Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Gas turbine premixer with internal cooling  

DOE Patents (OSTI)

A system that includes a turbine fuel nozzle comprising an air-fuel premixer. The air-fuel premixed includes a swirl vane configured to swirl fuel and air in a downstream direction, wherein the swirl vane comprises an internal coolant path from a downstream end portion in an upstream direction through a substantial length of the swirl vane.

York, William David; Johnson, Thomas Edward; Lacy, Benjamin Paul; Stevenson, Christian Xavier

2012-12-18T23:59:59.000Z

2

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

3

Proceedings of IGTI 2009 ASME 2009 International Gas Turbine Institute Conference  

E-Print Network (OSTI)

- istic of steam turbine blading in low pressure turbines. The re- sults demonstrate that the designProceedings of IGTI 2009 ASME 2009 International Gas Turbine Institute Conference June 8-12, 2009, Orlando,FL, USA GT2009-60115 THREE-DIMENSIONAL AERODYNAMIC DESIGN OPTIMIZATION OF A TURBINE BLADE BY USING

Liu, Feng

4

Non-contact gas turbine blade vibration monitoring using internal pressure and casing response measurements.  

E-Print Network (OSTI)

??This thesis addresses the non-contact measurement of rotor blade vibrations in gas turbines. Specifically, use is made of internal casing wall pressure, and external casing… (more)

Forbes, Gareth Llewellyn

2010-01-01T23:59:59.000Z

5

Proceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference  

E-Print Network (OSTI)

of design parameters. Three design cases are performed with a low-aspect-ratio steam turbine blade testedProceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference June 14-18, 2010 (Switzerland) Baden, Switzerland ABSTRACT For low-aspect-ratio turbine blades secondary loss reduc- tion

Liu, Feng

6

Gas Turbine Plants  

Science Journals Connector (OSTI)

In a cycle process of a gas turbine, the compressor load, as well as ... from the expansion of the hot pressurized flue gas. Either turbine, compressor and driven assembly are joined by ... shaft is thus divided,...

1992-01-01T23:59:59.000Z

7

Gas-Turbine Cycles  

Science Journals Connector (OSTI)

This book focuses on the design of regenerators for high-performance regenerative gas turbines. The ways in which gas-turbine regenerators can be designed for high system performance can be understood by studying...

Douglas Stephen Beck; David Gordon Wilson

1996-01-01T23:59:59.000Z

8

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

9

Modern Gas Turbines  

Science Journals Connector (OSTI)

... THE published information on gas turbines is both voluminous and widely dispersed, a considerable part of the technical literature of ... hands of students whose imagination has been fired by the rapid development of the gas turbine, and whose knowledge of thermodynamics may not be sufficient to detect such errors. There ...

E. G. STERLAND

1948-06-12T23:59:59.000Z

10

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack...

Frederick, J. D.

11

Gas turbine combustor transition  

DOE Patents (OSTI)

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

12

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

13

Gas turbine noise control  

Science Journals Connector (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future and direct combustion of pulverized coal is also a possibility. The primary problem of generally unacceptable noise levels from gas turbine powered equipment affects both community noise and hearing conservation alike. The noise criteria of such plant remain a significant design factor. The paper looks at the technical and historical aspects associated with the noise generation process and examines past present and possible future approaches to the problem of silencing gas turbine units; adequately specifying the acoustical criteria and ratings; evaluates the techniques by which these criteria should be measured; and correlates these with the typical results achieved in the field.

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

14

Small gas turbine technology  

Science Journals Connector (OSTI)

Small Gas Turbine Technology: Small gas turbine, in the power range up to 500 kW, requires a recuperated thermodynamic cycle to achieve an electrical efficiency of about 30%. This efficiency is the optimum, which is possible for a cycle pressure ratio of about 4–1. The cycle airflow is function of the power requirement. To increase the efficiency, in view to reduce the CO2 emission, it is mandatory to develop a more efficient thermodynamic cycle. Different thermodynamic cycles were examined and the final choice was made for an Intercooled, Recuperated cycle. The advantage of this cycle, for the same final electrical efficiency of about 35%, is the smaller cycle airflow, which is the most dimensional parameter for the important components as the heat exchanger recuperator and the combustion chamber. In parallel with the thermodynamic cycle it is necessary to develop the High Speed Alternator technology, integrated on the same shaft that the gas turbine rotating components, to achieve the constant efficiency at part loads, from 50% up to 100%, by the capacity to adjust the engine speed at the required load. To satisfy the stringent requirement in pollutant emissions of \\{NOx\\} and CO, the catalytic combustion system is the most efficient and this advance technology has to be proven. The major constraints for the small gas turbine technology development are the production cost and the maintenance cost of the unit. In the power range of 0–500 kW the gas turbine technology is in competition with small reciprocating engines, which are produced in large quantity for automotive industry, at a very low production cost.

Andre Romier

2004-01-01T23:59:59.000Z

15

Ceramic gas turbine shroud  

DOE Patents (OSTI)

An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

Shi, Jun; Green, Kevin E.

2014-07-22T23:59:59.000Z

16

Gas turbine cooling system  

DOE Patents (OSTI)

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

17

The military aircraft gas turbine  

Science Journals Connector (OSTI)

The development of the gas turbine for use in military aircraft is discussed. The advancing fields of component technology and engine testing are also outlined

R.M. Denning; R.J. Lane

1983-01-01T23:59:59.000Z

18

Large eddy simulation applications in gas turbines  

Science Journals Connector (OSTI)

...exhaust plume development. The application...modelling in the gas turbine combustor...modelling strategies for the complex...flows in the gas turbine, as surveyed...of typical gas turbine parts necessitates...made in the development and application...

2009-01-01T23:59:59.000Z

19

1 - Introduction to gas turbines  

Science Journals Connector (OSTI)

Abstract: This chapter provides an overview of the importance of gas turbines for the power generation and oil and gas sector and – in less detail – the aviation sector. Worldwide trends in power generation and electricity conversion processes and the role of gas turbines to minimise CO2 emissions are addressed. Gas turbines are essential and crucial to reduce emissions both in aviation and in power production. Technologies for improving gas turbine and system efficiency, through higher turbine inlet temperatures, improved materials, cooling methods and thermal barrier coatings are described. New thermodynamic approaches, including intercooling, water and steam injection and hybrid cycles are addressed. Major issues are also fuel and operational flexibility, reliability and availability, cost reduction and power density, especially for the offshore sector. Market trends have been sketched. In the coming decades, gas turbines will be one of the major technologies for CO2 emission reductions in the power generation, aviation, oil and gas exploration and transport sectors. This prognosis is based on their high current efficiency and further efficiency improvement potential, both for simple cycle as for combined-cycle applications.

A.J.A. Mom

2013-01-01T23:59:59.000Z

20

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

22

Development of a low swirl injector concept for gas turbines  

E-Print Network (OSTI)

Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

2000-01-01T23:59:59.000Z

23

Combined gas turbine-Rankine turbine power plant  

SciTech Connect

A combined gas turbine-Rankine cycle powerplant with improved part load efficiency is disclosed. The powerplant has a gas turbine with an organic fluid Rankine bottoming cycle which features an inter-cycle regenerator acting between the superheated vapor leaving the Rankine turbine and the compressor inlet air. The regenerator is used selectively as engine power level is reduced below maximum rated power.

Earnest, E.R.

1981-05-19T23:59:59.000Z

24

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network (OSTI)

and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

Anderson, Byron P.

2011-01-01T23:59:59.000Z

25

Fuel option for gas turbine  

SciTech Connect

Growth in electricity demand is an average of 10% per year. Energy, emission, and economy are importance of critical concerns for generating systems. Therefore, combined cycle power plant is preferred to Electricity Generating Authority of Thailand (EGAT) new power generating capacity. The various option of available fuel for gas turbine are natural gas, liquid fuel and coal fuel. Particularly with the tremendous price increases in imported and domestic fuel supplies, natural gas is an attractive low cost alternative for power generation. EGAT has researched using heavy fuel instead of natural gas since the year 1991. The problems of various corrosion characteristics have been found. In addition, fuel treatment for gas turbine are needed, and along with it, the environmental consideration are options that provide the limitation of environmental regulation.

Tantayakom, S. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand). Chemical and Analysis Dept.

1995-12-31T23:59:59.000Z

26

Aircraft Gas Turbine Materials and Processes  

Science Journals Connector (OSTI)

...extend the life of a gas turbine air-foil...withstood higher turbine inlet tem-peratures...invented for the gas-pressure...from over. Remaining to be formu-lated...in rupture life. In addition...fabrication of gas turbine components...

B. H. Kear; E. R. Thompson

1980-05-23T23:59:59.000Z

27

5th International Meeting Wind Turbine Noise  

E-Print Network (OSTI)

1 5th International Meeting on Wind Turbine Noise Denver 28 ­ 30 August 2013 Wind Turbine Noise Broadband noise generated aerodynamically is the dominant noise source for a modern wind turbine(Brooks et, clean energy. While profiting from wind energy, the noise produced by a modern wind turbine becomes

Paris-Sud XI, Université de

28

1 - An Overview of Gas Turbines  

Science Journals Connector (OSTI)

Publisher Summary The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. The gas turbine has found increasing service in the past 60 years in the power industry among both utilities and merchant plants as well as the petrochemical industry throughout the world. The utilization of gas turbine exhaust gases, for steam generation or the heating of other heat transfer mediums, or the use of cooling or heating buildings or parts of cities is not a new concept and is currently being exploited to its full potential. The aerospace engines have been leaders in most of the technology in the gas turbine. The design criteria for these engines were high reliability, high performance, with many starts and flexible operation throughout the flight envelope. The industrial gas turbine has always emphasized long life and this conservative approach has resulted in the industrial gas turbine in many aspects giving up high performance for rugged operation. The gas turbine produces various pollutants in the combustion of the gases in the combustor. These include smoke, unburnt hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. It has found increasing service in the past 60 years in the power industry among both utilities and merchant plants, as well as in the petrochemical industry. Its compactness, low weight and multiple fuel application make it a natural power plant for offshore platforms. Today there are gas turbines that run on natural gas, diesel fuel, naphtha, methane, crude, low-BTU gases, vaporized fuel oils and biomass gases. The last 20 years have seen a large growth in gas turbine technology, spearheaded by the growth in materials technology, new coatings, new cooling schemes and combined cycle power plants. This chapter presents an overview of the development of modern gas turbines and gas turbine design considerations. The six categories of simple-cycle gas turbines (frame type heavy-duty; aircraft-derivative; industrial-type; small; vehicular; and micro) are described. The major gas turbine components (compressors; regenerators/recuperators; fuel type; and combustors) are outlined. A gas turbine produces various pollutants in the combustion of the gases in the combustor and the potential environmental impact of gas turbines is considered. The two different types of combustor (diffusion; dry low NOx, (DLN) or dry low emission (DLE)), the different methods to arrange combustors on a gas turbine, and axial-flow and radial-inflow turbines are described. Developments in materials and coatings are outlined.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

29

Gas-Turbine Propulsion in a Naval Vessel  

Science Journals Connector (OSTI)

... Messrs. Metropolitan-Vickers Electrical Co., Ltd., Trafford Park, Manchester, have installed gas- ...gas-turbine ...

1947-09-20T23:59:59.000Z

30

International Turbine Research Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Turbine Research Wind Farm Turbine Research Wind Farm Jump to: navigation, search Name International Turbine Research Wind Farm Facility International Turbine Research Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer International Turbine Research Energy Purchaser Pacific Gas & Electric Co Location Pacheco Pass CA Coordinates 37.0445°, -121.175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.0445,"lon":-121.175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Gas turbine topping combustor  

DOE Patents (OSTI)

A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

Beer, Janos (Winchester, MA); Dowdy, Thomas E. (Orlando, FL); Bachovchin, Dennis M. (Delmont, PA)

1997-01-01T23:59:59.000Z

32

Gas turbine topping combustor  

DOE Patents (OSTI)

A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

1997-06-10T23:59:59.000Z

33

Gas fired Advanced Turbine System  

SciTech Connect

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

34

Principles of Jet Propulsion and Gas Turbines  

Science Journals Connector (OSTI)

... the presentation of the basic theory of jet propulsion and the thermodynamics of the gas-turbine and rocket types of engine. The layout follows a logical sequence, on the whole ... reader is treated to the now well-known thermodynamic analysis of the power-producing gas turbine cycle, which seems rather misplaced in a book dealing with jet propulsion. In his ...

S. J. MOYES

1949-08-06T23:59:59.000Z

35

Creep-Resisting Alloys For Gas Turbines  

Science Journals Connector (OSTI)

... ON February 22 and 23, a symposium on High-Temperature Steels and Alloys for Gas Turbines was held under the auspices of the Iron and Steel Institute in the rooms of ... metallurgical progress to which his invention gave rise, and discussing the problems of the gas turbine at its present stage of development.

N. P. ALLEN

1951-05-26T23:59:59.000Z

36

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

37

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

38

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network (OSTI)

clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

39

DOE Technology Successes - "Breakthrough" Gas Turbines | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Technology Successes - "Breakthrough" Gas Turbines DOE Technology Successes - "Breakthrough" Gas Turbines DOE Technology Successes - "Breakthrough" Gas Turbines For years, gas turbine manufacturers faced a barrier that, for all practical purposes, capped power generating efficiencies for turbine-based power generating systems. The barrier was temperature. Above 2300 degrees F, available cooling technologies were insufficient to protect the turbine blades and other internal components from heat degradation. Since higher temperatures are the key to higher efficiencies, this effectively limited the generating efficiency at which a turbine power plant could convert the energy in the fuel into electricity. The Department of Energy's Office of Fossil Energy took on the challenge of turbine temperatures in 1992, and nine years later, its private sector

40

The Forging of Gas Turbine Discs  

Science Journals Connector (OSTI)

The history and development of the forging process with particular reference to the production of discs for aero gas turbine engines have been reviewed. How the technological requirements of the engine manufac...

F. Turner

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Practice of Natural Gas Fuel Booster for Gas Turbine  

Science Journals Connector (OSTI)

This paper analysis the effects to the gas turbine cogeneration running cost and management caused by ... forward that people need to build additional natural gas booster station in the view of consummating...

Qifeng Xin

2007-01-01T23:59:59.000Z

42

Gas turbine engines with particle traps  

DOE Patents (OSTI)

A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

1992-01-01T23:59:59.000Z

43

8 - Turbogenerators in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: The functioning of turbogenerators is explained as the final link between the turbine and the grid. Basic physical laws are given, and principles to calculate the performance and application of generators to gas turbines are derived. It is shown how generators developed with the progress of gas turbines. Modern designs are described and latest test results of generators are reported. Finally, an outlook is given about the future trends in technology and products. The chapter utilizes the author’s in-house experience, and describes also achievements of other manufacturers.

B. Gellert

2013-01-01T23:59:59.000Z

44

Gas Turbine Engine Collaborative Research - NASA Glenn Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Engine Collaborative Gas Turbine Engine Collaborative Research-NASA Glenn Research Center Background Advancing the efficiency and performance levels of gas turbine technology requires high levels of fundamental understanding of the actual turbine component level technology systems. The National Aeronautics and Space Administration Glenn Research Center (NASA Glenn), with support from the Ohio State University, is planning research to compile

45

A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell–gas turbine hybrid generation system – Part II. Balancing units model library and system simulation  

Science Journals Connector (OSTI)

Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens–Westinghouse demonstration system, the in-house multi-level SOFC–gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

Cheng Bao; Ningsheng Cai; Eric Croiset

2011-01-01T23:59:59.000Z

46

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network (OSTI)

Scheibel (1997) “Current Gas Turbine Developments and Futurefor Heavy-Duty Gas Turbines,” October 2000. Available onlineNext Evolution of the F Gas Turbine,” April 2001. Available

Ishii, Jun

2004-01-01T23:59:59.000Z

47

An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines  

E-Print Network (OSTI)

of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:in Lean Premixed Gas Turbine Combustors," Journal of

Ibrahim, Zuhair M. A.

2007-01-01T23:59:59.000Z

48

A Portable Expert System for Gas Turbine Maintenance  

E-Print Network (OSTI)

Combustion turbines for electric power generation and industrial applications have steadily increased in size, efficiency and prominence. The newest class of gas turbine-generators coming into service will deliver 150 megawatts, with turbine inlet...

Quentin, G. H.

49

Alternative fuels for industrial gas turbines (AFTUR)  

Science Journals Connector (OSTI)

Environmentally friendly, gas turbine driven co-generation plants can be located close to energy consumption sites, which can produce their own fuel such as waste process gas or biomass derived fuels. Since gas turbines are available in a large power range, they are well suited for this application. Current gas turbine systems that are capable of burning such fuels are normally developed for a single specific fuel (such as natural gas or domestic fuel oil) and use conventional diffusion flame technology with relatively high levels of \\{NOx\\} and partially unburned species emissions. Recently, great progress has been made in the clean combustion of natural gas and other fossil fuels through the use of dry low emission technologies based on lean premixed combustion, particularly with respect of \\{NOx\\} emissions. The objective of the AFTUR project is to extend this capability to a wider range of potentially commercial fuel types, including those of lower calorific value produced by gasification of biomass (LHV gas in line with the European Union targets) and hydrogen enriched fuels. The paper reports preliminary progress in the selection and characterisation of potential, liquid and gas, alternative fuels for industrial gas turbines. The combustion and emission characteristics of the selected fuels will be assessed, in the later phases of the project, both in laboratory and industrial combustion chambers.

Iskender Gökalp; Etienne Lebas

2004-01-01T23:59:59.000Z

50

E-Print Network 3.0 - aircraft gas turbines Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: aircraft gas turbines...

51

E-Print Network 3.0 - advanced gas turbines Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced gas turbines...

52

E-Print Network 3.0 - aviation gas turbines Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: aviation gas turbines...

53

5 - Combustors in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: This chapter discusses combustion systems in gas turbines. It begins by reviewing basic design principles before discussing developments in technology such as advanced fuel staging and reheat combustion systems. The chapter also covers the impact of different natural gas types on combustor operations, including combustor design for low calorific gases and fuel oils.

P. Flohr; P. Stuttaford

2013-01-01T23:59:59.000Z

54

An investigation into the feasibility of an external combustion, steam injected gas turbine  

E-Print Network (OSTI)

output of the turbine without increasing the work required for compression. Second, the steam may be generated with waste 15 heat from the combustion process. In an internal combustion gas turbine, this would result in an increased work output per... which are: 1. Gas Turbine Engine 2. Heat Exchanger Unit 3. Steam Generator Unit 4. Dynamometer 26 A detailed description of the equipment used in the experiment will be presented in the section entitled Ap- paratus since the purpose...

Ford, David Bruce

2012-06-07T23:59:59.000Z

55

Coatings for hot section gas turbine components  

Science Journals Connector (OSTI)

Components in the hot section of gas turbines are protected from the environment by oxidation-resistant coatings while thermal barrier coatings are applied to reduce the metal operating temperature of blades and vanes. The integrity of these protective coatings is an issue of major concern in current gas turbine designs. Premature cracking of the protective layer in oxidation-resistant coatings and of the interface in thermal barrier coating systems has become one of the life limiting factors of coated components in gas turbines. Following a brief overview of the state-of-the-art of coated material systems with respect to coating types and their status of application, the fracture mechanisms and mechanics of coated systems are presented and discussed.

J. Bressers; S. Peteves; M. Steen

2000-01-01T23:59:59.000Z

56

Development of Gas Turbine Combustors for Low BTU Gas  

Science Journals Connector (OSTI)

Large-capacity combined cycles with high-temperature gas turbines burning petroleum fuel or LNG have already ... the other hand, as the power generation technology utilizing coal burning the coal gasification com...

I. Fukue; S. Mandai; M. Inada

1992-01-01T23:59:59.000Z

57

New gas turbine combustor supports emissions limits  

SciTech Connect

Gas Research Institute, in partnership with Allison Engine Co. of Indianapolis, has introduced a natural gas-fired, low-emissions combustor that it says will give customers of industrial gas turbines a least-cost approach for meeting US emissions regulations. The LE IV combustor uses dry, low-nitrogen oxides (DLN) technology to reduce emissions from the Allison 501K industrial gas turbine to 25 parts per million or less (corrected to 15 percent oxygen)--levels that are expected to meet pending federal emissions regulations. GRI is funding similar efforts with other manufacturers of turbines commonly used at pipeline compressor stations and industrial power generation sites. The Allison combustor features a dual operating mode. During the pilot mode of operation, fuel is directly injected into the combustor`s liner where it is consumed in a diffusion flame reaction. During higher power operation, the fuel and air are uniformly premixed in fuel-lean proportions to control NO{sub x} formation. In addition, optimum engine performance is maintained by the dry, lean-mixed combustion technology as it suppresses NO{sub x} formation in the turbine`s combustion section. An added advantage of the LE IV combustor is its ability to lower emissions without any adverse affect on engine performance and operations, according to GRI> The combustor is available as either a retrofit or as an option on a new engine.

NONE

1996-10-01T23:59:59.000Z

58

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

59

Cooled turbine blades in the GTÉ-65 gas turbine power unit  

Science Journals Connector (OSTI)

Experience with the development, study, and manufacturing of cooled blades for the GTÉ-65 high temperature gas turbine is described.

V. V. Rtishchev; V. V. Krivonosova; Yu. M. Sundukov…

2009-11-01T23:59:59.000Z

60

Thermal Barrier Coatings for Gas-Turbine Engine Applications  

Science Journals Connector (OSTI)

...but in some industrial gas-turbine engines applications it can reach...shorter thermal-cycling lives than EB-PVD TBCs...extremely well in industrial gas-turbine engines, including “bucket...thermal” compressive residual stresses in...

Nitin P. Padture; Maurice Gell; Eric H. Jordan

2002-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Optimal Gas Turbine Integration to the Process Industries  

Science Journals Connector (OSTI)

Gas turbine integration can also help cut down flue gas emissions as a result of the improved efficiency of a cogeneration system. ... The aeroderivative turbines have higher efficiency than the industrial type, but they are more expensive. ...

Jussi Manninen; X. X. Zhu

1999-09-28T23:59:59.000Z

62

The Gas Turbine and Its Significance as a Prime Mover  

Science Journals Connector (OSTI)

...R. SODERBERG THE GAS TURBINE AND ITS SIGNIFICANCE...MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRDGE Read before...The emergence of the gas turbine as an accepted mem...implications of this development. This paper gives a...

C. Richard Soderberg

1948-01-01T23:59:59.000Z

63

Sea trials for Eurodyn gas turbine  

SciTech Connect

The Eurodyn gas turbine concept is a collaboration between Ulstein Turbine, Turbomeca and Volvo Aero. It is also supported by the European Community under its high-technology Eureka program (EU 159). A full-size Eurodyn prototype has been running on a test bed in France since October 1992. A complete engine, including a power output gear-box, began parallel test bed trials in Norway in March 1993. Results to date indicate that these test engines have achieved efficiencies of 32.8%. The corresponding output is recorded as being 2.6 MW (ISO) with NO{sub x} emissions stated as being as low as 24 ppm (15% O{sub 2}) running on marine diesel fuel. The Eurodyn gas turbine is designed to provide some 9000 hours of operation between overhauls, effectively giving a typical fast ferry application something like three years of operation. The TBO for power generation applications is 20000 hours, which also means about three years of operation. Of particular significance in this gas turbine package is the incorporation of a dedicated output gearbox. For marine applications the gearbox developed by Ulstein Propeller is a compact and light two-stage epicyclic unit reducing the power turbine output speed of 13000 r/min down to 1000 r/min. 3 figs.

Kunberger, K.

1995-04-01T23:59:59.000Z

64

GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE  

E-Print Network (OSTI)

1 GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE NOX INDICES OF FAME, GASOIL ("tallow"). A key factor for the use of biofuels in gas turbines is their Emissions Indices (NOx, CO, VOC to gas turbines is very scarce. Two recent, independent field tests carried out in Europe (RME

Paris-Sud XI, Université de

65

Restoration islands supplied by gas turbines  

Science Journals Connector (OSTI)

The paper describes how gas turbine based plants (open cycle and combined cycle) can be profitably used in power system restoration for supplying restoration areas. In recent times, in fact, several gas turbine sections entered the power system due to the improved efficiency of gas turbines and to the development of high efficiency combined-cycle plants. These units can be easily improved to provide black-start capability and can therefore largely increase the black-start capacity of the entire system. Restoration islands to be used for minimizing the time to supply critical areas, such as urban and industrial zones, can support the usual restoration paths designed to provide cranking power to large steam units. The paper presents the defining criteria for the procedures to be followed during restoration. An example referred to as an urban area is reported with simulation results. The Italian System Operator recently carried out some tests on an open cycle gas turbine aimed at checking the island operation of the unit. Some results are described.

S. Barsali; D. Poli; A. Praticò; R. Salvati; M. Sforna; R. Zaottini

2008-01-01T23:59:59.000Z

66

Gas-turbine power stations on associated gas by Motor Sich OJSC  

Science Journals Connector (OSTI)

Wide introduction of gas-turbine power stations working on associated oil gas is topical for Russia. Designing and operational ... ) and EG-6000 (6.0 MW) gas-turbine power stations on associated oil gas manufactu...

P. A. Gorbachev; V. G. Mikhailutsa

2011-12-01T23:59:59.000Z

67

Micro Gas Turbine Operation with Biomass Producer Gas and Mixtures of Biomass Producer Gas and Natural Gas  

Science Journals Connector (OSTI)

Instead of gas engines, micro or mini gas turbines may be used. ... Power output delivered to the grid, engine speed, turbine temperature, and fuel gas valve position are read from the micro gas turbine operating console and recorded manually. ... Financial support from the Renewable Energy (DEN) program of the Dutch Energy Agency SenterNovem is gratefully acknowledged. ...

Luc P. L. M. Rabou; Jan M. Grift; Ritze E. Conradie; Sven Fransen

2008-03-06T23:59:59.000Z

68

Gas turbine generators from India for Asian and world markets  

SciTech Connect

Bharat Heavy Electricals Ltd. (BHEL), in India, is an important producer of large industrial gas turbines in the Asian area. The company produces both GE frame type industrial gas turbines and Siemens design gas turbines for power generation service. Up to this time, BHEL has manufactured and supplied 68 gas turbine power generation units of GE design, ranging from Frame 1 to Frame 6 sizes, and two Siemens V94.2 gas turbines rated at 150 MW ISO. In addition, 15 gas turbine generating units are currently being manufactured. These include a large Frame 9 unit and a V94.2 gas turbine. This paper describes briefly some of the projects completed by the company.

NONE

1996-07-01T23:59:59.000Z

69

Collaborative Advanced Gas Turbine Program: Phase 1. Final report  

SciTech Connect

The Collaborative Advanced Gas Turbine (CAGT) Program is an advanced gas turbine research and development program whose goal is to accelerate the commercial availability, to within the turn of the century, of high efficiency aeroderivative gas turbines for electric power generating applications. In the first project phase, research was conducted to prove or disprove the research hypothesis that advanced aeroderivative gas turbine systems can provide a promising technology alternative, offering high efficiency and good environmental performance characteristics in modular sizes, for utility applications. This $5 million, Phase 1 research effort reflects the collaborative efforts of a broad and international coalition of industries and organizations, both public and private, that have pooled their resources to assist in this research. Included in this coalition are: electric and gas utilities, the Electric Power Research Institute, the Gas Research Institute and the principal aircraft engine manufacturers. Additionally, the US Department of Energy (DOE) and the California Energy Commission have interacted with the CAGT on both technical and executive levels as observers and sources of funding. The three aircraft engine manufacturer-led research teams participating in this research include: Rolls-Royce, Inc., and Bechtel; the Turbo Power and Marine Division of United Technologies and Fluor Daniel; and General Electric Power Generation, Stewart and Stevenson, and Bechtel. Each team has investigated advanced electric power generating systems based on their high-thrust (60,000 to 100,000 pounds) aircraft engines. The ultimate goal of the CAGT program is that the community of stakeholders in the growing market for natural-gas-fueled, electric power generation can collectively provide the right combination of market-pull and technology-push to substantially accelerate the commercialization of advanced, high efficiency aeroderivative technologies.

Hollenbacher, R.; Kesser, K.; Beishon, D.

1994-12-01T23:59:59.000Z

70

Modular Turbine Control Software: A Control Software Architecture for the ABB Gas Turbine Family  

Science Journals Connector (OSTI)

ABB Power Generation’s family of gas turbines covers the power range of 35 to 270 MW with five basic turbine types, which vary in size, combustion technology and equipment. Each type comes in several variatons...

Dr. Christopher Ganz; Michael Layes

1998-01-01T23:59:59.000Z

71

Infrared thermography to detect residual ceramic in gas turbine blades  

Science Journals Connector (OSTI)

A serious problem in the production of gas turbine blades is the detection of residual ceramic cores inside the cooling passages; in ... the presence of even small ceramic pieces affects turbine performance and m...

C. Meola; G.M. Carlomagno; M. Di Foggia; O. Natale

2008-06-01T23:59:59.000Z

72

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2002-07-01T23:59:59.000Z

73

Modelling and simulation of gas turbines  

Science Journals Connector (OSTI)

Today, gas turbines (GTs) are one of the major parts of modern industry. They have played a key role in aeronautical industry, power generation, and main mechanical drivers for large pumps and compressors. Modelling and simulation of GTs has always been a powerful tool for performance optimisation of this kind of equipment. Remarkable research activities have been carried out in this field and a variety of analytical and experimental models have been built so far to get in-depth understanding of the non-linear behaviour and complex dynamics of these systems. However, the need to develop accurate and reliable models of gas turbines for different objectives and applications has been a strong motivation for researchers to continue to work in this area. This paper focuses on major research activities which have been carried out so far in the field of modelling and simulation of gas turbines. It covers main white-box and black-box models and their applications in control systems. This study can be a good reference for current and prospective researchers who are working or planning to work in this fascinating area of research.

Hamid Asgari; XiaoQi Chen; Raazesh Sainudiin

2013-01-01T23:59:59.000Z

74

Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine  

Science Journals Connector (OSTI)

Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better ... . The scope of improvement is possible through turbines having higher turbine inlet temperature...

S. Kumar; O. Singh

2012-10-01T23:59:59.000Z

75

Gas turbine alternative fuels combustion characteristics  

SciTech Connect

An experimental investigation was conducted to obtain combustion performance and exhaust pollutant concentrations for specific synthetic hydrocarbon fuels. Baseline comparison fuels used were gasoline and diesel fuel number two. Testing was done over a range of fuel to air mass ratios, total mass flow rates, and input combustion air temperatures in a flame-tube-type gas turbine combustor. Test results were obtained in terms of released heat and combustion gas emission values. The results were comparable to those obtained with the base fuels with variations being obtained with changing operating conditions. The release of carbon particles during the tests was minimal. 22 refs., 12 figs., 2 tabs.

Rollbuhler, R.J.

1989-02-01T23:59:59.000Z

76

Externally fired gas turbine technology: A review  

Science Journals Connector (OSTI)

Abstract Externally fired heat engines were used widely since helium the industrial revolution using dirty solid fuels for example coal, due to the lack of refined fuels. However, with the availability of clean fuels, external firing mode was abandoned, except for steam power plants. Lately, with the global trend moving towards green power production, the idea of the external fired system has captured the attention again especially externally fired gas turbine (EFGT) due to its wider range of power generation and the potential of using environment friendly renewable energy sources like biomass. In this paper, a wide range of thermal power sources utilizing EFGT such as concentrated solar power (CSP), fossil, nuclear and biomass fuels are reviewed. Gas turbine as the main component of EFGT is investigated from micro scale below 1 MWe to the large scale central power generation. Moreover, the different high temperature heat exchanger (HTHE) materials and designs are reviewed. Finally, the methods of improving cycle efficiency such as the externally fired combined cycle (EFCC), humidified air turbine (HAT), EFGT with fuel cells and other cycles are reviewed thoroughly.

K.A. Al-attab; Z.A. Zainal

2015-01-01T23:59:59.000Z

77

An Evaluation of Gas Turbines for APFBC Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS Donald L. Bonk U.S. DOE National Energy Technology Laboratory Morgantown, West Virginia eMail: dbonk@netl.doe.gov phone: (304) 285-4889 Richard E. Weinstein, P.E. Parsons Infrastructure & Technology Group Inc. Reading, Pennsylvania eMail: richard.e.weinstein@parsons.com phone: (610) 855-2699 Abstract This paper describes a concept screening evaluation of gas turbines from several manufacturers that assessed the merits of their respective gas turbines for advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) applications. The following gas turbines were evaluated for the modifications expected for APFBC service: 2 x Rolls-Royce Industrial Trent aeroderivative gas turbine configurations; a 3 x Pratt & Whitney Turbo Power FT8 Twin-

78

How Gas Turbine Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

79

Chapter 8 - Radial-Flow Gas Turbines  

Science Journals Connector (OSTI)

The various types of radial-flow gas turbine are described. A Mollier diagram with the changes in enthalpy of the component parts is shown for the turbine. Loss coefficients are defined and numerous calculation methods are outlined. The calculation of the all-important total-to-static efficiency is made and discussed. Some discussion of the losses in the inlet scroll and nozzle blades with an important expression for their calculation is given. The criterion for the minimum number of blades is explained. The design of the rotor exit is considered and some details of the effects of vane solidity are calculated. Details of the optimum design using the concept of specific speed are included. A brief discussion of the clearance and windage losses is given. Numerous examples and problems are included.

S.L. Dixon; C.A. Hall

2014-01-01T23:59:59.000Z

80

Chapter 7 - Gas Turbine Fuel Systems and Fuels  

Science Journals Connector (OSTI)

Abstract The basics of a gas turbine fuel system are similar for all turbines. The most common fuels are natural gas, LNG (liquid natural gas), and light diesel. With appropriate design changes, the gas turbine has proved to be capable of handling residual oil, pulverized coal, syngas from coal and various low BTU fluids, both liquid and gas, that may be waste streams of petrochemical processes or, for instance, gas from a steel (or other industry) blast furnace. Handling low BTU fuel can be a tricky operation, requiring long test periods and a willingness to trade the savings in fuel costs with the loss of turbine availability during initial prototype full load tests. This chapter covers gas turbine fuel systems and includes a case study (Case 5) on blast furnace gas in a combined cycle power plant (CCPP). “All truths are easy to understand once they are discovered, the point is to discover them.” —Plato

Claire Soares

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Axial bearing with gas lubrication for marine turbines  

Science Journals Connector (OSTI)

The possibility of enhancing the carrying capacity of the lubricant layer in bearings with gas lubrication is considered, for marine turbines. The basic design features of the hybrid...

