Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

SANBAG Natural Gas Truck Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SANBAG Natural Gas Truck Project SANBAG Natural Gas Truck Project 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11,...

2

Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy via ITS  

E-Print Network [OSTI]

each agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract NumberProject Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy Project Currently trucks are viewed as any other vehicle in traffic management Currently trucks are viewed

California at Davis, University of

3

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells...

4

Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Liquefied Natural Gas Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on AddThis.com... June 4, 2011 Liquefied Natural Gas Powers Trucks in Connecticut

5

Manhattan Project Truck Unearthed in Recovery Act Cleanup | Department of  

Broader source: Energy.gov (indexed) [DOE]

Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup A Los Alamos National Laboratory (LANL) excavation crew working on an American Recovery and Reinvestment Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project landfill. The truck was unearthed inside a sealed building where digging is taking place at Material Disposal Area B (MDA-B), the Lab's first hazardous and radioactive waste landfill. MDA-B was used from 1944 to 1948. Manhattan Project Truck Unearthed in Recovery Act Cleanup More Documents & Publications Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s Protecting Recovery Act Cleanup Site During Massive Wildfire

6

Heavy Truck Duty Cycle (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(HTDC) Project (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies. The project involves efforts to collect, analyze and archive data and information related to class -8 truck operation in real-world environments. Such data and information will be useful for supporting: energy efficiency technology evaluation efforts, the

7

EIA - AEO2010 - Naturall gas as a fuel for heavy trucks: Issues and  

Gasoline and Diesel Fuel Update (EIA)

gas as a fuel for heavy trucks: Issues and incentives gas as a fuel for heavy trucks: Issues and incentives Annual Energy Outlook 2010 with Projections to 2035 Natural gas as a fuel for heavy trucks: Issues and incentives Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks. In 2008, U.S. freight trucks used more than 2 million barrels of petroleum-based diesel fuel per day. In the AEO2010 Reference case, they are projected to use 2.7 million barrels per day in 2035. Petroleum-based diesel use by freight trucks in 2008 accounted for 15 percent of total petroleum consumption (excluding biofuels and other non-petroleum-based products) in the transportation sector (13.2 million barrels per day) and 12 percent of the U.S. total for all sectors (18.7 million barrels per day). In the Reference case, oil use by freight trucks grows to 20 percent of total transportation use (13.7 million barrels per day) and 14 percent of the U.S. total (19.0 million barrels per day) by 2035. The following analysis examines the potential impacts of policies aimed at increasing sales of heavy-duty natural gas vehicles (HDNGVs) and the use of natural gas fuels, and key factors that lead to uncertainty in these estimates.

8

Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Powers Natural Gas Powers Milk Delivery Trucks in Indiana to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Google Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Delicious Rank Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on AddThis.com... Aug. 20, 2011 Natural Gas Powers Milk Delivery Trucks in Indiana

9

Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

10

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network [OSTI]

truck operations. The purpose of this thesis is to develop a methodology that can be used to evaluate the use of LFG generated at landfills as a Liquefied Natural Gas (LNG) fuel source for refuse trucks in Texas. The methodology simulates the gas...

Gokhale, Bhushan

2007-04-25T23:59:59.000Z

11

Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

ix truck manufacturers will offer ix truck manufacturers will offer natural-gas-powered versions of their medium- and heavy-duty trucks in 1996, according to the Gas Research Institute (GRI). The trucks will be the first fully dedicated natural gas vehicles (NGVs) offered in U.S. medium- and heavy-duty markets by original equipment manufacturers (OEMs). Four manufacturers will design trucks to operate on liquefied natural gas (LNG), and one manufacturer will design trucks to run on compressed natural gas (CNG). These manufacturers will join Volvo GM Heavy Truck Corporation, which has announced plans to manufacture an NGV refuse hauler, the Xpeditor. The refuse hauler will be available in LNG and CNG versions. "The availability of OEM- produced trucks is a significant development for GRI and the gas

12

The ethanol heavy-duty truck fleet demonstration project  

SciTech Connect (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

13

Project Information Form Project Title Integrating Management of Truck and Rail Systems in Los Angeles  

E-Print Network [OSTI]

Project Information Form Project Title Integrating Management of Truck and Rail Systems in Los or organization) Volvo Research and Educational Foundation- $79,604.00 Total Project Cost $79,604.00 Agency ID of Research Project This project will develop models to optimize the balance of freight demand across rail

California at Davis, University of

14

Manhattan Project truck unearthed at landfill cleanup site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

truck we found was used for," said Bruce Schappell, LANL's deputy associate director for Environmental Programs. "It's in pretty bad shape." The truck will be crushed, packaged...

15

Manhattan Project Truck Unearthed in Recovery Act Cleanup  

Office of Environmental Management (EM)

truck we found was used for," said Bruce Schappell, LANL's deputy associate director for Environmental Programs. "It's in pretty bad shape." The truck will be crushed, packaged...

16

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

SciTech Connect (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

17

Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014  

SciTech Connect (OSTI)

The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

Klingler, James J [GENCO Infrastructure Solutions, Inc.] [GENCO Infrastructure Solutions, Inc.

2014-05-06T23:59:59.000Z

18

Evaluation of Freight Truck Anti-Idling Strategies for Reduction of Greenhouse Gas Emissions.  

E-Print Network [OSTI]

??It is important to identify ways to reduce greenhouse gas (GHG) emissions in order to combat climate change. Freight trucks emit 5.5 percent of U.S.… (more)

Kuo, Po-Yao

2008-01-01T23:59:59.000Z

19

Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)  

Reports and Publications (EIA)

Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

2010-01-01T23:59:59.000Z

20

Electric Urban Delivery Trucks: Energy Use, Greenhouse Gas Emissions, and Cost-Effectiveness  

Science Journals Connector (OSTI)

Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively. ... The relationship between electric and ICE passenger car manufacturing energy use and GHG emissions is used to infer electric truck data from diesel truck manufacturing data. ... van Vliet, O.; Brouwer, A. S.; Kuramochi, T.; van den Broek, M.; Faaij, A.Energy use, cost and CO2 emissions of electric cars J. Power Sources 2011, 196 ( 4) 2298– 2310 ...

Dong-Yeon Lee; Valerie M. Thomas; Marilyn A. Brown

2013-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE/EA-1650: Freeport LNG Export Project and BOG/Truck Project Environmental Assessment (May 2009)  

Broader source: Energy.gov (indexed) [DOE]

Freeport LNG Development, L.P. Freeport LNG Development, L.P. Docket Nos. CP03-75-003, CP03-75-004, CP05-361-001, and CP05-361-002 FREEPORT LNG EXPORT PROJECT and BOG/TRUCK PROJECT Environmental Assessment Cooperating Agency: U.S. Department of Energy DOE/EA - 1650 DOE Docket No. FE-08-70-LNG MARCH 2009 FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 OFFICE OF ENERGY PROJECTS In Reply Refer To: OEP/DG2E/Gas 2 Freeport LNG Development, L.P. Docket Nos. CP03-75-003, CP03-75-004 CP05-361-001 and CP05-361-002 §375.308(x) TO THE PARTY ADDRESSED: The staff of the Federal Energy Regulatory Commission (FERC or Commission) and the Department of Energy (DOE), Office of Fossil Fuels, have prepared an environmental assessment (EA) on the liquefied natural gas (LNG) facilities proposed by

22

Project Engineer Freedman Seating, a leading manufacturer of bus and commercial truck seats and  

E-Print Network [OSTI]

Responsibilities Lead/execute engineering continuous improvement and product improvement. Lead/provide failure will be considered) with at least 3 years engineering experience in a manufacturing environment. Knowledgeable Project Engineer Freedman Seating, a leading manufacturer of bus and commercial truck seats

Heller, Barbara

23

TRUCK ROUTING PROBLEM IN DISTRIBUTION OF GASOLINE TO GAS STATIONS.  

E-Print Network [OSTI]

??This thesis aims at finding a daily routing plan for a fleet of vehicles delivering gasoline to gas stations for an oil company, satisfying all… (more)

Janakiraman, Swagath

2010-01-01T23:59:59.000Z

24

UPS CNG Truck Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

® ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University Acknowledgments This evaluation would not have been possible without the cooperation, support, and responsiveness of the staff at UPS in Hartford and Atlanta. Thanks are due to the following UPS personnel: On-Site Headquarters Tom Robinson Ken Henrie Bill Jacob Rick Rufolo

25

BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks.  

E-Print Network [OSTI]

BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks $141,279 $35,320 $176,599 City of Charlotte Solid Waste Services Compressed natural gas ( CNG) up fits III locomotive to serve power generating station. Catawba $200,000 $203,000 $403,000 Dylex Partners

26

Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project  

Broader source: Energy.gov [DOE]

Presentation given by Daimler Truck North America LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Class 8 Truck...

27

CMVRTC: Medium Truck Duty Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

medium truck duty cycle (MTdc) project medium truck duty cycle (MTdc) project OVERVIEW The Medium Truck Duty Cycle (MTDC) project involves efforts to collect, analyze and archive data related to medium-truck operations in real-world driving environments. Such data and information will be useful to support technology evaluation efforts and to provide a means of accounting for real-world driving performance within medium-class truck analyses. The project involves private industry partners from various truck vocations. The MTDC project is unique in that there currently does not exist a national database of characteristic duty cycles for medium trucks. This project involves the collection of data from multiple vocations (four vocations) and multiple vehicles within these vocations (three vehicles per

28

Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine Project Review  

Broader source: Energy.gov [DOE]

Presentation given by Detroit Diesel Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck Program...

29

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas.  

E-Print Network [OSTI]

??The energy consumption throughout the world has increased substantially over the past few years and the trend is projected to continue indefinitely. The primary sources… (more)

Gokhale, Bhushan

2007-01-01T23:59:59.000Z

30

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995  

SciTech Connect (OSTI)

This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-12-31T23:59:59.000Z

31

AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act...  

Broader source: Energy.gov (indexed) [DOE]

RAM Experimental PHEV Pickup Truck Recovery Act project testing results AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act project testing results The Vehicle...

32

Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks  

E-Print Network [OSTI]

Approximately 136,000 refuse trucks were in operation in the United States in 2007. These trucks burn approximately 1.2 billion gallons of diesel fuel a year, releasing almost 27 billion pounds of greenhouse gases. In addition to contributing...

Sprague, Stephen M.

2011-02-22T23:59:59.000Z

33

Coalbed Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Environmental Science Division Argonne National Laboratory Observations on a Montana Water Quality Proposal argonne_comments.pdf 585 KB Comments from James A. Slutz Deputy Assistant Secretary Oil and Natural Gas To the Secretary, Board of Environmental Review Montana Department of Environmental Quality BER_Comments_letter.pdf 308 KB ALL Consulting Coalbed Methane Primer: New Source of Natural Gas–Environmental Implications Background and Development in the Rocky Mountain West CBMPrimerFinal.pdf 18,223 KB ALL Consulting Montana Board of Oil & Gas Conservation Handbook on Best Management Practices and Mitigation Strategies for Coal Bed Methane in the Montana Portion of the Powder River Basin April 2002 CBM.pdf 107,140 KB ALL Consulting Montana Board of Oil & Gas Conservation

34

Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I  

SciTech Connect (OSTI)

This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

NONE

1997-12-01T23:59:59.000Z

35

Norcal Prototype LNG Truck Fleet: Final Results  

SciTech Connect (OSTI)

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

Not Available

2004-07-01T23:59:59.000Z

36

Energy Department Announces Clean Cities Projects to Diversify...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuel cars and trucks, including vehicles that run on natural gas, electricity and propane. These projects build on the important steps the Obama Administration has taken to...

37

NETL: Shale Gas and Other Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Resources Natural Gas Resources Natural Gas Resources Shale Gas | Environmental | Other Natural Gas Related Resources | Completed NG Projects Project Number Project Name Primary Performer 10122-47 Predicting higher-than-average permeability zones in tight-gas sands, Piceance basin: An integrated structural and stratigraphic analysis Colorado School of Mines 10122-43 Diagnosis of Multi-Stage Fracturing in Horizontal Well by Downhole Temperature Measurement for Unconventional Oil and Gas Wells Texas A&M University 10122-42 A Geomechanical Analysis of Gas Shale Fracturing and Its Containment Texas A&M University 09122-02 Characterizing Stimulation Domains, for Improved Well Completions in Gas Shales Higgs-Palmer Technologies 09122-04 Marcellus Gas Shale Project Gas Technology Institute (GTI)

38

Thailand gas project now operational  

SciTech Connect (OSTI)

Now operational, Phase 1 of Thailand's first major natural gas system comprises one of the world's longest (264 miles) offshore gas lines. Built for the Petroleum Authority of Thailand (PTT), this system delivers gas from the Erawan field in the Gulf of Thailand to two electrical power plants near Bangkok, operated by the Electricity Generating Authority of Thailand (EGAT). The project required laying about 360 miles of pipeline, 34-in., 0.625 in.-thick API-5LX-60 pipe offshore and 28-in., 0.406 in.-thick API-5LX-60 onshore. The offshore pipe received a coal-tar coating, a 3.5-5.0 in. concrete coating, and zinc sacrificial-anode bracelets. The onshore line was coated with the same coal-tar enamel and, where necessary, with concrete up to 4.5 in. thick. Because EGAT's two power plants are the system's only customers, no more pipeline will be constructed until deliveries, currently averaging about 100 million CF/day, reach the 250 million CF/day level. The project's second phase will include additional pipelines as well as an onshore distribution network to industrial customers.

Horner, C.

1982-08-01T23:59:59.000Z

39

CMVRTC: Heavy Truck Duty Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

40

NETL: Natural Gas and Petroleum Storage Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage Strategic Petroleum Reserve Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-FE0014830 Strategic Petroleum Reserve Core Laboratories Natural Gas Storage There are currently no active storage projects Storage - Completed Projects Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-DT0000358 Strategic Petroleum Reserve Northrop Grumman Missions System DE-FC26-03NT41813 Geomechanical Analysis and Design Criteria Terralog Technologies DE-FC26-03NT41779 Natural Gas Storage Technology Consortium Pennsylvania State University (PSU) DE-FC26-03NT41743 Improved Deliverability in Gas Storage Fields by Identifying the Timing and Sources of Damage Using Smart Storage Technology Schlumberger Technology Corporation

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act project map  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following map describes the distribution of vehicles for a project with the 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale. This research was conducted by Idaho National Laboratory.

42

RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy...  

Open Energy Info (EERE)

RCWMD Badlands Landfill Gas Project Biomass Facility Jump to: navigation, search Name RCWMD Badlands Landfill Gas Project Biomass Facility Facility RCWMD Badlands Landfill Gas...

43

AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results Phase 1  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of testing done on a 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

44

Norcal Prototype LNG Truck Fleet: Final Data Report  

SciTech Connect (OSTI)

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

Chandler, K.; Proc, K.

2005-02-01T23:59:59.000Z

45

Medium Truck Duty Cycle (MTDC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Routes Data Acquisition System Setup Routes Data Acquisition System Setup Medium Truck Duty Cycle (MTDC) Objective This Department of Energy project focuses on the collection and analysis medium truck (Class-6 and -7) duty cycle data from real-world operations. Analysis of this data will provide information pertaining to the fuel efficiencies and performance of medium trucks in several vocations. Outcomes Rich source of data and information that can contribute to the development of new tools Sound basis upon which DOE can make technology investment decisions A national archive of real-world-based medium-truck operational data that will support medium-duty vehicle energy efficiency research Collected Data Speed & Acceleration Fuel Consumption GPS Location Road Grade

46

Flammable gas project topical report  

SciTech Connect (OSTI)

The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

Johnson, G.D.

1997-01-29T23:59:59.000Z

47

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts associated with a proposal by Emera CNG, LLC that would include Emera's CNG plant Emera’s CNG plant would include facilities to receive, dehydrate, and compress gas to fill pressure vessels with an open International Organization for Standardization (ISO) container frame mounted on trailers. Emera plans to truck the trailers a distance of a quarter mile from its proposed CNG facility to a berth at the Port of Palm Beach, where the trailers will be loaded onto a roll-on/roll-off ocean going carrier. Emera plans to receive natural gas at its planned compression facility from the Riviera Lateral, a pipeline owned and operated by Peninsula Pipeline Company. Although this would be the principal source of natural gas to Emera’s CNG facility for export, during periods of maintenance at Emera’s facility, or at the Port of Palm Beach, Emera may obtain CNG from other sources and/or export CNG from other general-use Florida port facilities. The proposed Emera facility will initially be capable of loading 8 million cubic feet per day (MMcf/day) of CNG into ISO containers and, after full build-out, would be capable to load up to 25 MMcf/day. For the initial phase of the project, Emera intends to send these CNG ISO containers from Florida to Freeport, Grand Bahama Island, where the trailers will be unloaded, the CNG decompressed, and injected into a pipeline for transport to electric generation plants owned and operated by Grand Bahama Power Company (GBPC). DOE authorizing the exportation of CNG and is not providing funding or financial assistance for the Emera Project.

48

Project to evaluate natural gas hydrates  

Science Journals Connector (OSTI)

More than 170 scf of natural gas, mostly methane, may be contained in 1 cu ft of hydrate, according to Malcolm A. Goodman, president of Enertech & Research Co., Houston, which is involved in the new hydrate project. ...

1980-07-28T23:59:59.000Z

49

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida...  

Energy Savers [EERE]

1976: Emera CNG, LLC Compressed Natural Gas Project, Florida EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida SUMMARY This EA will evaluate the potential...

50

EIS-0498: Magnolia Liquefied Natural Gas Project, Calcasieu Parish...  

Energy Savers [EERE]

Magnolia Liquefied Natural Gas Project, Calcasieu Parish, Louisiana EIS-0498: Magnolia Liquefied Natural Gas Project, Calcasieu Parish, Louisiana Summary The Federal Energy...

51

SANBAG - Ryder Natural Gas Vehicle Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SANBAG - Ryder Natural Gas Vehicle Project SANBAG - Ryder Natural Gas Vehicle Project 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review...

52

SANBAG - Ryder Natural Gas Vehicle Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SANBAG - Ryder Natural Gas Vehicle Project SANBAG - Ryder Natural Gas Vehicle Project 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review...

53

Unconventional Oil and Gas Projects Help Reduce Environmental...  

Office of Environmental Management (EM)

Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development April 17,...

54

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect (OSTI)

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

55

Waste Management's LNG Truck Fleet: Final Results  

SciTech Connect (OSTI)

Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

2001-01-25T23:59:59.000Z

56

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Permeability Gas Low Permeability Gas Design and Implementation of Energized Fracture Treatment in Tight Gas Sands DE-FC26-06NT42955 Goal The goal of this project is to develop methods and tools that can enable operators to design, optimize, and implement energized fracture treatments in a systematic way. The simulator that will result from this work would significantly expand the use and cost-effectiveness of energized fracs and improve their design and implementation in tight gas sands. Performer University of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands account for 58 percent of the total proved natural gas reserves in the United States. As many of these tight gas sand basins mature, an increasing number of wells are being drilled or completed into nearly depleted reservoirs. This includes infill wells, recompletions, and field-extension wells. When these activities are carried out, the reservoir pressures encountered are not as high as the initial reservoir pressures. In these situations, where pressure drawdowns can be less than 2,000 psi, significant reductions in well productivity are observed, often due to water blocking and insufficient clean-up of fracture-fluid residues. In addition, many tight gas sand reservoirs display water sensitivity—owing to high clay content—and readily imbibe water due both to very high capillary pressures and low initial water saturations.

