National Library of Energy BETA

Sample records for gas turbine engines

  1. AIAA 20033698 Aircraft Gas Turbine Engine

    E-Print Network [OSTI]

    Stanford University

    AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

  2. Satoshi Hada Department of Gas Turbine Engineering,

    E-Print Network [OSTI]

    Thole, Karen A.

    Satoshi Hada Department of Gas Turbine Engineering, Mitsubishi Heavy Industries, Ltd., Takasago must be prevented by developing envi- ronmentally friendly power plants. Industrial gas turbines play a major role in power generation with modern high temperature gas turbines being applied in the gas

  3. Gas turbine engines with particle traps

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

    1992-01-01

    A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

  4. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    A HYDROGEN FUELED GAS TURBINE ENGINE Peter Therkelsen, Tavisnatural gas fueled gas turbine engine was operated ongas. INTRODUCTION Gas turbine engines designed to operate on

  5. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    jet airplanes. Gas turbines and diesel engines eventuallyof Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MIT

  6. Statistical estimation of multiple faults in aircraft gas turbine engines

    E-Print Network [OSTI]

    Ray, Asok

    415 Statistical estimation of multiple faults in aircraft gas turbine engines S Sarkar, C Rao of multiple faults in aircraft gas-turbine engines, based on a statistical pattern recognition tool called commercial aircraft engine. Keywords: aircraft propulsion, gas turbine engines, multiple fault estimation

  7. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    led to the diesel and turbine engines and the subsequentairplanes. Gas turbines and diesel engines eventually becameand Impact of Diesel Engines and Gas Turbines By Vaclav Smil

  8. Symbolic identification for fault detection in aircraft gas turbine engines

    E-Print Network [OSTI]

    Ray, Asok

    Symbolic identification for fault detection in aircraft gas turbine engines S Chakraborty, S Sarkar and computationally inexpensive technique of component-level fault detection in aircraft gas-turbine engines identification, gas turbine engines, language-theoretic analysis 1 INTRODUCTION The propulsion system of modern

  9. A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY

    E-Print Network [OSTI]

    A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY AND POWER REPORT (FAR) A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY://www.energy.ca.gov/research/index.html. #12;Page 1 A New Gas Turbine Engine Concept For Electricity Generation With Increased

  10. Airfoil for a turbine of a gas turbine engine

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2010-12-21

    An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.

  11. Method for detecting gas turbine engine flashback

    DOE Patents [OSTI]

    Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul

    2012-09-04

    A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.

  12. Combustor assembly in a gas turbine engine

    DOE Patents [OSTI]

    Wiebe, David J; Fox, Timothy A

    2013-02-19

    A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

  13. Airfoil for a gas turbine engine

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2011-05-24

    An airfoil is provided for a turbine of a gas turbine engine. The airfoil comprises: an outer structure comprising a first wall including a leading edge, a trailing edge, a pressure side, and a suction side; an inner structure comprising a second wall spaced from the first wall and at least one intermediate wall; and structure extending between the first and second walls so as to define first and second gaps between the first and second walls. The second wall and the at least one intermediate wall define at least one pressure side supply cavity and at least one suction side supply cavity. The second wall may include at least one first opening near the leading edge of the first wall. The first opening may extend from the at least one pressure side supply cavity to the first gap. The second wall may further comprise at least one second opening near the trailing edge of the outer structure. The second opening may extend from the at least one suction side supply cavity to the second gap. The first wall may comprise at least one first exit opening extending from the first gap through the pressure side of the first wall and at least one second exit opening extending from the second gap through the suction side of the second wall.

  14. Airfoil seal system for gas turbine engine

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  15. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    of Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MITin the 1890s and the gas turbine invented by Frank Whittle

  16. On optimization of sensor selection for aircraft gas turbine engines Ramgopal Mushini

    E-Print Network [OSTI]

    Simon, Dan

    On optimization of sensor selection for aircraft gas turbine engines Ramgopal Mushini Cleveland sets for the problem of aircraft gas turbine engine health parameter estimation. The performance metric for generating an optimal sensor set [3]. 3. Aircraft gas turbine engines An aircraft gas turbine engine

  17. Micro-combustor for gas turbine engine

    DOE Patents [OSTI]

    Martin, Scott M. (Oviedo, FL)

    2010-11-30

    An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

  18. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    The History and Impact of Diesel Engines and Gas Turbines ByThe History and Impact of Diesel Engines and Gas Turbines.engine invented by Rudolf Diesel in the 1890s and the gas

  19. A Channel Model for Wireless Sensor Networks in Gas Turbine Engines

    E-Print Network [OSTI]

    Atkinson, Robert C

    A Channel Model for Wireless Sensor Networks in Gas Turbine Engines K. Sasloglou, I. A. Glover , P.5 GHz) for wireless sensors deployed over the external surfaces of a gas turbine engine is reported turbine engine. I. INTRODUCTION Wireless sensing offers a potential step change in gas turbine engine

  20. Full hoop casing for midframe of industrial gas turbine engine

    DOE Patents [OSTI]

    Myers, Gerald A.; Charron, Richard C.

    2015-12-01

    A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).

  1. Solid fuel combustion system for gas turbine engine

    DOE Patents [OSTI]

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  2. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

  3. Serial cooling of a combustor for a gas turbine engine

    DOE Patents [OSTI]

    Abreu, Mario E. (Poway, CA); Kielczyk, Janusz J. (Escondido, CA)

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  4. Gas turbine engine with radial diffuser and shortened mid section

    DOE Patents [OSTI]

    Charron, Richard C.; Montgomery, Matthew D.

    2015-09-08

    An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.

  5. Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept

    E-Print Network [OSTI]

    Ray, Asok

    307 Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept: aircraft propulsion, gas turbine engines, fault detection and isolation, statistical pattern recognition 1 INTRODUCTION Performance and reliability of aircraft gas turbine engines gradually deteriorate over the service

  6. SHIRTBUTTON-SIZED GAS TURBINES: THE ENGINEERING CHALLENGES OF MICRO HIGH SPEED

    E-Print Network [OSTI]

    Frechette, Luc G.

    SHIRTBUTTON-SIZED GAS TURBINES: THE ENGINEERING CHALLENGES OF MICRO HIGH SPEED ROTATING MACHINERY Alan H. Epstein, Stuart A. Jacobson, Jon M. Protz, Luc G. Fréchette Gas Turbine Laboratory is developing micro-electro-mechanical systems (MEMS)-based gas turbine engines, turbogenerators, and rocket

  7. Experimental study of rotordynamic coefficients of squeeze film dampers of an aircraft gas turbine engine 

    E-Print Network [OSTI]

    Na, Uhn Joo

    1996-01-01

    The rotordynamic coefficients of squeeze film dampers of an aircraft gas turbine engine were investigated experimentally. Rotordynamic model(XLROTOR) for Gas Generator and Power Turbine were constructed. The XLROTOR response plots with changing...

  8. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines

    SciTech Connect (OSTI)

    2009-06-01

    This factsheet describes a research project whose goal is to test and substantiate erosion-resistant (ER) nanocoatings for application on compressor airfoils for gas turbine engines in both industrial gas turbines and commercial aviation.

  9. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  10. Fuel burner and combustor assembly for a gas turbine engine

    DOE Patents [OSTI]

    Leto, Anthony (Franklin Lakes, NJ)

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  11. American Institute of Aeronautics and Astronautics PERFORMANCE INVESTIGATION OF SMALL GAS TURBINE ENGINES

    E-Print Network [OSTI]

    Müller, Norbert

    American Institute of Aeronautics and Astronautics 1 PERFORMANCE INVESTIGATION OF SMALL GAS TURBINE and topped engines. INTRODUCTION Gas turbines are typical power sources used in a wide size range, development, and application of small gas turbines yielding high power density and enabling low-cost air

  12. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    SciTech Connect (OSTI)

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  13. Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION X. C in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor

  14. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2009-09-30

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOEâ??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

  15. Fault detection and isolation in aircraft gas turbine engines. Part 2: validation on a simulation test bed

    E-Print Network [OSTI]

    Ray, Asok

    319 Fault detection and isolation in aircraft gas turbine engines. Part 2: validation of fault detection and isolation (FDI) in aircraft gas turbine engines. The FDI algorithms are built upon,onasimulationtestbed.Thetestbedisbuiltuponanintegratedmodelofageneric two-spool turbofan aircraft gas turbine engine including the engine control system. Keywords: aircraft

  16. FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES

    SciTech Connect (OSTI)

    Don Ferguson; Geo. A. Richard; Doug Straub

    2008-06-13

    In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

  17. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  18. Combustor for a low-emissions gas turbine engine

    DOE Patents [OSTI]

    Glezer, Boris (Del Mar, CA); Greenwood, Stuart A. (San Diego, CA); Dutta, Partha (San Diego, CA); Moon, Hee-Koo (San Diego, CA)

    2000-01-01

    Many government entities regulated emission from gas turbine engines including CO. CO production is generally reduced when CO reacts with excess oxygen at elevated temperatures to form CO2. Many manufactures use film cooling of a combustor liner adjacent to a combustion zone to increase durability of the combustion liner. Film cooling quenches reactions of CO with excess oxygen to form CO2. Cooling the combustor liner on a cold side (backside) away from the combustion zone reduces quenching. Furthermore, placing a plurality of concavities on the cold side enhances the cooling of the combustor liner. Concavities result in very little pressure reduction such that air used to cool the combustor liner may also be used in the combustion zone. An expandable combustor housing maintains a predetermined distance between the combustor housing and combustor liner.

  19. Fuel injector for use in a gas turbine engine

    DOE Patents [OSTI]

    Wiebe, David J.

    2012-10-09

    A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

  20. Axially staged combustion system for a gas turbine engine

    DOE Patents [OSTI]

    Bland, Robert J. (Oviedo, FL)

    2009-12-15

    An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

  1. Gas turbine engine combustor can with trapped vortex cavity

    DOE Patents [OSTI]

    Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.

    2005-10-04

    A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.

  2. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,military aircraft gas turbine engines as well as mar1ne andfeatures. Like the gas turbine engine, the EB·-PVD coater is

  3. TURBINE BURNERS: Engine Performance Improvements;

    E-Print Network [OSTI]

    Heydari, Payam

    the expansion through the turbine for turbojet , turbofan , and stationary - power gas - turbine engines. StudyTURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High/WEIGHT Range highly undesirable Desirable Not Good #12;TURBINE BURNER CONCEPT Turbine burning has advantage

  4. Low pressure cooling seal system for a gas turbine engine

    DOE Patents [OSTI]

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  5. Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine

    E-Print Network [OSTI]

    Peck, Jhongwoo, 1976-

    2003-01-01

    As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

  6. A market and engineering study of a 3-kilowatt class gas turbine generator

    E-Print Network [OSTI]

    Monroe, Mark A. (Mark Alan)

    2003-01-01

    Market and engineering studies were performed for the world's only commercially available 3 kW class gas turbine generator, the IHI Aerospace Dynajet. The objectives of the market study were to determine the competitive ...

  7. Development and assessment of a soot emissions model for aircraft gas turbine engines

    E-Print Network [OSTI]

    Martini, Bastien

    2008-01-01

    Assessing candidate policies designed to address the impact of aviation on the environment requires a simplified method to estimate pollutant emissions for current and future aircraft gas turbine engines under different ...

  8. Traction drive automatic transmission for gas turbine engine driveline

    DOE Patents [OSTI]

    Carriere, Donald L. (Livonia, MI)

    1984-01-01

    A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

  9. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    Turbine Fuel” J. Engr. Gas Turbines and Power, Vol. 127, pp,Test in a Small Gas Turbine,” International Journal ofof Hydrogen in a Small Gas Turbine Combustor,” International

  10. Turbine bucket for use in gas turbine engines and methods for fabricating the same

    SciTech Connect (OSTI)

    Garcia-Crespo, Andres

    2014-06-03

    A turbine bucket for use with a turbine engine. The turbine bucket includes an airfoil that extends between a root end and a tip end. The airfoil includes an outer wall that defines a cavity that extends from the root end to the tip end. The outer wall includes a first ceramic matrix composite (CMC) substrate that extends a first distance from the root end to the tip end. An inner wall is positioned within the cavity. The inner wall includes a second CMC substrate that extends a second distance from the root end towards the tip end that is different than the first distance.

  11. A Silicon-Based Micro Gas Turbine Engine for Power Generation

    E-Print Network [OSTI]

    Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

    2007-01-01

    This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

  12. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,1970, p. 545. R. Krutenat, Gas Turbine Materials ConferenceOVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone

  13. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,FT4, JT9D and other gas turbines, and their use continues toOVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone

  14. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    Test in a Small Gas Turbine,” International Journal ofof Hydrogen in a Small Gas Turbine Combustor,” InternationalL. , 2005, “Using Hydrogen as Gas Turbine Fuel” J. Engr. Gas

  15. An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines

    E-Print Network [OSTI]

    Ibrahim, Zuhair M. A.

    2007-01-01

    Modeling for Gas Turbine Engines," 34th AIAA/ASME/SAE/ASEECombustion Instabilities in Gas Turbine Engines: Operationalcombustion systems in gas-turbine engines. However, as the

  16. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    Lefebvre, A.H. , 1999, Gas Turbine Combustion (2 nd Ed. ),1981, “Hydrogen Combustion Test in a Small Gas Turbine,”Combustion Performance of Hydrogen in a Small Gas Turbine

  17. Off-design performance characteristics of a twin shaft gas turbine engine with regeneration 

    E-Print Network [OSTI]

    Leckie, Todd Stewart

    1984-01-01

    of Advisory Comnittee: Dr. Peter E. Jenkins An analytical srx)el was developed which determines the operating point at various gasifier speeds for a twin shaft gas turbine engine with regeneration. The model also calculates temperatures and pressures thrm... and speed for the compressor 81 82 A4 Non-dQnensional mass flow as a function of pressure ratio for the gasifier turbine 83 A5 Isentropic efficiency as a function of pressure ratio and non-dimensional speed for the gasifier turbine A6 Non...

  18. An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines

    E-Print Network [OSTI]

    Ibrahim, Zuhair M. A.

    2007-01-01

    of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:in Lean Premixed Gas Turbine Combustors," Journal of

  19. Sealing apparatus for airfoils of gas turbine engines

    DOE Patents [OSTI]

    Jones, R.B.

    1998-05-19

    An improved airfoil tip sealing apparatus is disclosed wherein brush seals are attached to airfoil tips with the distal ends of the brush seal fibers sealingly contacting opposing wall surfaces. Embodiments for variable vanes, stators and both cooled and uncooled turbine blade applications are disclosed. 17 figs.

  20. Sealing apparatus for airfoils of gas turbine engines

    DOE Patents [OSTI]

    Jones, Russell B. (San Diego, CA)

    1998-01-01

    An improved airfoil tip sealing apparatus is disclosed wherein brush seals are attached to airfoil tips with the distal ends of the brush seal fibers sealingly contacting opposing wall surfaces. Embodiments for variable vanes, stators and both cooled and uncooled turbine blade applications are disclosed.

  1. Cooling system having reduced mass pin fins for components in a gas turbine engine

    DOE Patents [OSTI]

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  2. Ceramic gas turbine shroud

    DOE Patents [OSTI]

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  3. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  4. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  5. Large Parabolic Dish collectors with small gas-turbine, Stirling engine or photovoltaic power conversion systems

    SciTech Connect (OSTI)

    Gehlisch, K.; Heikal, H.; Mobarak, A.; Simon, M.

    1982-08-01

    A comparison for different solar thermal power plants is presented and demonstrates that the large parabolic dish in association with a gas turbine or a Sterling engine could be a competitive system design in the net power range of 50-1000KW. The important advantages of the Large Parabolic Dish concept compared to the Farm and Tower concept are discussed: concentration ratios up to 5000 and uniform heat flux distribution throughout the day which allow very high receiver temperatures and therefor high receiver efficiency to operate effectively Stirling motors or small gas turbines in the mentioned power range with an overall efficiency of 20 to 30%. The high focal plane concentration leads to the efficient use of ceramic materials for receivers of the next generation, applicable in temperature ranges up to 1,300 /sup 0/C for energy converters. Besides the production of electricity, the system can supply process heat in the temperature range of 100 to 400 /sup 0/C as waste heat from the gas turbo converter and heat at temperature levels from 500 to 900 /sup 0/C (1300 /sup 0/C) directly out of the receiver.

  6. Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines

    SciTech Connect (OSTI)

    Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

    2007-03-01

    Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

  7. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A. (Los Alamos, NM)

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  8. Air-Breathing Propulsion Qualifier Question -2012 A gas turbine jet engine, shown schematically in Figure 1, is operated on a stationary test stand.

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Air-Breathing Propulsion Qualifier Question - 2012 A gas turbine jet engine, shown schematically compressor, a combustion chamber (combustor), a single stage turbine, and an ideally expanded nozzle (nozzle ratio ( C = Tt2 /Tt1 ), what is the turbine stagnation temperature ratio T = Tt4 /Tt3 ? (Suggestion

  9. An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines

    E-Print Network [OSTI]

    Ibrahim, Zuhair M. A.

    2007-01-01

    of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2001. Vol. 123:

  10. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore »are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less

  11. Air/fuel supply system for use in a gas turbine engine

    SciTech Connect (OSTI)

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  12. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    SciTech Connect (OSTI)

    Fergus, Jeffrey W.

    2014-04-12

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatings are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.

  13. Gas Turbine Technology, Part A: Overview, Cycles, and Thermodynamic Performance 

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Focke, A. B.

    1985-01-01

    The growth of cogeneration technology has accelerated in recent years, and it is estimated that fifty percent of the cogeneration market will involve gas turbines. To several energy engineers, gas turbine engines present a new and somewhat...

  14. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air

    DOE Patents [OSTI]

    Bland, Robert J. (Oviedo, FL); Horazak, Dennis A. (Orlando, FL)

    2012-03-06

    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  15. Gas turbine diagnostic system

    E-Print Network [OSTI]

    Talgat, Shuvatov

    2011-01-01

    In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

  16. NOx reduction in gas turbine combustors 

    E-Print Network [OSTI]

    Sung, Nak Won

    1976-01-01

    NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Submitted to the Graduate College of Texas A&M University in partial fullfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Mechanical... Engineering NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Approved as to style and content by: (Chairman of Committe (Head of Department) (Member) August 1976 "40308 (Member) 1 1. 1 ABSTRACT NOx Reduction in Gas Turbine...

  17. Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines

    E-Print Network [OSTI]

    Littlejohn, David

    2008-01-01

    of Engineering for Gas Turbines and Power-Transactions ofInjector for Lean Premixed Gas Turbines D. Littlejohn and R.11. IC ENGINE AND GAS TURBINE COMBUSTION SHORT TITLE: Fuel

  18. Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines

    E-Print Network [OSTI]

    Littlejohn, David

    2008-01-01

    of Engineering for Gas Turbines and Power-Transactions ofCOLLOQUIM 11. IC ENGINE AND GAS TURBINE COMBUSTION SHORTInjector for Lean Premixed Gas Turbines D. Littlejohn and R.

  19. Gas Turbine Emissions 

    E-Print Network [OSTI]

    Frederick, J. D.

    1990-01-01

    Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack...

  20. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  1. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  2. Mid-section of a can-annular gas turbine engine with a cooling system for the transition

    DOE Patents [OSTI]

    Weibe, David J.; Rodriguez, Jose L.

    2015-12-08

    A cooling system is provided for a transition (420) of a gas turbine engine (410). The cooling system includes a cowling (460) configured to receive an air flow (111) from an outlet of a compressor section of the gas turbine engine (410). The cowling (460) is positioned adjacent to a region of the transition (420) to cool the transition region upon circulation of the air flow within the cowling (460). The cooling system further includes a manifold (121) to directly couple the air flow (111) from the compressor section outlet to an inlet (462) of the cowling (460). The cowling (460) is configured to circulate the air flow (111) within an interior space (426) of the cowling (460) that extends radially outward from an inner diameter (423) of the cowling to an outer diameter (424) of the cowling at an outer surface.

  3. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip

    SciTech Connect (OSTI)

    Campbell, Christian X; Thomaidis, Dimitrios

    2014-05-13

    A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

  4. Forecasting and strategic inventory placement for gas turbine aftermarket spares

    E-Print Network [OSTI]

    Simmons, Joshua T. (Joshua Thomas)

    2007-01-01

    This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

  5. Starting of turbine engines

    SciTech Connect (OSTI)

    Shekleton, J.R.

    1990-05-01

    This patent describes a relatively small turbine engine. It comprises: a rotary turbine wheel; a rotary compressor coupled to the turbine wheel; an annular combustor for receiving air from the compressor and fuel from a fuel source combusting the same and providing gases of combustion to the turbine wheel to drive the same; substantially identical main fuel injectors including fuel injecting nozzles angularly spaced about the compressor; fuel and air from the compressor being introduced into the combustor generally in the tangential direction; a fuel pump; a control schedule valve; and first and second main fuel solenoid valves. The first valve being operable to connect a minority of the injectors to the control schedule valve and the fuel pump for starting the engine, there being an even number of the injectors and the minority of injectors consisting of two diametrically opposite injectors; the first and second valves being operable to connect all of the injectors to the control schedule valve and the pump for causing normal operation of the engine; the engine further being characterized by the absence of start fuel injectors for the combustor.

  6. Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design 

    E-Print Network [OSTI]

    Huang, F. F.; Naumowicz, T.

    2001-01-01

    It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only...

  7. Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions

    E-Print Network [OSTI]

    Cheng, R. K.

    2009-01-01

    Journal of Engineering for Gas Turbines and Power, 130 C. K.of Engineering for Gas Turbines and Power-Transactions ofJournal of Engineering for Gas Turbines and Power, 130 (2) (

  8. Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions

    E-Print Network [OSTI]

    Cheng, R. K.

    2009-01-01

    of Engineering for Gas Turbines and Power, 130 C. K. Chan,of Engineering for Gas Turbines and Power, 130 (2) (2008)of Engineering for Gas Turbines and Power-Transactions of

  9. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  10. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Marra, John Joseph; Wessell, Brian J.; Liang, George

    2013-03-05

    A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

  11. Gas turbine premixing systems

    DOE Patents [OSTI]

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  12. Closed-loop air cooling system for a turbine engine

    DOE Patents [OSTI]

    North, William Edward (Winter Springs, FL)

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  13. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  14. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  15. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  16. Static seal for turbine engine

    DOE Patents [OSTI]

    Salazar, Santiago; Gisch, Andrew

    2014-04-01

    A seal structure for a gas turbine engine, the seal structure including first and second components located adjacent to each other and forming a barrier between high and low pressure zones. A seal cavity is defined in the first and second components, the seal cavity extending to either side of an elongated gap extending generally in a first direction between the first and second components. A seal member is positioned within the seal cavity and spans across the elongated gap. The seal member includes first and second side edges extending into each of the components in a second direction transverse to the first direction, and opposing longitudinal edges extending between the side edges generally parallel to the first direction. The side edges include a groove formed therein for effecting a reduction of gas flow around the seal member at the side edges.