M. V. Gribinichenko; A. V. Kurenskii; N. V. Sinenko

2013-10-01T23:59:59.000Z

82

Design, modelling and control of a gas turbine air compressor .  

E-Print Network (OSTI)

??The production of compressed air constitutes a considerable portion of industrial electrical consumption. An alternative to electrically driven air compression systems is a gas turbine… (more)

WIESE, ASHLEY PETER

2014-01-01T23:59:59.000Z

83

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data  

E-Print Network (OSTI)

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data Jin Yu produces textual summaries of archived time- series data from gas turbines. These summaries should help evaluated. 1 Introduction In order to get the most out of gas turbines, TIGER [2] has been developed

Reiter, Ehud

84

Chapter 4 - Natural Gas–fired Gas Turbines and Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Abstract Gas turbines can burn a range of liquid and gaseous fuels but most burn natural gas. Power plants based on gas turbines are one of the cheapest types of plant to build, but the cost of their electricity depends heavily on the cost of their fuel. Two types of gas turbine are used for power generation: aero-derivative gas turbines and heavy-duty gas turbines. The former are used to provide power to the grid at times of peak demand. The latter are most often found in combined cycle power stations. These are capable of more than 60% efficiency. There are a number of ways of modifying the gas turbine cycle to improve efficiency, including reheating and intercooling. Micro-turbines have been developed for very small-scale generation of both electricity and heat. The main atmospheric emissions from gas turbines are carbon dioxide and nitrogen oxide.

Paul Breeze

2014-01-01T23:59:59.000Z

85

Experimental and numerical study of gas dynamics of exhaust pipe of gas turbine unit  

Science Journals Connector (OSTI)

A few geometrical configurations of exhaust pipe of marine gas turbine unit were investigated experimentally in NPP “Mashproeykt...

Valery Solodov; Juriy Starodubtsev; Boris Isakov…

2004-02-01T23:59:59.000Z

86

GAS TURBINE REHEAT USING IN SITU COMBUSTION  

SciTech Connect

In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

2004-05-17T23:59:59.000Z

87

SPINTHIR: An ignition model for gas turbines  

E-Print Network (OSTI)

MCS 7 Chia Laguna, Cagliari, Sardinia, Italy, September 11-15, 2011 A PRACTICAL MODEL FOR THE HIGH-ALTITUDE RELIGHT OF A GAS TURBINE COMBUSTOR A. Neophytou*,1, E. Mastorakos*, E.S. Richardson**, S. Stow*** and M. Zedda*** em257@eng... :1916-1927, 2010. [7] Naegeli, D. W. and Dodge, L. G. Combust. Sci. Technol., 80:165-184, 1991. [8] Stow, S. and Zedda, M. and Triantaffylidis, A. and Garmory, A. and Mastorakos, E. and Mosbach, T. Conditional Moment Closure LES modelling of an aero-engine...

Neophytou, A; Mastorakos, E

2012-08-28T23:59:59.000Z

88

A Wood-Fired Gas Turbine Plant  

E-Print Network (OSTI)

-fired turbine, it probably seems that a wood gasification system must be involved. This is a proven and accepted method of producing gas to drive this type of power unit, but the fuel produced is a dirty fuel containing large amounts of me' ~ "'1 re, tars..., and other undesirable impurities that make it unsuitable for use as a fuel until a rather expensive cleanup process and residual waste disposal can take place. However, Aerospace Research felt that there must be a way to improve on the wood gasification...

Powell, S. H.; Hamrick, J. T.

89

Alternative Liquid Fuel Effects on Cooled Silicon Nitride Marine Gas Turbine Airfoils  

SciTech Connect

With prior support from the Office of Naval Research, DARPA, and U.S. Department of Energy, United Technologies is developing and engine environment testing what we believe to be the first internally cooled silicon nitride ceramic turbine vane in the United States. The vanes are being developed for the FT8, an aeroderivative stationary/marine gas turbine. The current effort resulted in further manufacturing and development and prototyping by two U.S. based gas turbine grade silicon nitride component manufacturers, preliminary development of both alumina, and YTRIA based environmental barrier coatings (EBC's) and testing or ceramic vanes with an EBC coating.

Holowczak, J.

2002-03-01T23:59:59.000Z

90

Fuel Cell and Micro Gas Turbine Integrated Design; Integrerad Design av Bränsle cell och Mikro Gas Turbin.  

E-Print Network (OSTI)

?? This work represents the integration of a hybrid system based on Micro Gas Turbine system available at the division of Heat and Power Technology… (more)

Woldesilassie, Endale

2014-01-01T23:59:59.000Z

91

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data  

Science Journals Connector (OSTI)

SumTime-Turbine...produces textual summaries of archived time-series data from gas turbines. These summaries should help experts understand large...SumTime-Turbine is based on pattern detection, ...

Jin Yu; Ehud Reiter; Jim Hunter…

2003-01-01T23:59:59.000Z

92

Failure Analysis of Nozzle Guide Vane of a Low Pressure Turbine in an Aero Gas Turbine Engine  

Science Journals Connector (OSTI)

Failure of low pressure turbine nozzle guide vane (NGV) in an aero gas turbine engine is analyzed to determine its root ... failure has caused extensive damages in low pressure turbine modules. Remedial measures ...

R. K. Mishra; Johney Thomas; K. Srinivasan…

2014-10-01T23:59:59.000Z

93

Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines  

E-Print Network (OSTI)

of Engineering for Gas Turbines and Power-Transactions ofInjector for Lean Premixed Gas Turbines D. Littlejohn and R.11. IC ENGINE AND GAS TURBINE COMBUSTION SHORT TITLE: Fuel

Littlejohn, David

2008-01-01T23:59:59.000Z

94

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network (OSTI)

of Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MITin the 1890s and the gas turbine invented by Frank Whittle

Anderson, Byron P.

2011-01-01T23:59:59.000Z

95

Influence of Turbine Inlet Temperature on the Efficiency of Externally Fired Gas Turbines  

Science Journals Connector (OSTI)

Many researchers have considered externally fired gas turbines (EFGT) as an option for the ... . The EFGT cycle with regeneration or the gas-vapor combined cycle using one EFGT, also ... is used to investigate th...

Paulo Eduardo Batista de Mello…

2014-01-01T23:59:59.000Z

96

International Energy Outlook 2001 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas picture of a printer Printer Friendly Version (PDF) Natural gas is the fastest growing primary energy source in the IEO2001 forecast. The use of natural gas is projected to nearly double between 1999 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is expected to be the fastest growing component of world energy consumption in the International Energy Outlook 2001 (IEO2001) reference case. Gas use is projected to almost double, to 162 trillion cubic feet in 2020 from 84 trillion cubic feet in 1999 (Figure 38). With an average annual growth rate of 3.2 percent, the share of natural gas in total primary energy consumption is projected to grow to 28 percent from 23 percent. The largest increments in gas use are expected in Central and

97

An Algorithm of Gas Turbine Components in Aircraft  

Science Journals Connector (OSTI)

......following section. The efficiency of an algorithm 0...6. ALIGNMENT OF GAS TURBINE COMPONENTS 141 which...stage. 4. Increasing efficiency It has already been...increase substantially the efficiency of the algorithm, so...problem encountered in gas turbine assembly, only a small......

S. MCKEE; M.B. REED

1986-01-01T23:59:59.000Z

98

Gas turbine performance prognostic for condition-based maintenance  

Science Journals Connector (OSTI)

Gas turbine engines experience degradations over time that cause great concern to gas turbine users on engine reliability, availability and operating costs. Gas turbine diagnostics and prognostics is one of the key technologies to enable the move from time-scheduled maintenance to condition-based maintenance in order to improve engine reliability and availability and reduce life cycle costs. This paper describes a prognostic approach to estimate the remaining useful life of gas turbine engines before their next major overhaul based on historical health information. A combined regression techniques, including both linear and quadratic models, is proposed to predict the remaining useful life of gas turbine engines. A statistic “compatibility check” is used to determine the transition point from a linear regression to a quadratic regression. The developed prognostic approach has been applied to a model gas turbine engine similar to Rolls-Royce industrial gas turbine AVON 1535 implemented with compressor degradation over time. The analysis shows that the developed prognostic approach has a great potential to provide an estimation of engine remaining useful life before next major overhaul for gas turbine engines experiencing a typical soft degradation.

Y.G. Li; P. Nilkitsaranont

2009-01-01T23:59:59.000Z

99

Working on new gas turbine cycle for heat pump drive  

E-Print Network (OSTI)

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

100

An overview of current and future sustainable gas turbine technologies  

Science Journals Connector (OSTI)

In this work an overview of current and future sustainable gas turbine technologies is presented. In particular, the various gas turbine technologies are described and compared. Emphasis has been given to the various advance cycles involving heat recovery from the gas turbine exhaust, such as, the gas to gas recuperation cycle, the combined cycle, the chemical recuperation cycle, the Cheng cycle, the humid air turbine cycle, etc. The thermodynamic characteristics of the various cycles are considered in order to establish their relative importance to future power generation markets. The combined cycle technology is now well established and offers superior to any of the competing gas turbine based systems, which are likely to be available in the medium term for large-scale power generation applications. In small-scale generation, less than 50 MWe, it is more cost effective to install a less complex power plant, due to the adverse effect of the economics of scale. Combined cycle plants in this power output range normally have higher specific investment costs and lower electrical efficiencies but also offer robust and reliable performance. Mixed air steam turbines (MAST) technologies are among the possible ways to improve the performance of gas turbine based power plants at feasible costs (e.g. peak load gas turbine plants).

Andreas Poullikkas

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Marine gas turbine programs at AlliedSignal  

SciTech Connect

Work has been continuing at AlliedSignal Turbines, located in Phoenix, Arizona, U.S.A., on the integration of their gas turbine programs with those of Textron Lycoming since the merger of the Lycoming gas turbine operations into the AlliedSignal Turbines Group about a year and a half ago. Although much of the gas turbine business and development programs are aimed at the aircraft markets, the industrial and marine gas turbine product area is also receiving significant attention in this combined organization. Of particular importance is the marine market, where the TF40 marine gas turbine is a key element. The TF40 is based on a tested turbine core engine with over ten million hours of operating experience. The compact TF40 gas turbine offers one of the highest power-to-weight ratios in its class. With a length of 1422 mm and a weight of 600 kg without a gearbox, the TF40 can produce 3432 kW boost rating for yachts and military craft and 2984 kW at maximum continuous rating for fast ferries. This paper describes the specifications and variations of the different versions being offered by the company.

NONE

1996-09-01T23:59:59.000Z

102

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011 Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011...

103

Single pressure steam bottoming cycle for gas turbines combined cycle  

SciTech Connect

This patent describes a process for recapturing waste heat from the exhaust of a gas turbine to drive a high pressure-high temperature steam turbine and a low pressure steam turbine. It comprises: delivering the exhaust of the gas turbine to the hot side of an economizer-reheater apparatus; delivering a heated stream of feedwater and recycled condensate through the cold side of the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus to elevate the temperature below the pinch point of the boiler; delivering the discharge from the high pressure-high temperature steam turbine through the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus; driving the high pressure-high temperature steam turbine with the discharge stream of feedwater and recycled condensate which is heated to a temperature below the pinch point of the boiler by the economizer-reheater apparatus; and driving the low pressure steam turbine with the discharged stream of the high pressure-high temperature steam turbine reheated below the pinch point of the boiler by the economizer-reheater apparatus.

Zervos, N.

1990-01-30T23:59:59.000Z

104

DOE Research Grant Leads to Gas Turbine Manufacturing Improvements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Grant Leads to Gas Turbine Manufacturing Improvements Research Grant Leads to Gas Turbine Manufacturing Improvements DOE Research Grant Leads to Gas Turbine Manufacturing Improvements August 16, 2011 - 1:00pm Addthis Washington, DC - Research sponsored by the U.S. Department of Energy's Office of Fossil Energy (FE) has led to a new licensing agreement that will improve the performance of state-of-the-art gas turbines, resulting in cleaner, more reliable and affordable energy. The collaborative technology license agreement, penned by Mikro Systems Inc. and Siemens Energy Inc., reflects growth in U.S.-based manufacturing know-how and leadership in cutting-edge technology development and rapid implementation. Gas turbines, which are used to produce electricity for industrial or central power generation applications, consist sequentially of compressor,

105

Understanding and Control of Combustion Dynamics in Gas Turbine Combustors  

NLE Websites -- All DOE Office Websites (Extended Search)

Control of Combustion Understanding and Control of Combustion Control of Combustion Understanding and Control of Combustion Dynamics in Gas Turbine Combustors Dynamics in Gas Turbine Combustors Georgia Institute of Technology Georgia Institute of Technology Ben T. Zinn, Tim Lieuwen, Yedidia Neumeier, and Ben Bellows SCIES Project 02-01-SR095 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/2002, 36 Month Duration) $452,695 Total Contract Value CLEMSONPRES.PPT, 10/28/2003, B.T. ZINN, T. LIEUWEN, Y. NEUMEIER Gas Turbine Need Gas Turbine Need * Need: Gas turbine reliability and availability is important factor affecting power plant economics - Problem: Combustion driven oscillations severely reduce part life, requiring substantially more frequent outages

106

13 - Maintenance and repair of gas turbine components  

Science Journals Connector (OSTI)

Abstract: Material selection is a key factor in gas turbine performance and lifecycle cost because it has a central influence in the maintenance of the gas turbine.1 Further, the operation of a gas turbine does result in gas path degradation2 that impacts lifecycle costs and eventually design, manufacture, material choice and maintenance.3 A component repair programme that minimizes maintenance costs and maximizes equipment availability can be instituted to meet or improve lifecycle cost. This chapter presents the key factors influencing the need for maintenance and the choices available.

T. Álvarez Tejedor; R. Singh; P. Pilidis

2013-01-01T23:59:59.000Z

107

Heat transfer research on gas turbine airfoils at NASA GRC  

Science Journals Connector (OSTI)

The turbine gas path is a very complex flow field due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center (GRC). Based on the author's preference, however, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. Specifically, the external flow and heat transfer characteristics are described over smooth and rough turbine blades for a range of parameter values. For smooth blades, the effect of film-cooling holes as well as internal cooling channels with ribs and bleed holes is considered. Studies on the blade tip region, susceptible to burnout and oxidation due to high thermal loading, are also described. Wherever possible, predictions of heat transfer coefficient on the real blade surface, obtained using in-house-developed codes, are compared with the available experimental data. Suggestions for further work are outlined.

Vijay K. Garg

2002-01-01T23:59:59.000Z

108

Chapter 18 - Future Trends in the Gas Turbine Industry  

Science Journals Connector (OSTI)

Abstract The future of gas turbine systems design development and the gas turbine business is steered by several factors. Business and political factors are a far greater influence on technology than the average engineer feels comfortable acknowledging. The major change in the gas turbine and gas turbine systems industries over the past several years has been the changes in turbine fuels strategy. In the power generation and land-based turbine sector, coal has lost its “number 1” place in the USA, due mostly to the advent of natural gas fracking exploration and production. Coal still remains number 1 in countries like China and much of Eastern Europe, because of those countries huge coal reserves. Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30% range with today’s steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40% range, with near-100% CO2 capture and near-zero \\{NOx\\} emissions. “I am enough of an artist to draw freely on my imagination. Imagination is more important that knowledge. Knowledge is limited. Imagination encircles.” —Albert Einstein

Claire Soares

2015-01-01T23:59:59.000Z

109

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

110

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents (OSTI)

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

111

International Energy Outlook 2000 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural gas is the fastest growing primary energy source in the IEO2000 forecast. The use of natural gas is projected to more than double between 1997 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is the fastest growing primary energy source in the IEO2000 forecast. The use of natural gas is projected to more than double between 1997 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. World natural gas consumption continues to grow, increasing its market share of total primary energy consumption. In the International Energy Outlook 2000 (IEO2000), natural gas remains the fastest growing component of world energy consumption. Over the IEO2000 forecast period from 1997 to 2020, gas use is projected to more than double in the reference case, reaching 167 trillion cubic feet in 2020 from the 1997 level of 82 trillion cubic feet (Figure 46). Over the 1997-2020 period, the role of natural gas in energy use is projected to increase in all regions except the Middle

112

Large eddy simulation for predicting turbulent heat transfer in gas turbines  

Science Journals Connector (OSTI)

...predicting turbulent heat transfer in gas turbines Danesh K. Tafti Long He K. Nagendra...of propulsion and power generation gas turbines. Accurate prediction of blade metal...compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency...

2014-01-01T23:59:59.000Z

113

Status Report 1981 on the German BMFT-Sponsored Programme “Ceramic Components for Vehicular Gas Turbines  

Science Journals Connector (OSTI)

“Ceramic components for vehicular gas turbines” — already many years ago, turbine manufacturers regarded this as a possible approach towards the economical use of uncooled small gas turbines in vehicles. But t...

W. Bunk; M. Böhmer

1983-01-01T23:59:59.000Z

114

The Gas Turbine and Its Significance as a Prime Mover  

Science Journals Connector (OSTI)

...for the development of efficient rotary compressors...essential ex- perience in high-temperature turbine...II. The Velox steam boiler had a combustion circuit...essential to flight at high altitudes. Under this...successful gas turbine (an efficient compressor and an efficient...

C. Richard Soderberg

1948-01-01T23:59:59.000Z

115

Chapter 1 - Gas Turbines: An Introduction and Applications  

Science Journals Connector (OSTI)

Abstract The gas turbine is the most versatile item of turbomachinery today. It can be used in several different modes in critical industries such as power generation, oil and gas, process plants, aviation, as well domestic and smaller related industries. A gas turbine essentially brings together air that it compresses in its compressor module, and fuel, which are then ignited. Resulting gases are expanded through a turbine. That turbine’s shaft continues to rotate and drive the compressor, which is on the same shaft, and operation continues. A separate starter unit is used to provide the first rotor motion until the turbine’s rotation is up to design speed and can keep the entire unit running. The compressor module, combustor module, and turbine module connected by one or more shafts are collectively called the gas generator. The first half of this chapter looks at some typical examples of land, air, and sea use. The second half of this chapter deals in more detail with different applications and their subdivisions. “The farther backwards you can look, the farther forward you are likely to see.” —Winston Churchill

Claire Soares

2015-01-01T23:59:59.000Z

116

Ceramic stationary gas turbine development. Final report, Phase 1  

SciTech Connect

This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

NONE

1994-09-01T23:59:59.000Z

117

The Gas Turbine and Its Significance as a Prime Mover  

Science Journals Connector (OSTI)

...1885; the Diesel engine, 1895...relating to heat cycles, such as regeneration...reheating came into general application...an ideal power cycle first found an...gas turbines for general prime mover purposes...type of power cycle which followed...turbine, the Diesel engine and the...

C. Richard Soderberg

1948-01-01T23:59:59.000Z

118

On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers  

Science Journals Connector (OSTI)

...gas turbine combustor, it has...the dynamic pressure field which...requirements in real gas turbine applications...manner that high-amplitude...in annular gas turbines...bifurcations in gas turbine combustor. Int. J...effects on high-frequency...characteristics of pressure oscillations...

2013-01-01T23:59:59.000Z

119

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network (OSTI)

and gas turbines has been continuously improved by technology, and new devices and procedures under development

Anderson, Byron P.

2011-01-01T23:59:59.000Z

120

The efficiency of using gas turbine technologies in developing small oil-and-gas-condensate deposits  

Science Journals Connector (OSTI)

The paper considers the technical and economic features of using stream-gas and gas-turbine power generators in developing small oil-and-gas-condensate deposits in Irkutsk oblast under conditions of carrying o...

A. M. Karasevich; A. V. Fedyaev; G. G. Lachkov; O. N. Fedyaeva

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Computational fluid dynamics for turbomachinery internal air systems  

Science Journals Connector (OSTI)

...modelling developments are discussed...the main gas path, which...designers and turbine aerodynamicists...1996 CFD developments for turbine blade heat...Engines and Gas Turbines...compressor gas turbine internal...on future strategies towards understanding...

2007-01-01T23:59:59.000Z

122

Performance Assessment of a Recuperative Helium Gas Turbine System  

Science Journals Connector (OSTI)

Helium is considered an ideal working fluid for closed cycle gas turbines powered by the heat of nuclear reactors or solar concentrators. Energetic and exergetic based thermodynamic analyses ... applied to an act...

Rami Salah El-Emam; Ibrahim Dincer

2014-01-01T23:59:59.000Z

123

Development of a plate-fin type gas turbine recuperator  

Science Journals Connector (OSTI)

A plate-fin type recuperator for a gas turbine/fuel cell hybrid power generation system was designed, manufactured, and tested. Performance analysis shows that the performance of the system is directly affecte...

Jae Su Kwak; Inyoung Yang

2006-07-01T23:59:59.000Z

124

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

125

Gas-path leakage seal for a gas turbine  

DOE Patents (OSTI)

A gas-path leakage seal is described for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a gas turbine (such as combustor casing segments). The seal includes a generally imperforate foil-layer assemblage which is generally impervious to gas and is located in the leakage-gap. The seal also includes a cloth-layer assemblage generally enclosingly contacting the foil-layer assemblage. In one seal, the first edge of the foil-layer assemblage is left exposed, and the foil-layer assemblage resiliently contacts the first member near the first edge to reduce leakage in the ``plane`` of the cloth-layer assemblage under conditions which include differential thermal growth of the two members. In another seal, such leakage is reduced by having a first weld-bead which permeates the cloth-layer assemblage, is attached to the metal-foil-layer assemblage near the first edge, and unattachedly contacts the first member. 4 figs.

Wolfe, C.E.; Dinc, O.S.; Bagepalli, B.S.; Correia, V.H.; Aksit, M.F.

1996-04-23T23:59:59.000Z

126

Chapter 2 - Historical Development of the Gas Turbine  

Science Journals Connector (OSTI)

Abstract The development of the gas turbine took place in several countries. Several different schools of thought and contributory designs led up to Frank Whittle’s 1941 gas turbine flight. The development of the gas turbine is a source of great pride to many engineers worldwide and, in some cases, takes on either industry sector fervor (for instance, the aviation versus land-based groups) or claims that are tinged with pride in one’s national roots. People from these various sectors and subsectors can therefore get selective in their reporting. So for understanding the history of the gas turbine, one would have to read several different papers and select material written by personnel from the aviation, and land-based sectors. This chapter covers three different accounts of the gas turbine’s development, each mainly a matter of perspective. “I only hope that we never lose sight of one thing—that it was all started by a mouse.” —Walt Disney

Claire Soares

2015-01-01T23:59:59.000Z

127

A Study of the Causes of the Service Fracture of Turbine Rotor Blade of Compressor Station Gas-Turbine Unit  

Science Journals Connector (OSTI)

On the basis of structural and fractographic the analysis of the fractured surface of working turbine blade of GTK-10-2 gas-turbine unit of compressor station it is established...

A. Ya. Krasovs’kyi; O. E. Gopkalo; I. O. Makovets’ka; O. O. Yanko

2013-07-01T23:59:59.000Z

128

Development of biomass as an alternative fuel for gas turbines  

SciTech Connect

A program to develop biomass as an alternative fuel for gas turbines was started at Aerospace Research Corporation in 1980. The research culminated in construction and installation of a power generation system using an Allison T-56 gas turbine at Red Boiling Springs, Tennessee. The system has been successfully operated with delivery of power to the Tennessee Valley Authority (TVA). Emissions from the system meet or exceed EPA requirements. No erosion of the turbine has been detected in over 760 hours of operation, 106 of which were on line generating power for the TVA. It was necessary to limit the turbine inlet temperature to 1450{degrees}F to control the rate of ash deposition on the turbine blades and stators and facilitate periodic cleaning of these components. Results of tests by researchers at Battelle Memorial Institute -- Columbus Division, give promise that deposits on the turbine blades, which must be periodically removed with milled walnut hulls, can be eliminated with addition of lime to the fuel. Operational problems, which are centered primarily around the feed system and engine configuration, have been adequately identified and can be corrected in an upgraded design. The system is now ready for development of a commercial version. The US Department of Energy (DOE) provided support only for the evaluation of wood as an alternative fuel for gas turbines. However, the system appears to have high potential for integration into a hybrid system for the production of ethanol from sorghum or sugar cane. 7 refs., 23 figs., 18 tabs.

Hamrick, J T [Aerospace Research Corp., Roanoke, VA (USA)

1991-04-01T23:59:59.000Z

129

Gas turbine bucket wall thickness control  

DOE Patents (OSTI)

A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

Stathopoulos, Dimitrios (Glenmont, NY); Xu, Liming (Greenville, SC); Lewis, Doyle C. (Greer, SC)

2002-01-01T23:59:59.000Z

130

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents (OSTI)

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

131

Dynamic gas bearing turbine technology in hydrogen plants  

Science Journals Connector (OSTI)

Dynamic Gas Bearing Turbines - although applied for helium refrigerators and liquefiers for decades - experienced limitations for hydrogen applications due to restrictions in axial bearing capacity. With a new design concept for gas bearing turbines developed in 2004 axial bearing capacity was significantly improved enabling the transfer of this technology to hydrogen liquefiers. Prior to roll-out of the technology to industrial plants the turbine bearing technology passed numerous tests in R&D test benches and subsequently proved industrial scale demonstration at Linde Gas' hydrogen liquefier in Leuna Germany. Since its installation this turbine has gathered more than 16 000 successful operating hours and has outperformed its oil bearing brother in terms of performance maintainability as well as reliability. The present paper is based on Linde Kryotechnik AG's paper published in the proceedings of the CEC 2009 concerning the application of Dynamic Gas Bearing Turbines in hydrogen applications. In contrast to the former paper this publication focuses on the steps towards final market launch and more specifically on the financial benefits of this turbine technology both in terms of capital investment as well as operating expenses.

Klaus Ohlig; Stefan Bischoff

2012-01-01T23:59:59.000Z

132

Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines  

Science Journals Connector (OSTI)

Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor or other heat source to electrical power using a closed?loop cycle. The operating fluid in the closed?loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed and the effects of very high ambient pressure start?up torque and misalignment have been observed and are reported here.

Samuel A. Howard; Robert J. Bruckner; Christopher DellaCorte; Kevin C. Radil

2007-01-01T23:59:59.000Z

133

Low-pressure-ratio regenerative exhaust-heated gas turbine  

SciTech Connect

A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

1991-01-01T23:59:59.000Z

134

Thermal performance prediction of a solar hybrid gas turbine  

Science Journals Connector (OSTI)

The present work focuses on a modelling procedure to simulate the operation of a solar hybrid gas turbine. The method is applied to a power generation system including an heliostat field, a receiver and a 36 MW commercial gas turbine. Heat is provided by concentrated solar power and integrated by fossil fuel. A detailed modelling of the gas turbine (GT) is proposed to predict the performance of commercial GT models in actual operating conditions. Advanced software tools were combined together to predict design and off-design performance of the whole system: TRNSYS® was used to model the solar field and the receiver while the gas turbine simulation was performed by means of Thermoflex®. A detailed comparison between the solarized and the conventional gas turbine is reported, taking into account GT electric power, efficiency and shaft speed. All thermodynamic parameters such pressure ratio, air flow and fuel consumption were compared. The main advantage of solarization is the fossil fuel saving, but it is balanced by a relevant penalty in power output and efficiency.

G. Barigozzi; G. Bonetti; G. Franchini; A. Perdichizzi; S. Ravelli

2012-01-01T23:59:59.000Z

135

Cost analysis of NOx control alternatives for stationary gas turbines  

SciTech Connect

The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.

Bill Major

1999-11-05T23:59:59.000Z

136

Gas turbine power plant with supersonic shock compression ramps  

DOE Patents (OSTI)

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-10-14T23:59:59.000Z

137

1 - Gas turbines: operating conditions, components and material requirements  

Science Journals Connector (OSTI)

Abstract: This chapter provides a summary of the operating cycle of an industrial gas turbine and associated plant. The characteristics of the materials and integrated materials systems used in a gas turbine are considered. The conditions under which industrial gas turbines operate, and the impact these operating conditions have on materials behavior, are described. The materials selection criteria for individual components and component sections are discussed. The key material properties for designing critical components and the approach for conducting a life assessment are considered. The major limitations to the performance of current superalloys, coatings and steels and the challenges facing the introduction of new materials are discussed. An overview is given of current trends in materials development and future materials technologies.

A.W. James; S. Rajagopalan

2014-01-01T23:59:59.000Z

138

PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM  

SciTech Connect

Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

2000-02-01T23:59:59.000Z

139

Indirect-fired gas turbine bottomed with fuel cell  

DOE Patents (OSTI)

An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

Micheli, Paul L. (Morgantown, WV); Williams, Mark C. (Morgantown, WV); Parsons, Edward L. (Morgantown, WV)

1995-01-01T23:59:59.000Z

140

Gas-turbine units of OAO Aviadvigatel’ designed for operation on synthesis gas obtained from gasification of coal  

Science Journals Connector (OSTI)

Problems that have to be solved for adapting a 16-MW gas-turbine unit used as part of a gas turbine-based power station for firing low-grade...

D. D. Sulimov

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solar gas turbine systems: Design, cost and perspectives  

Science Journals Connector (OSTI)

The combination of high solar shares with high conversion efficiencies is one of the major advantages of solar gas turbine systems compared to other solar-fossil hybrid power plants. Pressurized air receivers are used in solar tower plants to heat the compressed air in the gas turbine to temperatures up to 1000 °C. Therefore solar shares in the design case of 40% up to 90% can be realized and annual solar shares up to 30% can be achieved in base load. Using modern gas turbine systems in recuperation or combined cycle mode leads to conversion efficiencies of the solar heat from around 40% up to more than 50%. This is an important step towards cost reduction of solar thermal power. Together with the advantages of hybrid power plants—variable solar share, fully dispatchable power, 24 h operation without storage—solar gas turbine systems are expected to have a high potential for market introduction in the mid term view. In this paper the design and performance assessment of several prototype plants in the power levels of 1 MW, 5 MW and 15 MW are presented. Advanced software tools are used for design optimization and performance prediction of the solar tower gas turbine power plants. Detailed cost assumptions for the solarized gas turbine, the solar tower plant and further equipment as well as for operation and maintenance are presented. Intensive performance and economic analysis of the prototype plants for different locations and capacity factors are shown. The cost reduction potential through automation and remote operation is revealed.

Peter Schwarzbözl; Reiner Buck; Chemi Sugarmen; Arik Ring; Ma Jesús Marcos Crespo; Peter Altwegg; Juan Enrile

2006-01-01T23:59:59.000Z

142

Advanced Coal-Fueled Gas Turbine Program. Final report  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

143

Gas Turbine Cogeneration Plant for the Dade County Government Center  

E-Print Network (OSTI)

expansion plans, the system will efficiently produce additional electricity when chilled water demands are low. Houston, Texas The cogeneration plant consists of a Rolls-Royce gas turbine-generator set and a waste-heat recovery system which recovers... waste heat from the gas I tur bine exhaust. The waste-heat recovery syste~ con sists of a Zurn dual-pressure, heat recovery bpiler, a Thermo Electron dual-pressure, extraction /conden sing steam turbine generator set, and four Tra~e ab sorption...

Michalowski, R. W.; Malloy, M. K.

144

Slag processing system for direct coal-fired gas turbines  

DOE Patents (OSTI)

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

145

A Pressurized Air Receiver for Solar-driven Gas Turbines  

Science Journals Connector (OSTI)

Abstract A pressurized air-based solar receiver is considered for power generation via gas turbines using concentrated solar energy. The modular solar receiver is designed for heating compressed air to the entrance conditions of a gas turbine in the pressure range 4 – 30 bar and temperature range 800 – 1200 °C. The development work involved the design, fabrication, testing, and modelling of a 3 kWth and a 35 kWth solar receiver prototypes. System integration of an array of modular solar receivers with fossil-fuel hybridization was analysed.

P. Poživil; V. Aga; A. Zagorskiy; A. Steinfeld

2014-01-01T23:59:59.000Z

146

Low pressure cooling seal system for a gas turbine engine  

DOE Patents (OSTI)

A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

Marra, John J

2014-04-01T23:59:59.000Z

147

Experimental study of rotordynamic coefficients of squeeze film dampers of an aircraft gas turbine engine  

E-Print Network (OSTI)

The rotordynamic coefficients of squeeze film dampers of an aircraft gas turbine engine were investigated experimentally. Rotordynamic model(XLROTOR) for Gas Generator and Power Turbine were constructed. The XLROTOR response plots with changing...

Na, Uhn Joo

2012-06-07T23:59:59.000Z

148

Utilization and Mitigation of VAM/CMM Emissions by a Catalytic Combustion Gas Turbine  

Science Journals Connector (OSTI)

A system configured with a catalytic combustion gas turbine generator unit is introduced. The system has ... Heavy Industries, Ltd., such as small gas turbines, recuperators and catalytic combustors, and catalyti...

K. Tanaka; Y. Yoshino; H. Kashihara; S. Kajita

2013-01-01T23:59:59.000Z

149

Gas Turbine Based Power Cycles - A State-of-the-Art Review  

Science Journals Connector (OSTI)

Gas turbines have been used in wide ranging applications ... This paper provides the historical evolution of the gas turbine (GT) based power cycles. A detailed ... , modified Brayton cycles under development by ...

R. K. Bhargava; M. Bianchi; A. De Pascale…

2007-01-01T23:59:59.000Z

150

Analysis of the fuel efficiency of gas-turbine cogeneration stations  

Science Journals Connector (OSTI)

A technique for evaluating the fuel efficiency of the combined generation of electricity and heat at a gas-turbine cogeneration station is presented. The effects the regeneration degree of the gas-turbine cycle a...