57

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Natural Gas Projects & Natural Gas Projects Exploration and Production Technologies Risk Based Data Management System (RBDMS) and Cost Effective Regulatory Approaches (CERA) Related to Hydraulic Fracturing and Geologic Sequestration of CO2 Last Reviewed 12/24/2013 DE-FE0000880 Goal The goal of this project is to enhance the Risk Based Data Management System (RBDMS) by adding new components relevant to environmental topics associated with hydraulic fracturing (HF), and by management of myriad data regarding oil and natural gas well histories, brine disposal, production, enhanced recovery, reporting, stripper wells, and other operations to enhance the protection of ground water resources. The FracFocus website will be maintained to ensure transparent reporting of HF additives. A

58

Case Study - Liquefied Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Environmental Environmental Science Enviro Express Kenworth LNG tractor. Connecticut Clean Cities Future Fuels Project Case Study - Liquefied Natural Gas As a part of the U.S. Department of Energy's broad effort to develop cleaner transportation technologies that reduce U.S. dependence on imported oil, this study examines advanced 2011 natural gas fueled trucks using liquefied natural gas (LNG) replacing older diesel fueled trucks. The trucks are used 6 days per week in regional city-to-landfill long hauls of incinerator waste with two fills per day. This is a workable fit for the limited range LNG trucks. Reduction of fuel costs and harmful emissions relative to the replaced trucks are significant. Introduction The American Recovery and Reinvestment Act legislation

59

LANL debuts hybrid garbage truck  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid garbage truck LANL debuts hybrid garbage truck The truck employs a system that stores energy from braking and uses that pressure to help the truck accelerate after each...

60

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Probabilistic, Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems Probabilistic, Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems DE-FC26-06NT42930 Goal The project goal is the development of modules for a web-based decision support tool that will be used by mid- and small-sized oil and gas exploration and production companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of oil and gas reserves in sensitive areas in the Fayetteville Shale Play in central Arkansas. This decision support tool will rely on creation of a database of existing exploration and production (E&P) technologies that are known to have low ecosystem impact. Performers University of Arkansas, Fayetteville, Arkansas

62

Thermoelectric Generator Development at Renault Trucks-Volvo Group  

Broader source: Energy.gov [DOE]

Reviews project to study the potential of thermoelectricity for diesel engines of trucks and passenger cars, where relatively low exhaust temperature is challenging for waste heat recovery systems

63

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas Compressed Natural Gas (CNG) Project Loans to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Project Loans

64

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma DE-FC26-00NT15125 Project Goal The Hunton formation in Oklahoma has some unique production characteristics, including large water production, initially decreasing gas-oil ratios, and excellent dynamic continuity—but poor geological continuity. The overall goal of the project is to understand the mechanism of gas and oil production from the Hunton Formation in Oklahoma so that similar reservoirs in other areas can be efficiently exploited. An additional goal is to develop methodologies to improve oil recovery using secondary recovery techniques. Performers University of Tulsa, Tulsa, OK Marjo Operating Company, Tulsa, OK University of Houston, Houston, TX Orca Exploration, Tulsa, OK

65

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

for for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

66

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Instrumented Pipeline Initiative The Instrumented Pipeline Initiative DE-NT-0004654 Goal The goal of the Instrumented Pipeline Initiative (IPI) is to address sensor system needs for low-cost monitoring and inspection as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap. This project intends to develop a new sensing and continuous monitoring system with alternative use as an inspection method. Performers Concurrent Technologies Corporation (CTC), Johnstown, PA 15213 Carnegie Melon University (CMU), Pittsburgh, PA 15904 Background Pie Chart showing Pipeline Installation Dates for U.S. Gas Transmission and Distribution Lines Figure 1. Pipeline Installation Dates for U.S. Gas Transmission and Distribution Lines

67

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explorer II – Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Pipelines Explorer II – Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Pipelines DE-FC26-04NT42264 Goal The goal of this project is to enhance the reliability and integrity of the Nation’s natural gas infrastructure through the development, construction, integration and testing of a long-range non-destructive evaluation (NDE) inspection capability in a modular robotic locomotion platform (Explorer II). The Explorer II will have an integrated inspection sensor (developed under a separate project) to provide enhanced in-situ, live, and real-time assessments of the status of a gas pipeline infrastructure. The Explorer II system will be capable of operating in 6-inch- and 8-inch-diameter, high-pressure (piggable and non-piggable) distribution and transmission mains. The system will also be enhanced to form an “extended” platform with additional drive and battery modules allowing the system the potential to carry alternative sensors that are heavier or more drag intensive than the current technology.

68

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology’s Impact on Production: Developing Environmental Solutions at the State and National Level Technology’s Impact on Production: Developing Environmental Solutions at the State and National Level DE-FC26-06NT15567 Goal The goal of the project is to assist State governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil through specific project efforts to address current issues. The issues addressed are national in scope. However, significant regional differences among States make “one-size-fits-all” programs unacceptable. One of the strengths of IOGCC is its ability to address these national issues while maintaining more local flexibility. There are two basic thrusts of these efforts: 1) research and 2) transfer of findings to appropriate constituencies. IOGCC is carrying out three projects consistent with the overarching strategies:

69

Detailed Execution Planning for Large Oil and Gas Construction Projects  

E-Print Network [OSTI]

Detailed Execution Planning for Large Oil and Gas Construction Projects Presented by James Lozon, University of Calgary There is currently 55.8 billion dollars worth of large oil and gas construction projects scheduled or underway in the province of Alberta. Recently, large capital oil and gas projects

Calgary, University of

70

EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

71

NETL: Oil & Natural Gas Projects - Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 DE-NT0005671 Goal The goal of this project is to overcome existing water-related environmental barriers to possible oil shale development in the Uinta Basin, Utah. Data collected from this study will help alleviate problems associated with disposal of produced saline water, which is a by-product of methods used to facilitate conventional hydrocarbon production. Performers Utah Geological Survey, Salt Lake City, Utah, 84114 Collaborators Uinta Basin Petroleum Companies: Questar, Anadarko, Newfield, Enduring Resources, Bill Barrett, Berry Petroleum, EOG Resources, FIML, Wind River Resources, Devon, Rosewood, Flying J, Gasco, Mustang Fuel,

72

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

73

Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States  

Broader source: Energy.gov [DOE]

Data analysis from this study will provide insight into real-world performance of current emissions reduction devices, under various operating conditions, and with respect to greenhouse gas emissions.

74

Oil & Natural Gas Projects Exploration and Production Technologies | Open  

Open Energy Info (EERE)

Oil & Natural Gas Projects Exploration and Production Technologies Oil & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration and Production Technologies Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Oil & Natural Gas Projects Exploration and Production Technologies Citation U.S. Department of Energy. Oil & Natural Gas Projects Exploration and Production Technologies [Internet]. [cited 2013/10/15]. Available from: http://www.netl.doe.gov/technologies/oil-gas/Petroleum/projects/EP/Explor_Tech/P225.htm Retrieved from "http://en.openei.org/w/index.php?title=Oil_%26_Natural_Gas_Projects_Exploration_and_Production_Technologies&oldid=688583

75

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team  

E-Print Network [OSTI]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage #12;Selected BNL Research · Energy Science and Technology Department Six fully-instrumented hydride stations and complete processing

76

Trucking | OpenEI Community  

Open Energy Info (EERE)

36 36 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235336 Varnish cache server Trucking Home Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

77

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) |  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Reduction Projects Grant Program (Delaware) Greenhouse Gas Reduction Projects Grant Program (Delaware) Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source Greenhouse Gas Reduction Projects Fund State Delaware Program Type Grant Program Provider Delaware Department of Natural Resources and Environmental Control The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a Regional Greenhouse Gas

78

Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure to Accommodate  

E-Print Network [OSTI]

Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure Project Natural gas is often touted as a `bridge' to low carbon fuels in the heavy duty transportation sector, and the number of natural gas-fueled medium and heavy-duty fleets is growing rapidly. Research

California at Davis, University of

79

Solar hydrogen for urban trucks  

SciTech Connect (OSTI)

The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

1997-12-31T23:59:59.000Z

80

Table 9. Natural Gas Production, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68 22.11 22.47 22.83 23.36 AEO 1997 19.10 19.70 20.17 20.32 20.54 20.77 21.26 21.90 22.31 22.66 22.93 23.38 23.68 23.99 24.25 24.65 AEO 1998 18.85 19.06 20.35 20.27 20.60 20.94 21.44 21.81 22.25 22.65 23.18 23.75 24.23 24.70 24.97 AEO 1999 18.80 19.13 19.28 19.82 20.23 20.77 21.05 21.57 21.98 22.47 22.85 23.26 23.77 24.15

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Slope Decision Support for Water Resource Planning and Management Last Reviewed 6/26/2013 North Slope Decision Support for Water Resource Planning and Management Last Reviewed 6/26/2013 DE-NT0005683 Goal The goal of this project is to develop a general scientific, engineering, and technological support system for water resources planning and management related to oil and gas development on the North Slope of Alaska. Such a system will aid in developing solutions to economic, environmental, and cultural concerns. Performers University of Alaska Fairbanks Systems, Fairbanks, AK 99775-7880 Texas A&M University, College Station, TX 77843-3136 PBS&J, Inc., Marietta, GA 30067 Background Alaska’s North Slope hosts a phenomenal wealth of natural, cultural, and economic resources. It represents a complex system, not only in terms of its biophysical system and global importance, but also from the standpoint

82

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stripper Well Consortium Stripper Well Consortium DE-FC26-00NT41025 Goal: The goal is to enhance the ability of the domestic production industry to keep stripper wells producing at economic production rates in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. Objective: The objective is to develop and manage an industry-driven consortium that provides a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector that focus on improving the production performance of domestic natural gas and oil stripper wells. Performer: The Pennsylvania State University (Energy Institute) - Project management Accomplishments: Established a consortium governing structure, constitution and bylaws, Established areas of research focus (reservoir remediation and characterization, well bore cleanup, and surface systems optimization) and rules for proposal submission and selection, and

83

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Artificial Barriers to Augment Fresh Water Supplies in Shallow Arctic Lakes Last Reviewed 6/26/2013 Using Artificial Barriers to Augment Fresh Water Supplies in Shallow Arctic Lakes Last Reviewed 6/26/2013 DE-NT0005684 Goal The goal of this project is to implement a snow control practice to enhance snow drift formation as a local water source to recharge a depleted lake despite possible unfavorable climate and hydrology preconditions (i.e., surface storage deficit and/or low precipitation). Performer University of Alaska Fairbanks, Fairbanks, AK Background Snow is central to activities in polar latitudes of Alaska over a very significant part of each year. With the arrival of snow, modes of travel, working, and living are transformed. Oil and gas exploration operations restricted to winter months use ice roads and ice pads in arctic and subarctic regions. The general reasoning behind ice road construction is

84

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov (indexed) [DOE]

Alternate Energy Systems, Inc. Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 1 BioGas Project Applications for Federal Agencies and Utilities Wolfgang H. Driftmeier Alternate Energy Systems, Inc. 210 Prospect Park - Peachtree City, GA 30269 wdriftmeier@altenergy.com www.altenergy.com 770 - 487 - 8596 Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 2 BioGas Project Applications for Federal Agencies and Utilities Objective

85

Energy Department Projects Focus on Sustainable Natural Gas Development |  

Broader source: Energy.gov (indexed) [DOE]

Projects Focus on Sustainable Natural Gas Projects Focus on Sustainable Natural Gas Development Energy Department Projects Focus on Sustainable Natural Gas Development January 10, 2013 - 1:00pm Addthis Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA. Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA. Gayland Barksdale Technical Writer, Office of Fossil Energy What is RPSEA? The Research Partnership to Secure Energy for America - or RPSEA -

86

Sauget Plant Flare Gas Reduction Project  

E-Print Network [OSTI]

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

87

International Truck | Open Energy Information  

Open Energy Info (EERE)

Truck Truck Jump to: navigation, search Name International Truck Place Atlanta, GA Website http://www.internationaltruck. References International Truck[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2007 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! International Truck is a company located in Atlanta, GA. References ↑ "International Truck" Retrieved from "http://en.openei.org/w/index.php?title=International_Truck&oldid=381698" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link

88

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deep Trek Re-configurable Processor for Data Acquisition Deep Trek Re-configurable Processor for Data Acquisition DE-FC26-06NT42947 Goal The goal of this project is to develop and qualify a Re-configurable Processor for Data Acquisition (RPDA) by packaging previously developed components in an advanced high-temperature Multi-Chip Module (MCM), and by developing configuration software that may be embedded within the RPDA to link data-acquisition system Analog Front-Ends to digital system busses. Performer Honeywell International Inc., Plymouth, MN 55441 Background Electronic data acquisition systems are necessary to make deep oil and gas drilling and production cost effective, yet the basic electronic components from which such systems are built will not operate reliably at the high temperatures encountered in deep wells. As well depths increase beyond 15,000 feet, temperatures above 200°C are relatively common. In some cases the target reservoir temperature may be as high as 300°C.

89

Natural Gas - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Most Requested Most Requested Change category... Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports Filter by: All Data Analysis Projections Weekly Reports Natural Gas Storage Report Working Gas in Underground Storage for current week and week ago comparison. (archived versions) Archived Versions Natural Gas Storage Report - Archive Natural Gas Weekly Update Weekly average spot and futures prices of natural gas. (archived versions) Archived Versions Natural Gas Weekly Update - Archive Today in Energy - Natural Gas Short, timely articles with graphs about recent natural gas issues and trends Monthly Reports Drilling Productivity Report Released: January 13, 2014 EIA's new Drilling Productivity Report (DPR) takes a fresh look at oil

90

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Aerodynamic Forces on Truck Models, Including Two Trucks in Tandem  

E-Print Network [OSTI]

rear-edge shaping on the aerodynamic drag of bluff vehiclesOF CALIFORNIA, BERKELEY Aerodynamic Forces on Truck Models,TRANSIT AND HIGHWAYS Aerodynamic Forces on Truck Models,

Hammache, Mustapha; Michaelian, Mark; Browand, Fred

2001-01-01T23:59:59.000Z

92

Project Information Form Project Title Reduction of Lifecycle Green House Gas Emissions From Road  

E-Print Network [OSTI]

Project Information Form Project Title Reduction of Lifecycle Green House Gas Emissions From Road@ucdavis.edu Funding Source(s) and Amounts Provided (by each agency or organization) US DOT $30,000 Total Project Cost Brief Description of Research Project This white paper will summarize the state of knowledge and state

California at Davis, University of

93

Design & Development of e-TurboTM for SUV and Light Truck Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Design and Development of e-Turbo for SUV and Light Truck Applications The Potential of Elelcltric Exhaust Gas Turbocharging for HD DIesel Engines SuperTurbocharger...

94

Volvo Truck Headquarters in North Carolina to Host Event With Acting Under  

Broader source: Energy.gov (indexed) [DOE]

Volvo Truck Headquarters in North Carolina to Host Event With Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar January 26, 2012 - 2:00pm Addthis Washington, D.C. - Tomorrow, Friday, January 27, Acting Under Secretary of Energy Arun Majumdar and North Carolina Congressman Howard Coble will visit the Volvo Group's truck headquarters in Greensboro, North Carolina. Through the Department of Energy's Super Truck project, the Volvo Group, which includes Mack Trucks and Volvo Trucks, received $19 million in federal funding to improve the freight-moving efficiency of heavy-duty trucks, an example of the Obama Administration's strong commitment to reviving the U.S. auto industry through investments in more efficient

95

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov [DOE]

Presentation covers BioGas Project Applications for Federal Agencies and Utilities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

96

Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works  

Broader source: Energy.gov [DOE]

Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

97

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia...

98

Projects Selected to Boost Unconventional Oil and Gas Resources |  

Broader source: Energy.gov (indexed) [DOE]

Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources September 27, 2010 - 1:00pm Addthis Washington, DC - Ten projects focused on two technical areas aimed at increasing the nation's supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide (CO2) storage options have been selected for further development by the U.S. Department of Energy (DOE). The projects include four that would develop advanced computer simulation and visualization capabilities to enhance understanding of ways to improve production and minimize environmental impacts associated with unconventional energy development; and six seeking to further next

99

2013 Unconventional Oil and Gas Project Selections  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy’s National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory...

100

Business and Project Management of Natural Gas  

Science Journals Connector (OSTI)

The process and associated technology of natural gas can be found elsewhere in the preceding ... end of this phase, large amount of capital has been used and there is no ... or companies, from within their own fu...

G. G. Nasr; N. E. Connor

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Short Mountain Landfill gas recovery project  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA's latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers' demand for electrical power.

Not Available

1992-05-01T23:59:59.000Z

102

PROJECT RULISON A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O  

Office of Legacy Management (LM)

A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O N S T I M U L A T I O N EXPERIMENT U S I N G A NUCLEAR EXPLOSIVE Issued By PROJECT RULISON JOINT OFFICE OF INFORMATION U. S. ATOMIC ENERGY COMMISSION - AUSTRAL OIL COMPANY, INCORPORATED THE DEPARTMENT OF THE INTERIOR - CER GEONUCLEAR CORPORATION May 1, 1969 OBSERVATION AREA J SURFACE GROUND ZERO AREA S C A L E - I inch e q u a l s approximatly I 2 m i l e s Project Rulison Area Map PROJECT RULISON A N INDUSTRY-GOVERNMENT NATURAL GAS PRODUCT1 ON STIMULATION EXPERIMENT USING A NUCLEAR EXPLOSIVE I. INTRODUCTION Project Rulison is o joint experiment sponsored by Austral O i l Company, Incorporated, of Houston, Texas, the U. S. Atomic Energy Commission and the Department o f the Interior, w i t h the Program Management provided b y CER Geonuclear Corporotion of L

103

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations DE-FC26-04NT15425 Project Goal This project is being conducted in two phases. The objective of the first phase is to characterize the reservoir using advanced evaluation methods in order to assess the potential of a CO2 flood of the target reservoir. This reservoir characterization includes advanced petrophysical, geophysical, geological, reservoir engineering, and reservoir simulation technologies. The objective of the second project phase is to demonstrate the benefits of using advanced seismic methods for the monitoring of the CO2 flood fronts. Performers Schlumberger Data & Consulting Services - Pittsburgh, PA New Horizon Energy - Traverse City, MI

105

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultra-High-Speed Motor for Drilling Ultra-High-Speed Motor for Drilling DE-FC26-04NT15502 Project Goal The project goal is to design two sizes of an ultra-high-speed (10,000 rpm), inverted, configured electric motor specifically for drilling. Performers Impact Technologies LLC, Tulsa, OK University of Texas, Arlington, TX Results Researchers have developed PMSM (permanent magnet synchronous machine) electromagnetic designs of both radial and axial motors for rotational speeds up to 10,000 rpm in two outer diameters (OD). Finite element analyses (FEA) of the magnetic saturation and power/torque output have been made at various speed and loading conditions. Mechanical 3-D models have been prepared based on those designs. Bearing and seal materials have been studied, and manufacturers have been contacted to provide them. The project milestones completed to date are the:

106

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mud System for Microhole Coiled Tubing Drilling Mud System for Microhole Coiled Tubing Drilling DE-FC26-03NT15476 Project Goal The goal of the project is to develop an innovative mud system for coiled tubing drilling (CTD) and small-diameter holes (microholes) for vertical, horizontal and multilateral drilling and completion applications. The system will be able to mix the required fluids (water, oil, chemicals, muds, slurries), circulate that mixture downhole (modified 350 gpm @1,000 psi and 15 gpm@ 5,000 psi), clean and store (200 bbls) the base fluids, and be able to perform these functions in an underbalanced condition with zero discharge and low environmental impact. Another primary and most important goal of this project is to develop key components for a new abrasive slurry drilling system.