  17. Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001

    E-Print Network [OSTI]

    Ishii, Jun

    2004-01-01

    operation of gas turbines (especially combustion turbines inthe development of gas turbines, especially combustion gas

  18. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect (OSTI)

    Ferguson, D.H.

    2007-10-01

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  19. Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020

    E-Print Network [OSTI]

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

    2007-01-01

    MW Reciprocating Engine 3 MW Gas Turbine 1 MW ReciprocatingEngine 5 MW Gas Turbine 3MW Gas Turbine 40 MW Gas Turbine 1 MW Reciprocating Engine

  20. Parametric Study of Gas Turbine Film-Cooling 

    E-Print Network [OSTI]

    Liu, Kevin

    2012-10-19

    OF GAS TURBINE FILM-COOLING A Dissertation by KEVIN LIU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2012 Major... Subject: Mechanical Engineering Parametric Study of Gas Turbine Blade Film-Cooling Copyright 2012 Kevin Liu PARAMETRIC STUDY OF GAS TURBINE FILM-COOLING A Dissertation by KEVIN LIU Submitted...

  1. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    to altitude. The hydrogen engines were better able to15% O2] Early Radial Hydrogen engine must be fuel staged. Asof NO produced in the hydrogen engine is 2.3 times higher

  2. Optical monitoring system for a turbine engine

    DOE Patents [OSTI]

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  3. Design and performance of a gas-turbine engine from an automobile turbocharger

    E-Print Network [OSTI]

    Tsai, Lauren (Lauren Elizabeth)

    2004-01-01

    The Massachusetts Institute of Technology Department of Mechanical Engineering teaches thermodynamics and fluid mechanics through a pair of classes, Thermal Fluids Engineering I & II. The purpose of this project was to ...

  4. Design, fabrication, and performance of a gas-turbine engine from an automobile turbocharger

    E-Print Network [OSTI]

    Padilla, Jorge, 1983-

    2005-01-01

    Thermal-Fluids Engineering is taught in two semesters in the Department of Mechanical Engineering at the Massachusetts Institute of Technology. To emphasize the course material, running experiments of thermodynamic plants ...

  5. Title: A brief history of the Rolls-Royce University Technology Centre in Gas Turbine Noise at the Institute of Sound and Vibration Research

    E-Print Network [OSTI]

    Sóbester, András

    to generation and propagation of noise from gas turbine engines. Aircraft noise is a critical technical issueReport Title: A brief history of the Rolls-Royce University Technology Centre in Gas Turbine Noise and systems engineering, gas turbine transmission systems and gas turbine noise. The UTC in gas turbine noise

  6. Title: A brief history of the Rolls-Royce University Technology Centre in Gas Turbine Noise at the Institute of Sound and Vibration Research

    E-Print Network [OSTI]

    Sóbester, András

    Report Title: A brief history of the Rolls-Royce University Technology Centre in Gas Turbine Noise and systems engineering, gas turbine transmission systems and gas turbine noise. The UTC in gas turbine noise to generation and propagation of noise from gas turbine engines. Aircraft noise is a critical technical issue

  7. Development of a low swirl injector concept for gas turbines

    E-Print Network [OSTI]

    Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

    2000-01-01

    Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

  8. Integrated Simulations for Multi-Component Analysis of Gas Turbines : RANS Boundary Conditions

    E-Print Network [OSTI]

    Kim, Sangho

    Integrated Simulations for Multi-Component Analysis of Gas Turbines : RANS Boundary Conditions 94305, U.S.A The aero-thermal computation of the flow path of an entire gas turbine engine can used in the analysis of single components of the gas turbine engines as an aid in the design process

  9. LES of an ignition sequence in a gas turbine M. Boileau a,, G. Staffelbach a

    E-Print Network [OSTI]

    LES of an ignition sequence in a gas turbine engine M. Boileau a,, G. Staffelbach a , B. CuenotTurbomeca (SAFRAN group), Bordes, France Abstract Being able to ignite or reignite a gas turbine engine in a cold including 18 burners. This geometry corresponds to a real gas turbine chamber. Massively parallel computing

  10. Nickel-Based Superalloy Welding Practices for Industrial Gas Turbine Applications M.B. Henderson

    E-Print Network [OSTI]

    Cambridge, University of

    1 Nickel-Based Superalloy Welding Practices for Industrial Gas Turbine Applications M.B. Henderson and reduced costs for industrial gas turbine engines demands extended use of high strength-high temperature superalloys are used within the industrial gas turbine (IGT) engine manufacturing industry, specifically

  11. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  12. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  13. Overview of advanced Stirling and gas turbine engine development programs and implications for solar thermal electrical applications

    SciTech Connect (OSTI)

    Alger, D.

    1984-03-01

    The DOE automotive advanced engine development projects managed by the NASA Lewis Research Center were described. These included one Stirling cycle engine development and two air Brayton cycle development. Other engine research activities included: (1) an air Brayton engine development sponsored by the Gas Research Institute, and (2) plans for development of a Stirling cycle engine for space use. Current and potential use of these various engines with solar parabolic dishes were discussed.

  14. Measuring Conventional and Alternative Exhaust Emissions from a Gas Turbine Engine

    E-Print Network [OSTI]

    Johnson, Jeremiah Andrew

    2012-12-31

    Rising fuel costs and energy demands, combined with growing concern over greenhouse gas emissions, have led to increased interest in the use of renewable fuels to help meet increasing worldwide demand and reduce atmospheric CO2 emissions from...

  15. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    Materials Coating Techniques." OVERLAY COATINGS FOR GAS TURBINEGas Turbine Coatings for Minimally Processed Coal Derived Liquid Fuels," presented at the Conference on Advanced MaterialsCoating Technology and Processing Capabilities,'' proceedings 3rd Conference on Gas Turbine Materials

  16. Measurement and analysis of gas turbine blade endwall heat transfer 

    E-Print Network [OSTI]

    Lee, Joon Ho

    2001-01-01

    For many years it has been recognized that the design of an efficient high pressure turbine with adequate component life is crucial to the success of any gas turbine engine project. Inherent in the design process is the need to predict accurately...

  17. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  18. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  19. American Institute of Aeronautics and Astronautics Performance Optimization of Gas Turbines Utilizing

    E-Print Network [OSTI]

    Müller, Norbert

    American Institute of Aeronautics and Astronautics 1 Performance Optimization of Gas Turbines-tube or rotary pulse detonation engines (PDE) 2 to enhance and exceed the performance of gas turbines. As another for gas turbine applications has not yet been achieved, mostly due to circumstances other than

  20. Massively-Parallel Direct Numerical Simulation of Gas Turbine Endwall Film-Cooling Conjugate Heat Transfer 

    E-Print Network [OSTI]

    Meador, Charles Michael

    2011-02-22

    Improvements to gas turbine efficiency depend closely on cooling technologies, as efficiency increases with turbine inlet temperature. To aid in this process, simulations that consider real engine conditions need to be ...

  1. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  2. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); Anderson, Brian L. (Lodi, CA); O'Brien, Kevin C. (San Ramon, CA)

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  3. Gas turbine vane platform element

    DOE Patents [OSTI]

    Campbell, Christian X. (Oviedo, FL); Schiavo, Anthony L. (Oviedo, FL); Morrison, Jay A. (Oviedo, FL

    2012-08-28

    A gas turbine CMC shroud plate (48A) with a vane-receiving opening (79) that matches a cross-section profile of a turbine vane airfoil (22). The shroud plate (48A) has first and second curved circumferential sides (73A, 74A) that generally follow the curves of respective first and second curved sides (81, 82) of the vane-receiving opening. Walls (75A, 76A, 77A, 78A, 80, 88) extend perpendicularly from the shroud plate forming a cross-bracing structure for the shroud plate. A vane (22) may be attached to the shroud plate by pins (83) or by hoop-tension rings (106) that clamp tabs (103) of the shroud plate against bosses (105) of the vane. A circular array (20) of shroud plates (48A) may be assembled to form a vane shroud ring in which adjacent shroud plates are separated by compressible ceramic seals (93).

  4. Gas turbine topping combustor

    DOE Patents [OSTI]

    Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

    1997-06-10

    A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

  5. Blade for a gas turbine

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2010-10-26

    A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.

  6. Reliable Gas Turbine Output: Attaining Temperature Independent Performance 

    E-Print Network [OSTI]

    Neeley, J. E.; Patton, S.; Holder, F.

    1992-01-01

    stream_source_info ESL-IE-92-04-10.pdf.txt stream_content_type text/plain stream_size 16831 Content-Encoding ISO-8859-1 stream_name ESL-IE-92-04-10.pdf.txt Content-Type text/plain; charset=ISO-8859-1 RELIABLE GAS TURBINE... OUTPUT; ATTAINING TEMPERATURE INDEPENDENT PERFORMANCE James E. Neeley, P.E. Power Plant Engineer Public Utility Commission of Texas Austin, Texas ABSTRACT Improvements in gas turbine efficiency, coupled with dropping gas prices, has made gas...

  7. A Wood-Fired Gas Turbine Plant 

    E-Print Network [OSTI]

    Powell, S. H.; Hamrick, J. T.

    1986-01-01

    TURBINE PLANT Sam H. Powell, Tennessee Valley Authority, Chattanooga, Tennessee Joseph T. Hamrick, Aerospace Research Corporation, RBS Electric, Roanoke, VA Abstract This paper covers the research and development of a wood-fired gas turbine unit... of the walls. This wood?fired gas turbine unit could provide a low cost source of power for areas where conventional methods are now prohibitive and provide a means for recovering energy from a source that now poses disposal problems. When the Tennessee...

  8. Low-pressure-ratio regenerative exhaust-heated gas turbine

    SciTech Connect (OSTI)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  9. A recuperative external combustion open cycle gas turbine 

    E-Print Network [OSTI]

    Benson, Dan Thomas

    1979-01-01

    Annulus Turbine Exhaust Outer Gas Annulus B. B Shell ~ Heavy Fin Rivet nin Light Fin Outer Air Annulus Inner Air Annulus Outer Liner Divider Combustor Inner Liner Figure 4 RECOC Test Engine 13 Table 1 Solar T-62T-17 Gas Turbine MODEL... test engine, a Go-Power D312 water brake dynamometer was available. The power output was the product of the dynamometer torque reading multiplied by shaft speed. The heat imput rate was calculated by flowing fuel from the 2000 ml test vol'- ume...

  10. A Review of Materials for Gas Turbines Firing Syngas Fuels

    SciTech Connect (OSTI)

    Gibbons, Thomas; Wright, Ian G

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  11. Airfoil for a gas turbine

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2011-01-18

    An airfoil is provided for a gas turbine comprising an outer structure comprising a first wall, an inner structure comprising a second wall spaced relative to the first wall such that a cooling gap is defined between at least portions of the first and second walls, and seal structure provided within the cooling gap between the first and second walls for separating the cooling gap into first and second cooling fluid impingement gaps. An inner surface of the second wall may define an inner cavity. The inner structure may further comprise a separating member for separating the inner cavity of the inner structure into a cooling fluid supply cavity and a cooling fluid collector cavity. The second wall may comprise at least one first impingement passage, at least one second impingement passage, and at least one bleed passage.

  12. Gas turbine power plant with supersonic shock compression ramps

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

    2008-10-14

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  13. Local heat transfer and film effectiveness of a film cooled gas turbine blade tip 

    E-Print Network [OSTI]

    Adewusi, Adedapo Oluyomi

    1999-01-01

    Gas turbine engines due to high operating temperatures undergo severe thermal stress and fatigue during operation. Cooling of these components is a very important issue during the lifetime of the engine. Cooling is achieved through the use...

  14. Turbine adapted maps for turbocharger engine matching

    SciTech Connect (OSTI)

    Tancrez, M.; Galindo, J.; Guardiola, C.; Fajardo, P.; Varnier, O.

    2011-01-15

    This paper presents a new representation of the turbine performance maps oriented for turbocharger characterization. The aim of this plot is to provide a more compact and suited form to implement in engine simulation models and to interpolate data from turbocharger test bench. The new map is based on the use of conservative parameters as turbocharger power and turbine mass flow to describe the turbine performance in all VGT positions. The curves obtained are accurately fitted with quadratic polynomials and simple interpolation techniques give reliable results. Two turbochargers characterized in an steady flow rig were used for illustrating the representation. After being implemented in a turbocharger submodel, the results obtained with the model have been compared with success against turbine performance evaluated in engine tests cells. A practical application in turbocharger matching is also provided to show how this new map can be directly employed in engine design. (author)

  15. Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Gas turbines—heat engines that use high-temperature and high-pressure gas as the combustible fuel—are used extensively throughout U.S. industry to power industrial processes. The majority of...

  16. High temperature, low expansion, corrosion resistant ceramic and gas turbine

    DOE Patents [OSTI]

    Rauch, Sr., Harry W. (Lionville, PA)

    1981-01-01

    The present invention relates to ZrO.sub.2 -MgO-Al.sub.2 O.sub.3 -SiO.sub.2 ceramic materials having improved thermal stability and corrosion resistant properties. The utilization of these ceramic materials as heat exchangers for gas turbine engines is also disclosed.

  17. Turbine cooling configuration selection and design optimization for the high-reliability gas turbine. Final report

    SciTech Connect (OSTI)

    Smith, M J; Suo, M

    1981-04-01

    The potential of advanced turbine convectively air-cooled concepts for application to the Department of Energy/Electric Power Research Institute (EPRI) Advanced Liquid/Gas-Fueled Engine Program was investigated. Cooling of turbine airfoils is critical technology and significant advances in cooling technology will permit higher efficiency coal-base-fuel gas turbine energy systems. Two new airfoil construction techniques, bonded and wafer, were the principal designs considered. In the bonded construction, two airfoil sections having intricate internal cooling configurations are bonded together to form a complete blade or vane. In the wafer construction, a larger number (50 or more) of wafers having intricate cooling flow passages are bonded together to form a complete blade or vane. Of these two construction techniques, the bonded airfoil is considered to be lower in risk and closer to production readiness. Bonded airfoils are being used in aircraft engines. A variety of industrial materials were evaluated for the turbine airfoils. A columnar grain nickel alloy was selected on the basis of strength and corrosion resistance. Also, cost of electricity and reliability were considered in the final concept evaluation. The bonded airfoil design yielded a 3.5% reduction in cost-of-electricity relative to a baseline Reliable Engine design. A significant conclusion of this study was that the bonded airfoil convectively air-cooled design offers potential for growth to turbine inlet temperatures above 2600/sup 0/F with reasonable development risk.

  18. Thermal and Economic Analyses of Energy Saving by Enclosing Gas Turbine Combustor Section 

    E-Print Network [OSTI]

    Li, X.; Wang, T.; Day, B.

    2006-01-01

    of Energy Saving by Enclosing Gas Turbine Combustor Section Xianchang Li, Ting Wang Benjamin Day ? Research Engineer Professor Engineer Energy Conversion and Conservation Center Venice Natural Gas... a high-temperature area (500~560°F) at the combustor section of the GE Frame 5 gas turbine of Dynegy Gas Processing Plant at Venice, Louisiana. To improve the thermal efficiency and reduce energy cost, thermal and economic analyses are conducted...

  19. Aeroderivative Gas Turbines Can Meet Stringent NOx Control Requirements 

    E-Print Network [OSTI]

    Keller, S. C.; Studniarz, J. J.

    1987-01-01

    Company, Ishikawajima-Harima Heavy Industries (IHI), Energy Services Incorporated, and General Electric Company. Initially, PG&E identified a need for a steam-injected gas turbine as an alternative to a combined-cycle power plant in their system... emissions will be discussed. Steam injection has a very favorable effect on engine performance raising both the power output and efficiency. As an example, full steam injection in the GE LM5000 gas turbine :tncreases the power output from 34 MW to 52 MW...

  20. Overview of zirconia with respect to gas turbine applications

    SciTech Connect (OSTI)

    Cawley, J.D.

    1984-03-01

    Phase relationships and the mechanical properties of zirconia are examined as well as the thermal conductivity, deformation, diffusion, and chemical reactivity of this refractory material. Observations from the literature particular to plasma-sprayed material and implications for gas turbine engine applications are discussed. The literature review indicates that Mg-PSZ (partially stabilized zirconia) and Ca-PSZ are unsuitable for advanced gas turbine applications a thorough characterization of the microstructure of plasma-sprayed zirconia is needed. Transformation-toughened zirconia may be suitable for use in monolithic components.

  1. COMPARATIVE MATERIALS EVALUTION FOR A GAS TURBINE ROTOR

    E-Print Network [OSTI]

    Pennycook, Steve

    COMPARATIVE MATERIALS EVALUTION FOR A GAS TURBINE ROTOR 27th Annual Conference on Composites: microturbine, silicon nitride, turbine, CARES, recuperator, ceramic, gas turbine, life analysis #12;COMPARATIVE MATERIALS EVALUTION FOR A GAS TURBINE ROTOR Kesseli et. al Ingersoll-Rand's Ceramic Microturbine (CMT) Plan

  2. Advanced aircraft engine microlaminated intermetallic composite turbine technology

    SciTech Connect (OSTI)

    Rowe, R.G.; Skelly, D.W.; Jackson, M.R.; Larsen, M. [GE Corporate Research and Development, Schenectady, NY (United States); Lachapelle, D. [GE Aircraft Engines, Cincinnati, OH (United States)

    1996-12-31

    Higher gas path temperatures for greater aircraft engine thrust and efficiency will require both higher temperature gas turbine airfoil materials and optimization of internal cooling technology. Microlaminated composites consisting of very high temperature intermetallic compounds and ductile refractory metals offer a means of achieving higher temperature turbine airfoil capability without sacrificing low temperature fracture resistance. Physical vapor deposition, used to synthesize microlaminated composites, also offers a means of fabricating advanced turbine blade internal cooling designs. The low temperature fracture resistance of microlaminated Nb(Cr)-Cr{sub 2}Nb microlaminated composites approached 20 MPa{radical}m in fracture resistance curves, but the fine grain size of vapor deposited intermetallics indicates a need to develop creep resistant microstructures.

  3. A Portable Expert System for Gas Turbine Maintenance 

    E-Print Network [OSTI]

    Quentin, G. H.

    1989-01-01

    Combustion turbines for electric power generation and industrial applications have steadily increased in size, efficiency and prominence. The newest class of gas turbine-generators coming into service will deliver 150 megawatts, with turbine inlet...

  4. Energy Saving in Ammonia Plant by Using Gas Turbine 

    E-Print Network [OSTI]

    Uji, S.; Ikeda, M.

    1981-01-01

    An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore...

  5. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    internal combustion enginesand gas turbines, fuel cells,2, the external combustion engines(gas turbine and Stifling)or external combustion engines, such as the gas turbine or

  6. Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001

    E-Print Network [OSTI]

    Ishii, Jun

    2004-01-01

    the Relibability of Advanced Gas Turbines,” POWER Magazine.Scheibel (1997) “Current Gas Turbine Developments and Futurefor Heavy-Duty Gas Turbines,” October 2000. Available online

  7. Hot gas path analysis and data evaluation of the performance parameters of a gas turbine 

    E-Print Network [OSTI]

    Hanawa, David Allen

    1974-01-01

    SCIENCE December 1974 Major Subject: Mechanical Engineering HOT GAS PATH ANALYSIS AND DATA EVALUATION OF THE PERFORMANCE PARAMETERS OF A GAS TURBINE A Thesis by DAVID AI, LEN HANAWA Approved as to style and content by: PfnA J 7 EY3 .j (Chairman... of -Committee) zr (Head of Depai'tment) Member) /i ~E" Egg(JQJ a g i (Member) (Member) December l974 ABSTRACT Ho Gas Path Ana'ysis and Data Evaluation o. the Performance Parameters of a Gas Turbine (December 1974) David Allen Hanawa, B. S. , Texas A...

  8. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    SciTech Connect (OSTI)

    NONE

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  9. Barr Engineering Statement of Methodology Rosemount Wind Turbine...

    Energy Savers [EERE]

    Barr Engineering Statement of Methodology Rosemount Wind Turbine Simulations by Truescape Visual Reality, DOEEA-1791 (May 2010) Barr Engineering Statement of Methodology Rosemount...

  10. SPINTHIR: An ignition model for gas turbines

    E-Print Network [OSTI]

    Neophytou, A; Mastorakos, E

    2012-08-28

    , Sardinia, Italy, September 11-15, 2011 A PRACTICAL MODEL FOR THE HIGH-ALTITUDE RELIGHT OF A GAS TURBINE COMBUSTOR A. Neophytou*,1, E. Mastorakos*, E.S. Richardson**, S. Stow*** and M. Zedda*** em257@eng.cam.ac.uk * University of Cambridge... geometries is given. In this section, the main concepts of the model are repeated for clarity and the CFD solution of the gas turbine combustor is briefly presented. 2.1 Model description: main idea The model aims at representing the possible...

  11. Development of a low swirl injector concept for gas turbines

    E-Print Network [OSTI]

    Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

    2000-01-01

    and robust combustion concept for gas turbines. The use of acombustion systems have been adopted by virtually every industrial gas turbinegas turbines is non-trivial due to the dynamic nature of the combustion

  12. Gas Turbine Technology, Part B: Components, Operations and Maintenance 

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Focke, A. B.

    1985-01-01

    This paper builds on Part A and discusses the hardware involved in gas turbines as well as operations and maintenance aspects pertinent to cogeneration plants. Different categories of gas turbines are reviewed such as heavy duty aeroderivative...

  13. Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020

    E-Print Network [OSTI]

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

    2007-01-01

    considered, turbines, reciprocating engines, and one small3 MW Gas Turbine 1 MW Reciprocating Engine 5 MW Gas Turbine40 MW Gas Turbine 1 MW Reciprocating Engine 10 MW Gas

  14. Water Works! Water Resources Engineering and Turbine Energy

    E-Print Network [OSTI]

    Barrash, Warren

    Water Works! Water Resources Engineering and Turbine Energy Facilitators: Dr. Jairo Hernandez. This energy can be used to generate electricity (dams and turbines), produce mechanical work (wells), as well

  15. GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE NOX INDICES OF FAME, GASOIL ("tallow"). A key factor for the use of biofuels in gas turbines is their Emissions Indices (NOx, CO, VOC to gas turbines is very scarce. Two recent, independent field tests carried out in Europe (RME

  16. Lubricant analysis for gas turbine condition monitoring

    SciTech Connect (OSTI)

    Lukas, M.; Anderson, D.P.