V. I. Evenko; A. S. Strebkov

2006-10-01T23:59:59.000Z

151

Multi-Scale Thermal Measurement and Design of Cooling Systems in Gas Turbine  

Science Journals Connector (OSTI)

The present gas turbine technology increases the turbine inlet temperature to a limitation which is very high gas temperature accomplished by recently developed material and cooling technology. In order to overco...

Hyung Hee Cho; Kyung Min Kim; Sangwoo Shin…

2009-01-01T23:59:59.000Z

152

Domestic equipment for the development of gas-turbine based power engineering  

Science Journals Connector (OSTI)

A brief analysis of characteristics and specific features of foreign gas-turbine installations is presented. Prospects of introduction of combined-cycle and gas-turbine technologies in power engineering of Rus...

G. G. Ol’khovskii

2008-06-01T23:59:59.000Z

153

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels- Fact Sheet, 2011  

Energy.gov (U.S. Department of Energy (DOE))

Factsheet summarizing how this project will modify a gas turbine combustion system to operate on hydrogen-rich opportunity fuels

154

Slag processing system for direct coal-fired gas turbines  

DOE Patents (OSTI)

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

155

Improving Model-Based Gas Turbine Fault Diagnosis Using Multi-Operating Point Method  

Science Journals Connector (OSTI)

A comprehensive gas turbine fault diagnosis system has been designed using a full nonlinear simulator developed in Turbotec company for the V94.2 industrial gas turbine manufactured by Siemens AG. The methods used for detection and isolation of faulty ... Keywords: monitoring, fault diagnosis, extended Kalman filter, gas turbine, simulator

Amin Salar; Seyed Mehrdad Hosseini; Behnam Rezaei Zangmolk; Ali Khaki Sedigh

2010-11-01T23:59:59.000Z

156

Recognising Visual Patterns to Communicate Gas Turbine Time-Series Data  

E-Print Network (OSTI)

Recognising Visual Patterns to Communicate Gas Turbine Time-Series Data Jin Yu, Jim Hunter, Ehud analogue channels are sampled once per second and archived by the Tiger system for monitoring gas turbines that it is very important to identify such patterns in any attempt at summarisation. In the gas turbine domain

Reiter, Ehud

157

ISABE-2005-1214 Optimum Applications of Four-Port Wave Rotors for Gas Turbines Enhancement  

E-Print Network (OSTI)

1 ISABE-2005-1214 Optimum Applications of Four-Port Wave Rotors for Gas Turbines Enhancement Emmett investigations on wave rotor applications for gas turbines have been published, among them conceptual, analytical in the gas turbine industry. The results and conclusions are derived from a wide- range multi

Müller, Norbert

158

Thermionic combustor application to combined gas and steam turbine power plants  

SciTech Connect

The engineering and economic feasibility of a thermionic converter topped combustor for a gas turbine is evaluated in this paper. A combined gas and steam turbine system was chosen for this study with nominal outputs of the gas and steam turbines of 70 MW and 30 MW, respectively. 7 refs.

Miskolczy, G.; Wang, C.C.; Lieb, D.P.; Margulies, A.E.; Fusegni, L.J.; Lovell, B.J.

1981-01-01T23:59:59.000Z

159

The axial gas-dynamic forces acting on the rotor of a small gas-turbine engine  

Science Journals Connector (OSTI)

The exact determination is discussed of the axial gas-dynamic forces acting on the rotor of a gas-turbine engine (GTE), which influence reliability....

S. S. Evgen’ev; R. R. Zalyaev

2007-03-01T23:59:59.000Z

160

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Exhaust gas recirculation system for an internal combustion engine  

DOE Patents (OSTI)

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

162

Performance characterization of different configurations of gas turbine engines  

Science Journals Connector (OSTI)

Abstract This paper investigates the performance of different configurations of gas turbine engines. A full numerical model for the engine is built. This model takes into account the variations in specific heat and the effects of turbine cooling flow. Also, the model considers the efficiencies of all component, effectiveness of heat exchangers and the pressure drop in relevant components. The model is employed to compare the engine performances in cases of employing intercooler, recuperation and reheat on a single spool gas turbine engine. A comparison is made between single-spool engine and two-spool engine with free power turbine. Also, the performance of the engine with inter-stage turbine burner is investigated and compared with engine employing the nominal reheat concept. The engine employing inter-stage turbine burners produces superior improvements in both net work and efficiency over all other configurations. The effects of ignoring the variations on specific heat of gases and turbine cooling flow on engine performance are estimated. Ignoring the variation in specific heat can cause up to 30% difference in net specific work. The optimum locations of the intercooler and the reheat combustor are determined using the numerical model of the engine. The maximum net specific work is obtained if the reheat combustor is placed at 40% of the expansion section. On the other hand, to get maximum efficiency the reheat combustor has to be placed at nearly 10%-20% of the expansion section. The optimum location of the intercooler is almost at 50% of the compression section for both maximum net specific work and efficiency.

Tarek Nada

2014-01-01T23:59:59.000Z

163

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents (OSTI)

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

164

Solar steam reforming of natural gas integrated with a gas turbine power plant  

Science Journals Connector (OSTI)

Abstract This paper shows a hybrid power plant wherein solar steam reforming of natural gas and a steam injected gas turbine power plant are integrated for solar syngas production and use. The gas turbine is fed by a mixture of natural gas and solar syngas (mainly composed of hydrogen and water steam) from mid-low temperature steam reforming reaction whose heat duty is supplied by a parabolic trough Concentrating Solar Power plant. A comparison is made between a traditional steam injected gas turbine and the proposed solution to underline the improvements introduced by the integration with solar steam reforming of the natural gas process. The paper also shows how solar syngas can be considered as an energy vector consequent to solar energy conversion effectiveness and the natural gas pipeline as a storage unit, thus accomplishing the idea of a smart energy grid.

Augusto Bianchini; Marco Pellegrini; Cesare Saccani

2013-01-01T23:59:59.000Z

165

CFD modeling of a gas turbine combustor from compressor exit to turbine inlet  

SciTech Connect

Gas turbine combustor CFD modeling has become an important combustor design tool in the past few years, but CFD models are generally limited to the flow field inside the combustor liner at the diffuser/combustor annulus region. Although strongly coupled in reality, the two regions have rarely been coupled in CFD modeling. A CFD calculation for a full model combustor from compressor diffuser exit to turbine inlet is described. The coupled model accomplishes the following two main objectives: (1) implicit description of flow splits and flow conditions for openings into the combustor liner, and (2) prediction of liner wall temperatures. Conjugate heat transfer with nonluminous gas radiation (appropriate for lean, low emission combustors) is utilized to predict wall temperatures compared to the conventional approach of predicting only near wall gas temperatures. Remaining difficult issues such as generating the grid, modeling swirler vane passages, and modeling effusion cooling are also discussed.

Crocker, D.S.; Nickolaus, D.; Smith, C.E. [CFD Research Corp., Huntsville, AL (United States)

1999-01-01T23:59:59.000Z

166

Thermochemical Gasification of Biomass: Fuel Conversion, Hot Gas Cleanup and Gas Turbine Combustion  

Science Journals Connector (OSTI)

Air-blown fluidized bed biomass gasification integrated with a gas- and steam turbine combined cycle (BIGCC) is a potentially attractive way to convert biomass into electricity and heat with a high efficiency.

J. Andries; W. de Jong; P. D. J. Hoppesteyn…

2002-01-01T23:59:59.000Z

167

Aeroderivative Gas Turbines Can Meet Stringent NOx Control Requirements  

E-Print Network (OSTI)

for controlling NOx emissions will be discussed. Steam injection has a very favorable effect on engine performance raising both the power output and efficiency. As an example, full steam injection in the GE LM5000 gas turbine :tncreases the power output from... methods for reducing the NOx levels of the LM2500 and LM5000 engines. These engines are aircraft-derivative turbine engines, which are used in a variety of industrial applications. Efforts have been concentrated on the use of water or steam injection...

Keller, S. C.; Studniarz, J. J.

168

Phosphor Thermometry of Gas Turbine Surfaces  

SciTech Connect

This paper describes a nondestructive method for thermometry applicable to ceramic surfaces and coatings. To date our primary application has been to turbine engine and air vehicle surfaces. This method makes use of thermally sensitive phosphors many of which, as it turns out, are also ceramics. These materials fluoresce when suitably illuminated by ultraviolet light. The fluorescence intensity and decay time are well-behaved functions of temperature and therefore serve as reliable indicators of the temperature of the substrate to which the fluorescing material is attached. It is a non- contact method in that the light delivery and collection optics can be remotely located. A range of phosphor materials have been tested and any temperature ranging from 8 to 1900 K can be measured by selection of the appropriate phosphor. Turbine blades, vanes, thermal barrier coatings, and panels are examples of surfaces which have been diagnosed to date in either engine or engine-simulation facilities. A variety of coating methods are used, including electron-beam deposition, radio-frequency sputtering, and curing with inorganic binders. This paper summarizes the results to date and status of this technology.

Allison, Steven W.; Beshears, David L.; Cates, Michael R. [Martin Marietta Energy Systems, Oak Ridge, TN (United States); Noel, Bruce W. [Noel Associates, Espanola, NM (United States); Turley, W. D. [EG and G Energy Measurements, Goleta, CA (United States)

1995-12-31T23:59:59.000Z

169

Study of Lean Premixed Methane Combustion with CO2 Dilution under Gas Turbine Conditions  

Science Journals Connector (OSTI)

In gas turbines, high air dilution is used in order to keep the turbine inlet temperature (TIT)(7) below the metallurgical temperature limit of the first turbine stages. ... It was shown that CO2 dilution could be an efficient method for increasing CO2 concentration in exhaust gas, thus making its capture easier. ... Efforts were focused on the impacts on cycle efficiency, combustion, gas turbine components, and cost. ...

Stéphanie de Persis; Gilles Cabot; Laure Pillier; Iskender Gökalp; Abdelakrim Mourad Boukhalfa

2012-12-29T23:59:59.000Z

170

LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE  

SciTech Connect

In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

2004-08-01T23:59:59.000Z

171

Gas-path leakage seal for a turbine  

DOE Patents (OSTI)

A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a turbine (such as combustor casing segments of a gas turbine). The seal includes a flexible and generally imperforate metal sheet assemblage having opposing first and second surfaces and two opposing raised edges extending a generally identical distance above and below the surfaces. A first cloth layer assemblage has a thickness generally equal to the previously-defined identical distance and is superimposed on the first surface between the raised edges. A second cloth layer assemblage is generally identical to the first cloth layer assemblage and is superimposed on the second surface between the raised edges. 5 figs.

Bagepalli, B.S.; Aksit, M.F.; Farrell, T.R.

1999-08-10T23:59:59.000Z

172

High-pressure turbine deposition in land-based gas turbines from various synfuels  

SciTech Connect

Ash deposits from four candidate power turbine synfuels were studied in an accelerated deposition test facility. The facility matches the gas temperature and velocity of modern first-stage high-pressure turbine vanes. A natural gas combustor was seeded with finely ground fuel ash particulate from four different fuels: straw, sawdust, coal, and petroleum coke. The entrained ash particles were accelerated to a combustor exit flow Mach number of 0.31 before impinging on a thermal barrier coating (TBC) target coupon at 1150{sup o}C. Postexposure analyses included surface topography, scanning electron microscopy and x-ray spectroscopy. Due to significant differences in the chemical composition of the various fuel ash samples, deposit thickness and structure vary considerably for fuel. Biomass products (e.g., sawdust and straw) are significantly less prone to deposition than coal and petcoke for the same particle loading conditions. In a test simulating one turbine operating year at a moderate particulate loading of 0.02 parts per million by weight, deposit thickness from coal and petcoke ash exceeded 1 and 2 mm, respectively. These large deposits from coal and petcoke were found to detach readily from the turbine material with thermal cycling and handling. The smaller biomass deposit samples showed greater tenacity, in adhering to the TBC surface. In all cases, corrosive elements (e.g., Na, K, V, Cl, S) were found to penetrate the TBC layer during the accelerated deposition test. Implications for the power generation goal of fuel flexibility are discussed.

Bons, J.P.; Crosby, J.; Wammack, J.E.; Bentley, B.I.; Fletcher, T.H. [Brigham Young University, Provo, UT (United States). Dept. of Mechanical Engineering

2007-01-15T23:59:59.000Z

173

Enhanced Prediction Techniques Based on Time-Accurate Simulations for Turbine Blade Internal Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Computational Fluid-Thermal Science & Engineering Lab Performance Computational Fluid-Thermal Science & Engineering Lab utsr.dkt.oct05 Enhanced Prediction Techniques Based on Time-Accurate Simulations for Turbine Blade Internal Cooling Danesh Tafti SCIES Project 02- 01- SR100 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (5/1/02, 36 Month Duration) $ 331,430 Total Contract Value ($331,430 DOE) High Performance Computational Fluid-Thermal Science & Engineering Lab utsr.dkt.oct05 Gas Turbine Need * Need for higher thermal efficiencies result in higher gas temperatures * Cooling technologies critical for increased durability * Reliable prediction tools for design - reduce costs High Performance Computational Fluid-Thermal Science & Engineering Lab

174

Modeling of residual service life of gas turbine rotors for minimizing replacement costs  

Science Journals Connector (OSTI)

One of the most catastrophic failures observed in gas turbine powered electrical powerplants is the fracture of the turbine rotor. A simplified model consisting of 3 macro-elements is suggested to model the dynamical behavior of the shaft with a propagating ... Keywords: crack propagation, gas-turbine, modeling, power-plant, replacement costs

Eusebia Zouridaki; Vasilios Spitas; Christos Spitas

2007-01-01T23:59:59.000Z

175

Siemens introduces 50 Hz 190 MW gas turbine  

SciTech Connect

According to market data for high power gas turbines compiled by Erlangen, Germany-based Siemens KWU, referring to machines above 50 MW, market demand will average approximately 22 GW per year from now to 2005, of which roughly 15 GW will be for combined-cycle plants and nearly half (11 GW) will be placed in the intermediate capacity class (M Class). Looking at the Siemens line of advanced machines for 50 Hz grids; from the V64.3A rated 70 MW one jumps to the V94.3A rated 240 MW leaving a gap of 170 MW uncovered aside from the existing model V94.2 at 159 MW. This article describes the design and specifications of Siemens new 50 Hz 190 MW gas turbines that hope to cater to this gap. 2 refs.

Chellini, R.

1997-01-01T23:59:59.000Z

176

Evaluation of manure as a feedstock for gas turbines  

SciTech Connect

A preliminary program on evaluation of feedlot manure as a feed stock for gas turbines has been completed. It was determined that manure can be pulverized and fed into a gas turbine combustion system with the manure burning in much the same manner as a liquid or gaseous fuel. Ash and dirt in the manure did not appear to have a significant effect on combustion and were effectively removed by the cyclone filters. The exhaust gases varied from clear to a blue haze. Severe problems were encountered with slagging of the hot refractory walls of the combustor. Development of a suitable combustor will be required before a commercial size system can be designed. 10 refs., 10 figs., 3 tabs.

Hamrick, J.T.

1988-05-01T23:59:59.000Z

177

Reliable Gas Turbine Output: Attaining Temperature Independent Performance  

E-Print Network (OSTI)

of availability, it is the major option for future power generation. One inherent disadvantage of gas turbines is the degradation of output as the ambient air temperature increases. This reduction in output during times of peak load create a reliability..., power generation for offshore platforms, utility peak load 58 ESL-IE-92-04-10 Proceedings from the 14th National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1992 power generation, emergency power, ship propulsion, and private...

Neeley, J. E.; Patton, S.; Holder, F.

178

90-MW single-shaft power generating steam-gas unit based on the GTÉ-65 gas turbine and K-30-60 steam turbine  

Science Journals Connector (OSTI)

This is an examination of a variant of the monoblock PGU-90 steam-gas unit developed at the “Leningradskii Metallicheskii Zavod” (LMZ) branch of “Silovye mashiny” based on a GTÉ-65 gas turbine unit and a K-30-...

A. S. Lebedev; O. V. Antonyuk; V. A. Mart’yanov…

2011-01-01T23:59:59.000Z

179

Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications  

SciTech Connect

This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

Gregory Corman; Krishan Luthra

2005-09-30T23:59:59.000Z

180

Pressure pulsations in combustion chambers of large gas turbines  

SciTech Connect

Flame instabilities and pressure pulsations have been measured in three different types of gas turbine combustors. These are the single and twin silo (such as the ABB GT13E and the Siemens V94.2), the annular combustion chamber (ABB GT 13E2, Siemens V84.3A, etc), and the multi-can combustors common on GEC-EGT gas turbines. Pressure pulsations are mostly resonant. They are interpreted with help of an acoustical model. Non-resonant modes at low frequencies (flame flicker) are ascribed to imperfect mixing especially in premix burners. At higher frequencies they are often due to vortices from the burners. Modifications of the burners, changes in the geometry of the liners and the addition of acoustical dampers are means to abate flame instabilities and the associated resonances. Judicious ways to run the gas turbine can help to avoid them. The efficiency of acoustical dampers of the Helmholtz type has been investigated experimentally and with model predictions.

Verhage, A.J.L.; Stevens, P.M.P.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Test and evaluation of a solar powered gas turbine system  

Science Journals Connector (OSTI)

This paper describes the test and the results of a first prototype solar powered gas turbine system, installed during 2002 in the CESA-1 tower facility at Plataforma Solar de Almería (PSA) in Spain. The main goals of the project were to develop a solar receiver cluster able to provide pressurized air of 1000 °C and solve the problems arising from the coupling of the receivers with a conventional gas turbine to demonstrate the operability of the system. The test set-up consists of the heliostat field of the CESA-1 facility providing the concentrated solar power, a pressurized solar receiver cluster of three modules of 400 kWth each which convert the solar power into heat, and a modified helicopter engine (OST3) with a generator coupled to the grid. The first test phase at PSA started in December 2002 with the goal to reach a temperature level of 800 °C at the combustor air inlet by the integration of solar energy. This objective was achieved by the end of this test phase in March 2003, and the system could be operated at 230 kWe power to grid without major problems. In the second test phase from June 2003 to August 2003 the temperature level was increased to almost 1000 °C. The paper describes the system configuration, the component efficiencies and the operation experiences of the first 100 h of solar operation of this very successful first test of a solar operated Brayton gas turbine system.

Peter Heller; Markus Pfänder; Thorsten Denk; Felix Tellez; Antonio Valverde; Jesús Fernandez; Arik Ring

2006-01-01T23:59:59.000Z

182

NETL: News Release - DOE-Fossil Energy: World's Most Advanced Gas Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

February 18, 2000 February 18, 2000 DOE-Fossil Energy: World's Most Advanced Gas Turbine Now Ready to Cross Commercial Threshold Secretary Richardson Cites Success of Government-Industry Partnership For natural gas turbines - the technology likely to dominate the growing market for new electric power generation - the future was unveiled today in Greenville, South Carolina. GE's MS7001H Advanced Gas Turbine The 4000-ton Model MS7001H advanced gas turbine is the size of a locomotive. Secretary of Energy Bill Richardson and U.S. Senator Ernest Hollings joined General Electric today in announcing that the company's newest H System™ gas turbine, the most advanced combustion turbine in the world, is ready to cross the commercial threshold. "Today, we are seeing the most advanced combustion turbine anywhere,

183

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents (OSTI)

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27T23:59:59.000Z

184

Test results of a catalytic combustor for a gas turbine  

Science Journals Connector (OSTI)

A catalytically assisted low \\{NOx\\} combustor has been developed which has the advantage of catalyst durability. Combustion characteristics of catalysts at high pressure were investigated using a bench scale reactor and an improved catalyst was selected. A combustor for multi-can type gas turbine of 10 MW class was designed and tested at high-pressure conditions using liquefied natural gas (LNG) fuel. This combustor is composed of a burner system and a premixed combustion zone in a ceramic type liner. The burner system consists of catalytic combustor segments and premixing nozzles. Catalyst bed temperature is controlled under 1000°C, premixed gas is injected from the premixing nozzles to catalytic combustion gas and lean premixed combustion is carried out in the premixed combustion zone. As a result of the combustion tests, \\{NOx\\} emission was lower than 5 ppm converted at 16% O2 at a combustor outlet temperature of 1350°C and a combustor inlet pressure of 1.33 MPa.

Y Ozawa; T Fujii; Y Tochihara; T Kanazawa; K Sagimori

1998-01-01T23:59:59.000Z

185

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of opportunity fuels will avoid greenhouse gas emissions from the combustion of natural gas and increase the diversity of fuel sources for U.S. industry. Introduction Gas turbines...

186

Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy  

E-Print Network (OSTI)

Solar Turbines Incorporated, 14 MWe Titan 130 stationary gas turbinesgas turbine operating data was collected every hour by Solar’

Leon, Marco E.

2007-01-01T23:59:59.000Z

187

NETL: News Release - Advanced Natural Gas Turbine Hailed as Top Power  

NLE Websites -- All DOE Office Websites (Extended Search)

December 30, 2003 December 30, 2003 Advanced Natural Gas Turbine Hailed as Top Power Project of 2003 Power Engineering Cites Product of Energy Department's Advanced Turbine Systems Program WASHINGTON, DC - A power plant featuring a next-generation gas turbine developed as part of the U.S. Department of Energy's advanced turbine systems program has been selected by Power Engineering magazine as one of three "2003 Projects of the Year." Baglan Bay Power Station Baglan Bay Power Station, South Wales, U.K. Photo courtesy of GE Power Systems The Baglan Bay Power Station near Cardiff, Wales, UK reached a major milestone for the global power industry when GE Power System's H System gas turbine debuted there earlier this year. The most advanced combustion turbine in the world, the H System is the first gas turbine combined-cycle

188

Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines  

E-Print Network (OSTI)

Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines the EL method well suited for gas turbine computations, but RANS with the EE approach may also be found and coupled with the LES solver of the gas phase. The equations used for each phase and the coupling terms

189

GEI 41040G - Specification for Fuel Gases for COmbustion in Heavy-Duty Gas Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Gas Turbine Revised, January 2002 GEI 41040G These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes the matter should be referred to the GE Company. © 1999 GENERAL ELECTRIC COMPANY Specification for Fuel Gases for Combustion in Heavy-Duty Gas Turbines GEI 41040G Specification for Fuel Gases for Combustion in Heavy-Duty Gas Turbines 2 TABLE OF CONTENTS I. INTRODUCTION 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

190

E-Print Network 3.0 - air-cooled gas turbine Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

State University Collection: Engineering 27 Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using Summary:...

191

Multivariable robust control of a simulated hybrid solid oxide fuel cell gas turbine plant.  

E-Print Network (OSTI)

??This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built… (more)

Tsai, Alex, 1973-

2007-01-01T23:59:59.000Z

192

Comparative controller design for a marine gas turbine propulsion system  

SciTech Connect

Controller design for marine gas turbine systems should consider three measures of performance: transient control, steady-state accuracy, and disturbance rejection. This paper presents and compares two common types of controller design in terms of these measures. The goal of the controllers was shaft speed control. To meet this goal, a classical proportional-plus-integral controller was designed and compared to a modern linear quadratic regulator design. The controllers' performances were evaluated with respect to the three measures mentioned above, with disturbances being input as oscillations in shaft torque due to seaway cycling.

Smith, D.L.; Stammetti, V.A. (Naval Postgraduate School, Monterey, CA (USA). Dept. of Mechanical Engineering)

1990-04-01T23:59:59.000Z

193

Gas turbine blade with intra-span snubber  

DOE Patents (OSTI)

A gas turbine blade (10) including a hollow mid-span snubber (16). The snubber is affixed to the airfoil portion (14) of the blade by a fastener (20) passing through an opening (24) cast into the surface (22) of the blade. The opening is defined during an investment casting process by a ceramic pedestal (38) which is positioned between a ceramic core (32) and a surrounding ceramic casting shell (48). The pedestal provides mechanical support for the ceramic core during both wax and molten metal injection steps of the investment casting process.

Merrill, Gary B.; Mayer, Clinton

2014-07-29T23:59:59.000Z

194

Gas turbine considerations in the pulp and paper industry  

SciTech Connect

The pulp and paper industry is one of the largest users of energy in the industrial arena, requiring large quantities of process steam and electrical energy per unit of production. Developing power generation as an integral part of its power plant systems is one way for the industry to meet these requirements. Gas turbine-based cogeneration systems can also be a desirable approach. In recent years, competitive pressures, environmental concerns, the cost and availability of various fuels, and new power generation opportunities have awakened interest in power generation in the pulp and paper industry and other industries. This paper provides a strategic review of these issues of the pulp and paper industry.

Anderson, J.S. (International Paper Co., Purchase, NY (US)); Kovacik, J.M. (GE Co., Schenectady, NY (US))

1991-03-01T23:59:59.000Z

195

Fuel Cell/Gas Turbine System Performance Studies  

Office of Scientific and Technical Information (OSTI)

as topping combustors for both turbines. A recuperated-heat exchanger recovers waste heat from the power turbine exhaust. This recuperated thermal energy partially heats the...

196

Turbine Drive Gas Generator for Zero Emission Power Plants  

SciTech Connect

The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

Doyle, Stephen E.; Anderson, Roger E.

2001-11-06T23:59:59.000Z

197

Advanced Materials for Mercury 50 Gas Turbine Combustion System  

SciTech Connect

Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

Price, Jeffrey

2008-09-30T23:59:59.000Z

198

Studying the advisability of using gas-turbine unit waste gases for heating feed water in a steam turbine installation with a type T-110/120-12.8 turbine  

Science Journals Connector (OSTI)

Results of calculation studying of a possibility of topping of a steam-turbine unit (STU) with a type T-110/120-12.8 turbine of the Urals Turbine Works (UTZ) by a gas-turbine unit (GTU) of 25-MW capacity the wast...

A. D. Trukhnii; G. D. Barinberg; Yu. A. Rusetskii

2006-02-01T23:59:59.000Z

199

Condition Based Monitoring of Gas Turbine Combustion Components  

SciTech Connect

The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

2012-09-30T23:59:59.000Z

200

Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High-speed gears for gas turbine drive  

SciTech Connect

Recently, Lufkin Industries, Power Transmission Div., full-load tested a high-speed gear designed to couple a 50 Hz electric power generator to a GE LM6000 gas turbine for a power generation project in Australia. The gear is rated 52.2 MW to match the output of the LM6000 gas turbine believed to be one of the largest gear testing operations for this type and size of gear. Each gear drive manufactured by Lufkin is full-speed tested to verify its performance. Tests performed on high-speed units duplicate field conditions, as closely as possible, in order to verify critical speed analysis results and new bearing designs, if used. Lufkin also tests design techniques used in the development of new products. The finite element analysis performed to predict housing deflection in the thrust bearing area of a new extruder driveline was verified by testing of a prototype unit housing. Recently, housing structure stiffness and natural frequencies were predicted and verified on the test stand for some 50 MW vertically offset gear units. A complete data acquisition system is used to gather data from bearing, inlet and drain temperature monitoring points. The temperature monitoring system will accommodate type T,K,J, and E thermocouples and platinum and nickel RTDs.

Kane, J.

1995-06-01T23:59:59.000Z

202

Investigations of swirl flames in a gas turbine model combustor  

SciTech Connect

The thermochemical states of three swirling CH{sub 4}/air diffusion flames, stabilized in a gas turbine model combustor, were investigated using laser Raman scattering. The flames were operated at different thermal powers and air/fuel ratios and exhibited different flame behavior with respect to flame instabilities. They had previously been characterized with respect to their flame structures, velocity fields, and mean values of temperature, major species concentrations, and mixture fraction. The single-pulse multispecies measurements presented in this article revealed very rapid mixing of fuel and air, accompanied by strong effects of turbulence-chemistry interactions in the form of local flame extinction and ignition delay. Flame stabilization is accomplished mainly by hot and relatively fuel-rich combustion products, which are transported back to the flame root within an inner recirculation zone. The flames are not attached to the fuel nozzle, and are stabilized approximately 10 mm above the fuel nozzle, where fuel and air are partially premixed before ignition. The mixing and reaction progress in this area are discussed in detail. The flames are short (<50 mm), especially that exhibiting thermoacoustic oscillations, and reach a thermochemical state close to adiabatic equilibrium at the flame tip. The main goals of this article are to outline results that yield deeper insight into the combustion of gas turbine flames and to establish an experimental database for the validation of numerical models.

Meier, W.; Duan, X.R.; Weigand, P. [Institut fuer Verbrennungstechnik, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Pfaffenwaldring 38, D-70569 Stuttgart (Germany)

2006-01-01T23:59:59.000Z

203

Fuel burner and combustor assembly for a gas turbine engine  

DOE Patents (OSTI)

A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

Leto, Anthony (Franklin Lakes, NJ)

1983-01-01T23:59:59.000Z

204

12 - Advanced gas turbine asset and performance management  

Science Journals Connector (OSTI)

Abstract: A gas turbine degrades with use. The causes of degradation can often be related to the operating environment of the machine. Its consequent performance and other symptoms and changes are outlined in this chapter. Instrumentation in the engine can give, through a suitable analysis, useful clues that can benefit rectification of the causes of degradation. The interpretation of the information can be done effectively through specialist centres that can, remotely, receive information from different plants distributed widely geographically. They can handle disparate types of data coming through a range of streams. These features place complex requirements on information processing, analysis, staff preparation and management practice. This gives rise to the seven levels of gas path management: sensor, control and supervision, condition monitoring, performance and health assessment, prognostics, decision support and, finally, asset management.

T. Álvarez Tejedor; R. Singh; P. Pilidis

2013-01-01T23:59:59.000Z

205

Coordinated optimization of the parameters of the cooled gas-turbine flow path and the parameters of gas-turbine cycles and combined-cycle power plants  

Science Journals Connector (OSTI)

In the present paper, we evaluate the effectiveness of the coordinated solution to the optimization problem for the parameters of cycles in gas turbine and combined cycle power plants and to the optimization prob...

A. M. Kler; Yu. B. Zakharov; Yu. M. Potanina

2014-06-01T23:59:59.000Z

206

The HERMES Polarized Hydrogen Internal Gas Target  

E-Print Network (OSTI)

internal gas targets. The HERMES hydrogen target is an internal polarized gas target using the storage cell frame on the right. atomic hydrogen beam and focuses it into a storage cell. The storage cellThe HERMES Polarized Hydrogen Internal Gas Target J. Stewart for The HERMES Collaboration

207

Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems  

E-Print Network (OSTI)

Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems J. Sharda1 ; C of multilayer composite fabrics used in a gas turbine engine containment system is developed. Specifically: Tensile strength; Stress analysis; Stress strain relations; Fabrics; Composite materials; Finite element

Mobasher, Barzin

208

Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines  

E-Print Network (OSTI)

the ultimate goal of applying the system in the day-to-day maintenance of gas- turbine power plants. A Overview to diagnose difficult problems with power generation, medicine, aerospace, and manufac- turing. In 1991 for diagnos- ing efficiency-related problems in large gas and oil-fired turbines. The management of operat

Horvitz, Eric

209

Ceramic Stationary Gas Turbine Development. Technical progress report, April 1, 1993--October 31, 1994  

SciTech Connect

This report summarizes work performed by Solar Technologies Inc. and its subcontractors, during the period April 1, 1993 through October 31, 1994 under Phase II of the DOE Ceramic Stationary Gas Turbine Development program. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the implementation of selected ceramic components.

NONE

1994-12-01T23:59:59.000Z

210

SHIRTBUTTON-SIZED GAS TURBINES: THE ENGINEERING CHALLENGES OF MICRO HIGH SPEED  

E-Print Network (OSTI)

simulta- neously, holding out the promise of low production cost. Such assemblies are known as microSHIRTBUTTON-SIZED GAS TURBINES: THE ENGINEERING CHALLENGES OF MICRO HIGH SPEED ROTATING MACHINERY Alan H. Epstein, Stuart A. Jacobson, Jon M. Protz, Luc G. Fréchette Gas Turbine Laboratory

Frechette, Luc G.

211

GER 4194 - The 7FB: The Next Evolution of the F Gas Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

The 7FB: The 7FB: The Next Evolution of the F Gas Turbine Roberta Eldrid Lynda Kaufman Paul Marks GE Power Systems Schenectady, NY GER-4194 g Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Critical Issues in the F Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Life-Cycle Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 The F Series Gas Turbine Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Reliability and Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

212

Large eddy simulation for predicting turbulent heat transfer in gas turbines  

Science Journals Connector (OSTI)

...wall functions|ribbed duct| 1. Background Gas turbine technology plays a critical role in civilian as well as...generation. One of the key challenges in the development of advanced gas turbines is effective thermal management in the high-pressure...

2014-01-01T23:59:59.000Z

213

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Gas turbines are commonly used in industry for onsite power and heating needs because of their high efficiency and clean environmental performance. Natural gas is the fuel most frequently used to...

214

Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Gas turbines—heat engines that use high-temperature and high-pressure gas as the combustible fuel—are used extensively throughout U.S. industry to power industrial processes. The majority of...

215

Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Combustors  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Instability and Blowout Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Characteristics of Fuel Flexible Gas Turbine Combustors Combustors Georgia Institute of Technology Georgia Institute of Technology Tim Lieuwen, Ben Zinn Bobby Noble, Qingguo Zhang DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES SCIES Project 03-01-SR111 Project Awarded (07/01/03, 36 Month Duration) Total Contract Value $376,722 . CLEMSON presentation, T.L., B.Z., B.N., Q.Z. Gas Turbine Need Gas Turbine Need * Need: Gas turbines with sufficient flexibility to cleanly and efficiently combust a wide range of fuels, particularly coal-derived gases - Problem: Inherent variability in composition and heating

216

An Advanced Diagnostic and Prognostic System for Gas Turbine Generator Sets with Experimental Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostic and Prognostic System for Gas Diagnostic and Prognostic System for Gas Turbine Generator Sets with Experimental Validation Clemson University John R. Wagner, Ph.D., P.E. SCIES Project 03-01-SR108 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (07/01/2003, 36 Month Duration) $319,479 Total Contract Value ($319,479 DOE) Clemson Presentation 10-19-2005 J.W. Gas Turbine Need * The Reliability, Availability, and Maintainability (RAM) technical area within High Efficiency Engines and Turbines (HEET) Program encompasses the design of gas turbine health management systems * The introduction of real-time diagnostic and prognostic capabilities on gas turbines can provide increased reliability, safety, and efficiency

217

Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications- Volume I, January 2000  

Energy.gov (U.S. Department of Energy (DOE))

An assessment of the opportunities for micropower and fuel cell/gas turbine hybrid technologies in the industrial sector.

