Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE Considers Natural Gas Utility Service Options: Proposal Includes  

Broader source: Energy.gov (indexed) [DOE]

Considers Natural Gas Utility Service Options: Proposal Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering natural gas transportation and distribution requirements to support the Waste Treatment Plant (WTP) and evaporator operations at the Hanford Site in southeastern Washington State. DOE awarded a task order worth up to $5 million to the local, licensed supplier of natural gas in the Hanford area, Cascade Natural Gas Corporation (Cascade). Cascade will support DOE and its Environmental

2

Utility Data Collection Service  

Broader source: Energy.gov [DOE]

Presentation covers the utility data collection service and is given at the FUPWG 2006 Spring meeting, held on May 3-4, 2006 in Atlanta, Georgia.

3

FEMP Utility Services  

Broader source: Energy.gov (indexed) [DOE]

Utility Services Utility Services Karen Thomas & Deb Beattie  SPONSORED BY THE FEDERAL ENERGY MANAGEMENT PROGRAM  Overview  UESC Project Support  Agency / Utility Partnerships  Renewable Project Support  Design Assistance  Agency Energy Implementation Plans * * * * * * UESC Project Support Education UESC Workshops Agency Briefings Utility Briefings On-site team training Communications Web site Enabling documents * Case studies UESC Project Support Direct Project Assistance Project facilitation Advise & Consult In depth Contract development Technical Proposal review Performance Verification Agency / Utility Partnerships Federal Utility Partnership Working Group Strategic Partnering Meeting Renewable Projects  Resource Screening: - PV - Solar Hot Water

4

Utility Service Renovations  

Broader source: Energy.gov [DOE]

Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

5

Minimum Gas Service Standards (Ohio)  

Broader source: Energy.gov [DOE]

Natural gas companies in Ohio are required to follow the Minimum Gas Service Standards, which are set and enforced by the Public Utilities Commission of Ohio. These rules are found in chapter 4901...

6

Utility Data Collection Service  

Broader source: Energy.gov (indexed) [DOE]

Data Collection Service Data Collection Service Federal-Utility Partnership Working Group 4 May 2006 Paul Kelley, Chief of Operations, 78 th CES, Robins AFB David Dykes, Industrial Segment Mgr, Federal, GPC Topics  Background  Commodities Metered  Data Collection  Cost  Results Background  Robins AFB (RAFB) needed to:  Control electricity usage and considered Demand Control  Track and bill base tenants for energy usage  Metering Project Originated in 1993  $$ requirements limited interest  Developed criteria for available $$  Energy Policy Act 2005:  All facilities sub-metered by 2012  $$ no longer restricts metering project Metering Criteria prior to EPACT 2005  All New Construction - (per Air Force Instructions)

7

Utility Energy Services Contracts Guide  

Broader source: Energy.gov [DOE]

Document features a compilation of samples and templates developed as a resource to help Federal contracting officers task orders for utility energy service contracts (UESCs) under existing U.S. General Service Administration (GSA) areawide contracts (AWCs).

8

Rural Utilities Service Electric Program  

Broader source: Energy.gov [DOE]

The Rural Utilities Service Electric Programs loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements...

9

Gas Utility Pipeline Tax (Texas)  

Broader source: Energy.gov [DOE]

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

10

Rural Utilities Service | Open Energy Information  

Open Energy Info (EERE)

Utilities Service Name: Rural Utilities Service Abbreviation: RUS Address: USDA Rural Development, Room 4051-S, 1400 Independence Avenue SW Place: Washington, DC Zip: 20250-1510...

11

Utility Energy Service Contracts - Lessons Learned  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Service Contracts-Lessons Learned Service Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts ..........................................................................................................................3 Understanding Financing Factors ...........................................................................................................................................3

12

Utility Energy Service Contracts - Lessons Learned  

Broader source: Energy.gov (indexed) [DOE]

Service Contracts-Lessons Learned Service Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts ..........................................................................................................................3 Understanding Financing Factors ...........................................................................................................................................3

13

Utility Energy Services Contracting Overview | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Contracting Overview Utility Energy Services Contracting Overview Presentation-given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting-features an...

14

Utility Service Renovations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utility Service Renovations Utility Service Renovations Utility Service Renovations October 16, 2013 - 4:59pm Addthis Renewable Energy Options for Utility Service Renovations Photovoltaics Wind Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies

15

General Services Administration Public Utility Contracting  

Broader source: Energy.gov [DOE]

Presentationgiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingdiscusses the government utility bill, utility service characteristics, utility energy service contract (UESC) requirements, supplier diversity requirement, subcontracting plan requirements, reporting requirements, and the Subcontracting Orientation and Assistance Reviews (SOARs).

16

Public Service Commission and Natural Gas Safety Standards (Missouri)  

Broader source: Energy.gov [DOE]

This legislation establishes the state Public Service Commission, which has regulatory authority over the electric, gas, water, and telecommunications utilities. Section 386.572 of this legislation...

17

Utility Energy Service Contract Partnership Meetings | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

meetings and utility energy service contract (UESC) training. FEMP experts will train partnership meeting attendees on UESC partnership requirements and processes,...

18

Gas Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Utilities (Maine) Gas Utilities (Maine) Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Siting and Permitting Provider Public Utilities Commission Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one customer when any portion

19

" Federal Utility Energy Service Contracts"  

Broader source: Energy.gov (indexed) [DOE]

Federal Utility Energy Service Contracts" Federal Utility Energy Service Contracts" "*KEY ON SHEET 2*" "Agency","Facility","Utility","Contract Type","Contract Term","Task Order/Delivery Order","Award Date","Completion Date","Energy Conservation Measures Implemented In Project (Enter as many as applicable - See Key)","Project's Capital Cost ($)","Percent of Total Cost 3rd Party Financed","Rebate Amount ($)","Estimated Annual Cost Savings ($)","Estimated Annual kWh Saved","Estimated Annual KW Saved","Estimated Annual Natural Gas savings (please specify cubic feet, therms or MMBtu)","Estimated Annual Oil savings (gallons)","Estimated Annual water savings (gallons)"

20

Natural Gas Regulation - Delaware Public Service Commission (Delaware) |  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Regulation - Delaware Public Service Commission Natural Gas Regulation - Delaware Public Service Commission (Delaware) Natural Gas Regulation - Delaware Public Service Commission (Delaware) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Fuel Distributor Program Info State Delaware Program Type Generating Facility Rate-Making Provider Delaware Public Service Commission The Delaware Public Service Commission regulates only the distribution of natural gas to Delaware consumers. The delivery and administrative costs associated with natural gas distribution are determined in base rate proceedings before the Commission. The recovery of costs associated with the natural gas used by customers is determined annually as part of fuel adjustment proceedings. As a result of this process, rates for natural gas

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Utility Energy Services Contracts: Enabling Documents Update  

Broader source: Energy.gov (indexed) [DOE]

Documents Documents Update San Diego, CA November 28, 2007 Deb Beattie & Karen Thomas Overview  Legislative & Executive Actions  Legal Opinions  Agency Guidance  Contracts  Sample Documents  Resources www.eere.energy.gov/femp/pdfs/28792.pdf Enabling Legislation for Utility Programs Energy Policy Act of 1992 Section 152(f) - Utility Incentive Programs Section 152(f) - Utility Incentive Programs Agencies:  Are authorized and encouraged to participate in utility programs generally available to customers  May accept utility financial incentives, goods, and services generally available to customers  Are encouraged to enter into negotiations with utilities to design cost effective programs to address unique needs of facilities used by agency

22

Liberty Utilities (Gas) - Commercial Energy Efficiency Programs |  

Broader source: Energy.gov (indexed) [DOE]

Liberty Utilities (Gas) - Commercial Energy Efficiency Programs Liberty Utilities (Gas) - Commercial Energy Efficiency Programs Liberty Utilities (Gas) - Commercial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Custom Projects: $100,000 (existing facilities); $250,000 (new construction) Energy Efficiency Engineering Study: $10,000 Steam Traps: $2500 Programmable Thermostats: up to five units Boiler Reset Controls: up to two units Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount

23

Utility Energy Services Contracts: Enabling Documents Overview  

Broader source: Energy.gov [DOE]

Presentation covers the utility energy service contract (UESC) enabling documents overview and is given at the FUPWG 2006 Spring meeting, held on May 3-4, 2006 in Atlanta, Georgia.

24

Financing for Utility Energy Service Contracts  

Broader source: Energy.gov [DOE]

Financing is a significant portion of utility energy service contract (UESC) costs. Experience shows several things the Federal Government can do to get the best value by reducing UESC financial transaction costs and interest.

25

Utility Energy Service Contract Case Studies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Case Studies Case Studies Utility Energy Service Contract Case Studies October 7, 2013 - 3:25pm Addthis These case studies feature examples of successful projects that involved utility energy service contracts (UESC). Coast Guard Multi-Site UESC Project: Twelve-site project with 21 energy-conservation measures reduced electricity consumption by 19.1%, water consumption by 64.2%, and natural gas consumption by 21.1%. National Institute of Health: Saved at least $5 million in annual energy costs at its main campus in Bethesda, Maryland, through energy conservation measures. General Services Administration Ted Weiss Federal Building: Multiple energy conservation measures and utility services saved $256,000 in annual energy costs and 64,872 Btu per gross square foot. Patrick Air Force Base: Base-wide energy program implemented to exceed

26

Federal Energy Management Program: Utility Energy Service Contract Case  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility Energy Utility Energy Service Contract Case Studies to someone by E-mail Share Federal Energy Management Program: Utility Energy Service Contract Case Studies on Facebook Tweet about Federal Energy Management Program: Utility Energy Service Contract Case Studies on Twitter Bookmark Federal Energy Management Program: Utility Energy Service Contract Case Studies on Google Bookmark Federal Energy Management Program: Utility Energy Service Contract Case Studies on Delicious Rank Federal Energy Management Program: Utility Energy Service Contract Case Studies on Digg Find More places to share Federal Energy Management Program: Utility Energy Service Contract Case Studies on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts Types of Contracts

27

Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

(Gas) - Commercial Natural Gas Efficiency (Gas) - Commercial Natural Gas Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate Program < Back Eligibility Commercial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $300 Custom: Varies by project Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers rebates on energy efficient natural gas furnaces to its eligible commercial customers. New furnaces are eligible for a rebate incentive between $150 and $300, if the equipment meets program efficiency standards. Furnaces with AFUE between 92% of 95% are eligible for rebates if they are being installed as replacement units

28

Federal Energy Management Program: Financing for Utility Energy Service  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financing for Financing for Utility Energy Service Contracts to someone by E-mail Share Federal Energy Management Program: Financing for Utility Energy Service Contracts on Facebook Tweet about Federal Energy Management Program: Financing for Utility Energy Service Contracts on Twitter Bookmark Federal Energy Management Program: Financing for Utility Energy Service Contracts on Google Bookmark Federal Energy Management Program: Financing for Utility Energy Service Contracts on Delicious Rank Federal Energy Management Program: Financing for Utility Energy Service Contracts on Digg Find More places to share Federal Energy Management Program: Financing for Utility Energy Service Contracts on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts

29

Federal Energy Management Program: Resources on Utility Energy Service  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources on Resources on Utility Energy Service Contracts to someone by E-mail Share Federal Energy Management Program: Resources on Utility Energy Service Contracts on Facebook Tweet about Federal Energy Management Program: Resources on Utility Energy Service Contracts on Twitter Bookmark Federal Energy Management Program: Resources on Utility Energy Service Contracts on Google Bookmark Federal Energy Management Program: Resources on Utility Energy Service Contracts on Delicious Rank Federal Energy Management Program: Resources on Utility Energy Service Contracts on Digg Find More places to share Federal Energy Management Program: Resources on Utility Energy Service Contracts on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts

30

Avista Utilities (Gas)- Prescriptive Commercial Incentive Program  

Broader source: Energy.gov [DOE]

Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including cooking...

31

UCSC EMPLOYEE HOUSING APARTMENTS APPLICATION Rental rates include: rent, refuse collection, common area utilities, groundskeeping services, and repairs and  

E-Print Network [OSTI]

area utilities, groundskeeping services, and repairs and maintenance of the Laureate Court complex. Tenants pay for their own utilities (i.e., electricity, gas, water, telephone and cable services). A $750

California at Santa Cruz, University of

32

Utility Energy Services Contracts: Enabling Documents DRAFT  

Broader source: Energy.gov (indexed) [DOE]

Utility Energy Services Contracts: Enabling Documents 2008 Interim Update: Final Draft Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program November 2008 DOE/GO-102008-2588 www.eere.energy.gov/femp Department of Energy Washington, D.C. Dear Colleagues, The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) is pleased to present this third edition of Utility Energy Services Contracts: Enabling Documents. These documents provide a selected set of background information materials that clarify the authority for federal agencies to enter into utility energy services contracts (UESCs). Since the first edition, UESCs have been used successfully to implement nearly $2 billion in

33

City of Gas City, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City, Indiana (Utility Company) City, Indiana (Utility Company) Jump to: navigation, search Name City of Gas City Place Indiana Utility Id 6993 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Heat for Library or School Service Commercial Commercial and General Power Service Commercial Outdoor Lighting- 1000 W Lighting Outdoor Lighting- 175 W Lighting Outdoor Lighting- 400 W Lighting Public Street Lighting and Highway Lighting- 175 W Mercury Vapor/100 W HPS Lighting Public Street Lighting and Highway Lighting-400 W Mercury Vapor/250 W HPS

34

Federal Energy Management Program: Utility Energy Service Contracts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contracts to someone by E-mail Contracts to someone by E-mail Share Federal Energy Management Program: Utility Energy Service Contracts on Facebook Tweet about Federal Energy Management Program: Utility Energy Service Contracts on Twitter Bookmark Federal Energy Management Program: Utility Energy Service Contracts on Google Bookmark Federal Energy Management Program: Utility Energy Service Contracts on Delicious Rank Federal Energy Management Program: Utility Energy Service Contracts on Digg Find More places to share Federal Energy Management Program: Utility Energy Service Contracts on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts Types of Contracts Laws & Regulations Best Practices Federal Utility Partnership Working Group Partnership Meetings

35

Utility Energy Service Contracts Laws and Regulations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Contracts Laws and Regulations Contracts Laws and Regulations Utility Energy Service Contracts Laws and Regulations October 7, 2013 - 2:19pm Addthis The Energy Policy Act (EPAct) of 1992 authorizes and encourages Federal agencies to participate in utility energy efficiency programs. Legislation authorizing utility energy service contracts (UESCs) is outlined below, along with legal opinions outlining the use of UESCs by Federal agencies. Laws and Regulations 42 USC Section 8256 (Energy Policy Act of 1992): Incentives for Federal agencies, legislation addressing contracts, the Federal Energy Efficiency Fund, utility incentive programs, and the Financial Incentive Program for Facility Energy Managers. 10 USC Section 2913: Outlines energy savings contracts and related activities, shared energy savings contracts, participation in gas or

36

Natural Gas Utilities Options Analysis for the Hydrogen Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Utilities Options Analysis for the Hydrogen Economy Natural Gas Utilities Options Analysis for the Hydrogen Economy Presentation by 12-Richards to DOE Hydrogen Pipeline...

37

Natural Gas Utilities Options Analysis for the Hydrogen Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Utilities Options Analysis for the Hydrogen Economy Natural Gas Utilities Options Analysis for the Hydrogen Economy Objectives: Identify business opportunities and...

38

Federal Utility Partnership Working Group: Atlanta Gas Light...  

Broader source: Energy.gov (indexed) [DOE]

Group: Atlanta Gas Light Resources Federal Utility Partnership Working Group: Atlanta Gas Light Resources Presentation-given at the April 2012 Federal Utility Partnership Working...

39

NIST Measurement Services: Natural Gas Flow Calibration Service (NGFCS)  

E-Print Network [OSTI]

NIST Measurement Services: Natural Gas Flow Calibration Service (NGFCS) NIST Special Publication of Standards and Technology #12;i Table of Contents for the Natural Gas Flowmeter Calibration Service (NGFCS;1 Abstract This document describes NIST's high pressure natural gas flow calibration service (NGFCS). Flow

40

Chapter 41 - Acquisition of Utility Services | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 - Acquisition of Utility Services Chapter 41 - Acquisition of Utility Services 41.1Utilities0.pdf More Documents & Publications AcqGuide41pt1.doc&0; AcqGuide 5.2-OPAM...

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas concentration cells for utilizing energy  

DOE Patents [OSTI]

An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

Salomon, R.E.

1987-06-30T23:59:59.000Z

42

Gas concentration cells for utilizing energy  

DOE Patents [OSTI]

An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

Salomon, Robert E. (Philadelphia, PA)

1987-01-01T23:59:59.000Z

43

SETTING-UP AND PAYING UTILITIES SIGNING UP FOR UTILITY SERVICE  

E-Print Network [OSTI]

SETTING-UP AND PAYING UTILITIES SIGNING UP FOR UTILITY SERVICE When you sign up for utility service, you may be required to pay a deposit. Here are some questions you should ask a utility company should call to report service problems? If you have an issue with a utility company that you can

Bogaerts, Steven

44

Alternative Fuels Data Center: Utility District Natural Gas Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Utility District Utility District Natural Gas Fueling Station Regulation to someone by E-mail Share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Facebook Tweet about Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Twitter Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Google Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Delicious Rank Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Digg Find More places to share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on AddThis.com... More in this section... Federal

45

Federal Energy Management Program: Types of Utility Energy Service  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Types of Utility Types of Utility Energy Service Contracts to someone by E-mail Share Federal Energy Management Program: Types of Utility Energy Service Contracts on Facebook Tweet about Federal Energy Management Program: Types of Utility Energy Service Contracts on Twitter Bookmark Federal Energy Management Program: Types of Utility Energy Service Contracts on Google Bookmark Federal Energy Management Program: Types of Utility Energy Service Contracts on Delicious Rank Federal Energy Management Program: Types of Utility Energy Service Contracts on Digg Find More places to share Federal Energy Management Program: Types of Utility Energy Service Contracts on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts Types of Contracts Laws & Regulations

46

Competitive Subcontract Selection in Utility Energy Service Contracts  

Broader source: Energy.gov [DOE]

Presentation covers subcontract selections in utility energy service contracts and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

47

Working With Your Utility to Obtain Metering Services  

Broader source: Energy.gov (indexed) [DOE]

Dykes Dykes Federal Segment Mgr Georgia Power/Southern Company Wednesday, 22 May 2013 Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company  What is the Government Requirement ◦ New DoD Directive  What is Available from Your Serving Utility  Customer Metering Services  Issues to Consider  Conclusion 4.4 million customers 42,000+ MW 27,000 miles of transmission lines 3,700 substations 26,000 employees Other subsidiaries: Southern Linc, Southern Power, Southern Telecom, Southern Nuclear Retail Service Territory across 120,000 square miles  Section 103, EPAct 2005 - All Federal Agencies ◦ Meter electricity on all facilities 30,000 SqFt and larger ◦ Meter those facilities with significant energy usage

48

Washington Gas Energy Services (Delaware) | Open Energy Information  

Open Energy Info (EERE)

Services (Delaware) Services (Delaware) Jump to: navigation, search Name Washington Gas Energy Services Place Delaware Utility Id 20659 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1080/kWh Commercial: $0.0893/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Washington_Gas_Energy_Services_(Delaware)&oldid=412876" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes

49

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

50

Gas and Electric Utilities Regulation (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Generation Disclosure Provider South Dakota Public Utilities Commission This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the

51

Utility Energy Services Contracts: Enabling Documents  

Broader source: Energy.gov (indexed) [DOE]

CONTRACTS: ENABLING DOCUMENTS Karen Thomas National Renewable Energy Laboratory Overview * The Enabling Documents for Utility Energy Services Contracts (UESCs) - provide a selected set of background information that clarify the authority for Federal agencies to enter into UESCs. - and, is designed to assist Federal agency acquisition teams who are interested in implementing energy service projects. The Federal agencies' partners have benefited from the Enabling Documents as well. * Energy Policy Act of 2005 * 42 U.S.C. § 8256, Energy Policy Act of 1992 * 10 U.S.C. § 2865, Energy Savings at Military Installations * 10 U.S.C. § 2866, Water Conservation at Military Installations Legislative & Executive Actions * Federal Acquisition Regulations, Part 41 - - Authorizes GSA to prescribe policy and methods for the

52

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

53

Public Service Commission Authorization to Utilize an Alternative Method of  

Broader source: Energy.gov (indexed) [DOE]

Public Service Commission Authorization to Utilize an Alternative Public Service Commission Authorization to Utilize an Alternative Method of Cost Recovery for Certain Base Load Generation (Mississippi) Public Service Commission Authorization to Utilize an Alternative Method of Cost Recovery for Certain Base Load Generation (Mississippi) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Green Power Purchasing Industry Recruitment/Support Performance-Based Incentive Public Benefits Fund Provider Public Service Commission The Senate Bill 2793 authorizes the Public Service Commission (PSC) to

54

Natural Gas Utility Restructuring and Customer Choice Act (Montana)  

Broader source: Energy.gov [DOE]

These regulations apply to natural gas utilities that have restructured in order to acquire rate-based facilities. The regulations address customer choice offerings by natural gas utilities, which...

55

Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Programmable Thermostat: 1 per address Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $300 Programmable Thermostat: $20 Natural Gas Water Heater: $50 - $100 Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient measures and natural gas equipment. New furnaces, water heaters and programmable thermostats are eligible for a rebate incentive if the

56

Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Norwich Public Utilities (Gas) - Residential Energy Efficiency Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Furnaces: $400 Boilers: $600 Tankless Boiler/Water Heater Combined: $850 - $1050 Indirect Fired/Tankless Water Heaters: $250 - $450 Provider Norwich Public Utilities Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $1050 for natural gas furnaces, boilers,

57

Uniform System of Accounts for Gas Utilities (Maine)  

Broader source: Energy.gov [DOE]

This rule establishes a uniform system of accounts and annual report filing requirements for natural gas utilities operating in Maine.

58

Ocala Utility Services - Energy Efficiency Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Ocala Utility Services - Energy Efficiency Rebate Program Ocala Utility Services - Energy Efficiency Rebate Program Ocala Utility Services - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Water Heating Maximum Rebate Residential Insulation: $300 Commercial Insulation: $1,000 Program Info State Florida Program Type Utility Rebate Program Rebate Amount Central AC/Heat Pump: $250 Refrigerators: $75 Freezer: $75 Programmable Thermostats: $25 Clothes Washer: $100 Dishwasher: $75 Residential Insulation: $0.10 per square foot Commercial Insulation: $0.10 per square foot Self-installed Insulation: $75 Provider Ocala Utility Services Electric and Telecommunications

59

Texas Gas Service - Commercial Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Texas Gas Service - Commercial Energy Efficiency Rebate Program Texas Gas Service - Commercial Energy Efficiency Rebate Program Texas Gas Service - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount Front-loading Clothes Washers: up to $100 Commercial Water Heating System: up to 20% of cost Hydronic Heater: $125 per unit Infra-red Fryers: $400 Convection Ovens: $400 Conveyor Ovens: $400 Infra-red Griddles $200 Booster Heater: $500/unit Texas Gas Service (TGS) offers a range of financial incentives to commercal customers who purchase and install energy efficient commercial equipment. Eligible equipment includes commercial clothes washers, water heaters, hydronic heating systems, ovens, fryers, griddles and booster heaters.

60

Texas Gas Service - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Texas Gas Service - Residential Energy Efficiency Rebate Program Texas Gas Service - Residential Energy Efficiency Rebate Program Texas Gas Service - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Ventilation Heating Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Texas Program Type Utility Rebate Program Rebate Amount Attic Insulation: Up to $300 Duct Sealing: $0.08/sq ft. Natural Gas Equipment for Weatherization: Free Residential Hydronic Heating Program: $125 Water Heater: $40 Tankless or Super High-efficiency Water Heater: $300 Solar Water Heater with Natural Gas Backup: $750 Furnace $75 Furnace Tune-Up: $40

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Federal Energy Management Program: Utility Energy Service Contracts Laws  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contracts Laws and Regulations to someone by E-mail Contracts Laws and Regulations to someone by E-mail Share Federal Energy Management Program: Utility Energy Service Contracts Laws and Regulations on Facebook Tweet about Federal Energy Management Program: Utility Energy Service Contracts Laws and Regulations on Twitter Bookmark Federal Energy Management Program: Utility Energy Service Contracts Laws and Regulations on Google Bookmark Federal Energy Management Program: Utility Energy Service Contracts Laws and Regulations on Delicious Rank Federal Energy Management Program: Utility Energy Service Contracts Laws and Regulations on Digg Find More places to share Federal Energy Management Program: Utility Energy Service Contracts Laws and Regulations on AddThis.com... Energy Savings Performance Contracts ENABLE

62

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov (indexed) [DOE]

Alternate Energy Systems, Inc. Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 1 BioGas Project Applications for Federal Agencies and Utilities Wolfgang H. Driftmeier Alternate Energy Systems, Inc. 210 Prospect Park - Peachtree City, GA 30269 wdriftmeier@altenergy.com www.altenergy.com 770 - 487 - 8596 Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 2 BioGas Project Applications for Federal Agencies and Utilities Objective

63

Rethinking Future of Utilities: Supplying All Services through One Sustainable Utility Infrastructure  

Science Journals Connector (OSTI)

Rethinking Future of Utilities: Supplying All Services through One Sustainable Utility Infrastructure ... One of the critical points in supplying all services from one utility product lies in the fact of using products that already exist at the end point, such as waste (solid/liquid waste) or naturally distributed products (solar light, rain, wind, air, etc.). ...

Fatih Camci; Bogumil Ulanicki; Joby Boxall; Ruzanna Chitchyan; Liz Varga; Ferhat Karaca

2012-05-04T23:59:59.000Z

64

Working With Your Utility to Obtain Metering Services  

Broader source: Energy.gov [DOE]

Presentationgiven at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meetingcovers the government metering requirement, the U.S. Department of Defense (DoD) metering directive, and customer metering services available from utilities.

65

Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Emerging gas technologies to enhance industrial energy efficiency, challenges of integrating into the marketplace and an overview of DTE Energys energy efficiency programs for natural gas customers.

66

Ocala Utility Services - Solar Hot Water Heating Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Ocala Utility Services - Solar Hot Water Heating Rebate Program Ocala Utility Services - Solar Hot Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per account Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider Ocala Utility Services The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive approval from the Ocala Utility Services before installing equipment. The application can be found on the [http://www.ocalafl.org/COO3.aspx?id=947 program web site.] The system must be installed by a licensed Florida contractor on the customer's

67

Getting the Best Value with Utility Energy Service Contracts | Department  

Broader source: Energy.gov (indexed) [DOE]

Project Funding » Utility Energy Service Contracts » Getting the Project Funding » Utility Energy Service Contracts » Getting the Best Value with Utility Energy Service Contracts Getting the Best Value with Utility Energy Service Contracts October 7, 2013 - 2:20pm Addthis Federal agencies benefit from lessons learned during utility energy service contracts (UESCs). Over the years, best practices to get the best value from UESCs have been identified from successful UESC projects. While each Federal facility and its relationship with serving utilities is unique, considering lessons learned across these topics can make UESCs more successful and easier to implement: Financing Decreasing Interest Buydown and Buyout Approaches Contract Competition Diversifying Project Portfolios. Read about 10 ways to lower perceived risks to ensure UESC success.

68

Orange and Rockland Utilities (Gas) - Residential Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Orange and Rockland Utilities (Gas) - Residential Efficiency Orange and Rockland Utilities (Gas) - Residential Efficiency Program Orange and Rockland Utilities (Gas) - Residential Efficiency Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Water Heating Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140 - $420 Water Boiler: $350 or $700 Steam Boiler: $350 Boiler Reset Control: $70 Indirect Water Heater: $210 Programmable Thermostat: $18 Duct and Air Sealing: up to $420 Provider Orange and Rockland Utilities, Inc. Orange and Rockland Utilities provides rebates for residential customers

69

Spot pricing of public utility services  

E-Print Network [OSTI]

This thesis analyzes how public utility prices should be changed over time and space. Earlier static and non spatial models of public utility pricing emerge as special cases of the theory developed here. Electricity is ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

70

Utility Energy Services Contracts: Enabling Documents DRAFT  

Broader source: Energy.gov [DOE]

Presentation on Cyber Security given at the Federal Utility Partnership Working Group Fall 2008 meeting in Williamsburg, Virginia.