107

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado DE-FG26-02NT15451 Project Goal The project is designed to: Promote development of both discovered and undiscovered oil reserves contained within algal mounds on the Ute Mountain Ute, Southern Ute, and Navaho native-controlled lands. Promote the use of advanced technology and expand the technical capability of the Native American oil exploration corporations by direct assistance in the current project and dissemination of technology to other tribes. Develop the most cost-effective approach to using non-invasive seismic imaging to reduce the risk in exploration and development of algal mound reservoirs on surrounding Native American lands.

108

Oklahoma Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company Smart Grid Project and Electric Company Smart Grid Project Jump to: navigation, search Project Lead Oklahoma Gas and Electric Company Country United States Headquarters Location Oklahoma City, Oklahoma Additional Benefit Places Arkansas Recovery Act Funding $130,000,000.00 Total Project Value $357376037 Coverage Area Coverage Map: Oklahoma Gas and Electric Company Smart Grid Project Coordinates 35.4675602°, -97.5164276° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

109

NETL: Natural Gas and Petroleum T&D Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission and Distribution Transmission and Distribution COMPLETED T&D PROJECTS Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-AM26-05NT42653 Conceptual Engineering/Socioeconomic Impact Study—Alaska Spur Pipeline ASRC Constructors, Inc. Inspection Technologies DE-NT-0004654 The Instrumented Pipeline Initiative Concurrent Technologies Corporation DE-FC26-03NT41881 Innovative Sensors for Pipeline Crawlers to Assess Pipeline Defects and Conditions Batelle Columbus Laboratories FWP05FE03 Multi-purpose Sensor for Detecting Pipeline Defects Los Alamos National Laboratory DE-FC26-04NT42267 Remote Detection of Internal Pipeline Corrosion Using Fluidized Sensors SouthWest Research Institute DE-FC26-04NT42266 Delivery Reliability for Natural Gas - Inspection Technologies Gas Technology Institute

110

Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding from a $1.2 million grant provided by the American Recovery and Reinvestment Act through the U.S. Department of Energy's Fuel Cell Technologies Program. The total project cost was $3.3 million. The 98 new Raymond Corporation pallet lifts are powered by Plug Power

111

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Mississippi Leadville Limestone Exploration Play of Utah and Colorado-Exploration Techniques and Studies for Independents The Mississippi Leadville Limestone Exploration Play of Utah and Colorado-Exploration Techniques and Studies for Independents DE-FC26-03NT15424 Project Goal The overall goals of this study are to 1) develop and demonstrate techniques and exploration methods never tried on the Leadville Limestone; 2) target areas for exploration; 3) increase deliverability from new and old Leadville fields through detailed reservoir characterization; 4) reduce exploration costs and risk, especially in environmentally sensitive areas; and 5) add new oil discoveries and reserves. The project is being conducted in two phases, each with specific objectives. The objective of Phase 1 (Budget Period I) is to conduct a case study of the Leadville reservoir at Lisbon field (the largest Leadville producer) in San Juan County, UT, in order understand the reservoir characteristics and facies that can be applied regionally.

112

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery DE-FC26-03NT15413 Project Goal The overall objective of this project is to understand the role of mineralogy of reservoir rocks in determining interactions of reservoir minerals and their dissolved species with externally added reagants (surfactants/polymers) and their effects on solid-liquid and liquid-liquid interfacial properties, such as adsorption, wettability, and interfacial tension. A further goal is to devise schemes to control these interactions in systems relevant to reservoir conditions. Particular emphasis will be placed on the type and nature of different minerals in oil reservoirs. Performer Columbia University, New York, NY Background

113

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of Silicon-On-Insulator (SOI) High Temperature Electronics Development of Silicon-On-Insulator (SOI) High Temperature Electronics DE-FC26-03NT41834 Goal The goal is to improve the reliability of high-temperature electronic components found in the downhole “smart drilling” tools needed to improve drilling efficiency and success rate at depths of 20,000 feet and below and temperatures greater than 225°C. This will be done by utilizing Silicon-on-Insulator (SOI) based technology to develop various high priority electronic components. Performer Honeywell, Inc., Plymouth, Minnesota 55441 Joint Industry Partners: BP, Baker Hughes, Goodrich Aerospace, Honeywell, Schlumberger, Intelliserv, Quartzdyne. Results The project has resulted in the successful design and testing of four key components needed for high temperature drilling equipment. These include: an Electrically-Erasable Programmable Read-Only Memory (EEPROM); a Field Programmable Gate Array; a Precision Amplifier (OpAmp) and a Sigma-Delta Analog-to-Digital Converter (ADC). The establishment of a Joint Industry Project (JIP) and participating companies’ commitment was a major reason for the project success. Major results include:

114

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration DE-FC26-06NT42950 Goal The goal is to develop new packaging techniques for downhole electronics that will be capable of withstanding at least 200oC (~400oF) while maintaining a small form factor and high vibration tolerance necessary for use in a downhole environment. These packaging techniques will also be capable of integrating a sensor and other electronics to form an integrated electronics/sensor module. Performers General Electric Global Research Center, Niskayuna, NY 12309 Binghamton University (SUNY), Binghamton, NY 13902 Background Sensors and electronics systems are key components in measurement-while-drilling (MWD) equipment. Examples of sensors and electronics that can directly impact the efficiency of drilling guidance systems can include gamma ray and neutron sensors, orientation modules, pressure sensors and the all of the associated signal conditioning and computational electronics. As drilling depths increase, more rigorous temperature demands are made on the electronic components in the drillstring. Current sensor systems for MWD applications are limited by the temperature rating of their electronics, with a typical upper end temperature rating of 175oC (~350oF). The lifetime of an electronics system at such temperatures is extremely short (600-1500 hrs). These limitations are driven by the temperature performance and reliability of the materials in the electronic components (active and passive devices) and their associated packages and interconnect methods.

115

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

FRANKLIN COUNTY SANITARY FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search and Contacts Made...................................................................2 Task 2B.2 - LFG Resource/Resource Collection System - Project Phase One.......................3 Conclusion.................................................................................................................................5

116

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

117

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs DE-FC26-04NT15508 Project Goal The project goal is to provide a methodology that will allow operators of oil reservoirs in carbonate reefs to better image the interior structure of those reservoirs and to identify those areas that contain the most oil remaining after initial production. Performers Michigan Technological University, Houghton, MI Z-Seis Inc., Houston, TX Results This study provides a significant step forward in reservoir characterization by demonstrating that crosswell seismic imaging can be used over considerable distances to better define features within a reservoir and by showing that pre-stack characteristics of reflection events can be used to reduce ambiguity in determination of lithology and fluid content. Crosswell seismic imaging of the two reefs has provided data that is well beyond any that a reservoir engineer or development geologist has previously had for improved characterization and production.

118

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 DE-NT0006556 Goal The objective of this project is to develop improved chemical oil recovery options for the Ugnu reservoir overlying the Milne Point unit in North Slope, Alaska. Performers University of Texas, Austin, TX 78712-1160 Background The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in the Ugnu, West Sak, and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir overlying Milne Point varies from 200 cP to 10,000 cP and the depth is about 3500 ft. The same reservoir extends to the west overlying the Kuparuk River Unit and on to the Beaufort Sea. The depth of the reservoir decreases and the viscosity

119

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling Vibration Monitoring and Control System Drilling Vibration Monitoring and Control System DE-FC26-02NT41664 Goal Improve the rate of penetration and reduce the incidence of premature equipment failures in deep hard rock drilling environments by reducing harmful drillstring vibration. Performer APS Technology, Inc., Cromwell, CT 06492 Results To date, this project has produced the following results: Carried out a review of the major sources of vibration likely to influence the bottom hole assembly (BHA) and in particular the bit, and characterized them by their anticipated frequency and amplitude; Developed a software model to analyze drillstring axial vibration and determine optimal damping action; Developed a method to directly quantify the various vibration modes using a system of four accelerometers and a magnetometer mounted in a sensor sub of the damper component;

120

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geomechanical Study of Bakken Formation for Improved Oil Recovery Last Reviewed 12/12/2013 Geomechanical Study of Bakken Formation for Improved Oil Recovery Last Reviewed 12/12/2013 DE-08NT0005643 Goal The goal of this project is to determine the geomechanical properties of the Bakken Formation in North Dakota, and use these results to increase the success rate of horizontal drilling and hydraulic fracturing in order to improve the ultimate recovery of this vast oil resource. Performer University of North Dakota, Grand Forks, ND 58202-7134 Background Compared to the success of producing crude oil from the Bakken Formation in eastern Montana, the horizontal drilling and hydraulic fracture stimulation technology applied in western North Dakota has been less successful, thus requiring the development of new completion and fracturing technologies.

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Synthesis and Evaluation of Inexpensive CO2 Thickeners Designed by Molecular Modeling The Synthesis and Evaluation of Inexpensive CO2 Thickeners Designed by Molecular Modeling DE-FC26-04NT15533 Project Goal The goal of this project is to use molecular modeling and experimental results to design inexpensive, environmentally benign, CO2-soluble compounds that can decrease the mobility of CO2 at typical enhanced oil recovery (EOR) reservoir conditions. Performers University of Pittsburgh, Pittsburgh, PA Yale University, New Haven, CT Background The research group previously formulated the only known CO2 thickener, a (fluoroacrylate-styrene) random copolymer, but this proof-of-concept compound was expensive and environmentally unacceptable because it was fluorous. They then identified the most CO2-soluble, high-molecular-weight, conventional polymer composed solely of carbon, hydrogen, and oxygen: poly(vinyl acetate), or PVAc. PVAc could not dissolve at pressures below the minimum miscibility pressure (MMP), however. The current research effort, therefore, was directed at using molecular modeling and experimental tools to design polymers that are far more CO2-soluble than PVAc. The subsequent goal was to incorporate this polymer into a thickening agent that will dissolve in CO2 below the MMP and generate a two- to ten-fold decrease in CO2 mobility at concentrations of 0.01–1.0 percent by weight. Although most of the thickeners envisioned are copolymers, researchers will also evaluated several small hydrogen-bonding agents and surfactants with oligomeric (very short polymer) tails that form viscosity-enhancing structures in solution , and novel CO2 soluble surfactants that may be able to generate foams in situ as they mix with reservoir brine (without the need for the injection of alternating slugs of water).

122

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota DE-FC26-08NT43291 – 01.2 Goal The goal of this project is to quantitatively describe and understand the Bakken Formation in the Williston Basin by collecting and analyzing a wide range of parameters, including seismic and geochemical data, that impact well productivity/oil recovery. Performer Energy & Environmental Research Center, Grand Forks, ND 58202-9018 Background The Bakken Formation is rapidly emerging as an important source of oil in the Williston Basin. The formation typically consists of three members, with the upper and lower members being shales and the middle member being dolomitic siltstone and sandstone. Total organic carbon (TOC) within the shales may be as high as 40%, with estimates of total hydrocarbon generation across the entire Bakken Formation ranging from 200 to 400 billion barrels. While the formation is productive in numerous reservoirs throughout Montana and North Dakota, with the Elm Coulee Field in Montana and the Parshall area in North Dakota being the most prolific examples of Bakken success, many Bakken wells have yielded disappointing results. While variable productivity within a play is nothing unusual to the petroleum industry, the Bakken play is noteworthy because of the wide variety of approaches and technologies that have been applied with apparently inconsistent and all too often underachieving results. This project will implement a robust, systematic, scientific, and engineering research effort to overcome these challenges and unlock the vast resource potential of the Bakken Formation in the Williston Basin.

123

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

124

NETL: News Release - DOE Selects Projects Targeting Deep Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

22, 2006 22, 2006 DOE Selects Projects Targeting Deep Natural Gas Resources Research Focuses on High-Tech Solutions to High Temperature, Pressure Challenges WASHINGTON, DC - The Department of Energy today announced the selection of seven cost-shared research and development projects targeting America's vast, but technologically daunting, deep natural gas resources. These projects focus on developing the advanced technologies needed to tackle drilling and production challenges posed by natural gas deposits lying more than 20,000 feet below the earth's surface. There, drillers and producers encounter extraordinarily high temperatures (greater than 400 °F) and pressures (greater than 15,000 psi), as well as extremely hard rock and corrosive environments. The projects come under the oversight of the Office of Fossil Energy's National Energy Technology Laboratory, which has managed the Deep Trek research program since its inception in 2002. To date, DOE has awarded 12 Deep Trek projects totaling over $31 million, (with $10 million contributed by research partners) and is currently managing another seven projects focused on resource assessment and improved imaging technology for deep reservoirs.

125

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electromagnetic (EM) Telemetry Tool for Deep Well Drilling Applications Electromagnetic (EM) Telemetry Tool for Deep Well Drilling Applications DE-FC26-02NT41656 Goal: To develop a wireless, electromagnetic (EM) based telemetry system to facilitate efficient deep natural gas drilling at depths beyond 20,000 feet and up to 392˚F (200˚C) Background: The wireless, EM telemetry system will be designed to facilitate measurement-while-drilling (MWD) operations within a high temperature, deep drilling environment. The key components that will be developed and tested include a new high efficiency power amplifier (PA) and advanced signal processing algorithms. The novel PA architecture will provide greater and more efficient power delivery from the subterranean transmitter through the transmission media. Maximum energy transfer is especially critical downhole, where the transmitter’s principal power source is typically a battery. Increased energy at the receiver antenna equates to increased recoverable signal amplitude; thus, the overall receiver signal-to-noise ratio is improved resulting in deeper operational depth capability.

126

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Gas Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 DE-FC26-06NT42666 Goal The goal of this project is to compare and contrast, through numerical simulation, conventional and innovative approaches for producing methane from gas hydrate-bearing geologic reservoirs. Numerical simulation is being used to assess the production of natural gas hydrates from geologic deposits using three production technologies: 1) depressurization, 2) direct CO2 exchange, and 3) dissociation-reformation CO2 exchange. Performers Battelle Pacific Northwest Division, Richland, Washington 99352 Background There are relatively few published studies of commercial production methods for gas hydrates, and all of these studies have examined essentially

127

Aerospace Engineering Pickup Truck AerodynamicsPickup Truck Aerodynamics  

E-Print Network [OSTI]

distribution on a generic pickup truck geometry. · To measure the unsteady flow field in the near wake, suction type wind tunnel · Pickup truck model provided by GM R&D · Ground board mounted on top side of tunnel · Actual wind tunnel cross section 60 x 50 cm · Model mounted 380 mm from ground board leading

Al-Garni, Abdullah M.

128

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supercement for Annular Seal and Long-term Integrity in Deep, Hot Wells Supercement for Annular Seal and Long-term Integrity in Deep, Hot Wells DE-FC26-03NT41836 Goal: The goal of the project is to develop a supercement capable of sealing the annuli of and providing long-term integrity in deep, hot wells. Performers CSI Technologies, LLC , Houston, TX Argonne National Laboratory, Argonne, IL Results Phase I work involved a literature search on cements and evaluation of Portland and non-Portland cement systems and various formulations within these systems. Laboratory work involved more than 1,100 tests on 169 different formulations. Baseline testing established a foundation for comparison. Conventional and unconventional mechanical tests were conducted, and many systems were tested at high temperatures. From this work six candidate systems comprising some 10 formulas were recommended for further analysis in Phase II: reduced water systems, magnesium oxide, molybdenum trioxide, fibers, epoxy (resins), and graded particle systems.

129

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of A 275° C Downhole Microcomputer System Development of A 275° C Downhole Microcomputer System DE-FC26-05NT42656 Goal The goal of this project is to produce a downhole microcomputer system (DMS) capable of operating at 275 °C for 1000 hours. The base DMS will consist of a 68HC11 single chip microcomputer with boot ROM, static RAM, counter/timer unit, parallel input/output (PIO) unit, and serial peripheral interface (SPI) and will also have two peripheral chips, a Data RAM and Mask ROM. Performer Oklahoma State University, Electrical and Computer Engineering Department, Stillwater, OK 74078 Background The down-scaling of bulk complementary metal-oxide-semiconductor (CMOS), the dominant integrated circuit (IC) process over the last 4 decades, has increased circuit densities to very high levels and has been the basis for considerable growth in digital signal processing, data acquisition, and intelligent control systems. With down-scaling, however, the CMOS has become increasingly susceptible to failure in high temperature environments. This failure is primarily related to current leakage in transistors in bulk ICs, which becomes catastrophically large at high temperatures.

130

Volvo Super Truck Overview and Approach  

Broader source: Energy.gov [DOE]

Provides overview and discusses approach of the Volvo Super Truck Team to develop a number of advanced technologies to significantly improve freight efficiency of long-haul trucks

131

Maryland Hybrid Truck Goods Movement Initiative | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-- Washington D.C. tiarravt063rice2010p.pdf More Documents & Publications Maryland Hybrid Truck Goods Movement Initiative Maryland Hybrid Truck Goods Movement Initiative...

132

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual" b. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per thousand cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.983258692,2.124739238,2.26534793,2.409252566,2.585728477,2.727400662,2.854942053,2.980927152,3.13861755,3.345819536,3.591100993,3.849544702,4.184279801,4.510016556,4.915074503,5.29147351,5.56022351,5.960471854 "AEO 1995",,1.891706924,1.998384058,1.952818035,2.064227053,2.152302174,2.400016103,2.569033816,2.897681159,3.160088567,3.556344605,3.869033816,4.267391304,4.561932367,4.848599034,5.157246377,5.413405797,5.660917874 "AEO 1996",,,1.630674532,1.740334763,1.862956911,1.9915856,2.10351261,2.194934146,2.287655669,2.378991658,2.476043002,2.589847464,2.717610782,2.836870306,2.967124845,3.117719429,3.294003735,3.485657428,3.728419409

133

NETL: Oil & Natural Gas Projects: Alaska North Slope Oil and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 DE-FE0001240 Goal The primary objectives of this project are to develop analysis and management tools related to Arctic transportation networks (e.g., ice and snow road networks) that are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho National Laboratory, Idaho Falls, ID 83415 Background Oil and gas development on the North Slope is critical for maintaining U.S. energy supplies and is facing a period of new growth to meet the increasing energy needs of the nation. A majority of all exploration and development activities, pipeline maintenance, and other field support projects take

134

RENOTER Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RENOTER Project RENOTER Project Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE...