    1997-10-01

    Analysis of used lubricating oil is a fast-evolving technique for predictive maintenance with any closed-loop lubricating system such as those in gas and steam turbines, diesel and gasoline engines, transmissions, gearboxes, compressors, pumps, bearings, and hydraulic systems. Based on analysis of periodic oil samples, a laboratory diagnostic report is sent to the personnel responsible for the equipment to warn of any possible problem or to make a specific maintenance recommendation. The entire process, from sample taking to the diagnostic report, should take less than 48 hours to be effective. These reports, when combined with statistical analysis and trending, can provide an insight to management personnel on the effectiveness of the program, efficiency of the maintenance department, repair status of equipment, recurring problems, and even information on the performance of different lubricants. Condition monitoring by oil analysis can be broken down into two categories: debris monitoring to measure the trace quantities of wear particles carried by the lubricant away from the wearing surfaces and lubricant condition monitoring to determine whether the lubricant itself is fit for service based on physical and chemical tests.

  17. Simulation of cooling systems in gas turbines

    SciTech Connect (OSTI)

    Ebenhoch, G.; Speer, T.M. [Motoren- und Turbinen-Union Muenchen GmbH (Germany)

    1996-04-01

    The design of cooling systems for gas turbine engine blades and vanes calls for efficient simulation programs. The main purpose of the described program is to determine the complete boundary condition at the coolant side to support a temperature calculation for the solid. For the simulation of convection and heat pick up of the coolant flow, pressure loss, and further effects to be found in a rotating frame, the cooling systems are represented by networks of nodes and flow elements. Within each flow element the fluid flow is modeled by a system of ordinary differential equations based on the one-dimensional conservation of mass, momentum, and energy. In this respect, the computer program differs from many other network computation programs. Concerning cooling configurations in rotating systems, the solution for a single flow element or the entire flow system is not guaranteed to be unique. This is due to rotational forces in combination with heat transfer and causes considerable computational difficulties, which can be overcome by a special path following method in which the angular velocity is selected as the parameter of homotopy. Results of the program are compared with measurements for three applications.

  18. Design, Analysis and Development of Micro Gas Turbine for propulsion of Micro UAVs Micro gas turbines or simply micro turbines are very promising technology for propelling micro

    E-Print Network [OSTI]

    Sun, Yu

    Design, Analysis and Development of Micro Gas Turbine for propulsion of Micro UAVs Micro gas turbines or simply micro turbines are very promising technology for propelling micro unmanned aerial vehicles. These micro turbines vary in size and power. They can be hand held producing a fraction

  19. Gas turbine power generation from biomass gasification

    SciTech Connect (OSTI)

    Paisley, M.A.; Litt, R.D.; Overend, R.P.; Bain, R.L.

    1994-12-31

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development of the use of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier.

  20. Durable alloy foils are needed for gas turbine recuperators operating at 650-700C. It has been established that water vapor in the

    E-Print Network [OSTI]

    Pennycook, Steve

    ABSTRACT Durable alloy foils are needed for gas turbine recuperators operating at 650°-700°C-cost alternatives to currently available candidate materials. INTRODUCTION Improving gas turbine engine efficiency or heat exchangers used to improve the efficiency of microturbines and small gas turbines[1]. Over

  1. Ducting arrangement for cooling a gas turbine structure

    DOE Patents [OSTI]

    Lee, Ching-Pang; Morrison, Jay A.

    2015-07-21

    A ducting arrangement (10) for a can annular gas turbine engine, including: a duct (12, 14) disposed between a combustor (16) and a first row of turbine blades and defining a hot gas path (30) therein, the duct (12, 14) having raised geometric features (54) incorporated into an outer surface (80); and a flow sleeve (72) defining a cooling flow path (84) between an inner surface (78) of the flow sleeve (72) and the duct outer surface (80). After a cooling fluid (86) traverses a relatively upstream raised geometric feature (90), the inner surface (78) of the flow sleeve (72) is effective to direct the cooling fluid (86) toward a landing (94) separating the relatively upstream raised geometric feature (90) from a relatively downstream raised geometric feature (94).

  2. Gas Turbines Increase the Energy Efficiency of Industrial Processes 

    E-Print Network [OSTI]

    Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

    1981-01-01

    It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed...

  3. Double-rotor rotary engine and turbine

    SciTech Connect (OSTI)

    Lin, A.S.

    1990-04-03

    This patent describes a double-rotor engine. It comprises: a base; a housing rotatably mounted to the base and forming a radial cylinder; an output shaft rotatably mounted concentric with the housing and having an arm rigidly extending therefrom within the housing; a piston slidingly engaging the cylinder and forming a combustion chamber with the cylinder; means for admitting a fuel-air mixture into the cylinder; means for releasing combustion products from the cylinder following operation of the expanding means; turbine means operatively connected between the base and the housing, the turbine means providing a torque reaction against the housing in response to flow of the combustion products from the releasing means; and stop means on the shaft for limiting the relative movement between the shaft and the housing.

  4. TEDANN: Turbine engine diagnostic artificial neural network

    SciTech Connect (OSTI)

    Kangas, L.J.; Greitzer, F.L.; Illi, O.J. Jr.

    1994-03-17

    The initial focus of TEDANN is on AGT-1500 fuel flow dynamics: that is, fuel flow faults detectable in the signals from the Electronic Control Unit`s (ECU) diagnostic connector. These voltage signals represent the status of the Electro-Mechanical Fuel System (EMFS) in response to ECU commands. The EMFS is a fuel metering device that delivers fuel to the turbine engine under the management of the ECU. The ECU is an analog computer whose fuel flow algorithm is dependent upon throttle position, ambient air and turbine inlet temperatures, and compressor and turbine speeds. Each of these variables has a representative voltage signal available at the ECU`s J1 diagnostic connector, which is accessed via the Automatic Breakout Box (ABOB). The ABOB is a firmware program capable of converting 128 separate analog data signals into digital format. The ECU`s J1 diagnostic connector provides 32 analog signals to the ABOB. The ABOB contains a 128 to 1 multiplexer and an analog-to-digital converter, CP both operated by an 8-bit embedded controller. The Army Research Laboratory (ARL) developed and published the hardware specifications as well as the micro-code for the ABOB Intel EPROM processor and the internal code for the multiplexer driver subroutine. Once the ECU analog readings are converted into a digital format, the data stream will be input directly into TEDANN via the serial RS-232 port of the Contact Test Set (CTS) computer. The CTS computer is an IBM compatible personal computer designed and constructed for tactical use on the battlefield. The CTS has a 50MHz 32-bit Intel 80486DX processor. It has a 200MB hard drive and 8MB RAM. The CTS also has serial, parallel and SCSI interface ports. The CTS will also host a frame-based expert system for diagnosing turbine engine faults (referred to as TED; not shown in Figure 1).

  5. Insert metering plates for gas turbine nozzles

    DOE Patents [OSTI]

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  6. A method of evaluating the performance deterioration of aircraft gas-turbines 

    E-Print Network [OSTI]

    Subramanian, V

    1978-01-01

    A METHOD OF EVALUATING THE PERFORMANCE DETERIORATION OF AIRCRAFT GAS-TURBINES A Thesis by V. SUBRAMANIAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1978 Major Subject: Mechanical Engineering A METHOD OF EVALUATING THE PERFORMANCE DETERIORATION OF AIRCRAFT GAS-TURBINES A Thesis by V. SUBRAMANIAN Approved as to style and content by: Charrman o Commztt (Head o D pa ment Sg D~ Member...

  7. An investigation into the feasibility of an external combustion, steam injected gas turbine 

    E-Print Network [OSTI]

    Ford, David Bruce

    1981-01-01

    AN INVESTIGATION INTO THE FEASIBILITY OF AN EXTERNAL COMBUSTION, STEAM INJECTED GAS TURBINE A Thesis by DAVID BRUCE FORD Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May, 19SI Major Subject: Mechanical Engineering AN INVESTIGATION INTO THE FEASIBILITY OF AN EXTERNAL COMBUSTION i STEAM INJECTED GAS TURBINE A Thesis DAVID BRUCE FORD Approved as to style and content by: & cene 'u Co...

  8. Turbine engine component with cooling passages

    DOE Patents [OSTI]

    Arrell, Douglas J. (Oviedo, FL); James, Allister W. (Orlando, FL)

    2012-01-17

    A component for use in a turbine engine including a first member and a second member associated with the first member. The second member includes a plurality of connecting elements extending therefrom. The connecting elements include securing portions at ends thereof that are received in corresponding cavities formed in the first member to attach the second member to the first member. The connecting elements are constructed to space apart a first surface of the second member from a first surface of the first member such that at least one cooling passage is formed between adjacent connecting elements and the first surface of the second member and the first surface of the first member.

  9. Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines

    SciTech Connect (OSTI)

    Downs, James

    2014-12-29

    In this Advanced Turbine Program-funded Phase III project, Florida Turbine Technologies, Inc. (FTT) has developed and tested, at a pre-commercial prototypescale, spar-shell turbine airfoils in a commercial gas turbine. The airfoil development is based upon FTT’s research and development to date in Phases I and II of Small Business Innovative Research (SBIR) grants. During this program, FTT has partnered with an Original Equipment Manufacturer (OEM), Siemens Energy, to produce sparshell turbine components for the first pre-commercial prototype test in an F-Class industrial gas turbine engine and has successfully completed validation testing. This project will further the commercialization of this new technology in F-frame and other highly cooled turbine airfoil applications. FTT, in cooperation with Siemens, intends to offer the spar-shell vane as a first-tier supplier for retrofit applications and new large frame industrial gas turbines. The market for the spar-shell vane for these machines is huge. According to Forecast International, 3,211 new gas turbines units (in the >50MW capacity size range) will be ordered in ten years from 2007 to 2016. FTT intends to enter the market in a low rate initial production. After one year of successful extended use, FTT will quickly ramp up production and sales, with a target to capture 1% of the market within the first year and 10% within 5 years (2020).

  10. Condition Based Monitoring of Gas Turbine Combustion Components

    SciTech Connect (OSTI)

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

    2012-09-30

    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  11. Combined catalysts for the combustion of fuel in gas turbines

    DOE Patents [OSTI]

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  12. Alternative Liquid Fuel Effects on Cooled Silicon Nitride Marine Gas Turbine Airfoils

    SciTech Connect (OSTI)

    Holowczak, J.

    2002-03-01

    With prior support from the Office of Naval Research, DARPA, and U.S. Department of Energy, United Technologies is developing and engine environment testing what we believe to be the first internally cooled silicon nitride ceramic turbine vane in the United States. The vanes are being developed for the FT8, an aeroderivative stationary/marine gas turbine. The current effort resulted in further manufacturing and development and prototyping by two U.S. based gas turbine grade silicon nitride component manufacturers, preliminary development of both alumina, and YTRIA based environmental barrier coatings (EBC's) and testing or ceramic vanes with an EBC coating.

  13. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I, January 2000 Opportunities for Micropower and Fuel CellGas Turbine Hybrid Systems in Industrial Applications - Volume I, January 2000 In this January 2000 report, Arthur D....

  14. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    SciTech Connect (OSTI)

    D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

    2004-05-17

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

  15. Experimental Investigations of Partially Premixed Hydrogen Combustion in Gas Turbine Environments

    E-Print Network [OSTI]

    North, Andrew

    2013-01-01

    H. Koch, ASME J. Eng. Gas Turbines and Power P. Patnaik, AMazzocchi, ASME J. of Eng. Gas Turbines and Power [3] K.M.Hydrogen Combustion in Gas Turbine Environments By Andrew

  16. Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors

    E-Print Network [OSTI]

    Daraio, Chiara

    Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors Nicolas Noiray, Bruno Schuermans Alstom Power, Baden, Switzerland Abstract Lean premix gas turbine observed in gas turbines is used to validate the proposed identification methods. In a second step

  17. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  18. "Fish Friendly" Hydropower Turbine Development and Deployment. Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    Dixon, D.

    2011-10-01

    This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a “fish-friendly” hydropower turbine called the Alden turbine.

  19. Why Condensing Steam Turbines are More Efficient than Gas Turbines 

    E-Print Network [OSTI]

    Nelson, K. E.

    1988-01-01

    turbine at 75'rc adiabatic efficiency to a vacuum of 2"Hg. No steam is extracted. 15,7 ~Blu/hr STACK Figure 3. Enthalpy analysis of power plant cycle. Analyzing this system points to the steam turbine condenser as the source of inefficiency... it's thrown away. Why be concerned about throwing away something that has virtually no value? But there is concern. The steam turbine condenser is nearly always viewed as the source of inefficiency in the cycle. The problem is that the wrong thing...

  20. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect (OSTI)

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

  1. Numerical simulation of flow and heat transfer of internal cooling passage in gas turbine blade 

    E-Print Network [OSTI]

    Su, Guoguang

    2007-04-25

    for efficient energy utilization; one of the most powerful means of achieving higher efficiency in industrial gas turbine engines is to raise the turbine inlet temperature (TIT). Sophisticated cooling techniques must be employed to cool the components... for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method. 2.1 The Governing Equation and Chimera Method For unsteady incompressible flow, the continuty equation and momentum...

  2. Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report

    SciTech Connect (OSTI)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  3. SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data

    E-Print Network [OSTI]

    Reiter, Ehud

    SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data Jin Yu of Aberdeen Aberdeen, AB24 3UE, UK {jyu, ereiter, jhunter, ssripada}@csd.abdn.ac.uk Abstract: SumTime-Turbine produces textual summaries of archived time- series data from gas turbines. These summaries should help

  4. Working on new gas turbine cycle for heat pump drive

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

  5. Single pressure steam bottoming cycle for gas turbines combined cycle

    SciTech Connect (OSTI)

    Zervos, N.

    1990-01-30

    This patent describes a process for recapturing waste heat from the exhaust of a gas turbine to drive a high pressure-high temperature steam turbine and a low pressure steam turbine. It comprises: delivering the exhaust of the gas turbine to the hot side of an economizer-reheater apparatus; delivering a heated stream of feedwater and recycled condensate through the cold side of the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus to elevate the temperature below the pinch point of the boiler; delivering the discharge from the high pressure-high temperature steam turbine through the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus; driving the high pressure-high temperature steam turbine with the discharge stream of feedwater and recycled condensate which is heated to a temperature below the pinch point of the boiler by the economizer-reheater apparatus; and driving the low pressure steam turbine with the discharged stream of the high pressure-high temperature steam turbine reheated below the pinch point of the boiler by the economizer-reheater apparatus.

  6. Volumetric Geometry Reconstruction of Turbine Blades for Aircraft Engines

    E-Print Network [OSTI]

    Jüttler, Bert

    Volumetric Geometry Reconstruction of Turbine Blades for Aircraft Engines David Großmann1 and Bert features throughout the process. Keywords: volumetric geometry reconstruction, turbine blades, trivari- ate. The volumetric B-spline parametrization ­ which is discussed in the present paper ­ enables us to explore new

  7. Advanced coal-fueled gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  8. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new “opportunity fuel” deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a local dealer to deploy an ARES class engine using syngas from a biomass gasifier as

  9. High temperature coatings for gas turbines

    DOE Patents [OSTI]

    Zheng, Xiaoci Maggie

    2003-10-21

    Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

  10. Inspection system for a turbine blade region of a turbine engine

    DOE Patents [OSTI]

    Smed, Jan P. (Winter Springs, FL); Lemieux, Dennis H. (Casselberry, FL); Williams, James P. (Orlando, FL)

    2007-06-19

    An inspection system formed at least from a viewing tube for inspecting aspects of a turbine engine during operation of the turbine engine. An outer housing of the viewing tube may be positioned within a turbine engine using at least one bearing configured to fit into an indentation of a support housing to form a ball and socket joint enabling the viewing tube to move during operation as a result of vibrations and other movements. The viewing tube may also include one or more lenses positioned within the viewing tube for viewing the turbine components. The lenses may be kept free of contamination by maintaining a higher pressure in the viewing tube than a pressure outside of the viewing tube and enabling gases to pass through an aperture in a cap at a viewing end of the viewing tube.

  11. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  12. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  13. Selection of natural Gas Fired Advanced Turbine Systems (GFATS) program - Task 3. Topical report

    SciTech Connect (OSTI)

    1994-06-01

    Research continued on natural gas-fired turbines.The objective of Task 3 was to perform initial trade studies and select one engine system (Gas-Fired Advanced Turbine System [GFATS]) that the contractor could demonstrate, at full scale, in the 1998 to 2000 time frame. This report describes the results of the selection process. This task, including Allison internal management reviews of the selected system, has been completed. Allison`s approach to ATS is to offer an engine family that is based on the newest T406 high technology engine. This selection was based on a number of parameters including return on investment (ROI), internal rate of return (IRR) market size and potential sales into that market. This base engine family continues a history at Allison of converting flight engine products to industrial use.

  14. Design of a Transonic Research Turbine Facility Ruolong Ma*

    E-Print Network [OSTI]

    Morris, Scott C.

    and performance of modern gas-turbine engines. A detailed address of the various opportunities for flow control throughout the gas-turbine engine in terms of their impact on each engine component was given by Lord et al.1 in the new Advanced Performance Gas Turbine Laboratory at the University of Notre Dame. II. Turbine Rig

  15. Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report

    SciTech Connect (OSTI)

    NONE

    1996-12-31

    This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

  16. Ceramic stationary gas turbine development. Final report, Phase 1

    SciTech Connect (OSTI)

    NONE

    1994-09-01

    This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

  17. Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles

    E-Print Network [OSTI]

    of the new dish has been characterised, and, more recently, on-sun thermal tests have been performed, optimised for the new SG4 collector. This study aims to determine whether a combined-cycle gas turbine (CCGT) cycle could be viable with the SG4 collector. The intention would be to have a Brayton cycle engine

  18. MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE

    E-Print Network [OSTI]

    Foss, Bjarne A.

    MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland Dagfinn Snarheim and control of a semi-closed O2/CO2 gas turbine cycle for CO2 capture. In the first part the process predictive control, Gas turbines, CO2 capture 1. INTRODUCTION Gas turbines are widely used for power

  19. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

  20. LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

  1. Experimental investigation of film cooling effectiveness on gas turbine blades 

    E-Print Network [OSTI]

    Gao, Zhihong

    2009-05-15

    high temperature and high pressure blades as an active cooling scheme. In this study, the film cooling effectiveness in different regions of gas turbine blades was investigated with various film hole/slot configurations and mainstream flow conditions...

  2. Steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  3. M. Bahrami ENSC 461 (S 11) Brayton Cycle 1 Open GasTurbine Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    hr for steam-propulsion systems High back work ratio (ratio of compressor work to the turbine workM. Bahrami ENSC 461 (S 11) Brayton Cycle 1 Open GasTurbine Cycle Fig.1: Schematic for an open gas-turbine at constant pressure. The high temperature (and pressure) gas enters the turbine where it expands to ambient

  4. Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Turbines Incorporated is a leading manufacturer of industrial gas turbine packages for the power generation- bility for the introduction of new combustion systems for gas turbine products to enhance fuel

  5. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    power generation gas turbines and jet engines. As the energy efficiency of gas turbines in- creases to pro- vide thermal protection to turbine blades and vanes in the hottest sections of both electric with turbine inlet turbine, advances in turbine efficiency depend on improved ther- mal barrier coatings

  6. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect (OSTI)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  7. Gas turbine bucket wall thickness control

    DOE Patents [OSTI]

    Stathopoulos, Dimitrios (Glenmont, NY); Xu, Liming (Greenville, SC); Lewis, Doyle C. (Greer, SC)

    2002-01-01

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  8. Gas-path leakage seal for a gas turbine

    DOE Patents [OSTI]

    Wolfe, C.E.; Dinc, O.S.; Bagepalli, B.S.; Correia, V.H.; Aksit, M.F.

    1996-04-23

    A gas-path leakage seal is described for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a gas turbine (such as combustor casing segments). The seal includes a generally imperforate foil-layer assemblage which is generally impervious to gas and is located in the leakage-gap. The seal also includes a cloth-layer assemblage generally enclosingly contacting the foil-layer assemblage. In one seal, the first edge of the foil-layer assemblage is left exposed, and the foil-layer assemblage resiliently contacts the first member near the first edge to reduce leakage in the ``plane`` of the cloth-layer assemblage under conditions which include differential thermal growth of the two members. In another seal, such leakage is reduced by having a first weld-bead which permeates the cloth-layer assemblage, is attached to the metal-foil-layer assemblage near the first edge, and unattachedly contacts the first member. 4 figs.

  9. Proceedings of the flexible, midsize gas turbine program planning workshop

    SciTech Connect (OSTI)

    1997-03-01

    The US Department of Energy (DOE) and the California Energy Commission (CEC) held a program planning workshop on March 4--5, 1997 in Sacramento, California on the subject of a flexible, midsize gas turbine (FMGT). The workshop was also co-sponsored by the Electric Power Research Institute (EPRI), the Gas Research Institute (GRI), the Gas Turbine Association (GTA), and the Collaborative Advanced Gas Turbine Program (CAGT). The purpose of the workshop was to bring together a broad cross section of knowledgeable people to discuss the potential benefits, markets, technical attributes, development costs, and development funding approaches associated with making this new technology available in the commercial marketplace. The participants in the workshop included representatives from the sponsoring organizations, electric utilities, gas utilities, independent power producers, gas turbine manufacturers, gas turbine packagers, and consultants knowledgeable in the power generation field. Thirteen presentations were given on the technical and commercial aspects of the subject, followed by informal breakout sessions that dealt with sets of questions on markets, technology requirements, funding sources and cost sharing, and links to other programs.

  10. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  11. Indirect-fired gas turbine dual fuel cell power cycle

    DOE Patents [OSTI]

    Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  12. Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy

    E-Print Network [OSTI]

    Leon, Marco E.

    2007-01-01

    sensor for measurements of gas turbine exhaust temperature."O, CO 2 , and Temperature in Gas Turbine Exhaust through theview of UCSD power plant gas turbine systems 31

  13. Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy

    E-Print Network [OSTI]

    Leon, Marco E.

    2007-01-01

    sensor for measurements of gas turbine exhaust temperature."from the TDLAS, FTIR, and gas turbine systems. The finaltrends between the TDL and gas turbine exhaust temperatures

  14. Wind Turbines Electrical and Mechanical Engineering

    E-Print Network [OSTI]

    Provancher, William

    wind power. Encourage students to discuss the pros and cons of wind design. Students can find the wind? Time Required (Itemized) · Design introduction ­ 20 minutes · Student construction time o Option is created through conservation of energy! Designing a wind turbine takes a lot of ingenuity. The designer

  15. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  16. Isogeometric Simulation of Turbine Blades for Aircraft Engines David Gromann1

    E-Print Network [OSTI]

    Jüttler, Bert

    Isogeometric Simulation of Turbine Blades for Aircraft Engines David Großmann1 , Bert Jüttler2, in the challenging field of aircraft engines. We study the deformation of turbine blades under the assumption, manufacturing and repairing turbine engines for aircrafts. A challenging task in this field is the efficient

  17. The new air emission regulations for gas turbine

    SciTech Connect (OSTI)

    Solt, C.