71

Federal Energy Management Program: Types of Utility Energy Service  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Types of Utility Energy Service Contracts Types of Utility Energy Service Contracts Several types of contracts are used as utility energy service contracts (UESCs). Many agency sites procure electricity services under a contract with the local utility, and most of these contracts have provisions that can also cover energy efficiency projects. Agencies not covered by such agreements may enter contracts with the utility for the sole purpose of implementing energy projects. Agency staff will want to first find out whether their facility is already covered under a UESC. Using an existing contract that is familiar to the agency and the utility is typically the most expeditious means of getting projects done. Areawide Contracts Areawide contracts (AWCs) are blanket contracts, which are essentially indefinite-delivery, indefinite-quantity (IDIQ) contracts for public utility services. The contract outlines general terms and conditions and authorizes any agency in the utility's service territory to place delivery orders for services offered under the contract. The order describes the details and technical specifications for the energy efficiency project or other services to be delivered.

72

Cost of Gas Adjustment for Gas Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Generation Disclosure Provider Public Utilities Commission This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports required to be filed with

73

Types of Utility Energy Service Contracts | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Types of Types of Utility Energy Service Contracts Types of Utility Energy Service Contracts October 7, 2013 - 2:17pm Addthis Several types of contracts are used as utility energy service contracts (UESCs). Many agency sites procure electricity services under a contract with the local utility, and most of these contracts have provisions that can also cover energy efficiency projects. Agencies not covered by such agreements may enter contracts with the utility for the sole purpose of implementing energy projects. Agency staff will want to first find out whether their facility is already covered under a UESC. Using an existing contract that is familiar to the agency and the utility is typically the most expeditious means of getting projects done. Areawide Contracts Areawide contracts (AWCs) are blanket contracts, which are essentially

74

Natural Gas Utility Conservation Programs (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Natural Gas Utility Conservation Programs (Maine) Natural Gas Utility Conservation Programs (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Public Utilities Commission This Chapter describes how natural gas utilities serving more than 5,000 residential customers must implement natural gas energy conservation programs. The regulations describe

75

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov [DOE]

Presentation covers BioGas Project Applications for Federal Agencies and Utilities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

76

California Natural Gas % of Total Electric Utility Deliveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Utility Deliveries (Percent) California Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

77

Utility Energy Services Contracts: Enabling Documents Overview  

Broader source: Energy.gov (indexed) [DOE]

- Overview of Legislative Administrative Policy - Differences between ESPC and "DSM" - GSA Utility Incentives - Energy Policy Act of 1992 - Executive Order 12902 - ESPC...

78

Utility Energy Services Contracting (UESC) Overview  

Broader source: Energy.gov (indexed) [DOE]

Contracting (UESC) Overview Michael Norton Huntsville Engineering and Support Center U.S. Army Corps of Engineers Federal Utility Partnership Working Group Spring 2012 Jekyll...

79

Moorhead Public Service Utility- Renewable Energy Incentive  

Broader source: Energy.gov [DOE]

Moorhead Public Service (MPS) offers rebates for qualifying electricity producing solar or wind renewable energy systems. Wind rebates are not availble to residential customers. Rebates are for up...

80

Natural Gas Utilities Options Analysis for the Hydrogen  

E-Print Network [OSTI]

> Natural Gas Utilities Options Analysis for the Hydrogen Economy Hydrogen Pipeline R&D Project > GTI focuses on energy & environmental issues ­ Specialize on natural gas & hydrogen > Our main Natural Gas Gas Hydrates Kent Perry Executive Director Exploration & Production Technology Distributed

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Odorization system upgrades gas utility`s pipelines  

SciTech Connect (OSTI)

Mountain Fuel Supply Co., a subsidiary of Questar Corp., salt Lake City, is a natural gas holding company with $1.6 billion in assets. From 1929 to 1984, Mountain Fuel Supply Co. owned and operated many natural gas wells, gathering systems, and transmission pipelines to serve its Utah and Wyoming customers. Gas is odorized at convenient points on the transmission lines and at each downstream location where unodorized gas entered the system. Since 40 to 60% of the gas delivered to the company`s customers passes through Coalville Station, it was vital that a reliable, state-of-the-art odorant station be constructed at this site. Construction began during the summer of 1994 and the system came on line Sept. 1, 1994. The station odorized 435 MMcfd with 330 lbs. of odorant during last winter`s peak day, a mild winter. Mountain Fuel is subject to Department of Transportation (DOT) codes which mandate that gas be readily detectable at one fifth the lower explosive limit (LEL), or about 1% gas in air. However, the company strives to maintain a readily detectable odor at 0.25% of gas in air as measured by odormeter tests throughout the distribution system. Experience has shown that maintaining an odorant injection rate of 0.75 lbs/MMcf provides adequate odor levels. A blend of odorant consisting of 50% tertiary butyl mercaptan (TBM) and 50% tetrahydrothiophene (THT) was used for many years by Questar Pipeline. Presently, it is used at all Mountain Fuel stations. This paper reviews the design and operation of this odorization station.

Niebergall, B. [Mountain Fuel Supply, Salt Lake City, UT (United States)

1995-07-01T23:59:59.000Z

82

Survey of state regulatory activities on least cost planning for gas utilities  

SciTech Connect (OSTI)

Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. Incorporating the concept of meeting customer energy service needs entails a recognition that customers' costs must be considered along with the utility's costs in the economic analysis of energy options. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. All state commissions were surveyed to assess the current status of gas planning and demand-side management and to identify significant regulatory issues faced by commissions during the next several years. The survey was to determine the extent to which they have undertaken least-cost planning for gas utilities. The survey included the following topics: (1) status of state PUC least-cost planning regulations and practices for gas utilities; (2) type and scope ofnatural gas DSM programs in effect, includeing fuel substitution; (3) economic tests and analysis methods used to evaluate DSM programs; (4) relationship between prudence reviews of gas utility purchasing practices and integrated resource planning; and (5) key regulatory issues facing gas utilities during the next five years. 34 refs., 6 figs., 10 tabs.

Goldman, C.A. (Lawrence Berkeley Lab., CA (United States) National Association of Regulatory Utility Commissioners, Washington, DC (United States)); Hopkins, M.E. (Fleming Group, Washington, DC (United States))

1991-04-01T23:59:59.000Z

83

Montana-Dakota Utilities (Gas) - Residential New Construction Rebate  

Broader source: Energy.gov (indexed) [DOE]

Montana-Dakota Utilities (Gas) - Residential New Construction Montana-Dakota Utilities (Gas) - Residential New Construction Rebate Program Montana-Dakota Utilities (Gas) - Residential New Construction Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Eligible Furnace: $300 Natural Gas Water Heater: $50 - $100 Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers rebates to customers who install energy efficient natural gas equipment in new construction. New furnaces and water heaters are eligible for incentives through this offering. All new eligible homes with qualifying furnaces will receive a $300 rebate and

84

Diversifying Project Portfolios for Utility Energy Service Contracts |  

Broader source: Energy.gov (indexed) [DOE]

Diversifying Project Portfolios for Utility Energy Service Diversifying Project Portfolios for Utility Energy Service Contracts Diversifying Project Portfolios for Utility Energy Service Contracts October 7, 2013 - 2:28pm Addthis Building a diversified project portfolio enhances utility energy service contracts (UESCs) to ensure Federal agencies get the best value possible. Energy efficiency measures are inherent in UESC projects. However, do not overlook the possibility for renewable energy and water efficiency and other conservation measures. Building a portfolio of energy service projects lowers overall contracting costs while increasing energy cost savings. This portfolio approach offers additional benefits by reducing contract and administrative burdens and optimizing energy savings. Renewable Energy Multiple laws and regulations require agencies to implement and use

85

Public Service Elec & Gas Co | Open Energy Information  

Open Energy Info (EERE)

Elec & Gas Co Elec & Gas Co (Redirected from PSEG) Jump to: navigation, search Name Public Service Elec & Gas Co Place New Jersey Utility Id 15477 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 COBRA HEAD CUT OFF TYPE III HP Lighting 100 CORA HEAD H.P. Commercial 100 DELUXE ACORN H.P Lighting 100 FRANKIN PARK TYPE IV H.P Commercial 100 NEW XFORD BLACK TYPE III H.P Commercial

86

Utility Energy Services Contracts: Enabling Documents, May 2009 (Revised) (Book)  

Broader source: Energy.gov (indexed) [DOE]

www.femp.energy.gov ENERGY U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy Utility Energy Services Contracts: Enabling Documents Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program Revised June 2013 DOE/GO-102009-2588 UESCs: Enabling Documents 1 Department of Energy Washington, D.C. Dear Colleagues, The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) is pleased to present this third edition of Utility Energy Services Contracts: Enabling Documents. These documents provide a selected set of background information materials that clarify the authority for Federal agencies to enter into utility energy services

87

Utility Energy Services Contracts: Enabling Documents, May 2009 (Revised) (Book)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

www.femp.energy.gov ENERGY U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy Utility Energy Services Contracts: Enabling Documents Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program Revised June 2013 DOE/GO-102009-2588 UESCs: Enabling Documents 1 Department of Energy Washington, D.C. Dear Colleagues, The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) is pleased to present this third edition of Utility Energy Services Contracts: Enabling Documents. These documents provide a selected set of background information materials that clarify the authority for Federal agencies to enter into utility energy services

88

Financing for Utility Energy Service Contracts | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Financing for Utility Energy Service Contracts Financing for Utility Energy Service Contracts Financing for Utility Energy Service Contracts October 7, 2013 - 2:21pm Addthis Financing is a significant portion of utility energy service contract (UESC) costs. Experience shows several things the Federal Government can do to get the best value by reducing UESC financial transaction costs and interest. Interest Rates Interest rates are based on the sum of an index rate on the date the transaction is signed and a "premium" or "adders" usually measured in basis points where 100 basis points is equal to 1%. The premium reflects the costs of obtaining the financing under prevailing market conditions, financial risk, transaction costs, and profit for the finance company. The cost of financing varies depending upon a number of factors. Optimizing

89

Intern experience with Texas Utilities Services, Inc.: an internship report  

E-Print Network [OSTI]

This report is a review of the author's year of experience as an intern with Texas Utilities Services...The author worked as a Nuclear Fuels Engineer for the duration of the internship period. His primary assignment was the development...

Janne, Randall Lee, 1953-

2013-03-13T23:59:59.000Z

90

Utility Energy Services Contracts: Enabling Documents, May 2009 (Book)  

SciTech Connect (OSTI)

Enabling Documents, delivered by the U.S. Department of Energy's Federal Energy Management Program (FEMP) to provide materials that clarify the authority for federal agencies to enter into utility energy services contracts (UESCs).

Not Available

2009-05-01T23:59:59.000Z

91

Utility Energy Services Contracts: Enabling Documents, May 2009  

Broader source: Energy.gov [DOE]

Enabling document covers information and provides materials that clarify the authority for federal agencies to enter into utility energy services contracts (UESCs). This document is delivered by the U.S. Department of Energy's Federal Energy Management Program (FEMP).

92

Federal Energy Management Program: Resources on Utility Energy Service  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility Energy Service Contracts Utility Energy Service Contracts Many helpful resources about utility energy service contracts (UESCs) are available. Also see Case Studies. Training The Federal Energy Management Program (FEMP) offers an ongoing series of workshops and webinars to train Federal agencies on how to implement UESC projects. Visit the FEMP events calendar for upcoming training opportunities. UESC Virtual Center of Expertise The Virtual Center of Expertise helps Federal agencies and utilities significantly streamline the UESC implementation process and access the resources and expertise needed to overcome project barriers. The center provides project teams with FEMP points of contact and maintains a list of agency, utility, and financing experts willing to assist their peers with project implementation based on their own experiences. The center also offers sample documents and templates necessary for UESC implementation. These resources are made available to help promote the benefits of implementing a UESC project.

93

Natural Gas Utilities Options Analysis for the Hydrogen  

E-Print Network [OSTI]

> Natural Gas Utilities Options Analysis for the Hydrogen Economy Hydrogen Pipeline R&D Project of strategic options for the natural gas industry as hydrogen energy systems evolve ­ Vehicle to encourage of tradeoffs ­ NY state qualifies natural gas-run fuel cells, CA only renewable hydrogen (potential for partial

94

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Balefill Landfill Gas Utilization Proj Biomass Facility Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Bergen County, New Jersey Coordinates 40.9262762°, -74.07701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9262762,"lon":-74.07701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hartford Landfill Gas Utilization Proj Biomass Facility Hartford Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Hartford County, Connecticut Coordinates 41.7924343°, -72.8042797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

Resources on Utility Energy Service Contracts | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Resources on Resources on Utility Energy Service Contracts Resources on Utility Energy Service Contracts October 7, 2013 - 3:31pm Addthis Many helpful resources about utility energy service contracts (UESCs) are available. Also see Case Studies. Training The Federal Energy Management Program (FEMP) offers an ongoing series of workshops and webinars to train Federal agencies on how to implement UESC projects. Visit the FEMP events calendar for upcoming training opportunities. UESC Virtual Center of Expertise The Virtual Center of Expertise helps Federal agencies and utilities significantly streamline the UESC implementation process and access the resources and expertise needed to overcome project barriers. The center provides project teams with FEMP points of contact and maintains a list of

98

Austin Utilities (Gas and Electric) - Commercial and Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

Austin Utilities (Gas and Electric) - Commercial and Industrial Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Commercial Weatherization Water Heating Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Custom Gas Measures: $75,000 per commercial location per year, $5,000 per industrial location per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: See Program Website Air Source Heat Pumps: $20-$25/ton, plus bonus rebate of $4/ton for each

99

Florida Public Utilities (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Florida Public Utilities offers the Energy for Life Conservation Program to its residential natural gas customers to save energy in their homes. Rebates are available for existing residences and...

100

Property:Utility Services Available | Open Energy Information  

Open Energy Info (EERE)

Services Available Services Available Jump to: navigation, search Property Name Utility Services Available Property Type Text Pages using the property "Utility Services Available" Showing 25 pages using this property. (previous 25) (next 25) A Alden Large Flume + 110 V to 480 V, 3 phase Alden Small Flume + 110 V to 480 V, 3 phase Alden Tow Tank + 110 V to 480 V, 3 phase Alden Wave Basin + 110 V to 480 V, 3 phase C Conte Large Flume + 110, 220, 440 VAC, compressed air Conte Small Flume + 110, 220, 440 VAC, compressed air D DeFrees Flume 1 + water, compressed air, 120, 208, 3-phase 240 VAC DeFrees Flume 2 + Water, compressed air, 120, 208, 3-phase 240 VAC DeFrees Flume 3 + Water, compressed air, 120, 208, 3-phase 240 VAC DeFrees Flume 4 + Water, compressed air, 120, 208, 3-phase 240 VAC

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Moorhead Public Service Utility - Commercial and Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Moorhead Public Service Utility - Commercial and Industrial Energy Efficiency Rebate Program Moorhead Public Service Utility - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Sealing Your Home Windows, Doors, & Skylights Heating Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Specialty Measures: maximum incentive cannot exceed 75% of the total project cost Program Info Expiration Date This program is offered January 1 through December 31 of the respective

102

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Ancillary-service costs for 12 US electric utilities  

SciTech Connect (OSTI)

Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC divided these services into three categories: ``actions taken to effect the transaction (such as scheduling and dispatching services) , services that are necessary to maintain the integrity of the transmission system [and] services needed to correct for the effects associated with undertaking a transaction.`` In March 1995, FERC published a proposed rule to ensure open and comparable access to transmission networks throughout the country. The rule defined six ancillary services and developed pro forma tariffs for these services: scheduling and dispatch, load following, system protection, energy imbalance, loss compensation, and reactive power/voltage control.

Kirby, B.; Hirst, E.

1996-03-01T23:59:59.000Z

104

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...  

Broader source: Energy.gov (indexed) [DOE]

NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011 Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011...

105

Avista Utilities (Gas) - Oregon Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Oregon Residential Energy Efficiency Oregon Residential Energy Efficiency Rebate Program Avista Utilities (Gas) - Oregon Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Forced Air Furnaces and Boilers: $200 Programmable Thermostats: $50 Windows: $2.25/sq. ft. Insulation: 50% of cost Provider Avista Utilities Avista Utilities offers a variety of equipment rebates to Oregon residential customers. Rebates are available for boilers, furnaces, insulation measures, windows and programmable thermostats. All equipment must meet certain energy efficiency standards listed on the program web

106

Public Service Elec & Gas Co | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Public Service Elec & Gas Co Place New Jersey Utility Id 15477 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 COBRA HEAD CUT OFF TYPE III HP Lighting 100 CORA HEAD H.P. Commercial 100 DELUXE ACORN H.P Lighting 100 FRANKIN PARK TYPE IV H.P Commercial 100 NEW XFORD BLACK TYPE III H.P Commercial 100 POST-TOP TOWN & COUNTRY Lighting

107

Stimulating utilities to promote energy efficiency: Process evaluation of Madison Gas and Electric's Competition Pilot Program  

SciTech Connect (OSTI)

This report describes the process evaluation of the design and implementation of the Energy Conservation Competition Pilot (hereafter referred to as the Competition), ordered by the Public Service Commission of Wisconsin (PSCW) with a conceptual framework defined by PSCW staff for the Madison Gas and Electric (MGE) Company. This process evaluation documents the history of the Competition, describing the marketing strategies adopted by MGE and its competitors, customer service and satisfaction, administrative issues, the distribution of installed measures, free riders, and the impact of the Competition on MGE, its competitors, and other Wisconsin utilities. We also suggest recommendations for a future Competition, compare the Competition with other approaches that public utility commissions (PUCs) have used to motivate utilities to promote energy efficiency, and discuss its transferability to other utilities. 48 refs., 8 figs., 40 tabs.

Vine, E.; De Buen, O.; Goldfman, C.

1990-12-01T23:59:59.000Z

108

Gas Utilization Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Utilization Facility Biomass Facility Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type Non-Fossil Waste Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Federal Energy Management Program: Utility Energy Service Contracts Laws  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contracts Laws and Regulations Contracts Laws and Regulations UESC: Enabling Documents For a compilation of UESC enabling regulations and guidance, read UESC: Enabling Documents. This document is the primary reference for Federal agencies and utility partners conducting UESC projects. The Energy Policy Act (EPAct) of 1992 authorizes and encourages Federal agencies to participate in utility energy efficiency programs. Legislation authorizing utility energy service contracts (UESCs) is outlined below, along with legal opinions outlining the use of UESCs by Federal agencies. Laws and Regulations 42 USC Section 8256 (Energy Policy Act of 1992): Incentives for Federal agencies, legislation addressing contracts, the Federal Energy Efficiency Fund, utility incentive programs, and the Financial Incentive Program for Facility Energy Managers.

110

Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Programs Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Natural Gas Furnace/Boiler: $400 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft. ENERGY STAR rated homes: $650 - $900 Replacement of Electric Straight Resistance Space Heat: $750 Provider

111

AUTOMATED UTILITY SERVICE AREA ASSESSMENT UNDER EMERGENCY CONDITIONS  

SciTech Connect (OSTI)

All electric utilities serve power to their customers through a variety of functional levels, notably substations. The majority of these components consist of distribution substations operating at lower voltages while a small fraction are transmission substations. There is an associated geographical area that encompasses customers who are served, defined as the service area. Analysis of substation service areas is greatly complicated by several factors: distribution networks are often highly interconnected which allows a multitude of possible switching operations; also, utilities dynamically alter the network topology in order to respond to emergency events. As a result, the service area for a substation can change radically. A utility will generally attempt to minimize the number of customers outaged by switching effected loads to alternate substations. In this manner, all or a portion of a disabled substation's load may be served by one or more adjacent substations. This paper describes a suite of analytical tools developed at Los Alamos National Laboratory (LANL), which address the problem of determining how a utility might respond to such emergency events. The estimated outage areas derived using the tools are overlaid onto other geographical and electrical layers in a geographic information system (GIS) software application. The effects of a power outage on a population, other infrastructures, or other physical features, can be inferred by the proximity of these features to the estimated outage area.

G. TOOLE; S. LINGER

2001-01-01T23:59:59.000Z

112

The next gordian knot for state regulators and electric utilities: The unbundling of retail services  

SciTech Connect (OSTI)

Unbundling of retail electric services will accelerate competitive forces in a way that could radically change the future course of the electric power industry. Although simple in concept, unbundling raises a broad range of complex issues, many of which are fundamental to today`s concepts of regulation and utility management. This article addresses four questions: (1) What is retail unbundling? (2) What role might it play in the future electric power industry? (3) What lessons can be learned from retail unbundling in other regulated industries, specifically the natural gas industry? (4) What are the major issues associated with retail unbundling for electric utilities and state regulators?

Costello, K.W.

1995-11-01T23:59:59.000Z

113

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

114

Radiology utilizing a gas multiwire detector with resolution enhancement  

DOE Patents [OSTI]

This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

Majewski, Stanislaw (Grafton, VA); Majewski, Lucasz A. (Grafton, VA)

1999-09-28T23:59:59.000Z

115

Using Entrez Utilities Web Service with Visual Basic and MS Visual Studio 2008  

E-Print Network [OSTI]

Using Entrez Utilities Web Service with Visual Basic and MS Visual Studio 2008 Entrez Utilities Web to create a Visual Basic project to access the NCBI Entrez Utilities Web Service using MS Visual Studio 2005.wsdl or path to local file (for example, C: \\SOAP\\eUtils\\v2.0\\eutils.wsdl) if you downloaded eUtils WSDL

Levin, Judith G.

116

Task Order Awarded to Small Business for Natural Gas Services...  

Energy Savers [EERE]

Sage Energy Trading LLC, of Jenks, Oklahoma for natural gas services. A firm fixed unit rate task order will be issued from the General Services Administration (GSA) Schedule with...

117

Task Order Awarded to Small Business for Natural Gas Services...  

Office of Environmental Management (EM)

Pike Natural Gas, located in Hillsboro, Ohio for natural gas services. A firm fixed unit rate task order will be awarded with a not to exceed amount of 5.250 million value and a...

118

Utilization of Process Off-Gas as a Fuel for Improved Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination ADVANCED MANUFACTURING OFFICE Utilization of Process Off-Gas as a Fuel for Improved...

119

Washington Gas Energy Services | Open Energy Information  

Open Energy Info (EERE)

Utility Id 20659 Utility Location Yes Ownership R NERC RFC Yes RTO PJM Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

120

Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams  

DOE Patents [OSTI]

A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

Wilding, Bruce M; Turner, Terry D

2014-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Impact of Separation on Community Social Service Utilization  

E-Print Network [OSTI]

This experiment indicates that AFDC recipients who received public welfare social services under the format of separation of services from financial aid are more likely than recipients in the combined condition to use ...

McDonald, Thomas P.; Piliavin, Irving

1981-01-01T23:59:59.000Z

122

Greenhouse Gas Services AES GE EFS | Open Energy Information  

Open Energy Info (EERE)

Greenhouse Gas Services AES GE EFS Greenhouse Gas Services AES GE EFS Jump to: navigation, search Name Greenhouse Gas Services (AES/GE EFS) Place Arlington, Virginia Zip 22203-4168 Product Develop and invest in a range of projects that reduce greenhouse gas emissions that produce verified GHG credits. Coordinates 43.337585°, -89.379449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.337585,"lon":-89.379449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Economics of Alaska North Slope gas utilization options  

SciTech Connect (OSTI)

The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

1996-08-01T23:59:59.000Z

124

SUBSTITUTION OF NATURAL GAS FOR COAL: CLIMATIC EFFECTS OF UTILITY SECTOR EMISSIONS  

E-Print Network [OSTI]

SUBSTITUTION OF NATURAL GAS FOR COAL: CLIMATIC EFFECTS OF UTILITY SECTOR EMISSIONS KATHARINE HAYHOE. Substitution of natural gas for coal is one means of reducing carbon dioxide (CO2) emissions. However, natural of coal by natural gas are evaluated, and their modeled net effect on global mean-annual temperature

Jain, Atul K.

125

OPENING STATEMENT FOR JOE HOLMES, COLORADO SPRINGS UTILITIES  

Energy Savers [EERE]

UTILITITES (CSU). CSU IS A MUNICIPALLY-OWNED, FOUR-SERVICE UTILITY PROVIDING ELECTRICITY, NATURAL GAS, WATER AND WASTEWATER SERVICES TO BUSINESS AND RESIDENTIAL CUSTOMERS IN THE...

126

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Broader source: Energy.gov (indexed) [DOE]

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

127

Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs  

Broader source: Energy.gov [DOE]

OE has released a new Smart Grid report describing the activities of three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program. "Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs" reports on the benefits of the cities' investments, including improved operating efficiencies, lower costs, shorter outages, and reduced peak demands and electricity consumption.

128

User fees, health staff incentives, and service utilization in Kabarole District, Uganda  

E-Print Network [OSTI]

User fees, health staff incentives, and service utilization in Kabarole District, Uganda Walter in Kabarole District, western Uganda. Methods Of the 38 government health units that had introduced user incentive plans; Cost sharing; Community health centers/utilization; Health; Health care surveys; Uganda

Scharfstein, Daniel

129

NSLS Utilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilities Utilities The Utilities Group, led by project engineer Ron Beauman, is responsible for providing Utilities Engineering and Technical services to NSLS, Users, and SDL including cooling water at controlled flow rates, pressures, and temperatures, compressed air and other gases. In addition, they provide HVAC engineering, technical, and electrical services as needed. Utilities systems include cooling and process water, gas, and compressed air systems. These systems are essential to NSLS operations. Working behind the scenes, the Utilities group continuously performs preventative maintenance to ensure that the NSLS has minimal downtime. This is quite a feat, considering that the Utilities group has to maintain seven very large and independent systems that extent throughout NSLS. Part of the group's

130

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or  

E-Print Network [OSTI]

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or a generator? NOTIFY the University Police. FOLLOW evacuation procedures. NOTIFY Building Safety personnel

Fernandez, Eduardo

131

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas  

E-Print Network [OSTI]

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas. . What should I do if the if the building does not have emergency lighting or a generator? NOTIFY

Fernandez, Eduardo

132

Natural Gas Utilities Options Analysis for the Hydrogen Economy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 January 2005 6 January 2005 Oak Ridge National Laboratory Oak Ridge, TN Mark E. Richards Manager, Advanced Energy Systems 2 Gas Technology Institute > GTI is an independent non-profit R&D organization > GTI focuses on energy & environmental issues - Specialize on natural gas & hydrogen > Our main facility is an 18- acre campus near Chicago - Over 350,000 ft 2 GTI's Main Research Facility GTI's Energy & Environmental Technology Center 3 GTI RD&D Organization Robert Stokes Vice-President Research & Deployment Hydrogen Fuel Processing Low-Temperature Fuel Cells High-Temperature Fuel Cells Vehicle Fuel Infrastructure Gerry Runte Executive Director Hydrogen Energy Systems Gasification & Hot Gas Cleanup Process Engineering Thermal Waste Stabilization

133

Competitive Subcontract Selection in Utility Energy Service Contracts  

Broader source: Energy.gov (indexed) [DOE]

Competitive Subcontract Competitive Subcontract Selection in UESC Gordon Maynard, CEM, LEED AP Team Leader, So. California Gas Company NAVFAC UESC RFP Clause: Competition - The Contractor shall competitively bid and select subcontractors in accordance with FAR clause 52.244-5 (Competition in Subcontracting) to implement this Authorization. The Contractor shall include with its proposal the Abstract of Offers, identifying the project, and stating company name, address and amount of bid for all subcontract's bids. Since FAR 44.204(c) states: The contracting officer shall, when contracting by negotiation, insert the clause 52.244-5, Competition in Subcontracting, in solicitations and contracts when the contract amount is expected to exceed the simplified acquisition threshold, unless-

134

Does the Utility Rates service on OpenEI return/display the latest data or  

Open Energy Info (EERE)

Does the Utility Rates service on OpenEI return/display the latest data or Does the Utility Rates service on OpenEI return/display the latest data or only approved data? Home > Groups > Utility Rate I'm using SAM to download OpenEI utility rates and was wondering if I'm downloading the latest rates that have been entered, or only downloading the rates that have been approved. Submitted by Sfomail on 11 July, 2012 - 13:53 2 answers Points: 1 The web service at http://en.openei.org/services/, which is used by SAM, currently uses the "ask query" method of accessing OpenEI data. That runs through http://en.openei.org/wiki/Special:Ask. In the future (2013 or after?) we may use a different method of back-end data access through our SPARQL endpoint - time will tell. Performing a test on this data, I discovered that Special:Ask, and thus OpenEI utility rate services and SAM,

135

Does the Utility Rates service on OpenEI return/display the latest data or  

Open Energy Info (EERE)

Does the Utility Rates service on OpenEI return/display the latest data or Does the Utility Rates service on OpenEI return/display the latest data or only approved data? Home > Groups > Utility Rate I'm using SAM to download OpenEI utility rates and was wondering if I'm downloading the latest rates that have been entered, or only downloading the rates that have been approved. Submitted by Sfomail on 11 July, 2012 - 13:53 2 answers Points: 1 The web service at http://en.openei.org/services/, which is used by SAM, currently uses the "ask query" method of accessing OpenEI data. That runs through http://en.openei.org/wiki/Special:Ask. In the future (2013 or after?) we may use a different method of back-end data access through our SPARQL endpoint - time will tell. Performing a test on this data, I discovered that Special:Ask, and thus OpenEI utility rate services and SAM,

136

Optimization of gas utilization efficiency for short-pulsed electron cyclotron resonance ion source  

SciTech Connect (OSTI)

Numerical analysis of {sup 6}He atoms utilizing efficiency in the ion source with powerful gyrotron heating is performed in present work using zero-dimensional balanced model of ECR discharge in a magnetic trap. Two ways of creation of ion source with high gas utilization efficiency (up to 60%-90%) are suggested.