135

Monitoring Results Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

Natural Gas Wells Near Project Rulison Third Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 12, 2013 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterwards, the site was shut down, then remediated and the emplacement well (R-E) and reentry well (R-Ex) plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

136

Natural Gas Procurement Challenges for a Project Financed Cogeneration Facility  

E-Print Network [OSTI]

these criteria as inconsistent with UCC project economics and normal procurement practice. A. TERM OF CONTRACT The trend in the industry was strongly moving away from long term fixed price contracts. Natural Gas prices had moved steadily upward through..., by 1986? the problem of long term take or pay contracts in the Industry was overwhelming. Most producers had written some contracts at very low prices that had not expired while consumers were replacing contract written at high prices. However...

Good, R. L.; Calvert, T. B.; Pavlish, B. A.

137

Company Adds Commercial Trucks to List of Hybrids | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids August 30, 2010 - 10:00am Addthis Allison’s bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Allison's bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Lindsay Gsell Allison Transmission uses $62.8 million in Recovery Act funding for commercial truck hybrid system Project will create or retain close to 100 manufacturing-related jobs in Indiana Hybrid systems could reduce diesel consumption by 35 percent in

138

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

139

Table 10. Natural Gas Net Imports, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Net Imports, Projected vs. Actual" Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2.02,2.4,2.66,2.74,2.81,2.85,2.89,2.93,2.95,2.97,3,3.16,3.31,3.5,3.57,3.63,3.74,3.85 "AEO 1995",,2.46,2.54,2.8,2.87,2.87,2.89,2.9,2.9,2.92,2.95,2.97,3,3.03,3.19,3.35,3.51,3.6 "AEO 1996",,,2.56,2.75,2.85,2.88,2.93,2.98,3.02,3.06,3.07,3.09,3.12,3.17,3.23,3.29,3.37,3.46,3.56 "AEO 1997",,,,2.82,2.96,3.16,3.43,3.46,3.5,3.53,3.58,3.64,3.69,3.74,3.78,3.83,3.87,3.92,3.97 "AEO 1998",,,,,2.95,3.19,3.531808376,3.842532873,3.869043112,3.894513845,3.935930967,3.976293564,4.021911621,4.062207222,4.107616425,4.164502144,4.221304417,4.277039051,4.339964867

140

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual" a. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per thousand cubic feet in ""dollar year"" specific to each AEO)" ,"AEO Dollar Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1992,1.9399,2.029,2.1099,2.1899,2.29,2.35,2.39,2.42,2.47,2.55,2.65,2.75,2.89,3.01,3.17,3.3,3.35,3.47 "AEO 1995",1993,,1.85,1.899,1.81,1.87,1.8999,2.06,2.14,2.34,2.47,2.69,2.83,3.02,3.12,3.21,3.3,3.35,3.39 "AEO 1996",1994,,,1.597672343,1.665446997,1.74129355,1.815978527,1.866241336,1.892736554,1.913619637,1.928664207,1.943216205,1.964540124,1.988652706,2.003382921,2.024799585,2.056392431,2.099974155,2.14731431,2.218094587

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table 9. Natural Gas Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual" Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",17.71,17.68,17.84,18.12,18.25,18.43,18.58,18.93,19.28,19.51,19.8,19.92,20.13,20.18,20.38,20.35,20.16,20.19 "AEO 1995",,18.28,17.98,17.92,18.21,18.63,18.92,19.08,19.2,19.36,19.52,19.75,19.94,20.17,20.28,20.6,20.59,20.88 "AEO 1996",,,18.9,19.15,19.52,19.59,19.59,19.65,19.73,19.97,20.36,20.82,21.25,21.37,21.68,22.11,22.47,22.83,23.36 "AEO 1997",,,,19.1,19.7,20.17,20.32,20.54,20.77,21.26,21.9,22.31,22.66,22.93,23.38,23.68,23.99,24.25,24.65 "AEO 1998",,,,,18.85,19.06,20.34936142,20.27427673,20.60257721,20.94442177,21.44076347,21.80969238,22.25416183,22.65365219,23.176651,23.74545097,24.22989273,24.70069313,24.96691322

142

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual a. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per thousand cubic feet in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.94 2.03 2.11 2.19 2.29 2.35 2.39 2.42 2.47 2.55 2.65 2.75 2.89 3.01 3.17 3.30 3.35 3.47 AEO 1995 1993 1.85 1.90 1.81 1.87 1.90 2.06 2.14 2.34 2.47 2.69 2.83 3.02 3.12 3.21 3.30 3.35 3.39 AEO 1996 1994 1.60 1.67 1.74 1.82 1.87 1.89 1.91 1.93 1.94 1.96 1.99 2.00 2.02 2.06 2.10 2.15 2.22

143

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and...

144

Cummins SuperTruck Program - Technology Demonstration of Highly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient...

145

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

NSTAR Electric & Gas Corporation NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $2,362,000.00 Total Project Value $4,724,000.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

146

Pacific Gas & Electric Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Pacific Gas & Electric Company Pacific Gas & Electric Company Country United States Headquarters Location San Francisco, California Recovery Act Funding $25,000,000.00 Total Project Value $355,938,600.00 Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

147

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project (2) |  

Open Energy Info (EERE)

Lead NSTAR Electric & Gas Corporation Lead NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $5,267,592.00 Total Project Value $10,535,184.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

148

Baltimore Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Company Company Country United States Headquarters Location Baltimore, Maryland Recovery Act Funding $200,000,000.00 Total Project Value $451,814,234.00 Coverage Area Coverage Map: Baltimore Gas and Electric Company Smart Grid Project Coordinates 39.2903848°, -76.6121893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

149

Madison Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company and Electric Company Country United States Headquarters Location Madison, Wisconsin Recovery Act Funding $5,550,941.00 Total Project Value $11,101,881.00 Coverage Area Coverage Map: Madison Gas and Electric Company Smart Grid Project Coordinates 43.0730517°, -89.4012302° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

150

Liquid natural gas as a transportation fuel in the heavy trucking industry. Fourth quarterly progress report, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

This project encompasses the first year of a proposed three year project with emphasis focused on LNG research issues that may be categorized as direct diesel replacement with LNG fuel, and long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-09-01T23:59:59.000Z

151

Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.  

SciTech Connect (OSTI)

The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

2003-01-01T23:59:59.000Z

152

Acceptance test report for core sample trucks 3 and 4  

SciTech Connect (OSTI)

The purpose of this Acceptance Test Report is to provide documentation for the acceptance testing of the rotary mode core sample trucks 3 and 4, designated as HO-68K-4600 and HO-68K-4647, respectively. This report conforms to the guidelines established in WHC-IP-1026, ``Engineering Practice Guidelines,`` Appendix M, ``Acceptance Test Procedures and Reports.`` Rotary mode core sample trucks 3 and 4 were based upon the design of the second core sample truck (HO-68K-4345) which was constructed to implement rotary mode sampling of the waste tanks at Hanford. Successful completion of acceptance testing on June 30, 1995 verified that all design requirements were met. This report is divided into four sections, beginning with general information. Acceptance testing was performed on trucks 3 and 4 during the months of March through June, 1995. All testing was performed at the ``Rock Slinger`` test site in the 200 West area. The sequence of testing was determined by equipment availability, and the initial revision of the Acceptance Test Procedure (ATP) was used for both trucks. Testing was directed by ICF-KH, with the support of WHC Characterization Equipment Engineering and Characterization Project Operations. Testing was completed per the ATP without discrepancies or deviations, except as noted.

Corbett, J.E.

1996-04-10T23:59:59.000Z

153

NETL: News Release - DOE Selects Projects Targeting America's "Tight" Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2006 7, 2006 DOE Selects Projects Targeting America's "Tight" Gas Resources Research to Help Unlock Nation's Largest Growing Source of Natural Gas WASHINGTON, DC - The Department of Energy today announced the selection of two cost-shared research and development projects targeting America's major source of natural gas: low-permeability or "tight" gas formations. Tight gas is the largest of three so-called unconventional gas resources?the other two being coalbed methane (natural gas) and gas shales. Production of unconventional gas in the United States represents about 40 percent of the Nation's total gas output in 2004, but could grow to 50 percent by 2030 if advanced technologies are developed and implemented. The constraints on producing tight gas are due to the impermeable nature of the reservoir rocks, small reservoir compartments, abnormal (high or low) pressures, difficulty in predicting natural fractures that aid gas flow rates, and need to predict and avoid reservoirs that produce large volumes of water.

154

VP 100: Producing Electric Truck Vehicles with a Little Something Extra |  

Broader source: Energy.gov (indexed) [DOE]

VP 100: Producing Electric Truck Vehicles with a Little Something VP 100: Producing Electric Truck Vehicles with a Little Something Extra VP 100: Producing Electric Truck Vehicles with a Little Something Extra August 6, 2010 - 10:31am Addthis VP 100: Producing Electric Truck Vehicles with a Little Something Extra Kevin Craft What does this mean for me? Smith Electric Vehicles included in Vice President's report on 100 Recovery Act Projects That Are Changing America. Smith plans to hire at least 50 employees by the end of the year. Through a Recovery Act grant, that company - Smith Electric Vehicles (SEV) - is taking a different tact that could lay the foundation for the industry's future. Not only is the company manufacturing all-electric, zero-emission commercial trucks, it's collecting data on how these commercial EVs are used. In Kansas City, Mo., an 80-year old company is on

155

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

156

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Advanced Flue Gas Desulfurization (AFGD) Demonstration Project A DOE Assessment August 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

157

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

158

Assessing water and environmental impacts of oil and gas projects in Nigeria.  

E-Print Network [OSTI]

??Oil and gas development projects are major sources of social and environmental problems particularly in oil-rich developing countries like Nigeria. Yet, data paucity hinders our… (more)

Anifowose, Babatunde A.

2011-01-01T23:59:59.000Z

159

Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Wisconsin Reduces Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Delicious Rank Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on AddThis.com... Oct. 2, 2010 Wisconsin Reduces Emissions With Natural Gas Trucks

160

New Funding Boosts Carbon Capture, Solar Energy and High Gas...  

Office of Environmental Management (EM)

Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 -...

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual b. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per thousand cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1.98 2.12 2.27 2.41 2.59 2.73 2.85 2.98 3.14 3.35 3.59 3.85 4.18 4.51 4.92 5.29 5.56 5.96 AEO 1995 1.89 2.00 1.95 2.06 2.15 2.40 2.57 2.90 3.16 3.56 3.87 4.27 4.56 4.85 5.16 5.41 5.66 AEO 1996 1.63 1.74 1.86 1.99 2.10 2.19 2.29 2.38 2.48 2.59 2.72 2.84 2.97 3.12 3.29 3.49 3.73 AEO 1997 2.03 1.82 1.90 1.99 2.06 2.13 2.21 2.32 2.43 2.54 2.65 2.77 2.88 3.00 3.11 3.24 AEO 1998 2.30 2.20 2.26 2.31 2.38 2.44 2.52 2.60 2.69 2.79 2.93 3.06 3.20 3.35 3.48 AEO 1999 1.98 2.15 2.20 2.32 2.43 2.53 2.63 2.76 2.90 3.02 3.12 3.23 3.35 3.47

162

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Consumption, Projected vs. Actual Total Natural Gas Consumption, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 19.87 20.21 20.64 20.99 21.20 21.42 21.60 21.99 22.37 22.63 22.95 23.22 23.58 23.82 24.09 24.13 24.02 24.14 AEO 1995 20.82 20.66 20.85 21.21 21.65 21.95 22.12 22.25 22.43 22.62 22.87 23.08 23.36 23.61 24.08 24.23 24.59 AEO 1996 21.32 21.64 22.11 22.21 22.26 22.34 22.46 22.74 23.14 23.63 24.08 24.25 24.63 25.11 25.56 26.00 26.63 AEO 1997 22.15 22.75 23.24 23.64 23.86 24.13 24.65 25.34 25.82 26.22 26.52 27.00 27.35 27.70 28.01 28.47 AEO 1998 21.84 23.03 23.84 24.08 24.44 24.81 25.33 25.72 26.22 26.65 27.22 27.84 28.35 28.84 29.17 AEO 1999 21.35 22.36 22.54 23.18 23.65 24.17 24.57 25.19 25.77 26.41 26.92 27.42 28.02 28.50

163

Monetizing stranded gas : economic valuation of GTL and LNG projects.  

E-Print Network [OSTI]

??Globally, there are significant quantities of natural gas reserves that lie economically or physically stranded from markets. Options to monetize such reserves include Gas to… (more)

Black, Brodie Gene, 1986-

2010-01-01T23:59:59.000Z

164

EIA responds to Nature article on shale gas projections  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

165

Graphene as the Ultimate Membrane for Gas Separation Project...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphene as the Ultimate Membrane for Gas Separation Graphene as the Ultimate Membrane for Gas Separation GraphenePore.jpg Key Challenges: Investigate the permeability and...

166

THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK  

SciTech Connect (OSTI)

A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

2003-08-24T23:59:59.000Z

167

Table 8. Natural Gas Wellhead Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Wellhead Prices, Projected vs. Actual Natural Gas Wellhead Prices, Projected vs. Actual (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 9.2 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 7.29 8.09 8.94 9.62 10.27 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 6.37 6.89 7.50 8.15 9.05 AEO 1993 1.85 1.94 2.09 2.30

168

Table 11. Natural Gas Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Net Imports, Projected vs. Actual Natural Gas Net Imports, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 1.19 1.19 1.19 1.19 1.19 1.19 AEO 1983 1.08 1.16 1.23 1.23 1.23 1.23 1.23 AEO 1984 0.99 1.05 1.16 1.27 1.43 1.57 2.11 AEO 1985 0.94 1.00 1.19 1.45 1.58 1.86 1.94 2.06 2.17 2.32 2.44 AEO 1986 0.74 0.88 0.62 1.03 1.05 1.27 1.39 1.47 1.66 1.79 1.96 2.17 2.38 2.42 2.43 AEO 1987 0.84 0.89 1.07 1.16 1.26 1.36 1.46 1.65 1.75 2.50 AEO 1989* 1.15 1.32 1.44 1.52 1.61 1.70 1.79 1.87 1.98 2.06 2.15 2.23 2.31 AEO 1990 1.26 1.43 2.07 2.68 2.95 AEO 1991 1.36 1.53 1.70 1.82 2.11 2.30 2.33 2.36 2.42 2.49 2.56 2.70 2.75 2.83 2.90 2.95 3.02 3.09 3.17 3.19 AEO 1992 1.48 1.62 1.88 2.08 2.25 2.41 2.56 2.68 2.70 2.72 2.76 2.84 2.92 3.05 3.10 3.20 3.25 3.30 3.30 AEO 1993 1.79 2.08 2.35 2.49 2.61 2.74 2.89 2.95 3.00 3.05 3.10

169

Truck Technology Efficiency Assessment (TTEA) Project  

E-Print Network [OSTI]

cycle data in order to quantify the fuel savings and emissions reduction potential of technologies climate change in transportation, and related environmental impacts. Drive Cycle Data Analysis to Evaluate Fuel and Emissions Benefits Drive cycle data (velocity, acceleration and elevation histories

170

SuperTruck Program: Engine Project Review  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

171

Class 8 Truck Freight Efficiency Improvement Project  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

172

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects | Department of  

Broader source: Energy.gov (indexed) [DOE]

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia County, Florida. Download the presentations below, watch the webinar (WMV 112 MB) or view the text version. Find more CommRE webinars. Prairie View RDF Gas to Energy Facility: A Public/Private Partnership Will County partnered with Waste Management, using a portion of the county's DOE Energy Efficiency and Conservation Block Grant (EECBG) funding, to develop the Prairie View Recycling and Disposal Facility. A gas purchase agreement was executed in 2010 and the facility became operational

173

SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL  

E-Print Network [OSTI]

1 SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL Hébrard, J.1 linked with Hydrogen/Natural gas mixtures transport by pipeline, the National Institute of Industrial scenario, i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential

Boyer, Edmond

174

NETL: News Release - DOE Selects New Projects to Enhance Oil and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 8, 2004 December 8, 2004 DOE Selects New Projects to Enhance Oil and Gas Production 35 Projects Contribute to Energy Security, Reduce Greenhouse Gas Emissions WASHINGTON, DC - Secretary of Energy Spencer Abraham today announced the selection of 35 new cost-shared projects that promise to strengthen our nation's energy security and reduce greenhouse emissions. In announcing the awards, Secretary Abraham lauded the wide-ranging projects as "an investment in our future that will benefit the Nation for years to come." The total award value of the new projects is more than $39 million. "President Bush's National Energy Policy calls attention to the continuing need to strengthen our energy security, modernize energy infrastructure, and accelerate the protection and improvement of the environment," Secretary Abraham said. "It also calls for promoting enhanced oil and gas recovery, and improving oil- and gas-exploration technology to increase domestic energy supplies. The new projects meet all of these important national goals."

175

Using landfill gas for energy: Projects that pay  

SciTech Connect (OSTI)

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

176

Mobile Truck Stop Electrification Site Locator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Mobile Truck Stop Electrification Site Locator Location Enter a city, postal code, or address Search Caution: The AFDC recommends that users verify that sites are open prior to...