    1998-07-01

    In the US, there are three new regulations now in development that will lower the limits for NO{sub x} emissions from gas turbines: (1) New National Ambient Air Quality Standards (NAAQS) for Particulate Matter, and Possibly revision to the Ozone standard (both of these new programs will target NO{sub x} emissions); (2) New regulations stemming from the Ozone Transport Assessment Group (OTAG) recommendations (again, NO{sub x} is the primary focus); (3) Revision of the New Source Performance Standard (NSPS) for gas turbines and a new rule that will impose new toxic emission requirements, (the Industrial Combustion Coordinated Rulemaking, stemming from revisions to Title III of the Clean Sir Act Amendments of 1990). The toxic rule should be of particular concern to the gas turbine industry in that it may impose the use of expensive toxic emission control techniques that may not provide any significant health benefits to the public. In addition, the European Community is currently drafting a new regulation for combustion sources that will require gas turbines to meet levels that are lower than any in Europe today. This paper will consider all 5 of these regulatory actions and will: review the proposed regulations; discuss timing for regulation development and implementation; assess the probable impact of each regulation; and provide opinions on the fate of each regulation. Both manufacturers and users of gas turbines should be aware of these proceedings and take an active role in the rule development.

  18. Integration of oxygen plants and gas turbines in IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Sorensen, J.C.; Woodward, D.W.

    1996-10-01

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NO{sub x} emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper reviews basic integration principles, highlights the integration scheme used at Polk County, and describes some advanced concepts based on emerging gas turbines. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  19. Cost analysis of NOx control alternatives for stationary gas turbines

    SciTech Connect (OSTI)

    Bill Major

    1999-11-05

    The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.

  20. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

  1. Low transient thermal stress turbine engine components

    DOE Patents [OSTI]

    Shi, Jun (Glastonbury, CT); Schmidt, Wayde R. (Pomfret Center, CT)

    2011-06-28

    A turbine vane includes a platform; and at least one airfoil mounted to the platform and having a trailing edge and a leading edge, wherein the vane is composed of a functionally graded material having a first material and a second material, wherein the trailing edge includes a greater amount of the first material than the second material, and the leading edge includes a greater amount of the second material than the first material.

  2. Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder

    SciTech Connect (OSTI)

    Muth, T. R.; Mayer, R.

    2012-05-04

    Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supply of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.

  3. CONTROL DESIGN FOR A GAS TURBINE CYCLE WITH CO2 CAPTURE CAPABILITIES

    E-Print Network [OSTI]

    Foss, Bjarne A.

    . The exhaust gas from a gas turbine with CO2 as working fluid, is used as heating medium for a steam cycleCONTROL DESIGN FOR A GAS TURBINE CYCLE WITH CO2 CAPTURE CAPABILITIES Dagfinn Snarheim Lars Imsland. of Science and Technology, 7491 Trondheim Abstract: The semi-closed oxy-fuel gas turbine cycle has been

  4. Indirect-fired gas turbine bottomed with fuel cell

    DOE Patents [OSTI]

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  5. Indirect-fired gas turbine bottomed with fuel cell

    DOE Patents [OSTI]

    Micheli, Paul L. (Morgantown, WV); Williams, Mark C. (Morgantown, WV); Parsons, Edward L. (Morgantown, WV)

    1995-01-01

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

  6. Influence of hole shape on the performance of a turbine vane endwall film-cooling scheme

    E-Print Network [OSTI]

    Thole, Karen A.

    Rising combustor exit temperatures in gas turbine engines necessitate active cooling for the downstream industrial gas turbine engines. One means of achieving this goal is to increase the combustion temper- ature are so high in today's gas turbine engines that in the absence of complex cooling schemes the turbine

  7. Gas turbine premixer with internal cooling

    DOE Patents [OSTI]

    York, William David; Johnson, Thomas Edward; Lacy, Benjamin Paul; Stevenson, Christian Xavier

    2012-12-18

    A system that includes a turbine fuel nozzle comprising an air-fuel premixer. The air-fuel premixed includes a swirl vane configured to swirl fuel and air in a downstream direction, wherein the swirl vane comprises an internal coolant path from a downstream end portion in an upstream direction through a substantial length of the swirl vane.

  8. Slag processing system for direct coal-fired gas turbines

    DOE Patents [OSTI]

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  9. Gas Turbine Fired Heater Integration: Achieve Significant Energy Savings 

    E-Print Network [OSTI]

    Iaquaniello, G.; Pietrogrande, P.

    1985-01-01

    stream_source_info ESL-IE-85-05-23.pdf.txt stream_content_type text/plain stream_size 22051 Content-Encoding ISO-8859-1 stream_name ESL-IE-85-05-23.pdf.txt Content-Type text/plain; charset=ISO-8859-1 GAS TURBINE FIRED... HEATER INTEGRATION: ACHIEVE SIGNIFICANT ENERGY SAVINGS G. Iaquaniello**, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI SpA, Rome, Italy ABSTRAer Faster payout will result if gas turbine exhaust is used...

  10. A physics-based emissions model for aircraft gas turbine combustors

    E-Print Network [OSTI]

    Allaire, Douglas L

    2006-01-01

    In this thesis, a physics-based model of an aircraft gas turbine combustor is developed for predicting NO. and CO emissions. The objective of the model is to predict the emissions of current and potential future gas turbine ...

  11. Integrating Gas Turbines with Cracking Heaters - Impact on Emissions and Energy Efficiency 

    E-Print Network [OSTI]

    Platvoet, E.

    2011-01-01

    Turbine Exhaust Gas (TEG) contains high levels of oxygen, typically 15 vol. percent, due to gas turbine blade material temperature limits. As such it can be used as an oxidant for combustion in cracking furnaces and reformers. Its high temperature...

  12. Optimization of Combustion Efficiency for Supplementally Fired Gas Turbine Cogenerator Exhaust Heat Receptors 

    E-Print Network [OSTI]

    Waterland, A. F.

    1984-01-01

    A broad range of unique cogeneration schemes are being installed or considered for application in the process industries involving gas turbines with heat recovery from the exhaust gas. Depending on the turbine design, exhaust gases will range from...

  13. American Institute of Aeronautics and Astronautics Numerical Simulation of a Gas Turbine Combustor Using

    E-Print Network [OSTI]

    Roy, Subrata

    1 American Institute of Aeronautics and Astronautics Numerical Simulation of a Gas Turbine of combustion by using nanosecond pulsed plasma actuators for a gas turbine combustor. Moreau [2] and Corke et

  14. Exhaust gas recirculation system for an internal combustion engine

    DOE Patents [OSTI]

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  15. Cooperative Research and Development for Advanced Materials in Advanced Industrial Gas Turbines Final Technical Report

    SciTech Connect (OSTI)

    Ramesh Subramanian

    2006-04-19

    Evaluation of the performance of innovative thermal barrier coating systems for applications at high temperatures in advanced industrical gas turbines.

  16. Slag processing system for direct coal-fired gas turbines

    DOE Patents [OSTI]

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  17. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  18. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  19. Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions

    E-Print Network [OSTI]

    from the heat recovery steam generator powers an additional steam turbine, providing extra electricBiennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk

  20. Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines

    E-Print Network [OSTI]

    Horvitz, Eric

    Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines To be presented Abstract We have developed an expert system for diagno- sis of efficiency problems for large gas turbines the ultimate goal of applying the system in the day-to-day maintenance of gas- turbine power plants. A Overview

  1. EVALUATION OF MECHANICAL RELIABILITY OF SILICON NITRIDE VANES AFTER FIELD TESTS IN AN INDUSTRIAL GAS TURBINE

    E-Print Network [OSTI]

    Pennycook, Steve

    GAS TURBINE H.-T. Lin and M. K. Ferber Metals and Ceramics Division Oak Ridge National Laboratory Oak field tests in an industrial gas turbine. Two commercially available silicon nitride vanes (i.e., AS800- temperature structural components in advanced gas turbines [1-5]. These materials offer the advantages of (1

  2. Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components.

    E-Print Network [OSTI]

    Nicoud, Franck

    Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components. Florent Duchaine constraint for GT (gas turbines). Most existing CHT tools are developped for chained, steady phenomena with colder walls is a key phenomenon in all chambers and is actually a main design constraint in gas turbines

  3. Large-eddy Simulation of Realistic Gas Turbine Combustors , & Apte, S. V.

    E-Print Network [OSTI]

    Apte, Sourabh V.

    Large-eddy Simulation of Realistic Gas Turbine Combustors Moin, P. , & Apte, S. V. Center of reacting multiphase flows in practical gas-turbine combustion chambers involving complex physical phe specifically for gas-turbine applications. The non-dissipative, yet ro- bust numerical scheme for arbitrary

  4. CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE

    E-Print Network [OSTI]

    Foss, Bjarne A.

    CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Query Sheet Q1: AU: short title OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland, Dagfinn Snarheim, and Bjarne A. Foss Department-closed / gas turbine cycle for capture. Some control strategies and their interaction with the process design

  5. ISABE-2005-1214 Optimum Applications of Four-Port Wave Rotors for Gas Turbines Enhancement

    E-Print Network [OSTI]

    Müller, Norbert

    1 ISABE-2005-1214 Optimum Applications of Four-Port Wave Rotors for Gas Turbines Enhancement Emmett investigations on wave rotor applications for gas turbines have been published, among them conceptual, analytical in the gas turbine industry. The results and conclusions are derived from a wide- range multi

  6. Lean Blow-Out Prediction in Gas Turbine Combustors Using Symbolic Time Series Analysis

    E-Print Network [OSTI]

    Ray, Asok

    Lean Blow-Out Prediction in Gas Turbine Combustors Using Symbolic Time Series Analysis Achintya of lean blowout in gas turbine combustors based on symbolic analysis of time series data from optical. For the purpose of detecting lean blowout in gas turbine combustors, the state probability vector obtained

  7. M. Bahrami ENSC 461 (S 11) Assignment 4 1 Assignment #4 (Gas-turbine)

    E-Print Network [OSTI]

    Bahrami, Majid

    M. Bahrami ENSC 461 (S 11) Assignment 4 1 ENSC 461 Assignment #4 (Gas-turbine) Assignment date: Tuesday Feb. 08, 2011 Due date: Tuesday Feb. 15, 2011 Problem 1: An ideal gas-turbine cycle with ideal-s diagram ideal gas-turbine with regenerator and n-stage compression and expansion with intercooler

  8. Recognising Visual Patterns to Communicate Gas Turbine Time-Series Data

    E-Print Network [OSTI]

    Reiter, Ehud

    Recognising Visual Patterns to Communicate Gas Turbine Time-Series Data Jin Yu, Jim Hunter, Ehud analogue channels are sampled once per second and archived by the Tiger system for monitoring gas turbines that it is very important to identify such patterns in any attempt at summarisation. In the gas turbine domain

  9. DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES

    E-Print Network [OSTI]

    Camci, Cengiz

    DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES (AERSP 597/497-K) SPRING 814 865 9871 cxc11@psu.edu Summary : The proposed course is a three-credit gas turbine design course will be evaluated against (agreed) deadlines by the instructor. A number of lecturers from the gas turbine industry

  10. Int. Symp. on Heat Transfer in Gas Turbine Systems 9 14 August, 2009, Antalya, Turkey

    E-Print Network [OSTI]

    Camci, Cengiz

    Int. Symp. on Heat Transfer in Gas Turbine Systems 9 ­ 14 August, 2009, Antalya, Turkey the full-scale operational conditions of a modern gas turbine dictate high temperatures well in excess research on the gas side of a rotating turbine environment is a technically challenging task. The current

  11. The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling Penyarat plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power, Gas turbine, Hybrid, Solid Oxide Fuel Cell hal-00703135,version1-31May2012 Author manuscript

  12. A comparison between the performance of different silencer designs for gas turbine exhaust systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A comparison between the performance of different silencer designs for gas turbine exhaust systems in more specialist applications, such as the exhaust systems of gas turbines, different silencer experiments are carried out with the aim of investigating performance of silencers used on gas turbines

  13. Automated DecisionAnalytic Diagnosis of Thermal Performance in Gas Turbines

    E-Print Network [OSTI]

    Horvitz, Eric

    Automated Decision­Analytic Diagnosis of Thermal Performance in Gas Turbines To be presented Abstract We have developed an expert system for diagno­ sis of e#ciency problems for large gas turbines the ultimate goal of applying the system in the day­to­day maintenance of gas­ turbine power plants. A Overview

  14. Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine Design

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine of software to analyze and design gas turbine systems has been an important part of this course since 1988 of this project was to develop MS Windows based software: Simple Aircraft Gas Turbine Design, that is easy to use

  15. Turbine engine airfoil and platform assembly

    DOE Patents [OSTI]

    Campbell, Christian X. (Oviedo, FL); James, Allister W. (Chuluota, FL); Morrison, Jay A. (Oviedo, FL)

    2012-07-31

    A turbine airfoil (22A) is formed by a first process using a first material. A platform (30A) is formed by a second process using a second material that may be different from the first material. The platform (30A) is assembled around a shank (23A) of the airfoil. One or more pins (36A) extend from the platform into holes (28) in the shank (23A). The platform may be formed in two portions (32A, 34A) and placed around the shank, enclosing it. The two platform portions may be bonded to each other. Alternately, the platform (30B) may be cast around the shank (23B) using a metal alloy with better castability than that of the blade and shank, which may be specialized for thermal tolerance. The pins (36A-36D) or holes for them do not extend to an outer surface (31) of the platform, avoiding stress concentrations.

  16. Gas turbine based cogeneration facilities: Key issues to be addressed at an early design stage

    SciTech Connect (OSTI)

    Vandesteene, J.L.; De Backer, J.

    1998-07-01

    The basic design of a cogeneration facility implies much more than looking for a gas turbine generating set that matches the steam host heat demand, and making an economical evaluation of the project. Tractebel Energy Engineering (TEE) has designed, built and commissioned since the early nineties 350 MW of cogeneration facilities, mainly producing electricity and steam with natural gas fired gas turbines, which is the present most common option for industrial combined heat and power production. A standardized cogeneration design does not exist. Each facility has to be carefully adapted to the steam host's particular situation, and important technical issues have to be addressed at an early stage of plant design. Unexpected problems, expensive modifications, delays during execution of the project and possible long term operational limitations or drawbacks may result if these questions are left unanswered. This paper comments the most frequent questions on design values, required flexibility of the HRSG, reliability and backup, control system, connection to the grid

  17. Firing Excess Refinery Butane in Peaking Gas Turbines 

    E-Print Network [OSTI]

    Pavone, A.; Schreiber, H.; Zwillenberg, M.

    1989-01-01

    normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper...

  18. Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit Abstract Recent interest in fuel cell fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical performance with experimental data is presented to demonstrate model validity. Introduction Fuel cell

  19. DOE Research Grant Leads to Gas Turbine Manufacturing Improvements

    Broader source: Energy.gov [DOE]

    Research sponsored by the U.S. Department of Energy's Office of Fossil Energy has led to a new licensing agreement that will improve the performance of state-of-the-art gas turbines, resulting in cleaner, more reliable and affordable energy.

  20. Proceedings of IGTI 2009 ASME 2009 International Gas Turbine Institute Conference

    E-Print Network [OSTI]

    Liu, Feng

    - istic of steam turbine blading in low pressure turbines. The re- sults demonstrate that the designProceedings of IGTI 2009 ASME 2009 International Gas Turbine Institute Conference June 8-12, 2009, Orlando,FL, USA GT2009-60115 THREE-DIMENSIONAL AERODYNAMIC DESIGN OPTIMIZATION OF A TURBINE BLADE BY USING

  1. Gas-Fired Reciprocating Engines

    Broader source: Energy.gov [DOE]

    The reciprocating, or piston-driven, engine is a widespread and well-known technology. Also called internal combustion engines, reciprocating engines require fuel, air, compression, and a combustion source to function. Depending on the ignition source, they generally fall into two categories: (1) spark-ignited engines, typically fueled by gasoline or natural gas, and (2) compression-ignited engines, typically fueled by diesel oil fuel.

  2. Pre-mixing apparatus for a turbine engine

    DOE Patents [OSTI]

    Lacy, Benjamin Paul (Greer, SC); Varatharajan, Balachandar (Cincinnati, OH); Ziminsky, Willy Steve (Simpsonville, SC); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Melton, Patrick Benedict (Horse Shoe, NC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC); Felling, David Kenton (Greenville, SC); Uhm, Jong Ho (Simpsonville, SC)

    2012-04-03

    A pre-mixing apparatus for a turbine engine includes a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish at least one fluid delivery plenum, and a plurality of fluid delivery tubes extending through at least a portion of the at least one fluid delivery plenum. Each of the plurality of fluid delivery tubes includes at least one fluid delivery opening fluidly connected to the at least one fluid delivery plenum. With this arrangement, a first fluid is selectively delivered to the at least one fluid delivery plenum, passed through the at least one fluid delivery opening and mixed with a second fluid flowing through the plurality of fluid delivery tubes prior to being combusted in a combustion chamber of a turbine engine.

  3. Water augmented indirectly-fired gas turbine systems and method

    DOE Patents [OSTI]

    Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  4. M. D. Barringer Mechanical Engineering Department,

    E-Print Network [OSTI]

    Thole, Karen A.

    and durability of gas turbine aircraft engines depends highly on achieving a better understanding of the flow to weight ratio of a gas turbine aircraft engine can be accomplished by increasing the turbine working in aircraft gas turbine engines consist of annular liners, inlet swirlers, fuel nozzles, dilution holes, film

  5. Ingestion of high temperature mainstream gas into the rotor-stator cavities of a gas turbine is one of the major problems faced by the turbine designers. The ingested gas heats up rotor disks and induces higher

    E-Print Network [OSTI]

    Ingestion of high temperature mainstream gas into the rotor-stator cavities of a gas turbine is one of the major problems faced by the turbine designers. The ingested gas heats up rotor disks and induces higher a negative effect on the gas turbine thermal efficiency, one goal is to use the least possible amount

  6. Temperature detection in a gas turbine

    DOE Patents [OSTI]

    Lacy, Benjamin; Kraemer, Gilbert; Stevenson, Christian

    2012-12-18

    A temperature detector includes a first metal and a second metal different from the first metal. The first metal includes a plurality of wires and the second metal includes a wire. The plurality of wires of the first metal are connected to the wire of the second metal in parallel junctions. Another temperature detector includes a plurality of resistance temperature detectors. The plurality of resistance temperature detectors are connected at a plurality of junctions. A method of detecting a temperature change of a component of a turbine includes providing a temperature detector include ing a first metal and a second metal different from the first metal connected to each other at a plurality of junctions in contact with the component; and detecting any voltage change at any junction.

  7. Gas-path leakage seal for a turbine

    DOE Patents [OSTI]

    Bagepalli, B.S.; Aksit, M.F.; Farrell, T.R.

    1999-08-10

    A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a turbine (such as combustor casing segments of a gas turbine). The seal includes a flexible and generally imperforate metal sheet assemblage having opposing first and second surfaces and two opposing raised edges extending a generally identical distance above and below the surfaces. A first cloth layer assemblage has a thickness generally equal to the previously-defined identical distance and is superimposed on the first surface between the raised edges. A second cloth layer assemblage is generally identical to the first cloth layer assemblage and is superimposed on the second surface between the raised edges. 5 figs.

  8. In order to achieve higher gas turbine efficiency, the main gas temperature at turbine inlet has been steadily increased from approximately 900C to about 1500C over the last few decades.

    E-Print Network [OSTI]

    In order to achieve higher gas turbine efficiency, the main gas temperature at turbine inlet has. This temperature is higher than the maximum acceptable temperature for turbine internals. The hot main gas may get the purge air is typically bled off the compressor discharge, this reducing the overall gas turbine

  9. Mechanical reliability evaluation of silicon nitride ceramic components after exposure in industrial gas turbines

    E-Print Network [OSTI]

    Pennycook, Steve

    in industrial gas turbines H.T. Lin*, M.K. Ferber Metals and Ceramics Division, Oak Ridge National Laboratory for structural application in industrial gas turbines. Specifically, ceramic com- ponents evaluated included of a subsurface damage zone induced by the turbine environments. In addition, studies indicated

  10. M. Bahrami ENSC 461 (S 11) Assignment 4 1 Assignment #4 (Gas-turbine)

    E-Print Network [OSTI]

    Bahrami, Majid

    M. Bahrami ENSC 461 (S 11) Assignment 4 1 ENSC 461 Assignment #4 (Gas-turbine) Assignment date: Tuesday Feb. 08, 2011 Due date: Tuesday Feb. 15, 2011 Problem 1: An ideal gas-turbine cycle with ideal stage of the compressor at T1 and each stage of the turbine at T3. a) Derive relationships for exit

  11. Turbine disc sealing assembly

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  12. Evaluation of the Gas Turbine Modular Helium Reactor

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Recent advances in gas-turbine and heat exchanger technology have enhanced the potential for a Modular Helium Reactor (MHR) incorporating a direct gas turbine (Brayton) cycle for power conversion. The resulting Gas Turbine Modular Helium Reactor (GT-MHR) power plant combines the high temperature capabilities of the MHR with the efficiency and reliability of modern gas turbines. While the passive safety features of the steam cycle MHR (SC-MHR) are retained, generation efficiencies are projected to be in the range of 48% and steam power conversion systems, with their attendant complexities, are eliminated. Power costs are projected to be reduced by about 20%, relative to the SC-MHR or coal. This report documents the second, and final, phase of a two-part evaluation that concluded with a unanimous recommendation that the direct cycle (DC) variant of the GT-MHR be established as the commercial objective of the US Gas-Cooled Reactor Program. This recommendation has been endorsed by industrial and utility participants and accepted by the US Department of Energy (DOE). The Phase II effort, documented herein, concluded that the DC GT-MHR offers substantial technical and economic advantages over both the IDC and SC systems. Both the DC and IDC were found to offer safety advantages, relative to the SC, due to elimination of the potential for water ingress during power operations. This is the dominant consequence event for the SC. The IDC was judged to require somewhat less development than the direct cycle, while the SC, which has the greatest technology base, incurs the least development cost and risk. While the technical and licensing requirements for the DC were more demanding, they were judged to be incremental and feasible. Moreover, the DC offers significant performance and cost improvements over the other two concepts. Overall, the latter were found to justify the additional development needs.

  13. Performance Analysis of an Annular Diffuser Under the Influence of a Gas Turbine Stage Exit Flow

    E-Print Network [OSTI]

    Blanco, Rafael Rodriguez

    2013-12-31

    In this investigation the performance of a gas turbine exhaust diffuser subject to the outlet flow conditions of a turbine stage is evaluated. Towards that goal, a fully three-dimensional computational analysis has been performed where several...