Izotov, I. V.; Skalyga, V. A.; Zorin, V. G. [Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod (Russian Federation)

2012-02-15T23:59:59.000Z

137

Notices DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative, Inc.:  

Broader source: Energy.gov (indexed) [DOE]

670 Federal Register 670 Federal Register / Vol. 76, No. 212 / Wednesday, November 2, 2011 / Notices DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative, Inc.: Notice of Intent To Prepare an Environmental Impact Statement and Hold Public Scoping Meetings AGENCY: Rural Utilities Service, USDA. ACTION: Notice. SUMMARY: The Rural Utilities Service (RUS), an agency within the U.S. Department of Agriculture (USDA), intends to prepare an environmental impact statement (EIS) for Basin Electric Power Cooperative's (Basin Electric) proposed Antelope Valley Station (AVS) to Neset Transmission Project (Project) in North Dakota. RUS is issuing this Notice of Intent (NOI) to inform the public and interested parties about the proposed Project, conduct a public

138

Cyber - Protection for utilities ... | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cyber - Protection for utilities ... Hackers hoping to disrupt the power grid, water or natural gas service may be foiled by an intrusion detection system developed by researchers...

139

Utilization of low-quality natural gas: A current assessment. Final report  

SciTech Connect (OSTI)

The objective of this report is to evaluate the low quality natural gas (LQNG) resource base, current utilization of LQNG, and environmental issues relative to its use, to review processes for upgrading LQNG to pipeline quality, and to make recommendations of research needs to improve the potential for LQNG utilization. LQNG is gas from any reservoir which contains amounts of nonhydrocarbon gases sufficient to lower the heating value or other properties of the gas below commercial, pipeline standards. For the purposes of this study, LQNG is defined as natural gas that contains more than 2% carbon dioxide, more than 4% nitrogen, or more than 4% combined CO{sub 2} plus N{sub 2}. The other contaminant of concern is hydrogen sulfide. A minor contaminant in some natural gases is helium, but this inert gas usually presents no problems.

Acheson, W.P.; Hackworth, J.H.; Kasper, S.; McIlvried, H.G.

1993-01-01T23:59:59.000Z

140

Natural gas demand at the utility level: An application of dynamic elasticities  

Science Journals Connector (OSTI)

Previous studies provide strong evidence that energy demand elasticities vary across regions and states, arguing in favor of conducting energy demand studies at the smallest unit of observation for which good quality data are readily available, that is the utility level. We use monthly data from the residential sector of Xcel Energy's service territory in Colorado for the period January 1994 to September 2006. Based on a very general Autoregressive Distributed Lag model this paper uses a new approach to simulate the dynamic behavior of natural gas demand and obtain dynamic elasticities. Knowing consumers' response on a unit time basis enables one to answer a number of questions, such as, the length of time needed to reach demand stability. Responses to price and income were found to be much lowereven in the long runthan has been commonly suggested in the literature. Interestingly, we find that the long run equilibrium is reached relatively quickly, around 18months after a change in price or income has occurred, while the literature implies a much longer period for complete adjustments to take place.

Leila Dagher

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NRRI summary of Florida Public Service Commission: Fraud control policies of seven major Florida utilities  

SciTech Connect (OSTI)

The Florida Public Service Commission (PSC) Staff recently completed an audit of fraud control policies and programs at the State`s largest regulated electric and local telephone utilities. The purpose of the audit was to examine the ability of Florida`s largest regulated utilities to deter, detect, and resolve occurrences of fraud. The Staff audited the state`s seven largest regulated electric and local telephone utilities: Florida Power Corporation, Florida Power and Light, Gulf Power Corporation, Tampa Electric Company, GTE-Florida, BellSouth Telecommunications (Southern Bell), and Sprint United/Centel. The audit scope was limited to fraudulent acts committed by employees, contractors, suppliers, or agents of the seven utilities. Information regarding the utilities` fraud control policies and programs was obtained through surveys, document requests, and interviews with managers and officers.

NONE

1995-12-31T23:59:59.000Z

142

Updated Analysis of Energy and cost Savings for Utility service Program at Federal Sites  

SciTech Connect (OSTI)

Report detailing PNNL's re-analysis of data based original analysis done in 2004. The data came from the updated Department of Energy Federal Energy Management utility energy services contract database and the analysis was also expanded to uncover information on additional areas.

Mcmordie, Katherine; Sandusky, William F.; Solana, Amy E.; Bates, Derrick J.

2006-10-31T23:59:59.000Z

143

Utilizing Green Energy Prediction to Schedule Mixed Batch and Service Jobs in Data Centers  

E-Print Network [OSTI]

Utilizing Green Energy Prediction to Schedule Mixed Batch and Service Jobs in Data Centers Baris on using immediately available green energy to supplement the non- renewable, or brown energy at the cost of canceling and rescheduling jobs whenever the green energy availability is too low [16]. In this paper we

Simunic, Tajana

144

DOE Report to Congress„Energy Efficient Electric and Natural Gas Utilities  

Broader source: Energy.gov (indexed) [DOE]

AND REGIONAL POLICIES THAT AND REGIONAL POLICIES THAT PROMOTE ENERGY EFFICIENCY PROGRAMS CARRIED OUT BY ELECTRIC AND GAS UTILITIES A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 139 OF THE ENERGY POLICY ACT OF 2005 MARCH 2007 U.S. DEPARTMENT OF ENERGY Sec. 139. Energy Efficient Electric and Natural Gas Utilities Study. a) IN GENERAL.-Not later than 1 year after the date of enactment of this Act, the Secretary, in consultation with the National Association of Regulatory Utility Commis- sioners and the National Association of State Energy Offi- cials, shall conduct a study of State and regional policies that promote cost-effective programs to reduce energy con- sumption (including energy efficiency programs) that are carried out by- (1) utilities that are subject to State regulation; and

145

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services  

E-Print Network [OSTI]

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

Sadoulet, Elisabeth

146

Fact Sheet: DOE/National Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership  

Broader source: Energy.gov [DOE]

In one of a series of actions to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions, DOE will work with the National Association of Regulatory Utility Commissioners (NARUC) to encourage investments in infrastructure modernization to enhance pipeline safety, efficiency and deliverability.

147

A new airfuel WSGGM (weighted sum of gray gas model) for better utility  

E-Print Network [OSTI]

1 A new airfuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation properties. · For each condition: use the validated EWBM to generate emissivity database, spanning a larger). Large emissivity database matrix: 146 discrete values for PL times 101 data points for Tg. · For each

Yin, Chungen

148

Carbon and Hydrogen Analyses of the Components of a Mixture Utilizing Separation-Combustion Gas Chromatography  

Science Journals Connector (OSTI)

......Utilizing Separation-Combustion Gas Chromatography...temperature copper oxide combustion tube which feeds...solution of brominated hydrocarbons (1% v/v) in...was passed into a combustion tube. Following...Wisconsin) was used to heat the combustion tube...indi- cated by the data of Table II. The......

Sam N. Pennington; Harry D. Brown

1968-10-01T23:59:59.000Z

149

Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review  

SciTech Connect (OSTI)

Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

Lesh, Pamela G.

2009-10-15T23:59:59.000Z

150

Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization  

Science Journals Connector (OSTI)

The performance of Natural Gas Processing Plants (NGPPs) can be enhanced with the integration of Combined Cooling, Heating and Power (CCHP) generation schemes. This paper analyzes the integration of a trigeneration scheme within a NGPP, that utilizes waste heat from gas turbine exhaust gases to generate process steam in a Waste Heat Recovery Steam Generator (WHRSG). Part of the steam generated is used to power double-effect waterlithium bromide (H2OLiBr) absorption chillers that provide gas turbine compressor inlet air-cooling. Another portion of the steam is utilized to meet part furnace heating load, and supplement plant electrical power in a combined regenerative Rankine cycle. A detailed techno-economic analysis of scheme performance is presented based on thermodynamic predictions obtained using Engineering Equation Solver (EES). The results indicate that the trigeneration system could recover 79.7MW of gas turbine waste heat, 37.1MW of which could be utilized by three steam-fired H2OLiBr absorption chillers to provide 45MW of cooling at 5C. This could save approximately 9MW of electric energy required by a typical compression chiller, while providing the same amount of cooling. In addition, the combined cycle generates 22.6MW of additional electrical energy for the plant, while process heating reduces furnace oil consumption by 0.23 MSCM per annum. Overall, the trigeneration scheme would result in annual natural gas fuel savings of approximately 1879 MSCM, and annual operating cost savings of approximately US$ 20.9 million, with a payback period of 1year. This study highlights the significant economical and environmental benefits that could be achieved through implementation of the proposed integrated cogeneration scheme in NGPPs, particularly in elevated ambient temperature and humidity conditions such as encountered in Middle East facilities.

Sahil Popli; Peter Rodgers; Valerie Eveloy

2012-01-01T23:59:59.000Z

151

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

152

Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas  

SciTech Connect (OSTI)

Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

Kelsall, G.J.; Smith, M.A. (British Coal Corp., Glos (United Kingdom). Coal Research Establishment); Cannon, M.F. (European Gas Turbines Ltd., Lincoln (United Kingdom). Aero and Technology Products)

1994-07-01T23:59:59.000Z

153

Management support services to the Office of Utility Technologies. Final technical report  

SciTech Connect (OSTI)

The Office of Utility Technologies works cooperatively with industry and the utility sector to realize the market potential for energy efficiency and renewable energy technologies. Under this contract, BNF has provided management support services for OUT R&D activities for the following Program offices: (1) Office of Energy Management; (2) Office of Solar Energy Conversion; (3) Office of Renewable Energy Conversion; and (4) Deputy Assistant Secretary. During the period between 4/17/91 and 9/17/93, BNF furnished the necessary personnel, equipment, materials, facilities and travel required to provide management support services for each of the above Program Offices. From 9/18/93 to 12/17/93, BNF has been involved in closeout activities, including final product deliverables. Research efforts that have been supported in these Program Offices are: (1) for Energy Management -- Advanced Utility Concepts Division; Utility Systems Division; Integrated Planning; (2) for Solar Energy Conversion -- Photovoltaics Division; Solar Thermal and Biomass Power Division; (3) for Renewable Energy Conversion -- Geothermal Division; Wind, Hydroelectric and Ocean Systems Division; (4) for the Deputy Assistant Secretary -- support as required by the Supporting Staff. This final report contains summaries of the work accomplished for each of the Program Offices listed above.

Not Available

1993-12-16T23:59:59.000Z

154

Public Service Electric and Gas (PSEG) Services Corporation - Comments to the 2012 Congestion Study.pdf  

Broader source: Energy.gov (indexed) [DOE]

David K. Richter David K. Richter Assistant General Regulatory Counsel Regulatory Department 80 Park Plaza, T5C, Newark, NJ 07102-4194 tel: 973.430.6451 fax: 973.802.1267 email: david.richter@pseg.com January 31, 2012 VIA ELECTRONIC FILING David Meyer Office of Electricity Delivery and Energy Reliability OE-20, Attention: Congestion Study Comments U.S. Department of Energy, 1000 Independence Avenue, SW. Washington, DC 20585 Dear Mr. Meyer, Public Service Electric and Gas Company ("PSE&G"), PSEG Power LLC ("PSEG Power") and PSEG Energy Resources & Trade LLC ("PSEG ER&T") (collectively referred to herein as the "PSEG Companies") respectfully submit the

155

Cascade utilization of chemical energy of natural gas in an improved CRGT cycle  

Science Journals Connector (OSTI)

In this paper three advanced power systems: the chemically recuperated gas turbine (CRGT) cycle, the steam injected gas turbine (STIG) cycle and the combined cycle (CC), are investigated and compared by means of exergy analysis. Making use of the energy level concept, cascaded use of the chemical exergy of natural gas in a CRGT cycle is clarified, and its performance of the utilization of chemical energy is evaluated. Based on this evaluation, a new CRGT cycle is designed to convert the exergy of natural gas more efficiently into electrical power. As a result, the exergy efficiency of the new CRGT cycle is about 55%, which is 8 percentage points higher than that of the reference CRGT cycle. The analysis gave a better interpretation of the inefficiencies of the CRGT cycle and suggested improvement options. This new approach can be used to design innovative energy systems.

Wei Han; Hongguang Jin; Na Zhang; Xiaosong Zhang

2007-01-01T23:59:59.000Z

156

COMM-OPINION-ORDER, 75 FERC 61,208, Promoting Wholesale Competition Through Open Access Non-discriminatory Transmission Services by Public Utilities; Recovery of Stranded Costs by Public Utilities and  

E-Print Network [OSTI]

-discriminatory Transmission Services by Public Utilities; Recovery of Stranded Costs by Public Utilities and Transmitting Utilities, Docket Nos. RM95-8-000 and RM94-7-001, (May 29, 1996) COPYRIGHT 1999, CCH Incorporated Promoting Wholesale Competition Through Open Access Non-discriminatory Transmission Services by Public Utilities

Laughlin, Robert B.

157

A Sealed, UHV Compatible, Soft X-ray Detector Utilizing Gas Electron Multipliers  

SciTech Connect (OSTI)

An advanced soft X-ray detector has been designed and fabricated for use in synchrotron experiments that utilize X-ray absorption spectroscopy in the study a wide range of materials properties. Fluorescence X-rays, in particular C{sub K} at 277eV, are converted in a low pressure gas medium, and charge multiplication occurs in two gas electron multipliers, fabricated in-house from glass reinforced laminate, to enable single photon counting. The detector satisfies a number of demanding characteristics often required in synchrotron environments, such as UHV compatibility compactness, long-term stability, and energy resolving capability.

Schaknowski, N.A.; Smith, G.

2009-10-25T23:59:59.000Z

158

Employee SelfService (ESS) Time Entry Eligible employees may utilize the Employee SelfService application in myOleMiss to submit their attendances  

E-Print Network [OSTI]

1 Employee SelfService (ESS) Time Entry Eligible employees may utilize the Employee Self them that time has been submitted for their approval. If you need assistance with ESS Time Entry

Tchumper, Gregory S.

159

Employee SelfService (ESS) Time Approval Supervisors may utilize the Employee SelfService application in myOleMiss to approve employees' attendances  

E-Print Network [OSTI]

1 Employee SelfService (ESS) Time Approval Supervisors may utilize the Employee Self/rejection. If you need assistance with ESS Time Approval, please contact the Payroll Office in Human Resources

Tchumper, Gregory S.

160

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect (OSTI)

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Resource planning for gas utilities: Using a model to analyze pivotal issues  

SciTech Connect (OSTI)

With the advent of wellhead price decontrols that began in the late 1970s and the development of open access pipelines in the 1980s and 90s, gas local distribution companies (LDCs) now have increased responsibility for their gas supplies and face an increasingly complex array of supply and capacity choices. Heretofore this responsibility had been share with the interstate pipelines that provide bundled firm gas supplies. Moreover, gas supply an deliverability (capacity) options have multiplied as the pipeline network becomes increasing interconnected and as new storage projects are developed. There is now a fully-functioning financial market for commodity price hedging instruments and, on interstate Pipelines, secondary market (called capacity release) now exists. As a result of these changes in the natural gas industry, interest in resource planning and computer modeling tools for LDCs is increasing. Although in some ways the planning time horizon has become shorter for the gas LDC, the responsibility conferred to the LDC and complexity of the planning problem has increased. We examine current gas resource planning issues in the wake of the Federal Energy Regulatory Commission`s (FERC) Order 636. Our goal is twofold: (1) to illustrate the types of resource planning methods and models used in the industry and (2) to illustrate some of the key tradeoffs among types of resources, reliability, and system costs. To assist us, we utilize a commercially-available dispatch and resource planning model and examine four types of resource planning problems: the evaluation of new storage resources, the evaluation of buyback contracts, the computation of avoided costs, and the optimal tradeoff between reliability and system costs. To make the illustration of methods meaningful yet tractable, we developed a prototype LDC and used it for the majority of our analysis.

Busch, J.F.; Comnes, G.A.

1995-11-01T23:59:59.000Z

162

Utility Contract Competition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Competition Competition Utility Contract Competition October 7, 2013 - 2:26pm Addthis Opening utility energy service contracts to competing franchised utility companies ensures Federal agencies get the best value for their projects. Federal agencies are not legally required to compete for utility incentive services provided by the "established source" utility in the utility's franchised service territory. If services are available, the Energy Policy Act of 1992 states that there should be no restriction on Federal facilities directly benefiting from the services the same as any other customer. The exception is if there is more than one serving utility offering utility energy services (e.g., a gas company and an electric company). In this case, the Federal Acquisition Regulations and good fiscal management

163

Electric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University No. 5501 Rev.: 0  

E-Print Network [OSTI]

-licensed gas- or electric-powered utility-type vehicles) that are operated on the main campus in Blacksburg, VAElectric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University __________________________________________________________________________________ Subject: Electric/Gas Utility-type Vehicle

Beex, A. A. "Louis"

164

NO, Reduction in a Gas Fired Utility Boiler by Combustion Modifications  

E-Print Network [OSTI]

Data on the effect of several combustion modifications on the for-math of nitrogen oxides and on boiler efficiency were acquired and analyzed for a 110 MW gas fired utility boiler. The results from the study showed that decreasing the oxygen in the flue gas from 2.2% to 0.6 % reduced the NO, formation by 33 % and also gave better boiler efficiencies. Flue gas recirculation through the bottom of the fire4mx WBS founb to be Ineffective. Staged combustion was found to reduce the NO, emlssions by as much as 55 % while decreasing the efficiency by about 5%. Adjustment of the burner air registers reduced the NO, formation by about 20 ppm. The lowest NO, emisdons of 42 ppm (at about 3 % 02) in the stack was obtained for air only to one top burner and 0.5 % oxygen in the flue gas. The reduction of nitrogen oxides (NO,) emissions from steam boilers has been under study for several years. The NO, from boilers consist almost entirely of nitric oxide (NO) and nitrogen dioxide (N02) with NO2 usually only l or 2 % of the total. After leaving the stack, the NO eventually combines with atmospheric oxygen to form NOp. The Environmental Protection Agency has sponsored several studies1-I0 on reducing NO, emissions while maintaining thermal efficiency of boilers. Other studies have been sponsored by The Electric Power Research Institute (EPRI) " and Argonne National

Jerry A. Bullin; Dan Wilkerson

1982-01-01T23:59:59.000Z

165

VEE-0044 - In the Matter of Public Service Electric and Gas Company (New  

Broader source: Energy.gov (indexed) [DOE]

44 - In the Matter of Public Service Electric and Gas Company 44 - In the Matter of Public Service Electric and Gas Company (New Jersey) VEE-0044 - In the Matter of Public Service Electric and Gas Company (New Jersey) On July 14, 1997, the Office of Hearings and Appeals received from the Energy Information Administration (EIA) a "letter of appeal" that had been filed with the EIA by the Public Service Electric and Gas Company of New Jersey (PSE&G). In the letter, PSE&G requested confidential treatment of several items of information that it provides to the EIA on Form EIA-860, "Annual Electric Generator Report." For each electrical generator of each generating plant that PSE&G operates, the items of information are: (1) the unit heat rate; (2) the winter and summer net capabilities; and (3) the unit retirement date. During the lengthy

166

Motor Drives of Modern Drilling and Servicing Rigs for Oil and Gas Wells  

Science Journals Connector (OSTI)

This paper provides a synthetic view on the most recent achievements in the field of drilling and servicing rig drives for oil and gas wells. This field is featuring ... kilowatts and speeds of 150250rpm for drilling

Aurelian Iamandei; Gheorghe Miloiu

2013-01-01T23:59:59.000Z

167

Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities  

E-Print Network [OSTI]

This keynote paper: presents a 21st century vision of computing; identifies various computing paradigms promising to deliver the vision of computing utilities; defines Cloud computing and provides the architecture for creating market-oriented Clouds by leveraging technologies such as VMs; provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; presents some representative Cloud platforms especially those developed in industries along with our current work towards realising market-oriented resource allocation of Clouds by leveraging the 3rd generation Aneka enterprise Grid technology; reveals our early thoughts on interconnecting Clouds for dynamically creating an atmospheric computing environment along with pointers to future community research; and concludes with the need for convergence of competing IT paradigms for delivering our 21st century vision.

Buyya, Rajkumar; Venugopal, Srikumar

2008-01-01T23:59:59.000Z

168

Natural Gas Conservation and Ratemaking Efficiency Act (Virginia)  

Broader source: Energy.gov [DOE]

This Act applies to any investor-owned public service company engaged in the business of furnishing natural gas service to the public. The Act provides financial incentives to natural gas utilities...

169

Energy Crossroads: Utility Energy Efficiency Programs | Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Programs Energy Efficiency Programs Suggest a Listing Efficiency United The energy efficiency program for 18 Michigan Utilities including Alpena Power Company, Baraga Electric Utility, Bayfield Electric Cooperative, City of Crystal Falls Electric Department, City of Gladstone Department of Power & Light, City of South Haven Public Works, Daggett Electric Company, Hillsdale Board of Public Utilities, Indiana Michigan Power Company, L'Anse Electric Utility, Michigan Gas Utilities, Negaunee Electric Department, The City of Norway Department of Power & Light, SEMCO ENERGY Gas Company, Upper Peninsula Power Company, We Energies, Wisconsin Public Service and Xcel Energy. Energy Company Links A directory of approximately 700 oil and gas companies, utilities and oil

170

Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service  

Broader source: Energy.gov [DOE]

Objectives: To assist DOE-EE in evaluating the feasibility of using the existing natural gas transmission and distribution piping network for hydrogen/mixed gas delivery

171

Does Mobile Phone Ownership Predict Better Utilization of Maternal and Newborn Health Services? -A Cross-Sectional Study in Timor-Leste.  

E-Print Network [OSTI]

??Background: Increasingly popular mobile health (mHealth) programs have been proposed to promote better utilization of maternal, newborn and child health services. However, women who lack (more)

Nie, Juan

2014-01-01T23:59:59.000Z

172

Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals  

SciTech Connect (OSTI)

Air Products has developed a potentially ground-breaking technology Sour Pressure Swing Adsorption (PSA) to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

Kloosterman, Jeff

2012-12-31T23:59:59.000Z

173

Estimated Value of Service Reliability for Electric Utility Customers in the United States  

E-Print Network [OSTI]

Administration, Duke Energy, Mid America Power, Pacific Gas and Electric Company, Puget Sound Energy, Salt River

174

Flue Gas Purification Utilizing SOx/NOx Reactions During Compressin of CO2 Derived from Oxyfuel Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flue Gas Purification Flue Gas Purification Utilizing SO X /NO X Reactions During Compression of CO 2 Derived from Oxyfuel Combustion Background Oxy-combustion in a pulverized coal-fired power station produces a raw carbon dioxide (CO 2 ) product containing contaminants such as water vapor, oxygen, nitrogen, and argon from impurities in the oxygen used and any air leakage into the system. Acid gases are also produced as combustion products, such as sulfur oxides (SO

175

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of opportunity fuels will avoid greenhouse gas emissions from the combustion of natural gas and increase the diversity of fuel sources for U.S. industry. Introduction Gas turbines...

176

Natural Gas Rules (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Rules (Alabama) Natural Gas Rules (Alabama) Natural Gas Rules (Alabama) < Back Eligibility Utility Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines These rules apply to all gas utilities operating in the state of Alabama under the jurisdiction of the Alabama Public Service Commission. The rules state standards for the measurement of gas at higher than standard service pressure. Every utility shall provide and install at its own expense, and shall continue to own, maintain and operate all equipment necessary for the regulation and measurement of gas. Each utility furnishing metered gas service shall own and maintain the equipment and facilities necessary for accurately testing the various types and sizes of meters used for the measurement of gas. Each utility shall

177

Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast  

E-Print Network [OSTI]

of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

Leu, Tzong-Shyng "Jeremy"

178

Emerging technologies for the management and utilization of landfill gas. Final report, August 1994-August 1997  

SciTech Connect (OSTI)

The report gives information on emerging technologies that are considered to be commercially available (Tier 1), currently undergoing research and development (Tier 2), or considered as potentially applicable (Tier 3), for the management of landfill gas (LFG) emissions or for the utilization of methane (CH4) and carbon dioxide (CO2) from LFG. The emerging technologies that are considered to be Tier 1 are: (1) phosphoric acid fuel cells, (2) processes for converting CH4 from LFG to compressed LFG for vehicle fuel or other fuel uses, and (3) use of LFG as a fuel source for leachate evaporation systems. The Tier 2 technologies covered in the report are: (1) operation of landfills as anaerobic bioreactors, (2) operation of landfills are aerobic bioreactors, (3) production of ethanol from LFG, (4) production of commercial CO2 from LFG, and (5) use of LFG to provide fuel for heat and CO2 enhancement in greenhouses. Tier 3 technologies, considered as potentially applicable for LFG. include Stirling and Organic Rankine Cycle engines.

Roe, S.; Reisman, J.; Strait, R.; Doorn, M.

1998-02-01T23:59:59.000Z

179

San Diego Gas & Electric Company v. Sellers of Energy and Ancillary Services  

E-Print Network [OSTI]

Fact Sheet San Diego Gas & Electric Company v. Sellers of Energy and Ancillary Services Docket No. EL00-95-000 July 6, 2007 The Federal Energy Regulatory Commission today approved an $18 million uncontested settlement that resolves matters and claims related to BP Energy Company (BP) and California

Laughlin, Robert B.

180

Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

Dolan, S. L.; Heath, G. A.

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Utility Formation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

amounts See detailed discussion of these standards. For more information regarding tribal utility formation, contact the Power Service Line Account Executives: Eastern Power...