177

OpenEI:Projects/Improvements Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Improvements Oil and Gas Improvements Oil and Gas Jump to: navigation, search This page is used to coordinate plans for creating content for the Oil and Gas Gateway. Contents 1 Oil | Energy Basics 2 Oil | General Classification 3 Oil | Uses 3.1 Fuels 3.2 Derivatives 3.3 Agriculture 4 Natural Gas | Energy Basics 5 Natural Gas | General Classification 5.1 Biogas 6 Natural Gas | Uses 6.1 Power Generation 6.2 Domestic Use 6.3 Transportation 6.4 Fertilizers 6.5 Aviation 6.6 Creation of Hydrogen 6.7 Additional Uses 7 State Oil and Gas Boards, Commissions, etc. 8 Federal Statutes, Laws, Regulations related to Oil and Gas 9 International Oil and Gas Boards, Commissions, etc. 10 Private Datasets 11 Oil and Gas Companies 12 Other Notes 12.1 Definitely Helpful 12.2 Possibly Helpful 13 Project Participants Oil | Energy Basics

178

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Broader source: Energy.gov (indexed) [DOE]

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

179

Memphis Light, Gas and Water Division Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Light, Gas and Water Division Smart Grid Project Light, Gas and Water Division Smart Grid Project Jump to: navigation, search Project Lead Memphis Light, Gas and Water Division Country United States Headquarters Location Memphis, Tennessee Recovery Act Funding $5,063,469.00 Total Project Value $13112363 Coverage Area Coverage Map: Memphis Light, Gas and Water Division Smart Grid Project Coordinates 35.1495343°, -90.0489801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

180

Argonne CNM Highlight: Nanofluids Could Make Cool Work of Hot Truck Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanofluids Could Make Cool Work of Hot Truck Engines Nanofluids Could Make Cool Work of Hot Truck Engines What the work is about Truck engines are hot places, and new emission reduction technologies such as exhaust gas recirculation (EGR) can make them even hotter. The coolants, lubricants, oils, and other heat transfer fluids used in today's conventional truck thermal systems (including radiators, engines, and HVAC equipment) have inherently poor heat transfer properties. And conventional working fluids that contain millimeter- or micrometer-sized particles do not work with newly emerging "miniaturized" technologies because they can clog in microchannels. Why Nanoparticles Are Better than Microparticles Argonne National Laboratory has developed metal nanofluids that can dramatically enhance the thermal conductivity of conventional heat transfer fluids and flow smoothly in microchannel passages. These "nanocoolants," as they're known, can enhance heat transfer more than several times better than the best competing fluid.

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fact #671: April 18, 2011 Average Truck Speeds  

Broader source: Energy.gov [DOE]

The Federal Highway Administration studies traffic volume and flow on major truck routes by tracking more than 500,000 trucks. The average speed of trucks on selected interstate highways is between...

182

Underground Salt Haul Truck Fire at the Waste Isolation Pilot...  

Office of Environmental Management (EM)

Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant February 5, 2014 March 2014 Salt Haul Truck Fire at the Waste Isolation Pilot Plant Salt Haul Truck Fire at the...

183

NETL: News Release - DOE Selects 2 Projects to Expand Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 2, 2000 October 2, 2000 DOE Selects 2 Projects to Expand Natural Gas Development and Use A technology that converts natural gas into liquids and a process that upgrades raw, low-quality natural gas to pipeline quality are the focus of two projects selected by the Department of Energy in a nationwide competition. The projects are valued at approximately $3.2 million, with DOE contributing a little more than $2 million. The Energy Department's National Energy Technology Laboratory, the lead laboratory for fossil energy research and development, will manage the two projects: Praxair of Tarrytown, NY and subcontractor Foster Wheeler Development Corporation, will develop a novel system that processes natural gas into "synthesis gas" - gas that can be chemically recombined into a variety of liquid fuels -- in less time than conventional methods. Featuring a short reaction-time catalyst used with the company's gas-mixing technology, the system requires significantly less energy then conventional synthesis gas manufacturing plants. It also is less costly to build and does not use steam, another cost-saving feature. It could be a major contributor in future technologies to convert remote or otherwise stranded gas supplies into liquid fuels that could be more easily transported to market. Significant quantities of stranded gas are found in Alaska, for example.

184

Finding Hidden Oil and Gas Reserves Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Finding Hidden Oil and Gas Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas fields, have a long and established history in hydrocarbon reservoir exploration but the technology has encountered difficulty in discriminating different types of reservoir fluids, such as brines, oil, and gas. Why it Matters: Imaging methods that improve locating and extracting petroleum and gas from the earth by even a few percent can yield enormous payoffs. Geophysical realizations of hydrocarbon reservoirs at unprecedented levels of detail will afford new detection abilities, new efficiencies and new exploration savings by revealing where hydrocarbon deposits reside. Can also be used for improved understanding of potential

185

EIS-0498: Magnolia Liquefied Natural Gas Project, Calcasieu Parish, Louisiana  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) is preparing an EIS for a proposal to build and operate a liquefied natural gas (LNG) facility on land at the Port of Lake Charles. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

186

SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...  

Broader source: Energy.gov (indexed) [DOE]

SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards...

187

Solid SCR Demonstration Truck Application | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SCR Demonstration Truck Application Solid SCR Demonstration Truck Application Demonstrate the feasibility and performance of the FEV Solid SCR (Ammonium Carbamate) Technology...

188

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks...

189

Cummins Light Truck Clean Diesel | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Truck Clean Diesel Cummins Light Truck Clean Diesel 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation 2004deerstang2.pdf More Documents & Publications...

190

Emissions from Idling Trucks for Extended Time Periods | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idling Trucks for Extended Time Periods Emissions from Idling Trucks for Extended Time Periods 2002 DEER Conference Presentation: Oak Ridge National Laboratory 2002deerlewis.pdf...

191

Progress in Thermoelectrical Energy Recovery from a Light Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy Recovery From the Exhaust of a Light Truck Automotive Thermoelectric Generators and HVAC...

192

Fuel economy and emissions reduction of HD hybrid truck over...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving cycles and...

193

NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

194

Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Golden Eagle Delivers Golden Eagle Delivers Beer With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Delicious Rank Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Digg Find More places to share Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on AddThis.com... Aug. 3, 2013 Golden Eagle Delivers Beer With Natural Gas Trucks

195

Calibraton of a Directly Injected Natural Gas HD Engine for Class...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck Applications Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck Applications This...

196

Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Virginia Cleans up Virginia Cleans up With Natural Gas Refuse Trucks to someone by E-mail Share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Facebook Tweet about Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Twitter Bookmark Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Google Bookmark Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Delicious Rank Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Digg Find More places to share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on AddThis.com... May 11, 2013 Virginia Cleans up With Natural Gas Refuse Trucks W atch how Richmond, Virginia, powers refuse haulers and other city vehicles

197

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects (Connecticut)  

Broader source: Energy.gov [DOE]

Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provide end-use energy efficiency, or avoid methane emissions...

198

NREL: Fleet Test and Evaluation - Truck Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Efficiency The Fleet Test and Evaluation team is working with industry partners to evaluate truck efficiency technologies in long-haul truck cabs. To keep their cabs at a comfortable temperature, heavy-duty truck drivers idle their engines an average of 1,400 hours annually, using more than 800 million gallons of fuel each year. With diesel prices at an all-time high, carrier companies are looking into ways to incorporate truck efficiency technologies to eliminate engine idling. By doing so, they not only save money on fuel but reduce tailpipe emissions. To find ways trucks can be more efficient without idling, the Fleet Test and Evaluation team is researching: Thermal Load Reduction Idle Reduction Printable Version Fleet Test and Evaluation Home Research & Development

199

POST 10/Truck Inspection Station (Map 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POST 10/Truck Inspection Station (Map 3) POST 10/Truck Inspection Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded by NM Highway 4 and Diamond Drive) must stop at Post 10 for truck inspections. Drivers will then need to present time-stamped inspection passes from Post 10 to protective force officers stationed at the Pajarito Corridor. (Drivers exiting Post 10 should (1) turn right and proceed west on the Truck Route; (2) turn left onto West Jemez Road; (3) proceed to Lane 7; (4) STOP and present the inspection pass to the protective force officer; (5) turn left onto Diamond

200

Research and Development Opportunities for Heavy Trucks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1] 1] Introduction Heavy-duty long-haul trucks are critical to the movement of the Nation's freight. These vehicles, which currently consume about 10 percent of the Nation's oil, are characterized by high fuel consumption, fast market turnover, and rapid uptake of new technologies. Improving the fuel economy of Class 8 trucks will dramatically impact both fuel and cost savings. This paper describes the importance of heavy trucks to the Nation's economy, and its potential for fuel efficiency gains. Why Focus on Heavy Trucks? Large and Immediate Impact Investments in improving the fuel economy of heavy Class 8 trucks will result in large reduction in petroleum consumption within a short timeframe. While heavy-duty vehicles make up only 4% of the

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Delivery and viability of landfill gas CDM projects in Africa—A South African experience  

Science Journals Connector (OSTI)

The eThekwini Municipality (Durban, South Africa) landfill gas Clean Development Mechanism (CDM) project was the first to be registered and verified in Africa. The idea for the project was developed in 2002, yet it was not until the end of 2006 that the smaller Component One (1 MW) was registered, while the larger Component Two (9 MW) followed only in March 2009. Valuable lessons were learnt from Component One, and these were applied to Component Two. The paper describes the Durban CDM process, the lessons learnt, and assesses the viability of landfill gas to electricity CDM projects in Africa. It concludes that small to medium sized landfill gas to electricity CDM projects are not viable in Africa unless there is a renewable energy feed-in-tariff, or unless the gas is simply flared rather than being utilised for power generation.

R. Couth; C. Trois; J. Parkin; L.J. Strachan; A. Gilder; M. Wright

2011-01-01T23:59:59.000Z

202

Annual Energy Outlook with Projections to 2025 - Market Trends- Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Demand and Supply Natural Gas Demand and Supply Annual Energy Outlook 2005 Market Trends - Natural Gas Demand and Supply Figure 82. Natural gas consumption by sector, 1990-2025 (trillion cubic feet). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Figure 83. Natural gas production by source, 1990-2025 (trillion cubic feet). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Projected Increases in Natural Gas Use Are Led by Electricity Generators In the AEO2005 reference case, total natural gas consumption increases from 22.0 trillion cubic feet in 2003 to 30.7 trillion cubic feet in 2025. In the electric power sector, natural gas consumption increases from 5.0 trillion cubic feet in 2003 to 9.4 trillion cubic feet in 2025 (Figure 82),

203

Project Information Form Project Title Working toward a policy framework for reducing greenhouse gas  

E-Print Network [OSTI]

Provided (by each agency or organization) US DOT $37,874 Total Project Cost $37,874 Agency ID or ContractProject Information Form Project Title Working toward a policy framework for reducing greenhouse of Research Project This white paper is concerned with a preliminary investigation of the extent to which

California at Davis, University of

204

Short Mountain Landfill Gas Recovery Project : Stage 1 Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA`s latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers` demand for electrical power.

United States. Bonneville Power Administration.

1992-05-01T23:59:59.000Z

205

EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

206

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects  

Broader source: Energy.gov (indexed) [DOE]

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012. Recorded Voice: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Hello, everyone. Good afternoon and welcome to today's webinar. This is sponsored by the U.S. Department of Energy. My name is Sarah Busche, and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory in Golden, Colorado. We're going to give folks

207

NETL: News Release - DOE Selects 2 Projects to Help Boost Gas Flow from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 15, 2001 August 15, 2001 DOE Selects 2 Projects to Help Boost Gas Flow from Low-Permeability Formations New Technologies Targeted at Future Gas Production From "Tight" Formations in Western U.S. MORGANTOWN, WV - America has vast resources of natural gas, but President Bush's National Energy Policy cautions that domestic production of the easier "conventional" gas could peak as early as 2015. To help prepare for the day when the Nation's increasing demand for clean-burning natural gas will have to be met by gas trapped in denser, more difficult-to-produce "unconventional" formations, the U.S. Department of Energy has selected two firms to develop advanced methods for locating and producing these low permeability gas reservoirs.

208

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO MACK TRUCKS, INC. UNDER  

Broader source: Energy.gov (indexed) [DOE]

MACK TRUCKS, INC. UNDER MACK TRUCKS, INC. UNDER NREL SUBCONTRACT NO. ZCI-4-32050, UNDER DOE PRIME CONTRACT NO. DE-AC36-98GO10337 FOR DEVELOPMENT OF THE NEXT GENERATION NATURAL GAS VEHICLE, PHASE II; CH-1182; W(A)-04-012 Mack Trucks, Inc. (Mack) has petitioned for an advance waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. NREL-ZCI-4-32050-01. This advance waiver is intended to apply to all subject inventions of Mack's employees and those of its subcontractors, regardless of tier except subcontractors eligible to obtain title pursuant to P.L. 96-517 as amended, and National Laboratories. As brought out in its waiver petition, the long term objective of this contract is to develop one medium duty compressed natural gas (CGN) prototype engine or one hi:avy duty liquified

209

The Trucking Sector Optimization Model: A tool for predicting carrier and shipper responses to policies aiming to reduce GHG emissions  

Science Journals Connector (OSTI)

Abstract In response to the growing Climate Change problem, governments around the world are seeking to reduce the greenhouse gas (GHG) emissions of trucking. The Trucking Sector Optimization (TSO) model is introduced as a tool for studying the decisions that shippers and carriers make throughout time (focusing on investments in Fuel Saving Technologies), and for evaluating their impact on life-cycle GHG emissions. A case study of fuel taxation in California is used to highlight the importance of (1) modeling the trucking sector comprehensively, (2) modeling the dynamics of the stock of vehicles, and (3) modeling different sources of emissions.

Sebastian E. Guerrero; Samer M. Madanat; Robert C. Leachman

2013-01-01T23:59:59.000Z

210

New York State Electric & Gas Corporation Smart Grid Demonstration Project  

Open Energy Info (EERE)

New York State Electric & Gas Corporation Smart Grid Demonstration Project New York State Electric & Gas Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead New York State Electric & Gas Corporation Country United States Headquarters Location Binghamton, New York Recovery Act Funding $29,561,142.00 Total Project Value $125,006,103.00 Coordinates 42.0986867°, -75.9179738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

211

Greenhouse Gas Emission Trends and Projections in Europe 2009 | Open Energy  

Open Energy Info (EERE)

Greenhouse Gas Emission Trends and Projections in Europe 2009 Greenhouse Gas Emission Trends and Projections in Europe 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emission Trends and Projections in Europe 2009 Agency/Company /Organization: European Environment Agency Topics: Baseline projection, GHG inventory, Background analysis Resource Type: Maps Website: www.eea.europa.eu/publications/eea_report_2009_9 Country: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Ireland, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom UN Region: "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

212

Emission Controls for Heavy-Duty Trucks  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

213

Alternative Fuels in Trucking Volume 5, Number 3  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

lmost 50% of the petroleum lmost 50% of the petroleum consumed in the United States is imported. By the year 2000, 73% of total petroleum demand will be imported, making America vulnerable to a cutoff in our energy lifeline. Transportation, which is 98% dependent on petroleum, uses two-thirds of the oil consumed in the United States. If we instead used American-produced natural gas to power our vehicles, we could become energy independent. Natural gas could also solve some of our toughest environmental prob- lems. Gasoline- and diesel-fueled cars, trucks, and buses produce half of all air pollution in the United States. Natural gas would cut emis- sions to zero. Congress has recognized the opportunity and enacted legislation to provide incentives for or mandate the production of alternative fuel

214

REAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS  

E-Print Network [OSTI]

are International. b DOC = Diesel Oxidation Catalyst; DPF = Diesel Particulate Filter; EGR = Exhaust GasREAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS Gurdas Sandhu H 26-28, 2012 #12;2 Objectives 1. Quantify inter-run variability in exhaust emission rates 2. Assess

Frey, H. Christopher

215

DOE - Office of Legacy Management -- Project Gas Buggy Site - NM 14  

Office of Legacy Management (LM)

Gas Buggy Site - NM 14 Gas Buggy Site - NM 14 FUSRAP Considered Sites Site: Project Gas Buggy Site (NM.14 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Gasbuggy, New Mexico, Site Nevada Test Site History Documents Related to Project Gas Buggy Site Fact Sheet Gasbuggy, New Mexico The Gasbuggy Site is located in northwestern New Mexico in Rio Arriba County approximately 55 miles east of the city of Farmington and approximately 12 miles southwest of Dulce, New Mexico, in the Carson National Forest. Floodplains and Wetlands Survey Results for the Gasbuggy and Gnome-Coach Sites, New Mexico, December 1993.

216

Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Truck Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Google Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Delicious Rank Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on AddThis.com... Dec. 31, 2009 Biodiesel Truck Transports Capitol Christmas Tree F ollow the Capitol Christmas Tree from Arizona to Washington, D.C., aboard

217

Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Trucks Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Digg Find More places to share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on AddThis.com... Sept. 17, 2011 Electric Trucks Deliver at Kansas City Schools F ind out how the Lee's Summit R-7 School District in Missouri uses electric

218

NETL: Oil & Natural Gas Projects: Alaska Heavy Oils  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formation’s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations. Performers Colorado School of Mines, Golden, CO 80401 University of Houston, Houston, TX 77204 Earthworks, Newtown, CT 06470 BP, Anchorage, AK 99519 Background Although the reserves of heavy oil on the North Slope of Alaska are enormous (estimates are up to 10 billion barrels in place), difficult

219

Natural Gas | Department of Energy  

Energy Savers [EERE]

Natural Gas Natural Gas Many heavy-duty fleets depend on diesel fuel. But an increasing number of trucking companies are transitioning their vehicles to run on liquefied natural...

220

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table 10. Natural Gas Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Production, Projected vs. Actual Production, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 14.74 14.26 14.33 14.89 15.39 15.88 AEO 1983 16.48 16.27 16.20 16.31 16.27 16.29 14.89 AEO 1984 17.48 17.10 17.44 17.58 17.52 17.32 16.39 AEO 1985 16.95 17.08 17.11 17.29 17.40 17.33 17.32 17.27 17.05 16.80 16.50 AEO 1986 16.30 16.27 17.15 16.68 16.90 16.97 16.87 16.93 16.86 16.62 16.40 16.33 16.57 16.23 16.12 AEO 1987 16.21 16.09 16.38 16.32 16.30 16.30 16.44 16.62 16.81 17.39 AEO 1989* 16.71 16.71 16.94 17.01 16.83 17.09 17.35 17.54 17.67 17.98 18.20 18.25 18.49 AEO 1990 16.91 17.25 18.84 20.58 20.24 AEO 1991 17.40 17.48 18.11 18.22 18.15 18.22 18.39 18.82 19.03 19.28 19.62 19.89 20.13 20.07 19.95 19.82 19.64 19.50 19.30 19.08 AEO 1992 17.43 17.69 17.95 18.00 18.29 18.27 18.51 18.75 18.97

222

Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Data Report Data Report Norcal Prototype LNG Truck Fleet: Final Data Report By Kevin Chandler, Battelle Ken Proc, National Renewable Energy Laboratory February 2005 This report provides detailed data and analyses from the U.S. Department of Energy's evaluation of prototype liquefied natural gas (LNG) waste transfer trucks operated by Norcal Waste Systems, Inc. The final report for this evaluation, published in July 2004, is available from the Alternative Fuels Data Center at www.eere.energy.gov/afdc or by calling the National Alternative Fuels Hotline at 1-800-423-1363. Request Norcal Prototype LNG Truck Fleet: Final Results, document number DOE/GO-102004-1920. i NOTICE This report was prepared as an account of work sponsored by an agency of the United States

223

Caterpillar Light Truck Clean Diesel Program  

SciTech Connect (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

224

Fuel Cell Forklift Project Final Report  

SciTech Connect (OSTI)

This project addresses the DOE’s priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freight’s Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freight’s previous field trial experience with a handful of Plug Power’s GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

Cummings, Clifton C

2013-10-23T23:59:59.000Z

225

Research Projects Addressing Technical Challenges to Environmentally Acceptable Shale Gas Development Selected by DOE  

Broader source: Energy.gov [DOE]

Fifteen research projects aimed at addressing the technical challenges of producing natural gas from shales and tight sands, while simultaneously reducing environmental footprints and risks, have been selected to receive a total of $28 million in funding from the U.S. Department of Energy’s Office of Fossil Energy.