  14. APPLICATION OF THE REVERSE ENGINEER IN THE MODELING OF A FRANCIS TURBINE IN A

    E-Print Network [OSTI]

    Alberta, University of

    APPLICATION OF THE REVERSE ENGINEER IN THE MODELING OF A FRANCIS TURBINE IN A HYDROELECTRIC for the geometry reconstruction of a Francis turbine installed in a hydroelectric Minipower-station in Colombia directly from the machine and matched against the original incomplete drawings. The Francis Turbine

  15. Biomass gasification for gas turbine-based power generation

    SciTech Connect (OSTI)

    Paisley, M.A.; Anson, D.

    1998-04-01

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high-efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.

  16. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins, Inc., June 2011 Presentation on Advanced Natural Gas Reciprocating Engines...

  17. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar,...

  18. Yale ME Turbine Test cell instructions Background

    E-Print Network [OSTI]

    Haller, Gary L.

    Yale ME Turbine Test cell instructions Background: The Turbine Technologies Turbojet engine combustion gas backflow into the lab space. Test Cell preparation: 1. Turn on Circuit breakers # 16 of the turbine and check a few items: o Open keyed access door on rear of Turbine enclosure o Check Jet A fuel

  19. Recuperator construction for a gas turbine engine

    DOE Patents [OSTI]

    Kang, Yungmo; McKeirnan, Jr., Robert D.

    2006-12-12

    A counter-flow recuperator formed from annular arrays of recuperator core segments. The recuperator core segments are formed from two opposing sheets of fin fold material coined to form a primary surface zone disposed between two flattened manifold zones. Each primary surface zone has undulating corrugations including a uniform, full height central portion and a transition zone disposed between the central portion and one of the manifold zones. Corrugations of the transition zone rise from zero adjacent to the manifold zone and increase along a transition length to full crest height at the central portion. The transition lengths increase in a direction away from an inner edge containing the air inlet so as to equalize air flow to the distal regions of the primary surface zone.

  20. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  1. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

    1999-01-01

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  2. Reacting Mixing-Layer Computations in a Simulated Turbine-Stator Passage

    E-Print Network [OSTI]

    Liu, Feng

    burning fuel in the turbine stages. For the ground-based gas turbine, improvement has been found in power the turbine passage offer an opportunity for a major technological improvement. The gas turbine engineReacting Mixing-Layer Computations in a Simulated Turbine-Stator Passage Felix Cheng, Feng Liu

  3. Department of Aeronautics and Astronautics School of Engineering

    E-Print Network [OSTI]

    de Weck, Olivier L.

    is conducted at the Gas Turbine Laboratory (GTL) which has had a worldwide reputation for research and teaching at the forefront of gas turbine technology for over 50 years. The concept of an MIT Gas Turbine Laboratory control, (3) heat transfer in turbine blading, (4) gas turbine engine noise reduction and aero

  4. Low NOx system for gas turbines in cogen being developed

    SciTech Connect (OSTI)

    Not Available

    1994-12-19

    A catalytic combustion system that reduces NOx emissions from natural-gas turbines used to generate electricity is being developed for cogeneration systems built by AES Manufacturing Services Inc., Broken Arrow, OK. Each compact unit is mounted on an enclosed semi-trailer and contains two Kawasaki turbines with shaft-driven generators and a single heat-recovery boiler. Its net output is 3 MW of electricity and more than 28,000 lb/hr of high-pressure steam. At an industrial or commercial site where electrical capacity needs exceed 3 MW, several units may be installed in parallel. Currently, AES units can control NOx to about 25 ppm with traditional steam-injection technology. The paper describes conventional firing, testing that is under way, and the companies involved.

  5. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  6. A review of biomass integrated-gasifier/gas turbine combined cycle technology and its

    E-Print Network [OSTI]

    condensing-extraction steam turbine (CEST) systems, the present-day commercial technology for electricity-competitive with conventional condensing-ex- traction steam-turbine (CEST) technology using biomass by-products of sugarcaneA review of biomass integrated-gasifier/gas turbine combined cycle technology and its application

  7. Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade Architecture

    E-Print Network [OSTI]

    Cooper, Doug

    to as Combustion Turbine Generators (CTGs). Each unit is connected to a Rentech Heat Recovery Steam Generator (HRSG) which captures waste heat from combustion turbine exhaust to produce steam for the campus's heatingActive NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade

  8. Proceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference

    E-Print Network [OSTI]

    Liu, Feng

    of design parameters. Three design cases are performed with a low-aspect-ratio steam turbine blade testedProceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference June 14-18, 2010 (Switzerland) Baden, Switzerland ABSTRACT For low-aspect-ratio turbine blades secondary loss reduc- tion

  9. A Novel Damping Device for Broadband Attenuation of Low-Frequency Combustion Pulsations in Gas Turbines

    E-Print Network [OSTI]

    Daraio, Chiara

    Turbines Mirko R. Bothien, Nicolas Noiray, Bruno Schuermans Alstom, Baden, Switzerland Abstract Damping of thermoacoustically induced pressure pulsations in combustion chambers is a major focus of gas turbine operation turbines. Usually, however, the damping optimum is in a narrow frequency band at one operating condition

  10. Characterization of First-Stage Silicon Nitride Components After Exposure to an Industrial Gas Turbine

    E-Print Network [OSTI]

    Pennycook, Steve

    Turbine H.-T. Lin,*,w M. K. Ferber,* and P. F. Becher* Metals and Ceramics Division, Oak Ridge National Turbines Incorporated, San Diego, California 92101 This paper provides a summary of recent efforts blades and nozzles after field testing in an industrial gas turbine. Two commercially available silicon

  11. Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines 

    E-Print Network [OSTI]

    Wang, T.; Braquet, L.

    2008-01-01

    An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet...

  12. Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines

    E-Print Network [OSTI]

    Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines the EL method well suited for gas turbine computations, but RANS with the EE approach may also be found and coupled with the LES solver of the gas phase. The equations used for each phase and the coupling terms

  13. A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

    SciTech Connect (OSTI)

    Dr. Adam London

    2008-06-20

    The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

  14. Title: Improving Jet Engine Turbine Thermal Barrier Coatings via Reactive Element Addition to the Bond Coat Alloy

    E-Print Network [OSTI]

    Carter, Emily A.

    Title: Improving Jet Engine Turbine Thermal Barrier Coatings via Reactive Element Addition engine turbine blades can shield the temperature to which the underlying superalloy is exposed modifications that should inhibit the failure of these jet engine turbine thermal barrier coatings. Research

  15. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, P.F.; Shaffer, J.E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

  16. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  17. Gas turbine blade with intra-span snubber

    DOE Patents [OSTI]

    Merrill, Gary B.; Mayer, Clinton

    2014-07-29

    A gas turbine blade (10) including a hollow mid-span snubber (16). The snubber is affixed to the airfoil portion (14) of the blade by a fastener (20) passing through an opening (24) cast into the surface (22) of the blade. The opening is defined during an investment casting process by a ceramic pedestal (38) which is positioned between a ceramic core (32) and a surrounding ceramic casting shell (48). The pedestal provides mechanical support for the ceramic core during both wax and molten metal injection steps of the investment casting process.

  18. Controlled pilot oxidizer for a gas turbine combustor

    DOE Patents [OSTI]

    Laster, Walter R. (Oviedo, FL); Bandaru, Ramarao V. (Greer, SC)

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  19. CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS

    SciTech Connect (OSTI)

    Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

    2009-11-30

    This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

  20. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOE Patents [OSTI]

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  1. Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Labora-

    E-Print Network [OSTI]

    Research turbine supports sustained technology development. For more than three decades, engineers, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC

  2. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  3. Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce lower emissions it is essential

    E-Print Network [OSTI]

    Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce

  4. Investigations of swirl flames in a gas turbine model combustor

    SciTech Connect (OSTI)

    Meier, W.; Duan, X.R.; Weigand, P.

    2006-01-01

    The thermochemical states of three swirling CH{sub 4}/air diffusion flames, stabilized in a gas turbine model combustor, were investigated using laser Raman scattering. The flames were operated at different thermal powers and air/fuel ratios and exhibited different flame behavior with respect to flame instabilities. They had previously been characterized with respect to their flame structures, velocity fields, and mean values of temperature, major species concentrations, and mixture fraction. The single-pulse multispecies measurements presented in this article revealed very rapid mixing of fuel and air, accompanied by strong effects of turbulence-chemistry interactions in the form of local flame extinction and ignition delay. Flame stabilization is accomplished mainly by hot and relatively fuel-rich combustion products, which are transported back to the flame root within an inner recirculation zone. The flames are not attached to the fuel nozzle, and are stabilized approximately 10 mm above the fuel nozzle, where fuel and air are partially premixed before ignition. The mixing and reaction progress in this area are discussed in detail. The flames are short (<50 mm), especially that exhibiting thermoacoustic oscillations, and reach a thermochemical state close to adiabatic equilibrium at the flame tip. The main goals of this article are to outline results that yield deeper insight into the combustion of gas turbine flames and to establish an experimental database for the validation of numerical models.

  5. Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles

    E-Print Network [OSTI]

    Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles John Pye, Keith of the technical feasibility a solarised combined-cycle gas turbines with a dish concentrator, with several with a thermal receiver taken from the earlier 400 m² 'SG3' dish. Work is underway to design a new steam receiver

  6. BIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS

    E-Print Network [OSTI]

    /steamturbinetechnologies. Gasification technologies under development will allow biomass-derived fuels to be usedto fuel gasturbine gasification. The use of biomass fuels with gas turbines could transform a typical pulp mill from a netBIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS ERIC D. LARSON

  7. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect (OSTI)

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation

  8. Internal combustion engine system having a power turbine with a broad efficiency range

    DOE Patents [OSTI]

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  9. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels

    Broader source: Energy.gov [DOE]

    Gas turbines are commonly used in industry for onsite power and heating needs because of their high efficiency and clean environmental performance. Natural gas is the fuel most frequently used to...

  10. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  11. NATURAL GAS STORAGE ENGINEERING Kashy Aminian

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    fields are partially depleted gas (or oil) fields which have been converted to storage. Where depleted oil and gas reservoir are not available, gas can be stored in water bearing sandstones or aquifersNATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia

  12. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caterpillar, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011 Presentation on Advanced Natural Gas Reciprocating...

  13. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOE Patents [OSTI]

    Eldrid, Sacheverel Q. (Saratoga Springs, NY); Salamah, Samir A. (Niskayuna, NY); DeStefano, Thomas Daniel (Ballston Lake, NY)

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  14. Abstract--Modelling and control of gas turbines (GTs) have always been a controversial issue because of the complex

    E-Print Network [OSTI]

    Sainudiin, Raazesh

    Abstract--Modelling and control of gas turbines (GTs) have always been a controversial issue that there is no end to the efforts for performance optimization of gas turbines. A variety of analytical and experimental models as well as control systems has been built so far for gas turbines. However, the need

  15. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Engine Technology for Heavy Duty Vehicles Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Natural gas engine technology has evolved to meet the...

  16. Heat transfer and film-cooling for the endwall of a first stage turbine vane

    E-Print Network [OSTI]

    Thole, Karen A.

    the turbine. Turbine inlet conditions in a gas turbine engine gen- erally consist of temperature and velocityHeat transfer and film-cooling for the endwall of a first stage turbine vane Karen A. Thole of the airfoils. One means of preventing degradation in the turbine is to film-cool components whereby coolant

  17. Stresa, Italy, 26-28 April 2006 A MICRO TURBINE DEVICE WITH ENHANCED

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in micro gas turbine engine, which will generate power output and drive the compressor. The critical reported during test. 1. INTRODUCTION Micro gas turbine engine [1-2] is one of the promising solutions to provide high-density power source for microsystems. We are developing a silicon-based micro gas turbine

  18. Shale oil deemed best near-term synfuel for unmodified diesels and gas turbines. [More consistent properties, better H/C ratios

    SciTech Connect (OSTI)

    Not Available

    1980-06-16

    Among synthetic fuels expected to be developed in the next decade, shale oil appears to be the prime near-term candidate for use in conventional diesel engines and gas turbines. Its superiority is suggested in assessments of economic feasibility, environmental impacts, development lead times and compatibility with commercially available combustion systems, according to a report by the Exxon Research and Engineering Co. Other studies were conducted by the Westinghouse Electric Corp., the General Motors Corp., the General Electric Co. and the Mobil Oil Co. Coal-derived liquids and gases also make excellent fuel substitutes for petroleum distillates and natural gas, these studies indicate, but probably will be economic only for gas turbines. Cost of upgrading the coal-derived fuels for use in diesels significantly reduces economic attractiveness. Methane, hydrogen and alcohols also are suitable for turbines but not for unmodified diesels. The Department of Energy supports studies examining the suitability of medium-speed diesels for adaptation to such fuels.

  19. Evaluation of Mechanical Reliability of Si3N4 Nozzles After Exposure in an Industrial Gas Turbine

    E-Print Network [OSTI]

    Pennycook, Steve

    Evaluation of Mechanical Reliability of Si3N4 Nozzles After Exposure in an Industrial Gas Turbine H 37831-6068 Mark van Roode Solar Turbines Incorporated San Diego, CA 92186 Research sponsored by the U Research Effort · Case Study of Solar Turbines Ceramic Turbine Components - Microstructure characterization

  20. Gas turbine nozzle vane insert and methods of installation

    DOE Patents [OSTI]

    Miller, William John (Simpsonville, SC); Predmore, Daniel Ross (Clifton Park, NY); Placko, James Michael (West Chester, OH)

    2002-01-01

    A pair of hollow elongated insert bodies are disposed in one or more of the nozzle vane cavities of a nozzle stage of a gas turbine. Each insert body has an outer wall portion with apertures for impingement-cooling of nozzle wall portions in registration with the outer wall portion. The insert bodies are installed into the cavity separately and spreaders flex the bodies toward and to engage standoffs against wall portions of the nozzle whereby the designed impingement gap between the outer wall portions of the insert bodies and the nozzle wall portions is achieved. The spreaders are secured to the inner wall portions of the insert bodies and the bodies are secured to one another and to the nozzle vane by welding or brazing.

  1. Combustion Gas Turbine Power Enhancement by Refrigeration of Inlet Air 

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Mani, G.

    1983-01-01

    -'--I:~:::=+~:="'t-':::ty= 0 I---t--~~~~h;!:::::"" y~ .2 ,pa .? )/,. .(, ~-N--~-"IY;: .g Y.. I.e ,oR !?IIT/O ~ 1S'1~III!1S PREssuRE RI'1TIO 20 L , --:-3--:':5--?L..l...l.9A..l..l.lJl.....;lo.l..~? Figure 11: Effect of Bleed Air Rates (~) on ~hermal Efficiency... :-: 0.97 40 P, 147 psia P, = 15.0 psia > u c: .!!!20 o ",. EIO ~ A G; -= ~-r 10 20 40 60 80 100 120 140 net output work (Btu/lb-air) Figure 1: Simple Cycle; Brayton Cycle Gas Turbine and Performance Map. 411 ESL-IE-83...

  2. Recuperated atmosphere SOFC/gas turbine hybrid cycle

    DOE Patents [OSTI]

    Lundberg, Wayne (Pittsburgh, PA)

    2010-08-24

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  3. Recuperated atmospheric SOFC/gas turbine hybrid cycle

    DOE Patents [OSTI]

    Lundberg, Wayne

    2010-05-04

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  4. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect (OSTI)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

  5. EVALUATION OF MECHANICAL RELIABILITY OF Si3N4 NOZZLES AFTER EXPOSURE IN AN INDUSTRIAL GAS TURBINE

    E-Print Network [OSTI]

    Pennycook, Steve

    EVALUATION OF MECHANICAL RELIABILITY OF Si3N4 NOZZLES AFTER EXPOSURE IN AN INDUSTRIAL GAS TURBINE H Laboratory Oak Ridge, TN 37831-6068 (b ) Solar Turbines Incorporated San Diego, CA 92101 ABSTRACT This paper nozzles exposed in an industrial gas turbine. Two field tests with exposures time of 10 and 68 h were

  6. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  7. Mechanical support of a ceramic gas turbine vane ring

    DOE Patents [OSTI]

    Shi, Jun (Glastonbury, CT); Green, Kevin E. (Broad Brook, CT); Mosher, Daniel A. (Glastonbury, CT); Holowczak, John E. (South Windsor, CT); Reinhardt, Gregory E. (South Glastonbury, CT)

    2010-07-27

    An assembly for mounting a ceramic turbine vane ring onto a turbine support casing comprises a first metal clamping ring and a second metal clamping ring. The first metal clamping ring is configured to engage with a first side of a tab member of the ceramic turbine vane ring. The second metal clamping ring is configured to engage with a second side of the tab member such that the tab member is disposed between the first and second metal clamping rings.

  8. An experimental study of heat transfer in the rectangular coolant passages of a gas turbine rotor blade 

    E-Print Network [OSTI]

    Uddin, Mohammed Jalal

    2000-01-01

    Modern gas turbines have high inlet temperatures to harness maximum power output, which causes different components to experience severe thermal stresses and fatigue. To achieve turbine blade durability goals, the blades are cooled with air...

  9. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    DOE Patents [OSTI]

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  10. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect (OSTI)

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  11. Acoustic and thermal packaging of small gas turbines for portable power

    E-Print Network [OSTI]

    Tanaka, Shinji, S.M. Massachusetts Institute of Technology

    2009-01-01

    To meet the increasing demand for advanced portable power units, for example for use in personal electronics and robotics, a number of studies have focused on portable small gas turbines. This research is concerned with ...

  12. Redesign and shock analysis of HALIFAX class frigate gas turbine uptake structure

    E-Print Network [OSTI]

    Summers, Simon A. (Simon Andrew)

    2008-01-01

    The gas turbine exhaust uptakes in the HALIFAX class frigates of the Canadian Navy have experienced thermally-induced fatigue cracking since soon after the commissioning of these ships. The uptake structure is heavily ...

  13. Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants 

    E-Print Network [OSTI]

    Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

    1984-01-01

    Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

  14. Reduction of Film Coolant in High Pressure Turbines

    E-Print Network [OSTI]

    Wirsum Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen Prof. Dr.-Ing. Ingo RöhleReduction of Film Coolant in High Pressure Turbines Bachelor Thesis in Computational Engineering Institute of Propulsion Technology, German Aerospace Center #12;Abstract Gas turbine development has been

  15. Heuristics for Balancing Turbine Fans Samir V. Amiouny

    E-Print Network [OSTI]

    Bartholdi III, John J.

    Reiger, 1986. In some cases, such as in the constructionof hydraulic, steam or gas turbines, fan blades to counteract the residual un- balance. For gas and steam turbines, this is necessary not only when the engineHeuristics for Balancing Turbine Fans Samir V. Amiouny John J. Bartholdi, III John H. Vande Vate

  16. Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions 

    E-Print Network [OSTI]

    Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

    1985-01-01

    RETROFIT WITH GAS TURBINES ACHIEVE BOTH ENERGY SAVINGS AND EMISSION REDUCTIONS F. Giacobbe*, G. Iaquaniello**, R. G. Minet*, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI SpA., Rome, Italy ABSTRACT... Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented. INTRODUCTION Petroleum refining...

  17. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  18. Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish

    SciTech Connect (OSTI)

    Neitzel, Duane A.

    2009-09-14

    Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including changes in pressure as they pass through turbines and dissolved gas supersaturation (resulting from the release of water from the spillway). To examine pressure changes as a source of turbine-passage injury and mortality, Pacific Northwest National Laboratory scientists conducted specific tests using a hyperbaric chamber. Tests were designed to simulate Kaplan turbine passage conditions and to quantify the response of fish to rapid pressure changes, with and without the complication of fish being acclimated to gas-supersaturated water.

  19. NUMERICAL SIMULATIONS OF THE EFFECTS OF CHANGING FUEL FOR TURBINES FIRED BY NATURAL GAS AND SYNGAS

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wright, Ian G

    2007-01-01

    Gas turbines in integrated gasification combined cycle (IGCC) power plants burn a fuel gas (syngas) in which the proportions of hydrocarbons, H2, CO, water vapor, and minor impurity levels may vary significantly from those in natural gas, depending on the input feed to the gasifier and the gasification process. A data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle for various fuel types, air/fuel ratios, and coolant flow rates. The approach used allowed efficient handling of turbine components and different variable constraints due to fuel changes. Examples are presented for a turbine with four stages and cooled blades. The blades were considered to be cooled in an open circuit, with air provided from appropriate compressor stages. Results are presented for the temperatures of the hot gas, alloy surface (coating-superalloy interface), and coolant, as well as for cooling flow rates. Based on the results of the numerical simulations, values were calculated for the fuel flow rates, airflow ratios, and coolant flow rates required to maintain the superalloy in the first stage blade at the desired temperature when the fuel was changed from natural gas (NG) to syngas (SG). One NG case was conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points. It was found that pressure matching is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case. Thus, for this first case, the turbine size would be different for SG than for NG. In order to maintain the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) for the SG simulations, a second series of simulations was carried out by varying the inlet mass flow while keeping constant the pressure ratios and the amount of hot gas passing the first vane of the turbine. The effect of turbine matching between the NG and SG cases was approximately 10 C, and 8 to 14% for rotor inlet temperature and total cooling flows, respectively. These results indicate that turbine-compressor matching, before and after fuel change, must be included in turbine models. The last stage of the turbine, for the SG case, experienced higher inner wall temperatures than the corresponding case for NG, with the temperature of the vane approaching the maximum allowable limit. This paper was published by ASME as paper no. GT2007-27530.

  20. Advanced integration concepts for oxygen plants and gas turbines in gasification/IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Klosek, J.; Woodward, D.W.

    1996-12-31

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. Other processes, such as coal-based ironmaking and combined power and industrial gas production facilities, can benefit from the integration of these two units. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NOx emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper will review basic integration principles and describe advanced concepts based on emerging high compression ratio gas turbines. Humid Air Turbine (HAT) cycles, and integration of compression heat and refrigeration sources from the ASU. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  1. Bond Coating Performance of Thermal Barrier Coatings for Industrial Gas Turbines

    SciTech Connect (OSTI)

    Wright, Ian G; Pint, Bruce A

    2005-01-01

    Thermal barrier coatings are intended to work in conjunction with internal cooling schemes to reduce the metal temperature of critical hot gas path components in gas turbine engines. The thermal resistance is typically provided by a 100--250 {mu}m thick layer of ceramic (most usually zirconia stabilized with an addition of 7--8 wt% of yttria), and this is deposited on to an approximately 50 {mu} thick, metallic bond coating that is intended to anchor the ceramic to the metallic surface, to provide some degree of mechanical compliance, and to act as a reservoir of protective scale-forming elements (Al) to protect the underlying superalloy from high-temperature corrosion. A feature of importance to the durability of thermal barrier coatings is the early establishment of a continuous, protective oxide layer (preferably {alpha}-alumina) at the bond coating-ceramic interface. Because zirconia is permeable to oxygen, this oxide layer continues to grow during service. Some superalloys are inherently resistant to high-temperature oxidation, so a separate bond coating may not be needed in those cases. Thermal barrier coatings have been in service in aeroengines for a number of years, and the use of this technology for increasing the durability and/or efficiency of industrial gas turbines is currently of significant interest. The data presented were taken from an investigation of routes to optimize bond coating performance, and the focus of the paper is on the influences of reactive elements and Pt on the oxidation behaviour of NiAl-based alloys determined in studies using cast versions of bond coating compositions.