182

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels  

Broader source: Energy.gov [DOE]

Gas turbines are commonly used in industry for onsite power and heating needs because of their high efficiency and clean environmental performance. Natural gas is the fuel most frequently used to...

183

Utilization and Mitigation of VAM/CMM Emissions by a Catalytic Combustion Gas Turbine  

Science Journals Connector (OSTI)

A system configured with a catalytic combustion gas turbine generator unit is introduced. The system has ... Heavy Industries, Ltd., such as small gas turbines, recuperators and catalytic combustors, and catalyti...

K. Tanaka; Y. Yoshino; H. Kashihara; S. Kajita

2013-01-01T23:59:59.000Z

184

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels- Fact Sheet, 2011  

Broader source: Energy.gov [DOE]

Factsheet summarizing how this project will modify a gas turbine combustion system to operate on hydrogen-rich opportunity fuels

185

The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas  

E-Print Network [OSTI]

. During low demand periods, the unit is gas-fired and produces 150 psi steam at high efficiency. In the fall, the heat exchanger is converted to accept flue gas from the large original water tube boilers. The flue gas heats water, which preheats make...

Henderson, W. R.; DeBiase, J. F.

1983-01-01T23:59:59.000Z

186

Public Utility Regulation (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utility Regulation (Iowa) Utility Regulation (Iowa) Public Utility Regulation (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any person, partnership, business association, or corporation that owns or operates any facilities for furnishing gas by piped distribution system, electricity, communications services, or water to the public for compensation. Regulations pertaining to these facilities can be found in this section. Some exemptions apply

187

New Markets, Outmoded Manufacturing: The Transition from Manufactured Gas to Natural Gas by Northeastern Utilities after World War II  

E-Print Network [OSTI]

For more than a century, large manufactured gas plants dotted the industrial landscape of the urban Northeast. Using a variety of technologies, these factories applied heat and pressure to coke, coal, and oil to produce a gas suitable for use in space heating and cooking. Yet this well-established, vital industry literally ceased to exist in the two decades after World War II, as natural gas transported from the southwestern United States replaced manufactured gas in all of the major markets in the Northeast. This abrupt victory of a new product was a modem variant of "creative destruction " as described by Joseph Schumpeter in his classic study Capitalism, Socialism and Democracy [10]. While creating a more efficient fuel supply, the coming of natural gas also destroyed the existing system for the production and distribution of manufactured gas. Yet this mid-20th century case of creative destruction differed sharply from Schumpeter's descriptions of the same process during the era of high capitalism in the late 19th century. In that dynamic period, innovations took place in a largely unfettered

Chris Castaneda; Joseph Pratt

188

Energy Efficiency: Marketing and Service Potential for Energy Utilities' Industrial Markets  

E-Print Network [OSTI]

On paper, the match-up is simple: plant managers need solutions for energy-driven issues such as fuel bills, emissions compliance, process reliability, and workplace safety. Utilities, with their extensive customer account relationships, would be a...

Russel, C.; Tate, R.; Tubiolo, A.

189

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

C. Jean Bustard

2003-12-01T23:59:59.000Z

190

Utilization of CO2 as cushion gas for porous media compressed air energy storage  

E-Print Network [OSTI]

energy storage for large-scale deployment of intermittent solar andsolar energy systems. The number of cycles that occur in 30 years in a natural gas storage

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

191

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

Kenneth E. Baldrey

2003-01-01T23:59:59.000Z

192

Provision of utility support services to the US Department of Energy San Francisco Operations Office. Final technical report  

SciTech Connect (OSTI)

The main purpose of this project was to provide to DOE/SAN continuing, follow-up support to realize savings from a number of alternate supply arrangements that had already been and/or were expected to be identified under the original project. This expected continuation of these efforts is demonstrated by certain of the tasks that are spelled out in the Statement of Work. For example: Evaluate and propose alternative options and methods for improving efficiency, reducing cost, and making effective use of the energy supplies and facilities under various conditions of use; Provide engineering and economic analysis and recommendations for utility-related facilities and service issues, such as high voltage discounts, ownership of facilities, etc.; Assist in developing strategy and documentation in support of negotiating utility contracts and modifications thereto. In addition, the follow-on contract provided for monitoring and intervening in rate cases that had particular relevance to the DOE/SAN laboratories.

Not Available

1994-04-01T23:59:59.000Z

193

Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs (October 2014)  

Broader source: Energy.gov [DOE]

Three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program are featured in this report. Burbank, California; Glendale, California; and Danvers, Massachusetts are mid-sized cities that implemented grid modernization activities in multiple areas including advanced metering infrastructure, distribution automation, and customer systems.

194

Performance Monitoring of Service-Level Agreements for Utility Computing Using the Event Calculus  

E-Print Network [OSTI]

­ and informing interested parties of past, present and (possible) future contract states; and, (ii) Assessing (contract tracking XML). The semantics for CTXML are presented in terms of a computational model based-house and to customers). It will allow them to out-source large areas of their IT service provision to UC-data centres

Sergot, Marek

195

Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works  

Broader source: Energy.gov [DOE]

Presentationgiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingprovides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

196

Radiology Services Costs and Utilization Patterns Estimates in Southeastern EuropeA Retrospective Analysis from Serbia  

Science Journals Connector (OSTI)

AbstractObjective Assessment of costs matrix and patterns of prescribing of radiology diagnostic, radiation therapy, nuclear medicine, and interventional radiology services. Another aim of the study was insight into drivers of inappropriate resource allocation. Methods An in-depth, retrospective bottom-up trend analysis of services consumption patterns and expenses was conducted from the perspective of third-party payer, for 205,576 inpatients of a large tertiary care university hospital in Serbia (1,293 beds) from 2007 to 2010. Results A total of 20,117 patients in 2007, 17,436 in 2008, 19,996 in 2009, and 17,579 in 2010 were radiologically examined, who consumed services valued at 2,713,573.99 in 2007, 4,529,387.36 in 2008, 5,388,585.15 in 2009, and 5,556,341.35 in 2010. Conclusions The macroeconomic crisis worldwide and consecutive health policy measures caused a drop in health care services diversity offered in some areas in the period 2008 to 2009. In spite of this, in total it increased during the time span observed. The total cost of services increased because of a rise in overall consumption and population morbidity. An average radiologically examined patient got one frontal chest graph, each 7th patient got an abdomen ultrasound examination, each 19th patient got a computed tomography endocranium check, and each 25th patient got a head nuclear magnetic resonance. Findings confirm irrational prescribing of diagnostic procedures and necessities of cutting costs. The consumption patterns noticed should provide an important momentum for policymakers to intervene and ensure higher adherence to guidelines by clinicians.

Mihajlo Jakovljevi?; Ana Rankovi?; Nemanja Ran?i?; Mirjana Jovanovi?; Milo Ivanovi?; Olgica Gajovi?; Zorica Lazi?

2013-01-01T23:59:59.000Z

197

Economic evaluation and market analysis for natural gas utilization. Topical report  

SciTech Connect (OSTI)

During the past decade, the U.S. has experienced a surplus gas supply. Future prospects are brightening because of increased estimates of the potential size of undiscovered gas reserves. At the same time, U.S. oil reserves and production have steadily declined, while oil imports have steadily increased. Reducing volume growth of crude oil imports was a key objective of the Energy Policy Act of 1992. Natural gas could be an important alternative energy source to liquid products derived from crude oil to help meet market demand. The purpose of this study was to (1) analyze three energy markets to determine whether greater use could be made of natural gas or its derivatives and (2) determine whether those products could be provided on an economically competitive basis. The following three markets were targeted for possible increases in gas use: transportation fuels, power generation, and chemical feedstock. Gas-derived products that could potentially compete in these three markets were identified, and the economics of the processes for producing those products were evaluated. The processes considered covered the range from commercial to those in early stages of process development. The analysis also evaluated the use of both high-quality natural gas and lower-quality gases containing CO{sub 2} and N{sub 2} levels above normal pipeline quality standards.

Hackworth, J.H.; Koch, R.W.; Rezaiyan, A.J.

1995-04-01T23:59:59.000Z

198

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

SciTech Connect (OSTI)

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle, May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

199

DEVELOPMENT OF A NEW HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES  

E-Print Network [OSTI]

Symposium on Solar Thermal Power and Energy Systems,solar to thermal conversion is accomplished by a dispersion of ultra~fine partlcles suspended in a gas to absorb radlant energy

Hunt, Arlon J.

2012-01-01T23:59:59.000Z

200

Offshore gas conservation utilizing a turbo-expander based refrigeration extraction cycle  

SciTech Connect (OSTI)

Gas associated with the crude produced from Occidental's Piper Field is conserved by drying it and condensing out the heavier components. This renders the gas with water and hydrocarbon dew points acceptable for transfer to St. Fergus via Total's Frigg Field Pipeline. A process which includes a turbo expander/compressor is used to extract the condensate which is spiked into the crude pipeline for eventual recovery as liquid product and fuel gas at Flotta. The turbo expander can extract 30% more condensate than a simple Joule-Thompson expansion. Gas transferred to St. Fergus is 80% methane with a net calorific value of 1000 btu/scf and a water dew point of -20 F at 1700 psig.

Ross, I.; Robinson, T.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Use of piston expanders in plants utilizing energy of compressed natural gas  

Science Journals Connector (OSTI)

A comparative analysis has been performed of the suitability of using turbo-and piston (reciprocating) expanders in low-consumption units of natural gas...i...= 35 MPa. Two versions have been investigated: 1) mo...

A. I. Prilutskii

2008-03-01T23:59:59.000Z

202

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect (OSTI)

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

None

1981-01-01T23:59:59.000Z

203

The future of natural gas consumption in Beijing, Guangdong and Shanghai: An assessment utilizing MARKAL  

Science Journals Connector (OSTI)

Natural gas could possibly become a si0gnificant portion of the future fuel mix in China. However, there is still great uncertainty surrounding the size of this potential market and therefore its impact on the global gas trade. In order to identify some of the important factors that might drive natural gas consumption in key demand areas in China, we focus on three regions: Beijing, Guangdong, and Shanghai. Using the economic optimization model MARKAL, we initially assume that the drivers are government mandates of emissions standards, reform of the Chinese financial structure, the price and available supply of natural gas, and the rate of penetration of advanced power generating and end-use. The results from the model show that the level of natural gas consumption is most sensitive to policy scenarios, which strictly limit SO2 emissions from power plants. The model also revealed that the low cost of capital for power plants in China boosts the economic viability of capital-intensive coal-fired plants. This suggests that reform within the financial sector could be a lever for encouraging increased natural gas use.

BinBin Jiang; Chen Wenying; Yu Yuefeng; Zeng Lemin; David Victor

2008-01-01T23:59:59.000Z

204

Colorado Public Utility Commission's Xcel Wind Decision  

SciTech Connect (OSTI)

In early 2001 the Colorado Public Utility Commission ordered Xcel Energy to undertake good faith negotiations for a wind plant as part of the utility's integrated resource plan. This paper summarizes the key points of the PUC decision, which addressed the wind plant's projected impact on generation cost and ancillary services. The PUC concluded that the wind plant would cost less than new gas-fired generation under reasonable gas cost projections.

Lehr, R. L. (NRUC/NWCC); Nielsen, J. (Land and Water Fund of the Rockies); Andrews, S.; Milligan, M. (National Renewable Energy Laboratory)

2001-09-20T23:59:59.000Z

205

Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller  

SciTech Connect (OSTI)

Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

1996-12-31T23:59:59.000Z

206

Transmission access: The new factor in electric utility mergers  

SciTech Connect (OSTI)

This article deals with the effect of consideration of transmission access in whether a merger of electric utility is in the public interest. Cases examined are Southern California Edison and San Diego Gas and Electric, Utah Power and Light and Pacific Power and Light, Public Service Company of New Hampshire and Northeast Utilities Service Company, Kansas Gas and Electric and Kansas Power and Light, plus some holding company mergers.

Boiler, D.S.

1991-04-01T23:59:59.000Z

207

Evaluation of naturally fractured gas shale production utilizing multiwell transient tests: A field study  

SciTech Connect (OSTI)

A series of multiple well transient tests were conducted in a Devonian shale gas field in Meigs County, Ohio. Production parameters were quantified and it was determined that the reservoir is highly anisotropic, which is a significant factor in calculating half-fracture length from pressure transient data. Three stimulation treatments, including conventional explosive shooting, nitrogen foam frac, and high energy gas frac (HEGF), were compared on the basis of overall effectiveness and performance. Based on the evaluation of results, the nitrogen foam frac provided the most improved productivity. The study provided new type curves and analytical solutions for the mathematical representation of naturally fractured reservoirs and confirmed that the shale reservoir in Meigs County can be modeled as a dual porosity system using pseudosteady-state gas transfer from the matrix to the fracture system.

Chen, C.C.; Alam, J.; Blanton, T.L.; Vozniak, J.P.

1984-05-01T23:59:59.000Z

208

Category:QuickServiceRestaurant | Open Energy Information  

Open Energy Info (EERE)

QuickServiceRestaurant QuickServiceRestaurant Jump to: navigation, search Go Back to PV Economics By Building Type Media in category "QuickServiceRestaurant" The following 77 files are in this category, out of 77 total. SVQuickServiceRestaurant Albuquerque NM Public Service Co of NM.png SVQuickServiceRestaura... 65 KB SVQuickServiceRestaurant Atlantic City NJ Public Service Elec & Gas Co.png SVQuickServiceRestaura... 64 KB SVQuickServiceRestaurant Baltimore MD Baltimore Gas & Electric Co.png SVQuickServiceRestaura... 67 KB SVQuickServiceRestaurant Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVQuickServiceRestaura... 72 KB SVQuickServiceRestaurant Boulder CO Public Service Co of Colorado.png SVQuickServiceRestaura... 61 KB SVQuickServiceRestaurant Bridgeport CT Connecticut Light & Power Co.png

209

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-05-01T23:59:59.000Z

210

COMM-OPINION-ORDER, 76 FERC 61,347, Promoting Wholesale Competition Through Open-Access Non-discriminatory Transmission Services by Public Utilities, Docket No. RM95-8-000, Recovery of Stranded Costs by  

E-Print Network [OSTI]

-discriminatory Transmission Services by Public Utilities, Docket No. RM95-8-000, Recovery of Stranded Costs by Public Utilities and Transmitting Utilities, Docket No. RM94-7-001, (Sep. 27, 1996) COPYRIGHT 1999, CCH by Public Utilities, Docket No. RM95-8-000, Recovery of Stranded Costs by Public Utilities and Transmitting

Laughlin, Robert B.

211

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-07-01T23:59:59.000Z

212

The contribution of Utility-Scale Solar Energy to the global climate regulation and its effects on local ecosystem services  

Science Journals Connector (OSTI)

Abstract One solution to mitigate climate change can be the production of renewable energy. In this context, the aims of this paper are: (1) the identification of local unsuitable areas for the installation of Utility-Scale Solar Energy (USSE) in a municipality in southern Italy; (2) the assessment of the effects of their installation on local natural CO2 sequestration and on avoided CO2; and (3) the evaluation of their contribution to the global climate regulation through scenario analysis. Since 2007, 82 authorizations have been obtained for the installation of USSE in the municipality and 42 over 64 already completed have been installed in unsuitable areas. For what concerns the remaining USSE, two short-term scenarios are analysed in order to take into account their contribution in terms of climate regulation service. The first scenario is called Business As Usual with new planned USSE installed by 2014 also in unsuitable areas, and the second one with the new USSE installed only in suitable areas identified in this study. Surprisingly, Scenario 2 is characterized by a reduced natural capacity to sequester CO2 emissions and by a lower contribution of vegetation in providing the ecosystem service climate regulation in comparison with Scenario 1.

Antonella De Marco; Irene Petrosillo; Teodoro Semeraro; Maria Rita Pasimeni; Roberta Aretano; Giovanni Zurlini

2014-01-01T23:59:59.000Z

213

Category:FullServiceRestaurant | Open Energy Information  

Open Energy Info (EERE)

FullServiceRestaurant FullServiceRestaurant Jump to: navigation, search Go Back to PV Economics By Building Type Pages in category "FullServiceRestaurant" This category contains only the following page. O Openei test page Media in category "FullServiceRestaurant" The following 77 files are in this category, out of 77 total. SVFullServiceRestaurant Albuquerque NM Public Service Co of NM.png SVFullServiceRestauran... 66 KB SVFullServiceRestaurant Atlantic City NJ Public Service Elec & Gas Co.png SVFullServiceRestauran... 63 KB SVFullServiceRestaurant Baltimore MD Baltimore Gas & Electric Co.png SVFullServiceRestauran... 69 KB SVFullServiceRestaurant Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVFullServiceRestauran... 72 KB SVFullServiceRestaurant Boulder CO Public Service Co of Colorado.png

214

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

Kenneth E. Baldrey

2002-01-01T23:59:59.000Z

215

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

Kenneth E. Baldrey

2003-07-30T23:59:59.000Z

216

Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas  

DOE Patents [OSTI]

In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

Durai-Swamy, Kandaswamy (Culver City, CA)

1982-01-01T23:59:59.000Z

217

Study of integrated metal hydrides heat pump and cascade utilization of liquefied natural gas cold energy recovery system  

Science Journals Connector (OSTI)

The traditional cold energy utilization of the liquefied natural gas system needs a higher temperature heat source to improve exergy efficiency, which barricades the application of the common low quality thermal energy. The adoption of a metal hydride heat pump system powered by low quality energy could provide the necessary high temperature heat and reduce the overall energy consumption. Thus, an LNG cold energy recovery system integrating metal hydride heat pump was proposed, and the exergy analysis method was applied to study the case. The performance of the proposed integration system was evaluated. Moreover, some key factors were also theoretically investigated about their influences on the system performance. According to the results of the analysis, some optimization directions of the integrated system were also pointed out.

Xiangyu Meng; Feifei Bai; Fusheng Yang; Zewei Bao; Zaoxiao Zhang

2010-01-01T23:59:59.000Z

218

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

Kenneth E. Baldrey

2001-09-01T23:59:59.000Z

219

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

Kenneth E. Baldrey

2003-02-01T23:59:59.000Z

220

Services  

Broader source: Energy.gov [DOE]

The Office of Management provides many of the services that keep the Department of Energy Headquarters offices operational. Other Program Offices also provide services to the employees at...

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services Engineering Services The Network OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet...

222

Development of fiberglass composite systems for natural gas pipeline service. Final report, January 1987-March 1994  

SciTech Connect (OSTI)

Fiberglass composites suitable for use in the repair and reinforcement of natural gas transmission line pipe were developed and evaluated. Three types of composite systems were studied: (1) a nonintrusive system for on-line field of corrosion and mechanical damage, (2) line pipe reinforced with filament wound composite, and (3) low-cost systems suitable for over-the-ditch rehabilitation of long pipeline sections. Effort during this program concentrated on the first two areas. A unique fiberglass/polyester device, called Clock Spring, was developed and successfully tested both as a means of terminating rapidly propagating cracks and for on-line repair of metal loss defects. Composite reinforced pipe was produced and hydrotested, and subsequently installed in an operating pipeline to evaluate its long-term behavior in pipeline service.

Fawley, N.C.

1994-03-01T23:59:59.000Z

223

Philadelphia Gas Works Looking for a challenge and ready to power up your career?  

E-Print Network [OSTI]

Philadelphia Gas Works Looking for a challenge and ready to power up your career? The Philadelphia Gas Works (PGW) is the largest municipally-owned gas utility in the nation, supplying gas service into the large, modern facility that exists today. As one of the nation's leading natural gas providers, PGW

Plotkin, Joshua B.

224

Business Owners: Prepare for Utility Disruptions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

for Utility Disruptions for Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other hazard knocks out your business's electricity or natural gas service. Identify energy utilities-The utilities that are absolutely necessary to running your business. How might a disaster impact the availability of those utilities? Determine backup options-Contact your utility companies to discuss potential backup options, such as portable generators to provide power. Learn how and when to turn off utilities-For example, if you turn off your natural gas, a professional technician must turn it back on. Learn more Consider using backup generators-Generators can power the most important aspects of your business in an emergency. This will involve:

225

Property:ServiceTerritory | Open Energy Information  

Open Energy Info (EERE)

ServiceTerritory ServiceTerritory Jump to: navigation, search Property Name ServiceTerritory Property Type Page Description State(s) the utility company service territory is located in. Pages using the property "ServiceTerritory" Showing 25 pages using this property. (previous 25) (next 25) A AEP Generating Company + Ohio + AEP Texas Central Company + Texas + AEP Texas North Company + Texas + Ameren Illinois Company (Illinois) + Illinois + Appalachian Power Co + Virginia +, West Virginia +, Tennessee + Atlantic City Electric Co + New Jersey + Austin Energy + Texas + B Baltimore Gas & Electric Co + Maryland + Bangor Hydro-Electric Co + Maine + Barton Village, Inc (Utility Company) + Vermont + C CenterPoint Energy + Texas + Central Maine Power Co + Maine +

226

Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion  

SciTech Connect (OSTI)

The United States wishes to decrease foreign energy dependence by utilizing the countrys significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Fogash, Kevin

2010-09-30T23:59:59.000Z

227

Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion  

SciTech Connect (OSTI)

The United States wishes to decrease foreign energy dependence by utilizing the countrys significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Kevin Fogash

2010-09-30T23:59:59.000Z

228

Mississippi Public Service Commission Adopts Energy Efficiency Rules  

Broader source: Energy.gov [DOE]

Mississippi Public Service Commission (PSC) approved new energy efficiency rules for electric and natural gas utility companies to offer customers several pathways to increase energy efficiency. According to the PSC, the rules could potentially s

229

Comment amliorer le financement et la durabilit des services publics... http://cemadoc.irstea.fr/exl-php/util/documents/accede_document.php 15 sur 20 18/02/2014 11:24  

E-Print Network [OSTI]

Comment améliorer le financement et la durabilité des services publics... http://cemadoc.irstea.fr/exl-php/util/documents/accede_document.php... http://cemadoc.irstea.fr/exl-php/util/documents/accede_document.php 16 sur 20 18/02/2014 11:24 #12;Comment améliorer le financement et la durabilité des services publics... http://cemadoc.irstea.fr/exl-php/util/documents/accede_document.php

Paris-Sud XI, Université de

230

Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services Services Services Overview ECS Audio/Video Conferencing Fasterdata IPv6 Network Network Performance Tools (perfSONAR) ESnet OID Registry PGP Key Service Virtual Circuits (OSCARS) DOE Grids Service Transition Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Services ESnet provides interoperable, effective, reliable, and high performance network communications infrastructure, and certain collaboration services, in support of the Office of Science (SC)'s large-scale, collaborative science programs. ESnet provides users with high bandwidth access to DOE sites and DOE's primary science collaborators including Research and

231

NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates |  

Broader source: Energy.gov (indexed) [DOE]

NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Varies Provider Energy Efficiency Programs Group Northern Indiana Public Service Corporation (NIPSCO) offers rebates to residential customers that install energy efficient gas and electric measures in homes through the NIPSCO Energy Efficiency Rebate Program. The program is available to all residential NIPSCO natural gas and electric customers. Flat rebates are offered for natural gas boilers, natural gas

232

Services  

Broader source: Energy.gov [DOE]

The Human Capital Office offers benefit, new employee orientation and some learning & development related services to all DOE employees. Additionally the Office supplies employee and labor...

233

EM Utility Contracts  

Broader source: Energy.gov (indexed) [DOE]

12 12 EM UTILITY CONTRACT Site State Supplier Executed Contract Type DOE Contract # East Tennessee Technology Park TN Tennessee Valley Authority 4/27/2007 Energy supply contract (retail) DE-AC05-07OR23242 Hanford WA Bonneville Power Administration 10/1/2001 Transmission Service Agreement Hanford WA Bonneville Power Administration 10/1/2011 Power Sales Agreement (retail) Moab UT Paducah KY Electric Energy, Inc. (EEI as agent for DOE) Original Power Contract Portsmouth OH Pike Natural Gas 2/28/2007 Negotiated contract Portsmouth OH Ohio Valley Electric Corporation (OVEC) 9/10/2008 Letter Agreement DE-AC05-03OR22988 Savannah River Site SC South Carolina Electric & Gas

234

EIS-0467: Hanford Site Natural Gas Pipeline, Richland, WA  

Broader source: Energy.gov [DOE]

DOE announces its intent to prepare an EIS for the Acquisition of a Natural Gas Pipeline and Natural Gas Utility Service at the Hanford Site, Richland, Washington (Natural Gas Pipeline or NGP EIS), and initiate a 30-day public scoping period.

235

Intermountain Gas Company (IGC) - Gas Heating Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Furnace: $200/unit Provider Customer Service The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system using another energy source. New furnaces must meet a minimum AFUE efficiency rating of 90%, and the home must have been built at least three years prior to the furnace conversion to qualify for the rebate. Visit IGC's program web site for more

236

BPA_Utilities_and_Cities.mxd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cTribalandIOUCustomerServiceAreas.mxd State Boundary Indian Reservations Public Utilities Tribal Utilities Tribal Investor Owned Utilities Idaho Power Company Northwestern...

237

Public Service Companies, General Provisions (Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Service Companies, General Provisions (Virginia) Service Companies, General Provisions (Virginia) Public Service Companies, General Provisions (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Siting and Permitting Provider Virginia State Corporation Commission Public Service Companies includes gas, pipeline, electric light, heat, power and water supply companies, sewer companies, telephone companies, and

238

System design and performance of a spiral groove gas seal for hydrogen service  

SciTech Connect (OSTI)

In the past, typical seal designs for low molecular weight gases, such as hydrogen, incorporated high pressure oil seal systems. Technology of the seventies and eighties produced a new concept - the spiral groove gas seal. This paper discusses the problems related to oil seal systems, as well as the design, application and performance of a dry gas seal. It also discusses the limitations encountered with the start-up and operation of a dry gas seal in a high pressure, oil-soluble mixture of light hydrocarbons. Results show how the spiral groove gas seal can handle adverse demands without seal failure.

Pecht, G.G.; Carter, D. (John Crane, Inc., Morton Grove, IL (USA) Marathon Petroleum Co., Robinson, IL (USA))

1990-09-01T23:59:59.000Z

239

City of Monroe, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Monroe, Georgia (Utility Company) Monroe, Georgia (Utility Company) (Redirected from Monroe Water, Light & Gas Comm) Jump to: navigation, search Name City of Monroe Place Georgia Utility Id 12800 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL DEMAND RATE Commercial COMMERCIAL NON DEMAND RATE Commercial Church Service Commercial City Electric Service Commercial Industrial Service Industrial RESIDENTIAL RATE Residential SECURITY LIGHT - 1000 Watt MH Lighting SECURITY LIGHT - 400 Watt HPS Lighting

240

Modeling of residual service life of gas turbine rotors for minimizing replacement costs  

Science Journals Connector (OSTI)

One of the most catastrophic failures observed in gas turbine powered electrical powerplants is the fracture of the turbine rotor. A simplified model consisting of 3 macro-elements is suggested to model the dynamical behavior of the shaft with a propagating ... Keywords: crack propagation, gas-turbine, modeling, power-plant, replacement costs

Eusebia Zouridaki; Vasilios Spitas; Christos Spitas

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sulfide stress cracking of a pipeline weld in sour gas service  

SciTech Connect (OSTI)

A replacement girth weld in a wet, sour gas gathering pipeline failed within 72 hours of start of operation. This paper describes the investigation of this unusual failure, indicates probable causes, and outlines potential changes in repair/replacement practices for wet, sour gas lines.

Szklarz, K.E.