226

Project 35013 Species-and Site-specific Impacts of Gas Supersaturation on Aquatic Animals  

E-Print Network [OSTI]

three species tend to be bottom oriented and deep water species, and most TDG effects are in the upperProject 35013 Species- and Site-specific Impacts of Gas Supersaturation on Aquatic Animals Sponsor in the river?" The proposal was submitted primarily at the request of the state water quality agencies

227

NETL: News Release - DOE Selects Projects to Improve 'Stripper' Gas Well  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 13, 2000 June 13, 2000 DOE Selects Project to Improve 'Stripper' Gas Well Economics By Using Low-Cost Clean Coal Product to Filter Waste Water In its third and final round of competition for projects that can help sustain natural gas production from "stripper" wells, the U.S. Department of Energy has selected a proposal to test a coal-based filtering material that could sharply reduce the costs of disposing of waste water from these low-volume wells. The Western SynCoal Clean Coal Plant The Rosebud SynCoal® demonstration plant near Colstrip, Montana, was built in DOE's Clean Coal Technology Program. Its upgraded coal product, originally intended as a high quality fuel for power plants, may also be a low cost filter material for oil and gas well waste water.

228

Fact #714: February 13, 2012 Light Truck Sales on the Rise  

Broader source: Energy.gov [DOE]

Light trucks sales have gained market share in relation to car sales from 1970. In 2001, light trucks outsold cars for the first time. Light truck sales reached a peak in 2004. By 2008, truck sales...

229

Large Scale Truck Duty Cycle.pub  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Truck Duty Cycle Evaluation and Truck Duty Cycle Evaluation and Assessment of Fuel Efficiency and Emission Reduction Technologies Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he Oak Ridge National Laboratory (ORNL) is conducting research to better understand truck fuel economy and emissions in normal everyday use, as part of a study sponsored by the Department of Energy (DOE) Vehicle Technologies Program (VTP). By collecting duty cycle data (velocity, acceleration and elevation) during normal operations of literally thousands of vehicles for an

230

Running Line-Haul Trucks on Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

I I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our petroleum supply, the price and supply of ethanol is not subject to the whims of potentially unstable foreign governments. And domestic production translates into domestic jobs. In addition, ethanol has the potential to reduce harmful emissions, such as particulate matter and oxides of nitrogen

231

Thermal management for heavy vehicles (Class 7-8 trucks)  

SciTech Connect (OSTI)

Thermal management is a crosscutting technology that has an important effect on fuel economy and emissions, as well as on reliability and safety, of heavy-duty trucks. Trends toward higher-horsepower engines, along with new technologies for reducing emissions, are substantially increasing heat-rejection requirements. For example, exhaust gas recirculation (EGR), which is probably the most popular near-term strategy for reducing NO{sub x} emissions, is expected to add 20 to 50% to coolant heat-rejection requirements. There is also a need to package more cooling in a smaller space without increasing costs. These new demands have created a need for new and innovative technologies and concepts that will require research and development, which, due to its long-term and high-risk nature, would benefit from government funding. This document outlines a research program that was recommended by representatives of truck manufacturers, engine manufacturers, equipment suppliers, universities, and national laboratories. Their input was obtained through personal interviews and a plenary workshop that was sponsored by the DOE Office of Heavy Vehicle Technologies and held at Argonne National Laboratory on October 19--20, 1999. Major research areas that received a strong endorsement by industry and that are appropriate for government funding were identified and included in the following six tasks: (1) Program management/coordination and benefits/cost analyses; (2) Advanced-concept development; (3) Advanced heat exchangers and heat-transfer fluids; (4) Simulation-code development; (5) Sensors and control components development; and (6) Concept/demonstration truck sponsorship.

Wambsganss, M.W.

2000-04-03T23:59:59.000Z

232

Fire Department Gets New Trucks, Saves Money | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money August 27, 2013 - 12:00pm Addthis Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas. Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas. One of two of the Hanford Fire Department’s new chemical trucks. One of two of the Hanford Fire Department's new chemical trucks. Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas.

233

Alternative Fuels Data Center: Delaware Reduces Truck Idling With  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Delaware Reduces Truck Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Delicious Rank Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Digg Find More places to share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on AddThis.com...

234

The Increasing Role of Diesel Trucks in National Petroleum Use...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Increasing Role of Diesel Trucks in National Petroleum Use The Increasing Role of Diesel Trucks in National Petroleum Use Presentation given at DEER 2006, August 20-24, 2006,...

235

Fact #707: December 26, 2011 Illustration of Truck Classes  

Broader source: Energy.gov [DOE]

There are eight truck classes, categorized by the gross vehicle weight rating (GVWR) that the vehicle is assigned when it is manufactured. These categories are used by the trucking industry and...

236

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

237

Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption Fact 787: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption The U.S. Department of...

238

Vehicle Technologies Office: 21st Century Truck Partners  

Broader source: Energy.gov [DOE]

The 21st Century Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

239

EERE: VTO - UPS Truck PNG Image | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

UPS Truck PNG Image EERE: VTO - UPS Truck PNG Image upstruck18187.png More Documents & Publications EERE: VTO - Red Leaf PNG Image EERE: VTO - Hybrid Bus PNG Image Research Site...

240

Safeguarding Truck-Shipped Wholesale and Retail Fuels (STSWRF)  

E-Print Network [OSTI]

Safeguarding Truck-Shipped Wholesale and Retail Fuels (STSWRF) Oak Ridge National Laboratory approved ORNL's plan to conduct a Phase II Pilot Test titled Safeguarding Truck-Shipped Wholesale

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Improved performance of railcar/rail truck interface components  

E-Print Network [OSTI]

turning moments around curved track, wear of truck components, and increased detrimental dynamic effects. The recommended improvement of the rail truck interface is a set of two steel inserts, one concave and one convex, that can be retrofit to center...

Story, Brett Alan

2009-05-15T23:59:59.000Z

242

Hamilton Truck Route Study Prepared for the City of Hamilton  

E-Print Network [OSTI]

Hamilton Truck Route Study Prepared for the City of Hamilton March 2012 #12;#12;Hamilton Truck and Logistics McMaster University Hamilton, Ontario March 2012 mitl.mcmaster.ca #12;#12;McMaster Institute

Haykin, Simon

243

Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: June 21, 2010 8: June 21, 2010 Truck Stop Electrification Sites to someone by E-mail Share Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Facebook Tweet about Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Twitter Bookmark Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Google Bookmark Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Delicious Rank Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Digg Find More places to share Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on AddThis.com... Fact #628: June 21, 2010 Truck Stop Electrification Sites

244

Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Maryland Conserves Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Digg Find More places to share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on AddThis.com... March 5, 2011 Maryland Conserves Fuel With Hybrid Trucks L earn how Maryland is reducing fuel consumption, engine noise, and

245

E-Print Network 3.0 - air truck transportation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transportation network, comprising rail, trucking, ports, inland waterways, air and pipeline... The transporters, best characterized as driverless electric trucks, are...

246

California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks  

Broader source: Energy.gov [DOE]

Describes system for fueling truck fleet with biomethane generated from anaerobic digestion of organic waste it collects

247

Examining factors affecting the safety performance and design of exclusive truck facilities  

E-Print Network [OSTI]

models were developed for truck-related (involving at least one truck and another vehicle), truck-only (two trucks or more) and single-truck crashes. The results suggested that the percentage of trucks in Average Annual Daily Traffic (AADT...

Iragavarapu, Vichika

2009-05-15T23:59:59.000Z

248

Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Truck Stop Truck Stop Electrification for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Digg Find More places to share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles

249

Solar Energy for Charging Fork Truck Batteries  

E-Print Network [OSTI]

this price decrease in mind and does an economic study on the feasibility of using photovoltaic cells to charge electric fork lift trucks, at different costs per peak watt. This particular idea could be used as a measure of energy conservation for industrial...

Viljoen, T. A.; Turner, W. C.

1980-01-01T23:59:59.000Z

250

Volvo Trucks Manufacturing Plant in Virginia  

Office of Energy Efficiency and Renewable Energy (EERE)

Volvo Group North America’s 1.6-million-square-foot New River Valley Plant in Dublin, Virginia, is the company’s largest truck manufacturing plant in the world. The company has implemented many energy savings solutions as part of the Better Buildings, Better Plants Challenge.

251

Energy Department Announces New ARPA-E Projects to Advance Innovative  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Announces New ARPA-E Projects to Advance Energy Department Announces New ARPA-E Projects to Advance Innovative Natural Gas Vehicle Technologies Energy Department Announces New ARPA-E Projects to Advance Innovative Natural Gas Vehicle Technologies July 12, 2012 - 11:51am Addthis NEWS MEDIA CONTACT (202) 586-4940 HOUSTON - U.S. Deputy Secretary of Energy Daniel Poneman today announced 13 new cutting-edge research projects that will receive a total of $30 million to find new ways of harnessing America's abundant natural gas supplies for cars and trucks and expand the use of natural gas as a vehicle fuel. Through its Advanced Research Projects Agency - Energy (ARPA-E), the Department's new program, titled Methane Opportunities for Vehicular Energy - or "MOVE" - aims to engineer light-weight, affordable

252

Energy Department Announces New ARPA-E Projects to Advance Innovative  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Announces New ARPA-E Projects to Advance Energy Department Announces New ARPA-E Projects to Advance Innovative Natural Gas Vehicle Technologies Energy Department Announces New ARPA-E Projects to Advance Innovative Natural Gas Vehicle Technologies July 12, 2012 - 11:51am Addthis NEWS MEDIA CONTACT (202) 586-4940 HOUSTON - U.S. Deputy Secretary of Energy Daniel Poneman today announced 13 new cutting-edge research projects that will receive a total of $30 million to find new ways of harnessing America's abundant natural gas supplies for cars and trucks and expand the use of natural gas as a vehicle fuel. Through its Advanced Research Projects Agency - Energy (ARPA-E), the Department's new program, titled Methane Opportunities for Vehicular Energy - or "MOVE" - aims to engineer light-weight, affordable

253

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The National Methane Hydrates R&D Program The National Methane Hydrates R&D Program DOE/NETL Methane Hydrate Projects Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA

254

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes (EARTH-15-CB1) Host institution biodegradation of oil can remove its value ­ but what controls the biodegradation? The deep biosphere plays a key

Henderson, Gideon

255

Alternative Fuels Data Center: Truck Stop Electrification Site Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels & Vehicles » Tools Fuels & Vehicles » Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Truck Stop

256

2014 Best and Worst MPG Trucks, Vans and SUVs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trucks Trucks 2014 Most Efficient Trucks by EPA Size Class 2014 Least Efficient Trucks by EPA Size Class 2014 Most Fuel Efficient Trucks, Vans and SUVs EPA Class Vehicle Description Fuel Economy Combined Small Pickup Trucks Toyota Tacoma Toyota Tacoma 2WD 4 cyl, 2.7 L, Manual (5), Regular Gasoline 23 Standard Pickup Trucks Ram 1500 HFE 2WD Ram 1500 HFE 2WD 6 cyl, 3.6 L, Automatic (8), Regular Gasoline 21 Small Sport Utility Vehicles Toyota RAV4 EV Toyota RAV4 EV Automatic (variable gear ratios), 115 kW AC Induction, Electricity 76* Subaru XV Crosstrek Hybrid AWD Subaru XV Crosstrek Hybrid AWD 4 cyl, 2.0 L, Automatic (CVT), Regular Gasoline 31 Standard Sport Utility Vehicles Infiniti QX60 Hybrid AWD Infiniti QX60 Hybrid AWD 4 cyl, 2.5 L, AV-S7, Regular Gasoline Infiniti QX60 Hybrid FWD

257

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA Background The USGS Interagency Agreement (IA) involves laboratory research and

258

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 DE-FC26-06NT42959 Goal The goal of this project is to evaluate the direct-current electrical resistivity (DCR) method for remotely detecting and characterizing the concentration of gas hydrates in the deep marine environment. This will be accomplished by adapting existing DCR instrumentation for use on the sea floor in the deep marine environment and testing the new instrumentation at Mississippi Canyon Block 118. Performer Baylor University, Waco, TX 76798 Collaborators Advanced Geosciences Inc., Austin, TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct

259

NETL: Methane Hydrates - DOE/NETL Projects - Mapping Permafrost and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 DE-FE0010144 Goal The objective of this project is to develop and test a towed electromagnetic source and receiver system suitable for deployment from small coastal vessels to map near-surface electrical structure in shallow water. The system will be used to collect permafrost data in the shallow water of the U.S. Beaufort Inner Shelf at locations coincident with seismic lines collected by the U.S. Geological Survey (USGS). The electromagnetic data will be used to identify the geometry, extent, and physical properties of permafrost and any associated gas hydrate in order to provide a baseline for future studies of the effects of any climate-driven dissociation of

260

Western Gas Sands Project. Status report, 1 March-31 March 1980  

SciTech Connect (OSTI)

The March, 1980 progress of the government-sponsored projects directed towards increasing gas production from the low permeability gas sands of the western United States is summarized in this report. A site for the multi-well experiment was approved by the industry review committee; drilling is expected by mid-summer. Bartlesville Energy Technology Center continued work on fracture conductivity, rock/fluid interaction, and log evaluation and interpretation techniques. Lawrence Livermore Laboratory continued experimental and theoretical work on hydraulic fracturing mechanics and analysis of well test data. Analysis of data obtained from a test of the borehole seismic unit by Sandia Laboratories continued. The DOE Well Test Facility continued bottom-hole pressure buildup measurements at the Colorado Interstate Gas Company Miller No. 1 well.

Not Available

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FUEL ASSEMBLY SHAKER AND TRUCK TEST SIMULATION  

SciTech Connect (OSTI)

This study continues the modeling support of the SNL shaker table task from 2013 and includes analysis of the SNL 2014 truck test campaign. Detailed finite element models of the fuel assembly surrogate used by SNL during testing form the basis of the modeling effort. Additional analysis was performed to characterize and filter the accelerometer data collected during the SNL testing. The detailed fuel assembly finite element model was modified to improve the performance and accuracy of the original surrogate fuel assembly model in an attempt to achieve a closer agreement with the low strains measured during testing. The revised model was used to recalculate the shaker table load response from the 2013 test campaign. As it happened, the results remained comparable to the values calculated with the original fuel assembly model. From this it is concluded that the original model was suitable for the task and the improvements to the model were not able to bring the calculated strain values down to the extremely low level recorded during testing. The model needs more precision to calculate strains that are so close to zero. The truck test load case had an even lower magnitude than the shaker table case. Strain gage data from the test was compared directly to locations on the model. Truck test strains were lower than the shaker table case, but the model achieved a better relative agreement of 100-200 microstrains (or 0.0001-0.0002 mm/mm). The truck test data included a number of accelerometers at various locations on the truck bed, surrogate basket, and surrogate fuel assembly. This set of accelerometers allowed an evaluation of the dynamics of the conveyance system used in testing. It was discovered that the dynamic load transference through the conveyance has a strong frequency-range dependency. This suggests that different conveyance configurations could behave differently and transmit different magnitudes of loads to the fuel even when travelling down the same road at the same speed. It is recommended that the SNL conveyance system used in testing be characterized through modal analysis and frequency response analysis to provide context and assist in the interpretation of the strain data that was collected during the truck test campaign.

Klymyshyn, Nicholas A.; Jensen, Philip J.; Sanborn, Scott E.; Hanson, Brady D.

2014-09-25T23:59:59.000Z

262

NETL: News Release - Projects Selected to Boost Unconventional Oil and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2010 7, 2010 Projects Selected to Boost Unconventional Oil and Gas Resources Simulation and Visualization Tools, CO2 Enhanced Oil Recovery Targeted for Advancement Washington, D.C. - Ten projects focused on two technical areas aimed at increasing the nation's supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide (CO2) storage options have been selected for further development by the U.S. Department of Energy (DOE). The projects include four that would develop advanced computer simulation and visualization capabilities to enhance understanding of ways to improve production and minimize environmental impacts associated with unconventional energy development; and six seeking to further next generation CO2 enhanced oil recovery (EOR) to the point where it is ready for pilot (small) scale testing.

263

Examining factors affecting the safety performance and design of exclusive truck facilities  

E-Print Network [OSTI]

were used to establish a relationship between truck crashes and various environmental, geometric and traffic variables. Separate models were developed for truck-related (involving at least one truck and another vehicle), truck-only (two trucks... Table 1: Proposed selection criterion for truck treatments (Middleton et al., 2006).......... 7 Table 2: Revised design vehicle dimensions to accommodate trucks in roadway design (Harwood et al., 2003...

Iragavarapu, Vichika

2008-10-10T23:59:59.000Z

264

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

SciTech Connect (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

265

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

conventional truck; the hydrogen fuel cell truck can improveconventional truck; the hydrogen fuel cell truck can improveLNG engines, fuel cell vehicles using hydrogen, and battery

Zhao, Hengbing

2013-01-01T23:59:59.000Z

266

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

SciTech Connect (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

267

Boondocks Truck Stop Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Boondocks Truck Stop Wind Farm Boondocks Truck Stop Wind Farm Jump to: navigation, search Name Boondocks Truck Stop Wind Farm Facility Boondocks Truck Stop Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Boondocks Truck Stop Energy Purchaser Boondocks Truck Stop Location IA Coordinates 42.4703°, -93.5624° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4703,"lon":-93.5624,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Estimation of Fuel Use by Idling Commercial Trucks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimation of Fuel Use Estimation of Fuel Use by Idling Commercial Trucks Estimation of Fuel Use by Idling Commercial Trucks TRB 85 th Annual Meeting Washington, DC January 22-26, 2006 Linda Gaines, Anant Vyas, and John L. Anderson 2 Trucks are classified into 8 classes Based on gross vehicle weight (GVW) - Includes empty vehicle plus cargo - Classes formulated >50 years ago Classes 1 and 2 include commercial and personal vehicles - Our analysis removes personal vehicles - Commercial uses include service and retail, construction, agriculture, manufacturing - Class 2 is divided into 2A and 2B (>8,500 lbs.) Single unit (SU) trucks cover classes 1-8 - Flatbed, pickup, dump, van dominate Combination (C) trucks are in classes 6-8 - About half have sleepers * Travel long distances * Driver often sleeps in truck

269

Emission Changes Resulting from the San Pedro Bay, California Ports Truck Retirement Program  

SciTech Connect (OSTI)

Recent U.S. Environmental Protection Agency emissions regulations have resulted in lower emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet turnover the State of California in 2008 along with the Ports of Los Angeles and Long Beach (San Pedro Bay Ports) in 2006 passed regulations establishing timelines forcing the retirement of older diesel trucks. On-road emissions measurements of heavy-duty diesel trucks were collected over a three-year period, beginning in 2008, at a Port of Los Angeles location and an inland weigh station on the Riverside freeway (CA SR91). At the Port location the mean fleet age decreased from 12.7 years in April of 2008 to 2.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48%) and infrared opacity (a measure of particulate matter, 54%). We also observed a 20-fold increase in ammonia emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks. These results compare with changes at our inland site where the average ages were 7.9 years in April of 2008 and 8.3 years in April of 2010, with only small reductions in oxides of nitrogen (10%) being statistically significant. Both locations have experienced significant increases in nitrogen dioxide emissions from new trucks equipped with diesel particle filters; raising the mean nitrogen dioxide to oxides of nitrogen ratios from less than 10% to more than 30% at the Riverside freeway location.