218

Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas  

SciTech Connect

Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

Kelsall, G.J.; Smith, M.A. (British Coal Corp., Glos (United Kingdom). Coal Research Establishment); Cannon, M.F. (European Gas Turbines Ltd., Lincoln (United Kingdom). Aero and Technology Products)

1994-07-01T23:59:59.000Z

219

9 - Hybrid fuel cell gas turbine (FC/GT) combined cycle systems  

Science Journals Connector (OSTI)

Abstract: Hybrid fuel cell gas turbine systems consisting of high-temperature fuel cells (HTFCs) integrated into cycles with gas turbines can significantly increase fuel-to-electricity conversion efficiency and lower emissions of greenhouse gases and criteria pollutants from the electric power sector. In addition, the separated anode and cathode compartments of the fuel cell can enable CO2 separation and sequestration for some cycle configurations. Hybrid fuel cell gas turbine technology has the potential to operate on natural gas, digester gas, landfill gas, and coal and biomass syngas. HTFC technologies are emerging with high reliability and durability, which should enable them to be integrated with gas turbine technology to produce modern hybrid power systems. Advanced thermodynamic and dynamic simulation capabilities have been developed and demonstrated to enable future system integration and control.

J. Brouwer

2012-01-01T23:59:59.000Z

220

Abstract--Modelling and control of gas turbines (GTs) have always been a controversial issue because of the complex  

E-Print Network (OSTI)

practical gas turbine was developed by Frank Whittle and his colleagues in Britain for a jet aircraft engine [2]. Gas turbines were developed rapidly after World War II. Enhancement in different areas Abstract--Modelling and control of gas turbines (GTs) have always been a controversial issue

Sainudiin, Raazesh

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

[Advanced Gas Turbine Systems Research]. Technical Quarterly Progress Report  

SciTech Connect

Major Accomplishments by Advanced Gas Turbine Systems Research (AGTSR) during this reporting period are highlighted below and amplified in later sections of this report: AGTSR distributed 50 proposals from the 98RFP to the IRB for review, evaluation and rank-ordering during the summer; AGTSR conducted a detailed program review at DOE-FETC on July 24; AGTSR organized the 1998 IRB proposal review meeting at SCIES on September 15-16; AGTSR consolidated all the IRB proposal scores and rank-orderings to facilitate the 98RFP proposal deliberations; AGTSR submitted meeting minutes and proposal short-list recommendation to the IRB and DOE for the 98RFP solicitation; AGTSR reviewed two gas turbine related proposals as part of the CU RFP State Project for renovating the central energy facility; AGTSR reviewed and cleared research papers with the IRB from the University of Pittsburgh, Wisconsin, and Minnesota; AGTSR assisted GTA in obtaining university stakeholder support of the ATS program from California, Pennsylvania, and Colorado; AGTSR assisted GTA in distributing alert notices on potential ATS budget cuts to over 150 AGTSR performing university members; AGTSR submitted proceedings booklet and organizational information pertaining to the OAI hybrid gas turbine workshop to DOE-FETC; For DOE-FETC, AGTSR updated the university consortium poster to include new members and research highlights; For DOE-FETC, the general AGTSR Fact Sheet was updated to include new awards, workshops, educational activity and select accomplishments from the research projects; For DOE-FETC, AGTSR prepared three fact sheets highlighting university research supported in combustion, aero-heat transfer, and materials; For DOE-FETC, AGTSR submitted pictures on materials research for inclusion in the ATS technology brochure; For DOE-FETC, AGTSR submitted a post-2000 roadmap showing potential technology paths AGTSR could pursue in the next decade; AGTSR distributed the ninth newsletter UPDATE to DOE, the IRB: and two interested partners involved in ATS; AGTSR submitted information on its RFP's, workshops, and educational activities for the 1999 ASMWIGTI technology report for worldwide distribution; AGTSR coordinated university poster session titles and format with Conference Management Associates (CMA) for the 98 ATS Annual; and AGTSR submitted 2-page abstract to CMA for the 98 ATS Review titled: ''AGTSR: A Virtual National Lab''.

NONE

1998-09-30T23:59:59.000Z

222

Solar hybrid steam injection gas turbine (STIG) cycle  

Science Journals Connector (OSTI)

Solar heat at moderate temperatures around 200 °C can be utilized for augmentation of conventional steam-injection gas turbine power plants. Solar concentrating collectors for such an application can be simpler and less expensive than collectors used for current solar power plants. We perform a thermodynamic analysis of this hybrid cycle. High levels of steam-to-air ratio are investigated, leading to high power augmentation compared to the simple cycle and to conventional STIG. The Solar Fraction can reach up to 50% at the highest augmentation levels. The overall conversion efficiency from heat to electricity (average over fuel and solar contributions) can be in the range of 40–55% for typical candidate turbines. The incremental efficiency (corresponding to the added steam beyond conventional STIG) is in the range of 22–37%, corresponding to solar-to-electricity efficiency of about 15–24%, similar to and even exceeding current solar power plants using higher temperature collectors. The injected water can be recovered and recycled leading to very low water consumption of the cycle, but a very low cost condenser is required to make water recovery feasible.

Maya Livshits; Abraham Kribus

2012-01-01T23:59:59.000Z

223

Method of attaching ceramics to gas-turbine metal components  

SciTech Connect

When attaching ceramics to metal gas-turbine parts, an interlayer of lowmodulus fiber metal is recommended as a buffer layer to compensate for the different coefficients of thermal expansion. This elastic interlayer, made of matted and sintered metallic fibers, is actually a woven mat with 90% of the volume taken up by porosity. Nickel alloys, Hastelloy-X, Inconel-600, FeCrAlSi, and FeCrAlY can be used for the interlayer. However, the last two alloys provide optimum oxidation and high-temperature-corrosion resistance. The interlayers are attached to the component metal by normal brazing, while the ceramic is attached by plasma spraying. The bond between the ceramic and the interlayer is formed by the penetration and condensation of the sprayed powder in the interlayer pores. This joining method can be most efficiently used in high-pressure-turbine seals; combustion-chamber facings; facings of slag hoppers and boosted steamboiler combustion chambers; coal gasification equipment, including valves, cyclones, transport main pipelines and exhaust valves; cylinder heads; and diesel engine pistons.

Legchilin, P.F.

1985-01-01T23:59:59.000Z

224

ALCF Research Aimed at Safer, Cleaner Combustion for Gas Turbines | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Aimed at Safer, Cleaner Combustion for Gas Turbines Research Aimed at Safer, Cleaner Combustion for Gas Turbines December 3, 2013 Printer-friendly version Researchers from the Swiss Federal Institute of Technology (ETHZ) and the Argonne Leadership Computing Facility (ALCF) are using supercomputers to advance the development of safer and cleaner gas turbine engines by studying the operating conditions that can lead to a potentially dangerous phenomenon called autoignition. This phenomenon, which involves the spontaneous ignition of a combustible mixture without an external ignition source, can result in a premature combustion event, called flashback, that causes significant damage to the gas turbine. Understanding autoignition is critical to the design of turbines that operate with novel combustion strategies, such as lean

225

Fuel Cell/Gas Turbine System Performance Studies  

Office of Scientific and Technical Information (OSTI)

METC/C-97/7278 METC/C-97/7278 Title: Fuel Cell/Gas Turbine System Performance STudies Authors: George T. Lee (METC) Frederick A. Sudhoff (METC) Conference: Fuel Cells '96 Review Meeting Conference Location: Morgantown, West Virginia Conference Dates: August 20-21, 1996 Conference Sponsor: U.S. DOE, Morgantown Energy Technology Center Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

226

Safety philosophy of gas turbine high temperature reactor (GTHTR300)  

SciTech Connect

Japan Atomic Energy Research Institute (JAERI) has undertaken the study of an original design concept of gas turbine high temperature reactor, the GTHTR300. The general concept of this study is development of a greatly simplified design that leads to substantially reduced technical and cost requirements. Newly proposed design features enable the GTHTR300 to be an efficient and economically competitive reactor in 2010's. Also, the GTHTR300 fully takes advantage of its inherent safety characteristics. The safety philosophy of the GTHTR300 is developed based on the HTTR (High Temperature Engineering Test Reactor) of JAERI which is the first HTGR in Japan. Major features of the newly proposed safety philosophy for the GTHTR300 are described in this article. (authors)

Shoji Katanishi; Kazuhiko Kunitomi; Shusaku Shiozawa [Department of Advanced Nuclear Heat Technology, Oarai Research Institute, Japan Atomic Energy Research Institute, Oarai-machi, Ibaraki-ken, 311-1394 (Japan)

2002-07-01T23:59:59.000Z

227

Failure Analysis of a Compressor Blade of Gas Turbine Engine  

Science Journals Connector (OSTI)

Abstract The stage II compressor stator blade of a developmental gas turbine engine was found damaged during dismantling of the engine after test run. A portion of the blade was found fractured from the hub region at leading edge. A crack was also observed extending from the fractured surface towards the centre of the airfoil region of the blade. Low magnification stereo-binocular observation revealed presence of beach marks on the fractured surface indicating the blade failure in progressive mode. This observation was further confirmed by scanning electron microscopy. The crack origin was at the blade hub-stem junction on the leading edge side. Presence of machining/filing marks appeared to be the reason for the fatigue crack initiation from this region. No metallurgical abnormalities were present at the crack origin. However, deep filing/machining lines were observed at the stem region of the blade attributing to the cause of failure.

Swati Biswas; M.D. Ganeshachar; Jivan Kumar; V.N. Satish Kumar

2014-01-01T23:59:59.000Z

228

Potential solar thermal integration in Spanish combined cycle gas turbines  

Science Journals Connector (OSTI)

Abstract Combined cycle gas turbines (CCGTs) are volumetric machines, which means that their net power output decreases at air temperatures above the design point. Such temperatures generally occur during periods of high solar irradiation. Many countries where these conditions occur, including Spain, have installed a significant number of \\{CCGTs\\} in recent years, with the subsequent yield losses in the summer. This implies enormous potential for solar hybridization, increasing production in peak hours and overall efficiency and reducing CO2 emissions. This paper analyzes the overall potential for solar thermal integration in 51 CCGTS (25,340 MW) in mainland Spain under different operating scenarios based on increasing yield, solar fraction and the hourly operational range adapted to the Spanish electricity market, considering actual meteorological conditions. A production model for integrating solar energy into combined cycles is proposed and described and the code in R is freely released so that the assessment can be replicated.

J. Antonanzas; E. Jimenez; J. Blanco; F. Antonanzas-Torres

2014-01-01T23:59:59.000Z

229

Bayesian Hierarchical Models for aerospace gas turbine engine prognostics  

Science Journals Connector (OSTI)

Abstract Improved prognostics is an emerging requirement for modern health monitoring that aims to increase the fidelity of failure-time predictions by the appropriate use of sensory and reliability information. In the aerospace industry, it is a key technology to maximise aircraft availability, offering a route to increase time in-service and to reduce operational disruption through improved asset management. An aircraft engine is a complex system comprising multiple subsystems that have dependent interactions so it is difficult to construct a model of its degradation dynamics based on physical principles. This complexity suggests that a statistically robust methodology for handling large quantities of real-time data would be more appropriate. In this work, therefore, a Bayesian approach is taken to exploit fleet-wide data from multiple assets to perform probabilistic estimation of remaining useful life for civil aerospace gas turbine engines. The paper establishes a Bayesian Hierarchical Model to perform inference and inform a probabilistic model of remaining useful life. Its performance is compared with that of an existing Bayesian non-Hierarchical Model and is found to be superior in typical (heterogeneous) scenarios. The techniques use Bayesian methods to combine two sources of information: historical in-service data across the engine fleet and once per-flight transmitted performance measurement from the engine(s) under prognosis. The proposed technique provides predictive results within well defined uncertainty bounds and demonstrates several advantages of the hierarchical variant’s ability to integrate multiple unit data to address realistic prognostic challenges. This is illustrated by an example from a civil aerospace gas turbine fleet data.

Martha A. Zaidan; Robert F. Harrison; Andrew R. Mills; Peter J. Fleming

2015-01-01T23:59:59.000Z

230

Novel integrated gas turbine solar cogeneration power plant  

Science Journals Connector (OSTI)

Concentrating solar cogeneration power plants (CSCPP) may provide a key solution for the pressing freshwater deficits in the Middle East and North Africa (MENA) region and could be used in the future for export electricity to Europe. From this standpoint the current study was undertaken to include proposed schemes of CSCPP, that would fully exploit the potential of hybrid reverse osmosis (RO)/multi effect distillation (MED) seawater desalination. Thereby, the primary objective of the present study was to identify and investigate the effectiveness and thermodynamic performance of CSCPP schemes. To satisfy this objective, detailed computational model for key components in the plant has been developed and implemented on simulation computer code. The thermal effectiveness in the computational model was characterized by the condition of attaining a maximum fuel saving in the electrical power grid (EPG). The study result shows the effectiveness of proposed CSCPP schemes. Especially the integrated gas turbine solar cogeneration power plant (IGSCP) scheme seems to be an alternative of the most effective technologies in terms of technical, economic and environmental sustainability. For the case study (IGSCP and the design number of effects 10 for low-temperature MED unit) the economical effect amount 172.3 ton fuel/year for each MW design thermal energy of parabolic solar collector array (PSCA). The corresponding decrease in exhaust gases emission (nitrogen oxides (NOx) 0.681 ton/year MW, carbon dioxides (CO2) 539.5 ton/year MW). Moreover, the increase in the output of PSCA and, subsequently, in solar power generation, will also be useful to offset the normal reduction in performance experienced by gas turbine unit during the summer season. Hence, the influence of the most important design parameters on the effectiveness of ISGPP has been discussed in this paper.

Hussain Alrobaei

2008-01-01T23:59:59.000Z

231

Development of a catalytically assisted combustor for a gas turbine  

Science Journals Connector (OSTI)

A catalytically assisted low \\{NOx\\} combustor has been developed which has the advantage of catalyst durability. This combustor is composed of a burner section and a premixed combustion section behind the burner section. The burner system consists of six catalytic combustor segments and six premixing nozzles, which are arranged alternately and in parallel. Fuel flow rate for the catalysts and the premixing nozzles are controlled independently. The catalytic combustion temperature is maintained under 1000°C, additional premixed gas is injected from the premixing nozzles into the catalytic combustion gas, and lean premixed combustion at 1300°C is carried out in the premixed combustion section. This system was designed to avoid catalytic deactivation at high temperature and thermal or mechanical shock fracture of the honeycomb monolith. In order to maintain the catalyst temperature under 1000°C, the combustion characteristics of catalysts at high pressure were investigated using a bench scale reactor and an improved catalyst was selected for the combustor test. A combustor for a 20 MW class multi-can type gas turbine was designed and tested under high pressure conditions using LNG fuel. Measurements of NOx, CO and unburned hydrocarbon were made and other measurements were made to evaluate combustor performance under various combustion temperatures and pressures. As a result of the tests, it was proved that \\{NOx\\} emission was lower than 10 ppm converted at 16% O2, combustion efficiency was almost 100% at 1300°C of combustor outlet temperature and 13.5 ata of combustor inlet pressure.

Yasushi Ozawa; Tomoharu Fujii; Mikio Sato; Takaaki Kanazawa; Hitoshi Inoue

1999-01-01T23:59:59.000Z

232

Impact of heat transfer on the performance of micro gas turbines  

Science Journals Connector (OSTI)

Abstract The miniaturisation of gas turbine engines poses significant challenges to the performance in heat management due to the close proximity of the hot and cold components. This paper examines the scale and significance of heat transfer within micro gas turbines and aims to quantify the corresponding impacts on performance and efficiency. To study these effects, a reduced order lumped capacitance heat transfer network is developed. Two different micro turbine configurations are investigated and the effect of micro turbine size and material selection is explored. The investigation shows that the choice of configuration and materials influences the impact of heat transfer on the micro turbine performance and heat management is therefore key to achieving the full potential of micro turbines.

Dries Verstraete; Carlos Bowkett

2015-01-01T23:59:59.000Z

233

Lean Catalytic Combustion for Ultra-low Emissions at High Temperature in Gas-Turbine Burners  

Science Journals Connector (OSTI)

This illustrates the weak point of current catalytic combustion technology: the unavailability of catalytic systems stable at the temperature of the gas turbine inlet temperature. ... The possible feeds are methane, gaseous fuels, and gasified biomasses. ... In particular, the paper presents current development status and design challenges being addressed by Siemens Westinghouse Power Corp. for large industrial engines (>200 MW) and by Solar Turbines for smaller engines (Turbine Systems (ATS) program. ...

Fabrizio D’Alessandro; Giovanna Pacchiarotta; Alberto Rubino; Mauro Sperandio; Pierluigi Villa; Arturo Manrique Carrera; Reza Fakhrai; Gianluigi Marra; Annalisa Congiu

2010-12-16T23:59:59.000Z

234

NETL: News Release - Innovations in Gas Turbines to be Pursued in Two New  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2000 4, 2000 Innovations in Gas Turbines to be Pursued In Two New Energy Department Projects GE to Develop Cleaner Combustors, "Smart" Sensors NISKAYUNA, NY - With the natural gas turbine fast becoming the workhorse for new power generating plants in the United States, the U.S. Department of Energy is preparing to award two new research contracts that could help improve the environmental performance and efficiencies of tomorrow's high-efficiency turbines. As part of a wide-ranging competition, the Department's National Energy Technology Laboratory has selected General Electric Co., Niskayuna, NY, for projects to develop a new gas turbine combustion system and a "Smart Power Turbine" sensor-and control system. A Cleaner Burning Combustor

235

Performance evaluation and economic analysis of a gas turbine power plant in Nigeria  

Science Journals Connector (OSTI)

Abstract In this study, performance evaluation and economic analysis (in terms of power outage cost due to system downtime) of a gas turbine power plant in Nigeria have been carried out for the period 2001–2010. The thermal power station consists of nine gas turbine units with total capacity of 301 MW (9 × 31.5 MW). The study reveals that 64.3% of the installed capacity was available in the period. The percentage of shortfall of energy generated in the period ranged from 4.18% to 14.53% as against the acceptable value of 5–10%. The load factor of the plant is between 20.8% and 78.2% as against international best practice of 80%. The average availability of the plant for the period was about 64% as against industry best practice of 95%, while the average use factor was about 92%. The capacity factor of the plant ranged from 20.8% to 78.23% while the utilization factor ranged from 85.47% to 95.82%. For the ten years under review, there was energy generation loss of about 35.7% of expected energy generation of 26.411 TW h with consequent plant performance of 64.3%. The study further reveals that the 35.7% of generation loss resulted in revenue loss of about M$251 (approximately b40). The simple performance indicator developed to evaluate the performance indices and outage cost for the station can also be applicable to other power stations in Nigeria and elsewhere. Measures to improve the performance indices of the plant have been suggested such as training of operation and maintenance (O & M) personnel regularly, improvement in O & M practices, proper spare parts inventory and improvement in general housekeeping of the plant. From technical point of view, performance of the plant can be improved by retrofitting with a gas turbine air inlet cooling system, heat recovery system or adding modifications (inter-cooling or regeneration) to the simple gas turbine units.

S.O. Oyedepo; R.O. Fagbenle; S.S. Adefila; S.A. Adavbiele

2014-01-01T23:59:59.000Z

236

Predicting Ignition Delay for Gas Turbine Fuel Flexibility  

NLE Websites -- All DOE Office Websites (Extended Search)

Ignition Delay for Ignition Delay for Gas Turbine Fuel Flexibility 15 μm * Low emission combustion systems have been carefully optimized for natural gas * Future fuel diversity (including H2 containing fuels) may generate auto-ignition damage * Existing theories vary in predicting propensity for auto-ignition damage * Theory A vs Theory B shows factor of 100 difference-which is right? * UC Irvine improved and validated design tools for ignition delay allow designers to evaluate the risk for auto-ignition in advanced combustion systems with future fuels * Models are available to engine OEM's to shorten design cycle time and save $$ UC Irvine Scott Samuelsen / Vince McDonell #112 1000/T (1/K) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 τ [O 2 ] 0.5 [F] 0.25 (sec(mol/cm 3 ) 0.75 ) 10 -10 10 -9 10 -8 10 -7 10 -6 10 -5

237

Turbulent flame speed for syngas at gas turbine relevant conditions  

Science Journals Connector (OSTI)

Modifications of conventional natural-gas-fired burners for operation with syngas fuels using lean premixed combustion is challenging due to the different physicochemical properties of the two fuels. A key differentiating parameter is the turbulent flame velocity, ST, commonly expressed as its ratio to the laminar flame speed, SL. This paper reports an experimental investigation of premixed syngas combustion at gas turbine like conditions, with emphasis on the determination of ST/SL derived as global fuel consumption per unit time. Experiments at pressures up to 2.0 MPa, inlet temperatures and velocities up to 773 K and 150 m/s, respectively, and turbulence intensity to laminar flame speed ratios, u?/SL, exceeding 100 are presented for the first time. Comparisons between different syngas mixtures and methane clearly show much higher ST/SL for the former fuel. It is shown that ST/SL is strongly dependent on preferential diffusive-thermal (PDT) effects, co-acting with hydrodynamic effects, even for very high u?/SL. ST/SL increases with rising hydrogen content in the fuel mixture and with increasing pressure. A correlation for ST/SL valid for all investigated fuel mixtures, including methane, is proposed in terms of turbulence properties (turbulence intensity and integral length scale), combustion properties (laminar flame speed and laminar flame thickness) and operating conditions (pressure and inlet temperature). The correlation captures effects of preferential diffusive-thermal and hydrodynamic instabilities.

S. Daniele; P. Jansohn; J. Mantzaras; K. Boulouchos

2011-01-01T23:59:59.000Z

238

Gas-dynamic characteristics of a noise and heat insulating jacket on a gas turbine in a gas pumping plant on emergency disconnection of the cooling fans  

Science Journals Connector (OSTI)

The paper discusses the operation of a gas turbine plant (GTP) when the fans in ... NHJ by a fan. The operation of gas-pumping plant involves working with brief (10 ... describing the motion of an ideal thermally...

P. V. Trusov; D. A. Charntsev; I. R. Kats…

2008-09-01T23:59:59.000Z

239

Topping of a combined gas- and steam-turbine powerplant using a TAM combustor  

SciTech Connect

The objective of this program is to evaluate the engineering and economic feasibility of a thermionic array module (TAM) topped combustor for a gas turbine. A combined gas- and steam-turbine system was chosen for this study. The nominal output of the gas and steam turbines were 70 MW and 30 MW, respectively. The gas-turbine fuel was a coal-derived medium-Btu gas assumed to be from an oxygen blown Texaco coal-gasification process which produces pressurized gas with an approximate composition of 52% CO and 36% H/sub 2/. Thermionic converters are assumed to line the walls of the gas-turbine combustor, so that the high-temperature gases heat the thermionic converter emitter. The thermionic converters produce electricity while the rejected heat is used to preheat the combustion air. To maximize the production of power from the thermionic converter, the highest practical flame temperature is obtained by preheating the combustor air with the thermionic collectors and rich combustion. A portion of the air, which bypassed the combustor, is reintroduced to complete the combustion at a lower temperature and the mixed gases flow to the turbine. The exhaust gases from the turbine flow to the heat recovery boilers to the bottoming steam cycle. The gas and steam turbine system performance calculation was based on data from Brown Boveri Turbomachinery, Inc. The performance of the thermionic converters (TAM) for the reference case was based on actual measurements of converters fired with a natural gas flame. These converters have been operated in a test furnace for approximately 15,000 device hours.

Miskolczy, G.; Wang, C.C.; Lovell, B.T.; McCrank, J.

1981-03-01T23:59:59.000Z

240

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ADVANCED EXERGY ANALYSIS APPLIED TO THE GAS-TURBINE BASED CO-GENERATION SYSTEM.  

E-Print Network (OSTI)

??The thesis focuses on the evaluation and improvement of a gas-turbine based co-generation system, from an exergetic point of view. A conventional exergy analysis has… (more)

AZZARELLI, GIUSEPPE

2008-01-01T23:59:59.000Z

242

Numerical Investigation of Temperature Distribution on a High Pressure Gas Turbine Blade  

E-Print Network (OSTI)

A numerical code is developed to calculate the temperature distributions on the surface of a gas turbine blade. This code is a tool for quick prediction of the temperatures by knowing the boundary conditions and the flow conditions, and doesn...

Zirakzadeh, Hootan

2014-08-10T23:59:59.000Z

243

Techno-environmental assessment of marine gas turbines for the propulsion of merchant ships.  

E-Print Network (OSTI)

??This research study seeks to evaluate the techno-economic and environmental implications of a variety of aero-derivative marine gas turbine cycles that have been modelled for… (more)

Bonet, Mathias Usman

2011-01-01T23:59:59.000Z

244

Experimental Research on Low-Temperature Methane Steam Reforming Technology in a Chemically Recuperated Gas Turbine  

Science Journals Connector (OSTI)

Under the operating parameters of a chemically recuperated gas turbine (CRGT), the low-temperature methane steam reforming test bench is designed and built; systematic experimental studies about fuel steam reforming are conducted. Four different reforming ...

Qian Liu; Hongtao Zheng

2014-09-24T23:59:59.000Z

245

Development and assessment of a soot emissions model for aircraft gas turbine engines  

E-Print Network (OSTI)

Assessing candidate policies designed to address the impact of aviation on the environment requires a simplified method to estimate pollutant emissions for current and future aircraft gas turbine engines under different ...

Martini, Bastien

2008-01-01T23:59:59.000Z

246

Testing of power-generating gas-turbine plants at Russian electric power stations  

Science Journals Connector (OSTI)

This paper cites results of thermal testing of various types and designs of power-generating gas-turbine plants (GTP), which have been placed in service at electric-power stations in Russia in recent years. Therm...

G. G. Ol’khovskii; A. V. Ageev; S. V. Malakhov…

2006-07-01T23:59:59.000Z

247

Automating controller tuning for gas-turbine mini power stations in computer testing  

Science Journals Connector (OSTI)

We justify the application of mathematical modeling methods for electric power systems in order to automate the tuning of controllers in control systems of gas-turbine power stations constructed on the basis of c...

A. I. Polulyakh; I. G. Lisovin; B. V. Kavalerov…

2014-07-01T23:59:59.000Z

248

Acoustic and thermal packaging of small gas turbines for portable power  

E-Print Network (OSTI)

To meet the increasing demand for advanced portable power units, for example for use in personal electronics and robotics, a number of studies have focused on portable small gas turbines. This research is concerned with ...

Tanaka, Shinji, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

249

Modeling and Performance Prediction of a Solar Powered Rankin Cycle/Gas Turbine Cycle  

Science Journals Connector (OSTI)

The present study is dealing with the development and implementation of an integrated solar combined cycle power plant in which heat ... its energy from the waste heat of a gas turbine unit in additional to solar

Mohammed A. Elhaj; Kassim K. Matrawy…

2007-01-01T23:59:59.000Z

250

A RAM (Reliability Availability Maintainability) analysis of Consolidated Edison's Gowanus and Narrows gas turbine power plants  

SciTech Connect

A methodology is presented which accurately assesses the ability of gas turbine generating stations to perform their intended function (reliability) while operating in a peaking duty mode. The developed methodology alloys the RAM modeler to calculate the probability that a peaking unit will produce the energy demanded and in turn calculate the total energy lost during a given time period due to unavailability of individual components. The methodology was applied to Consolidated Edison's Narrows site which has 16 barge-mounted General Electric Frame 5 gas turbines operating under a peaking duty mode. The resulting RAM model was quantified using the Narrows site power demand and failure rate data. The model was also quantified using generic failure data from the Operational Reliability Analysis Program (ORAP) for General Electric Frame 5 peaking gas turbines. A problem description list and counter measures are offered for components contributing more than one percent to gas turbine energy loss. 3 refs., 18 figs., 12 tabs.

Johnson, B.W.; Whitehead, T.J.; Derenthal, P.J. (Science Applications International Corp., Los Altos, CA (USA))

1990-12-01T23:59:59.000Z

251

A market and engineering study of a 3-kilowatt class gas turbine generator  

E-Print Network (OSTI)

Market and engineering studies were performed for the world's only commercially available 3 kW class gas turbine generator, the IHI Aerospace Dynajet. The objectives of the market study were to determine the competitive ...

Monroe, Mark A. (Mark Alan)

2003-01-01T23:59:59.000Z

252

Developments of a powder-metallurgy, MZC copper-alloy, water-cooled gas turbine component  

Science Journals Connector (OSTI)

The Department of Energy of the Federal Government has sponsored a technology development and verification testing program. This work is in support of an advanced, watercooled gas turbine firing at 2600 ‡F (1427 ...

L. G. Peterson

1984-06-01T23:59:59.000Z

253

Development of Low-Oxide MCrAlY Coatings for Gas Turbine Applications  

Science Journals Connector (OSTI)

Advanced high-energy plasma systems are being used to achieve the benefits of the high-velocity oxy-fuel (HVOF) system without losing the inherent advantages of plasma for coating of gas turbine parts. MCrAlY ...

Bharat K. Pant; Vivek Arya; B. S. Mann

2007-06-01T23:59:59.000Z

254

The forecast of the development of the market for gas turbine equipment in the years 2013–2021 (review)  

Science Journals Connector (OSTI)

The data are given, according to which, 12521 power-generating gas turbines will be manufactured in 2011–2021. More than 32% of these turbines will be made by Solar, while products made by General Electric will ....

V. V. Goncharov

2013-09-01T23:59:59.000Z

255

Turbine airfoil with an internal cooling system having vortex forming turbulators  

DOE Patents (OSTI)

A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

Lee, Ching-Pang

2014-12-30T23:59:59.000Z

256

Progress in NO sub x and CO emission reduction of gas turbines  

SciTech Connect

Extensive operating experience with hybrid burners assembled in large combustion chambers has been gained over the last 3 1/2 years. Operating results have been equally successful for newly installed gas turbines as well as units retrofitted with the dry low NO{sub x} burners. For new V94.2 and V84.2 gas turbines built by Siemens/KWU for 50 and 60 Hz applications, this combustion system has become a standard feature.

Maghon, H.; Berenbrick, P. (Siemens, KWV, Mulheim (DE)); Termuehlen, H.; Gartner, G. (Siemens Power Corp., Brandenton, FL (US))

1990-01-01T23:59:59.000Z

257

A method of evaluating the performance deterioration of aircraft gas-turbines  

E-Print Network (OSTI)

A METHOD OF EVALUATING THE PERFORMANCE DETERIORATION OF AIRCRAFT GAS-TURBINES A Thesis by V. SUBRAMANIAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1978 Major Subject: Mechanical Engineering A METHOD OF EVALUATING THE PERFORMANCE DETERIORATION OF AIRCRAFT GAS-TURBINES A Thesis by V. SUBRAMANIAN Approved as to style and content by: Charrman o Commztt (Head o D pa ment Sg D~ Member...

Subramanian, V

2012-06-07T23:59:59.000Z

258

System definition and analysis gas-fired industrial advanced turbine systems  

SciTech Connect

The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

Holloway, G.M.

1997-05-01T23:59:59.000Z

259

A Silicon-Based Micro Gas Turbine Engine for Power Generation  

E-Print Network (OSTI)

This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

2007-01-01T23:59:59.000Z

260

DOE-Sponsored Research Improves Gas Turbine Performance | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

consist sequentially of compressor, combustor, and turbine sections. Incoming air is compressed to high pressure in the compressor section, and then heated to high...

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Turbines  

Science Journals Connector (OSTI)

... with his torical notes and some explanations of the principles involved in the working of turbines. This is fol lowed by three chapters on water-wheels, ... . This is fol lowed by three chapters on water-wheels, turbine pumps, and water ...

1922-02-09T23:59:59.000Z

262

Advanced Life Assessment Methods for Gas Turbine Engine Components  

Science Journals Connector (OSTI)

Abstract In combustion systems for aircraft applications, liners represent an interesting challenge from the engineering point of view regarding the state of stress, including high temperatures (up to 1500 °C) varying over time, high thermal gradients, creep related phenomena, mechanical fatigue and vibrations. As a matter of fact, under the imposed thermo-mechanical loading conditions, some sections of the liner can creep; the consequent residual stresses at low temperatures can cause plastic deformations. For these reasons, during engine operations, the material behaviour can be hardly non-linear and the simulation results to be time expensive. Aim of this paper is to select and implement some advanced material life assessment methods to gas turbine engine components such as combustor liners. Uniaxial damage models for Low Cycle Fatigue (LCF), based on Coffin-Manson, Neu-Sehitoglu and Chaboche works, have been implemented in Matlab®. In particular, experimental LCF and TMF results for full size specimens are compared to calibrate these models and to assess TMF life of specimens. Results obtained in different testing conditions have been used for validation. In particular, each model needs specific parameter calibrations to characterize the investigated materials; these parameters and their relation with temperature variation have been experimentally obtained by testing standard specimens.