  2. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    on June 1-2, 2011. areszurlo.pdf More Documents & Publications Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011...

  3. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in owning and operating costs thereby improving the economics of distributed power generation using reciprocating gas engines. Market impact: *Phase I technologies...

  4. Turbocharged engine exhaust gas recirculation system

    SciTech Connect (OSTI)

    Stachowicz, R.W.

    1984-01-24

    Improved exhaust gas recirculation systems for turbocharged gas engines that include an exhaust pipe, a turbocharger connected thereto, and a carburetor connected with a source of gas for the engine. The recirculation system includes an air conduit extending from the turbocharger compressor discharge to a venturi, an exhaust gas conduit that extends from a connection with the exhaust pipe between the engine and the turbocharger to the venturi, a second air conduit that extends from the exhaust pipe to a connection with the first air conduit, and control valves located in the exhaust gas conduit and in the second air conduit. The valves are closed when the engine is being started or idling at no load and open when a load is imposed or when engine rpm's are increased. No pumps, blowers, etc. are needed because the system operates on a differential in pressure created within the system to cause the exhaust gas recirculation.

  5. Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System

    SciTech Connect (OSTI)

    1994-12-01

    This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

  6. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbines

    SciTech Connect (OSTI)

    Alman, David; Marcio, Duffles

    2014-02-05

    The objective of this Stage Gate IV project was to test and substantiate the viability of an erosion?resistant nanocoating for application on compressor airfoils for gas turbines in both industrial power generation and commercial aviation applications. To effectively complete this project, the National Energy Technology Laboratory’s Office of Research & Development teamed with MDS Coating Technologies Inc. (MCT), Delta Air Lines ? Technical Operations Division (Delta Tech Ops), and Calpine Corporation. The coating targeted for this application was MCT’s Next Generation Coating, version 4 (NGC?v4 ? with the new registered trademark name of BlackGold®). The coating is an erosion and corrosion resistant composite nanostructured coating. This coating is comprised of a proprietary ceramic?metallic nano?composite construction which provides enhanced erosion resistance and also retains the aerodynamic geometry of the airfoils. The objective of the commercial aviation portion of the project was to substantiate the coating properties to allow certification from the FAA to apply an erosion?resistant coating in a commercial aviation engine. The goal of the series of tests was to demonstrate that the durability of the airfoils is not affected negatively with the application of the NGC v4 coating. Tests included erosion, corrosion, vibration and fatigue. The results of the testing demonstrated that the application of the coating did not negatively impact the properties of the blades, especially fatigue performance – which is of importance in acceptance for commercial aviation applications. The objective of the industrial gas turbine element of the project was to evaluate the coating as an enabling technology for inlet fogging during the operation of industrial gas turbines. Fluid erosion laboratory scale tests were conducted to simulate inlet fogging conditions. Results of these tests indicated that the application of the erosion resistant NGC?v4 nanocoating improved the resistance to simulated inlet fogging conditions by a factor of 10 times. These results gave confidence for a field trial at Calpine’s power plant in Corpus Christi, TX, which commenced in April 2012. This test is still on?going as of November 2013, and the nanocoated blades have accumulated over 13,000 operational hours on this specific power plant in approximately 19 months of operation.

  7. Gas Turbine Considerations in the Pulp and Paper Industry 

    E-Print Network [OSTI]

    Anderson, J. S.; Kovacik, J. M.

    1990-01-01

    . Self-generated energy sources include bark, hogged fuels and liquors, and some hydroelectric power. Except for hydroelectric powe of , these sources are by-products of the basic pulping, process and their use, and the steam/electricity g' n... coal-Ured systems 2) Effectiveness on highe, healing value of coal GTOISIOC Figure 1 Fuel utilization effectiveness STEAM TURBINE CYCLES In thermally optimized* steam turbine cogenera tion cycles, steam is expanded in noncondensing or automatic...

  8. Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy

    E-Print Network [OSTI]

    Leon, Marco E.

    2007-01-01

    view of UCSD power plant gas turbine systems 31top down view of UCSD power plant gas turbine systems Figureand Gas Temperatures in a Full-Sized Coal-Fired Power Plant

  9. MASTER OF SCIENCE MECHANICAL ENGINEERING

    E-Print Network [OSTI]

    , Lead Free Solder IMPROVED AEROTHERMODYNAMIC INSTRUMENTATION OF AN ALLISON T63-A-700 GAS TURBINE ENGINE for the gas generator turbine and exhaust state points were evaluated and average values were calculated. The gas generator turbine inlet and exhaust temperature profiles have been measured and show

  10. Summary of the development of open-cycle gas turbine-steam cycles

    SciTech Connect (OSTI)

    Lackey, M.E.; Thompson, A.S.

    1980-09-01

    Combined-cycle plants employing gas turbine cycles superimposed on conventional steam plants are well developed. Nearly 200 units are operating in the US on clean fuels (natural gas or distillate fuel oils) and giving overall thermal efficiencies as high as 42%. Future plants will have to use coal or coal-derived fuels, and this presents problems because gas turbines are very sensitive to particulates and contaminants in the fuel such as sulfur, potassium, lead, etc. If clean liquid or high-Btu gaseous fuels are made from coal, it appears that the conversion efficiency will be no more than 67%. Thus, the overall efficiency of utilization of coal would be less than if it were burned in a conventional steam plant unless the permissible gas turbine inlet temperature can be increased to approx. 1500/sup 0/C (2732/sup 0/F). Coupling a combined-cycle power plant directly to a low-Btu coal gasifier increases the fuel conversion efficiency and permits salvaging waste heat from the gasifier for feedwater heating in the steam cycle. By using a gas turbine inlet temperature of 1315/sup 0/C (2400/sup 0/F), well above the current maximum of approx. 1040/sup 0/C (1904/sup 0/F), an overall efficiency of approx. 40% has been estimated for the integrated plant. However, as discussed in companion reports, it is doubtful that operation with gas turbine inlet temperatures above 1100/sup 0/C (2012/sup 0/F) will prove practicable in base-load plants.

  11. Turbine nozzle attachment system

    DOE Patents [OSTI]

    Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

    1995-01-01

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

  12. Turbine nozzle attachment system

    DOE Patents [OSTI]

    Norton, P.F.; Shaffer, J.E.

    1995-10-24

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

  13. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    SciTech Connect (OSTI)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-02-18

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.

  14. Gas turbines for coal-fired turbocharged PFBC boiler power plants

    SciTech Connect (OSTI)

    Wenglarz, R.; Drenker, S.

    1984-11-01

    A coal-fired turbocharged boiler using fluidized bed combustion at high pressure would be more compact than a pulverized coal fired boiler. The smaller boiler size could permit the utility industry to adopt efficient modular construction methods now widely used in other industries. A commercial turbocharger of the capacity needed to run a 250 MW /SUB e/ power plant does not exist; commercial gas turbines of the correct capacity exist, but they are not matched to this cycle's gas temperature of less than 538/sup 0/C (1000/sup 0/F). In order to avoid impeding the development of the technology, it will probably be desirable to use existing machines to the maximum extent possible. This paper explores the advantages and disadvantages of applying either standard gas turbines or modified standard gas turbines to the turbocharged boiler.

  15. The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration 

    E-Print Network [OSTI]

    Boyce, M. P.; Meher-Homji, C.; Ford, D.

    1981-01-01

    This paper describes the theoretical background and the design and development of a prototype externally fired steam injected (ECSI) gas turbine which has a potential to utilize lower grade fuels. The system is designed around a 2 shaft 360 HP gas...

  16. Investigations of swirl flames in a gas turbine model combustor

    SciTech Connect (OSTI)

    Weigand, P.; Meier, W.; Duan, X.R.; Stricker, W.; Aigner, M.

    2006-01-01

    A gas turbine model combustor for swirling CH{sub 4}/air diffusion flames at atmospheric pressure with good optical access for detailed laser measurements is discussed. Three flames with thermal powers between 7.6 and 34.9 kW and overall equivalence ratios between 0.55 and 0.75 were investigated. These behave differently with respect to combustion instabilities: Flame A burned stably, flame B exhibited pronounced thermoacoustic oscillations, and flame C, operated near the lean extinction limit, was subject to sudden liftoff with partial extinction and reanchoring. One aim of the studies was a detailed experimental characterization of flame behavior to better understand the underlying physical and chemical processes leading to instabilities. The second goal of the work was the establishment of a comprehensive database that can be used for validation and improvement of numerical combustion models. The flow field was measured by laser Doppler velocimetry, the flame structures were visualized by planar laser-induced fluorescence (PLIF) of OH and CH radicals, and the major species concentrations, temperature, and mixture fraction were determined by laser Raman scattering. The flow fields of the three flames were quite similar, with high velocities in the region of the injected gases, a pronounced inner recirculation zone, and an outer recirculation zone with low velocities. The flames were not attached to the fuel nozzle and thus were partially premixed before ignition. The near field of the flames was characterized by fast mixing and considerable finite-rate chemistry effects. CH PLIF images revealed that the reaction zones were thin (=<0.5 mm) and strongly corrugated and that the flame zones were short (h=<50 mm). Despite the similar flow fields of the three flames, the oscillating flame B was flatter and opened more widely than the others. In the current article, the flow field, structures, and mean and rms values of the temperature, mixture fraction, and species concentrations are discussed. Turbulence intensities, mixing, heat release, and reaction progress are addressed. In a second article, the turbulence-chemistry interactions in the three flames are treated.

  17. MODELING, IDENTIFICATION AND CONTROL, 2006, VOL. 00, NO. 0, 000000 Control Design for a Gas Turbine Cycle with CO2 Capture

    E-Print Network [OSTI]

    Foss, Bjarne A.

    capture The semi-closed oxy-fuel gas turbine cycle has been suggested in (Ulizar and Pilidis, 1997 in Section 2), is based on concept (c) above. The exhaust gas from a gas turbine with CO2 as working fluid is removed and the CO2 is recycled as working fluid in the gas turbine. The purpose of this paper

  18. On Optimization of Sensor Selection for Aircraft Gas

    E-Print Network [OSTI]

    Simon, Dan

    1 On Optimization of Sensor Selection for Aircraft Gas Turbine Engines Ramgopal Mushini Dan Simon temperature 6. HPC exit temperature 7. Bypass duct pressure 8. HPC exit pressure 9. LPT (low pressure turbine. High pressure turbine airflow capacity 6. High pressure turbine efficiency 7. Low pressure turbine

  19. Control apparatus for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E. (Clifton Park, NY)

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  20. Multiple volume compressor for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E. (Clifton Park, NY)

    1986-01-01

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  1. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  2. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2002-01-01

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  3. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2003-04-08

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  4. UNIVERSITY TURBINE SYSTEMS RESEARCH-HIGH EFFICIENCY ENGINES AND TURBINES (UTSR-HEET)

    SciTech Connect (OSTI)

    Lawrence P. Golan; Richard A. Wenglarz; William H. Day

    2003-03-01

    In 2002, the U S Department of Energy established a cooperative agreement for a program now designated as the University Turbine Systems (UTSR) Program. As stated in the cooperative agreement, the objective of the program is to support and facilitate development of advanced energy systems incorporating turbines through a university research environment. This document is the first annual, technical progress report for the UTSR Program. The Executive Summary describes activities for the year of the South Carolina Institute for Energy Studies (SCIES), which administers the UTSR Program. Included are descriptions of: Outline of program administrative activities; Award of the first 10 university research projects resulting from a year 2001 RFP; Year 2002 solicitation and proposal selection for awards in 2003; Three UTSR Workshops in Combustion, Aero/Heat Transfer, and Materials; SCIES participation in workshops and meetings to provide input on technical direction for the DOE HEET Program; Eight Industrial Internships awarded to higher level university students; Increased membership of Performing Member Universities to 105 institutions in 40 states; Summary of outreach activities; and a Summary table describing the ten newly awarded UTSR research projects. Attachment A gives more detail on SCIES activities by providing the monthly exceptions reports sent to the DOE during the year. Attachment B provides additional information on outreach activities for 2002. The remainder of this report describes in detail the technical approach, results, and conclusions to date for the UTSR university projects.

  5. Systems and methods for detecting a flame in a fuel nozzle of a gas turbine

    DOE Patents [OSTI]

    Kraemer, Gilbert Otto; Storey, James Michael; Lipinski, John; Mestroni, Julio Enrique; Williamson, David Lee; Marshall, Jason Randolph; Krull, Anthony

    2013-05-07

    A system may detect a flame about a fuel nozzle of a gas turbine. The gas turbine may have a compressor and a combustor. The system may include a first pressure sensor, a second pressure sensor, and a transducer. The first pressure sensor may detect a first pressure upstream of the fuel nozzle. The second pressure sensor may detect a second pressure downstream of the fuel nozzle. The transducer may be operable to detect a pressure difference between the first pressure sensor and the second pressure sensor.

  6. Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application

    SciTech Connect (OSTI)

    Ashok K. Anand

    2005-12-16

    This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

  7. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, J.E.; Norton, P.F.

    1996-12-17

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  8. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  9. Ceramic Cerami Turbine Nozzle

    DOE Patents [OSTI]

    Boyd, Gary L. (Alpine, CA)

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  10. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Reciprocating Engines (ARES) Contract: DE-FC26-01CH11080 GE Energy, Dresser Inc. 102010 - 122013 Jim Zurlo, Principal Investigator james.zurlo@ge.com Tel....

  11. Multiple piece turbine engine airfoil with a structural spar

    DOE Patents [OSTI]

    Vance, Steven J. (Orlando, FL)

    2011-10-11

    A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.

  12. Gas Turbine Reheat Using In-Situ Combustion

    SciTech Connect (OSTI)

    T.E. Lippert; D.M. Bachovchin

    2004-03-31

    Siemens Westinghouse Power Corporation (SWPC) is developing in-situ reheat (fuel injection via airfoil injection) as a means for increasing cycle efficiency and power output, with possibly reduced emissions. In addition to kinetic modeling and experimental task, CFD modeling (by Texas A&M) of airfoil injection and its effects on blade aerodynamics and turbine performance. This report discusses validation of the model against single-vane combustion test data from Siemens Westinghouse, and parametric studies of injection reheat in a modern turbine. The best location for injection is at the trailing edge of the inlet guide vane. Combustion is incomplete at trailing edges of subsequent vanes. Recommendations for further development are presented.

  13. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    SciTech Connect (OSTI)

    Douglas Arrell

    2006-05-31

    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  14. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  15. Published in `AI Communications 9 journal', pp1-17. Published by IOS Press (1996) TIGERTM: Knowledge Based Gas Turbine Condition Monitoring

    E-Print Network [OSTI]

    Travé-Massuyès, Louise

    1996-01-01

    : Knowledge Based Gas Turbine Condition Monitoring Dr. Robert Milne and Dr. Charlie Nicol Intelligent, 11 Colon, Barcelona, 08222 Terrassa. Spain 1. INTRODUCTION Given the critical nature of gas turbines and increasing the availability of the gas turbine. Routine preventative maintenance techniques have been used

  16. An Approach to Generating Summaries of Time Series Data in the Gas Turbine Domain Jin Yu and Jim Hunter and Ehud Reiter and Somayajulu Sripada

    E-Print Network [OSTI]

    Sripada, Yaji

    An Approach to Generating Summaries of Time Series Data in the Gas Turbine Domain Jin Yu and Jim an approach to generating summaries of time series data in the gas turbine domain using AI techniques. Through), both domain knowledge from experts about how to solve problems in the gas turbine and information about

  17. 2 Global Gas Turbine News August 2008 There is an old saying that the only constant in life is change. Our

    E-Print Network [OSTI]

    Daraio, Chiara

    2 Global Gas Turbine News August 2008 There is an old saying that the only constant in life to improve gas turbines over the last 50 years, it has also played an active role in fostering a global our community. One area of discussion has been the role of turbomachinery outside of the gas turbine

  18. High freestream turbulence levels have been shown to greatly augment the heat transfer along a gas turbine airfoil, particularly for the first stage

    E-Print Network [OSTI]

    Thole, Karen A.

    along a gas turbine airfoil, particularly for the first stage nozzle guide vane. For this study of the variables affecting boundary layer development on gas turbine airfoils, studies need to be performed of a variety of gas turbine combustors have shown that the levels can range between 8% and 40% (Kuotmos and Mc

  19. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in COAL IGCC Powerplants

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2004-09-30

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.

  20. High-reliability gas-turbine combined-cycle development program: Phase II, Volume 3. Final report

    SciTech Connect (OSTI)

    Hecht, K.G.; Sanderson, R.A.; Smith, M.J.

    1982-01-01

    This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. The power plant was addressed in three areas: (1) the gas turbine, (2) the gas turbine ancillaries, and (3) the balance of plant including the steam turbine generator. To achieve the program goals, a gas turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and manual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-h EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricty compared to present market offerings.

  1. Fluid-thermoacoustic vibration of a gas turbine recuperator tubular heat exchanger system

    SciTech Connect (OSTI)

    Eisinger, F.L. )

    1994-07-01

    Low-frequency acoustic vibration of a vertical gas turbine recuperator during cold start-up is described. The vibration was identified as fluid-thermoacoustic instability driven by a modified Sondhauss tube-like thermoacoustic phenomenon. The problem and its underlying theoretical basis are described. A design guideline for prevention of instability and alternative solutions for the elimination of the vibration are given.

  2. On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers

    E-Print Network [OSTI]

    Daraio, Chiara

    On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers with the dynamics of standing and rotating azimuthal thermoacoustic modes in annular combustion chambers source intensity, the asymmetry in the system and the strength of the thermo-acoustic interaction

  3. Proceedings of ASME TURBO EXPO 2002 International Gas Turbine & Aeroengine Congress & Exhibition

    E-Print Network [OSTI]

    Peraire, Jaime

    Proceedings of ASME TURBO EXPO 2002 International Gas Turbine & Aeroengine Congress & Exhibition dynamics code using the proper orthogonal decomposition technique. This results in a low-order model to be a signifi- 1 Copyright 2002 by ASME #12;cant factor, increasing the vibratory stress levels by 70% over

  4. Impact study on the use of biomass-derived fuels in gas turbines for power generation

    SciTech Connect (OSTI)

    Moses, C.A.; Bernstein, H.

    1994-01-01

    This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

  5. Massively-Parallel Spectral Element Large Eddy Simulation of a Ring-Type Gas Turbine Combustor 

    E-Print Network [OSTI]

    Camp, Joshua Lane

    2012-07-16

    The average and fluctuating components in a model ring-type gas turbine combustor are characterized using a Large Eddy Simulation at a Reynolds number of 11,000, based on the bulk velocity and the mean channel height. A spatial filter is applied...

  6. Cooling air recycling for gas turbine transition duct end frame and related method

    DOE Patents [OSTI]

    Cromer, Robert Harold (Johnstown, NY); Bechtel, William Theodore (Scotia, NY); Sutcu, Maz (Niskayuna, NY)

    2002-01-01

    A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

  7. Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions

    SciTech Connect (OSTI)

    Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

    2013-07-03

    High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

  8. Boosting devices with integral features for recirculating exhaust gas

    DOE Patents [OSTI]

    Wu, Ko-Jen

    2015-12-22

    According to one embodiment of the invention, a turbine housing includes a turbine inlet in fluid communication with a turbine volute configured to house a turbine wheel, the turbine inlet configured to direct an exhaust gas flow from an engine to the turbine wheel. The turbine housing also includes a turbine outlet in fluid communication with the turbine volute, the turbine outlet configured to direct the exhaust gas flow to an exhaust gas conduit and a first exhaust gas recirculation supply port located on and in fluid communication with the turbine outlet, the first exhaust gas recirculation supply port being configured to direct a portion of the exhaust gas flow to an exhaust gas recirculation supply conduit.

  9. Use of high temperature insulation for ceramic matrix composites in gas turbines

    DOE Patents [OSTI]

    Morrison, Jay Alan (Orlando, FL); Merrill, Gary Brian (Pittsburgh, PA); Ludeman, Evan McNeil (New Boston, NH); Lane, Jay Edgar (Murrysville, PA)

    2001-01-01

    A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.

  10. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines...

    Office of Scientific and Technical Information (OSTI)

    Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines Citation Details In-Document Search Title: Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines ...

  11. Turbine engine lubricant foaming due to silicone basestock used in non-specification spline lubricant

    SciTech Connect (OSTI)

    Centers, P.W.

    1995-05-01

    Dependent upon molecular weight and distribution, concentration, temperature, air flow, and test details or field application, polydimethylsiloxane (PDMS) may be neutral, profoamant or antifoamant in polyolesters. This understanding was critical in the solution of a turbine engine lubrication system foaming problem occurring at several military locations. Suspect turbine engine-accessory gearbox assembly materials gathered from several sites were evaluated. One non-specification PDMS-based spline lubricant caused copious foaming of the lubricant at less than ten parts-per-million concentration, while a specification polymethyl-phenylsiloxane (PMPS)-based lubricant required a concentration nearly 2000 times greater to generate equivalent foam. Use of the profoamant PDMS spline lubricant was then prohibited. Since prohibition, foaming of turbine engine lubricants used in the particular application has not been reported. PMPS impact on foaming of ester lubricants is similar to a much more viscous PDMS attributed to the reduced interaction of PMPS in esters due to pendant phenyl structure of PMPS absent in PDMS. These data provide significant additional insight and methodology to investigate foaming tendencies of partially miscible silicone-ester and other fluid systems. 7 refs., 2 figs., 1 tab.

  12. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2005-12-01

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

  13. Development of the Low Swirl Injector for Fuel-Flexible GasTurbines

    SciTech Connect (OSTI)

    Littlejohn, D.; Cheng, R.K.; Nazeer,W.A.; Smith, K.O

    2007-02-14

    Industrial gas turbines are primarily fueled with natural gas. However, changes in fuel cost and availability, and a desire to control carbon dioxide emissions, are creating pressure to utilize other fuels. There is an increased interest in the use of fuels from coal gasification, such as syngas and hydrogen, and renewable fuels, such as biogas and biodiesel. Current turbine fuel injectors have had years of development to optimize their performance with natural gas. The new fuels appearing on the horizon can have combustion properties that differ substantially from natural gas. Factors such as turbulent flame speed, heat content, autoignition characteristics, and range of flammability must be considered when evaluating injector performance. The low swirl injector utilizes a unique flame stabilization mechanism and is under development for gas turbine applications. Its design and mode of operation allow it to operate effectively over a wide range of conditions. Studies conducted at LBNL indicate that the LSI can operate on fuels with a wide range of flame speeds, including hydrogen. It can also utilize low heat content fuels, such as biogas and syngas. We will discuss the low swirl injector operating parameters, and how the LSC performs with various alternative fuels.