1999-07-01T23:59:59.000Z

242

Development of efficiency-enhanced cogeneration system utilizing high-temperature exhaust-gas from a regenerative thermal oxidizer for waste volatile-organic-compound gases  

Science Journals Connector (OSTI)

We have developed a gas-turbine cogeneration system that makes effective use of the calorific value of the volatile organic compound (VOC) gases exhausted during production processes at a manufacturing plant. The system utilizes the high-temperature exhaust-gas from the regenerative thermal oxidizer (RTO) which is used for incinerating VOC gases. The high-temperature exhaust gas is employed to resuperheat the steam injected into the gasturbine. The steam-injection temperature raised in this way increases the heat input, resulting in the improved efficiency of the gas-turbine. Based on the actual operation of the system, we obtained the following results: Operation with the steam-injection temperature at 300C (45C resuperheated from 255C) increased the efficiency of the gasturbine by 0.7%. The system can enhance the efficiency by 1.3% when the steam-injection temperature is elevated to 340C (85C resuperheated). In this case, up to 6.6 million yen of the total energy cost and 400 tons of carbon dioxide (CO2) emissions can be reduced annually. A gas-turbine cogeneration and RTO system can reduce energy consumption by 23% and CO2 emission by 30.1% at the plant.

Masaaki Bannai; Akira Houkabe; Masahiko Furukawa; Takao Kashiwagi; Atsushi Akisawa; Takuya Yoshida; Hiroyuki Yamada

2006-01-01T23:59:59.000Z

243

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Broader source: Energy.gov (indexed) [DOE]

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

244

Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995  

SciTech Connect (OSTI)

A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

1995-12-01T23:59:59.000Z

245

ENERGY COMMISSION PUBLIC UTILITIES COMMISSION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA PUBLIC UTILITIES COMMISSION FOR IMMEDIATE RELEASE Prosper, California Public Utilities Commission, 415.703.2160 GREENHOUSE GAS STRATEGIES OPINION RELEASED SACRAMENTO -- The California Energy Commission and the California Public Utilities Commission today released

246

Utility Partnerships Program Overview (Brochure), Federal Energy Management Program (FEMP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

agencies in meeting energy efficiency, agencies in meeting energy efficiency, renewable energy, and water conser- vation goals. Laws and Regulations The following legislative and execu- tive authorities support contracting for utility services: * Energy Policy Act (EPAct) of 1992 (42 U.S.C. Section 8256): Agencies are authorized and encouraged to participate in programs to increase energy efficiency and water con- servation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities. Agencies may accept any financial incentive, good, or service generally available from any utility. * 10 U.S.C. Section 2913: Outlines energy savings contracts and related activities, shared energy savings contracts, participation in gas or

247

Utility Partnerships Program Overview (Brochure), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

agencies in meeting energy efficiency, agencies in meeting energy efficiency, renewable energy, and water conser- vation goals. Laws and Regulations The following legislative and execu- tive authorities support contracting for utility services: * Energy Policy Act (EPAct) of 1992 (42 U.S.C. Section 8256): Agencies are authorized and encouraged to participate in programs to increase energy efficiency and water con- servation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities. Agencies may accept any financial incentive, good, or service generally available from any utility. * 10 U.S.C. Section 2913: Outlines energy savings contracts and related activities, shared energy savings contracts, participation in gas or

248

State Natural Gas Regulation Act (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

State Natural Gas Regulation Act (Nebraska) State Natural Gas Regulation Act (Nebraska) State Natural Gas Regulation Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Public Service Commisssion This act gives the Nebraska Public Service Commission authority to regulate natural gas utilities and pipelines within the state, except as provided for in the Nebraska Natural Gas Pipeline Safety Act of 1969. Some

249

Method for recovering power according to a cascaded rankine cycle by gasifying liquefied natural gas and utilizing the cold potential  

SciTech Connect (OSTI)

The present invention discloses a method for recovering effective energy as power between liquefied natural gas and a high temperature source by cascading two kinds of Rankine cycles when the liquefied natural gas is re-gasified. The method is characterized in that a first medium performs a first Rankine cycle with the liquefied natural gas as a low temperature source, the first medium being mainly a mixture of hydrocarbons having 1-6 carbon atoms or a mixture of halogenated hydrocarbons of boiling points close to those of said hydrocarbons, the first medium having compositions according to which the vapor curve of gasifying the liquefied natural gas substantially corresponds to the low pressure cooling curve of the first medium, the power generated thereby is recovered by a first turbine during the first Rankine cycle, a second medium having a higher boiling point than said first medium performs a second Rankine cycle with part of said first Rankine cycle as the low temperature source, the second medium, being a single hydrocarbon component having 1-6 carbon atoms or a mixture thereof, a single halogenated hydrocarbon whose boiling point is close to that of this hydrocarbon or a mixture thereof, or ammonia, whose low pressure cooling curve substantially corresponds to the vapor curve of the high pressure first medium, said first and second Rankine cycles are cascaded, and a second turbine is disposed to recover power during the second Rankine cycle.

Matsumoto, O.; Aoki, I.

1984-04-24T23:59:59.000Z

250

Utility Metering - AGL Resources  

Broader source: Energy.gov (indexed) [DOE]

AGL Resources AGL Resources Mike Ellis Director, AGL Energy Services Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company  Multiple LDCs with legacy metering equipment  Several use Itron 100G technology ◦ Mobile, once-a-month data collection ◦ Meter can store interval data for >30 days ◦ Meter technology could be leverage on fixed-base network, however there are no current plans for upgrade  Technology for capturing interval data is installed on case by case basis ◦ Customers on Interruptible Rate ◦ Large users  Electronic corrector installed on the meter ◦ Pressure and Temperature compensation  Typically data is retrieved once a day ◦ Transmission frequency impacts battery life

251

KRS Chapter 278: Natural Gas (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

KRS Chapter 278: Natural Gas (Kentucky) KRS Chapter 278: Natural Gas (Kentucky) KRS Chapter 278: Natural Gas (Kentucky) < Back Eligibility Commercial Investor-Owned Utility Municipal/Public Utility Transportation Utility Program Info State Kentucky Program Type Safety and Operational Guidelines Provider Kentucky Public Service Commission The Public Service Commission may, by rule or order, authorize and require the transportation of natural gas in intrastate commerce by intrastate pipelines, or by local distribution companies with unused or excess capacity not needed to meet existing obligations of the pipeline or distribution company, for any person for one (1) or more uses, as defined by the commission by rule, in the case of:(a) Natural gas sold by a producer, pipeline or other seller to such person; or(b) Natural gas

252

Utilization of Common Automotive Three-Way NO{sub x} Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094  

SciTech Connect (OSTI)

Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO{sub x} reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO{sub x} reduction performance of the THOR process, a common Three-Way catalytic NO{sub x} reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO{sub x} unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO{sub x} to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO{sub x} concentration upstream and downstream of the catalytic DeNO{sub x} unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO{sub x} reduction capability of the catalytic DeNO{sub x} unit. The NO{sub x} destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO{sub x} reduction efficiencies of greater than 99.9% with an average NO{sub x} reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO{sub x} concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm), dry basis with an average concentration of approximately 17 ppm, dry basis. There were no signs of catalyst deactivation throughout the 6 day demonstration program, even under the high steam (>50%) content and chemically reducing conditions inherent to the THOR process. Utilization of the common Three-Way automotive catalyst may prove to be a cost effective method for improving NO{sub x} emissions from thermal treatment processes that utilize similar processing conditions. This paper will discuss the details of the implementation and performance of the Three-Way catalytic DeNO{sub x} unit at the THOR ESTD, as well as a discussion of future work to determine the long-term durability of the catalyst in the THOR process. (authors)

Foster, Adam L.; Ki Song, P.E. [Studsvik, Inc. 5605 Glenridge Drive Suite 705, Atlanta, GA 30342 (United States)] [Studsvik, Inc. 5605 Glenridge Drive Suite 705, Atlanta, GA 30342 (United States)

2013-07-01T23:59:59.000Z

253

"2. Craig","Coal","Tri-State G & T Assn, Inc",1304 "3. Fort St Vrain","Gas","Public Service Co of Colorado",969  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado" Colorado" "1. Comanche","Coal","Public Service Co of Colorado",1426 "2. Craig","Coal","Tri-State G & T Assn, Inc",1304 "3. Fort St Vrain","Gas","Public Service Co of Colorado",969 "4. Cherokee","Coal","Public Service Co of Colorado",717 "5. Rawhide","Coal","Platte River Power Authority",666 "6. Rocky Mountain Energy Center","Gas","Rocky Mountain Energy Ctr LLC",601 "7. Pawnee","Coal","Public Service Co of Colorado",505 "8. Front Range Power Project","Gas","Colorado Springs City of",462 "9. Hayden","Coal","Public Service Co of Colorado",446

254

Presque Isle Elec & Gas Coop | Open Energy Information  

Open Energy Info (EERE)

Elec & Gas Coop Elec & Gas Coop Jump to: navigation, search Name Presque Isle Elec & Gas Coop Place Michigan Utility Id 15340 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Controlled Heating Residential Customer Owned Backup Generation Commercial General Service - Single Phase Commercial General Service - Single Phase(Oil Related Accounts) Commercial General Service - Three Phase Commercial General Service - Three Phase(Oil Related Accounts) Commercial Green/Renewable Energy Rider

255

Piedmont Natural Gas - Residential Equipment Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate 2 rebates per household Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount High-Efficiency Furnace: $175 Tankless Water Heater: $150 Tank Water Heater: $50 Provider Gas Technology and Energy Services Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these rebates. Rebates are only provided for qualifying natural gas equipment that is installed to

256

gas | OpenEI  

Open Energy Info (EERE)

gas gas Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

257

web service | OpenEI Community  

Open Energy Info (EERE)

utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next...

258

utility | OpenEI Community  

Open Energy Info (EERE)

utility utility Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(2002) Super contributor 11 January, 2013 - 14:21 Swinerton Renewable Energy Awarded Contract to Construct and Operate 250 MWac K Road Moapa Solar Plant Marketwire OpenEI Renewable Energy Solar Swinerton utility Syndicate content 429 Throttled (bot load)

259

California Public Utilities Commission | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Commission Public Utilities Commission Address 505 Van Ness Avenue Place San Francisco, California Zip 94102 Phone number 415-703-2782 Website http://www.cpuc.ca.gov/puc/ References CPUC Website[1] This article is a stub. You can help OpenEI by expanding it. California Public Utilities Commission is an organization based in San Francisco, California. The CPUC regulates privately owned electric, natural gas, telecommunications, water, railroad, rail transit, and passenger transportation companies, in addition to authorizing video franchises. Our five Governor-appointed Commissioners, as well as our staff, are dedicated to ensuring that consumers have safe, reliable utility service at reasonable rates, protecting against fraud, and promoting the health of California's economy.

260

Public Utilities Commission Consumer Programs  

E-Print Network [OSTI]

California Public Utilities Commission Consumer Programs Water Programs The CPUC regulates company's service territory and have varying income limits. Check with your water utility to find out plans that can help you man- age your bills. Contact the utility directly, using the customer service

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Municipal Utilities' Investment in Smart Grid Technologies Improves...  

Broader source: Energy.gov (indexed) [DOE]

Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs Municipal Utilities' Investment in Smart Grid Technologies Improves Services and...

262

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

263

ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES  

SciTech Connect (OSTI)

Air Products set out to investigate the impact of additives on the deposition rate of both ???µCSi and ???±Si-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air Products?¢???? electronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties.

Ridgeway, R.G.; Hegedus, S.S.; Podraza, N.J.

2012-08-31T23:59:59.000Z

264

Utilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utilities Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine whether municipalization would be a beneficial option for many California cities. Source: Bay Area Economic Forum. Establishing a Tribal Utility Authority Handbook Provides an introduction to electric utility operation and general guidance for the steps required to form a tribal utility authority. Funded by an economic development grant awarded by the U.S. Department of the Interior's Office of Indian Energy and Economic Development to the Ak-Chin Indian Community and its tribal utility authority, Ak-Chin Energy Services. Source: Leonard S. Gold, Utility Strategies Consulting Group,

265

Natural Gas Pipe Line Companies (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipe Line Companies (Connecticut) Pipe Line Companies (Connecticut) Natural Gas Pipe Line Companies (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Public Utilities Regulatory Authority These regulations list standards and considerations for the design, construction, compression, metering, operation, and maintenance of natural gas pipelines, along with procedures for records, complaints, and service

266

Fact Sheet: DOE/National Association of Regulatory Utility Commissione...  

Energy Savers [EERE]

DOENational Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Fact Sheet: DOENational Association of Regulatory Utility...

267

Cogeneration Assessment Methodology for Utilities  

E-Print Network [OSTI]

A methodology is presented that enables electric utilities to assess the cogeneration potential among industrial, commercial, and institutional customers within the utility's service area. The methodology includes a survey design, analytic...

Sedlik, B.

1983-01-01T23:59:59.000Z

268

Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida) |  

Broader source: Energy.gov (indexed) [DOE]

Transmission Pipeline Intrastate Regulatory Act Transmission Pipeline Intrastate Regulatory Act (Florida) Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Program Info State Florida Program Type Safety and Operational Guidelines Provider Florida Public Service Commission The regulation of natural gas intrastate transportation and sale is deemed to be an exercise of the police power of the state for the protection of the public welfare. The Public Service Commission is empowered to fix and regulate rates and services of natural gas transmission companies, including, without limitation, rules and regulations for determining the

269

Alternative Fuels Data Center: Metropolitan Utilities District Fuels  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Metropolitan Utilities Metropolitan Utilities District Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on

270

By-Products Utilization  

E-Print Network [OSTI]

wood with supplementary fuels such as coal, oil, natural gas, and coke by pulp and paper mills and wood, knots, chips, etc. with other supplementary fuels such as coal, oil, natural gas, and coke to generateCenter for By-Products Utilization DEVELOPMENT OF CLSM USING COAL ASH AND WOOD ASH, A SOURCE OF NEW

Wisconsin-Milwaukee, University of

271

By-Products Utilization  

E-Print Network [OSTI]

with supplementary fuels such as coal, oil, natural gas, and coke by pulp and paper mills and wood, such as bark, twigs, knots, chips, etc. with other supplementary fuels such as coal, oil, natural gas, and cokeCenter for By-Products Utilization CLSM CONTAINING MIXTURES OF COAL ASH AND A NEW POZZOLANIC

Wisconsin-Milwaukee, University of

272

The Natural Gas Competition and Regulation Act of 1998 (Georgia) |  

Broader source: Energy.gov (indexed) [DOE]

The Natural Gas Competition and Regulation Act of 1998 (Georgia) The Natural Gas Competition and Regulation Act of 1998 (Georgia) The Natural Gas Competition and Regulation Act of 1998 (Georgia) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Low-Income Residential Municipal/Public Utility Residential Rural Electric Cooperative Utility Program Info State Georgia Program Type Generating Facility Rate-Making Industry Recruitment/Support The Natural Gas Competition and Deregulation Act's stated intent and purposes are to: promote competition; protect the consumer during and after the transition to competition; maintain and encourage safe and reliable service; deregulate those components of the industry subject to actual competition; continue to regulate those services subject to monopoly power;

273

Regulation of Gas, Electric, and Water Companies (Maryland) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Regulation of Gas, Electric, and Water Companies (Maryland) Regulation of Gas, Electric, and Water Companies (Maryland) Regulation of Gas, Electric, and Water Companies (Maryland) < Back Eligibility Agricultural Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Safety and Operational Guidelines Siting and Permitting Provider Maryland Public Service Commission The Public Service Commission is responsible for regulating gas, electric, and water companies in the state. This legislation contains provisions for such companies, addressing planning and siting considerations for electric

274

Ancillary services  

SciTech Connect (OSTI)

Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC identified six ancillary services reactive power and voltage control, loss compensation, scheduling and dispatch, load following, system protection, and energy imbalance. Our earlier work identified 19 ancillary services Here we offer a revised set of seven ancillary services and mention several other services that merit consideration. In preparing its final rule on open-access transmission service, we suggest that FERC consider splitting its system-protection service into its two primary pieces, reliability reserve and supplemental-operating reserve. We also suggest that FERC define more sharply all of the ancillary services. especially load-following reserve and energy imbalance. Finally, we suggest that FERC consider other services and their provision in a restructured electricity industry; these services include black-start capability, time correction, standby service. planning reserve, redispatch. transmission services, power quality, and planning and engineering services.

Hirst, E.; Kirby, B

1996-01-01T23:59:59.000Z

275

Generation of Web Service Descriptions and Web Service  

E-Print Network [OSTI]

Generation of Web Service Descriptions and Web Service Module Implementation for Concept University of Science and Technology Software Systems Institute (STS) #12;Abstract Nowadays web services in order to initiate the communication. A web services endpoint communication interface utilizes

276

utility rate | OpenEI Community  

Open Energy Info (EERE)

utility rate utility rate Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 June, 2012 - 09:30 Increasing ask query limit developer utility rate An NREL user who is trying to use the utility rate service was having an issue. He writes "I noticed that any rates past 10,000 are not accessible via json. For example, this query only returns two entries:

277

Diesel and gas turbine marine engine alternatives. 1976-January, 1982 (citations from Information Services in Mechanical Engineering Data Base). Report for 1976-January 1982  

SciTech Connect (OSTI)

Reports are cited which discuss the development and utilization of power plants designed for marine use. Power generated by coal burning, wind, nuclear reactors, water jet propulsion, and high-power water-cooled electric propulsion are among the alternative sources of power for marine application. Performance evaluations of existing unconventional marine propulsion systems are examined. This bibliography does not consider diesel internal combustion or gas turbine marine engines. (Contains 207 citations fully indexed and includes a title list.)

Not Available

1982-01-01T23:59:59.000Z

278

Montana State University Administration and Finance University Services  

E-Print Network [OSTI]

Disposal Engineering & Utilities Engineering Services Utilities Acquisitions Heating Plant OperationMontana State University Administration and Finance University Services Associate Vice President Bob Lashaway Facilities Services Budget & IT Services Budgeting & Accounting IT Services

Maxwell, Bruce D.

279

Montana State University -Administration and Finance University Services  

E-Print Network [OSTI]

Disposal Engineering & Utilities Engineering Services Utilities Acquisitions Heating Plant OperationMontana State University - Administration and Finance University Services Associate Vice President Bob Lashaway Facilities Services Budget & IT Services Budgeting & Accounting IT Services

Lawrence, Rick L.

280

Energy Efficiency Fund (Gas) - Home Energy Solutions and Performance  

Broader source: Energy.gov (indexed) [DOE]

Gas) - Home Energy Solutions and Gas) - Home Energy Solutions and Performance Programs Energy Efficiency Fund (Gas) - Home Energy Solutions and Performance Programs < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Other Ventilation Appliances & Electronics Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Varies Provider Customer Service The Energy Efficiency Fund, funded by Connecticut's public benefits charge, provides home energy efficiency rebate programs to customers of The Connecticut Light and Power Company and The United Illuminating Company, Connecticut Natural Gas, Southern Connecticut Gas, and Yankeegas customers. The Home Energy Solutions Program provides weatherization assistance to any

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Expro Engineering Sponsorship Programme Expro International Group is an upstream oil and gas sector service company  

E-Print Network [OSTI]

The Expro Engineering Sponsorship Programme Expro International Group is an upstream oil and gas and process flow from high-value oil and gas wells, from exploration and appraisal through to mature field for the development and delivery of innovative technologies to meet the needs of the oil and gas industry globally

Painter, Kevin

282

Slinger Utilities | Open Energy Information  

Open Energy Info (EERE)

Slinger Utilities Slinger Utilities Jump to: navigation, search Name Slinger Utilities Place Wisconsin Utility Id 17324 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Single-Phase- Time-of-Day Commercial General Service- Three-Phase Commercial General Service- Three-Phase- Time-of-Day Commercial Industrial Power- Time-of-Day Industrial Large Power- Time-of-Day Commercial Ornamental Street Lighting- 150W HPS Lighting Overhead Street Lighting- 150W HPS Lighting

283

Oconomowoc Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Oconomowoc Utilities Place Wisconsin Utility Id 13963 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

284

United States Forest Service - Forest Service NEPA Procedures...  

Open Energy Info (EERE)

windex.php?titleUnitedStatesForestService-ForestServiceNEPAProceduresandGuidance&oldid793474" Categories: References Geothermal References Solar References Utilities...

285

Sylacauga Utilities Board | Open Energy Information  

Open Energy Info (EERE)

Sylacauga Utilities Board Sylacauga Utilities Board Jump to: navigation, search Name Sylacauga Utilities Board Place Alabama Utility Id 18395 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service Commercial Commercial Large General Service Industrial Industrial Large General Service Primary Service Credit with Standby Generator Capacity Industrial Large General Service Primary Service Credit Commercial Commercial Large General Service Primary Service Credit Industrial Industrial

286

Natural Gas Rules (North Carolina) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rules (North Carolina) Rules (North Carolina) Natural Gas Rules (North Carolina) < Back Eligibility Utility Program Info State North Carolina Program Type Generating Facility Rate-Making Safety and Operational Guidelines Siting and Permitting Provider North Carolina Utilities Commission These rules apply to any gas utility operating within the State of North Carolina under the jurisdiction of the North Carolina Utilities Commission and also to interstate natural gas companies having pipeline facilities located in North Carolina insofar as safety is concerned. These rules are intended to promote safe and adequate service to the public, to provide standards for uniform and reasonable practices by utilities, and to establish a basis for determining the reasonableness of such demands as may

287

Top Ten Utility Green Pricing Programs: April 2000  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 2000 April 2000 Customer Participants (as of April 2000) Rank State Utility Program # of Participants 1 CA Los Angeles Department of Water and Power Green Power for a Green L.A. 31,000 2 CO Public Service Company of Colorado Windsource 14,500 3 WI Wisconsin Electric Energy for Tomorrow 12,000 3 CO Public Service Company of Colorado Renewable Energy Trust 12,000 5 CA Sacramento Municipal Utility District Greenergy 6,100 6 WI Madison Gas and Electric Wind Power 5,200 7 WI Wisconsin Public Service Solar Wise for Schools 4,000 8 OR Eugene Water and Electric Board EWEB Windpower 2,700 9 HI Hawaiian Electric Sun Power for School 2,600 10 OR Portland General Electric Salmon-Friendly Power 2,500 Source: NREL Customer Participation Rates

288

Utility Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Sponsored E-Source Membership Utility Potential...

289

Wakefield Municipal Gas and Light Department - Residential Conservation  

Broader source: Energy.gov (indexed) [DOE]

Wakefield Municipal Gas and Light Department - Residential Wakefield Municipal Gas and Light Department - Residential Conservation Services Program Wakefield Municipal Gas and Light Department - Residential Conservation Services Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Manufacturing Commercial Lighting Lighting Water Heating Maximum Rebate Energy Audit Recommended Measures: $300 Programmable Thermostats: 2 units Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Energy Audit Recommended Measures: 25% of total cost Refrigerators: $50 Clothes Washer: $50 Dishwasher: $50 Room AC: $50

290

City of Palo Alto Utilities - New Construction Commercial Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Commercial Rebate Commercial Rebate Program City of Palo Alto Utilities - New Construction Commercial Rebate Program < Back Eligibility Commercial Construction Industrial Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Commercial Buildings: $150,000 City/School Buildings: $200,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Electric Rebates 20% - 30% More Efficient Than Title 24: $0.20 - $0.30/kWh saved Greater than 30% More Efficient Than Title 24: $0.30/kWh saved Gas Rebates Greater than 20% more Efficient Than Title 24: $1/therm saved Systems Approach Electric: $0.10/kWh saved Gas: $1/therm saved Provider Utility Marketing Services

291

Best Practices for Utility Incentive Programs - Best Offer Ever  

Broader source: Energy.gov (indexed) [DOE]

March 2012 March 2012 1 Austin's Energy Leadership Best Practices for Utility Incentive Programs - Best Offer Ever Karl R. Rábago Distributed Energy Services Austin Energy February 2012 20 March 2012 2 Society Economy Environment Austin Energy's Mission Statement 20 March 2012 3 Clean Energy for Everyone, Today and Tomorrow. 20 March 2012 4 20 March 2012 5 5 20 March 2012 Best Offer Ever * Austin Energy rebates * Texas Gas Service rebates (if applicable) * Federal tax credits * 0% loan financing Average customer cost $9,000 Austin Energy rebates - $1,400 Amount financed with 0% loan $7,600 Texas Gas Service rebate - $300 Cost after all rebates $7,300 Federal tax credit - $1,500 Customer net cost $5,800 20 March 2012 6 6 20 March 2012 Best Offer Ever Raised Issues in Several

292

Utility Companies | OpenEI Community  

Open Energy Info (EERE)

Utility Companies Utility Companies Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(1992) Super contributor 29 October, 2012 - 14:46 East Coast Utilities prepare for Hurricane Sandy East Coast Hurricane Sandy OpenEI outages storm United States Utility Companies As Hurricane Sandy continues to track towards the coast of the Eastern

293

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Oklahoma Gas and Electric Company) Oklahoma Gas and Electric Company) Jump to: navigation, search Name Oklahoma Gas & Electric Co Place Oklahoma Utility Id 14063 Utility Location Yes Ownership I NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS-1 (General Service) Commercial GS-TOU (General Service Time-Of-Use) Commercial

294

Louisville Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Gas & Electric Co Gas & Electric Co Jump to: navigation, search Name Louisville Gas & Electric Co Place Kentucky Utility Id 11249 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ; CSR10-Curtailable Service Rider- Primary voltage Commercial

295

Rochester Gas & Electric Corp | Open Energy Information  

Open Energy Info (EERE)

Rochester Gas & Electric Corp Rochester Gas & Electric Corp Jump to: navigation, search Name Rochester Gas & Electric Corp Place New York Utility Id 16183 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SERVICE CLASSIFICATION NO. 1 - RESIDENTIAL SERVICE RSS (Non-Retail Access

296

South Carolina Electric&Gas Co | Open Energy Information  

Open Energy Info (EERE)

Electric&Gas Co Electric&Gas Co Jump to: navigation, search Name South Carolina Electric&Gas Co Place South Carolina Utility Id 17539 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 16 (General Service Time-Of-Use) Commercial

297

Nitrogen gas emissions from stormwater retention basins during wet weather events in the Phoenix Metropolitan area: an additional ecosystem service?  

E-Print Network [OSTI]

Nitrogen gas emissions from stormwater retention basins during wet weather events in the Phoenix Special thanks to all of our field and lab help: Rebecca Hale, Stevan Earl, Bony Ahmed, Lin Ye, Jolene. Samples were then taken throughout the day to assess water concentrations and gas losses (see photos

Hall, Sharon J.

298

Mississippi Public Utility Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mississippi Public Utility Act Mississippi Public Utility Act Mississippi Public Utility Act < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Industry Recruitment/Support Siting and Permitting Provider Public Service Commission The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN) from the Mississippi Public Service Commission (PSC) before commencing construction of a new electric

299

Wisconsin Dells Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dells Electric Util Dells Electric Util Jump to: navigation, search Name Wisconsin Dells Electric Util Place Wisconsin Utility Id 20844 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single Phase Commercial General Service- Three Phase Commercial Large General Service Commercial Large Power Service Industrial Large Power Service(Primary Metering & Transformer Ownership) Industrial Large Power Service(Primary Metering) Industrial Large Power Service(Transformer Ownership) Industrial

300

Utility Cost Analysis  

E-Print Network [OSTI]

utility bills. The r~~ulte of the modeling program and actual 1983 natural gas and electric consumption are graphed in Figures 2 and 3. The results indicate a good understanding of the heating requiremente of the facility as demonetrated by the close... fit of the two curves defining actual and modeled natural gas usage. Examination of the graph showing modeled electric coneumption verens actual 1983 data, illustrates an underetanding of electrical energy requiremente during all but peak cooling...