Bishop, G. A.; Schuchmann, B. G.; Stedman, D. H.; Lawson, D. R.

2012-01-03T23:59:59.000Z

270

Computer controlled feed delivery system for feed trucks  

E-Print Network [OSTI]

of truck speed and feed characteristics. Tests were performed to ascertain the validity of two design concepts. The first design concept consisted of operating the bed conveyor proportional to the ground speed of the feed truck while the cross-conveyor... and the dispersing cylinders operated at a continuous speed. The second design concept consisted of operating both the bed and cross-conveyor proportional to ground speed of the feed truck while the dispersing cylinders operated at a continuous speed. The results...

Holt, Gregory Alan

2012-06-07T23:59:59.000Z

271

San Diego Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company and Electric Company Country United States Headquarters Location San Diego, California Recovery Act Funding $28115052 Total Project Value $59427645 Coverage Area Coverage Map: San Diego Gas and Electric Company Smart Grid Project Coordinates 32.7153292°, -117.1572551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

272

Cummins/DOE Light Truck Diesel Engine Progress Report | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Progress Report CumminsDOE Light Truck Diesel Engine Progress Report 2002 DEER Conference Presentation: Cummins 2002deerstang.pdf More Documents & Publications...

273

21st Century Truck Partnership Roadmap Roadmap and Technical...  

Broader source: Energy.gov (indexed) [DOE]

Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Report...

274

21st Century Truck Partnership - Roadmap and Technical White...  

Broader source: Energy.gov (indexed) [DOE]

- Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of...

275

The 21st Century Truck Partnership | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Roadmap and Technical White Papers for 21st Century...

276

Fabrication of A Quantum Well Based System for Truck HVAC  

Broader source: Energy.gov [DOE]

Discusses performance differences between conventional modules and quantum well modules and details a conventional HZ-14 device, using bulk bismuth-telluride advantageous for truck HVAC applications.

277

Rollover analysis of rotary mode core sampler truck No. 2  

SciTech Connect (OSTI)

This document provides estimate of limiting speed and rollover analysis of rotary mode core sampler truck No. 2 (RMCST No. 2).

Ziada, H.H.

1994-11-08T23:59:59.000Z

278

High Fuel Economy Heavy-Duty Truck Engine  

Broader source: Energy.gov (indexed) [DOE]

contain any proprietary, confidential, or otherwise restricted information ACE060 High Fuel Economy Heavy Duty Truck Engine Overview Timeline October 2007 - October 2011 Barriers...

279

Zero Emission Heavy Duty Drayage Truck Demonstration | Department...  

Office of Environmental Management (EM)

Zero Emission Heavy Duty Drayage Truck Demonstration 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

280

Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint  

SciTech Connect (OSTI)

Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.

Lustbader, J.; Kreutzer, C.; Jeffers, M.; Adelman, S.; Yeakel, S.; Brontz, P.; Olson, K.; Ohlinger, J.

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mechanical properties of radial truck tires  

E-Print Network [OSTI]

determination of static properties of tire load vs. tire deflection and tire load vs. tire footprint area for radial and wide base radial truck tires is described and results are discussed. Determination of transmissibility for a conventional radial and a... (right) 12 13 15 Figure 7: Sidewall bulge measurement 16 Figure 8: Load vs. deflection; 385/65R22. 5 wide base tire tested at 90 psi inflation pressure 20 Figure 9: Load vs. deflection; 385/65R22. 5 wide base tire tested at 100 psi inflation...

Wasti, Mansoor-ul-Hassan

1992-01-01T23:59:59.000Z

282

Assessing the impact of regulation and deregulation on the rail and trucking industries  

E-Print Network [OSTI]

(cont.) Many Class I railroads disappeared and severe competition bankrupted many small carriers in the trucking industry. Larger trucking carriers gained market dominance. Real wages in the trucking industry fell. The ...

Lowtan, Donavan M. (Donavan Mahees), 1975-

2004-01-01T23:59:59.000Z

283

Roadmap and Technical White Papers for 21st Century Truck Partnership...  

Broader source: Energy.gov (indexed) [DOE]

Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap document for 21st Century Truck...

284

Western Gas Sands Project, status report, October-November-December 1981  

SciTech Connect (OSTI)

This WGSP Quarterly Report summarizes the progress of government-sponsored projects aimed at recovering gas from low permeability gas sands in the Western United States during October, November and December 1981. CK GeoEnergy released the final report for Development of Techniques for Optimizing Selection and Completion of Western Gas Sands. For CER's Reservoir Simulation Model Development, primary emphasis during the quarter was placed on extending the previous work to include effects of massive hydraulic fractures intersecting multiple lenses. During the quarter, the University of Oklahoma completed the two-dimensional reservoir simulator for BETC. A simplified two-dimensional hydraulic fracturing model is being developed by LLL. A major activity this quarter at Los Alamos was redesigning the NMR receiver system, making it capable of being repackaged for downhole use. Sandia summarizes the analysis of five saturated rock samples that were measured for dielectric constant. The drilling, coring, logging and casing of MWX-1 was accomplished this quarter; quality of output, mainly core, core data and logs, has been good.

Crawley, A.; Atkinson, C.H.

1982-07-01T23:59:59.000Z

285

Truck scheduling at zero-inventory cross docking terminals  

Science Journals Connector (OSTI)

Handling freight at cross docking terminals constitutes a complex planning task which comprises several executive steps as shipments delivered by inbound trucks are to be unloaded, sorted according to their designated destinations, moved across the dock ... Keywords: Cross docking, Dynamic programming, Food industry, Logistics, Truck scheduling

Nils Boysen

2010-01-01T23:59:59.000Z

286

HEALTHY FOOD OUTSIDE: FARMERS' MARKETS, TACO TRUCKS, AND SIDEWALK FRUIT VENDORS  

E-Print Network [OSTI]

HEALTHY FOOD OUTSIDE: FARMERS' MARKETS, TACO TRUCKS, AND SIDEWALK FRUIT VENDORS Alfonso Morales FOOD OUTSIDE: FARMERS' MARKETS, TACO TRUCKS, AND SIDEWALK FRUIT VENDORS Alfonso Morales1 and Gregg

Illinois at Chicago, University of

287

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction...

288

A summary of truck fuel-saving measures developed with industry participation  

SciTech Connect (OSTI)

This report describes the third project undertaken by the Center for Transportation Research, Argonne National Laboratory (ANL), in a US Department of Energy program designed to develop and distribute compendiums of measures for saving transportation fuel. A matrix, or chart, of more than 60 fuel-saving measures was developed by ANL and refined with the assistance of trucking industry operators and researchers at an industry coordination meeting held in August 1982. The first two projects used similar meetings to refine matrices developed for the international maritime and US railroad industries. The consensus reached by those at the meeting was that the single most important element in a truck fuel-efficiency improvement program is the human element -- namely the development of strong motivation among truck drivers to save fuel. The role of the driver is crucial to the successful use of fuel-saving equipment and operating procedures. Identical conclusions were reached in the earlier maritime and rail meetings, thus providing a strong indication of the pervasive importance of the human element in energy-efficient transportation systems. The number and variety of changes made to the matrix are also delineated, including addition and deletion of various options and revisions of fuel-saving estimates, payback period estimates, and remarks concerning items such as the advantages, disadvantages, and cautions associated with various measures. The quality and quantity of the suggested changes demonstrate the considerable value of using a forum of industry operators and researchers to refine research data that are intended for practical application.

Bertram, K.M.; Saricks, C.L. [Argonne National Lab., IL (United States); Gregory, E.W. II [USDOE, Washington, DC (United States); Moore, A.J. [Northwestern Univ., Evanston, IL (United States)

1983-09-01T23:59:59.000Z

289

Energy Department, Volvo Partnership Builds More Efficient Trucks and  

Broader source: Energy.gov (indexed) [DOE]

Department, Volvo Partnership Builds More Efficient Trucks Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants Energy Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants January 27, 2012 - 3:00pm Addthis Washington, D.C. -Today, Acting Under Secretary of Energy Arun Majumdar joined with North Carolina Congressman Howard Coble (NC-6) to tour the Volvo Group's truck headquarters in Greensboro, North Carolina, and highlight the blueprint for an America built to last laid out by President Obama in his State of the Union address earlier this week. The Department of Energy is partnering with companies like the Volvo Group to help harness American ingenuity to commercialize and deploy cutting-edge trucking technologies that will help boost the competitiveness of the U.S. auto and

290

Supercomputers, Semi Trucks and America's Clean Energy Future |  

Broader source: Energy.gov (indexed) [DOE]

Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future February 8, 2011 - 5:44pm Addthis BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain

291

Power Management Strategy for a Parallel Hybrid Electric Truck Power Management Strategy for a Parallel Hybrid Electric Truck  

E-Print Network [OSTI]

. The design procedure starts by defining a cost function, such as minimizing a combination of fuel consumption of a small increase in fuel consumption. #12;Power Management Strategy for a Parallel Hybrid Electric Truck I. INTRODUCTION Medium and heavy trucks running on diesel engines serve an important role in modern societies

Grizzle, Jessy W.

292

Annual Energy Outlook 2010 with Projections to 2035-Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2010 with Projections to 2035 - Graphic Data Annual Energy Outlook 2010 with Projections to 2035 - Graphic Data Annual Energy Outlook 2010 with Projections to 2035 Graphic Data Figure 1. U.S. primary energy consumption, 1980-2035 Figure 1 Data Figure 2. U.S. liquid fuels supply, 1970-2035 Figure 2 Data Figure 3. U.S. natural gas supply, 1990-2035 Figure 3 Data Figure 4. U.S. energy-related carbon dioxide emissions, 2008 and 2035 Figure 4 Data Figure 5. Projected average fleet-wide fuel economy and CO2-equivalent emissions compliance levels for passenger cars, model year 2016 Figure 5 Data Figure 6. Projected average fleet-wide fuel economy and CO2-equivalent emissions compliance levels for light trucks, model year 2016 Figure 6 Data Figure 7. Total energy consumption in three cases, 2005-2035 Figure 7 Data

293

Cliffs Minerals, Inc. Eastern Gas Shales Project, Ohio No. 5 well - Lorain County. Phase II report. Preliminary laboratory results  

SciTech Connect (OSTI)

The US Department of Energy is funding a research and development program entitled the Eastern Gas Shales Project designed to increase commercial production of natural gas in the eastern United States from Middle and Upper Devonian Shales. The program's objectives are as follows: (1) to evaluate recoverable reserves of gas contained in the shales; (2) to enhanced recovery technology for production from shale gas reservoirs; and (3) to stimulate interest among commercial gas suppliers in the concept of producing large quantities of gas from low-yield, shallow Devonian Shale wells. The EGSP-Ohio No. 5 well was cored under a cooperative cost-sharing agreement between the Department of Energy (METC) and Columbia Gas Transmission Corporation. Detailed characterization of the core was performed at the Eastern Gas Shale Project's Core Laboratory. At the well site, suites of wet and dry hole geophysical logs were run. Characterization work performed at the Laboratory included photographic logs, lithologic logs, fracture logs, measurements of core color variation, and stratigraphic interpretation of the cored intervals. In addition samples were tested for physical properties by Michigan Technological University. Physical properties data obtained were for: directional ultrasonic velocity; directional tensile strength; strength in point load; and trends of microfractures.

none,

1980-04-01T23:59:59.000Z

294

High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics  

SciTech Connect (OSTI)

This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

Larry Demick

2011-08-01T23:59:59.000Z

295

Like no other, Kemmerer keeps on trucking  

SciTech Connect (OSTI)

Despite its unique challenges, production at Chevron Mining's western Wyoming mine is increasing. The 1,200 foot deep pits consecutively terrace down (more similar to the open pits used in hard rock mining), exposing multiple splitting seams of varying coal qualities. The seams dip from 17 to 22{sup o} and vary in thickness from five to 80 feet or more. Generally three different pits, all of changing coal properties, are worked. The coal is blended to meet specific specifications. The article describes operations at the mine and its transport, once blended, to the nearby Naughton power station or by haul truck to the Elkol tipple. Employment at the mine, with its good safety record, is discussed.

Buchsbaum, L.

2008-03-15T23:59:59.000Z

296

Roadmap and Technical White Papers for 21st Century Truck Partnership  

Energy Savers [EERE]

... 121 Figure 25. Projections for Natural Gas Consumption and Domestic Production through 2035 (EIA Annual Outlook 2012)...

297

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt051tifeinberg2011...

298

Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt045white2010...

299

Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt045tiwhite2011...

300

Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt045tiwhite2012o...

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt051feinberg2010...

302

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

303

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

304

LNG Imports by Truck into the U.S. Form | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Truck into the U.S. Form LNG Imports by Truck into the U.S. Form Excel Version of LNG Imports by Truck into the U.S. Form.xlsx PDF Version of LNG Imports by Truck into the U.S....

305

LNG Exports by Truck out of the U.S. Form | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Truck out of the U.S. Form LNG Exports by Truck out of the U.S. Form Excel Version of LNG Exports by Truck out of the U.S. Form.xlsx PDF Version of LNG Exports by Truck out of the...

306

American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks  

SciTech Connect (OSTI)

HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

Block, Gus

2011-07-31T23:59:59.000Z

307

LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS  

E-Print Network [OSTI]

Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

Jaramillo, Paulina

308

Annual Energy Outlook 2009 with Projections to 2030-Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2009 with Projections to 2030 Annual Energy Outlook 2009 with Projections to 2030 Annual Energy Outlook 2009 with Projections to 2030 Graphic Data Figure 1. Total liquid fuels demand by sector Figure 1 Data Figure 2. Total natural gas supply by source Figure 2 Data Figure 3. New light-duty vehicle sales shares by type Figure 3 Data Figure 4. Proposed CAFE standards for passenger cars by vehicle footprint, model years 2011-2015 Figure 4 Data Figure 5. Proposed CAFE standards for light trucks by vehicle footprint, model years 2011-2015 Figure 5 Data Figure 6. Average fuel economy of new light-duty vehicles in the AEO2008 and AEO2009 projections, 1995-2030 Figure 6 Data Figure 7. Value of fuel saved by a PHEV compared with a conventional ICE vehicle over the life of the vehicles, by gasoline price and PHEV all-electric driving range

309

Unemployed Truck Driver Trains for New Career in Weatherization |  

Broader source: Energy.gov (indexed) [DOE]

Truck Driver Trains for New Career in Weatherization Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization November 5, 2010 - 2:46pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January 19. He graduated April 1 and won a position with GreenLight Solutions, a Montclair, New Jersey-based residential home improvement company just two weeks later.

310

Unemployed Truck Driver Trains for New Career in Weatherization |  

Broader source: Energy.gov (indexed) [DOE]

Unemployed Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization November 5, 2010 - 2:46pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January 19. He graduated April 1 and won a position with GreenLight Solutions, a Montclair, New Jersey-based residential home improvement company just two weeks later.

311

DOE Seeks Trucking Services for Transuranic Waste Shipments | Department of  

Broader source: Energy.gov (indexed) [DOE]

Trucking Services for Transuranic Waste Shipments Trucking Services for Transuranic Waste Shipments DOE Seeks Trucking Services for Transuranic Waste Shipments March 30, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 william.taylor@emcbc.doe.gov Cincinnati -- The Department of Energy (DOE) today will issue a Request for Proposals for the continuation of carrier services to transport transuranic waste (TRU) between DOE sites and the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The transportation of TRU waste is accomplished by contracted trucking carriers that ship the waste via public highways on custom designed trailers. The contract will be an Indefinite Delivery/ Indefinite Quantity (ID/IQ) contract using firm-fixed- price delivery task orders. The estimated contract cost is $80-$100 million over a five-year contract

312

NREL: Fleet Test and Evaluation - Truck Stop Electrification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stop Electrification Stop Electrification NREL's Fleet Test and Evaluation Team is evaluating and documenting the use of 50 truck stop electrification (TSE) sites along the busiest transportation corridors in the United States. Truck drivers typically idle their vehicles during mandated rest periods to maintain access to air conditioning, heat, and electricity. TSE sites allow truckers to enjoy these auxiliary systems by plugging into the electric grid instead of running their engines. The American Recovery and Reinvestment Act (ARRA) provided funding for these TSE sites-which feature electric power pedestals at 1,250 truck parking spaces-and for rebates to upgrade 5,000 long-haul trucks for drivers who agreed to use the facilities. Site usage will be monitored for three years to study patterns across the

313

ATVM Loans Help Boost Pickup Truck Efficiency | Department of...  

Office of Environmental Management (EM)

electricity for a year 6,685 tanker trucks' worth of gasoline Installing 139 wind turbines These are the kinds of results that the ATVM Loan Program was created to produce....

314

Fact #627: June 14, 2010 Idle Reduction for Heavy Trucks  

Broader source: Energy.gov [DOE]

In order to encourage the use of idling reduction devices in large trucks, the Energy Policy Act of 2005 allowed for a 400-pound weight exemption for the additional weight of idling reduction...

315

A flexible pavement damage metric for a straight truck  

Science Journals Connector (OSTI)

Pavement damage attributed to heavy truck traffic is related to many road- and vehicle-related factors in a complex manner. A better estimation of pavement damage potential of heavy trucks is vital for management of roads and for determination of costs associated with the particular types of truck. In this paper, a metric based upon the energy stored within the pavement during a vehicle pass is proposed to assess pavement damage potential of trucks as a function of pavement responses to tyre loads, including both the normal and shear forces. The proposed metric effectively accounts for rate of loading, vehicle acceleration and deceleration and the pavement temperature. The simulation results suggest that the proposed metric could be effectively applied for road pricing purposes.

J.A. Romero; A.A. Lozano-Guzmán; E. Betanzo-Quezada; S.A. Obregón-Biosca

2013-01-01T23:59:59.000Z

316

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network [OSTI]

performed a study on PEM fuel cell APUs. Based upon previousConsiderations for a PEM Fuel Cell Powered Truck APU Davidsuccessfully demonstrated a PEM fuel cell APU on a Century

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

317

Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with...  

Office of Environmental Management (EM)

Plus, it's compliant with new emissions standards -- an important element in cutting our air pollution in the U.S. If all light trucks and SUVs used an engine like this, Americans...