Vincenzo Cuffaro; Francesca Curà; Raffaella Sesana

2014-01-01T23:59:59.000Z

263

Phase compensated gas turbine governor for damping oscillatory modes  

Science Journals Connector (OSTI)

With market deregulation, there is constant pressure to utilise existing assets in more effective ways in order to achieve high levels of performance and as governor technologies mature the ability of governors to achieve much more than the standard power–frequency regulation function increases. Thus, this paper has focused on a more active use of governor control for a gas turbine to provide improved system stabilisation and performance via the inclusion of phase compensation in the governor control loop. Due to the decoupled nature of the mechanical power and excitation control loops, performance improvement via governor control does not interfere with generator voltage regulation, which is a drawback of conventional generator damping provision via a power system stabiliser (PSS). In addition, the mechanical power control loop is also less affected by the operating condition of the power system and is hence more robust. It is shown that inclusion of appropriate phase compensation in the governor control loop can improve dynamic and transient stability, either alone or in conjunction with a PSS in the exciter control loop, without adversely interfering with voltage control or changing steady state power–frequency regulation.

S.K. Yee; J.V. Milanovi?; F.M. Hughes

2009-01-01T23:59:59.000Z

264

THE EFFECTS OF CHANGING FUELS ON HOT GAS PATH CONDITIONS IN SYNGAS TURBINES  

SciTech Connect

Gas turbines in integrated gasification combined cycle power plants burn a fuel gas (syngas) in which the proportions of hydrocarbons, H2, CO, water vapor, and minor impurity levels may differ significantly from those in natural gas. Such differences can yield changes in the temperature, pressure, and corrosive species that are experienced by critical components in the hot gas path, with important implications in the design, operation, and reliability of the turbine. A new data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle for various fuel types. The approach used allows efficient handling of turbine components and different variable constraints due to fuel changes. Examples are presented for a turbine with four stages. The vanes and blades were considered to be cooled in an open circuit, with air provided from the appropriate compressor stages. A constraint was placed on the maximum metal temperature and values were calculated for the fuel flow rates, airflow ratios, and coolant flow rates for cases where the turbine was fired with natural gas, NG, or syngas, SG. One NG case was conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points. It was found that pressure matching is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case to comply with imposed temperature constraint. Thus, for this first case, the turbine size would be different for SG than for NG. In order to maintain the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) for the SG simulations, a second series of simulations was carried out in which the inlet mass flow was varied while keeping constant the pressure ratios and the amount of hot gas passing the first vane of the turbine. The effects of turbine matching between the NG and SG cases were increases for the SG case of approximately 7 and 13 % for total cooling flows and cooling flows for the first vane, respectively. In particular, for the SG case, the vane in the last stage of the turbine experienced inner wall temperatures that approached the maximum allowable limit.

Sabau, Adrian S [ORNL; Wright, Ian G [ORNL

2009-01-01T23:59:59.000Z

265

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

266

CO2 abatement by co-firing of natural gas and biomass-derived gas in a gas turbine  

Science Journals Connector (OSTI)

In this work, a possible way for partial CO2 emissions reduction from gas turbine exhausts by co-firing with biomass is investigated. The basic principle is the recirculation of a fraction of the exhausts (still rich in oxygen) to a gasifier, in order to produce syngas to mix with natural gas fuel. As biomass is a CO2 neutral fuel, the fraction of replaced natural gas is a measure of CO2 removal potential of the powerplant. The investigated solution considers the conversion of solid fuel to a gaseous fuel into an atmospheric gasifier, which is blown with a recirculated fraction of hot gas turbine exhausts, typically still rich in air. In this way, the heat content of the exhausts may be exploited to partially sustain the gasification section. The produced syngas, after the tar removal into the high temperature cracker, is thus sent to the cooling section, consisting of three main components: (I) gas turbine recuperator, (II) heat recovery steam generator and (III) condensing heat exchanger to cool down the syngas close to the environmental temperature before the subsequent recompression and mixing with natural gas fuel into the combustion chamber. The water stream produced within the condensing heat exchanger upstream the syngas compression is vaporised and sent back to the gasifier. If very limited modification to the existing gas turbine has to be applied in order to keep the additional costs limited, only a relatively reduced fraction of the low calorific value syngas may be mixed with natural gas. The analysis at different levels of co-firing has shown that no appreciable redesign has to be applied to the target GE5 machine up to 25–30% (heat rate based) renewable fraction. With an accurate heat recovery from the cooling/cleaning system of the syngas, the same levels of efficiency of the original machine have been achieved, in spite of the relatively large power consumption of the syngas recompression. Very interesting results have been obtained within the 10–30% range of biomass co-firing, with CO2 removal levels between 30% and 50% with reference to the values of the base GE5 gas turbine powerplant. The economic analysis has shown that, in spite of the high investment required for the syngas fuel production chain (gasifier, coolers, cleaners and fuel compressor), approximately at the same level of gas turbine itself, there is an interesting attractiveness due to the possibility of selling high-value green certificates and CO2 allowances, which reduce the payback time to 2–4 years. The uncertainty on the calculated economic parameters are greatly influenced by the uncertainty on actual biomass availability and yearly working time of powerplant, whereas off design operation, which affects mainly the uncertainty of compressor and turbine efficiency, is mainly reflected on the uncertainty of electric power output and efficiency.

Daniele Fiaschi; Riccardo Carta

2007-01-01T23:59:59.000Z

267

Applied modelling for bio and lean gas fired micro gas turbines  

Science Journals Connector (OSTI)

This contribution presents the outcome of applied Computational Fluid Dynamics for analysis of combustion technologies to find an efficient firing mode for use of bio and low calorific gaseous fuels in micro gas turbine combustors. The combustion technologies considered are based on the new concepts of Flameless Oxidation and Continued Staged Air. To optimise these concepts to burn low calorific gaseous fuels manifold numerical simulations were carried out using the CFD code FLUENT. The results achieved showed the influence of the fuel compositions on the flow behaviour inside the combustion chamber, reaction zone, flame structure and pollutant emissions.

A. Al-Halbouni; A. Giese; M. Flamme; K. Goerner

2006-01-01T23:59:59.000Z

268

Air bottoming cycle: Use of gas turbine waste heat for power generation  

SciTech Connect

This paper presents a thermodynamic analysis of the Air Bottoming Cycle (ABC) as well as the results of a feasibility study for using the Air Bottoming Cycle for gas turbine waste heat recovery/power generation on oil/gas platforms in the North Sea. The basis for the feasibility study was to utilize the exhaust gas heat from an LM2500PE gas turbine. Installation of the ABC on both a new and an existing platform have been considered. A design reference case is presented, and the recommended ABC is a two-shaft engine with two compressor intercoolers. The compression pressure ratio was found optimal at 8:1. The combined gas turbine and ABC shaft efficiency wa/s calculated to 46.6 percent. The LM2500PE gas turbine contributes with 36.1 percent while the ABC adds 10.5 percent points to the gas turbine efficiency. The ABC shaft power output is 6.6 MW when utilizing the waste heat of an LM2500PE gas turbine. A preliminary thermal and hydraulic design of the ABC main components (compressor, turbine, intercoolers, and recuperator) was carried out. The recuperator is the largest and heaviest component (45 tons). A weight and cost breakdown of the ABC is presented. The total weight of the ABC package was calculated to 154 metric tons, and the ABC package cost to 9.4 million US$. An economical examination for three different cases was carried out. The results show that the ABC alternative (LM2500PE + ABC) is economical, with a rather good margin, compared to the other alternatives. The conclusion is that the Air Bottoming Cycle is an economical alternative for power generation on both new platforms and on existing platforms with demand for more power.

Bolland, O.; Foerde, M. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Div. of Thermal Energy and Hydropower; Haande, B. [Oil Engineering Consultants, Sandvika (Norway)

1996-04-01T23:59:59.000Z

269

High pressure test results of a catalytic combustor for gas turbine  

SciTech Connect

Recently, the use of gas turbine systems, such as combined cycle and cogeneration systems, has gradually increased in the world. But even when a clean fuel such as LNG (liquefied natural gas) is used, thermal NO{sub x} is generated in the high temperature gas turbine combustion process. The NO{sub x} emission from gas turbines is controlled through selective catalytic reduction processes (SCR) in the Japanese electric industry. If catalytic combustion could be applied to the combustor of the gas turbine, it is expected to lower NO{sub x} emission more economically. Under such high temperature and high pressure conditions, as in the gas turbine, however, the durability of the catalyst is still insufficient. So it prevents the realization of a high temperature catalytic combustor. To overcome this difficulty, a catalytic combustor combined with premixed combustion for a 1,300 C class gas turbine was developed. In this method, catalyst temperature is kept below 1,000 C, and a lean premixed gas is injected into the catalytic combustion gas. As a result, the load on the catalyst is reduced and it is possible to prevent the catalyst deactivation. After a preliminary atmospheric test, the design of the combustion was modified and a high pressure combustion test was conducted. As a result, it was confirmed that NO{sub x} emission was below 10 ppm (at 16 percent O{sub 2}) at a combustor outlet gas temperature of 1,300 C and that the combustion efficiency was almost 100%. This paper presents the design features and test results of the combustor.

Fujii, T.; Ozawa, Y.; Kikumoto, S.; Sato, M. [Central Research Inst. of Electric Power Industry, Yokosuka, Kanagawa (Japan); Yuasa, Y.; Inoue, H. [Kansai Electric Power Co., Inc., Amagasaki, Hyogo (Japan)

1998-07-01T23:59:59.000Z

270

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

271

Numerical simulation of the two-dimensional flow in high pressure catalytic combustor for gas turbine  

Science Journals Connector (OSTI)

The objective of this paper is modeling the mechanism of high pressure and high temperature catalytic oxidation of natural gas, or methane. The model is two-dimensional steady-state, and includes axial and radial convection and diffusion of mass, momentum and energy, as well as homogeneous (gas phase) and heterogeneous (gas surface) single step irreversible chemical reactions within a catalyst channel. Experimental investigations were also made of natural gas, or methane combustion in the presence of Mn-substituted hexaaluminate catalysts. Axial profiles of catalyst wall temperature, and gas temperature and gas composition for a range of gas turbine combustor operating conditions have been obtained for comparison with and development of a computer model of catalytic combustion. Numerical calculation results for atmospheric pressure agree well with experimental data. The calculations have been extended for high pressure (10 atm) operating conditions of gas turbine.

Y. Tsujikawa; S. Fujii; H. Sadamori; S. Ito; S. Katsura

1995-01-01T23:59:59.000Z

272

Chapter 10.2 - Heat-Resistant Coating Technology for Gas Turbines  

Science Journals Connector (OSTI)

The operating temperature of gas turbines in the 1990s and later has been notably high in order to achieve high-efficiency power-generating plants by combining these gas turbines and steam turbines. Such high operating temperatures has been made possible with the development of heat-resistant superalloys forming turbine hot parts, as well as advances made in heat-resistant coating technology and cooling technology. For 1500 °C-class gas turbines, the adoption of single-crystal Ni-based superalloy blades and ceramic thermal barrier coatings is indispensable, and additionally, steam-cooled technology should be employed. In particular, thermal barrier coating (TBC) technology is recognized as important. Therefore, this paper reviews the trend of development of heat-resistant coating technology for gas turbines by paying attention to coating processes and evaluation. The paper also reviews the trend of development and standardization of heat-resistance evaluation test methods for coatings, because such evaluation test methods are indispensable for the development of heat-resistant coating technology.

Yoshiyasu Ito

2013-01-01T23:59:59.000Z

273

Progress on 2 MW STI8 gas turbine from Pratt & Whitney Canada  

SciTech Connect

In 1995 Pratt & Whitney Canada announced their intention to offer industrial and marine versions of the PW100 series aircraft gas turbine widely used in turboprop applications. The new ST18 gas turbine is rated in the two megawatt range for industrial and marine applications and offers an especially compact and lightweight gas turbine for this output level. As in other aeroderivative designs from Pratt & Whitney Canada, headquartered in Longueuil, Quebec, the ST18 gas turbine features a centrifugal compressor design. The two-stage centrifugal compressor, with a unique high efficiency external pipe diffuser system connecting the low pressure and high pressure compressor, achieves an overall compression ratio of 15:1, with air flow of 7.7 kg/s. A relatively good thermal efficiency level of about 30% is achieved in this design. For exhaust emission control purposes, water injection in excess of a 1:1 ratio is utilized in the reverse flow annular combustion system to achieve less than 35 ppm NO{sub x} on natural gas fuel. This paper provides some of the design details of this gas turbine and changes made for the industrial and marine configuration. 4 figs.

NONE

1997-01-01T23:59:59.000Z

274

Thermal Cyclic Creep and Long-Term Strength of the Material of Aircraft Gas Turbine Blades after Operation  

Science Journals Connector (OSTI)

The remaining thermal cyclic creep and long-term strength life of the material of aircraft gas turbine blades after operation has been determined experimentally....

B. S. Karpinos; V. V. Samuleev; B. A. Lyashenko; E. V. Lais’ke…

2013-09-01T23:59:59.000Z

275

A proportional method for calculating the efficiency and specific consumption of fuel at gas-turbine cogeneration stations  

Science Journals Connector (OSTI)

A new proportional method for calculating the indicators characterizing the energy efficiency of gas-turbine cogeneration stations is presented. The data obtained are compared...

G. P. Chitashvili

2006-12-01T23:59:59.000Z

276

Multidisciplinary Modeling, Control, and Optimization of a Solid Oxide Fuel Cell/Gas Turbine Hybrid Power System.  

E-Print Network (OSTI)

??This thesis describes a systematical study, including multidisciplinary modeling, simulation, control, and optimization, of a fuel cell - gas turbine hybrid power system that aims… (more)

Abbassi Baharanchi, Atid

2009-01-01T23:59:59.000Z

277

A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit  

Science Journals Connector (OSTI)

Abstract Low concentration methane, emitted from various industries e.g. coal mines and landfills into atmosphere, is not only an important greenhouse gas, but also a wasted energy resource if not utilized. In the past decade, we have been developing a novel VAMCAT (ventilation air methane catalytic combustion gas turbine) technology. This turbine technology can be used to mitigate methane emissions for greenhouse gas reduction, and also to utilize the low concentration methane as an energy source. This paper presents our latest research results on the development and demonstration of a 25 kWe lean burn catalytic combustion gas turbine prototype unit. Recent experimental results show that the unit can be operated with 0.8 vol% of methane in air, producing about 19–21 kWe of electricity output.

Shi Su; Xinxiang Yu

2014-01-01T23:59:59.000Z

278

Industrial Advanced Turbine Systems Program overview  

SciTech Connect

The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

Esbeck, D.W. [Solar Turbines Inc., San Diego, CA (United States)

1995-10-01T23:59:59.000Z

279

Recent developments in gas turbine materials and technology and their implications for syngas firing  

Science Journals Connector (OSTI)

Gas turbine combined-cycle systems burning natural gas represent a reliable and efficient power generation technology that is widely used. A critical factor in their development was the rapid adaptation of aero-engine technology (single crystal airfoils, sophisticated cooling techniques, and thermal barrier coatings) in order to operate at the high rotor-inlet temperatures required for high efficiency generation. Early reliability problems have been largely overcome, so that this type of power generation system is now considered to be a mature technology capable of achieving high levels of availability. Current interest in replacing natural gas with gas derived from coal (syngas or hydrogen) in these gas turbine systems focuses attention on implications for the critical turbine components. In this paper, the development requirements for materials for critical hot gas-path parts in large gas turbines burning coal-derived syngas fuels are briefly considered in the context of the state-of-the-art in materials for engines burning natural gas. It is shown that, despite some difficult design issues, many of the materials used in current engines will be applicable to units burning syngas. However, there is the potential that the durability of some components may be prejudiced because of differences in the combustion environment (especially in terms of water vapor content, and possibly sulfur compounds and particulates). Consequently, effort to develop improved coatings to resist erosion and also attack by S-containing compounds may be necessary.

I.G. Wright; T.B. Gibbons

2007-01-01T23:59:59.000Z

280

9 - Materials and coatings developments for gas turbine systems and components  

Science Journals Connector (OSTI)

Abstract: The efficiency increase of advanced gas turbines (GTs) is often accompanied with increased thermal, mechanical and environmental loading of turbine, combustor and rotor materials. The development of alloys suitable for such applications has been described with regard to metallurgical rationales and manufacturing processes. Combustor and turbine hot parts materials are developed to manage thermo-mechanical loading. To control thermal and environmental loading, thermal barrier coating and oxidation/corrosion resistant coating have been used. The lifetime prediction based on laboratory tests has been validated by engine experience evaluation of coated parts. Failure mechanisms as well as optimised manufacturing have been discussed in detail to indicate future needs.

M. Konter; H-P. Bossmann

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

California Natural Gas International Deliveries (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Deliveries (Million Cubic Feet) California Natural Gas International Deliveries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

282

California Natural Gas International Receipts (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Receipts (Million Cubic Feet) California Natural Gas International Receipts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

283

Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report  

SciTech Connect

A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

1991-01-01T23:59:59.000Z

284

International Oil and Gas Board International Oil and Gas Board...  

Open Energy Info (EERE)

Oil and Gas Board Address Place Zip Website Abu Dhabi Supreme Petroleum Council Abu Dhabi Supreme Petroleum Council Abu Dhabi http www abudhabi ae egovPoolPortal WAR appmanager...

285

Risk assessment of failure modes of gas diffuser liner of V94.2 siemens gas turbine by FMEA method  

Science Journals Connector (OSTI)

Failure of welding connection of gas diffuser liner and exhaust casing is one of the failure modes of V94.2 gas turbines which are happened in some power plants. This defect is one of the uncertainties of customers when they want to accept the final commissioning of this product. According to this, the risk priority of this failure evaluated by failure modes and effect analysis (FMEA) method to find out whether this failure is catastrophic for turbine performance and is harmful for humans. By using history of 110 gas turbines of this model which are used in some power plants, the severity number, occurrence number and detection number of failure determined and consequently the Risk Priority Number (RPN) of failure determined. Finally, critically matrix of potential failures is created and illustrated that failure modes are located in safe zone.

H Mirzaei Rafsanjani; A Rezaei Nasab

2012-01-01T23:59:59.000Z

286

Analysis of a high-temperature heat exchanger for an externally-fired micro gas turbine  

Science Journals Connector (OSTI)

Abstract The externally-fired gas turbine (EFGT) can convert fuels such as coal, biomass, biomass gasification gas and solar energy into electricity and heat. The combination of this technology with biomass gasification gas represents an interesting option for gasification, for which it has been difficult to find a conversion technology. In this system, the heat exchanger deals with the contaminants of biomass derived gas instead of the turbine itself. However, these contaminants can build a deposit layer in the heat exchanger that can affect its performance. The heat exchanger is important in externally fired gas turbines since the turbine inlet temperature is directly dependent on its performance. Several studies on heat exchangers for externally fired gas turbines have been carried out. However, very few detailed studies were found comparing the performance of heat exchangers for externally fired gas turbines considering the effect of deposit materials on the surfaces. In this regard, this work compares the performance of a corrugated plate heat exchanger and a two-tube-passes shell and tube heat exchanger considering the effect of thickness of deposit material with different thermal conductivities on pressure drop and effectiveness. The results show that the effectiveness of the corrugated plate heat exchanger is more influenced at larger thicknesses of deposit materials than the two-tube-passes shell and tube heat exchanger. There is an exponential increase in the pressure drop of the plate heat exchanger while a monotonic increase of pressure drop is seen for the shell and tube heat exchanger. The increase in the thickness of the deposit material has two effects. On one hand, it increases the resistance to heat transfer and on the other hand, it reduces the through flow area increasing the velocity and hence the heat transfer coefficient. Additionally, the effectiveness of the heat exchangers had a stronger influence on the power output than the pressure drop.

Fabiola Baina; Anders Malmquist; Lucio Alejo; Björn Palm; Torsten H. Fransson

2015-01-01T23:59:59.000Z

287

Investigations of swirl flames in a gas turbine model combustor  

SciTech Connect

A gas turbine model combustor for swirling CH{sub 4}/air diffusion flames at atmospheric pressure with good optical access for detailed laser measurements is discussed. Three flames with thermal powers between 7.6 and 34.9 kW and overall equivalence ratios between 0.55 and 0.75 were investigated. These behave differently with respect to combustion instabilities: Flame A burned stably, flame B exhibited pronounced thermoacoustic oscillations, and flame C, operated near the lean extinction limit, was subject to sudden liftoff with partial extinction and reanchoring. One aim of the studies was a detailed experimental characterization of flame behavior to better understand the underlying physical and chemical processes leading to instabilities. The second goal of the work was the establishment of a comprehensive database that can be used for validation and improvement of numerical combustion models. The flow field was measured by laser Doppler velocimetry, the flame structures were visualized by planar laser-induced fluorescence (PLIF) of OH and CH radicals, and the major species concentrations, temperature, and mixture fraction were determined by laser Raman scattering. The flow fields of the three flames were quite similar, with high velocities in the region of the injected gases, a pronounced inner recirculation zone, and an outer recirculation zone with low velocities. The flames were not attached to the fuel nozzle and thus were partially premixed before ignition. The near field of the flames was characterized by fast mixing and considerable finite-rate chemistry effects. CH PLIF images revealed that the reaction zones were thin (=<0.5 mm) and strongly corrugated and that the flame zones were short (h=<50 mm). Despite the similar flow fields of the three flames, the oscillating flame B was flatter and opened more widely than the others. In the current article, the flow field, structures, and mean and rms values of the temperature, mixture fraction, and species concentrations are discussed. Turbulence intensities, mixing, heat release, and reaction progress are addressed. In a second article, the turbulence-chemistry interactions in the three flames are treated.

Weigand, P.; Meier, W.; Duan, X.R.; Stricker, W.; Aigner, M. [Institut fuer Verbrennungstechnik, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Pfaffenwaldring 38, D-70569 Stuttgart (Germany)

2006-01-01T23:59:59.000Z

288

EIA - 2010 International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2010 Natural Gas In the IEO2010 Reference case, natural gas consumption in non-OECD countries grows about three times as fast as in OECD countries. Non-OECD production increases account for 89 percent of the growth in world production from 2007 to 2035. Figure 36. World natural gas consumption 2007-2035. Click to enlarge » Figure source and data excel logo Figure 37. Change in World natural gas production by region, 2007-2035. Click to enlarge » Figure source and data excel logo Figure 38. Natural gas consumption in North America by country, 2007-2035 Click to enlarge » Figure source and data excel logo Figure 39. Natural gas consumption in OECD Europe by end-use sector 2007-2035. Click to enlarge » Figure source and data excel logo

289

International Energy Outlook 2006 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2006 Chapter 4: Natural Gas Natural gas trails coal as the fastest growing primary energy source in IEO2006. The natural gas share of total world energy consumption increases from 24 percent in 2003 to 26 percent in 2030. Figure 34. World Natural Gas Consumption by Region, 1990-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 35. World Natural Gas Consumption by End-Use Sector, 2003-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Consumption of natural gas worldwide increases from 95 trillion cubic feet in 2003 to 182 trillion cubic feet in 2030 in the IEO2006 reference case

290

Modeling and Control of Lean Premixed Combustion Dynamics for Gas Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Active Combustion Control Group Virginia Active Combustion Control Group Tech Virginia VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY Reacting Flows Laboratory Modeling and Control of Lean Premixed Combustion Dynamics for Gas Turbines Virginia Tech Principal Investigator: Uri Vandsburger SCIES Project 02- 01- SR099 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/02, 36 Month Duration) $ 756,700 Total Contract Value ($ 603,600 DOE) Virginia Active Combustion Control Group Tech Virginia VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY Reacting Flows Laboratory Gas Turbine Technology Needs DLN/LP Gas Turbines * Improved Combustion Stability * Improved Design Methodology With a focus on: - Thermoacoustics

291

Advanced Sensor Approaches for Monitoring and Control of Gas Turbine Combustors  

NLE Websites -- All DOE Office Websites (Extended Search)

Seitzman and T. Lieuwen Seitzman and T. Lieuwen SCIES Project 02- 01- SR102 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (5/1/2002, 36 Month Duration) $337,501 Total Contract Value ($327,501 DOE) Advanced Sensor Approaches For Monitoring and Control Of Gas Turbine Combustors Georgia Institute of Technology JS/TL 10/19/05 Advanced Sensors 10/19/05 2 Gas Turbine Need * Gas turbines must operate with ultra-low levels of pollutant emissions - Problem: lean, premixed operation causes minimal pollutant generation but introduces combustion problems, such as instabilities and blowoff * Combustor health and performance information needed to optimize engine across competing demands of emissions levels, power output, and

292

Investigation of the part-load performance of two 1. 12 MW regenerative marine gas turbines  

SciTech Connect

Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performance of two 1.12 MW (1,500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.

Korakianitis, T.; Beier, K.J. (Washington Univ., St. Louis, MO (United States). Dept. of Mechanical Engineering)

1994-04-01T23:59:59.000Z

293

Marine gas turbine evaluation and research at the admiralty test house, RAE pyestock  

SciTech Connect

The Admiralty Test House (ATH) at the Royal Aerospace Establishment Pyestock has provided test bed facilities for evaluation of marine gas turbines and ancillary equipments for Royal Naval use since 1952. While the ATH is presently undergoing an extensive refurbishment program in preparation for trials of the Rolls-Royce 20-MW Spey SM1C, research continues on a number of innovative gas turbine condition monitoring techniques. This paper presents a brief history of the Marine Gas Turbine Section and describes the facilities of the ATH following major refurbishment. The capabilities of the steady-state and transient data gathering facilities are outlined, together with the automated engine and test control systems, which provide cost-effective engine evaluation in both endurance and minor equipment trials.

Bruce, C.J.; Cartwright, R.A. (Royal Aerospace Establishment, Pyestock, Farnborough, Hants (GB))

1992-04-01T23:59:59.000Z

294

Thermal and Economic Analyses of Energy Saving by Enclosing Gas Turbine Combustor Section  

E-Print Network (OSTI)

) thermography inspection indicated a high-temperature area (500~560°F) at the combustor section of the GE Frame 5 gas turbine of Dynegy Gas Processing Plant at Venice, Louisiana. To improve the thermal efficiency and reduce energy cost, thermal... within the natural gas industry, the Venice plant is seeking various means to reduce cost. As part of the project to improve the energy efficiency of the plant and thus reduce energy costs, Dynegy contracted the Energy Conversion & Conservation...

Li, X.; Wang, T.; Day, B.

2006-01-01T23:59:59.000Z

295

International Effort Advances Offshore Wind Turbine Design Codes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) in Germany to lead an international effort under the International Energy Agency's (IEA) Task 30...

296

Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors  

Science Journals Connector (OSTI)

Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors ... Also, the application of oxy-combustion technology into gas turbines is possible; however, the combustion temperature will be increased tremendously, which needs more control to make safe the turbine blades. ... technologies, a simplified model of a power plant with two forms of CO2 capture was developed. ...

Mohamed A. Habib; Medhat Nemitallah; Rached Ben-Mansour

2012-11-19T23:59:59.000Z

297

Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1  

SciTech Connect

This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

Not Available

1993-05-01T23:59:59.000Z

298

Eddy?Current Inspection of Cracking in Land?Based Gas Turbine Blades  

Science Journals Connector (OSTI)

There has been a growing need in the electric utility industry to assess the remaining life of blades in gas turbines. It is quite important to nondestructively comprehend the depths of surface?breaking cracks in blades. Flexible eddy current array probes have been developed to overcome the major limitations of existing eddy current inspection systems. The use of an array of sensors allows cracks of all lengths to be detected and will ultimately allow real time data imaging to provide rapid inspection and easy interpretation. For this study using eddy current techniques crack detection equipment has been developed and applied to gas turbine Stage 1 blades for field use.

H. Fukutomi; T. Ogata

2004-01-01T23:59:59.000Z

299

Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure  

SciTech Connect

This paper is devoted to the analyses and optimization of simple and sophisticated cycles, particularly for various gas turbine engines and aero-engines (including the scramjet engine) to achieve maximum performance. The optimization of such criteria as thermal efficiency, specific output, and total performance for gas turbine engines, and overall efficiency, nondimensional thrust, and specific impulse for aero-engines has been performed by the optimization procedure with the multiplier method. Comparison of results with analytical solutions establishes the validity of the optimization procedure.

Tsuijikawa, Y.; Nagaoka, M. (Dept. of Aeronautical Engineering, Univ. of Osaka Prefecture, Mozu-umemachi, Sakai 591 (JP))

1991-01-01T23:59:59.000Z

300

EIA - International Energy Outlook 2009-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2009 Chapter 3 - Natural Gas In the IEO2009 reference case, natural gas consumption in the non-OECD countries grows more than twice as fast as in the OECD countries. Production increases in the non-OECD region account for more than 80 percent of the growth in world production from 2006 to 2030. Figure 33. World Natural Gas Consumption, 1980-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 34. Natural Gas Consumption in North America by Country and Sector, 2006-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 35. Natural Gas Consumption in OECD Asia by Country and Sector, 2006 and 2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIA - International Energy Outlook 2008-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2008 Chapter 3 - Natural Gas In the IEO2008 reference case, natural gas consumption in the non-OECD countries grows more than twice as fast as in the OECD countries. Production increases in the non-OECD region account for more than 90 percent of the growth in world production from 2005 to 2030. Figure 35. World Natural Gas Consumption, 1980-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 36. Natural Gas Consumption in North America by Country, 2005-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 37. Natural Gas Consumption in OECD Europe, 2005-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

302

Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application  

SciTech Connect

This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

Ashok K. Anand

2005-12-16T23:59:59.000Z

303

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network (OSTI)

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant.… (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

304

High-resolution diffraction for residual stress determination in the NiCrMoV wheel of an axial compressor for a heavy-duty gas turbine  

Science Journals Connector (OSTI)

The wheel of an axial compressor for a heavy-duty gas turbine has been investigated for residual stresses (RS) evaluation of the teeth-section where SANS measurements have previously been performed. Such a component can contain internal RS, either due to the manufacturing process, or to the operating cycles fatigue. The constitutive material is a NiCrMoV steel to ASTM A 471 (type 2) norms (equivalent to B50A420B10); this material is usually adopted in the manufacturing of forged components for gas turbines. Internal radial and hoop RS have been determined, whose values are under the limit of 200 kPa. Hoop RS, in general, resulted in higher value than the radial ones. The present experiment represents a particularly important step in the RS determination for gas turbine components, since the measurements reveal that the fatigue of the wheel is also a lifetime limiting factor although, in the same technological field, the available data in the actual neutron techniques literature mainly concern turbine buckets.

M Rogante; G Török; G.F Ceschini; L Tognarelli; I Füzesy; L Rosta

2004-01-01T23:59:59.000Z

305

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service  

SciTech Connect

The January, 1988 draft topical report, entitled An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems'' (Ref.1.1), identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

306

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Second topical report  

SciTech Connect

The January, 1988 draft topical report, entitled ``An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems`` [Ref.1.1], identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

307

Influence of steam injection and hot gas bypass on the performance and operation of a combined heat and power system using a recuperative cycle gas turbine  

Science Journals Connector (OSTI)

The influence of steam injection and hot gas bypass on the performance and operation of ... power (CHP) system using a recuperative cycle gas turbine was investigated. A full off-design analysis ... in steam gene...

Soo Young Kang; Jeong Ho Kim; Tong Seop Kim

2013-08-01T23:59:59.000Z

308

Residual life prediction methods for gas turbine components  

Science Journals Connector (OSTI)

The use of fracture mechanics in predicting the life of turbine components is reviewed with emphasis on the surface crack and R ratio effects. Several examples of life methods development and verification are reported. The described methodology, which does not directly model crack-closure behavior, accurately predicts the growth of physically short surface cracks and situations where oxide- and roughness-induced closure are expected to occur.

R.H. Van Stone

1988-01-01T23:59:59.000Z

309

Heavy duty gas turbines in LCV applications: 25 years of experience and R and D  

SciTech Connect

For a number of reasons, Low Calorific Value (LCV) gases are expected to play an increasing part on the future power generation scene, especially within large gas turbine combined cycle (CCGT) schemes. The group of LCV gases is largely represented worldwide as it includes products as diverse as: Weak Natural Gases (WNG) containing inert (N2, CO{sub 2}) fraction as high as 70%; coal/steel industry by-products: coke oven gas (COG) and blast furnace gas (BFG); biogases obtained by controlled, anaerobic fermentation of organic wastes (household, farm) or biomass; gasification products of solid fuels (gas deriving from coal, lignite or residual oil); substitute natural gas (SNG) obtained by treatment/reforming of primary gasification products. Historically, process by-products (COG, BFG) were the first fuels to be successfully burnt in turbines and were used by the main gas turbine manufacturers to devise their LCV combustion technology. Therefore, such fuels are worthy of interest from both a technical and economic standpoint. However, for reasons tied to energy strategy considerations, gasification products nowadays represent the most promising members of the LCV gas family, likely to give rise to large, efficient and low-emission power plants. This paper offers a comprehensive review of the company R and D and experience relating to the combustion of LCV gas fuels in heavy duty gas turbines, starting from the first COG-combustion installation (HBL, France, 1972) to the latest R and D program results, devoted to the heavy duty machine segment and including the successful, coal-gasification plant at Vresova (SUV, Czech Republic, 1996) based on two Frame 9E machines which have accumulated over 25,000 operation hours. As for the current R and D programs, which demonstrate the active involvement of the company in the LCV activity, the paper places particular emphasis on the development of the Frame 6B combustor for the ABGC program.

Pourchot, T.; Moliere, M.

1998-07-01T23:59:59.000Z

310

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents (OSTI)

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

311

Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions  

SciTech Connect

High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

2013-07-03T23:59:59.000Z

312

Tests of a 4,000 kw. Gas-Turbine Set  

Science Journals Connector (OSTI)

... January 5, gives a description and test results of a 4,000 kw. combustion-turbine generating set, recently constructed by Messrs. Brown, Boveri and Co., Ltd., ... in emergencies, and consists of an axial-type air-compressor, a combustion chamber, a gas- ...

1940-01-20T23:59:59.000Z

313

Advanced gas turbine systems research. Technical quarterly progress report, October 1--December 31, 1997  

SciTech Connect

Major accomplishments by AGTSR during this reporting period are highlighted and then amplified in later sections of this report. Main areas of research are combustion, heat transfer, and materials. Gas turbines are used for power generation by utilities and industry and for propulsion.

