweet about Alternative Fuels Data Center: Cities Clean up With Biofuels on Twitter Bookmark Alternative Fuels Data Center: Cities Clean up With Biofuels on Google Bookmark Alternative Fuels Data Center: Cities Clean up With Biofuels on Delicious Rank Alternative Fuels Data Center: Cities Clean up With Biofuels on Digg Find More places to share Alternative Fuels Data

  16. Alternative Fuels Data Center: Clean Cities Celebrates 15th Anniversary

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Cities Celebrates 15th Anniversary to someone by E-mail Share Alternative Fuels Data Center: Clean Cities Celebrates 15th Anniversary on Facebook Tweet about Alternative Fuels Data Center: Clean Cities Celebrates 15th Anniversary on Twitter Bookmark Alternative Fuels Data Center: Clean Cities Celebrates 15th Anniversary on Google Bookmark Alternative Fuels Data Center: Clean Cities Celebrates 15th Anniversary on Delicious Rank Alternative Fuels Data Center: Clean Cities Celebrates 15th

  17. Florida Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead NA 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.49 5.07 3.93 4.44 5.05 NA 1984-2015 Residential 17.89 18.16 18.34 18.46 19.02 19.29 1967-2015 Commercial 10.60 11.14 10.41 10.87 11.38 10.74 1967-2015 Industrial 8.33 8.07 6.96 6.77 6.89 NA 1997-2015 Vehicle Fuel 17.98 5.56 9.83 1989-2012 Electric Power 6.54 5.86 4.80 5.08 5.58 4.41 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 56 6 16 15 0 1977-2014 Adjustments 64 -54 -2 1 -2 1977-2014

  18. Michigan Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price 3.79 1967-2010 Imports Price 4.73 4.38 2.88 4.02 8.34 1989-2014 Exports Price 4.85 4.44 3.12 4.07 6.26 1989-2014 Pipeline and Distribution Use Price 1967-2005 Citygate Price 7.07 6.18 5.50 4.91 5.54 4.22 1984-2015 Residential Price 11.32 10.47 9.95 9.09 9.33 8.78 1967-2015 Percentage of Total Residential Deliveries included in Prices 91.9 92.1 91.6 91.6 92.2 92.7 1989-2015 Commercial Price 8.95 9.14 8.35 7.82 8.28 7.49 1967-2015 Percentage of Total Commercial Deliveries included

  19. Florida Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price NA 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.49 5.07 3.93 4.44 5.05 NA 1984-2015 Residential Price 17.89 18.16 18.34 18.46 19.02 19.29 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 98.0 97.7 97.8 97.8 97.8 1989-2015 Commercial Price 10.60 11.14 10.41 10.87 11.38 10.74 1967-2015 Percentage of Total Commercial Deliveries included in Prices 100.0 38.5 37.0 33.3 32.3 NA 1990-2015 Industrial Price 8.33 8.07 6.96 6.77 6.89

  20. Maryland Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price NA 1967-2010 Imports Price 5.37 5.30 13.82 15.29 8.34 1999-2014 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.49 6.26 5.67 5.37 6.36 4.99 1984-2015 Residential Price 12.44 12.10 12.17 11.67 12.21 12.05 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 79.3 77.0 74.3 72.8 73.1 1989-2015 Commercial Price 9.87 10.29 10.00 10.06 10.52 10.00 1967-2015 Percentage of Total Commercial Deliveries included in Prices 100.0 27.3 24.7 26.2 27.3 27.4