Horn, S.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Dalton Utilities | Open Energy Information  

Open Energy Info (EERE)

Dalton Utilities Dalton Utilities Jump to: navigation, search Name Dalton Utilities Place Georgia Utility Id 4744 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 - Watt Sodium Vapor Lighting 1000 - Watt Metal Halide Directional Type Lighting 150 Watt Mercury Vapor Underground Service Lighting 150 Watt Sodium Vapor Underground Service Lighting 175 - Watt Mercury Vapor Lighting 175 - Watt Sodium Vapor Lighting

302

1 - An Overview of Gas Turbines  

Science Journals Connector (OSTI)

Publisher Summary The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. The gas turbine has found increasing service in the past 60 years in the power industry among both utilities and merchant plants as well as the petrochemical industry throughout the world. The utilization of gas turbine exhaust gases, for steam generation or the heating of other heat transfer mediums, or the use of cooling or heating buildings or parts of cities is not a new concept and is currently being exploited to its full potential. The aerospace engines have been leaders in most of the technology in the gas turbine. The design criteria for these engines were high reliability, high performance, with many starts and flexible operation throughout the flight envelope. The industrial gas turbine has always emphasized long life and this conservative approach has resulted in the industrial gas turbine in many aspects giving up high performance for rugged operation. The gas turbine produces various pollutants in the combustion of the gases in the combustor. These include smoke, unburnt hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. It has found increasing service in the past 60 years in the power industry among both utilities and merchant plants, as well as in the petrochemical industry. Its compactness, low weight and multiple fuel application make it a natural power plant for offshore platforms. Today there are gas turbines that run on natural gas, diesel fuel, naphtha, methane, crude, low-BTU gases, vaporized fuel oils and biomass gases. The last 20 years have seen a large growth in gas turbine technology, spearheaded by the growth in materials technology, new coatings, new cooling schemes and combined cycle power plants. This chapter presents an overview of the development of modern gas turbines and gas turbine design considerations. The six categories of simple-cycle gas turbines (frame type heavy-duty; aircraft-derivative; industrial-type; small; vehicular; and micro) are described. The major gas turbine components (compressors; regenerators/recuperators; fuel type; and combustors) are outlined. A gas turbine produces various pollutants in the combustion of the gases in the combustor and the potential environmental impact of gas turbines is considered. The two different types of combustor (diffusion; dry low NOx, (DLN) or dry low emission (DLE)), the different methods to arrange combustors on a gas turbine, and axial-flow and radial-inflow turbines are described. Developments in materials and coatings are outlined.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

303

Utility FGD survey, January--December 1989  

SciTech Connect (OSTI)

The FGD survey report is prepared annually by International Technology (IT) Corporation (formerly PEI Associates, Inc.) for the US Department of Energy. The current issue (and preceding issues from 1974 to 1981 and October 1984 to the present) of the utility FGD survey are available only through the National Technical Information Service (NTIS). Preceding issues covering January 1982 through September 1984 may be purchased from the Research Reports Center of the Electric Power Research institute (EPRI). The information in this report is generated by a computerized data base system known as the Flue Gas Desulfurization Information System (FGDIS). The design information contained in the FGDIS encompasses the entire emission control system and the power generating unit to which it is applied. Performance data for operational FGD systems include monthly dependability parameters, service time, and descriptions of operational problems and solutions.

Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

1992-03-01T23:59:59.000Z

304

Barrow Utils & Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

& Elec Coop, Inc & Elec Coop, Inc Jump to: navigation, search Name Barrow Utils & Elec Coop, Inc Place Alaska Utility Id 1276 Utility Location Yes Ownership C NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Primary Metering ASNA/PHS Commercial Primary Metering USAF/DEW Site Commercial Primary Metering NSB Gas Fields Commercial Primary Metering NSBSD, C/O Annex Commercial Primary Metering UIC/NARL Commercial

305

San Diego Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Diego Gas & Electric Co Diego Gas & Electric Co (Redirected from San Diego Gas and Electric Company) Jump to: navigation, search Name San Diego Gas & Electric Co Place San Diego, California Service Territory California Website www.sdge.com Green Button Landing Page www.sdge.com/customer-ser Green Button Reference Page www.sdge.com/green-button Green Button Implemented Yes Utility Id 16609 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3]

306

Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report  

SciTech Connect (OSTI)

The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

None

1980-11-01T23:59:59.000Z

307

Hutchinson Utilities Commission - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Hutchinson Utilities Commission - Residential Energy Efficiency Hutchinson Utilities Commission - Residential Energy Efficiency Program Hutchinson Utilities Commission - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate 500 Program Info Expiration Date program offered until expiration of funding State Minnesota Program Type Utility Rebate Program Rebate Amount Natural Gas Furnaces: $150-$250, depending on efficiency Natural Gas Furnace Tune-up: $25 ECM Motor: $75 Natural Gas Boilers: $200 Central Air Conditioners: $250 Central Air Conditioner Tune-up: $25 Tankless Gas Water Heaters: $150 Storage Gas Water Heaters: $50 Air Source Heat Pumps: $75/ton

308

A Study of the Causes of the Service Fracture of Turbine Rotor Blade of Compressor Station Gas-Turbine Unit  

Science Journals Connector (OSTI)

On the basis of structural and fractographic the analysis of the fractured surface of working turbine blade of GTK-10-2 gas-turbine unit of compressor station it is established...

A. Ya. Krasovskyi; O. E. Gopkalo; I. O. Makovetska; O. O. Yanko

2013-07-01T23:59:59.000Z

309

Black Hills Energy (Gas) - Residential New Construction Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Black Hills Energy (Gas) - Residential New Construction Rebate Black Hills Energy (Gas) - Residential New Construction Rebate Program Black Hills Energy (Gas) - Residential New Construction Rebate Program < Back Eligibility Construction Residential Savings Category Appliances & Electronics Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Builder Incentive: $800 - $2300 Provider Black Hills Energy Black Hills Energy offers new construction rebates for home builders in the eligible service area. Rebates between $800 and $5,000 are available for a range of efficiency measures incorporated into home construction. Qualifying homes must use natural gas and meet the minimum efficiency

310

Federal Outer Continental Shelf Oil and Gas Production Statistics - Pacific  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pacific Pacific Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Federal Outer Continental Shelf Oil and Gas Production Statistics - Pacific Dataset Summary Description Federal Outer Continental Shelf Oil and Gas Production Statistics for the Pacific by month and summarized annually. Tags {"Minerals Management Service",MMS,Production,"natural gas",gas,condensate,"crude oil",oil,"OCS production","Outer Continental Shelf",OSC,EIA,"Energy Information Agency",federal,DOE,"Department of Energy",DOI,"Department of the Interior","Pacific "} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

311

Key Publications - Natural Gas Regulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services Natural Gas Regulation Key Publications - Natural Gas Regulation Key Publications - Natural Gas Regulation Natural Gas Imports and Exports - Quarterly Reports July...

312

Federal Utility Partnership Working Group Seminar: DOE/FEMP...  

Broader source: Energy.gov (indexed) [DOE]

FederalUtility Strategic Partnership Meetings For utilities with comprehensive DSM service offerings and large Federal customer base. 9 UESC Project Support FEMP can...

313

Primer on gas integrated resource planning  

SciTech Connect (OSTI)

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

314

Corbin City Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Corbin City Utilities Comm Corbin City Utilities Comm Jump to: navigation, search Name Corbin City Utilities Comm Place Kentucky Utility Id 4341 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LGS-1 Large General Service Industrial LGS-2 Large General Srvice V2 Industrial RS-1 Residential Service Residential SGS-1 Small General Service Commercial SLS-1 Security Lighting Service-100 Watt Open Bottom Lighting SLS-1 Security Lighting Service-250 Watt Cobra Lighting SLS-1 Security Lighting Service-250 Watt Directional Flood Lighting

315

Easton Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Utilities Comm Utilities Comm Jump to: navigation, search Name Easton Utilities Comm Place Maryland Utility Id 5625 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE GENERAL SERVICE Commercial LARGE GENERAL SERVICE(Primary Metering) Commercial PRIMARY GENERAL SERVICE Commercial RESIDENTIAL RATE Residential SMALL GENERAL SERVICE Commercial SMALL GENERAL SERVICE(Primary Metering) Commercial

316

Weatherford Mun Utility System | Open Energy Information  

Open Energy Info (EERE)

Mun Utility System Mun Utility System Jump to: navigation, search Name Weatherford Mun Utility System Place Texas Utility Id 20230 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service - 1 (Demand 20.00 - 200.00) Industrial Large General Service - 2 (Demand 200.00 -1000.00) Industrial Large General Service - 2* Industrial Large General Service - 3 (Demand 1000.00 or More) Industrial Large General Service - 3* Industrial MV Lighting Lighting Residential service Residential

317

Fairmont Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Comm Public Utilities Comm Jump to: navigation, search Name Fairmont Public Utilities Comm Place Minnesota Utility Id 6151 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ALL ELECTRIC RATE Industrial COMMERCIAL SERVICE Commercial GENERAL SERVICE Industrial INDUSTRIAL SERVICE Industrial INDUSTRIAL SERVICE - PRIMARY VOLTAGE Industrial RESIDENTIAL HEAT Residential RESIDENTIAL SERVICE Residential RURAL SERVICE Residential

318

Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten  

Broader source: Energy.gov (indexed) [DOE]

Electric Transmission and Fuel Gas Transmission Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Siting and Permitting Provider New York State Public Service Commission Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and environmental impacts of the proposed transmission line. The regulations describe application and review

319

Baltimore Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Baltimore Gas and Electric Company) Baltimore Gas and Electric Company) Jump to: navigation, search Name Baltimore Gas & Electric Co Place Baltimore, Maryland Service Territory Maryland Website www.bge.com/Pages/default Green Button Committed Yes Utility Id 1167 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Baltimore Gas and Electric Company Smart Grid Project was awarded $200,000,000 Recovery Act Funding with a total project value of $451,814,234. Utility Rate Schedules Grid-background.png

320

Public Utilities (Florida) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utilities (Florida) Utilities (Florida) Public Utilities (Florida) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Generating Facility Rate-Making Provider Florida Public Service Commission Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the state's support for incorporating cogenerators and small power producers into the grid, and directs the Public Service Commission to establish regulations and

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Federal Utility Program Overview (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet overview of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) Federal Utility Program, including common contracts and services available to Federal agencies through local serving utilities.

Not Available

2009-07-01T23:59:59.000Z

322

Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...  

Office of Environmental Management (EM)

Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in...

323

Inland Empire Utilities Agency IEUA | Open Energy Information  

Open Energy Info (EERE)

Agency IEUA Agency IEUA Jump to: navigation, search Name Inland Empire Utilities Agency (IEUA) Place Chino, California Sector Renewable Energy, Services, Solar Product Water utility that also offers renewable energy services through methane gas and solar generation. Coordinates 34.012811°, -117.689328° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.012811,"lon":-117.689328,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Top Ten Utility Green Pricing Programs: November 2000  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 2000 November 2000 Customer Participants (as of November 2000) Rank Utility Program # of Participants 1 Los Angeles Department of Water and Power Green Power for a Green L.A. 65,000* 2 Public Service Company of Colorado Windsource/Renewable Energy Trust 21,000 3 Wisconsin Electric Energy for Tomorrow 12,000 4 Sacramento Municipal Utility District Greenergy/PV Pioneers 8,000 5 Wisconsin Public Service SolarWise for Schools 5,400 6 Madison Gas and Electric Wind Power 4,900 7 Portland General Electric Salmon-Friendly Power/Clean Wind Power 3,900 8 Austin Energy Green Choice 2,800 8 Tennesee Valley Authority Green Power Switch 2,800 10 PacifiCorp Blue Sky 2,700 Source: NREL Notes: * About half of the total are low-income customers that receive existing renewables at no additional cost.

325

Field evaluation of cofiring gas with coal for quantifying operational benefits and emissions trim in a utility boiler. Volume 2. Topical report, 1989-1990  

SciTech Connect (OSTI)

The volume consists of 14 appendixes to accompany volume 1 of the report, and covers the following test data: analysis of coal, fylash, and bottom ash samples; cleanliness factors; slagging observation record sheets; stack opacity measurements; stack sulphur dioxide and nitrogen oxides measurements; total coal flow; fuel gas flow; furnace exit gas temperature; percent oxygen at economizer outlet; percent excess air; bulk steam temperatures at secondary superheater and reheater outlets; secondary superheater and reheater tube outlet leg temperatures; unit heat rate; and models used for data interpretation.

Clark, K.J.; Torbov, T.S.; Impey, R.J.; Hara, K.G.; Burnett, T.D.

1993-02-01T23:59:59.000Z

326

Baseline screening tools as indicators for symptom outcomes and health services utilization in a collaborative care model for depression in primary care: a practice-based observational study  

Science Journals Connector (OSTI)

AbstractObjective Within a practice-based collaborative care program for depression, we examined associations between positive baseline screens for comorbid mental and behavioral health problems, depression remission and utilization after 1 year. Methods This observational study of 1507 depressed adults examined baseline screens for hazardous drinking (Alcohol Use Disorders Identification Test score?8), severe anxiety (Generalized Anxiety Disorder 7-item score ?15) and bipolar disorder [Mood Disorders Questionnaire (MDQ) positive screen]; 6-month depression remission; primary care, psychiatric, emergency department (ED) and inpatient visits 1 year postbaseline; and multiple covariates. Analyses included logistic and zero-inflated negative binomial regression. Results At unadjusted baseline, 60.7% had no positive screens beyond depression, 31.5% had one (mostly severe anxiety), 6.6% had two and 1.2% had all three. In multivariate models, positive screens reduced odds of remission versus no positive screens [e.g., one screen odds ratio (OR)=0.608, p=.000; all three OR=0.152, p=.018]. Screening positive for severe anxiety predicted more postbaseline visits of all types; severe anxiety plus hazardous drinking predicted greater primary care, ED and inpatient; severe anxiety plus MDQ and the combination of all three positive screens both predicted greater psychiatric visits (all p<.05). Regression-adjusted utilization patterns varied across combinations of positive screens. Conclusions Positive screens predicted lower remission. Severe anxiety and its combinations with other positive screens were common and generally predicted greater utilization. Practices may benefit from assessing collaborative care patients presenting with these screening patterns to determine resource allocation.

Nathan D. Shippee; Brooke H. Rosen; Kurt B. Angstman; Manuel E. Fuentes; Ramona S. DeJesus; Steven M. Bruce; Mark D. Williams

2014-01-01T23:59:59.000Z

327

Federal Utility Partnership Working Group | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement...

328

Business Owners: Prepare for Utility Disruptions  

Broader source: Energy.gov [DOE]

Have a plan in place in case a natural disaster or other hazard knocks out your businesss electricity or natural gas service.

329

For Utilities  

Broader source: Energy.gov [DOE]

Utilities and energy efficiency program administrators can incorporate Superior Energy Performance (SEP) into new or existing programs to help their industrial customers meet efficiency targets. The utility can provide incentives or other support to manufacturers who decide to implement SEP or pursue capital investments in energy efficiency. Accredited verification bodies have verified the substantial energy savings that are possible with SEP.

330

UTILITY INVESTMENT IN ON-SITE SOLAR: RISK AND RETURN ANALYSIS FOR CAPITALIZATION AND FINANCING  

E-Print Network [OSTI]

for Standard and Poor's Utility Index San Diego Gas Pacificof Averaging Interval: Utilities Index. Beta Scatter as aRecord Application to Utility Equity Returns Project

Kahn, E.

2011-01-01T23:59:59.000Z

331

Waverly Municipal Elec Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Elec Utility Municipal Elec Utility Jump to: navigation, search Name Waverly Municipal Elec Utility Place Iowa Utility Id 20214 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Commercial and Municipal time of Use Service Commercial Electric Heat Rate for Residential Service Residential General Service General and Minicipal Demand Time of Use Service Commercial

332

Shakopee Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Shakopee Public Utilities Comm Shakopee Public Utilities Comm Jump to: navigation, search Name Shakopee Public Utilities Comm Place Minnesota Website www.ci.shakopee.mn.us/ind Utility Id 16971 Utility Location Yes Ownership M NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial service rate Commercial Large general service rate Industrial Large industrial service rate Industrial Residential service rate Residential Residential service rate - senior citizens Residential Average Rates Residential: $0.1080/kWh Commercial: $0.0946/kWh Industrial: $0.0805/kWh

333

Tipton Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Tipton Municipal Electric Util Tipton Municipal Electric Util Jump to: navigation, search Name Tipton Municipal Electric Util Place Indiana Utility Id 18942 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate A- Residential Electric Service Residential Rate B- Commercial Electric Service Commercial Rate C- General and Industrial Power Service, Single Phase Industrial Rate C- General and Industrial Power Service, Three Phase Industrial Rate CG- Cogeneration Commercial Rate D- Primary Power and Lighting Service

334

Chillicothe Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Chillicothe Municipal Utils Chillicothe Municipal Utils Jump to: navigation, search Name Chillicothe Municipal Utils Place Missouri Utility Id 3486 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL (NON DEMAND)SERVICE SCHEDULE - CO Commercial LARGE COMMERCIAL SERVICE SCHEDULE - LP Commercial LARGE INDUSTRIAL SERVICE SCHEDULE - LI-01 Industrial RESIDENTIAL SERVICE SCHEDULE Residential SMALL INDUSTRIAL (NON DEMAND) SERVICE SCHEDULE - CO-06 Industrial Average Rates

335

Gainesville Regional Utilities | Open Energy Information  

Open Energy Info (EERE)

Gainesville Regional Utilities Gainesville Regional Utilities Jump to: navigation, search Name Gainesville Regional Utilities Place Florida Utility Id 6909 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric - Regular Service Residential Electric - Time-of-Use Service Residential General Service Demand Industrial General Service Non-Demand Commercial Large Power Service Industrial Average Rates

336

Kissimmee Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Kissimmee Utility Authority Kissimmee Utility Authority Jump to: navigation, search Name Kissimmee Utility Authority Place Florida Utility Id 10376 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE Commercial GENERAL SERVICE DEMAND Commercial GENERAL SERVICE LARGE DEMAND Commercial GENERAL SERVICE LARGE DEMAND TIME OF USE Commercial

337

New York State Elec & Gas Corp | Open Energy Information  

Open Energy Info (EERE)

New York State Elec & Gas Corp New York State Elec & Gas Corp Place New York Utility Id 13511 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes NERC RFC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS-2 (Small General Service ESS) Industrial

338

Optimal Design and Synthesis of Algal Biorefinery Processes for Biological Carbon Sequestration and Utilization with Zero Direct Greenhouse Gas Emissions: MINLP Model and Global Optimization Algorithm  

Science Journals Connector (OSTI)

Correspondingly, the superstructure is shown in Figure 7, and the border of continuous and discontinuous sections is redefined to cover the feed gas. ... The optimality tolerance for the branch-and-refine algorithm is set to 106, and optimality margins of the solving original problem (P1) and the linear relaxation problem (P2) are both zero. ... Sets ...

Jian Gong; Fengqi You

2014-01-03T23:59:59.000Z

339

Efficient Utilization of Greenhouse Gases in a Gas-to-Liquids Process Combined with CO2/Steam-Mixed Reforming and Fe-Based FischerTropsch Synthesis  

Science Journals Connector (OSTI)

In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. ... In the burner-type reformer, NG is used as a heating fuel, in order to reduce the consumption of NG, the vent gas can be applied to the burner to replace some part of NG as fuel. ...

Chundong Zhang; Ki-Won Jun; Kyoung-Su Ha; Yun-Jo Lee; Seok Chang Kang

2014-06-16T23:59:59.000Z

340

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network [OSTI]

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The changing focus of electric utility merger proceedings  

SciTech Connect (OSTI)

The present article examines the changes over the past few years in the Federal Energy Regulatory Commission's (FERC) review of electric utility mergers. After a brief introduction to the subject, three recent developments in section 203 proceedings are reviewed: Northeast Utilities/Public Service Co. of New Hampshire, Entergy/Gulf States Utilities, and the Cincinnati Gas and Electric Co. and PSI Energy Inc. The vitality of the [open quotes]Commonwealth[close quotes] factors is examined. Several issues bearing on the scope of the FERC's section 203 jurisdiction are discussed. The changes which have taken place in the hearing process are described. The author concludes that section 203 proceedings will continue to be protean in nature, with the applicable standards shifting and the outcomes difficult to predict.

Moot, J.S. (Meagher Flom, Washington, DC (United States))

1994-01-01T23:59:59.000Z

342

Utility Infrastructure Improvements Using GSA Areawide Contract  

Broader source: Energy.gov (indexed) [DOE]

3 - May 22-23 3 - May 22-23 San Francisco, CA Linda L. Collins, Contracting Officer, GSA Richard Butterworth, General Counsel, GSA  Federal Property Administrative Services Act of 1949, as amended - 40 U.S.C. 501  10 year authority for contracting  Prescribes policies and methods  Bundled utility service  Transportation/transmission services  Connections  Line Extensions  Transformers  Meters  Substations  Ancillary services for the provision of utility services  Agreements approved by Utility Commission   Term length same as other services  Government takes utility service in accordance with State Law  Green Button is an industry-led effort  Easy Access to usage data  Data provided as text file 

343

Hustisford Utilities | Open Energy Information  

Open Energy Info (EERE)

Hustisford Utilities Hustisford Utilities Jump to: navigation, search Name Hustisford Utilities Place Wisconsin Utility Id 9124 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional Time-of-Day Service Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional

344

Effects of reduced voltage on the operation and efficiency of electric systems. Volume 3. Field tests in a northern utility service area. Final report  

SciTech Connect (OSTI)

Volume 3 of this three-volume report for RP1419-1 describes the tests on selected residential, commercial, and small industry areas of the Detroit Edison Company system and the statistical analysis performed on the test data gathered. The purpose of the field testing was to provide data to analyze changes in energy consumption due to changes in feeder voltage levels. Detroit Edison was chosen to represent a winter peaking load area. Original intent was to present these results simultaneously with results from a summer peaking load area, Texas Electric Service Company (TESCO). Unavoidable delays retarded the Detroit study results to this Volume 3. TESCO results were reported in Volume 1, and the Distribution System Analysis and Simulation (DSAS) program for these studies was presented in Volume 2 in the form of a User's Manual.

Chen, M.S.; Shoults, R.R.

1985-07-01T23:59:59.000Z

345

Physical Plant Utility Department  

E-Print Network [OSTI]

electrical distribution systems a 13.8 kV grounded wye Primary Selective system and a 2.4 kV ungrounded delta open loop system. The campus takes service at 13.8 kV from the utility via two paralleled feeds on the Westside of campus and at this time generates 10MWs at 13.8 kV with future additional generation planned

Massachusetts at Amherst, University of

346

Southern Indiana Gas & Elec Co | Open Energy Information  

Open Energy Info (EERE)

Gas & Elec Co Gas & Elec Co Jump to: navigation, search Name Southern Indiana Gas & Elec Co Place Indiana Utility Id 17633 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png AD - Area Development Commercial

347

Southern Indiana Gas & Elec Co | Open Energy Information  

Open Energy Info (EERE)

Gas & Elec Co Gas & Elec Co (Redirected from Vectren) Jump to: navigation, search Name Southern Indiana Gas & Elec Co Place Indiana Utility Id 17633 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png AD - Area Development Commercial

348

Central Hudson Gas & Elec Corp | Open Energy Information  

Open Energy Info (EERE)

Hudson Gas & Elec Corp Hudson Gas & Elec Corp Jump to: navigation, search Name Central Hudson Gas & Elec Corp Place New York Utility Id 3249 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png DS-IN 85 Watt (acorn Decorative) Lighting DS-MH 175 Watt (acorn Decorative) Lighting

349

Fitchburg Gas and Electric Light Company | Open Energy Information  

Open Energy Info (EERE)

Fitchburg Gas and Electric Light Company Fitchburg Gas and Electric Light Company Place New Hampshire Utility Id 6374 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Fitchburg Gas and Electric Light Company (Massachusetts).

350

Baltimore Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Baltimore Gas & Electric Co Baltimore Gas & Electric Co Place Baltimore, Maryland Service Territory Maryland Website www.bge.com/Pages/default Green Button Committed Yes Utility Id 1167 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Baltimore Gas and Electric Company Smart Grid Project was awarded $200,000,000 Recovery Act Funding with a total project value of $451,814,234. Utility Rate Schedules Grid-background.png 100 watt Incandescent Lighting 100000 Lumen 1090 Watt MHR Lighting

351

NIPSCO (Gas) - Business Energy Efficiency Rebate Program (Indiana) |  

Broader source: Energy.gov (indexed) [DOE]

NIPSCO (Gas) - Business Energy Efficiency Rebate Program (Indiana) NIPSCO (Gas) - Business Energy Efficiency Rebate Program (Indiana) NIPSCO (Gas) - Business Energy Efficiency Rebate Program (Indiana) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Construction Commercial Weatherization Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Varies NIPSCO, in partnership with Franklin Energy Services, LLC, provides a range of incentive options for its business, government and non-profit customers. Both prescriptive and custom rebates are available to customers who undertake eligible energy efficiency projects at facilities. Retrofit projects consist of the retrofit or replacement of existing equipment or

352

City of Thomasville, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Thomasville, Georgia (Utility Company) Thomasville, Georgia (Utility Company) Jump to: navigation, search Name City of Thomasville Place Georgia Utility Id 18848 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Commercial Service Large General Service Commercial Electric Commercial Service Large General Service High Load Factor Commercial Electric Commercial Service Medium General Service Commercial Electric Commercial Service Small General Service Commercial Electric Residential Service Rate Schedule ER Residential

353

Utilities must do more communicating  

SciTech Connect (OSTI)

The dramatic changes within the electric-utility industry over the past decade require them to do a greater and more effective job of communicating with their customers. When the revenues and advertising burgets for investor-owned electric utilities over a six-year period are compared with the revenues and ad dollars of other large industries and selected companies, the discrepancy is apparent. The ad costs for just one brand of cigarette are three-fourths of all utility ad spending. The utilities need to use advertising to explain new service programs and rate strategies to the public. 3 figures.

Uhler, R.G.