  14. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  15. Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at

    E-Print Network [OSTI]

    Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature to the turbine has not been extensively studied or documented. It is important to understand how the droplets

  16. Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and

    E-Print Network [OSTI]

    Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor the supply of purge air as this decreases the net power output as well as efficiency of the gas turbine Velocimetry (PIV). Experiments were carried out in a model single-stage axial flow turbine set

  17. Mechanical and Aerospace Engineering University at Buffalo

    E-Print Network [OSTI]

    Krovi, Venkat

    . Droplet shedding plays a key role in the efficiency of steam, gas, wind turbines and aircraft engines. We of Mexico oil spill. Similarly, ice poses a key challenge to operational performance of wind turbines and hydrates. Applications of these nanoengineered surfaces to power turbines, engines, power and desalination

  18. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  19. Coaxial fuel and air premixer for a gas turbine combustor

    DOE Patents [OSTI]

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  20. Ideal Gas Carnot Engines and Efficiency Chemistry 223

    E-Print Network [OSTI]

    Ronis, David M.

    Ideal Gas Carnot Engines and Efficiency Chemistry 223 Fig. 1. The Carnot Cycle The Carnot engine parts of the Carnot cycle for an ideal gas. 1. Energy in an Ideal Gas: Joule's Experiment In his study depicted below: Fall Term, 2014 #12;Ideal Gas Carnot Engines and Efficiency -2- Chemistry 223 P=0

  1. Optimal Maintenance Scheduling of a Gas Engine Power Plant

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimal Maintenance Scheduling of a Gas Engine Power Plant Pedro M. Castro Ignacio E. Grossmann MILP starting from GDP model September 4-5 2EWO Fall Meeting 2013 Problem statement · Gas Engine Power Plant Project in Sasolburg (SGEPP) ­ 18 identical gas engines consuming natural gas & producing

  2. The heat recovery steam generator (HRSG) is a key component of Combined Cycle Power Plants (CCPP). The exhaust (flue gas) from the CCPP gas turbine flows through the HRSG -this gas typically contains a high

    E-Print Network [OSTI]

    The heat recovery steam generator (HRSG) is a key component of Combined Cycle Power Plants (CCPP). The exhaust (flue gas) from the CCPP gas turbine flows through the HRSG - this gas typically contains a high

  3. Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired

    E-Print Network [OSTI]

    Nair, Sankar

    higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

  4. Natural Gas Engine Development Gaps (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.T.

    2014-03-01

    A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

  5. MASTER OF SCIENCE MECHANICAL ENGINEERING

    E-Print Network [OSTI]

    ;MECHANICAL ENGINEERING 70 REDUCTION OF MARINE GAS TURBINE EXHAUST INFRARED SIGNATURE Joseph D. Gombas radiation signature of the exhaust plume from a gas turbine powered ship. The concepts fell into three69 MASTER OF SCIENCE IN MECHANICAL ENGINEERING A PARAMETRIC DESIGN STUDY OF InGaAs MICRO

  6. Support pedestals for interconnecting a cover and nozzle band wall in a gas turbine nozzle segment

    DOE Patents [OSTI]

    Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC); Webbon, Waylon Willard (Greenville, SC); Bagepalli, Radhakrishna (Schenectady, NY); Burdgick, Steven Sebastian (Schenectady, NY); Kellock, Iain Robertson (Simpsonville, SC)

    2002-01-01

    A gas turbine nozzle segment has outer and inner band portions. Each band portion includes a nozzle wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through the apertures of the impingement plate to cool the nozzle wall. Structural pedestals interconnect the cover and nozzle wall and pass through holes in the impingement plate to reduce localized stress otherwise resulting from a difference in pressure within the chamber of the nozzle segment and the hot gas path and the fixed turbine casing surrounding the nozzle stage. The pedestals may be cast or welded to the cover and nozzle wall.

  7. Assessment of existing H2/O2 chemical reaction mechanisms at reheat gas turbine conditions

    E-Print Network [OSTI]

    Weydahl, Torleif; Seljeskog, Morten; Haugen, Nils Erland L

    2011-01-01

    This paper provides detailed comparisons of chemical reaction mechanisms of H2 applicable at high preheat temperatures and pressures relevant to gas turbine and particularly Alstom's reheat gas turbine conditions. It is shown that the available reaction mechanisms exhibit large differences in several important elementary reaction coefficients. The reaction mechanisms are assessed by comparing ignition delay and laminar flame speed results obtained from CHEMKIN with available data, however, the amount of data at these conditions is scarce and a recommended candidate among the mechanisms can presently not be selected. Generally, the results with the GRI-Mech and Leeds mechanisms deviate from the Davis, Li, O'Conaire, Konnov and San Diego mechanisms, but there are also significant deviations between the latter five mechanisms that altogether are better adapted to hydrogen. The differences in ignition delay times between the dedicated hydrogen mechanisms (O'Conaire, Li and Konnov) range from approximately a maxim...

  8. Control studies of an automotive turbocharged diesel engine with variable geometry turbine

    SciTech Connect (OSTI)

    Winterbone, D.E.; Jai In, S.

    1988-01-01

    Major advances are being made in engine hardware, control theories and microcomputer technology. The application of advanced control and monitoring techniques to engines should enable them to meet all the restrictions imposed upon them while they operate to their full potential. Variable geometry turbocharging of automotive diesel engines is a good example of a case where the control implications need to be considered carefully. This paper reports a technique for developing the dynamic characteristics of turbocharged diesel engines with variable geometry turbine and compares the results with measurements obtained on an engine. It is the first step in the design process for a true, dynamic, multivariable controller. Most current systems are simply scheduling devices with little understanding or consideration of possible interactions between various control loops. A non-linear simulation model for a turbocharged diesel engine was used to investigate the performance of the engine. Major features of the program, aspects of constructing a model for control purposes and identification procedures of the engine dynamic are discussed.

  9. How Gas Turbine Power Plants Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,SecurityHome solar systemsEnergyiscombustion (gas)

  10. Development of a Low NOx Medium-Sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    2009-11-01

    Solar Turbines Inc., in collaboration with Pennsylvania State University and the University of Southern California, will develop injector technologies for gas turbine use of high-hydrogen content renewable and opportunity fuels derived from coal, biomass, industrial process waste, or byproducts. This project will develop low-emission technology for alternate fuels with high-hydrogen content, thereby reducing natural gas requirements and lowering carbon intensity.

  11. Method of joining a vane cavity insert to a nozzle segment of a gas turbine

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY)

    2002-01-01

    An insert containing apertures for impingement cooling a nozzle vane of a nozzle segment in a gas turbine is inserted into one end of the vane. The leading end of the insert is positioned slightly past a rib adjacent the opposite end of the vane through which the insert is inserted. The end of the insert is formed or swaged into conformance with the inner margin of the rib. The insert is then brazed or welded to the rib.

  12. LASER STABILIZATION FOR NEAR ZERO NO{sub x} GAS TURBINE COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Vivek Khanna

    2002-09-30

    Historically, the development of new industrial gas turbines has been primarily driven by the intent to achieve higher efficiency, lower operating costs and lower emissions. Higher efficiency and lower cost is obtained through higher turbine operating temperatures, while reduction in emissions is obtained by extending the lean operating limit of the combustor. However reduction in the lean stability limit of operation is limited greatly by the chemistry of the combustion process and by the occurrence of thermo-acoustic instabilities. Solar Turbines, CFD Research Corporation, and Los Alamos National Laboratory have teamed to advance the technology associated with laser-assisted ignition and flame stabilization, to a level where it could be incorporated onto a gas turbine combustor. The system being developed is expected to enhance the lean stability limit of the swirl stabilized combustion process and assist in reducing combustion oscillations. Such a system has the potential to allow operation at the ultra-lean conditions needed to achieve NO{sub x} emissions below 5 ppm without the need of exhaust treatment or catalytic technologies. The research effort was focused on analytically modeling laser-assisted flame stabilization using advanced CFD techniques, and experimentally demonstrating the technology, using a solid-state laser and low-cost durable optics. A pulsed laser beam was used to generate a plasma pool at strategic locations within the combustor flow field such that the energy from the plasma became an ignition source and helped maintain a flame at ultra lean operating conditions. The periodic plasma generation and decay was used to nullify the fluctuations in the heat release from the flame itself, thus decoupling the heat release from the combustor acoustics and effectively reducing the combustion oscillations. The program was built on an existing technology base and includes: extending LANL's existing laser stabilization experience to a sub-scale combustor rig, performing and validating CFD predictions, and ultimately conducting a full system demonstration in a multi-injector combustion system at Solar Turbines.

  13. Performance evaluation of a gas turbine cycle with a pulse combustion system

    SciTech Connect (OSTI)

    El-Gizawy, I.G.; Gadalla, M.A. [Helwan Univ., Cairo (Egypt). Mechanical Power Engineering Dept.

    1997-12-31

    This paper presents a comprehensive analysis of the effect of a pulse combustion system on the performance of a gas turbine cycle. The advantages of pulse combustors are numerous. The heat transfer is enhanced by the large oscillations resulting in the flowfield within the combustion zone. These oscillations arise from intrinsic combustion driven instabilities, similar to those that occur in rocket motors. The enhanced heat transfer means that a smaller combustion chamber (furnace) can be used to provide the same energy output. Moreover, a reduction in the No{sub x} level in the exhaust gases can be obtained without additional pollution control. The purpose of this paper, is to analyze theoretically the effect of pulse combustion system on the performance of a gas turbine cycle so that the resultant changes in performance can be estimated without experiment. In addition, this paper investigates the utilization of converting part of chemical energy of fuel into pressure energy in the combustion chamber of a gas turbine utilizing a pulse combustor. A computer code has been written to evaluate the cycle performance, thermodynamic characteristics of the cycle during operation as compared with a conventional cycle. The study describes the influence of the maximum possible pressure rise in combustion chamber, the heat addition ratio, maximum temperature and compressor pressure ratio on the performance parameters such as fuel consumption, net work output, excess air factor and thermal efficiency.

  14. Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil...

    Energy Savers [EERE]

    Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Results of completed...

  15. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  16. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOE Patents [OSTI]

    Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

    2012-07-24

    A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

  17. Development of a MEMS turbocharger and gas turbine engine

    E-Print Network [OSTI]

    Savoulides, Nicholas, 1978-

    2004-01-01

    As portable electronic devices proliferate (laptops, GPS, radios etc.), the demand for compact energy sources to power them increases. Primary (non-rechargeable) batteries now provide energy densities upwards of 180 W-hr/kg, ...

  18. FOCUSING ON PETROLEUM/OIL AND GAS ENGINEERING WITHIN THE MENG CHEMICAL ENGINEERING PROGRAM

    E-Print Network [OSTI]

    Brownstone, Rob

    FOCUSING ON PETROLEUM/OIL AND GAS ENGINEERING WITHIN THE MENG CHEMICAL ENGINEERING PROGRAM of Engineering (MEng) Chemical Engineering Overview For over a decade, Dalhousie University's MEng Petroleum Chemical Engineering program for those qualified applicants interested in Petroleum and Oil and Gas

  19. Lubricating system for thermal medium delivery parts in a gas turbine

    DOE Patents [OSTI]

    Mashey, Thomas Charles (Coxsackie, NY)

    2002-01-01

    Cooling steam delivery tubes extend axially along the outer rim of a gas turbine rotor for supplying cooling steam to and returning spent cooling steam from the turbine buckets. Because of the high friction forces at the interface of the tubes and supporting elements due to rotor rotation, a low coefficient of friction coating is provided at the interface of the tubes and support elements. On each surface, a first coating of a cobalt-based alloy is sprayed onto the surface at high temperature. A portion of the first coating is machined off to provide a smooth, hard surface. A second ceramic-based solid film lubricant is sprayed onto the first coating. By reducing the resistance to axial displacement of the tubes relative to the supporting elements due to thermal expansion, the service life of the tubes is substantially extended.

  20. Control method for turbocharged diesel engines having exhaust gas recirculation

    SciTech Connect (OSTI)

    Kolmanovsky, I.V.; Jankovic, M.J.; Jankovic, M.

    2000-03-14

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  1. Multiple piece turbine airfoil

    DOE Patents [OSTI]

    Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  2. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01

    Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

  3. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  4. Turbine seal assembly

    DOE Patents [OSTI]

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  5. Session II-D-3 American Society for Engineering Education March 27, 2004 Bradley University/Illinois Central College, Peoria, Illinois

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    % Otto (gasoline) engine 25-35 Diesel engine 30-40 Gas turbine 30-40 Steam turbine 30-40 Nuclear, steam turbine 30-35 Combined gas/steam turbines 40-55+ Fuel cell (hydrogen, etc.) 40-60+ Photovoltaic cell 10-20 Windmill 30-40 (59% limit) Hydro turbine 80-85 Electro-mechanical motor/generator 80-95 NOTE: Thermal

  6. S. K. Aggarwal2 Department of Mechanical Engineering,

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    , is important in diesel engines, liquid rockets, and gas turbine combustors. In jet engines used in militaryG. S. Zhu1 S. K. Aggarwal2 Department of Mechanical Engineering, University of Illinois at Chicago

  7. Bushing retention system for thermal medium cooling delivery tubes in a gas turbine rotor

    DOE Patents [OSTI]

    Mashey, Thomas Charles (Coxsackie, NY)

    2002-01-01

    Bushings are provided in counterbores for wheels and spacers for supporting thermal medium cooling tubes extending axially adjacent the rim of the gas turbine rotor. The retention system includes a retaining ring disposed in a groove adjacent an end face of the bushing and which retaining ring projects radially inwardly to prevent axial movement of the bushing in one direction. The retention ring has a plurality of circumferentially spaced tabs along its inner diameter whereby the ring is supported by the lands of the tube maintaining its bushing retention function, notwithstanding operation in high centrifugal fields and rotation of the ring in the groove into other circular orientations.

  8. Pressurized solid oxide fuel cell/gas turbine combined cycle systems

    SciTech Connect (OSTI)

    George, R.A.

    1997-12-31

    Over the last 10 years, Westinghouse Electric Corporation has made great strides in advancing tubular solid oxide fuel cell (SOFC) technology towards commercialization by the year 2001. In 1993, Westinghouse initiated a program to develop pressurized solid oxide fuel cell/gas turbine (PSOFC/GT) combined cycle power systems because of the ultra-high electrical efficiencies, 60-75% (net AC/LHV CH4), inherent with these systems. This paper will discuss SOFC technology advancements in recent years, and the final phase development program which will focus on the development and demonstration of PSOFC/GT power systems for distributed power applications.

  9. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    SciTech Connect (OSTI)

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  10. Natural Gas-optimized Advanced Heavy-duty Engine

    E-Print Network [OSTI]

    Natural Gas-optimized Advanced Heavy-duty Engine Transportation Research PIER Transportation the research and development of an advanced natural gas engine concepts that can be used in the heavy duty Treatment System) simulations have been performed and reported. · The EATS hardware for engine tests has

  11. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOE Patents [OSTI]

    Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  12. Cooled snubber structure for turbine blades

    DOE Patents [OSTI]

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  13. Gas Powered Air Conditioning Absorption vs. Engine-Drive 

    E-Print Network [OSTI]

    Phillips, J. N.

    1996-01-01

    not a new technology at the time, neither was the gas engine. But now in the 19901s, gas engine-drive (GED) chillers have "hit" the air conditioning market with a "bang". In the Lone Star Gas Company area in 1995, GED chillers are now being considered...

  14. Two-tank working gas storage system for heat engine

    DOE Patents [OSTI]

    Hindes, Clyde J. (Troy, NY)

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  15. Fuel injection assembly for use in turbine engines and method of assembling same

    DOE Patents [OSTI]

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  16. Combustor assembly for use in a turbine engine and methods of assembling same

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward

    2013-05-14

    A fuel nozzle assembly for use with a turbine engine is described herein. The fuel nozzle assembly includes a plurality of fuel nozzles positioned within an air plenum defined by a casing. Each of the plurality of fuel nozzles is coupled to a combustion liner defining a combustion chamber. Each of the plurality of fuel nozzles includes a housing that includes an inner surface that defines a cooling fluid plenum and a fuel plenum therein, and a plurality of mixing tubes extending through the housing. Each of the mixing tubes includes an inner surface defining a flow channel extending between the air plenum and the combustion chamber. At least one mixing tube of the plurality of mixing tubes including at least one cooling fluid aperture for channeling a flow of cooling fluid from the cooling fluid plenum to the flow channel.

  17. Improving the Efficiency of Spark Ignited, Stoichiometric Natural Gas Engines

    Broader source: Energy.gov [DOE]

    This work focused on using camless engine technology to improve the efficiency of a natural gas engine. Late intake close timing and cylinder deactivation were utilized to meet a peak BTE > 40%.

  18. Materials and Component Development for Advanced Turbine Systems

    SciTech Connect (OSTI)

    Alvin, M.A.; Pettit, F.; Meier, G.H.; Yanar, M.; Helminiak, M.; Chyu, M.; Siw, S.; Slaughter, W.S.; Karaivanov, V.; Kang, B.S.; Feng, C.; Tannebaum, J.M.; Chen, R.; Zhang, B.; Fu, T.; Richards, G.A,; Sidwell, T.G.; Straub, D.; Casleton, K.H.; Dogan, O.M.

    2008-07-01

    Hydrogen-fired and oxy-fueled land-based gas turbines currently target inlet operating temperatures of ?1425-1760°C (?2600-3200°F). In view of natural gas or syngas-fired engines, advancements in both materials, as well as aerothermal cooling configurations are anticipated prior to commercial operation. This paper reviews recent technical accomplishments resulting from NETL’s collaborative research efforts with the University of Pittsburgh and West Virginia University for future land-based gas turbine applications.

  19. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    SciTech Connect (OSTI)

    Gleeson, Brian

    2014-09-30

    Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potential to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K2SO4, and FeS) and environmental oxidants (i.e., O2, H2O and CO2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.

  20. A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

  1. High Pressure Superheater 1 (HPSH1) is the first heat exchange tube bank inside the Heat Recovery Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam

    E-Print Network [OSTI]

    Steam Generator (HRSG) to encounter exhaust flue gas from the gas turbine of a Combined Cycle Power Plant. Steam flowing through the HPSH1 gains heat from the flue gas prior to entering the steam turbine changes that occurred, especially in the steam temperature at the HPSH1 entry, and the different rates

  2. Natural Gas Engine Development: July 2003 -- July 2005

    SciTech Connect (OSTI)

    Lekar, T. C.; Martin, T. J.

    2006-11-01

    Discusses project to develop heavy-duty, 8.1L natural gas vehicle engines that would be certifiable below the 2004 federal emissions standards and commercially viable.

  3. Natural Gas Engine Development: July 2003--July 2005

    SciTech Connect (OSTI)

    Lekar, T. C.; Martin, T. J.

    2006-03-01

    Describes project to develop natural gas engines that would be certifiable to nitrogen oxide and nonmethane hydrocarbon emission levels below 2004 federal standards.

  4. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  5. Engineering Methane is a major component of shale gas. Recent

    E-Print Network [OSTI]

    Chemical Engineering Methane is a major component of shale gas. Recent oversupply of shale gas has 30% of electricity from natural and shale gas, increasing from 15% in 2010. US chemical industries have begun using ethane from shale gas as a feedstock. The low methane price is expected to push its

  6. Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian D. (Mauldin, SC); Wesorick, Ronald R. (Albany, NY)

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

  7. Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  8. 1 Copyright 2011 by ASME Proceedings of the 2011 International Mechanical Engineering Congress and Exposition

    E-Print Network [OSTI]

    Camci, Cengiz

    in gas turbine technology. One of the most crucial components of modern jet engines is the gas turbine1 Copyright © 2011 by ASME Proceedings of the 2011 International Mechanical Engineering Congress Gokce 1 Turbomachinery Aero-Heat Transfer Laboratory Department of Aerospace Engineering

  9. Heat transfer in leading and trailing edge cooling channels of the gas turbine blade under high rotation numbers 

    E-Print Network [OSTI]

    Liu, Yao-Hsien

    2009-05-15

    at the highest rotation number of 0.58. Heat transfer coefficients are also experimentally measured in a wedge-shaped cooling channel (Dh =2.22cm, Ac=7.62cm2) to model an internal cooling passage near the trailing edge of a gas turbine blade where the coolant...

  10. Axial seal system for a gas turbine steam-cooled rotor

    DOE Patents [OSTI]

    Mashey, Thomas Charles (Anderson, SC)

    2002-01-01

    An axial seal assembly is provided at the interface between adjacent wheels and spacers of a gas turbine rotor and disposed about tubes passing through openings in the rotor adjacent the rotor rim and carrying a thermal medium. Each seal assembly includes a support bushing for supporting a land of the thermal medium carrying tube, an axially registering seat bushing disposed in the opposed opening and a frustoconical seal between the seal bushing and seat. The seal bushing includes a radial flange having an annular recess for retaining the outer diameter edge of the seal, while the seat bushing has an axially facing annular surface forming a seat for engagement by the inner diameter edge of the seal.

  11. Development of a transonic front stage of an axial flow compressor for industrial gas turbines

    SciTech Connect (OSTI)

    Katoh, Y.; Ishii, H.; Tsuda, Y.; Yanagida, M. . Mechanical Engineering Research Lab.); Kashiwabara, Y. . Dept. of Mechanical Systems Engineering)

    1994-10-01

    This paper describes the aerodynamic blade design of a highly loaded three-stage compressor, which is a model compressor for the front stage of an industrial gas turbine. Test results are presented that confirm design performance. Some surge and rotating stall measurement results are also discussed. The first stator blade in this test compressor operates in the high subsonic range at the inlet. To reduce the pressure loss due to blade surface shock waves, a shock-free airfoil is designed to replace the first stator blade in an NACA-65 airfoil in a three-stage compressor. Comparison of the performance of both blades shows that the shock-free airfoil blade reduces pressure loss. This paper also presents some experimental results for MCA (multicircular arc) airfoils, which are used for first rotor blades.