NONE

1997-12-31T23:59:59.000Z

314

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network (OSTI)

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity for the California desert and in other appro- priate regions worldwide. Current technology relies on steam Rankine

Ponce, V. Miguel

315

An integrated solar thermal power system using intercooled gas turbine and Kalina cycle  

Science Journals Connector (OSTI)

A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energy–utilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000 °C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia–water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000 °C under the designed solar direct normal irradiance of 800 W/m2. Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area.

Shuo Peng; Hui Hong; Hongguang Jin; Zhifeng Wang

2012-01-01T23:59:59.000Z

316

Advanced gas turbine systems research. Quarterly technical progress report, April 1, 1994--June 30, 1994  

SciTech Connect

A cooperative development of gas turbines for electric power generation in USA is underway. Since the first AGTSR program manager has retired, a search for a new manager has begun. Reports during this period include membership, combustion instability white paper, and a summary paper for the ASME IGTI conference.

Not Available

1994-07-01T23:59:59.000Z

317

Diesel and gas turbine marine engine alternatives. 1976-January, 1982 (citations from Information Services in Mechanical Engineering Data Base). Report for 1976-January 1982  

SciTech Connect

Reports are cited which discuss the development and utilization of power plants designed for marine use. Power generated by coal burning, wind, nuclear reactors, water jet propulsion, and high-power water-cooled electric propulsion are among the alternative sources of power for marine application. Performance evaluations of existing unconventional marine propulsion systems are examined. This bibliography does not consider diesel internal combustion or gas turbine marine engines. (Contains 207 citations fully indexed and includes a title list.)

Not Available

1982-01-01T23:59:59.000Z

318

Thermionic-combustor combined-cycle system. Volume III. A thermionic converter design for gas-turbine combined-cycle systems  

SciTech Connect

Thermionic converter design is strongly influenced by the configuration of the heat source and heat sink. These two externally imposed conditions are of major importance in arriving at a viable converter design. In addition to these two factors, the economical and reliable transfer of energy internally within the converter is another major item in the design. The effects of the engineering trade-offs made in arriving at the design chosen for the Gas Turbine Combined Cycle combustor are reviewed.

Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S. Jr.

1981-05-01T23:59:59.000Z

319

High-temperature turbine technology program hot-gas path development test. Part II. Testing  

SciTech Connect

This topical report of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) Phase II program presents the results of testing full-scale water-cooled first-stage and second-stage turbine nozzles at design temperature and pressure to verify that the designs are adequate for operation in a full-scale turbine environment. Low-cycle fatigue life of the nozzles was demonstrated by subjecting cascade assemblies to several hundred simulated startup/shutdown turbine cycles. This testing was accomplished in the Hot-Gas Path Development Test Stand (HGPDTS), which is capable of evaluating full-scale combustion and turbine nozzle components. A three-throat cascade of the first-stage turbine nozzle was successfully tested at a nozzle inlet gas temperature of 2630/sup 0/F and a nozzle inlet pressure of 11.3 atmospheres. In addition to steady-state operation at the design firing temperature, the nozzle cascade was exposed to a simulated startup/shutdown turbine cycle by varying the firing temperature. A total of 42 h at the design point and 617 thermal cycles were accumulated during the test periods. First-stage nozzle test results show that measured metal and coolant temperatures correspond well to the predicted design values. This nozzle design has been shown to be fully satisfactory for the application (2600/sup 0/F), with growth capability to 3000/sup 0/F firing temperature. A post-test metallurgical examination of sectioned portions of the tested nozzles shows a totally bonded structure, confirming the test results and attesting to the successful performance of water-cooled composite nozzle hardware.

Horner, M.W.

1982-03-01T23:59:59.000Z

320

International Energy Outlook 1999 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natgas.jpg (4355 bytes) natgas.jpg (4355 bytes) Natural gas is the fastest growing primary energy source in the IEO99 forecast. Because it is a cleaner fuel than oil or coal and not as controversial as nuclear power, gas is expected to be the fuel of choice for many countries in the future. Prospects for natural gas demand worldwide remain bright, despite the impact of the Asian economic recession on near-term development. Natural gas consumption in the International Energy Outlook 1999 (IEO99) is somewhat increased from last yearÂ’s outlook, and the fuel remains the fastest growing primary energy source in the forecast period. Worldwide gas use more than doubles in the reference case projection, reaching 174 trillion cubic feet in 2020 from 82 trillion cubic feet in 1996 (Figure

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pre-stressed/pre-compressed gas turbine nozzle  

DOE Patents (OSTI)

A method of increasing low cycle fatigue life of a turbine nozzle comprising a plurality of stationary airfoils extending between radially inner and outer ring segments comprising a) providing at least one radial passage in each of the plurality of airfoils; b) installing a rod in the radial passage extending between the radially inner and outer ring segments and fixing one end of the rod to one of the inner and outer rings; and c) pre-loading the rod to compress the airfoil between the inner and outer ring segments.

Jang, Hoyle (Schenectady, NY); Itzel, Gary Michael (Clifton Park, NY); Yu, Yufeng Phillip (Guilderland, NY)

2002-01-01T23:59:59.000Z

322

International Trade in Natural Gas: Golden Age of LNG?  

E-Print Network (OSTI)

International Trade in Natural Gas: Golden Age of LNG? Yichen Du and Sergey Paltsev Report No. 271;1 International Trade in Natural Gas: Golden Age of LNG? Yichen Du* and Sergey Paltsev* Abstract The introduction of liquefied natural gas (LNG) as an option for international trade has created a market for natural gas where

Gabrieli, John

323

Cooling system for a gas turbine using a cylindrical insert having V-shaped notch weirs  

DOE Patents (OSTI)

An improved cooling system for a gas turbine is disclosed. A plurality of V-shaped notch weirs are utilized to meter a coolant liquid from a pool of coolant into a plurality of platform and airfoil coolant channels formed in the buckets of the turbine. The V-shaped notch weirs are formed in a separately machined cylindrical insert and serve to desensitize the flow of coolant into the individual platform and airfoil coolant channels to design tolerances and non-uniform flow distribution.

Grondahl, Clayton M. (Clifton Park, NY); Germain, Malcolm R. (Ballston Lake, NY)

1981-01-01T23:59:59.000Z

324

Sequential linearization as an approach to real-time marine gas turbine simulation  

SciTech Connect

A read-time marine gas turbine simulation would offer an essential basis for advanced marine propulsion control designs. such designs may be realized as model reference controllers and/or health monitoring controllers. This paper presents an approach to real-time turbine simulation, using a method of sequential state space linearizations. The linearizations are shown to be simple enough to be computed in real time. Comparisons between simulations and experiments are presented and discussed. The approach is shown to have very good accuracy for both transient and steady-state predictions.

Smith, D.L.; Stammetti, V.A. (Naval Postgraduate School, Monterey, CA (USA). Dept. of Mechanical Engineering)

1990-04-01T23:59:59.000Z

325

Cooling system having reduced mass pin fins for components in a gas turbine engine  

DOE Patents (OSTI)

A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

Lee, Ching-Pang; Jiang, Nan; Marra, John J

2014-03-11T23:59:59.000Z

326

International Effort Advances Offshore Wind Turbine Design Codes  

Energy.gov (U.S. Department of Energy (DOE))

For the past several years, DOE's National Renewable Energy Laboratory has teamed with the Fraunhofer Institute for Wind Energy and Energy System Technology in Germany to lead an international effort under the International Energy Agency’s Task 30 to improve the tools used to design offshore wind energy systems.

327

Evaluation of High-Temperature Alloys for Helium Gas Turbines  

Science Journals Connector (OSTI)

C. 1. Mechanical Property / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

Wolfgang Jakobeit; Jörn-Peter Pfeifer; Georg Ullrich

328

System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134  

SciTech Connect

The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

Annen, K.D.

1981-08-01T23:59:59.000Z

329

Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines  

SciTech Connect

The use of pumps as turbines in different applications has been gaining importance in the recent years, but the subject of hydraulic optimization still remains an open research problem. One of these optimization techniques that include rounding of the sharp edges at the impeller periphery (or turbine inlet) has shown tendencies of performance enhancement. In order to understand the effect of this hydraulic optimization, the paper introduces an analytical model in the pump as turbine control volume and brings out the functionalities of the internal variables classified under control variables consisting of the system loss coefficient and exit relative flow direction and under dependent variables consisting of net tangential flow velocity, net head and efficiency. The paper studies the effects of impeller rounding on a combination of radial flow and mixed flow pumps as turbines using experimental data. The impeller rounding is seen to have positive impact on the overall efficiency in different operating regions with an improvement in the range of 1-3%. The behaviour of the two control variables have been elaborately studied in which it is found that the system loss coefficient has reduced drastically due to rounding effects, while the extent of changes to the exit relative flow direction seems to be limited in comparison. The reasons for changes to these control variables have been physically interpreted and attributed to the behaviour of the wake zone at the turbine inlet and circulation within the impeller control volume. The larger picture of impeller rounding has been discussed in comparison with performance prediction models in pumps as turbines. The possible limitations of the analytical model as well as the test setup are also presented. The paper concludes that the impeller rounding technique is very important for performance optimization and recommends its application on all pump as turbine projects. It also recommends the standardization of the rounding effects over wide range of pump shapes including axial pumps. (author)

Singh, Punit; Nestmann, Franz [Institute of Water and River Basin Management (IWG), Karlsruhe Institute of Technology, Kaiser Str. 12, D 76131 Karlsruhe (Germany)

2011-01-15T23:59:59.000Z

330

Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants  

SciTech Connect

The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

Kenneth A. Yackly

2005-12-01T23:59:59.000Z

331

The Gas Turbine and Its Significance as a Prime Mover  

Science Journals Connector (OSTI)

...internal combustion engine, 1875; the...1885; the Diesel engine, 1895. The...reheating came into general application...have operated on Diesel fuel, but there...internal combustion engine and the steam...small in terms of general power de- velopments...

C. Richard Soderberg

1948-01-01T23:59:59.000Z

332

Analysis and optimization of a solid oxide fuel cell and intercooled gas turbine (SOFC–ICGT) hybrid cycle  

Science Journals Connector (OSTI)

The power generation community faces a major challenge: to protect the environment while producing a plentiful supply of clean low-cost energy. “21st Century Energy Plants” (Vision 21 Plants) have been proposed and conceptualized to meet the energy and environmental challenges. The solid oxide fuel cell and intercooled gas turbine (SOFC–ICGT) hybrid cycle introduced in this work is one example of a Vision 21 Plant. The system includes an internal-reforming tubular-SOFC, an intercooled gas turbine, a humidifier, and other auxiliary components. A recently developed thermodynamic analysis computer code entitled advanced power systems analyses tools (APSAT) was applied to analyze the system performance of the SOFC–ICGT cycle. Sensitivity analyses of several major system parameters were studied to identify the key development needs and design and operating improvements for this hybrid cycle. A novel optimization strategy including a design of experiments (DOEx) approach is proposed and applied to the hybrid system. Using this optimization strategy, a system electrical efficiency higher than 75% (net ac/lower heating value (LHV)) could be achieved when the system was designed to operate under a high operating pressure (50 bara) and with a low percent excess air (EA) (55%) in the SOFC.

Yaofan Yi; Ashok D. Rao; Jacob Brouwer; G.Scott Samuelsen

2004-01-01T23:59:59.000Z

333

8 - Radial-Inflow Turbines  

Science Journals Connector (OSTI)

Publisher Summary The inward-flow radial turbine covers tremendous ranges of power, rates of mass flow, and rotational speeds from very large Francis turbines used in hydroelectric power generation and developing hundreds of megawatts down to tiny closed cycle gas turbines for space power generation of a few kilowatts. The widespread adoption of variable geometry turbines for diesel engine turbochargers has been the major factor in increasing the commercial use of this technology. Variable area is commonly, but not exclusively, achieved by pivoting the nozzle vanes about an axis disposed in the span-wise direction. The most common radial-inflow turbine applications are turbochargers for internal combustion engines, natural gas, diesel, and gasoline powered units. The advantage of a turbocharger is that it compresses the air, thus letting the engine squeeze more air into a cylinder, and more air means that more fuel can be added. Applications of turbo expanders in the chemical industry abound in the petrochemical and chemical industries. Turbo expanders using radial-inflow turbines have a much higher ruggedness than turbo expanders using axial-flow turbines. The radial-inflow turbine for gas turbine application is basically a centrifugal compressor with reversed flow and opposite rotation. The performance of the radial-inflow turbine is being investigated with increased interest by the transportation and chemical industries. In the petrochemical industry, it is used in expander designs, gas liquefaction expanders and other cryogenic systems. The radial-inflow turbine’s greatest advantage is that the work produced by a single stage is equivalent to that of two or more stages in an axial turbine. Its cost is also much lower than that of a single- or multi-stage axial-flow turbine. The configurations and designs of the two types of radial-inflow turbine (cantilever and mixed-flow) are described. The thermodynamic and aerodynamic principles governing a radial-inflow turbine are summarized. The design and performance of a radial-inflow turbine are discussed. The potential problems (erosion; exducer blade vibration; noise) and types of losses in a radial-inflow turbine are described. Applications of radial-inflow turbines (e.g. turbochargers) are discussed.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

334

DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002.

Unknown

2002-03-31T23:59:59.000Z

335

Effect of residual elements on high performance nickel base superalloys for gas turbines and strategies for manufacture  

Science Journals Connector (OSTI)

The need for better gas turbine operating efficiency and reliability has resulted in tightening of specification and acceptance standards. It has been realized that some elements even at trace level, can have ...

O. P. Sinha; M. Chatterjee; V. V. R. S. Sarma; S. N. Jha

2005-07-01T23:59:59.000Z

336

Improving fatigue strength by producing residual stresses on surface of parts of gas-turbine engines using processing treatments  

Science Journals Connector (OSTI)

The paper deals with a comparison of results of measuring residual stresses and with the study of their ... effect on the fatigue strength of parts of gas-turbine engines after finish treatments by grinding, poli...

M. G. Yakovlev

2014-07-01T23:59:59.000Z

337

Certain peculiarities of Zr?Cr?N coatings on steel blades of a gas-turbine engine compressor  

Science Journals Connector (OSTI)

The properties of compressor blades of a helicopter gas-turbine engine with an experimental ionplasma coating Zr? ... -resistant, and mitigate the dependence of their residual properties on the amplitude and the ...

V. A. Styazhkin; A. A. Kopylov; S. Ya. Paleeva; Yu. G. Veksler…

338

Analysis of design and part load performance of micro gas turbine/organic Rankine cycle combined systems  

Science Journals Connector (OSTI)

This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several differe...

Joon Hee Lee; Tong Seop Kim

2006-09-01T23:59:59.000Z

339

The development of control strategy for solid oxide fuel cell and micro gas turbine hybrid power system in ship application  

Science Journals Connector (OSTI)

A solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid power system is a newly developed and promising power technology for ship power systems. Compared to conventional power plants on commercial sh...

Jiqing He; Peilin Zhou; David Clelland

2014-12-01T23:59:59.000Z

340

Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine  

Science Journals Connector (OSTI)

Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation different working fluids and ORC conditions have been analyzed in order to evaluate the best configuration. The investigations have been performed by application of improved thermodynamic and process analysis tools, which consider the real gas behavior of the analyzed fluids. The results show that by combined operation of the solar thermal gas turbine and the ORC, the combined cycle efficiency is approximately 4%-points higher than in the solar-thermal gas turbine cycle.

R Braun; K Kusterer; T Sugimoto; K Tanimura; D Bohn

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced industrial gas turbine technology readiness demonstration. Quarterly technical progress report No. 12, 1 December 1979-29 February 1980  

SciTech Connect

The component technology base required for improved industrial gas turbine conversion efficiency is discussed. Specific goals are to demonstrate the high-pressure compressor and turbine cooling technologies required to achieve industrial gas turbine efficiencies of 34 to 36% simple cycle and 45 to 48% in combined cycle operation while reducing the number of compressor and turbine parts 80% over state-of-the-art units. The approach involves combining some of the most advanced aircraft turbine cooling and high-pressure compressor technology with the simplicity and ruggedness required of industrial engines to achieve not only improved performance, but also increased durability and low initial cost. The program currently consists of two phases. Phase I, which has been completed, included the conceptual definition of an industrial gas turbine capable of meeting the above goals and the aerothermodynamic designs of compressor and turbine component test rigs. Phase II, which is in progress, consists of component validation testing of the high-pressure compressor and turbine cooling designs which evolved in Phase I. During this quarter, work continued on Phase II, Task III - Compressor Rig Assembly and Test. Assembly of the compressor rig has been completed and final preparation of the rig for transporting to the test facility is in progress.

none,

1980-03-20T23:59:59.000Z

342

Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques  

Science Journals Connector (OSTI)

This study proposes a model-based robust fault detection and isolation (RFDI) method with hybrid structure. Robust detection and isolation of the realistic faults of an industrial gas turbine in steady-state conditions is mainly considered. For residual ... Keywords: Industrial gas turbine, Local linear model tree (LOLIMOT), Local linear neuro-fuzzy network, Model error modelling, Neural network, Robust fault detection and isolation

Hasan Abbasi Nozari; Mahdi Aliyari Shoorehdeli; Silvio Simani; Hamed Dehghan Banadaki

2012-08-01T23:59:59.000Z

343

Test results of low NO[sub x] catalytic combustors for gas turbines  

SciTech Connect

Catalytic combustion is an ultralow NO[sub x] combustion method, so it is expected that this method will be applied to a gas turbine combustor, However, it is difficult to develop a catalytic combustor because catalytic reliability at high temperature is still insufficient. To overcome this difficulty, the authors designed a catalytic combustor in which premixed combustion was combined. By this device, it is possible to obtain combustion gas at a combustion temperature of 1,300 C while keeping the catalytic temperature below 1,000 C. After performing preliminary tests using LPG, the authors designed two types of combustor for natural gas with a capacity equivalent to one combustor used in a 20 MW class multican-type gas turbine. Combustion tests were conducted at atmospheric pressure using natural gas. As a result, it was confirmed that a combustor in which catalytic combustor segments were arranged alternately with premixing nozzles could achieve low NO[sub x] and high combustion efficiency in the range from 1,000 C to 1,300 C of the combustor exit gas temperature.

Ozawa, Y.; Hirano, J.; Sato, M. (Central Research Inst. of Electric Power Industry, Kanagawa (Japan)); Saiga, M.; Watanabe, S. (Kansai Electric Power Co., Inc., Hyogo (Japan))

1994-07-01T23:59:59.000Z

344

Proceedings of the Department of Energy advanced gas turbine central power systems workshop  

SciTech Connect

The basic objective of the DOE Central Power Systems group is the development of technology for increasing the use of coal in central station electric power generation in an economical and environmentally acceptable manner. The two major research and development areas of this program are the Open Cycle Gas Turbine System and the Closed Cycle Gas Turbine System. Recognizing that the ultimate success of the DOE program is measured by end-user acceptance of the technology developed, the workshop was held to obtain utility industry comments and suggestions on the development of these systems and their potential use by electric power utilities. Representatives of equipment manufacturers, architect and engineering firms, and universities were also invited as participants to provide a comprehensive review of the technology development and implementation process. The 65 participants and observers examined the following topics: technical considerations of the Open Cycle and of the Closed Cycle Gas Turbine program; commercialization of both systems; and regulatory impacts on the development of both systems. Each group evaluated the existing program, indicating R and D objectives that they supported and cited recommendations for modifications and expansion of future R and D work.

D'Angelo, S. (ed.)

1980-04-01T23:59:59.000Z

345

Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype  

Science Journals Connector (OSTI)

In this paper, a model-based procedure exploiting analytical redundancy for the detection and isolation of faults on a gas turbine process is presented. The main point of the present work consists of exploiting system identification schemes in connection with observer and filter design procedures for diagnostic purpose. Linear model identification (black-box modelling) and output estimation (dynamic observers and Kalman filters) integrated approaches to fault diagnosis are in particular advantageous in terms of solution complexity and performance. This scheme is especially useful when robust solutions are considered for minimise the effects of modelling errors and noise, while maximising fault sensitivity. A model of the process under investigation is obtained by identification procedures, whilst the residual generation task is achieved by means of output observers and Kalman filters designed in both noise-free and noisy assumptions. The proposed tools have been tested on a single-shaft industrial gas turbine prototype model and they have been evaluated using non-linear simulations, based on the gas turbine data.

Silvio Simani; Cesare Fantuzzi

2006-01-01T23:59:59.000Z

346

Development of gas turbine combustor fed with bio-fuel oil  

SciTech Connect

Considering the increasing interest in the utilization of biofuels derived from biomass pyrolysis, ENEL/CRT carried out some experimental investigations on feasibility of biofuels utilization in the electricity production systems. The paper considers the experimental activity for the development and the design optimization of a gas turbine combustor suitable to be fed with biofuel oil, on the basis of the pressurized combustion performance obtained in a small gas turbine combustor fed with bio-fuel oil and ethanol/bio-fuel oil mixtures. Combustion tests were performed using the combustion chamber of a 40 kWe gas turbine. A small pressurized rig has been constructed including a nozzle for pressurization and a heat recovering combustion air preheating system, together with a proper injection system consisting of two dual fuel atomizers. Compressed air allowed a good spray quality and a satisfactory flame instability, without the need of a pilot frame, also when firing crude bio-fuel only. A parametric investigation on the combustion performance has been performed in order to evaluate the effect of fuel properties, operating conditions and injection system geometry, especially as regards CO and NO{sub x} emissions and smoke index.

Ardy, P.L.; Barbucci, P.; Benelli, G. [ENEL SpA R& D Dept., Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

347

16 - Ultra-low nitrogen oxides (NOx) emissions combustion in gas turbine systems  

Science Journals Connector (OSTI)

Abstract: The historical development of gas turbine low \\{NOx\\} combustion from the pioneering NASA work in the early 1970s to the present generation of ultra-low \\{NOx\\} industrial gas turbine combustors is reviewed. The principles of operation of single digit ultra-low \\{NOx\\} gas turbine combustion for industrial applications are outlined. The review shows the potential has been demonstrated by several investigators using different flame stabilizers for \\{NOx\\} to be reduced to 1 ppm at 1700 K, 2 ppm at 1800 K and 3–4 ppm at 1900 K with no influence of operating pressure and with a practical operating flame stability margin. Under these conditions it is shown that no thermal \\{NOx\\} should occur and all the \\{NOx\\} is formed by the prompt \\{NOx\\} mechanisms. The elimination of thermal \\{NOx\\} makes the \\{NOx\\} emissions independent of residence time or reference velocity and independent of pressure. Also there is no influence of air inlet temperature for the same flame temperature. Where legislation requires emissions to be as low as can be achieved, emissions below 4 ppm in production engines are current technology and this review shows the potential to get even lower than this in the future.

G.E. Andrews

2013-01-01T23:59:59.000Z

348

Dynamic pressure as a measure of gas turbine engine (GTE) performance  

Science Journals Connector (OSTI)

Utilizing in situ dynamic pressure measurement is a promising novel approach with applications for both control and condition monitoring of gas turbine-based propulsion systems. The dynamic pressure created by rotating components within the engine presents a unique opportunity for controlling the operation of the engine and for evaluating the condition of a specific component through interpretation of the dynamic pressure signal. Preliminary bench-top experiments are conducted with dc axial fans for measuring fan RPM, blade condition, surge and dynamic temperature variation. Also, a method, based on standing wave physics, is presented for measuring the dynamic temperature simultaneously with the dynamic pressure. These tests are implemented in order to demonstrate the versatility of dynamic pressure-based diagnostics for monitoring several different parameters, and two physical quantities, dynamic pressure and dynamic temperature, with a single sensor. In this work, the development of a dynamic pressure sensor based on micro-electro-mechanical system technology for in situ gas turbine engine condition monitoring is presented. The dynamic pressure sensor performance is evaluated on two different gas turbine engines, one having a fan and the other without.

G Rinaldi; I Stiharu; M Packirisamy; V Nerguizian; R Jr Landry; J-P Raskin

2010-01-01T23:59:59.000Z

349

LASER STABILIZATION FOR NEAR ZERO NO{sub x} GAS TURBINE COMBUSTION SYSTEMS  

SciTech Connect

Historically, the development of new industrial gas turbines has been primarily driven by the intent to achieve higher efficiency, lower operating costs and lower emissions. Higher efficiency and lower cost is obtained through higher turbine operating temperatures, while reduction in emissions is obtained by extending the lean operating limit of the combustor. However reduction in the lean stability limit of operation is limited greatly by the chemistry of the combustion process and by the occurrence of thermo-acoustic instabilities. Solar Turbines, CFD Research Corporation, and Los Alamos National Laboratory have teamed to advance the technology associated with laser-assisted ignition and flame stabilization, to a level where it could be incorporated onto a gas turbine combustor. The system being developed is expected to enhance the lean stability limit of the swirl stabilized combustion process and assist in reducing combustion oscillations. Such a system has the potential to allow operation at the ultra-lean conditions needed to achieve NO{sub x} emissions below 5 ppm without the need of exhaust treatment or catalytic technologies. The research effort was focused on analytically modeling laser-assisted flame stabilization using advanced CFD techniques, and experimentally demonstrating the technology, using a solid-state laser and low-cost durable optics. A pulsed laser beam was used to generate a plasma pool at strategic locations within the combustor flow field such that the energy from the plasma became an ignition source and helped maintain a flame at ultra lean operating conditions. The periodic plasma generation and decay was used to nullify the fluctuations in the heat release from the flame itself, thus decoupling the heat release from the combustor acoustics and effectively reducing the combustion oscillations. The program was built on an existing technology base and includes: extending LANL's existing laser stabilization experience to a sub-scale combustor rig, performing and validating CFD predictions, and ultimately conducting a full system demonstration in a multi-injector combustion system at Solar Turbines.

Vivek Khanna

2002-09-30T23:59:59.000Z

350

Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell–gas turbine systems  

Science Journals Connector (OSTI)

Design performances of the hybrid solid oxide fuel cell (SOFC)–gas turbine (GT) system have been investigated. A pressurized system and an indirectly heated ambient pressure system were analyzed and their performances were compared. In the baseline layout, the basic performance characteristics of the two system configurations were analyzed, with the cell operation temperature and the pressure ratio as the main design parameters. The pressurized system exhibits a better efficiency owing to not only the higher cell voltage but also more effective utilization of gas turbine, i.e., a larger GT power contribution due to a higher turbine inlet temperature. Independent setting of the turbine inlet temperature was simulated by using the additional fuel supply as well as the air bypass. Increasing the pressure ratio of the gas turbine hardly improves the system efficiency, but the efficiency becomes less sensitive to the turbine inlet temperature. In the ambient pressure system, the available design parameter range is much reduced due to the limit on the recuperator temperature. In particular, design of the ambient pressure hybrid system with a gas turbine of a high pressure ratio does not seem quite feasible because the system efficiency that can be achieved at the possible design conditions is even lower than the efficiency of the SOFC only system.

S.K. Park; T.S. Kim

2006-01-01T23:59:59.000Z

351

Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization  

Science Journals Connector (OSTI)

The performance of Natural Gas Processing Plants (NGPPs) can be enhanced with the integration of Combined Cooling, Heating and Power (CCHP) generation schemes. This paper analyzes the integration of a trigeneration scheme within a NGPP, that utilizes waste heat from gas turbine exhaust gases to generate process steam in a Waste Heat Recovery Steam Generator (WHRSG). Part of the steam generated is used to power double-effect water–lithium bromide (H2O–LiBr) absorption chillers that provide gas turbine compressor inlet air-cooling. Another portion of the steam is utilized to meet part furnace heating load, and supplement plant electrical power in a combined regenerative Rankine cycle. A detailed techno-economic analysis of scheme performance is presented based on thermodynamic predictions obtained using Engineering Equation Solver (EES). The results indicate that the trigeneration system could recover 79.7 MW of gas turbine waste heat, 37.1 MW of which could be utilized by three steam-fired H2O–LiBr absorption chillers to provide 45 MW of cooling at 5 °C. This could save approximately 9 MW of electric energy required by a typical compression chiller, while providing the same amount of cooling. In addition, the combined cycle generates 22.6 MW of additional electrical energy for the plant, while process heating reduces furnace oil consumption by 0.23 MSCM per annum. Overall, the trigeneration scheme would result in annual natural gas fuel savings of approximately 1879 MSCM, and annual operating cost savings of approximately US$ 20.9 million, with a payback period of 1 year. This study highlights the significant economical and environmental benefits that could be achieved through implementation of the proposed integrated cogeneration scheme in NGPPs, particularly in elevated ambient temperature and humidity conditions such as encountered in Middle East facilities.

Sahil Popli; Peter Rodgers; Valerie Eveloy

2012-01-01T23:59:59.000Z

352

Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines  

SciTech Connect

Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

Yiguang Ju; Frederick Dryer

2009-02-07T23:59:59.000Z

353

Advanced combustion technologies for gas turbine power plants  

SciTech Connect

Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric coefficients were determined for Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} ceramics.

Vandsburger, U. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical Engineering; Roe, L.A. [Arkansas Univ., Fayetteville, AR (United States). Dept. of Mechanical Engineering; Desu, S.B. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

1995-12-31T23:59:59.000Z

354

Improving a Pre-Combustion CCS Concept in Gas Turbine Combined Cycle for CHP Production  

Science Journals Connector (OSTI)

Abstract This paper describes modifications to improve the feasibility of a pre-combustion CCS concept for a gas turbine combined cycle. A natural gas-fired greenfield combined heat and power (CHP) plant equipped with pre-combustion capture was used as a base case, for which various improvement options were identified, assessed and selected. The base case was modified using the selected improvement options, after which the investment costs were re-evaluated. The results showed that the investment cost can be reduced with 8% by excluding the pre-reformer and the low temperature water-gas-shift reactor from the reforming process. The exclusion of the pre-reformer did not affect the performance of the plant, but the exclusion of the low temperature water-gas-shift reactor led to higher CO2 emissions.

Marjut S. Suomalainen; Antti Arasto; Sebastian Teir; Sari Siitonen

2013-01-01T23:59:59.000Z

355

Fuel cell–gas turbine hybrid system design part II: Dynamics and control  

Science Journals Connector (OSTI)

Abstract Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P–I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

Dustin McLarty; Jack Brouwer; Scott Samuelsen

2014-01-01T23:59:59.000Z

356

Summary of research and development effort on air and water cooling of gas turbine blades  

SciTech Connect

The review on air- and water-cooled gas turbines from the 1904 Lemale-Armengaud water-cooled gas turbine, the 1948 to 1952 NACA work, and the program at GE indicates that the potential of air cooling has been largely exploited in reaching temperatures of 1100/sup 0/C (approx. 2000/sup 0/F) in utility service and that further increases in turbine inlet temperature may be obtained with water cooling. The local heat flux in the first-stage turbine rotor with water cooling is very high, yielding high-temperature gradients and severe thermal stresses. Analyses and tests indicate that by employing a blade with an outer cladding of an approx. 1-mm-thick oxidation-resistant high-nickel alloy, a sublayer of a high-thermal-conductivity, high-strength, copper alloy containing closely spaced cooling passages approx. 2 mm in ID to minimize thermal gradients, and a central high-strength alloy structural spar, it appears possible to operate a water-cooled gas turbine with an inlet gas temperature of 1370/sup 0/C. The cooling-water passages must be lined with an iron-chrome-nickel alloy must be bent 90/sup 0/ to extend in a neatly spaced array through the platform at the base of the blade. The complex geometry of the blade design presents truly formidable fabrication problems. The water flow rate to each of many thousands of coolant passages must be metered and held to within rather close limits because the heat flux is so high that a local flow interruption of only a few seconds would lead to a serious failure.Heat losses to the cooling water will run approx. 10% of the heat from the fuel. By recoverying this waste heat for feedwater heating in a command cycle, these heat losses will give a degradation in the power plant output of approx. 5% relative to what might be obtained if no cooling were required. However, the associated power loss is less than half that to be expected with an elegant air cooling system.

Fraas, A.P.

1980-03-01T23:59:59.000Z

357

A Carbon Dioxide Gas Turbine Direct Cycle with Partial Condensation for Nuclear Reactors  

SciTech Connect

A carbon dioxide gas turbine power generation system with a partial condensation cycle has been proposed for thermal and fast nuclear reactors, in which compression is done partly in the liquid phase and partly in the gas phase. This cycle achieves higher cycle efficiency than a He direct cycle mainly due to reduced compressor work of the liquid phase and of the carbon dioxide real gas effect, especially in the vicinity of the critical point. If this cycle is applied to a thermal reactor, efficiency of this cycle is about 55% at a reactor outlet temperature of 900 deg. C and pressure of 12.5 MPa, which is higher by about 10% than a typical helium direct gas turbine cycle plant (PBMR) at 900 deg. C and 8.4 MPa; this cycle also provides comparable cycle efficiency at the moderate core outlet temperature of 600 deg. C with that of the helium cycle at 900 deg. C. If this cycle is applied to a fast reactor, it is anticipated to be an alternative to liquid metal cooled fast reactors that can provide slightly higher cycle efficiency at the same core outlet temperature; it would eliminate safety problems, simplify the heat transport system and simplify plant maintenance. A passive decay heat removal system is realized by connecting a liquid carbon dioxide storage tank with the reactor vessel and by supplying carbon dioxide gasified from the tank to the core in case of depressurization event. (authors)

Yasuyoshi Kato; Takeshi Nitawaki; Yoshio Yoshizawa [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550 (Japan)

2002-07-01T23:59:59.000Z

358

Development of hot corrosion resistant coatings for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Carbon dioxide emission reductions are being sought worldwide to mitigate climate change. These need to proceed in parallel with optimisation of thermal efficiency in energy conversion systems on economic grounds to achieve overall sustainability. The use of renewable energy is one strategy being adopted to achieve these needs; with one route being the burning of biomass and waste derived fuels in the gas turbines of highly efficient, integrated gasification combined cycle (IGCC) electricity generating units. A major factor to be taken into account with gas turbines using such fuels, compared with natural gas, is the potentially higher rates of hot corrosion caused by molten trace species which can be deposited on hot gas path components. This paper describes the development of hot corrosion protective coatings for such applications. Diffusion coatings were the basis for coating development, which consisted of chemical vapour deposition (CVD) trials, using aluminising and single step silicon-aluminising processes to develop new coating structures on two nickel-based superalloys, one conventionally cast and one single crystal (IN738LC and CMSX-4). These coatings were characterised using SEM/EDX analysis and their performance evaluated in oxidation and hot corrosion screening tests. A variant of the single step silicon-aluminide coating was identified as having sufficient oxidation/hot corrosion resistance and microstructural stability to form the basis for future coating optimisation.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

359

High pressure test results of a catalytically assisted ceramic combustor for a gas turbine  

SciTech Connect

A catalytically assisted ceramic combustor for a gas turbine was designed to achieve low NOx emission under 5 ppm at a combustor outlet temperature over 1300 C. This combustor is composed of a burner system and a ceramic liner behind the burner system. The burner system consist of 6 catalytic combustor segments and 6 premixing nozzles, which are arranged in parallel and alternately. The ceramic liner is made up of the layer of outer metal wall, ceramic fiber, and inner ceramic tiles. Fuel flow rates for the catalysts and the premixing nozzles are controlled independently. Catalytic combustion temperature is controlled under 1000 C, premixed gas is injected from the premixing nozzles to the catalytic combustion gas and lean premixed combustion over 1300 C is carried out in the ceramic liner. This system was designed to avoid catalytic deactivation at high temperature and thermal and mechanical shock fracture of the honeycomb monolith of catalyst. A combustor for a 10 MW class, multican type gas turbine was tested under high pressure conditions using LNG fuel. Measurements of emission, temperature, etc. were made to evaluate combustor performance under various combustion temperatures and pressures. This paper presents the design features and the test results of this combustor.