1981-01-01T23:59:59.000Z

354

Canby Utility Board | Open Energy Information  

Open Energy Info (EERE)

Canby Utility Board Canby Utility Board Place Oregon Utility Id 2955 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes ISO Other Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE Commercial GENERAL SERVICE - Primary Voltage Commercial GENERAL SERVICE THREE PHASE Commercial GENERAL SERVICE THREE PHASE - Primary Voltage Commercial LIGHTING RATE 1000W Lighting LIGHTING RATE 150W Lighting LIGHTING RATE 175W Lighting LIGHTING RATE 200W Lighting LIGHTING RATE 250W Lighting

355

Princeton Public Utils Comm | Open Energy Information  

Open Energy Info (EERE)

Princeton Public Utils Comm Princeton Public Utils Comm Place Minnesota Utility Id 15387 Utility Location Yes Ownership M NERC Location MAPP NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100W High Pressure Sodium Lighting 1500W Quartz Commercial 250W High Pressure Sodium Lighting 250W Spot Commercial 400W High Pressure Sodium Lighting Large General Service Commercial Large General Service- Time of Use Commercial Large Power Service Industrial Large Power Service- Time of Use Industrial Residential Service Residential

356

Jefferson Utilities | Open Energy Information  

Open Energy Info (EERE)

Jefferson Utilities Jefferson Utilities Place Wisconsin Utility Id 9690 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional Time-of-Day Service 7am-9pm with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional

357

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents [OSTI]

A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

1994-08-23T23:59:59.000Z

358

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents [OSTI]

A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

Maerefat, Nicida L. (Sugar Land, TX); Parmeswar, Ravi (Marlton, NJ); Brinkmeyer, Alan D. (Tulsa, OK); Honarpour, Mehdi (Bartlesville, OK)

1994-01-01T23:59:59.000Z

359

Florida Public Utilities Co | Open Energy Information  

Open Energy Info (EERE)

Florida Public Utilities Co Florida Public Utilities Co Jump to: navigation, search Name Florida Public Utilities Co Place Florida Utility Id 6457 Utility Location Yes Ownership I NERC Location FRCC NERC FRCC Yes NERC SERC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSLDT:General Service-Large Demand TOU(Experimental) Industrial General Service - Demand (GSD)-Northeast Florida Industrial General Service - Demand (GSD)-Northwest Florida Commercial General Service - Large Demand (GSLD)-Northeast Florida Industrial

360

Reedsburg Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Reedsburg Utility Comm Reedsburg Utility Comm Jump to: navigation, search Name Reedsburg Utility Comm Place Wisconsin Utility Id 15804 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Brownsville Public Utilities Board | Open Energy Information  

Open Energy Info (EERE)

Brownsville Public Utilities Board Brownsville Public Utilities Board Jump to: navigation, search Name Brownsville Public Utilities Board Place Texas Utility Id 2409 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service GSA-1 Commercial General Service- GSA-2 Commercial General Service- GSA-3 Commercial

362

Algoma Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Algoma Utility Comm Algoma Utility Comm Jump to: navigation, search Name Algoma Utility Comm Place Wisconsin Utility Id 307 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Controlled Interdepartmental Service Commercial Customer Owner Generation Systems (Greater than 20kW) Industrial General Service - Optional Time-of-Day Single Phase less than 100kW 7am-7pm Industrial General Service - Optional Time-of-Day Single Phase less than 100kW 9am-9pm Industrial General Service - Optional Time-of-Day Single Phase less than 100kW 8am-8pm

363

Page Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Page Electric Utility Page Electric Utility Jump to: navigation, search Name Page Electric Utility Place Arizona Utility Id 14373 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service with Demand Meter Commercial Commercial Service without Demand Meter Commercial Residential Service > 200 Amps Residential Residential Service < 200 Amps Residential

364

Kauai Island Utility Cooperative | Open Energy Information  

Open Energy Info (EERE)

Island Utility Cooperative Island Utility Cooperative Jump to: navigation, search Name Kauai Island Utility Cooperative Place Hawaii Utility Id 10071 Utility Location Yes Ownership C NERC Location HICC Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png D Residential Service Residential General Light and Power Service Schedule G Commercial General Light and Power Service Schedule J Commercial Large Power Secondary Schedule P Industrial Large Power Service Schedule L Industrial

365

Easley Combined Utility System | Open Energy Information  

Open Energy Info (EERE)

Easley Combined Utility System Easley Combined Utility System Jump to: navigation, search Name Easley Combined Utility System Place South Carolina Utility Id 6709 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church electric service rate (Inside city limits) Commercial Church electric service rate (Outside city limits) Commercial Residential service rate (Inside city limits) Residential Residential service rate (Outside city limits) Residential

366

Hibbing Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Hibbing Public Utilities Comm Hibbing Public Utilities Comm Jump to: navigation, search Name Hibbing Public Utilities Comm Place Minnesota Utility Id 8543 Utility Location Yes Ownership M NERC Location MRO NERC FRCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png -POWER SERVICE Commercial Commercial Security Lighting Rate - 100 Watt H.P.S Lighting Commercial Security Lighting Rate - 250 Watt H.P.S Lighting General Service - Single Phase Commercial General Service - Three Phase Commercial

367

Groton Dept of Utilities | Open Energy Information  

Open Energy Info (EERE)

Groton Dept of Utilities Groton Dept of Utilities Jump to: navigation, search Name Groton Dept of Utilities Place Connecticut Utility Id 7716 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png High Voltage Large General Service(HVLGS) Industrial High Voltage Large General Service(HVLGS)-Gross Revenue Tax Industrial Large General Service Primary Distribution Industrial Large General Service Secondary Distribution Industrial

368

Willmar Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Municipal Utilities Municipal Utilities Jump to: navigation, search Name Willmar Municipal Utilities Place Minnesota Website wmu.willmar.mn.us/main/ Utility Id 20737 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General service rate Commercial Heat pump rate Commercial Industrial(≥500KW;Primary Service) Industrial Industrial;≥500KW(Secondary Service) Industrial

369

Rice Lake Utilities | Open Energy Information  

Open Energy Info (EERE)

Rice Lake Utilities Rice Lake Utilities Jump to: navigation, search Name Rice Lake Utilities Place Wisconsin Utility Id 15938 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial

370

Cedar Falls Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Cedar Falls Utilities Place Iowa Utility Id 3203 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All-Electric Residential Service Residential Demand Space Heating Service Commercial Electric Street Lighting Service Lighting

371

Baltimore Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Baltimore Gas & Electric Co Baltimore Gas & Electric Co (Redirected from BGE) Jump to: navigation, search Name Baltimore Gas & Electric Co Place Baltimore, Maryland Service Territory Maryland Website www.bge.com/Pages/default Green Button Landing Page www.bge.com/Pages/default Green Button Reference Page www.businesswire.com/news Green Button Implemented Yes Utility Id 1167 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Baltimore Gas and Electric Company Smart Grid Project was awarded

372

Federal Utility Partnership Working Group - Utility Interconnection Panel  

Broader source: Energy.gov (indexed) [DOE]

WORKING GROUP - Utility Interconnection Panel M. Renee Jewell, Program/Energy Manager, & Contracting Officer, Forest Service (reneejewell@fs.fed.us) SCENARIO: Fed Agencies had Solar PV Projects To Connect with Utility in California * United States (US) Forest Service (FS) - 1 small Solar Photovoltaic (PV) project; and - 1 small Renewable project (Solar PV) exporting energy to grid. * U.S. National Park Service (NPS) - 24 Small Solar Photovoltaic projects. * U.S. Dept. of Veterans Affairs (VA) - 6 Renewable generation projects of different sizes. FS Region 5 (California) - Solar Photovoltaic Installations Solar PV Project @ Mono Lake Visitor Center (Inyo NF) Solar PV Project (net exporter) @ San Dimas Technology and Development Center SITUATION - Utility Wanted Feds to Sign Its

373

Evaluating Utility System Operations Using APLUS  

E-Print Network [OSTI]

"Evaluating utility System Operations Using APLUS" Sanjay Pethe Sr. Process Engineer TENSA Services, Inc. 6200 Savoy Drive, Ste. 540 Houston, Texas 77036 ABSTRACT The steam system at a recycled paper fiberboard plant in Texas... Figure 1: Schematic of Steam System 86 "Evaluating utility System Operations Using APLUS" Sanjay Pethe Sr. Process Engineer Rajiv Singh Sr. Process Engineer TENSA Services, Inc. 6200 Savoy Drive, Ste. 540 Houston, Texas 77036 TENSA Services, Inc. 6200...

Pethe, S.; Singh, R.

374

Federal Energy Management Program: Getting the Best Value with Utility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Getting the Best Getting the Best Value with Utility Energy Service Contracts to someone by E-mail Share Federal Energy Management Program: Getting the Best Value with Utility Energy Service Contracts on Facebook Tweet about Federal Energy Management Program: Getting the Best Value with Utility Energy Service Contracts on Twitter Bookmark Federal Energy Management Program: Getting the Best Value with Utility Energy Service Contracts on Google Bookmark Federal Energy Management Program: Getting the Best Value with Utility Energy Service Contracts on Delicious Rank Federal Energy Management Program: Getting the Best Value with Utility Energy Service Contracts on Digg Find More places to share Federal Energy Management Program: Getting the Best Value with Utility Energy Service Contracts on AddThis.com...

375

Federal Energy Management Program: Utility Contract Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Competition to someone by E-mail Competition to someone by E-mail Share Federal Energy Management Program: Utility Contract Competition on Facebook Tweet about Federal Energy Management Program: Utility Contract Competition on Twitter Bookmark Federal Energy Management Program: Utility Contract Competition on Google Bookmark Federal Energy Management Program: Utility Contract Competition on Delicious Rank Federal Energy Management Program: Utility Contract Competition on Digg Find More places to share Federal Energy Management Program: Utility Contract Competition on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts Types of Contracts Laws & Regulations Best Practices Financing Decrease Interest Buydown & Buyout Approaches Contract Competition Diversify Project Portfolios

376

UTILIZATION OF ALASKAN SALMON CANNERY WASTE  

E-Print Network [OSTI]

UTILIZATION OF ALASKAN SALMON CANNERY WASTE Marine Biological Laboratory iM0V3Ul953 WOODS HOLE and Wildlife Service, John L. Farley, Director UTILIZATION OP ALASKM SALMON CANlTEaT WASH PAHTS I AHD II, September 1953 #12;#12;UTILIZATION OF AUSKAN SALMON CANNERY WASTE y PART I 1. Possibility of Development

377

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Broader source: Energy.gov (indexed) [DOE]

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

378

Town of Basin, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wyoming (Utility Company) Wyoming (Utility Company) Jump to: navigation, search Name Town of Basin Place Wyoming Utility Id 1779 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Demand Service Industrial General Service Commercial Industrial Demand Service Industrial Noncommercial Service Commercial Nongeneral Demand Service Industrial Nongeneral Service Commercial Nonindustrial Demand Service Industrial Nonresidential Service Residential Residential Residential Security Lighting Service Lighting

379

Green Power Network: Top Ten Utility Green Pricing Programs, December 2008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 2009 December 2009 Green Pricing Program Renewable Energy Sales (as of December 2009) Rank Utility Resources Used Sales (kWh/year) Sales (aMW)a 1 Austin Energy Wind, landfill gas 764,895,830 87.3 2 Portland General Electricb Wind, biomass, geothermal 740,880,487 84.6 3 PacifiCorpcde Wind, biomass, landfill gas, solar 578,744,080 66.1 4 Sacramento Municipal Utility Districtc Wind, hydro, biomass, solar 377,535,530 43.1 5 Xcel Energycf Wind, solar 374,296,375 42.7 6 Puget Sound Energycg Wind, landfill gas, biomass, small hydro, solar 303,046,167 34.6 7 Connecticut Light and Power/ United Illuminating Wind, hydro 197,458,734 22.5 8 National Gridh Biomass, wind, small hydro, solar 174,536,130 19.9 9 Public Service Company of New Mexico Wind 173,863,751 19.8

380

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

382

West Point Utility System | Open Energy Information  

Open Energy Info (EERE)

System System Jump to: navigation, search Name West Point Utility System Place Iowa Utility Id 20396 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service and Municipal Institutional service Large General Service Commercial Rural Resident and Farm All-Electric Residential Rural Resident and Farm Rate Residential Security Light - 150 Watt HPS Customer Owned Pole Lighting Security Light - 150 Watt HPS Utility Owned Pole Lighting Urban All-Electric Residential Rate Residential

383

Rochester Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Rochester Public Utilities Rochester Public Utilities Place Minnesota Utility Id 16181 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CIVIL DEFENSE SIRENS Commercial City street lighting rate Lighting General service - time-of-use rate Commercial General service rate Commercial General service(high efficiency) Commercial Highway lighting rates Lighting

384

Orlando Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Orlando Utilities Comm Place Florida Utility Id 14610 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Firm General Service Demand Primary Service Standby Service Industrial Firm General Service Demand Standby Service Industrial

385

Piedmont Natural Gas- Commercial Equipment Efficiency Program  

Broader source: Energy.gov [DOE]

Piedmont Natural Gas offers rebates to commercial customers for purchasing and installing high-efficiency natural gas tankless water heaters. Customers on the 202-Small General Service Standard...

386

Federal Energy Management Program: Federal Utility Partnership Working  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility Partnership Working Group Utility Partnership Working Group The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites. The mission and objectives of the Federal Utility Partnership Working Group are to: Enhance existing or foster new partnerships between Federal agencies and their servicing utilities to identify, develop, and implement cost-effective energy efficiency, water conservation, and renewable energy projects at Federal sites Identify how utilities can help Federal agencies meet energy management goals required by legislation

387

Sharyland Utilities LP | Open Energy Information  

Open Energy Info (EERE)

Sharyland Utilities LP Sharyland Utilities LP Jump to: navigation, search Name Sharyland Utilities LP Place Texas Utility Id 17008 Utility Location Yes Ownership I NERC ERCOT Yes NERC SPP Yes ISO Ercot Yes RTO SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial (Rate Codes 550, 552, and 559) Commercial Competitive Service Rider Commercial Cotton Gin (Rate Codes 671 and 672) Commercial General Service Bundled Service (Rate Codes 110, 111, 112, 113, 114, and 115) Commercial Irrigation (Rate Code 440) Commercial Large Power Primary (Rate Codes 660 and 668) Commercial

388

Hutchinson Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Hutchinson Utilities Comm Hutchinson Utilities Comm Jump to: navigation, search Name Hutchinson Utilities Comm Place Minnesota Utility Id 9130 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE GENERAL ELECTRIC SERVICE Industrial LARGE GENERAL ELECTRIC SERVICE - PRIMARY VOLTAGE (CUSTOMER OWNED) Industrial

389

Brainerd Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Brainerd Public Utilities Brainerd Public Utilities Jump to: navigation, search Name Brainerd Public Utilities Place Minnesota Utility Id 2138 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dual Fuel (Space Heating) Commercial Commercial Dual Fuel (Space Heating) Industrial Industrial Dual Fuel (Space Heating) Residential Residential General Service Demand Commercial General Service Rate Commercial Industrial Power Industrial Industrial Power 2% Discount Industrial

390

Kenyon Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Kenyon Municipal Utilities Kenyon Municipal Utilities Jump to: navigation, search Name Kenyon Municipal Utilities Place Minnesota Utility Id 10179 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Rate Commercial Large Commercial/Demand Service Rate Commercial Residential Service Rate Residential Security Lights Lighting Street Lights Lighting Average Rates Residential: $0.1200/kWh Commercial: $0.1100/kWh

391

OpenEI Community - utility rate  

Open Energy Info (EERE)

Rates API Rates API Version 2 is Live! http://en.openei.org/community/blog/utility-rates-api-version-2-live Smart meterAfter several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at services/doc/rest/util_rates">http://en.openei.org/services/doc/rest/util_ratesutility-rates-api-version-2-live" target="_blank">read more

392

Orlando Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Orlando Utilities Comm Orlando Utilities Comm (Redirected from OUC) Jump to: navigation, search Name Orlando Utilities Comm Place Florida Utility Id 14610 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Firm General Service Demand Primary Service Standby Service Industrial

393

Henderson City Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Henderson City Utility Comm Henderson City Utility Comm Jump to: navigation, search Name Henderson City Utility Comm Place Kentucky Utility Id 8449 Utility Location Yes Ownership M NERC Location serc NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Demand Rate Schedule Schedule D Industrial General Service Rate Schedule Schedule GS-Single Phase- Commercial Commercial General Service Rate Schedule Schedule GS-Single Phase- Industrial Industrial General Service Rate Schedule Schedule GS-Three Phase- Commercial

394

Madisonville Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Madisonville Municipal Utils Madisonville Municipal Utils Jump to: navigation, search Name Madisonville Municipal Utils Place Kentucky Utility Id 11488 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Service-less than 50 KW Commercial Demand Commercial Electric Service-50 KW per month or more Commercial Residential Electric Service Residential Security Lights Overhead Flood Light HPS 400 W Lighting Security Lights Overhead Flood Light MH 400 W Lighting Security Lights Overhead HPS 150 W Lighting

395

Tecumseh Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Tecumseh Utility Authority Tecumseh Utility Authority Jump to: navigation, search Name Tecumseh Utility Authority Place Oklahoma Utility Id 18524 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Bright Light Service- (Any Kind) Lighting General Commercial Service Commercial High Pressure Sodium Light Lighting Large Commercial Rate Commercial Residential Rate Residential Residential Total Electric Residential Average Rates Residential: $0.1590/kWh Commercial: $0.1460/kWh References

396

Whitehall Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Whitehall Electric Utility Whitehall Electric Utility Jump to: navigation, search Name Whitehall Electric Utility Place Wisconsin Utility Id 20583 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Lighting- City of Whitehall Lighting Athletic Field Lighting- Whitehall Schools Lighting General Service- Single-Phase Commercial General Service- Three-Phase Commercial General Service- Time-of-Day- Single-Phase- Peak: 7am-7pm Commercial

397

Manitowoc Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Public Utilities Jump to: navigation, search Name Manitowoc Public Utilities Place Wisconsin Utility Id 11571 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

398

La Porte City Utilities | Open Energy Information  

Open Energy Info (EERE)

Porte City Utilities Porte City Utilities Jump to: navigation, search Name La Porte City Utilities Place Iowa Utility Id 10542 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Horsepower Commercial Municipal Electric Service Commercial Residential Electric Service Charge Residential Average Rates Residential: $0.1010/kWh Commercial: $0.0964/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

399

Stillwater Utilities Authority | Open Energy Information  

Open Energy Info (EERE)

Stillwater Utilities Authority Stillwater Utilities Authority Jump to: navigation, search Name Stillwater Utilities Authority Place Oklahoma Utility Id 18125 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ELECTRIC RATE BLOCK BILLING SERVICE Residential ELECTRIC RATE ENERGY EFFICIENT RESIDENTIAL SERVICES Residential ELECTRIC RATE GENERAL SERVICE Commercial ELECTRIC RATE GROUND SOURCE HEAT PUMP RATE Commercial

400

Rochelle Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Municipal Utilities Municipal Utilities Jump to: navigation, search Name Rochelle Municipal Utilities Place Illinois Utility Id 16179 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service Commercial Large General Service Time of Day Commercial

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Town of Rockville, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Rockville, Indiana (Utility Company) Rockville, Indiana (Utility Company) Jump to: navigation, search Name Town of Rockville Place Indiana Utility Id 16219 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial General Power Service Commercial Municipal Lighting Service Lighting Municipal Power Service Commercial Residential Electric Heat Service Residential Residential Single-Phase Service Residential Residential Water Heater Service Residential Security Lighting Service Lighting Average Rates

402

City of Stromsburg, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Stromsburg, Nebraska (Utility Company) Stromsburg, Nebraska (Utility Company) Jump to: navigation, search Name City of Stromsburg Place Nebraska Utility Id 18217 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service (October 2013) Commercial Irrigation Service Commercial Irrigation Service (October 2013) Commercial Large Light and Power Service Commercial Large Light and Power Service (October 2013) Commercial Residential Service Residential Residential Service- (October 2013) Residential

403

City of Newberry, South Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

South Carolina (Utility Company) South Carolina (Utility Company) Jump to: navigation, search Name City of Newberry Place South Carolina Utility Id 13523 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Rate Commercial Industrial Service Rate Industrial Industrial Service Rate - Primary Service Industrial Residential Service Rate Residential Residential Service Rate - with Load Management Switches Residential Residential Service Rate - without Load Management Switches Residential Small Commercial Service Rate Commercial

404

City of Aztec, New Mexico (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Aztec, New Mexico (Utility Company) Aztec, New Mexico (Utility Company) Jump to: navigation, search Name Aztec City of Place New Mexico Utility Id 1046 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting Service 100W HPS Existing Pole Lighting Area Lighting Service 100W HPS New Pole Lighting Area Lighting Service 150W HPS Existing Pole Lighting Area Lighting Service 150W HPS New Pole Lighting Area Lighting Service 175W MV Lighting Area Lighting Service 250W HPS Existing Service Lighting Area Lighting Service 250W HPS New Pole Lighting

405

Village of Hemingford, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hemingford, Nebraska (Utility Company) Hemingford, Nebraska (Utility Company) Jump to: navigation, search Name Village of Hemingford Place Nebraska Utility Id 8430 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service (October 2013) Commercial General Service Demand Commercial General Service Demand (October 2013) Commercial General Service Large Heat Industrial General Service Large Heat (October 2013) Industrial Irrigation Service Commercial Irrigation Service (October 2013) Commercial

406

Borough of Tarentum, Pennsylvania (Utility Company) | Open Energy  

Open Energy Info (EERE)

Pennsylvania (Utility Company) Pennsylvania (Utility Company) Jump to: navigation, search Name Borough of Tarentum Place Pennsylvania Utility Id 18456 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Service Commercial General Power Service(Primary Voltage-1000 volts or greater) Commercial General Service Commercial Residential Service Residential Street Light Service- (100W SV) Lighting Street Light Service- (175W MV) Lighting Street Light Service- (200W SV) Lighting Street Light Service- (250W MV) Lighting

407

Utility FGD survey, January--December 1989. Project summary  

SciTech Connect (OSTI)

The FGD survey report is prepared annually by International Technology (IT) Corporation (formerly PEI Associates, Inc.) for the US Department of Energy. The current issue (and preceding issues from 1974 to 1981 and October 1984 to the present) of the utility FGD survey are available only through the National Technical Information Service (NTIS). Preceding issues covering January 1982 through September 1984 may be purchased from the Research Reports Center of the Electric Power Research institute (EPRI). The information in this report is generated by a computerized data base system known as the Flue Gas Desulfurization Information System (FGDIS). The design information contained in the FGDIS encompasses the entire emission control system and the power generating unit to which it is applied. Performance data for operational FGD systems include monthly dependability parameters, service time, and descriptions of operational problems and solutions.

Hance, S.L.; McKibben, R.S.; Jones, F.M. [IT Corp., Cincinnati, OH (United States)

1992-03-01T23:59:59.000Z

408

E-Print Network 3.0 - analytical services management Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Administration... Travel Management Services Technology Resources for Employee & Campus Services Utilities & Energy... - Facilities Management Campus Safety & ... Source: Patzek,...

409

Environmental Assessment and Finding of No Significant Impact: The Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico  

SciTech Connect (OSTI)

The National Nuclear Security Administration (NNSA) has assigned a continuing role to Los Alamos National Laboratory (LANL) in carrying out NNSAs national security mission. To enable LANL to continue this enduring responsibility requires that NNSA maintain the capabilities and capacities required in support of its national mission assignments at LANL. To carry out its Congressionally assigned mission requirements, NNSA must maintain a safe and reliable infrastructure at LANL. Upgrades to the various utility services at LANL have been ongoing together with routine maintenance activities over the years. However, the replacement of a certain portion of natural gas service transmission pipeline is now necessary as this delivery system element has been operating well beyond its original design life for the past 20 to 30 years and components of the line are suffering from normal stresses, strains, and general failures. The Proposed Action is to grant an easement to the Public Service Company of New Mexico (PNM) to construct, operate, and maintain approximately 15,000 feet (4,500 meters) of 12-inch (in.) (30-centimeter [cm]) coated steel natural gas transmission mainline on NNSA-administered land within LANL along Los Alamos Canyon. The new gas line would begin at the existing valve setting located at the bottom of Los Alamos Canyon near the Los Alamos County water well pump house and adjacent to the existing 12-in. (30-cm) PNM gas transmission mainline. The new gas line (owned by PNM) would then cross the streambed and continue east in a new easement obtained by PNM from the NNSA, paralleling the existing electrical power line along the bottom of the canyon. The gas line would then turn northeast near State Road (SR) 4 and be connected to the existing 12-in. (30-cm) coated steel gas transmission mainline, located within the right-of-way (ROW) of SR 502. The Proposed Action would also involve crossing a streambed twice. PNM would bore under the streambed for pipe installation. PNM would also construct and maintain a service road along the pipeline easement. In addition, when construction is complete, the easement would be reseeded. Portions of the Proposed Action are located within potential roosting and nesting habitat for the Mexican spotted owl (Strix occidentalis lucida), a Federally protected threatened species. Surveys over the last seven years have identified no owls within this area. The Proposed Action would be conducted according to the provisions of the LANL Threatened and Endangered Species Habitat Management Plan. Effects would not be adverse to either individuals or potential critical habitat for protected species. Cultural resources within the vicinity of the proposed easement would be avoided with the exception of an historic trail. However, the original trail has been affected by previous activities and no longer has sufficient historical value to be eligible for listing on the National Register of Historic Places. Minimal undisturbed areas would be involved in the Proposed Action. Most of the proposed easement follows an established ROW for the existing electrical power line. There are several potentially contaminated areas within Los Alamos Canyon; however, these areas would be avoided, where possible, or, if avoidance isn't possible or practicable under the Proposed Action, the contaminated areas would be sampled and remediated in accordance with New Mexico Environment Department requirements before construction.

N /A

2002-07-30T23:59:59.000Z

410

I-SAVE conservation program. Implementing title II of NECPA residential conservation service. Final draft  

SciTech Connect (OSTI)

The I-SAVE (Iowa Saves America's Vital Energy) conservation plan provides comprehensive energy-conservation information and services to residential consumers served by large investor-owned electric and gas utilities and participating home-heating suppliers. The overall objective of the I-SAVE plan is to conserve energy by facilitating cost-effective retrofit of existing housing and promoting more-efficient energy use. The ultimate benefit available to the customer under the I-SAVE plan - reduction in energy use - is dependent upon the action he or she takes as a result of the program audit. Benefits to the utility and the ratepayers as a whole, however, will accrue only upon widespread customer acceptance and utilization of program services. This degree of program acceptance and the resulting benefits to ratepayers can be attained only through an aggressive educational and promotional effort by the covered utilities. All electric and gas utilities which have sales, other than resale, exceeding 750 million kWh of electricity or 10 billion cubic feet of gas and participating home-heating suppliers, shall provide a program announcement and shall offer conservation services to their customers who occupy a residential building containing at least one, but not more than four units, in a manner as provided by the rules. The text of the rules is presented. (MCW)

None

1980-05-30T23:59:59.000Z

411

The Utility Energy Savings Contract for Brookhaven National Laboratory  

E-Print Network [OSTI]

The Utility Energy Savings Contract for Brookhaven National Laboratory Evelyn Landini Director;2 Tonight's Presentation Answering the questions: ­ What is a Utility Energy Services Contract? ­ Advantages of the contract? · Where will the efficiencies be found? #12;3 What is a Utility Energy Services Contract (or

Johnson, Peter D.

412

Citizens Gas - Commercial Efficiency Rebates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Citizens Gas - Commercial Efficiency Rebates Citizens Gas - Commercial Efficiency Rebates Citizens Gas - Commercial Efficiency Rebates < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Construction Commercial Weatherization Appliances & Electronics Water Heating Maximum Rebate Custom Incentives: $25,000 Natural Gas Boiler: $5000 Program Info Start Date 10/01/2008 State Indiana Program Type Utility Rebate Program Rebate Amount Custom Measures: up to 30% of cost Boiler and Boiler Controls: 25% of purchase price Boiler Reset Control: $250 Boiler Tune-Up: $250 Furnace: $250 Programmable Thermostat: $20 Water Heater: $50 - $150 Tankless Water Heater: $150 Steam Trap Service: $50/trap Unit Heater: $200 Low-Flow Pre-Rinese Sprayer: $25 Citizens Gas of Indiana offers rebates to commercial customers for the

413

Federal Utility Partnership Working Group | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Funding » Utility Energy Service Contracts » Federal Project Funding » Utility Energy Service Contracts » Federal Utility Partnership Working Group Federal Utility Partnership Working Group October 7, 2013 - 2:31pm Addthis The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites. The mission and objectives of the Federal Utility Partnership Working Group are to: Enhance existing or foster new partnerships between Federal agencies and their servicing utilities to identify, develop, and implement cost-effective energy efficiency, water conservation, and renewable energy

414

Utility Energy Services Contracts: Enabling Documents  

Broader source: Energy.gov [DOE]

Presentation covers the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

415

Practical utilities for monitoring multicast service availability  

Science Journals Connector (OSTI)

Monitoring has become one of the key issues for the successful deployment of IP multicast in the Internet. During the last decade, several tools and systems have been developed to monitor several different characteristics of IP multicast. In this paper, ... Keywords: Multicast availability, Multicast monitoring, Reachability monitoring

Pavan Namburi; Kamil Sarac; Kevin Almeroth

2006-06-01T23:59:59.000Z

416

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Broader source: Energy.gov [DOE]

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

417

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

418

Environmental Assessment for the Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico  

Broader source: Energy.gov (indexed) [DOE]

9 9 Environmental Assessment for the Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico July 24, 2002 Department of Energy National Nuclear Security Administration Office of Los Alamos Site Operations Proposed Pipeline Easement Environmental Assessment DOE OLASO July 24, 2002 iii CONTENTS ACRONYMS AND TERMS................................................................................................................vii EXECUTIVE SUMMARY...................................................................................................................ix 1.0 PURPOSE AND NEED................................................................................................................1

419

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

OG&E) OG&E) Jump to: navigation, search Name Oklahoma Gas & Electric Co Place Oklahoma Utility Id 14063 Utility Location Yes Ownership I NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS-1 (General Service) Commercial GS-TOU (General Service Time-Of-Use) Commercial

420

Foley Board of Utilities | Open Energy Information  

Open Energy Info (EERE)

Foley Board of Utilities Foley Board of Utilities Jump to: navigation, search Name Foley Board of Utilities Place Alabama Utility Id 6491 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Electric- Option A Commercial Athletic Field Electric- Option B Commercial General Service -Three-Phase Commercial General Service- Single-Phase Commercial Public Highway Lighting- Special Lighting Public Street and Highway Lighting- Customer Owned Fixtures Lighting Public Street and Highway Lighting- Utility-Owned Fixtures- 20,000 Lumen

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Gas Pipeline Safety (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Safety (West Virginia) Pipeline Safety (West Virginia) Gas Pipeline Safety (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider Public Service Commission of West Virginia The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S.C. Chapter 601,

422

Greenhouse Gas Program Overview (Revised) (Fact Sheet)  

SciTech Connect (OSTI)

Overview of the Federal Energy Management Program (FEMP) Greenhouse Gas program, including Federal requirements, FEMP services, and contacts.