  12. Characterization of the reactive flow field dynamics in a gas turbine injector using high frequency PIV

    E-Print Network [OSTI]

    Barbosa, Séverine; Ducruix, Sébastien

    2008-01-01

    The present work details the analysis of the aerodynamics of an experimental swirl stabilized burner representative of gas turbine combustors. This analysis is carried out using High Frequency PIV (HFPIV) measurements in a reactive situation. While this information is usually available at a rather low rate, temporally resolved PIV measurements are necessary to better understand highly turbulent swirled flows, which are unsteady by nature. Thanks to recent technical improvements, a PIV system working at 12 kHz has been developed to study this experimental combustor flow field. Statistical quantities of the burner are first obtained and analyzed, and the measurement quality is checked, then a temporal analysis of the velocity field is carried out, indicating that large coherent structures periodically appear in the combustion chamber. The frequency of these structures is very close to the quarter wave mode of the chamber, giving a possible explanation for combustion instability coupling.

  13. Optimal integrated design of air separation unit and gas turbine block for IGCC systems

    SciTech Connect (OSTI)

    Kamath, R.; Grossman, I.; Biegler, L.; Zitney, S.

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and LGTI at Plaquemine, US (stand-alone). However, there is very little information on systematic assessment of air extraction, nitrogen injection and configuration and operating conditions of the ASU and it is not clear which scheme is optimal for a given IGCC application. In this work, we address the above mentioned problem systematically using mixed-integer optimization. This approach allows the use of various objectives such as minimizing the investment and operating cost or SOx and NOx emissions, maximizing power output or overall efficiency or a weighted combination of these factors. A superstructure is proposed which incorporates all the integration schemes described above. Simplified models for ASU, gas turbine system and steam cycle are used which provide reasonable estimates for performance and cost (Frey and Zhu, 2006). The optimal structural configuration and operating conditions are presented for several case studies and it is observed that the optimal solution changes significantly depending on the specified objective.

  14. Optimal Integrated Design of Air Separation Unit and Gas Turbine Block for IGCC Systems

    SciTech Connect (OSTI)

    Ravindra S. Kamath; Ignacio E. Grossmann; Lorenz T. Biegler; Stephen E. Zitney

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and LGTI at Plaquemine, US (stand-alone). However, there is very little information on systematic assessment of air extraction, nitrogen injection and configuration and operating conditions of the ASU and it is not clear which scheme is optimal for a given IGCC application. In this work, we address the above mentioned problem systematically using mixed-integer optimization. This approach allows the use of various objectives such as minimizing the investment and operating cost or SOx and NOx emissions, maximizing power output or overall efficiency or a weighted combination of these factors. A superstructure is proposed which incorporates all the integration schemes described above. Simplified models for ASU, gas turbine system and steam cycle are used which provide reasonable estimates for performance and cost (Frey and Zhu, 2006). The optimal structural configuration and operating conditions are presented for several case studies and it is observed that the optimal solution changes significantly depending on the specified objective.

  15. Method for forming a liquid cooled airfoil for a gas turbine

    DOE Patents [OSTI]

    Grondahl, Clayton M. (Clifton Park, NY); Willmott, Leo C. (Ballston Spa, NY); Muth, Myron C. (Amsterdam, NY)

    1981-01-01

    A method for forming a liquid cooled airfoil for a gas turbine is disclosed. A plurality of holes are formed at spaced locations in an oversized airfoil blank. A pre-formed composite liquid coolant tube is bonded into each of the holes. The composite tube includes an inner member formed of an anti-corrosive material and an outer member formed of a material exhibiting a high degree of thermal conductivity. After the coolant tubes have been bonded to the airfoil blank, the airfoil blank is machined to a desired shape, such that a portion of the outer member of each of the composite tubes is contiguous with the outer surface of the machined airfoil blank. Finally, an external skin is bonded to the exposed outer surface of both the machined airfoil blank and the composite tubes.

  16. Electrochemical machining process for forming surface roughness elements on a gas turbine shroud

    DOE Patents [OSTI]

    Lee, Ching-Pang (Cincinnati, OH); Johnson, Robert Alan (Simpsonville, SC); Wei, Bin (Mechanicville, NY); Wang, Hsin-Pang (Rexford, NY)

    2002-01-01

    The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.

  17. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex; Banta, Larry; Tucker, David; Gemmen, Randall

    2010-08-01

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  18. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect (OSTI)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  19. Evaluation of Mechanical Reliability of Silicon Nitride Vanes After Field Tests in an Industrial Gas Turbine

    E-Print Network [OSTI]

    Pennycook, Steve

    Vanes Was Successfully Completed by Rolls-Royce Allison in 1999 Model 501K Turbine Exxon - Mobile, AL Dovetail Region Production Billets #12;200 hr Interval - Exxon - 6/29/99 Phase I Testing of Silicon Nitride-sprayed Oxide-based EBC (~ 150-200 µm) 4 µm8 µm #12;Ceramic Vane Turbine Demonstration Details · Exxon turbine

  20. Turbine blade tip gap reduction system

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  1. Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines Peter Mauermann1,* , Michael Dornseiffer6 , Frank Amkreutz6 1 Institute for Combustion Engines , RWTH Aachen University, Schinkelstr. 8, D of the hydrocarbon exhaust of internal combustion engines. In contrast to other gaseous hydrocarbons, significant

  2. Turbine vane structure

    DOE Patents [OSTI]

    Irwin, John A. (Greenwood, IN)

    1980-08-19

    A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

  3. Electrical Cost Reduction Via Steam Turbine Cogeneration 

    E-Print Network [OSTI]

    Ewing, T. S.; Di Tullio, L. B.

    1991-01-01

    REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used in industry. However... reducing valves with turbine generator sets in applications with flows as low as 4000 pounds of steam per hour. These systems produce electricity for $0.01 to $.02 per kWh (based on current costs of gas and oil); system cost is between $200 and $800 per...

  4. Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine

    DOE Patents [OSTI]

    Provol, Steve J. (Carlsbad, CA); Russell, David B. (San Diego, CA); Isaksson, Matti J. (Karhula, FI)

    1994-01-01

    A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

  5. A Study of Advanced Materials for Gas Turbine Coatings at Elevated Temperatures Using Selected Microstructures and Characteristic Environments for Syngas Combustion

    SciTech Connect (OSTI)

    Ravinder Diwan; Patrick Mensah; Guoqiang Li; Nalini Uppu; Strphen Akwaboa; Monica Silva; Ebubekir Beyazoglu; Ogad Agu; Naresh Polasa; Lawrence Bazille; Douglas Wolfe; Purush Sahoo

    2011-02-10

    Thermal barrier coatings (TBCs) that can be suitable for use in industrial gas turbine engines have been processed and compared with electron beam physical vapor deposition (EBPVD) microstructures for applications in advanced gas turbines that use coal-derived synthesis gas. Thermo-physical properties have been evaluated of the processed air plasma sprayed TBCs with standard APS-STD and vertically cracked APS-VC coatings samples up to 1300 C. Porosity of these selected coatings with related microstructural effects have been analyzed in this study. Wet and dry thermal cycling studies at 1125 C and spalling resistance thermal cycling studies to 1200 C have also been carried out. Type I and Type II hot corrosion tests were carried out to investigate the effects of microstructure variations and additions of alumina in YSZ top coats in multi-layered TBC structures. The thermal modeling of turbine blade has also been carried out that gives the capability to predict in-service performance temperature gradients. In addition to isothermal high temperature oxidation kinetics analysis in YSZ thermal barrier coatings of NiCoCrAlY bond coats with 0.25% Hf. This can affect the failure behavior depending on the control of the thermally grown oxide (TGO) growth at the interface. The TGO growth kinetics is seen to be parabolic and the activation energies correspond to interfacial growth kinetics that is controlled by the diffusion of O{sub 2} in Al{sub 2}O{sub 3}. The difference between oxidation behavior of the VC and STD structures are attributed to the effects of microstructure morphology and porosity on oxygen ingression into the zirconia and TGO layers. The isothermal oxidation resistance of the STD and VC microstructures is similar at temperatures up to 1200 C. However, the generally thicker TGO layer thicknesses and the slightly faster oxidation rates in the VC microstructures are attributed to the increased ingression of oxygen through the grain boundaries of the vertically cracked microstructures. The plasma sprayed TBC microstructure (VC and STD) with NiCoCrAlY-Hf bond coat are stable up to 1100 C. However, as with other TBC structures, a considerable amount of interdiffusion was observed in the different layers, although the TBC growth was self-limiting and parabolic. The addition of Hf to the VC microstructure appears to have some potential for the future development of robust TBCs with improved isothermal and service temperatures in advanced gas turbines.

  6. Low thermal stress ceramic turbine nozzle

    DOE Patents [OSTI]

    Glezer, Boris (Del Mar, CA); Bagheri, Hamid (San Diego, CA); Fierstein, Aaron R. (San Diego, CA)

    1996-01-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  7. The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not

    E-Print Network [OSTI]

    The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well

  8. On-Board Hydrogen Gas Production System For Stirling Engines

    DOE Patents [OSTI]

    Johansson, Lennart N. (Ann Arbor, MI)

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  9. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increased utilization of natural gas produced in the USA Increases benefits of shale gas production Lower cost of ownership shortens payback period and broadens the...

  10. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOE Patents [OSTI]

    Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

    2012-03-27

    A combustor for a combustion turbine engine that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; and a multilayer screen filter comprising at least two layers of screen over at least a portion of the windows and at least one layer of screen over the remaining portion of the windows. The windows include a forward end and a forward portion, and an aft end and an aft portion. The multilayer screen filter is positioned over the windows such that, in operation, a supply of compressed air entering the chamber through the windows passes through at least one layer of screen. The multilayer screen filter is configured such that the aft portion of the windows include at least two layers of screen, and the forward portion of the windows includes one less layer of screen than the aft portion of the windows.

  11. Advanced gas engine cogeneration technology for special applications

    SciTech Connect (OSTI)

    Plohberger, D.C.; Fessl, T.; Gruber, F.; Herdin, G.R. [Jenbacher Energiesystem AG, Jenbach (Austria)

    1995-10-01

    In recent years gas Otto-cycle engines have become common for various applications in the field of power and heat generation. Gas engines are chosen sometimes even to replace diesel engines, because of their clean exhaust emission characteristics and the ample availability of natural gas in the world. The Austrian Jenbacher Energie Systeme AG has been producing gas engines in the range of 300 to 1,600 kW since 1960. The product program covers state-of-the-art natural gas engines as well as advanced applications for a wide range of alterative gas fuels with emission levels comparable to Low Emission (LEV) and Ultra Low Emission Vehicle (ULEV) standards. In recent times the demand for special cogeneration applications is rising. For example, a turnkey cogeneration power plant for a total 14.4 MW electric power and heat output consisting of four JMS616-GSNLC/B spark-fired gas engines specially tuned for high altitude operation has been delivered to the well-known European ski resort of Sestriere. Sestriere is situated in the Italian Alps at an altitude of more than 2,000 m above sea level. The engines feature a turbocharging system tuned to an ambient air pressure of only 80 kPa to provide an output and efficiency of each 1.6 MW and up to 40% {at} 1,500 rpm, respectively. The ever-increasing demand for lower pollutant emissions in the US and some European countries initiates developments in new exhaust aftertreatment technologies. Thermal reactor and Selective Catalytic Reduction (SCR) systems are used to reduce tailpipe CO and NO{sub x} emissions of engines. Both SCR and thermal reactor technology will shift the engine tuning to achieve maximum efficiency and power output. Development results are presented, featuring the ultra low emission potential of biogas and natural gas engines with exhaust aftertreatment.

  12. Shale Gas Opportunities It's no secret that petroleum and natural gas engineers are currently in great

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Shale Gas Opportunities It's no secret that petroleum and natural gas engineers are currently in great demand, thanks in large part to the discovery of shale gas plays in the United States. Petroleum in an area impacted by the shale gas boom aren't! There are a variety of ways in which you may be able

  13. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect (OSTI)

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  14. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  15. New Structural-Dynamics Module for Offshore Multimember Substructures within the Wind Turbine Computer-Aided Engineering Tool FAST: Preprint

    SciTech Connect (OSTI)

    Song, H.; Damiani, R.; Robertson, A.; Jonkman, J.

    2013-08-01

    FAST, developed by the National Renewable Energy Laboratory (NREL), is a computer-aided engineering (CAE) tool for aero-hydro-servo-elastic analysis of land-based and offshore wind turbines. This paper discusses recent upgrades made to FAST to enable loads simulations of offshore wind turbines with fixed-bottom, multimember support structures (e.g., jackets and tripods, which are commonly used in transitional-depth waters). The main theory and strategies for the implementation of the multimember substructure dynamics module (SubDyn) within the new FAST modularization framework are introduced. SubDyn relies on two main engineering schematizations: 1) a linear frame finite-element beam (LFEB) model and 2) a dynamics system reduction via Craig-Bampton's method. A jacket support structure and an offshore system consisting of a turbine atop a jacket substructure were simulated to test the SubDyn module and to preliminarily assess results against results from a commercial finite-element code.

  16. This is a preprint of the following article, which is available from http://mdolab.engin.umich.edu/content/ multidisciplinary-design-optimization-offshore-wind-turbines-minimum-levelized-cost-energy. The published

    E-Print Network [OSTI]

    Papalambros, Panos

    ://mdolab.engin.umich.edu/content/ multidisciplinary-design-optimization-offshore-wind-turbines-minimum-levelized-cost-energy. The published article.A.M. van Kuik. Multidisciplinary Design Optimization of Offshore Wind Turbines for Minimum Levelized Cost of Energy. Renewable Energy (In press), 2014 Multidisciplinary Design Optimization of Offshore Wind Turbines

  17. Angel wing seals for blades of a gas turbine and methods for determining angel wing seal profiles

    DOE Patents [OSTI]

    Wang, John Zhiqiang (Greenville, SC)

    2003-01-01

    A gas turbine has buckets rotatable about an axis, the buckets having angel wing seals. The seals have outer and inner surfaces, at least one of which, and preferably both, extend non-linearly between root radii and the tip of the seal body. The profiles are determined in a manner to minimize the weight of the seal bodies, while maintaining the stresses below predetermined maximum or allowable stresses.

  18. Uncooled two-stroke gas engine for heat pump drive

    SciTech Connect (OSTI)

    Badgley, P.; McNulty, D.; Woods, M.

    1990-01-01

    This paper describes the design and analysis of a family of natural gas fueled, uncooled, two-stroke, lean burn, thermal-ignition engines. The engines were designed specifically to meet the requirements dictated by the commercial heat pump application. The engines have a power output ranging from 15 to 100 kW; a thermal efficiency of 36 percent; a mean time between failure greater than 3 years; and a life expectancy of 45,000 hours. To meet these specifications a family of very simple, uncooled, two-stroke cycle engines were designed which have no belts, gears or pumps. The engines utilize crankcase scavenging, lubrication, stratified fuel introduction to prevent raw fuel from escaping with the exhaust gas, use of and ceramic rolling contact bearings. The Thermal Ignition Combustion System (TICS) is used for ignition to enable the engines to operate with a lean mixture and eliminate spark plug erosion. 4 refs., 16 figs.

  19. Multiple piece turbine airfoil

    DOE Patents [OSTI]

    Kimmel, Keith D (Jupiter, FL)

    2010-11-09

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

  20. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    SciTech Connect (OSTI)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A.

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  1. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    DOE Patents [OSTI]

    Schilke, Peter W. (4 Hempshire Ct., Scotia, NY 12302); Muth, Myron C. (R.D. #3, Western Ave., Amsterdam, NY 12010); Schilling, William F. (301 Garnsey Rd., Rexford, NY 12148); Rairden, III, John R. (6 Coronet Ct., Schenectady, NY 12309)

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  2. This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the

    E-Print Network [OSTI]

    This thesis seeks to further explore off-design point operation of gas turbines and to examine the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally

  3. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  4. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  5. Compounded turbocharged rotary internal combustion engine fueled with natural gas

    SciTech Connect (OSTI)

    Jenkins, P.E.

    1992-10-15

    This patent describes a compounded engine. It comprises: a first Wankel engine having a housing with a trochoidal inner surface containing a generally triangular shaped rotor, the engine containing a fuel supply system suitable for operating the engine with natural gas as a fuel; a turbocharge compressing air for combustion by the engine, the turbocharger being driven by the exhaust gases which exit from the engine; a combustion chamber in fluid communication with the exhaust from the engine after that exhaust has passed through the turbocharger, the chamber having an ignition device suitable for igniting hydrocarbons in the engine exhaust, whereby the engine timing, and the air and fuel mixture of the engine are controlled so that when the engine exhaust reaches the combustion chamber the exhaust contains a sufficient amount of oxygen and hydrocarbons to enable ignition and combustion of the engine exhaust in the combustion chamber without the addition of fuel or air, and whereby the engine operating conditions are controlled to vary the performance of the secondary combustor; and a controllable ignition device to ignite the exhaust gases in the combustion chamber at predetermined times.

  6. DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP R. C. Meier, Program Manager, Gas Heat Pump Program General Electric Company P. 0. Box 8555 Philadelphia, Pennsylvania 19101 FILE COPY DO NOT REMOVE SUMMARY The Stirling/Rankine Heat Activated Heat Pump is a high performance product for space

  7. Development of a natural gas stratified charge rotary engine

    SciTech Connect (OSTI)

    Sierens, R.; Verdonck, W.

    1985-01-01

    A water model has been used to determine the positions of separate inlet ports for a natural gas, stratified charge rotary engine. The flow inside the combustion chamber (mainly during the induction period) has been registered by a film camera. From these tests the best locations of the inlet ports have been obtained, a prototype of this engine has been built by Audi NSU and tested in the laboratories of the university of Gent. The results of these tests, for different stratification configurations, are given. These results are comparable with the best results obtained by Audi NSU for a homogeneous natural gas rotary engine.

  8. Hydraulically actuated gas exchange valve assembly and engine using same

    DOE Patents [OSTI]

    Carroll, Thomas S. (Peoria, IL); Taylor, Gregory O. (Hinsdale, IL)

    2002-09-03

    An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

  9. 554 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 37, NO. 3, JULY 2012 Generator Systems for Marine Current Turbine

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Current Turbine Applications: A Comparative Study Seifeddine Benelghali, Member, IEEE, Mohamed El Hachemi for marine current turbines are mainly related to works that have been carried out on wind turbines and ship turbines. As in the wind turbine context, doubly-fed induction generators and permanent magnet generators

  10. Computational Aerodynamics and Aeroacoustics for Wind Turbines

    E-Print Network [OSTI]

    Computational Aerodynamics and Aeroacoustics for Wind Turbines #12;#12;Computational Aerodynamics and Aeroacoustics for Wind Turbines Wen Zhong Shen Fluid Mechanics Department of Mechanical Engineering TECHNICAL Shen, Wen Zhong Computational Aerodynamics and Aeroacoustics for Wind Turbines Doctor Thesis Technical

  11. 1 Copyright 2011 by ASME Proceedings of the 2011 International Mechanical Engineering Congress and Exposition

    E-Print Network [OSTI]

    Camci, Cengiz

    determinant of modern engines. Gas turbine efficiency is related to many factors including secondary flow in the operational total temperature of the turbine inlet and thereby augment engine efficiency [2], [3] . Another1 Copyright © 2011 by ASME Proceedings of the 2011 International Mechanical Engineering Congress

  12. Stirling engines for gas fired micro-cogen and cooling

    SciTech Connect (OSTI)

    Lane, N.W.; Beale, W.T.

    1996-12-31

    This paper describes the design and performance of free-piston Stirling engine-alternators particularly suited for use as natural gas fired micro-cogen and cooling devices. Stirling based cogen systems offer significant potential advantages over internal combustion engines in efficiency, to maintain higher efficiencies at lower power levels than than combustion engines significantly expands the potential for micro-cogen. System cost reduction and electric prices higher than the U.S. national average will have a far greater effect on commercial success than any further increase in Stirling engine efficiency. There exist niche markets where Stirling engine efficiency. There exist niche markets where Stirling based cogen systems are competitive. Machines of this design are being considered for production in the near future as gas-fired units for combined heat and power in sufficiently large quantities to assure competitive prices for the final unit.

  13. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect (OSTI)

    1995-05-01

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  14. Campus Energy Infrastructure Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Campus Energy Infrastructure Steam Turbine Gas Turbine University Substation High Pressure Natural,000 lbs/hr (with duct fire) Steam Turbine Chiller 2,000 tons Campus Heat Load 60 MMBtu/hr (average) Campus-hours) Generator Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller

  15. turbine thermal index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current...

  16. Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine 

    E-Print Network [OSTI]

    Suryanarayanan, Arun

    2010-07-14

    turbine rotational speeds namely, 2400rpm, 2550rpm and 3000rpm. Interstage aerodynamic measurements with miniature five hole probes are also acquired at these speeds. The aerodynamic data characterizes the flow along the first stage rotor exit, second...

  17. Mechanical Engineering 1 Mechanical Engineering

    E-Print Network [OSTI]

    Haller, Gary L.

    , for example, in novel gas turbine or electric hybrid vehicles--require that students understand the fundamentals of mechanics, thermodynamics, fluid mechanics, combustion, and materials science. In all members of the next generation of mechanical engineers. To implement this mission, the department adheres

  18. Investigation of detailed film cooling effectiveness and heat transfer distributions on a gas turbine airfoil

    SciTech Connect (OSTI)

    Drost, U.; Boelcs, A. [Swiss Federal Inst. of Tech., Lausanne (Switzerland)

    1999-04-01

    In the present study film cooling effectiveness and heat transfer were systematically investigated on a turbine NGV airfoil employing the transient liquid crystal technique and a multiple regression procedure. Tests were conducted in a linear cascade at exit Reynolds numbers of 0.52e6, 1.02e6 and 1.45e6 and exit Mach numbers of 0.33, 0.62 and 0.8, at two mainstream turbulence intensities of 5.5 and 10%. The film cooling geometry consisted of a single compound angle row on the pressure side (PS), and a single or a double row on the suction side (SS). Foreign gas injection was used to obtain a density ratio of approximately 1.65, while air injection yielded a density ratio of unity. Tests were conducted for blowing ratios of 0.25 to 2.3 on the SS, and 0.55 to 7.3 on the PS. In general film cooling injection into a laminar BL showed considerably higher effectiveness in the near-hole region, as compared to a turbulent BL. While mainstream turbulence had only a weak influence on SS cooling, higher effectiveness was noted on the PS at high turbulence due to increased lateral spreading of the coolant. Effects of mainstream Mach and Reynolds number were attributed to changes of the BL thickness and flow acceleration. Higher density coolant yielded higher effectiveness on both SS and PS, whereas heat transfer ratios were increased on the SS and decreased on the PS. Comparison of the single and double row cooling configurations on the SS revealed a better film cooling performance of the double row due to an improved film coverage and delayed jet separation.

  19. Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine

    SciTech Connect (OSTI)

    Not Available

    2004-02-01

    Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

  20. Systems for delivering liquified gas to an engine

    DOE Patents [OSTI]

    Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.

    2006-05-16

    A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.