Ozawa, Y.; Tochihara, Y.; Mori, N.; Yuri, I. [Central Research Inst. of Electric Power Industry, Yokosuka, Kanagawa (Japan); Kanazawa, T.; Sagimori, K. [Kansai Electric Power Co., Inc., Amagasaki, Hyogo (Japan)

1999-07-01T23:59:59.000Z

360

14th Annual international meeting of wind turbine test stations: Proceedings  

SciTech Connect

These proceedings are of the 14th Annual International Meeting of Test Stations. As the original charter states these meetings are intended to be an international forum for sharing wind turbine testing experiences. By sharing their experiences they can improve testing skills and techniques. As with all new industries the quality of the products is marked by how well they learn from their experiences and incorporate this learning into the next generation of products. The test station`s role in this process is to provide accurate information to the companies they serve. This information is used by designers to conform and improve their designs. It is also used by certification agencies for confirming the quality of these designs. By sharing of experiences they are able to accomplished these goals, serve these customers better and ultimately improve the international wind energy industry.

Not Available

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Real-time estimation of gas turbine engine damage using a control-based Kalman filter algorithm  

SciTech Connect

In this paper a second-generation Kalman filter algorithm is described that has sufficient accuracy and response for real-time detection and estimation of gas turbine engine gas path damage caused by normal wear, mechanical failures, and ingestion of foreign objects. The algorithm was developed for in-flight operation of aircraft engines but also has application for marine and industrial gas turbines. The control measurement and microcomputer requirements are described. The performance and sensitivity to engine transients and measurement errors is evaluated. The algorithm is demonstrated with actual engine data of ice and bird ingestion tests.

Kerr, L.J.; Nemec, T.S.; Gallops, G.W. (Pratt and Whitney, United Technologies Corp., West Palm Beach, FL (US))

1992-04-01T23:59:59.000Z

362

Study on The Effect of Regenerative System on Power Type Relative Internal Efficiency of Nuclear Steam Turbine  

Science Journals Connector (OSTI)

Nuclear steam turbine use wet steam as working medium, which is unable to determine the enthalpy drop type relative internal efficiency through exhaust enthalpy of steam, but the power type relative internal efficiency avoids this question. This paper introduced the calculate method of power type relative internal efficience, and then took a 900MW nuclear steam turbine for example, calculated the power type relative internal efficiency when the factors of regenerative system are changed. The result shows that when the factors of regenerative system are changed in a large range, the power type relative internal efficiency is nearly changeless, so the effect of regenerative system on relative internal efficiency can be neglected. At last, the independence between relative internal efficiency and ideal cycle heat efficiency is calculated and analyzed.

Yong Li; Chao Wang

2012-01-01T23:59:59.000Z

363

Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow  

DOE Patents (OSTI)

An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

Orosa, John

2014-03-11T23:59:59.000Z

364

DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

Unknown

2002-01-31T23:59:59.000Z

365

An economic analysis of solar hybrid steam injected gas turbine (STIG) plant for Indian conditions  

Science Journals Connector (OSTI)

Abstract Steam injection for power augmentation is one of the significant modifications of gas turbines that has been commercialized for natural gas-fired applications. The primary objective of this work is to demonstrate that the installation of a solar hybrid steam injected gas turbine plant (STIG) for power generation could have a lower installed cost and lower solar levelized tariff compared to the solar-only thermal power plant while producing a comparable energy output. An economic evaluation is presented for the locations Indore and Jaipur in India under constant, variable power and mixed power scenarios. The levelized tariff (LT) of solar hybrid STIG plant ranges 0.24–0.26 $/kWh, and the levelized tariff (solar only) or solar levelized tariff (SLT) of solar STIG plant ranges from 0.29 to 0.4 $/kWh in constant power (CP) and variable power (VP) scenarios. In case of mixed power (MP) scenario, the range of LT varies from 0.16 to 0.21 $/kWh for CP and VP modes basis. In this analysis, size of the solar STIG plant varies from 48 MW to 212 MW based on the steam to air ratio. The IRR and payback period varies between 12%–17% and 6.3–8 years for both CP and VP scenarios at Jaipur and Indore. Sensitivity analysis reports that the performance of the power plants depends, to a large degree, on boundary conditions such as fuel and equipment costs.

A. Immanuel Selwynraj; S. Iniyan; Guy Polonsky; L. Suganthi; Abraham Kribus

2014-01-01T23:59:59.000Z

366

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network (OSTI)

A., Rome, Italy ABSTRACT Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented..., described in Figure 1, 2. The combustion oxygen is carried by a more I I i I' has been used as a design basis. The heater is based on the actual design of a unit built by KTI SpA. The furnace does not include air preheater or steam generation...

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

367

Thermodynamic analysis of a closed-cycle, solar gas-turbine plant  

Science Journals Connector (OSTI)

Thermodynamic analysis of a closed-cycle, Brayton gas-turbine plant with a heat exchanger powered by the sun has been studied. A Brayton cycle is simpler than a Rankine cycle and has an advantage in places where water is scarce and expensive. A simple expression is derived for calculating the efficiency of the cycle in terms of the compression pressure ratio, the pressure loss coefficient and the ratio of the lower to higher temperature in the cycle with the efficiency of various components. The maximum permissible pressure loss coefficient has also been calculated.

P. Gandhidasan

1993-01-01T23:59:59.000Z

368

International Trade in Natural Gas: Golden Age of LNG?  

E-Print Network (OSTI)

The introduction of liquefied natural gas (LNG) as an option for international trade has created a market for natural gas where global prices may eventually be differentiated by the transportation costs between world ...

Du, Y.

369

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents (OSTI)

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

370

Verifying Greenhouse Gas Emissions: Methods to Support International...  

Open Energy Info (EERE)

Greenhouse Gas Emissions: Methods to Support International Climate Agreements AgencyCompany Organization: Board on Atmospheric Sciences and Climate Sector: Energy, Land...

371

Surface Gas Sampling At International Geothermal Area Mexico...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At International Geothermal Area Mexico (Norman, Et Al., 2002) Exploration...

372

Cooled snubber structure for turbine blades  

DOE Patents (OSTI)

A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

2014-04-01T23:59:59.000Z

373

Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine  

Science Journals Connector (OSTI)

Abstract A small-scale combined cooling and power (CCP) system usually serves district air conditioning apart from power generation purposes. The typical system consists of a gas turbine and an exhaust gas-fired absorption refrigerator. The surplus heat of the gas turbine is recovered to generate cooling energy. In this way, the CCP system has a high overall efficiency at the design point. However, the CCP system usually runs under off-design conditions because the users’ demand varies frequently. The operating strategy of the gas turbine will affect the thermodynamic performance of itself and the entire CCP system. The operating strategies for gas turbines include the reducing turbine inlet temperature (TIT) and the compressor inlet air throttling (IAT). A CCP system, consisting of an OPRA gas turbine and a double effects absorption refrigerator, is investigated to identify the effects of different operating strategies. The CCP system is simulated based on the partial-load model of gas turbine and absorption refrigerator. The off-design performance of the CCP system is compared under different operating strategies. The results show that the IAT strategy is the better one. At 50% rated power output of the gas turbine, the IAT operating strategy can increase overall system efficiency by 10% compared with the TIT strategy. In general, the IAT operating strategy is suited for other gas turbines. However, the benefits of IAT should be investigated in the future, when different gas turbine is adopted. This study may provide a new operating strategy of small scale gas turbine to improve the off-design performance of CCP system.

Wei Han; Qiang Chen; Ru-mou Lin; Hong-guang Jin

2015-01-01T23:59:59.000Z

374

E-Print Network 3.0 - automobile gas turbine Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Michigan State University Collection: Engineering 14 Infrasound, the Ear and Wind Turbines Alec N. Salt, Ph.D. Summary: Infrasound, the Ear and Wind Turbines Alec N. Salt,...

375

High-pressure reaction and emissions characteristics of catalytic reactors for gas turbine combustors  

Science Journals Connector (OSTI)

The reaction and emissions characteristics of catalytic reactors comprising noble metal catalysts were investigated using homogeneous mixtures of natural gas and vitiated air at pressures up to 2.9 MPa. The mixture temperatures at inlet ranged from 500 to 700°C and the fuel-air ratio was increased till the exit gas temperature reached about 1200°C. Values of combustion efficiency greater than 99.5% and nitrogen oxides emissions for all catalytic reactors tested were less than 0.2 g NO2/kg fuel (2 ppm (15% 02) ) for all reactors at reactor exit gas temperatures higher than about 1100°C. Combustion efficiency decreased with increasing pressure in the heterogeneous-reaction controlled region, though a pressure increase favored homogeneous, gas phase reactions. Appreciable reactivity deterioration by aging for 1000 h at 1000°C was observed at lower mixture temperatures. A two-stage combustor comprising a conventional flame combustion stage and a catalytic stage was fabricated and its NO,x emissions and performance were evaluated at conditions typical of stationary gas turbine combustor operations. About 80% reduction in NO,x emissions levels compared with flame combustion was attained at 1 \\{MPa\\} pressure and 1180°C exit gas temperature, together with complete hydrocarbon combustion.

S. Hayashi; H. Yamada; K. Shimodaira

1995-01-01T23:59:59.000Z

376

Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines  

SciTech Connect

Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

2007-03-01T23:59:59.000Z

377

DOE-Supported Technology Passes Scale-Up Test Converting CO DOE-Sponsored Research Improves Gas Turbine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

into Valuable Materials into Valuable Materials Publications News Release Release Date: June 17, 2013 DOE-Sponsored Research Improves Gas Turbine Performance DOE Lab Receives Award for Work on Drilling Technology An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy. Photo courtesy of Mikro Systems, Inc. Washington, D.C. - An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy (DOE). The technology - which is expected to contribute to cleaner, more reliable and affordable domestic energy production as well as creating new

378

The gas turbine-modular helium reactor (GT-MHR), high efficiency, cost competitive, nuclear energy for the next century  

SciTech Connect

The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a small passively safe reactor with key technology developments in the US during the last decade: large industrial gas turbines, large active magnetic bearings, and compact, highly effective plate-fin heat exchangers. The GT-MHR is the only reactor concept which provides a step increase in economic performance combined with increased safety. This is accomplished through its unique utilization of the Brayton cycle to produce electricity directly with the high temperature helium primary coolant from the reactor directly driving the gas turbine electrical generator. This cannot be accomplished with another reactor concept. It retains the high levels of passive safety and the standardized modular design of the steam cycle MHTGR, while showing promise for a significant reduction in power generating costs by increasing plant net efficiency to a remarkable 47%.

Zgliczynski, J.B.; Silady, F.A.; Neylan, A.J.

1994-04-01T23:59:59.000Z

379

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network (OSTI)

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

Paris-Sud XI, Université de

380

Thin?film temperature sensors for gas turbine engines: Problems and prospects  

Science Journals Connector (OSTI)

The increasing trend towards high?temperature fuel efficient jet engines has led to the development of complex cooling schemes for the turbine blades. The measurement of temperature of the blade during operation which is accomplished in conventional blade design by embedding wire thermocouples in the blade wall causes serious structural and aerodynamic problems in the case of cooled turbines. In order to meet the requirement of temperature measurement in cooled turbines it is desirable to develop surface?mounted thin?film thermocouples or a resistance thermometer. In the current state of the art of thin?film thermocouples the sensing element consists of 2??m?thick Pt and Pt 10% Rh thin?film elements deposited on the insulating surface of the blades and vanes. The insulator is developed by thermal oxidation of a MCrAlY coating which is deposited on the blade and vane surface in the current state of turbine technology. The understanding of the structural and thermoelectric stability of the sensor elements and of the insulating layer of Al2O3 in the hostile environment of a gas turbine requires an in?depth study of the metallurgical reactions occurring at the thin?film Al2O3 and Al2O3–MCrAlY interfaces and of the corrosive reactions on the surface of the metal film. The work presented in this review addresses the problems associated with obtaining highly adherent and insulating Al2O3 on the MCrAlY surfaces adhesion of the sensor elements thermoelectric stability of the sensors on contamination and finally the development of a corrosion protectioncoating. The desired quality Al2O3 has been grown on NiCoCrAlY?coated nickel?based superalloy substrates by a combination of oxidation treatments. The interface?modified Pt and Pt/Rh films are deposited on the oxide by a dc magnetron sputtering technique. The corrosion protection requirements involve deposition of Si–O–N and Si3N4 graded structures on the sensors by the plasma?assisted chemical vapor deposition process. Details of the electrical and metallurgical characteristics of the device at each stage of the coating/film growth have been analyzed by a number of surface sensitive and bulk analytical techniques.

R. C. Budhani; S. Prakash; R. F. Bunshah

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Navigating the Numbers: Greenhouse Gas Data and International Climate  

Open Energy Info (EERE)

Navigating the Numbers: Greenhouse Gas Data and International Climate Navigating the Numbers: Greenhouse Gas Data and International Climate Policy Jump to: navigation, search Tool Summary Name: Navigating the Numbers: Greenhouse Gas Data and International Climate Policy Agency/Company /Organization: World Resources Institute Sector: Energy, Land Topics: Co-benefits assessment, GHG inventory, Policies/deployment programs Resource Type: Publications Website: pdf.wri.org/navigating_numbers.pdf References: Navigating the Numbers: Greenhouse Gas Data and International Climate Policy[1] Overview "This report examines greenhouse gas (GHG) emissions at the global, national, sectoral, and fuel levels and identifies implications of the data for international cooperation on global climate change. Emissions are assessed within the broader socioeconomic context faced by countries,

382

Erosion-corrosion modelling of gas turbine materials for coal-fired combined cycle power generation  

Science Journals Connector (OSTI)

The development of coal-fired combined cycle power generation systems is receiving considerable worldwide interest. The successful development and commercialisation of these new systems require that all the component parts are manufactured from appropriate materials and that these materials give predictable in-service performance. Corrosion and erosion-corrosion, resulting from coal derived particulates, deposition and gaseous species, have been identified as potential life limiting factors for these systems. Models to predict these modes of materials degradation are under active development. This paper outlines the development and testing of models suitable for use in gas turbine environments. The complexity of the corrosion processes means that an empirical approach to model development is required whereas a more mechanistic approach can be applied to erosion processes. For hot corrosion conditions, statistically based corrosion models have been produced using laboratory tests for two coatings and a base alloy at typical type I and type II hot corrosion temperatures (900 and 700°C). These models use the parameters of alkali sulphate deposition flux and \\{SOx\\} partial pressure (at each temperature and for set \\{HCl\\} partial pressures), to predict the rate of the most likely localised damage associated with hot corrosion reactions. For erosion-corrosion modelling, a series of laboratory tests have been carried out to investigate erosion behaviour in corrosive conditions appropriate to coal-fired gas turbines. Materials performance data have been obtained from samples located in the hot gas path of the Grimethorpe PFBC pilot plant, under well characterised conditions, for testing the corrosion and erosion-corrosion models. The models successfully predict the materials damage observed in the pilot plant environments.

N.J. Simms; J.E. Oakey; D.J. Stephenson; P.J. Smith; J.R. Nicholls

1995-01-01T23:59:59.000Z

383

The effects and characteristics of hydrogen in SNG on gas turbine combustion using a diffusion type combustor  

Science Journals Connector (OSTI)

Abstract Converting coal to natural gas may be one of the alternative solutions for satisfying the demand for natural gas. However, synthetic natural gas (SNG) has not been proven effective in natural gas-fired power plants. In this research, several combustion tests using a diffusion type combustor were conducted to determine the effect of hydrogen content in SNG on gas turbine combustion. Three kinds of SNG with different H2 content up to 3%vol were used for the combustion tests. Even a small amount of hydrogen in SNG affects the flame structure: it shortened the flame length and enlarged the flame angle slightly. However, hydrogen content up to 3% in SNG did not affect the gas turbine combustion characteristics, which are emission performance and combustion efficiency. Due to a similarity with real gas turbine combustor conditions for power generation, a high pressure combustion test helped us verify the ambient pressure combustion tests conducted to determine the effect of hydrogen in SNG. In the high pressure combustion test, the pattern factors were identical even though the hydrogen content was varied from 0% to 3%.

Seik Park; Uisik Kim; Minchul Lee; Sungchul Kim; Dongjin Cha

2013-01-01T23:59:59.000Z

384

Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbines  

SciTech Connect

The objective of this Stage Gate IV project was to test and substantiate the viability of an erosion?resistant nanocoating for application on compressor airfoils for gas turbines in both industrial power generation and commercial aviation applications. To effectively complete this project, the National Energy Technology Laboratory’s Office of Research & Development teamed with MDS Coating Technologies Inc. (MCT), Delta Air Lines ? Technical Operations Division (Delta Tech Ops), and Calpine Corporation. The coating targeted for this application was MCT’s Next Generation Coating, version 4 (NGC?v4 ? with the new registered trademark name of BlackGold®). The coating is an erosion and corrosion resistant composite nanostructured coating. This coating is comprised of a proprietary ceramic?metallic nano?composite construction which provides enhanced erosion resistance and also retains the aerodynamic geometry of the airfoils. The objective of the commercial aviation portion of the project was to substantiate the coating properties to allow certification from the FAA to apply an erosion?resistant coating in a commercial aviation engine. The goal of the series of tests was to demonstrate that the durability of the airfoils is not affected negatively with the application of the NGC v4 coating. Tests included erosion, corrosion, vibration and fatigue. The results of the testing demonstrated that the application of the coating did not negatively impact the properties of the blades, especially fatigue performance – which is of importance in acceptance for commercial aviation applications. The objective of the industrial gas turbine element of the project was to evaluate the coating as an enabling technology for inlet fogging during the operation of industrial gas turbines. Fluid erosion laboratory scale tests were conducted to simulate inlet fogging conditions. Results of these tests indicated that the application of the erosion resistant NGC?v4 nanocoating improved the resistance to simulated inlet fogging conditions by a factor of 10 times. These results gave confidence for a field trial at Calpine’s power plant in Corpus Christi, TX, which commenced in April 2012. This test is still on?going as of November 2013, and the nanocoated blades have accumulated over 13,000 operational hours on this specific power plant in approximately 19 months of operation.

Alman, David; Marcio, Duffles

2014-02-05T23:59:59.000Z

385

Comparative Analysis of Alternative Configurations of the Mercury 50 Recuperated Gas-Turbine-Based Biomass Integrated Gasification Combined Heat and Power (BIGCHP) Plant  

Science Journals Connector (OSTI)

In this paper, several original configurations of the cogeneration system based on different gasification technologies and Mercury 50 recuperated gas turbine are proposed and examined theoretically. ... (14) Another key problem of the successful commercialization of the technology is the commercial availability of reliable and efficient gas turbines (GTs) modified for syngas operation. ... In particular, the paper presents current development status and design challenges being addressed by Siemens Westinghouse Power Corp. for large industrial engines (>200 MW) and by Solar Turbines for smaller engines (Turbine Systems (ATS) program. ...

Jacek Kalina

2011-11-29T23:59:59.000Z

386

Vibration based damage detection of rotor blades in a gas turbine engine  

Science Journals Connector (OSTI)

Abstract This paper describes the problems concerning turbine rotor blade vibration that seriously impact the structural integrity of a developmental aero gas turbine. Experimental determination of vibration characteristics of rotor blades in an engine is very important from fatigue failure considerations. The blades under investigation are fabricated from nickel base super alloy through directionally solidified investment casting process. The blade surfaces are coated with platinum aluminide for oxidation protection. A three dimensional finite element modal analysis on a bladed disk was performed to know the likely blade resonances for a particular design in the speed range of operation. Experiments were conducted to assess vibration characteristics of bladed disk rotor during engine tests. Rotor blade vibrations were measured using non-intrusive stress measurement system, an indirect method of blade vibration measurement utilizing blade tip timing technique. Abnormalities observed in the vibration characteristics of the blade tip timing data measured during engine tests were used to detect the blade damage. Upon disassembly of the engine and subsequent fluorescent penetrant inspection, it was observed that three blades of the rotor assembly were identified to have damaged. These are the blades that exhibited vibration abnormalities as a result of large resonant vibration response while engine tests. Further, fractographic analysis performed on the blades revealed the mechanism of blade failures as fatigue related. The root cause of blade failure is established to be high cycle fatigue from the engine run data history although the blades were put into service for just 6 h of engine operation.

S. Madhavan; Rajeev Jain; C. Sujatha; A.S. Sekhar

2014-01-01T23:59:59.000Z

387

Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques  

Science Journals Connector (OSTI)

This study proposes a model-based robust fault detection and isolation (RFDI) method with hybrid structure. Robust detection and isolation of the realistic faults of an industrial gas turbine in steady-state conditions is mainly considered. For residual generation, a bank of time-delay multilayer perceptron (MLP) models is used, and in fault detection step, a passive approach based on model error modelling is employed to achieve threshold adaptation. To do so, local linear neuro-fuzzy (LLNF) modelling is utilised for constructing error-model to generate uncertainty interval upon the system output in order to make decision whether a fault occurred or not. This model is trained using local linear model tree (LOLIMOT) which is a progressive tree-construction algorithm. Simple thresholding is also used along with adaptive thresholding in fault detection phase for comparative purposes. Besides, another MLP neural network is utilised to isolate the faults. In order to show the effectiveness of proposed RFDI method, it was tested on a single-shaft industrial gas turbine prototype model and has been evaluated based on the gas turbine data. A brief comparative study with the related works done on this gas turbine benchmark is also provided to show the pros and cons of the presented RFDI method.

Hasan Abbasi Nozari; Mahdi Aliyari Shoorehdeli; Silvio Simani; Hamed Dehghan Banadaki

2012-01-01T23:59:59.000Z

388

Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach  

Science Journals Connector (OSTI)

In this paper, a fault detection and isolation (FDI) scheme for an aircraft jet engine is developed. The proposed FDI system is based on the multiple model approach and utilizes dynamic neural networks (DNNs) to accomplish this goal. Towards this end, ... Keywords: Bank of detection and isolation filters, Dual spool gas turbine engine, Dynamic neural networks, Fault diagnosis, Multiple model scheme

Z. N. Sadough Vanini; K. Khorasani; N. Meskin

2014-02-01T23:59:59.000Z

389

A modeling and control approach to advanced nuclear power plants with gas turbines  

Science Journals Connector (OSTI)

Abstract Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies.

Günyaz Ablay

2013-01-01T23:59:59.000Z

390

Characterization of the reactive flow field dynamics in a gas turbine injector using high frequency PIV  

E-Print Network (OSTI)

The present work details the analysis of the aerodynamics of an experimental swirl stabilized burner representative of gas turbine combustors. This analysis is carried out using High Frequency PIV (HFPIV) measurements in a reactive situation. While this information is usually available at a rather low rate, temporally resolved PIV measurements are necessary to better understand highly turbulent swirled flows, which are unsteady by nature. Thanks to recent technical improvements, a PIV system working at 12 kHz has been developed to study this experimental combustor flow field. Statistical quantities of the burner are first obtained and analyzed, and the measurement quality is checked, then a temporal analysis of the velocity field is carried out, indicating that large coherent structures periodically appear in the combustion chamber. The frequency of these structures is very close to the quarter wave mode of the chamber, giving a possible explanation for combustion instability coupling.

Barbosa, Séverine; Ducruix, Sébastien

2008-01-01T23:59:59.000Z

391

Advanced Gas Turbine Systems Research, Technical Quarterly Progress Report. October 1, 1998--December 31, 1998  

SciTech Connect

Major accomplishments during this reporting period by the Advanced Gas Turbine Systems Research (AGTSR) are: AGTSR submitted FY99 program continuation request to DOE-FETC for $4M; AGTSR submitted program and workshop Formation to the Collaborative Advanced Gas Turbine (CAGT) initiative; AGTSR distributed research accomplishment summaries to DOE-FETC in the areas of combustion, aero-heat transfer, and materials; AGTSR reviewed and cleared research papers with the IRB from Arizona State, Cornell, Wisconsin, Minnesota, Pittsburgh, Clemson, Texas and Georgia Tech; AGTSR prepared background material for DOE-FETC on three technology workshops for distribution at the DOE-ATS conference in Washington, DC; AGTSR coordinated two recommendations for reputable firms to conduct an economic impact analysis in support of new DOE gas turbine initiatives; AGTSR released letters announcing the short-list winners/non-winners from the 98RFP solicitation AGTSR updated fact sheet for 1999 and announced four upcoming workshops via the SCIES web page AGTSR distributed formation to EPRI on research successes, active university projects, and workshop offerings in 1999 AGTSR continued to conduct telephone debriefings to non-winning PI's born the 98RFP solicitation AGTSR distributed completed quarterly progress report assessments to the IRB experts in the various technology areas AGTSR provided Formation to GE-Evandale on the active combustion control research at Georgia Tech AGTSR provided information to AlliedSignal and Wright-Pat Air Force Base on Connecticut's latest short-listed proposal pertaining to NDE of thermal barrier coatings AGTSR submitted final technical reports from Georgia Tech - one on coatings and the other on active combustion control - to the HU3 for review and evaluation AGTSR coordinated the format, presentation and review of 28 university research posters for the ATS Annual Review Meeting in November, 1998 AGTSR published a research summary paper at the ATS Annual Review pertaining to the university consortium's activities AGTSR published and presented a paper on the status of ATS catalytic combustion R&D at the RTA/NATO Gas Turbine Combustion Symposium, October 12-16,1998 in Lisbon, Portugal IRE approved a 12-month add-on request from Penn State University to conduct an added research task in their multistage unsteady aerodynamics project AGTSR reviewed a research extension white paper from Clemson University with the IRB to conduct an added task pertaining to their mist/steam cooling research project AGTSR coordinated new research topics with the IR.Band select universities to facilitate R&D roadmapping needs at the Aero-Heat Transfer III workshop in Austin, TX AGTSR distributed FY97 research progress reports to DOE and the XRB; and AGTSR solicited new R&D topics from the IRB experts for the 1999 RFP.

NONE

1999-01-19T23:59:59.000Z

392

Comparison between two optimization strategies for solid oxide fuel cell–gas turbine hybrid cycles  

Science Journals Connector (OSTI)

This paper compares the performance characteristics of a combined power system with solid oxide fuel cell (SOFC) and gas turbine (GT) working under two thermodynamic optimization strategies. Expressions of the optimized power output and efficiency for both the subsystems and the SOFC-GT hybrid cycle are derived. Optimal performance characteristics are discussed and compared in detail through a parametric analysis to evaluate the impact of multi-irreversibilities that take into account on the system behaviour. It is found that there exist certain new optimum criteria for some important design and operating parameters. Engineers should find the methodologies developed in this paper useful in the optimal design and practical operation of complex hybrid fuel cell power plants.

Yingru Zhao; Nilay Shah; Nigel Brandon

2011-01-01T23:59:59.000Z

393

Energy technology expert elicitations: An application to natural gas turbine efficiencies  

Science Journals Connector (OSTI)

Abstract Expert elicitations are critical tools for characterizing technological uncertainty, since historical data on technical progress may not provide a sufficient basis for forecasting future advances. The objectives of this paper are to describe the protocol and results for an expert elicitation on the future performance of gas-turbine-based technologies in the electric power sector and to discuss how these insights relate to the current elicitation literature in energy modeling. Elicitation results suggest that prospective efficiency gains are likely to be slower than historical trends; however, the assessed values are still appreciably higher than the efficiencies used in many energy models. The results also indicate that conducting face-to-face elicitations may be important for minimizing overconfidence and for critically examining reported values, especially when assessing non-central probabilities in the tails of a distribution.

John E. Bistline

2014-01-01T23:59:59.000Z

394

Electrochemical machining process for forming surface roughness elements on a gas turbine shroud  

DOE Patents (OSTI)

The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.

Lee, Ching-Pang (Cincinnati, OH); Johnson, Robert Alan (Simpsonville, SC); Wei, Bin (Mechanicville, NY); Wang, Hsin-Pang (Rexford, NY)

2002-01-01T23:59:59.000Z

395

Turbine exhaust diffuser with a gas jet producing a coanda effect flow control  

DOE Patents (OSTI)

An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

Orosa, John; Montgomery, Matthew

2014-02-11T23:59:59.000Z

396

A new BML-based RANS modelling for the description of gas turbine typical combustion processes  

Science Journals Connector (OSTI)

The work is concentrated on the formulation and validation of integral models within RANS framework for the numerical prediction of the premixed and partially premixed flames occurring in gas turbine combustors. The premixed combustion modelling is based on the BML approach coupled to the mixing transport providing variable equivalence ratio. Chemistry is described by means of ILDM model solving transport equations for reaction progress variables conditioned on the flame front. Multivariate presumed PDF model is used for the turbulence-chemistry interaction treatment. Turbulence is modelled using the second moment closure (SMC) and the standard ?-? model as well. The influence of non-gradient turbulent transport is investigated comparing the gradient diffusion closure and the solution of the scalar flux transport equations. Different model combinations are assessed simulating several premixed and partially premixed flame configurations and comparing results to the experimental data. The proposed model provides good predictions particularly in combination with SMC.

A. Maltsev; A. Sadiki; J. Janicka

2004-01-01T23:59:59.000Z

397

Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources  

Science Journals Connector (OSTI)

Molten carbonate fuel cell (MCFC)/gas turbine (GT) hybrid system has attracted a great deal of research effort due to its higher electricity efficiency. However, its technology has remained at the conceptual level due to incomplete examination of the related issues, challenges and variables. To contribute to the development of system technology, the MCFC/GT hybrid system is analyzed and discussed herein. A qualitative comparison of the two kinds of MCFC/GT hybrid system, indirect and direct, is hindered by the many variables involved. However, the indirect system may be preferred for relatively small-scale systems with the micro-GT. The direct system can be more competitive in terms of system efficiency and GT selection due to the optionality of system layouts as well as even higher GT inlet temperature. System layout is an important factor influencing the system efficiency. The other issues such as GT selection, system pressurization and part-load operation are also significant.

Jung-Ho Wee

2011-01-01T23:59:59.000Z

398

Polycyclic Aromatic Hydrocarbon Emissions from the Combustion of Alternative Fuels in a Gas Turbine Engine  

Science Journals Connector (OSTI)

? Centre of Excellence for Aerospace Particulate Emissions Reduction Research, Missouri University of Science and Technology, Rolla, Missouri 65409, United States ... Within the aviation sector, the development and certification of alternative drop-in fuels are progressing at a rapid pace: a standard specification for aviation fuel containing synthesized hydrocarbons was approved by ASTM in 2009,(4) Hydrogenated esters and fatty acids (HEFA), also often referred to as hydrotreated renewable jet (HRJ), qualified as a 50/50 blend with petroleum Jet A-1 in 2011,(4) and the Commercial Aviation Alternative Fuels Initiative (CAAFI) anticipate fully synthetic Fischer–Tropsch (FT) fuel to qualify in 2012. ... Impact of Alternative Fuels on Emissions Characteristics of a Gas Turbine Engine – Part 1: Gaseous and Particulate Matter Emissions ...

Simon Christie; David Raper; David S. Lee; Paul I. Williams; Lucas Rye; Simon Blakey; Chris W. Wilson; Prem Lobo; Donald Hagen; Philip D. Whitefield

2012-04-25T23:59:59.000Z

399

Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant  

SciTech Connect

This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

Tsai A, Banta L, Tucker D

2010-08-01T23:59:59.000Z

400

Test results of a catalytically assisted combustor for a gas turbine  

Science Journals Connector (OSTI)

A catalytically assisted ceramic combustor for a gas turbine was designed and tested to achieve low \\{NOx\\} emissions. This combustor is composed of a burner and a ceramic liner. The burner consists of an annular preburner, six catalytic combustor segments and six premixing nozzles, which are arranged in parallel and alternately. In this combustor system, catalytic combustion temperature is controlled under 1000 °C, premixed gas is injected from the premixing nozzles to the catalytic combustion gas and lean premixed combustion over 1300 °C is carried out in the ceramic liner. This system was designed to avoid catalyst deactivation at high temperature and thermal shock fracture of the ceramic honeycomb monolith of the catalyst. A 1 MW class combustor was tested using LNG fuel. Firstly, \\{NOx\\} emissions from the preburner were investigated under various pressure conditions. Secondly, two sets of honeycomb cell density catalysts and one set of thermally pretreated catalysts ware applied to the combustor, and combustion tests were carried out under various pressure conditions. As a result, it was found that the main source of \\{NOx\\} was the preburner, and total \\{NOx\\} emissions from the combustor were approximately 4 ppm (at 16% O2) at an adiabatic combustion temperature of 1350 °C and combustor inlet pressure of 1.33 MPa.