Not Available

2010-06-01T23:59:59.000Z

423

Central Hudson Gas and Electric (Electric) - Commercial Lighting Rebate  

Broader source: Energy.gov (indexed) [DOE]

Commercial Lighting Commercial Lighting Rebate Program Central Hudson Gas and Electric (Electric) - Commercial Lighting Rebate Program < Back Eligibility Commercial Installer/Contractor Institutional Local Government Nonprofit Schools Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State New York Program Type Utility Rebate Program Rebate Amount Up to 70% of the equipment cost of a qualified efficiency upgrade Provider Central Hudson Gas and Electric Central Hudson Gas and Electric's (Central Hudson) Commercial Lighting Rebate Program is for businesses, retailers, institutional customers and non-profit customers of Central Hudson. The progam utilizes the services of Lime Energy to install new lighting fixtures with Central Hudson covering up to 70% of the cost. The 30 percent of cost remaining can be financed at

424

DOE Seeks Industry Participation for Engineering Services to Design Next  

Broader source: Energy.gov (indexed) [DOE]

Industry Participation for Engineering Services to Design Industry Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant July 23, 2007 - 2:55pm Addthis Gen IV Reactor Capable of Producing Process Heat, Electricity and/or Hydrogen WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced that the Idaho National Laboratory (INL) is issuing a request for expressions of interest from prospective industry teams capable of providing engineering design services to the INL for the conceptual design phase of the Department's Next Generation Nuclear Plant (NGNP). The NGNP seeks to utilize cutting-edge technology in the effort to reduce greenhouse gas emissions by enabling nuclear energy to replace fossil fuels in the

425

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Maximum Rebate $1,000 Program Info Start Date 01/01/2013 Expiration Date 04/30/2013 State Illinois Program Type Utility Rebate Program Rebate Amount ComEd Rebates Central Air Conditioner Unit 14 SEER or above: $350 Central Air Conditioner Unit Energy Star rated: $500 Nicor Gas, Peoples Gas and North Shore Gas Furnace: $200 - $500 (varies based on gas company and unit installed) Provider ComEd Energy ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is

426

City of Bridgeport Utilities, Nebraska | Open Energy Information  

Open Energy Info (EERE)

Bridgeport Utilities, Nebraska Bridgeport Utilities, Nebraska Jump to: navigation, search Name City of Bridgeport Utilities Place Nebraska Utility Id 1955 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General service rate Commercial General service rate with demand Industrial Irrigation service rate - 3 days per week of direct control Commercial Municipal water pumping service rate Commercial Residential service rate Residential Average Rates Residential: $0.0760/kWh

427

City of Onawa, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Onawa, Iowa (Utility Company) Onawa, Iowa (Utility Company) Jump to: navigation, search Name City of Onawa Place Iowa Utility Id 14132 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Service Commercial Large Commercial Service(Primary Metering) Commercial Large Commercial Service(Primary Metering-Utility Ownership) Commercial Large Commercial Service(Primary Voltage but Metered at Secondary Voltage) Commercial Municipal Service Commercial Residential Service Residential

428

New Ulm Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Ulm Public Utilities Comm Ulm Public Utilities Comm Jump to: navigation, search Name New Ulm Public Utilities Comm Place Minnesota Utility Id 13488 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png INDUSTRIAL SERVICE RATE Industrial LARGE COMMERCIAL SERVICE RATE Commercial MUNICIPAL-CITY SERVICE RATE Commercial MUNICIPAL-PUC SERVICE RATE Commercial RESIDENTIAL SERVICE RATE Residential SMALL COMMERCIAL SERVICE RATE Commercial WHOLE HOUSE HEATING RATE Residential

429

Cloud Services Cloud Services  

E-Print Network [OSTI]

Cloud Services Cloud Services In 2012 UCD IT Services launched an exciting new set of cloud solutions called CloudEdu, which includes cloud servers, cloud storage, cloud hosting and cloud network. The CloudEdu package includes a consultancy service in design, deployment, management and utilisation

430

An Energy Services Initiative  

E-Print Network [OSTI]

The parent company of a large electric utility has launched a new unregulated subsidiary that provides a portfolio of value-added, beyond-the-meter energy services. These services are designed to meet the specific needs of customers and to better...

Beasley, R. C.; Tipton, J. K.; Ehmer, R. C.

431

City of Jackson, Tennessee (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Utility Id 9612 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service GSA1 Commercial General Service GSA2 Commercial General Service GSA3 Commercial General Service SGSB Commercial General Service SGSC Commercial General Service SGSD Commercial Manufacturing Service SMSB Commercial Manufacturing Service SMSC Commercial Manufacturing Service SMSD Commercial Manufacturing Service SMSD Commercial Outdoor Lighting LS Lighting RS Residential Average Rates Residential: $0.0934/kWh

432

Workplace Charging Challenge Partner: Avista Utilities  

Broader source: Energy.gov [DOE]

Avista Utilities is committed to effective support for plug-in electric vehicle (PEV) adoption in its service territories. Avista installed two stations for a total of four charging outlets for...

433

Borough of Ephrata, Pennsylvania (Utility Company) | Open Energy  

Open Energy Info (EERE)

Ephrata, Pennsylvania (Utility Company) Ephrata, Pennsylvania (Utility Company) Jump to: navigation, search Name Borough of Ephrata Place Pennsylvania Utility Id 5935 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service - Large Commercial Commercial General Service - Large Commercial/Industrial Industrial General Service - Total Electric Commercial General Service - Total Electric Industrial Industrial General Service Industrial Industrial Residential Service Rates Residential

434

City of Sioux Falls, South Dakota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Dakota (Utility Company) Dakota (Utility Company) Jump to: navigation, search Name City of Sioux Falls Place South Dakota Utility Id 17265 Utility Location Yes Ownership M NERC Location MRO Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Service Rate Industrial Large Commercial Service Rate Commercial Night Watch Flood Service Rate HPS 100W Lighting Night Watch Flood Service Rate HPS 250W Lighting Night Watch Flood Service Rate HPS 400W Lighting Residential Service Rate Residential Small Commercial Service Rate Commercial

435

Borough of Park Ridge, New Jersey (Utility Company) | Open Energy  

Open Energy Info (EERE)

Jersey (Utility Company) Jersey (Utility Company) Jump to: navigation, search Name Borough of Park Ridge Place New Jersey Utility Id 14472 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dusk to Dawn Floodlight Service MV 1000W Lighting Dusk to Dawn Floodlight Service HPS 100W Lighting Dusk to Dawn Floodlight Service HPS 150W Lighting Dusk to Dawn Floodlight Service HPS 175W Lighting Dusk to Dawn Floodlight Service HPS 250W Lighting Dusk to Dawn Floodlight Service HPS 360W Lighting Dusk to Dawn Floodlight Service HPS 400W Lighting

436

City of Stanton, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Iowa (Utility Company) Iowa (Utility Company) Jump to: navigation, search Name City of Stanton Place Iowa Utility Id 16992 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png "A2" Multi-Phase Service Commercial "A3" Multi-Phase Service Commercial "A4" Multi-Phase Service Commercial "A5" Multi-Phase Service Commercial "A6" Large Power Service, Contract Industrial "A7" Large Power Service, Contract EUS Industrial "A8" Large Power Service, Contract EUF Industrial

437

City of Tuskegee, Alabama (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Tuskegee, Alabama (Utility Company) Tuskegee, Alabama (Utility Company) Jump to: navigation, search Name City of Tuskegee Place Alabama Utility Id 19308 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Commercial General Service Industrial Industrial General Service Large Commercial Commercial General Service Residential Residential Municipal Service Commercial Non profit (Schedule E7) Tuskegee University Primary Service Commercial Veterans Administration Primary Service Commercial

438

City of Acworth, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Acworth, Georgia (Utility Company) Acworth, Georgia (Utility Company) Jump to: navigation, search Name City of Acworth Place Georgia Utility Id 308 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Customer Choice Rate Residential Economic Development II Service Commercial General Service, Demand Commercial General Service, Non Demand Commercial Institutional Demand Service Commercial Institutional Non-Demand Service Commercial Outdoor Lighting Service 100 W HPS Lighting Outdoor Lighting Service 1000 W HPS Lighting

439

City of Rensselaer, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Rensselaer, Indiana (Utility Company) Rensselaer, Indiana (Utility Company) Jump to: navigation, search Name City of Rensselaer Place Indiana Utility Id 15860 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Capacity Power Service Industrial Commercial Service: Single Phase Commercial Commercial Service: Three Phase Commercial Commercial Service: Two Phase Commercial Large Power Service Industrial Municipal Service: Electric Rate Commercial Municipal Service: Street Lighting Lighting

440

City of Hannibal, Missouri (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hannibal, Missouri (Utility Company) Hannibal, Missouri (Utility Company) Jump to: navigation, search Name City of Hannibal Place Missouri Utility Id 8055 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png INDUSTRIAL SERVICE RATE Industrial Industrial Service Net Energy Billing Industrial MUNICIPAL-CITY SERVICE RATE-SINGLE PHASE Commercial MUNICIPAL-CITY SERVICE RATE-THREE PHASE Commercial MUNICIPAL-HBPW SERVICE RATE (WASTEWATER TP) Industrial MUNICIPAL-HBPW SERVICE RATE (WATER TP) Industrial Municipal - City Service Three Phase Net Energy Billing Commercial

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

City of Valentine, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Valentine, Nebraska (Utility Company) Valentine, Nebraska (Utility Company) Jump to: navigation, search Name City of Valentine Place Nebraska Utility Id 19677 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Rate Commercial General Service- Demand Commercial Large Power General Service Industrial Large Power General Service(Primary voltage and Customer Owned Transformer) Industrial Large Power General Service(Primary voltage and City-Owned Transformer) Industrial Large Power General Service(Secondary voltage and Customer Owned

442

City of Ellaville, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Ellaville, Georgia (Utility Company) Ellaville, Georgia (Utility Company) Jump to: navigation, search Name City of Ellaville Place Georgia Utility Id 5796 Utility Location Yes Ownership M NERC Location SERC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Non-Demand Electric Service Commercial Commercial-Demand Electric Service Commercial Municiple Electric Service Public Schools Electric Service Commercial Residential Residential Security Lighting Service 100 W HPSV Lighting Security Lighting Service 1000 W MH Lighting Security Lighting Service 150 W HPSV Lighting

443

City of Vernon, California (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Vernon, California (Utility Company) Vernon, California (Utility Company) Jump to: navigation, search Name City of Vernon Place California Utility Id 19798 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Domestic Service Residential Domestic Service TOU Residential General Service GS-1 Commercial General Service GS-2 Commercial General Service Large TOU-G Commercial General Service Large TOU-G - 11kV through 50kV Commercial

444

City of East Point, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Georgia (Utility Company) Georgia (Utility Company) Jump to: navigation, search Name City of East Point Place Georgia Utility Id 5582 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE Commercial GREEN POWER RIDER INCREMENTAL LOAD RIDER Commercial LARGE POWER SERVICE Commercial MEDIUM POWER SERVICE Commercial OFF-PEAK DEMAND RIDER Commercial RESIDENTIAL SERVICE Residential SECURITY LIGHTING SERVICE, HPS FLOOD 250 Lighting SECURITY LIGHTING SERVICE, HPS 100 Lighting

445

City of Worthington, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Worthington, Minnesota (Utility Company) Worthington, Minnesota (Utility Company) Jump to: navigation, search Name City of Worthington Place Minnesota Utility Id 21013 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial service rate Commercial Commercial service rate(Primary Metering) Commercial Large general service rate Industrial Large general service rate(Primary Metering) Industrial Medium general service rate Industrial Medium general service rate(Primary Metering) Industrial

446

City of Dowagiac, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Dowagiac, Michigan (Utility Company) Dowagiac, Michigan (Utility Company) Jump to: navigation, search Name City of Dowagiac Place Michigan Utility Id 5343 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE Commercial LARGE GENERAL SERVICE Commercial LARGE GENERAL SERVICE Discount Commercial MUNICIPAL WATER SERVICE Commercial PUBLIC SERVICES Commercial RESIDENTIAL ELECTRIC SERVICE Residential Average Rates Residential: $0.1160/kWh Commercial: $0.1220/kWh Industrial: $0.0870/kWh References

447

City of Olivia, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Olivia, Minnesota (Utility Company) Olivia, Minnesota (Utility Company) Jump to: navigation, search Name City of Olivia Place Minnesota Utility Id 14107 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rate (Inside Service Area) Commercial Commercial Electric Rate (Outside Service Area) Commercial Large Power (Outside Service Area) Industrial Large Power(Inside Service Area) Industrial Large Power- Church(Inside Service Area)) Commercial Large Power- Church(Outside Service Area)) Commercial

448

City of Cartersville, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Cartersville, Georgia (Utility Company) Cartersville, Georgia (Utility Company) Jump to: navigation, search Name Cartersville City of Place Georgia Utility Id 3108 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Construction Power Service Commercial Extra Large Power Service, XLP-2 ( Industrial) Industrial Extra Large Power Service, XLP-2 ( commercial) Commercial Large Power Service, LP-3( Commercial) Commercial Large Power Service- Industrial Industrial Medium Power Service- Commercial Commercial Medium Power Service-Industrial Industrial

449

City of Columbia City, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Columbia City, Indiana (Utility Company) Columbia City, Indiana (Utility Company) Jump to: navigation, search Name City of Columbia City Place Indiana Utility Id 4007 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Industrial General Service- Large General Service-Small-All Electric- Both Phases Commercial General Service-Small-All Electric- Single Phase Commercial General Service-Small-All Electric- Three Phase Commercial General Service-Small-Both Phases Commercial

450

City of Bristol, Tennessee (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Tennessee (Utility Company) Tennessee (Utility Company) Jump to: navigation, search Name Bristol City of Place Tennessee Utility Id 2247 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- A1 (Three Phase) Commercial General Service- A2 (Single Phase) Commercial General Service- A2 (Three Phase) Commercial General Service- A3 Commercial General Service- B Industrial General Service- C Industrial General Service-A1 (Single Phase) Commercial

451

Town of Avilla, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Avilla, Indiana (Utility Company) Avilla, Indiana (Utility Company) Jump to: navigation, search Name Town of Avilla Place Indiana Utility Id 1028 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate LGS1: Large General Service, Secondary Industrial Rate LMS: Large Municipal Service Commercial Rate P1: Electric Power Service, Secondary Industrial Rate RS Residential Rate S: School Service Commercial Rate SGS: Small General Service Commercial Rate SMS: Small Municipal Service Commercial

452

Town of Pendleton, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Pendleton, Indiana (Utility Company) Pendleton, Indiana (Utility Company) Jump to: navigation, search Name Pendleton Town of Place Indiana Utility Id 14659 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service: Single Phase Commercial Commercial Service: Three Phase Commercial Municipal Service: Single Phase Commercial Municipal Service: Three Phase Commercial Power Phase II Commercial Residential Service Residential Security Lighting Service: 150 Watt HPS Lamp Lighting Security Lighting Service: 175 Watt MV Lamp Lighting

453

City of Newark, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Delaware (Utility Company) Delaware (Utility Company) Jump to: navigation, search Name Newark City of Place Delaware Utility Id 13519 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service Demand Industrial Large Light and Power Service(Classification UD) Industrial Large Light and Power Service(P) Industrial Large Light and Power Service(U) Industrial Residential Service Residential Average Rates Residential: $0.1550/kWh

454

Town of Winnsboro, South Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

Winnsboro, South Carolina (Utility Company) Winnsboro, South Carolina (Utility Company) Jump to: navigation, search Name Town of Winnsboro Place South Carolina Utility Id 20826 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Large Power Service Commercial Outdoor Lighting Service- (1000W on 30' Pole) Lighting Outdoor Lighting Service- (1000W on 35' Pole) Lighting Outdoor Lighting Service- (1000W on 40' Pole) Lighting Outdoor Lighting Service- (1000W on 45' Pole) Lighting Outdoor Lighting Service- (1000W on existing' Pole) Lighting

455

City of Brenham, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Brenham, Texas (Utility Company) Brenham, Texas (Utility Company) Jump to: navigation, search Name City of Brenham Place Texas Utility Id 2194 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE GENERAL SERVICE Commercial LARGE GENERAL SERVICE Three Phase Commercial LARGE INDUSTRIAL SERVICE Industrial MERCURY VAPOR LUMINARIES SECURITY LIGHT SERVICE Lighting Residential Residential Residential Three Phase Residential SMALL GENERAL SERVICE Commercial SMALL GENERAL SERVICE Three Phase Commercial SMALL INDUSTRIAL SERVICE Industrial

456

City of Augusta, Arkansas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Augusta, Arkansas (Utility Company) Augusta, Arkansas (Utility Company) Jump to: navigation, search Name City of Augusta Place Arkansas Utility Id 1000 Utility Location Yes Ownership M NERC Location SERC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Service single-phase All Electric Service three-phase Large Commercial Service (50kVa and above) Commercial Residential Service single-phase Residential Residential Service three-phase Residential Security Light Service 175 w Mercury vapor Lamp Lighting Small Commercial Service (under 50 kVA) single-phase Commercial

457

City of Bluffton, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bluffton, Indiana (Utility Company) Bluffton, Indiana (Utility Company) Jump to: navigation, search Name City of Bluffton Place Indiana Utility Id 1896 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting Service: 175 Watt Mercury Vapor Lighting Outdoor Lighting Service: 250 Watt Mercury Vapor Lighting Rate CS- Commercial Service: Single Phase Commercial Rate CS- Commercial Service: Three Phase Commercial Rate GS- General Service Industrial Rate MS- Municipal Service Commercial Rate RS- Residential Service Residential

458

Solar Valuation in Utility Planning Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Valuation in Utility Planning Studies Solar Valuation in Utility Planning Studies Title Solar Valuation in Utility Planning Studies Publication Type Presentation Year of Publication 2013 Authors Mills, Andrew D., and Ryan H. Wiser Keywords electricity markets and policy group, energy analysis and environmental impacts department, renewable energy: policy Abstract This webinar was presented by the Clean Energy States Alliance and featured Andrew Mills of Lawrence Berkeley National Lab (LBNL) discussing new research on solar valuation that he and his colleague, Ryan Wiser, have recently published. As renewable technologies mature, recognizing and evaluating their economic value will become increasingly important for justifying their expanded use. In their report, Mills and Wiser used a unique investment and dispatch model to evaluate the changes in the long-run value of variable renewables with increasing penetration levels, based on a case study of California. They found that the value of solar is high at low penetration levels owing to the capacity and energy value of solar, even accounting for an increased need for ancillary services and imperfect forecastability. At higher penetration levels, the marginal value of additional PV and concentrating solar power (CSP) without thermal storage declines, largely due to a decrease in capacity value. The value of CSP with thermal storage remains higher for similar penetration levels owing to the ability to continue to produce energy for hours after the sun goes down. By way of comparison, in California the value of wind at low penetrations is less than the value of solar at low penetrations, but its value is less sensitive to penetration levels. In addition to discussing these findings, Mills reviewed a recent sample of utility planning studies and procurement processes to identify how current practices reflect these drivers of solar's economic value. The LBNL report found that many of the utilities have a framework to capture and evaluate solar's value, but approaches vary widely: only a few studies appear to complement the framework with detailed analysis of key factors such as capacity credits, integration costs, and tradeoffs between distributed and utility-scale photovoltaics. In particular Mills and Wiser found that studies account for the capacity value of solar, though capacity credit estimates with increasing penetration can be improved. Similarly, few planning studies currently reflect the full range of potential benefits from adding thermal storage and/or natural gas augmentation to concentrating solar power plants.

459

New London Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

New London Municipal Utilities New London Municipal Utilities Place Iowa Utility Id 13468 Utility Location Yes Ownership M NERC Location MRO Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City All-Electric Residential Residential City Residential Residential General Service and Municipal Commercial Large General Service and Municipal (Demand) Commercial Rural Resident and Farm Residential Rural Resident and Farm All-Electric Residential Security Lights 100w HPS Metered light Lighting

460

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Vehicle Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service on Digg Find More places to share Alternative Fuels Data Center: Natural Gas

Note: This page contains sample records for the topic "gas utility service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

General Order Ensuring Reliable Electric Service (Louisiana) | Department  

Broader source: Energy.gov (indexed) [DOE]

General Order Ensuring Reliable Electric Service (Louisiana) General Order Ensuring Reliable Electric Service (Louisiana) General Order Ensuring Reliable Electric Service (Louisiana) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Louisiana Program Type Safety and Operational Guidelines Provider Louisiana Public Service Commission The standards set forth herein have been developed to provide consumers, the Louisiana Public Service Commission, and jurisdictional electric utilities with a uniform method of ensuring reliable electric service. The standards shall be applicable to the distribution systems of all electric utilities under the jurisdiction of the Louisiana Public Service

462

Evaluation of the 3D-furnace simulation code AIOLOS by comparing CFD predictions of gas compositions with in-furnace measurements in a 210MW coal-fired utility boiler  

Science Journals Connector (OSTI)

The furnace of a pulverised coal-fired utility boiler with a thermal output of 210MW, with dimensions of 8m x 8m x 29m and 12 burners located on three levels, is considered. Coal combustion is described by a five-step-reaction scheme. The model covers two heterogeneous reactions for pyrolysis and char combustion and three gas phase reactions for the oxidation of volatile matter. A standard k, ?-model is used for the description of turbulence. The interaction of turbulence and chemistry is modelled using the Eddy Dissipation Concept (EDC). The transport equations for mass, momentum, enthalpy and species are formulated in general curvilinear co-ordinates enabling an accurate treatment of boundaries and a very good control over the distribution of the grid lines. The discretisation is based on a non-staggered finite-volume approach and the coupling of velocities and pressure is achieved by the SIMPLEC method. Numerical diffusion is minimised by the use of the higher-order discretisation scheme MLU. The accuracy of the predictions is demonstrated by comparing the computational results with in-furnace measurements of carbon monoxide, carbon dioxide and oxygen concentrations and of temperatures.

Hermann Knaus; Uwe Schnell; Klaus R.G. Hein

2001-01-01T23:59:59.000Z

463

Competitive Natural Gas Providers (Iowa)  

Broader source: Energy.gov [DOE]

Competitive providers and aggregators of natural gas must be certified by the Utilities Board. Applicants must demonstrate the managerial, technical, and financial capability to perform the...

464

Alabama Gas Corporation - Residential Natural Gas Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Furnace (Replacement): $200 Dryer (Replacement): $100 Natural Gas Range/Cooktop (Replacement): $100 Water Heaters (Replacement): $200 Tankless Water Heaters (Replacement): $200 Provider Alabama Gas Corporation Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment. All equipment

465

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Digg Find More places to share Alternative Fuels Data Center: Compressed

466

Federal Utility Partnership Working Group Utility Partners  

Broader source: Energy.gov [DOE]

Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

467

PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers rebates for lighting, heat pumps, refrigeration...

468

A Survey of Utility Experience with Real Time Pricing  

E-Print Network [OSTI]

with Real Time Pricing Xcel Energy (Public Service Companywith Real Time Pricing Xcel Energy, MDC (MinnesotaUtilities Division). 2001. Xcel Energys Real-Time Pricing

Barbose, Galen; Goldman, Charles; Neenan, Bernie

2004-01-01T23:59:59.000Z

469

Town of Lyons, Colorado (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Id 11376 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes This article is a...

470

Federal Utility Partnership Working Group 2011 Meeting: Washington...  

Broader source: Energy.gov (indexed) [DOE]

Working Group (FUPWG) meeting-provides an overview of federal government goals and status, Federal Energy Management Program (FEMP) update, and utility energy services...

471

Library Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services Library Services The Research Library provides many services to LANL employees. We also offer limited services to members of the public. The Research Library is open to...

472

features Utility Generator  

E-Print Network [OSTI]

#12;#12;#12;#12;features function utility Training Pool Utility Generator Per-frame function content utility classes utility classes utility Tree Decision Generator Module Utility Clustering Adaptive Content Classification Loop features content VO selection & Utility Selector content features Real

Chang, Shih-Fu

473

ELECTRICITY AND NATURAL GAS DATA COLLECTION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION HISTORICAL ELECTRICITY AND NATURAL GAS DATA COLLECTION Formsand of Power Plants Semi-Annual Report ..................................... 44 CEC-1306D UDC Natural Gas Tolling Agreement Quarterly Report.......................... 46 i #12;Natural Gas Utilities and Retailers

474

Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) |  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage of Natural Gas and Liquefied Petroleum Gas Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation

475

Enhanced carbon monoxide utilization in methanation process  

DOE Patents [OSTI]

Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

Elek, Louis F. (Peekskill, NY); Frost, Albert C. (Congers, NY)

1984-01-01T23:59:59.000Z

476

Texas - PUC Substantive Rule 25.198 - Electric Service Providers...  

Open Energy Info (EERE)

Service Providers-Open Access Comparable Transmission Service for Electric Utilities in the Electric Reliability Council of Texas Jump to: navigation, search OpenEI Reference...

477

Litchfield Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Public Utilities Jump to: navigation, search Name Litchfield Public Utilities Place Minnesota Utility Id 11064 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single Phase General Service- Three Phase Commercial Large Power Commercial Residential Residential Rural Residential Small Power Commercial Wind Power Commercial Average Rates Residential: $0.0876/kWh Commercial: $0.0932/kWh Industrial: $0.0686/kWh

478

Clinton Combined Utility Sys | Open Energy Information  

Open Energy Info (EERE)

Clinton Combined Utility Sys Clinton Combined Utility Sys Jump to: navigation, search Name Clinton Combined Utility Sys Place South Carolina Utility Id 3804 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Large General Service Commercial General Electric Service Commercial Residential Rate Residential Average Rates Residential: $0.1250/kWh Commercial: $0.1140/kWh Industrial: $0.0851/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

479

Albertville Municipal Utils Bd | Open Energy Information  

Open Energy Info (EERE)

Albertville Municipal Utils Bd Albertville Municipal Utils Bd Jump to: navigation, search Name Albertville Municipal Utils Bd Place Alabama Utility Id 241 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate - SGSC Commercial General Power Rate - SGSD Industrial General Power Rate(Schedule GSA)-Part 1 Commercial General Power Rate(Schedule GSA)-Part 2 Commercial General Power Rate(Schedule GSA)-Part 3 Commercial Manufacturing Service Rate - SMSB Industrial Manufacturing Service Rate - SMSC Industrial

480

Lassen Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District Jump to: navigation, search Name Lassen Municipal Utility District Place California Utility Id 10724 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Pumping Commercial Domestic Residential General Service (Non-Demand) Commercial General Service Metered Demand Commercial Industrial Industrial Outdoor Area Lighting 100W Lighting Outdoor Area Lighting 200W Lighting Standby Reactive Rate Commercial Average Rates