Yasushi Ozawa; Yoshihisa Tochihara; Noriyuki Mori; Isao Yuri; Junichi Sato; Koji Kagawa

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thermoplastic strengthening of a gas-turbine engine disk lock joint. Determination of the residual stresses  

Science Journals Connector (OSTI)

1. A unit has been created for investigating thermoplastic strengthening of turbine disk lock grooves on special...

B. A. Kravchenko; G. N. Gutman; L. E. Batrin; V. G. Fokin

1980-09-01T23:59:59.000Z

402

International Oil and Gas Exploration and Development 1991  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Oil and Gas Exploration and Development 1991 November 1993 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, D.C. 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration International Oil and Gas Exploration and Development 1991 iii Contacts International Oil and Gas Exploration and Development 1991 was prepared by the Energy Information Administration (EIA), Office of Oil and Gas, Reserves and Natural Gas Division, Reserves and Production Branch.

403

Performance characteristics of a MW-class SOFC/GT hybrid system based on a commercially available gas turbine  

Science Journals Connector (OSTI)

The ultimate purpose of a SOFC/GT hybrid system is for distributed power generation applications. Therefore, this study investigates the possible extension of a SOFC/GT hybrid system to multi-MW power cases. Because of the matured technology of gas turbines and their commercial availability, it was reasonable to construct a hybrid system with an off-the-shelf gas turbine. Based on a commercially available gas turbine, performance analysis was conducted to find the total appropriate power for the hybrid system with consideration of the maximum allowable cell temperature. In order to maintain high performance characteristics of the hybrid system during part-load operations, it was necessary to find the optimal control strategy for the system according to the change in power required. The results of the performance analysis for part-load conditions showed that supplied fuel and air must be changed simultaneously. Furthermore, in order to prevent performance degradation, it was found that both cell temperature and turbine inlet temperature must be maintained as close as possible to design-point conditions.

Tae Won Song; Jeong Lak Sohn; Tong Seop Kim; Sung Tack Ro

2006-01-01T23:59:59.000Z

404

12th Annual Turkmenistan International Oil and Gas Exhibition | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2th Annual Turkmenistan International Oil and Gas Exhibition 2th Annual Turkmenistan International Oil and Gas Exhibition 12th Annual Turkmenistan International Oil and Gas Exhibition November 15, 2007 - 5:05pm Addthis Remarks as Prepared for Secretary Bodman Good morning ladies and gentlemen. I'm very pleased to be here with you today. Congratulations to our hosts on what appears to be the great success of this 12th annual Turkmenistan International Oil and Gas Exhibition. I understand that this year, for the first time ever, TIOGE is over-subscribed. This shouldn't surprise anyone. World demand for energy will increase by more than 50 percent over the next 25 years, requiring all of us to find significant new supplies and suppliers of energy. An astounding $22 trillion of new investment will be needed between now and 2030 to meet this expected demand.

405

Form:International Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

already exists, you will be sent to a form to edit that page. Create or edit Retrieved from "http:en.openei.orgwindex.php?titleForm:InternationalOilandGasBoard&oldid53132...

406

Numerical prediction of interaction between combustion, acoustics and vibration in gas turbines  

Science Journals Connector (OSTI)

The turbulent flame in the lean combustion regime in a gas turbine combustor generates significant thermo?acoustic instabilities. The flame can amplify fluctuations in the released heat and thus in the acoustic field as well. The induced pressure oscillations will drive vibrations of the combustor walls and burner parts. Stronger fluctuating pressure results in stronger fluctuations in the wall structure. Due to fatigue the remaining life time of the hard ware will be reduced significantly. This paper investigates modeling of acoustic oscillations and mechanical vibrations induced by lean premixed natural gascombustion. The mutual interaction of the combustion processes induced oscillating pressure field in the combustion chamber and induced vibration of the liner walls are investigated with numerical techniques. A partitioned procedure is used here: CFX?10 for the CFD analysis and Ansys?10 for the CSD analysis are coupled to give insight into a correlation between acoustic pressure oscillations and liner vibrations. These results will be compared with the available experimental data. The data are gathered in a purpose built 500 kW/5 bar premixed natural gas test rig.

Artur Pozarlik; Jim B. Kok

2008-01-01T23:59:59.000Z

407

Experimental Investigation into a Packed Bed Thermal Storage Solution for Solar Gas Turbine Systems  

Science Journals Connector (OSTI)

Abstract High temperature thermal storage in randomly packed beds of ceramic particles is proposed as an effective storage solution for Solar Gas Turbine (SGT) cycles in the near term. Numerical modelling of these systems allows for optimised thermal storage designs, but such models must be validated against experimental data. In this work an experimental test programme was conducted to generate high temperature heat transfer data for a packed bed operating over the temperature ranges 350-900 °C and 600-900 °C. These are representative of two potential SGT cycles. Flue gas from a 45 kW LPG burner was used to heat a packed bed of Denstone ceramic pebbles and the testing procedure involved preheating the system to achieve the desired temperature ranges. The fluid and solid temperature profiles in the packed bed were measured in the axial and radial dimensions and are compared to a numerical model with reasonable agreement. Potential modifications to the test facility are described and future testing plans outlined.

P. Klein; T.H. Roos; T.J. Sheer

2014-01-01T23:59:59.000Z

408

Lean burn limit and time to light characteristics of laser ignition in gas turbines  

Science Journals Connector (OSTI)

Abstract This work details a study of laser ignition in a low pressure combustion test rig, representative of an industrial gas turbine (SGT-400, Siemens Industrial Turbomachinery Ltd.) and for the first time investigates the effect of air mass flow rate on combustion characteristics at air/fuel ratios at the lean burn limit. Both the lean burn limit and time taken to light are essential in determining the suitability of a specified air/fuel ratio, especially in multi-chamber ignition applications. Through extension of the lean burn limit and reduction of the time taken to light, the operating window for ignition with regards to the air/fuel ratio can be increased, leading to greater reliability and repeatability of ignition. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using both a standard high energy igniter and a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 1064 nm wavelength. A detailed comparison of the lean burn limit and time taken to light for standard ignition and laser ignition is presented.

J. Griffiths; M. Riley; A. Kirk; A. Borman; J. Lawrence; C. Dowding

2014-01-01T23:59:59.000Z

409

Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System  

SciTech Connect

This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

NONE

1994-12-01T23:59:59.000Z

410

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

411

Gas-dynamic and thermal processes under film cooling end surfaces of a gas-turbine blade bucket  

Science Journals Connector (OSTI)

Results from an investigation of using swirled coolant jets to obtain efficient film cooling of a turbine bucket while minimizing the total losses in it are presented.

V. V. Lebedev

2010-02-01T23:59:59.000Z

412

Development of a dry low-NOx gas turbine combustor for a natural-gas fueled 2MW co-generation system  

SciTech Connect

A dry low-NOx gas turbine combustor has been developed for natural-gas fueled co-generation systems in the power range of 1--4MW. The combustor. called the Double Swirler Combustor, uses the lean premixed combustion to reduce NOx emission. The combustor is characterized by two staged lean premixed combustion with two coaxial annular burners and a simple fuel control system without the complex variable geometry. Substantially low NOx level has been achieved to meet the strict NOx regulation to co-generation systems in Japan. High combustion efficiency has been obtained for a wide operating range. In 1994, Tokyo Gas and Ishikawajima-Harima Heavy Industries initiated a collaborative program to develop a natural-gas fueled low NOx gas turbine engine for new 2MW class co-generation system, named IM270. The Double Swirler Combustor, originally developed by Tokyo Gas, was introduced into the natural gas fueled version of the IM270. Engine test of the first production unit was successfully conducted to confirm substantially low NOx level of less than 15 ppm (O{sub 2} = 16%) with the output power of more than 2MW. Test for the durability and the reliability of the system is being conducted at Tokyo Gas Negishi LNG Terminal in Kanagawa, Japan and successful results have been so far obtained.

Mori, Masaaki; Sato, Hiroshi

1998-07-01T23:59:59.000Z

413

Surface Gas Sampling At International Geothermal Area Mexico (Norman, Et  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At International Geothermal Area Mexico (Norman, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At International Geothermal Area Mexico (Norman, Et Al., 2002) Exploration Activity Details Location International Geothermal Area Mexico Exploration Technique Surface Gas Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Norman (2002) shows that the Cerro Prieto gas analyses collected by Cathy Janik and Alfred Truesdell from1977 to 1998 plot on a C02/N2 condensation

414

Method for estimation of the average local working temperatures and the residual resource of metal coatings of gas-turbine blades  

Science Journals Connector (OSTI)

A new method is proposed for estimation of the average local operating temperatures and the residual service life (resource) of protective MCrAlY metal coatings of gas-turbine blades after a certain time of opera...

P. G. Krukovskii; K. A. Tadlya

2007-05-01T23:59:59.000Z

415

Automatic control systems for gas-turbine units in mini power stations: Testing automation at the stages of design and tuning  

Science Journals Connector (OSTI)

This paper presents the testing automation procedure for automatic control systems of gas-turbine units used as drives in small-size power stations. We substantiate the applicability of mathematical modeling...

B. V. Kavalerov

2013-11-01T23:59:59.000Z

416

Influence of steam injection through exhaust heat recovery on the design performance of solid oxide fuel cell — gas turbine hybrid systems  

Science Journals Connector (OSTI)

This study analyzed the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. Two different ... the effects of injecting steam, generated by recovering

Sung Ku Park; Tong Seop Kim; Jeong L. Sohn

2009-02-01T23:59:59.000Z

417

CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS  

SciTech Connect

This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

2009-11-30T23:59:59.000Z

418

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

419

Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip  

DOE Patents (OSTI)

A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

Campbell, Christian X; Thomaidis, Dimitrios

2014-05-13T23:59:59.000Z

420

COMPARISON OF DETECTION CAPABILITY FOR ACOUSTIC THERMOGRAPHY, VISUAL INSPECTION AND FLUORESCENT PENETRANT INSPECTION ON GAS TURBINE COMPONENTS  

Science Journals Connector (OSTI)

The innovative NDE inspection system Acoustic Thermography is developed with Sonic Infrared (Sonic IR) technology. Since the probability of detection is sensitive to the flaw characteristics the fabricated flaws could not simulated the nature flaws with accuracy. The study is focus on gas turbine blades with service induced fatigue cracks. The detection capability of this innovative NDE inspection system is compared with two traditional NDE methods: Visual Inspection and Fluorescent Penetrant Inspection. POD curves for each technique were generated and compared.

Y. Guo; F. R. Ruhge

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Impact of Alternative Fuels on Emissions Characteristics of a Gas Turbine Engine – Part 1: Gaseous and Particulate Matter Emissions  

Science Journals Connector (OSTI)

Impact of Alternative Fuels on Emissions Characteristics of a Gas Turbine Engine – Part 1: Gaseous and Particulate Matter Emissions ... † Center of Excellence for Aerospace Particulate Emissions Reduction Research, Missouri University of Science and Technology, Rolla, Missouri 65409, United States ... Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. ...

Prem Lobo; Lucas Rye; Paul I. Williams; Simon Christie; Ilona Uryga-Bugajska; Christopher W. Wilson; Donald E. Hagen; Philip D. Whitefield; Simon Blakey; Hugh Coe; David Raper; Mohamed Pourkashanian

2012-08-22T23:59:59.000Z

422

E-Print Network 3.0 - aero gas turbine Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling... tool combines the computational methodologies used to analyze...

423

Turbine-Fact-Sheets | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-High Temperature Thermal Barrier Coatings HiFunda, LLC Hydrogen Turbines SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines Florida Turbine Technologies...

424

Off-design performance of solar Centaur-40 gas turbine engine using Simulink  

Science Journals Connector (OSTI)

In the present study, a Simulink model based on Matlab software is used to calculate the off-design running point for single shaft Centaur 40 power generation gas turbine engine. The off-design calculations comprise two models, the first is the operation during engine starting (from 65% to 100% speed, no load) while the other is the engine operation during the loading (constant speed of 100%). For starting model the baseline parameter is the engine speed while the net power is the baseline parameter in the case of loading operation. Herein, the component characteristics maps, the air and air/fuel mixture properties as functions of temperature and the engine design point parameters are introduced to the calculating program. Because of the lack of real component characteristics, scaling law is followed to adapt these characteristics. The loading operation results are then compared with the field results to check the validity of Simulink model. Also the effects of the ambient temperature on the engine performance parameters at the design condition are investigated.

M.H. Gobran

2013-01-01T23:59:59.000Z

425

Establish Internal Greenhouse Gas Emission Reduction Targets | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Establish Internal Greenhouse Gas Emission Reduction Targets Establish Internal Greenhouse Gas Emission Reduction Targets Establish Internal Greenhouse Gas Emission Reduction Targets October 7, 2013 - 10:24am Addthis Question to Answer What are appropriate GHG emission reduction targets for specific agency programs and sites? Not all administrative units within the agency have the same potential to contribute to agency-level targets. This step aims to help agencies establish what each major administrative unit (e.g. program site) should contribute to the agency goal based on its planned growth trajectory and estimates of its cost and potential to reduce GHG emissions. As illustrated in the figure below, two sites may have equal potential to reduce GHG emissions. But a site expecting significant mission-related growth prior to the 2020 target year may have a lower reduction target

426

Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas  

SciTech Connect

The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.

Geyko, Vasily; Fisch, Nathaniel

2014-02-27T23:59:59.000Z

427

Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems: Part 2: The evaporative gas turbine based system and some discussions  

Science Journals Connector (OSTI)

This is Part 2 of the paper “Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems — Part 1: The desalination unit and its combination with a steam-injected gas turbine power system”. A combined power and water system based on the evaporative gas turbine (EvGT) is studied, and major features such as the fuel saving, power-to-water ratio, energy and exergy utilization, and approaches to performance improvement, are presented and discussed in comparison with STIG- and EvGT- based systems, to further reveal the characteristics of these two types of combined systems. Some of the main results of the paper are: the fuel consumption of water production in STIG-based combined system is, based on reference-cycle method, about 45% of a water-only unit, and that in an EvGT-based system, it is 31–54%; compared with the individual power-only and water-only units, the fuel savings of the two combined systems are 12%–28% and 10%–21%, respectively; a water production gain of more than 15% can be obtained by using a direct-contact gas-saline water heat exchanger to recover the stack heat; and the combined system are more flexible in its power-to-water ratio than currently used dual-purpose systems. Further studies on aspects such as operation, hardware cost, control complexity, and environmental impact, are needed to determine which configuration is more favorable in practice.

Yongqing Wang; Noam Lior

2007-01-01T23:59:59.000Z

428

Dynamic simulation of an oxygen mixed conducting membrane-based gas turbine power cycle for CO2 capture  

Science Journals Connector (OSTI)

This paper investigates the transient behaviour of an oxygen mixed conducting membrane (OMCM)-based gas turbine (GT) power plant. Several operation and material constraints limit the operability of the power plant. For part-load operation two strategies are analysed: (i) reduction in mass flow of air to the GT in conjunction with reduced fuel supply to the afterburner while keeping the turbine exit temperature (TET) constant (TET control strategy), and (ii) reduction of fuel supply to the afterburner at constant air supply to the GT while the TET is allowed to vary (turbine inlet temperature (TIT) control strategy). Simulation reveals that this GT power plant shows rather slow dynamics because of the recirculation of large amount of gas. The OMCM-based GT power plant is compared to a simple GT power plant with respect to design, off-design as well as transient behaviour during load reduction. Information about controlled and manipulated variables in the GT power plant is given for the development of control strategy.

Konrad Eichhorn Colombo; Olav Bolland

2009-01-01T23:59:59.000Z

429

Impermeable Thin Al2O3 Overlay for TBC Protection from Sulfate and Vanadate Attack in Gas Turbines  

SciTech Connect

Current advanced turbine system (ATS) requires thermal barrier coatings (TBCs) on turbine blades and vanes. The TBCs being specified, based on yttria stabilized zirconia (YSZ), have the limited durability for advanced industrial gas turbine applications that have longer durability requirements (30,000 hours versus <10,000 hours), particularly when dirty fuels are burned. Surface deposits (including molten sulfate and vanadate salts) can penetrate into porous TBCs and result in hot corrosion, leading to premature spalling. In the present project, it is planed to deposit a dense overlay Al2O3 on the surface of the YSZ coating to prevent YSZ coating from hot corrosion of deposits derived from combustion of low-grade fuel and air impurities. The dense overlay Al2O3 acts as a barrier to protect TBC and bond coat. The overlay Al2O3 will be deposited on the surface of the thermal barrier coating using physical vapor deposition (PVD) technique and solgel method, respectively. The hot corrosion resistance of the composite Al2O3/YSZ coating will be evaluated. The hot corrosion behavior of the Al2O3/YSZ/NiCrAlY/superalloy system will be compared with the YSZ/NiCrAlY/superalloy system. The corrosion behavior of the sol-gel-modified Al2O3/YSZ system will also be compared with that of the PVD-treated system. The mechanism of hot corrosion will be investigated. The processing-structure-properties relationship of the overlays will be determined. The implementation of the TBC technology is to improve the durability of turbine components and allow the service of turbines in fuels with impurity, which will contribute to the missions and goals of the DOE ''Vision 21'' R&D program in advanced materials, energy efficiency, environment stewardship and energy production.

Mao, Scott X.

2001-11-06T23:59:59.000Z

430

Metallurgical failure analysis for a blade failed in a gas-turbine engine of a power plant  

Science Journals Connector (OSTI)

The failed gas-turbine blades (first stage blades) (type Siemens V94.2 KWU) were acquired from TNB Research Sdn. Bhd: a subsidiary of Malaysian power-generation industry (TNB, Malaysia). The blades were sectioned for metallographic investigations. The microstructural characterization involved use of both optical as well as electron microscopes including application of EPMA technique. The Microstructures were compared for three spots selection i.e. leading edge of the blade (transverse and longitudinal), trailing edge of the blade (transverse and longitudinal), and centre (near the platform of the blade) (transverse and longitudinal). The material properties and behavior at high temperature were interpreted on the basis of the observed microstructures and the phases present in the alloy. The interpretations were related to the operating conditions of the turbine blade; and main cause of failure was found to be creep damage. Recommendations have been made for improved material performance.

Zainul Huda

2009-01-01T23:59:59.000Z

431

Acoustic characterization of a partially-premixed gas turbine model combustor: Syngas and hydrocarbon fuel comparisons  

Science Journals Connector (OSTI)

In this work, the acoustic behavior of a combustion instability in a gas turbine model combustor was investigated as fuel properties, air flow rates, and burner geometry were varied. The dual-swirl burner, developed at DLR Stuttgart by Meier, was operated using syngas (H2/CO), ethylene, propane, and methane. The frequency of the instability was found to vary significantly from 250 to 480 Hz. When the plenum volume and the exhaust pipe length and diameter were changed, the frequencies followed trends similar to a Helmholtz resonator. The variation of fuel type, flame speed, and air flow rate greatly altered the instability frequency and amplitude. These effects are not predicted by Helmholtz or organ tone acoustic theory. Higher frequencies were correlated with larger laminar burning velocities and higher air flow rates. The burner is a forced resonator, in which the flame oscillations couple with the flowfield to create convectively altered Helmholtz resonances. This suggests the need for an improved model of a forced Helmholtz resonator that includes flame properties. Alkane fuels displayed similar acoustic trends, but ethylene varied greatly from methane and propane. Syngas displayed different behavior than hydrocarbon fuels, even when the laminar flame speeds of the fuels were matched between ethylene and a syngas mixture. Flame characteristics such as anchoring, liftoff height, and shape appear to play a major role in the determination of instability strength and presence. With increasing hydrogen-content in the syngas-mixture, the flame transitions from a lifted to a fully anchored flame, resulting in a drastic decrease in the acoustic amplitude associated with non-resonating flames. Rayleigh indices show that flat flames create strong regions of thermo-acoustic coupling compared to axially extended V-shape flames. It is concluded that, in the current burner configuration, integrated-acoustics occur that involve a combination of Helmholtz and convective-mechanisms.

Patton M. Allison; James F. Driscoll; Matthias Ihme

2013-01-01T23:59:59.000Z

432

Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine  

E-Print Network (OSTI)

turbine rotational speeds namely, 2400rpm, 2550rpm and 3000rpm. Interstage aerodynamic measurements with miniature five hole probes are also acquired at these speeds. The aerodynamic data characterizes the flow along the first stage rotor exit, second...

Suryanarayanan, Arun

2010-07-14T23:59:59.000Z

433

Developments of cast superalloys and technology for gas turbine blades in BIAM  

Science Journals Connector (OSTI)

Since 1960's many important subjects relating to cast turbine blades including alloy developments, directional solidification (DS) and single crystal (SC) technique and casting technology for blades have been ...

R. Z. Chen

1995-09-01T23:59:59.000Z

434

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

435

Fuel-Slurry Integrated Gasifier/Gas Turbine (FSIG/GT) Alternative for Power Generation Applied to Municipal Solid Waste (MSW)  

Science Journals Connector (OSTI)

The gas is cleaned to bring the particle content and size as well alkaline concentration within the acceptable limits for injections into standard gas turbines. ... The proper disposal and use of Municipal Solid Wastes (MSW) for power generation remains among the most pressing problems of medium to large cities. ... Bubble sizes and raising velocities through the gasifier bed (Configuration A). ...

Marcio L. de Souza-Santos; Kevin B. Ceribeli

2013-11-22T23:59:59.000Z

436

International Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE)  

E-Print Network (OSTI)

gas turbines, reciprocating engine gensets, macrogrid energy purchases Wind, solar (MW gas turbines, one 3 MW steam turbine, a 1.2 MW solar PVMW gas turbines, one 3 MW steam turbine, and a 1.2 MW solar-

Marnay, Chris

2014-01-01T23:59:59.000Z

437

Component and procedural improvements for the T-62T-40-7 gas turbine in the LCAC fleet  

SciTech Connect

The Sundstrand Power Systems T-62T-40-7 Gas Turbine Auxiliary Power Unit (APU) was adapted from an aircraft-borne APU to a marine application on the US Navy`s Landing Craft Air Cushion (LCAC). Although the LCAC APU experienced less operating time than its aircraft version, the environmental conditions that exist cause unusual wear and component failures. Component and procedural improvements have been developed to extend the reliability of the T-62T-40-7 on board the LCAC.

Ehrhardt, J.P. [Naval Sea System Command, Washington, DC (United States). Amphibious Warfare Program; Spring, S.K. [Naval Surface Warfare Center, Philadelphia, PA (United States). Carderock Div.

1996-04-01T23:59:59.000Z

438

Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels  

SciTech Connect

This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

Srinivasan, Ram

2013-07-31T23:59:59.000Z

439

Hydrogen Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

440

Effect of internal stiffening rings and wall thickness on the structural response of steel wind turbine towers  

Science Journals Connector (OSTI)

Abstract In this paper, the structural response of steel tubular wind turbine towers with various design configurations is analysed using FEM modelling. Towers of various heights between 50 and 250 m are considered and investigated with three different design options as follows: (i) thick walled tower with internal horizontal stiffening rings, (ii) thick walled tower without stiffening rings and (iii) thin walled tower with stiffening rings. Based on this analysis, weight reduction ratios are examined in relation to the horizontal sway and von Mises stress increase ratios in order to identify a more efficient design approach between reducing the wall thickness and adopting internal stiffeners. All studied design solutions satisfy the strength and serviceability requirements as specified by the design codes of practice. In the final part of paper, the dynamic characteristics of these three types of towers have been examined to obtain the natural frequencies and mode shapes. The studied model ignored the mass of nacelle-rotor system and the wind turbines, namely, only the isolated tower was included. Furthermore, the recommendations to avoid resonance for each height case are proposed.

Y. Hu; C. Baniotopoulos; J. Yang

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas turbines internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors  

SciTech Connect

Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards flashback regime. Even a small amount of hydrogen in a fuel blend triggers the onset of flashback by altering the kinetics and thermophysical characteristics of the mixture. Additionally, the presence of hydrogen in the fuel mixture modifies the response of the flame to the global effects of stretch and preferential diffusion. Despite its immense importance in fuel flexible combustor design, little is known about the magnitude of fuel effects on CIVB induced flashback mechanism. Hence, this project investigates the effects of syngas compositions on flashback resulting from combustion induced vortex breakdown. The project uses controlled experiments and parametric modeling to understand the velocity field and flame interaction leading to CIVB driven flashback.

Ahsan Choudhuri

2011-03-31T23:59:59.000Z

442

Investment casting of {gamma}-TiAl-based alloys: Microstructure and data base for gas turbine applications  

SciTech Connect

Investment casting is regarded as an economic processing technology for the production of {gamma}-TiAl based components for gas turbine applications. Near net-shape parts can be cast such that they are free from pores and flaws after adequate `HIP`ping. The inhomogeneous cast microstructure which results from locally varying cooling rates (e.g. in the root and foil of a blade), however, is often retained even after heat-treatments necessary to achieve a balance of properties for a given application. Appropriate modifications of the alloy chemistry may lead to an improved microstructural homogeneity in the cast parts. Data bases of properties (tensile properties, creep, fatigue and rupture strength, fracture and impact toughness, oxidation and corrosion resistance) which are relevant for potential gas turbine applications have been assessed for different cast {gamma}-TiAl alloys with different microstructures. These are compared with corresponding properties of nickel-based and iron-based superalloys {gamma}-TiAl is competing with for substitution.

Wagner, R.; Appel, F.; Dogan, B. [GKSS Research Center, Geesthacht (Germany). Inst. for Materials Research] [and others

1995-12-31T23:59:59.000Z

443

EIA - International Energy Outlook 2009-Gas Exporting Countries Forum: What  

Gasoline and Diesel Fuel Update (EIA)

Gas Exporting Countries Forum: What Is GECF and What Is Its Objective? Gas Exporting Countries Forum: What Is GECF and What Is Its Objective? International Energy Outlook 2009 Gas Exporting Countries Forum: What Is GECF and What Is Its Objective? The Gas Exporting Countries Forum (GECF) was established in 2001, with the objective of generating “tangible cooperation among gas producing and exporting countries.”a In May 2001, 10 countries attended the first Ministerial Meeting of the GECF in Tehran, Iran,band since then it has held ministerial-level meetings almost every year. The membership has fluctuated from year to year, because the forum has had no formal structure, no membership requirements, and no dues.c Topics discussed under the auspices of the GECF have included the structure of the organization, new regulatory policies in consuming countries, development of a natural gas supply and demand model, and various studies to be conducted for the benefit of the membership.d

444

Hot corrosion tests on corrosion resistant coatings developed for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Abstract This paper reports on results of hot corrosion tests carried out on silicon–aluminide coatings developed for hot components of gas turbines burning biomass and waste derived fuel gases. The corrosion tests of the silicon–aluminide coatings, applied to superalloys IN738LC and CMSX-4, each consisted of five 100 h periods; at 700 °C for the type II tests and at 900 °C for the type I tests. Deposits of Cd + alkali and Pb + alkali were applied before each exposure. These deposits had been previously identified as being trace species produced from gasification of biomass containing fuels which after combustion had the potential to initiate hot corrosion in a gas turbine. Additionally, gases were supplied to the furnace to simulate the atmosphere anticipated post-combustion of these biomass derived fuel gases. Results of the type I hot corrosion tests showed that these novel coatings remained in the incubation stage for at least 300 h, after which some of the coating entered propagation. Mass change results for the first 100 h confirmed this early incubation stage. For the type II hot corrosion tests, differences occurred in oxidation and sulphidation rates between the two substrates; the incubation stages for CMSX-4 samples continued for all but the Cd + alkali high salt flux samples, whereas, for IN738LC, all samples exhibited consistent incubation rates. Following both the type I and type II corrosion tests, assessments using BSE/EDX results and XRD analysis confirmed that there has to be remnant coating, sufficient to grow a protective scale. In this study, the novel silicon–aluminide coating development was based on coating technology originally evolved for gas turbines burning natural gas and fossil fuel oils. So in this paper comparisons of performance have been made with three commercially available coatings; a CoCrAlY overlay, a platinum-aluminide diffusion, and triple layer nickel–aluminide/silicon–aluminide-diffusion coatings. These comparisons showed that the novel single-step silicon–aluminide coatings provide equal or superior type II hot corrosion resistance to the best of the commercial coatings.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

445

Ventilation for an enclosure of a gas turbine and related method  

DOE Patents (OSTI)

A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

Schroeder, Troy Joseph (Mauldin, SC); Leach, David (Simpsonville, SC); O'Toole, Michael Anthony (Greenfield Center, NY)

2002-01-01T23:59:59.000Z

446

Recuperative solar-driven multi-step gas turbine power plants  

Science Journals Connector (OSTI)

An analysis on the influence of the recuperator effectiveness in a multi-step solar-driven Brayton engine is presented. The solar collector model includes heat losses from convection and radiation. The Brayton engine includes an arbitrary number of turbines and compressors, regeneration, and several realistic irreversibility sources. It is stated that the combination of both systems makes the evolution of the overall efficiency with the effectiveness of the regenerator not trivial. Such behavior is associated to the losses arising from the coupling of the working fluid with the collector and the surroundings. The overall efficiency admits a simultaneous optimization in regards to the pressure and temperature ratios. When the system is designed to work close to the optimum values of those parameters an increase in the effectiveness of the recuperator is always associated with an increase in the overall optimum efficiency. This holds for configurations from the simplest solarized Brayton up to arrangements with several turbines and compressors.

S. Sánchez-Orgaz; A. Medina; A. Calvo Hernández

2013-01-01T23:59:59.000Z

447

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

448

The evolution of thermal barrier coatings in gas turbine engine applications  

SciTech Connect

Thermal barrier coatings (TBCs) have been used for almost three decades to extend the life of combustors and augmentors and, more recently, stationary turbine components. Plasma-sprayed yttria-stabilized zirconia TBC currently is bill-of-material on many commercial jet engine parts. A more durable electron beam-physical vapor deposited (EB-PVD) ceramic coating recently has been developed for more demanding rotating as well as stationary turbine components. This ceramic EB-PVD is bill-of-material on turbine blades and vanes in current high thrust engine models and is being considered for newer developmental engines as well. To take maximum advantage of potential TBC benefits, the thermal effect of the TBC ceramic layer must become an integral element of the hot section component design system. To do this with acceptable reliability requires a suitable analytical life prediction model calibrated to engine experience. The latest efforts in thermal barrier coatings are directed toward correlating such models to measured engine performance.

Meier, S.M.; Gupta, D.K. (Pratt and Whitney, East Hartford, CT (United States))

1994-01-01T23:59:59.000Z

449

Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation  

Science Journals Connector (OSTI)

Biomass based decentralized power generation using externally fired gas turbine (EFGT) can be a technically feasible option. In this work, thermal performance and sizing of such plants have been analyzed at different cycle pressure ratio (rp = 2?8), turbine inlet temperature (TIT = 1050–1350 K) and the heat exchanger cold end temperature difference (CETD = 200–300 K). It is found that the thermal efficiency of the EFGT plant reaches a maximum at an optimum pressure ratio depending upon the TIT and heat exchanger CETD. For a particular pressure ratio, thermal efficiency increases either with the increase in TIT or with the decrease in heat exchanger CETD. The specific air flow, associated with the size of the plant equipment, decreases with the increase in pressure ratio. This decrease is rapid at the lower end of the pressure ratio (rp < 4) but levels-off at higher rp values. An increase in the TIT reduces the specific air flow, while a change in the heat exchanger CETD has no influence on it. Based on this comparison, the performance of a 100 kW EFGT plant has been analyzed for three sets of operating parameters and a trade-off in the operating condition is reached.

Amitava Datta; Ranjan Ganguly; Luna Sarkar

2010-01-01T23:59:59.000Z

450

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network (OSTI)

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inletElevated Temperature Materials for Power Generation and Propulsion The energy industry is designing of thermomechanical fatigue life of the next generation's Ni-base superalloys are being developed to enhance life

Li, Mo

451

Integrated Gas Analyzer for Complete Monitoring of Turbine Engine Test Cells  

Science Journals Connector (OSTI)

Fourier transform infrared (FT-IR) spectroscopy is proving to be reliable and economical for the quantification of many gas-phase species during testing and development of gas...

Markham, James R; Bush, Patrick M; Bonzani, Peter J; Scire, James J; Zaccardi, Vincent A; Jalbert, Paul A; Bryant, M Denise; Gardner, Donald G

2004-01-01T23:59:59.000Z

452

Category:International Oil and Gas Boards | Open Energy Information  

Open Energy Info (EERE)

Boards Boards Jump to: navigation, search Add a new International Oil and Gas Board Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

453

International oil and gas exploration and development activities  

SciTech Connect

This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

Not Available

1990-10-29T23:59:59.000Z

454

Axial thermal medium delivery tubes and retention plates for a gas turbine rotor  

DOE Patents (OSTI)

In a multi-stage turbine rotor, tubes are disposed in openings adjacent the rotor rim for flowing a thermal medium to rotor buckets and returning spent thermal medium. The tubes have axially spaced lands of predetermined wall thickness with thin-walled tube sections between the lands and of increasing thickness from the forward to the aft ends of the tubes. A pair of retention plates are carried on the aft end face of the aft wheel and straddle the tube and engage against a shoulder on the tube to preclude displacement of the tube in an aft direction.

Mashey, Thomas Charles (Coxsackie, NY)

2002-01-01T23:59:59.000Z

455

The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration  

E-Print Network (OSTI)

-04-86 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 CONCEPT FEASIBILITY AND PROBLEM AREAS Based on the test runs, it is felt that the concept is technica11 y feasible. The turbine was made to self sustain though.... These calculations show the speed required for self sustaining conditions to be ob This paper is based on a research project cu tained. These calcu lations resul ted in the curves rently being conducted by Boyce Engineering Inte presented in Figure 18...

Boyce, M. P.; Meher-Homji, C.; Ford, D.

1981-01-01T23:59:59.000Z