318

DOE Expands International Effort to Develop Fuel-Efficient Trucks |  

Broader source: Energy.gov (indexed) [DOE]

Expands International Effort to Develop Fuel-Efficient Trucks Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the cooperative program will be extended for three more years. An additional $9 million over three years in DOE funds will be matched by $9 million in Swedish government funds and $18 million from Volvo Group. When added with the existing $12 million commitment from the United States, Sweden and the Volvo Group the overall value of the cooperation will be $48

319

cleanenergyfuels.com Natural Gas Solutions  

E-Print Network [OSTI]

1 cleanenergyfuels.com Natural Gas Solutions for Transportation December 7, 2012 #12;2 cleanenergyfuels.com Compressed Natural Gas (CNG) Taxis Airport Vehicles Transit Buses Leading Provider of Natural Gas As a Transportation Fuel About Clean Energy Liquefied Natural Gas (LNG) Port Trucking LNG Station

Minnesota, University of

320

Comprehensive Financial Model For Oil and Gas Field Projects In Qatar.  

E-Print Network [OSTI]

??Project finance is essentially the raising of finance for a new project, secured against future revenues rather than an existing corporate balance sheet or other… (more)

Al-Thani, Faisal F.J.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NETL: Oil & Natural Gas Projects - Integrated Synthesis of the Permian  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the United States Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the United States DE-FC26-04NT15509 Goal The overall objective was to collect and synthesize available data on the hydrocarbon-bearing geological systems in the Permian Basin and distribute data in readily usable formats to scientists, engineers, managers, and decision makers in the oil and gas industry. Performer Bureau of Economic Geology, University of Texas, Austin, TX Collaborators State of Texas Background The Permian Basin is the largest producing basin in the United States, still containing as much as 30 billion barrels of remaining mobile oil. A long-standing problem for companies seeking to recover this resource has been the difficulty of access to data and the knowledge of how to use the data. No modern, integrated syntheses of Permian Basin geologic data was previously available. This project has made possible the delivery of large volumes of Permian basin reservoir and basin data and interpretations to industry, academia, and the general public.

322

Institutional project summary University of Redlands direct fired gas absorption chiller system  

SciTech Connect (OSTI)

The University of Redlands, located in the California Inland Empire City of Redlands supplies six campus building with chilled and hot water for cooling and space heating from a centrally located Mechanical Center. The University was interested in lowering chilled water production costs and eliminating Ozone depleting chloroflourocarbon (CFC) refrigerants in addition to adding chiller capacity for future building to be added to the central plant piping {open_quotes}loop{close_quotes}. After initially providing a feasibility study of chiller addition alternatives and annual hourly load models, GRT & Associates, Inc. (GRT) provided design engineering for the installation of a 500 Ton direct gas fired absorption chiller addition to the University of Redland`s mechanical center. Based on the feasibility study and energy consumption tests done after the new absorption chiller was added, the university estimates annual energy cost saving versus the existing electric chiller is approximately $65,000 per year. Using actual construction costs, the simple before tax payback period for the project is six years.

Tanner, G.R.

1996-05-01T23:59:59.000Z

323

Natural gas vehicles : Status, barriers, and opportunities.  

SciTech Connect (OSTI)

In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

2010-11-29T23:59:59.000Z

324

Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

NONE

1996-12-31T23:59:59.000Z

325

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring the petroleum potential of a frontier province: Cretaceous stratigraphy and  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring Myanmar. It has been shown that gas and oil exists in the basin and that a considerable unconventional biogenic gas system exists in the deep-waters offshore. The sediments of the Rakhine Basin were deposited

Henderson, Gideon

326

Final report for the ASC gas-powder two-phase flow modeling project AD2006-09.  

SciTech Connect (OSTI)

This report documents activities performed in FY2006 under the ''Gas-Powder Two-Phase Flow Modeling Project'', ASC project AD2006-09. Sandia has a need to understand phenomena related to the transport of powders in systems. This report documents a modeling strategy inspired by powder transport experiments conducted at Sandia in 2002. A baseline gas-powder two-phase flow model, developed under a companion PEM project and implemented into the Sierra code FUEGO, is presented and discussed here. This report also documents a number of computational tests that were conducted to evaluate the accuracy and robustness of the new model. Although considerable progress was made in implementing the complex two-phase flow model, this project has identified two important areas that need further attention. These include the need to compute robust compressible flow solutions for Mach numbers exceeding 0.35 and the need to improve conservation of mass for the powder phase. Recommendations for future work in the area of gas-powder two-phase flow are provided.

Evans, Gregory Herbert; Winters, William S.

2007-01-01T23:59:59.000Z

327

Measurement and analysis of truck vibration levels as a function of packages locations in truck bed and suspension  

Science Journals Connector (OSTI)

Abstract During transport, due to vibration fruits and vegetables could be damaged. The vibration levels that transfer to fruits and vegetables may depend not only on vehicle characteristics (speed and suspension) and the road characteristics but also on the position of boxes packed in truck bed. The purpose of this research was to determine and analyze the vibration that occurs during truck transport as a function of box position and fruit position within the truck bed. For this purpose, two commercial trucks were used (with leaf-spring suspension and air-ride suspension). Test controllable factors includes: height positions of the container column (Bottom, Middle and Up), position of the container along the truck-bed (front axle and rear axle) and depth of fruit inside the container (Down and Top). The obtained values of the power spectral density were used to survey the effect of container positions on fruit vibration. RMS values were also obtained for different positions. The results showed that the power spectral density (PSD) was dependent on the position along the floor of the trucks. Higher vibration levels were recorded for fruits on top of the column. As the fruit height within a box increased, the vibration levels increased. ANOVA test results indicated that the considered factors significantly affected PSD values (Average PSD in the range of 0.1–5 Hz and peak PSD) and root mean square of acceleration (P < 0.05).

Behnam Soleimani; Ebrahim Ahmadi

2014-01-01T23:59:59.000Z

328

Understanding and managing leakage in forest–based greenhouse–gas–mitigation projects  

Science Journals Connector (OSTI)

...greenhouse-gas emissions in an area...only produce greenhouse-gas (GHG) bene...reduce GHG emissions. The leakage...mitigation (energy, transportation...emissions-reducing activities...be inversely related (notably in...

2002-01-01T23:59:59.000Z

329

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Truck Idle Reduction Requirements

330

Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: April 25, 9: April 25, 2005 Medium-Truck Miles by Age to someone by E-mail Share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Facebook Tweet about Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Twitter Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Google Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Delicious Rank Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Digg Find More places to share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on AddThis.com... Fact #369: April 25, 2005 Medium-Truck Miles by Age Medium trucks (class 3-6) were driven an average of 14,439 miles in 2002.

331

Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Frito-Lay Delivers Frito-Lay Delivers With Electric Truck Fleet to someone by E-mail Share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Facebook Tweet about Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Twitter Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Google Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Delicious Rank Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Digg Find More places to share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on AddThis.com... Sept. 22, 2012 Frito-Lay Delivers With Electric Truck Fleet D iscover how Frito-Lay provides service with electric trucks in Columbus,

332

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Technologies to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Onboard Equipment Truck Stop Electrification

333

NETL: News Release - New Projects to Help Operators See Oil, Gas Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help Operators "See" Oil, Gas Formations More Clearly Help Operators "See" Oil, Gas Formations More Clearly Six Research Teams to Develop Advanced Diagnostics And Imaging Technologies for Oil, Gas Fields TULSA, OK - If oil and gas producers could "see" hydrocarbon-bearing formations more accurately from the surface or from nearby wellbores, they can position new wells more precisely to produce more oil or gas with less risk and ultimately, at lower costs. For many producers in the United States, especially smaller producers operating on razor-thin margins, advanced diagnostics and imaging systems can help them in business. By visualizing the barriers and pathways for the flow of oil and gas through underground rock formations, producers can avoid dry holes and increase ultimate recovery.

334

Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Projects to Diversify U.S. Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles November 19, 2012 - 2:08pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced 20 new projects to help states and local governments cut red tape and develop the infrastructure, training and regional planning needed to help meet the demand for alternative fuel cars and trucks, including vehicles that run on natural gas, electricity and propane. These projects build on the important steps the Obama Administration has taken to expand the transportation options available for businesses and communities and improve the fuel

335

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Broader source: Energy.gov (indexed) [DOE]

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

336

Fact #724: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel Economy  

Broader source: Energy.gov [DOE]

The "Gas Guzzler Tax" is collected from the public for each new car purchased with fuel economy less than 22.5 miles per gallon (mpg). The Gas Guzzler Tax does not apply to light trucks, only cars....

337

Unaccounted-for gas project. Measurement Task Force (orifice meter studies). Volume 2B. Final report  

SciTech Connect (OSTI)

The study was aimed at determining unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric Co.'s transmission and distribution systems during 1987. Activities and methods are described and results are presented for research conducted on orifice meter accuracy. The Measurement Task Force determined that orifice metering inaccuracies were the largest single contributor to 1987 UAF.

Godkin, B.J.; Robertson, J.D.; Wlasenko, R.G.; Cowgill, R.M.; Grinstead, J.R.

1990-06-01T23:59:59.000Z

338

Demonstration projects for coalbed methane and Devonian shale gas: Final report. [None  

SciTech Connect (OSTI)

In 1979, the US Department of Energy provided the American Public Gas Association (APGA) with a grant to demonstrate the feasibility of bringing unconventional gas such as methane produced from coalbeds or Devonian Shale directly into publicly owned utility system distribution lines. In conjunction with this grant, a seven-year program was initiated where a total of sixteen wells were drilled for the purpose of providing this untapped resource to communities who distribute natural gas. While coalbed degasification ahead of coal mining was already a reality in several parts of the country, the APGA demonstration program was aimed at actual consumer use of the gas. Emphasis was therefore placed on degasification of coals with high methane gas content and on utilization of conventional oil field techniques. 13 figs.

Verrips, A.M.; Gustavson, J.B.

1987-04-01T23:59:59.000Z

339

Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Truck Truck Technical Goals and Teams to someone by E-mail Share Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Facebook Tweet about Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Twitter Bookmark Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Google Bookmark Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Delicious Rank Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Digg Find More places to share Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget

340

Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tier 2 Diesel Light-Duty Trucks Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck...  

Broader source: Energy.gov (indexed) [DOE]

Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted...

342

Non-uniform Aging on Super Duty Diesel Truck Aged Urea Cu/Zeolite...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

uniform Aging on Super Duty Diesel Truck Aged Urea CuZeolite SCR Catalysts Non-uniform Aging on Super Duty Diesel Truck Aged Urea CuZeolite SCR Catalysts CuZeolite SCR catalysts...

343

A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power...

344

Research of Dynamic Axle Load Truck Scale Sampling Data Selection Method  

Science Journals Connector (OSTI)

In order to improve the weighing accuracy of the dynamic axle load truck scale, this article carries the static ... the dynamic truck scale and analyzes the test data. From the list, mapping, analysis and ... ,we...

Jun Liu; Li-hong Li

2012-01-01T23:59:59.000Z

345

Fact #611: February 22, 2010 Top Ten Best Selling Cars and Light Trucks  

Broader source: Energy.gov [DOE]

The top ten lists of best selling cars and light trucks in 2009 show that the Toyota Camry was the best selling car, while the Ford F-Series pickup was the best selling light truck. The F-Series...

346

Novel Concept of Long-Haul Trucks Powered by Hydrogen Fuel Cells  

Science Journals Connector (OSTI)

A scale-model hydrogen fuel-cell truck has been designed and its performance tested to gain an improved understanding of the technical challenges of full- scale trucks employing on-board storage and hydrogen f...

Bahman Shabani; John Andrews…

2013-01-01T23:59:59.000Z

347

High Fuel Economy Heavy-Duty Truck Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Truck Engine High Fuel Economy Heavy-Duty Truck Engine 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

348

Fact #620: April 26, 2010 Class 8 Truck Tractor Weight by Component  

Broader source: Energy.gov [DOE]

A typical class 8 truck tractor weighs about 17,000 lbs. The powertrain is nearly a quarter of the weight (24%) while the truck body structure is 19%.

349

Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: April 18, 1: April 18, 2011 Average Truck Speeds to someone by E-mail Share Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Facebook Tweet about Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Twitter Bookmark Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Google Bookmark Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Delicious Rank Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Digg Find More places to share Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on AddThis.com... Fact #671: April 18, 2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major

350

Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conserve Fuel Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations to someone by E-mail Share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Facebook Tweet about Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Twitter Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Google Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Delicious Rank Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Digg Find More places to share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on AddThis.com... U.S. Truck Stop Electrification Locations

351

REQUEST BY VOLVO TRUCKS NORTH AMERICA, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS  

Broader source: Energy.gov (indexed) [DOE]

I I Statement of Considerations REQUEST BY VOLVO TRUCKS NORTH AMERICA, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER UT-BATTELLE, LLC SUBCONTRACT NO. 4000010928, UNDER DOE PRIME CONTRACT DE-AC05-00OR22725; DOE WAIVER DOCKET W(A)-02-018; [ORO-770] Volvo Trucks North America, Inc. (VTNA) has made a request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under UT-Battelle, LLC Subcontract No. 4000010928 under Department of Energy (DOE) Contract DE-ACO5- 00OR22725. The scope of work of this project is to develop an operational Accelerated Endurance Test (AEC) for Class 8 Volvo Hood System fabricated partly or wholly from carbon fiber Sheet Molding Compound (SMC). It is expected that this system will result in

352

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks  

Broader source: Energy.gov [DOE]

This program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks.

353

Firm Uses DOE?s Fastest Supercomputer to Streamline Long-Haul Trucks  

DOE R&D Accomplishments [OSTI]

Sophisticated simulation on the world?s fastest computer for science makes trucks more aerodynamic, saves fuel, helps environment.

2011-03-28T23:59:59.000Z

354

High-Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration Lead Project strategy plan  

SciTech Connect (OSTI)

The strategy for developing the HTGR system and introducing it into the energy marketplace is based on using the most developed technology path to establish a HTGR-Steam Cycle/Cogeneration (SC/C) Lead Project. Given the status of the HTGR-SC/C technology, a Lead Plant could be completed and operational by the mid 1990s. While there is remaining design and technology development that must be accomplished to fulfill technical and licensing requirements for a Lead Project commitment, the major barriers to the realization a HTGR-SC/C Lead Project are institutional in nature, e.g. Project organization and management, vendor/supplier development, cost/risk sharing between the public and private sector, and Project financing. These problems are further exacerbated by the overall pervading issues of economic and regulatory instability that presently confront the utility and nuclear industries. This document addresses the major institutional issues associated with the HTGR-SC/C Lead Project and provides a starting point for discussions between prospective Lead Project participants toward the realization of such a Project.

None

1982-03-01T23:59:59.000Z

355

Integrated flue gas treatment for simulataneous emission control and heat rate improvement - demonstration project at Ravenswood  

SciTech Connect (OSTI)

Results are presented for electric-utility, residual-oil fired, field demonstration testing of advanced-design, heat-recovery type, flue gas sub-coolers that incorporate sulfite-alkali-based wet scrubbing for efficient removal of volatile and semi-volatile trace elements, sub-micron solid particulate matter, SO{sub 2} and SO{sub 3}. By innovative adaptation of wet collector system operation with methanol injection into the rear boiler cavity to convert flue-gas NO to No{sub 2}, simultaneous removal of NO{sub x} is also achieved. The focus of this integrated flue gas treatment (IFGT) technology development and demonstration-scale, continuous performance testing is an upward-gas-flow, indirectly water-cooled, condensing heat exchanger fitted with acid-proof, teflon-covered tubes and tubesheets and that provides a unique condensing (non-evaporative) wet-scrubbing mode to address air toxics control objectives of new Clean Air Act, Title III. Advantageous trace-metal condensation/nucleation/agglomeration along with substantially enhanced boiler efficiency is accomplished in the IFGT system by use of boiler makeup water as a heat sink in indirectly cooling boiler flue gas to a near-ambient-temperature, low-absolute-humidity, water-saturated state. Moreover, unique, innocuous, stack systems design encountered with conventional high-humidity, wet-scrubber operations. The mechanical design of this advanced flue-gas cooling/scrubbing equipment is based on more than ten years of commercial application of such units is downward-gas-flow design/operation for energy recovery, e.g. in preheating of makeup water, in residual-oil and natural-gas fired boiler operations.

Heaphy, J.; Carbonara, J.; Cressner, A. [Consolidated Edison Company, New York, NY (United States)] [and others

1995-06-01T23:59:59.000Z

356

A tabu search approach to the truck scheduling problem with multiple docks and time windows  

Science Journals Connector (OSTI)

While organizing the cross-docking operations, cross-dock managers are confronted with many decision problems. One of these problems is the truck scheduling problem. This paper presents a truck scheduling problem that is concerned with both inbound and ... Keywords: Cross-docking, Logistics, Tabu search, Truck scheduling

Jan Van Belle; Paul Valckenaers; Greet Vanden Berghe; Dirk Cattrysse

2013-12-01T23:59:59.000Z

357

SCR SYSTEMS FOR HEAVY DUTY TRUCKS: PROGRESS TOWARDS MEETING EURO 4 EMISSION STANDARDS IN 2005  

SciTech Connect (OSTI)

Emissions of diesel engines contain some components, which support the generation of smog and which are classified hazardous. Exhaust gas aftertreatment is a powerful tool to reduce the NOx and Particulate emissions. The NOx-emission can be reduced by the SCR technology. SCR stands for Selective Catalytic Reduction. A reduction agent has to be injected into the exhaust upstream of a catalyst. On the catalyst the NOx is reduced to N2 (Nitrogen) and H2O (Water). This catalytic process was developed in Japan about 30 years ago to reduce the NOx emission of coal-fired power plants. The first reduction agent used was anhydrous ammonia (NH3). SCR technology was used with diesel engines starting mid of the 80s. First applications were stationary operating generator-sets. In 1991 a joint development between DaimlerChrysler, MAN, IVECO and Siemens was started to use SCR technology for the reduction of heavy duty trucks. Several fleet tests demonstrated the durability of the systems. To day, SCR technology is the most promising technology to fulfill the new European Regulations EURO 4 and EURO 5 being effective Oct. 2005 and Oct. 2008. The efficient NOx reduction of the catalyst allows an engine calibration for low fuel consumption. DaimlerChrysler decided to use the SCR technology on every heavy duty truck and bus in Europe and many other truck manufacturers will introduce SCR technology to fulfill the 2005 emission regulation. The truck manufacturers in Europe agreed to use aqueous solution of Urea as reducing agent. The product is called AdBlue. AdBlue is a non toxic, non smelling liquid. The consumption is about 5% of the diesel fuel consumption to reduce the NOx emissions. A small AdBlue tank has to be installed to the vehicle. With an electronically controlled dosing system the AdBlue is injected into the exhaust. The dosing system is simple and durable. It has proven its durability during winter and summer testing as well as in fleet tests. The infrastructure for AdBlue is under evaluation in Europe by Urea Producers and Mineral Oil companies to be readily available in time. Urea is one of the most common chemical products in the world and the production and the distribution very much experienced. However, a pure grade is needed for automotive application and requires special attention.

Frank, W; Huethwohl, G; Maurer, B

2003-08-24T23:59:59.000Z

358

Report on field experiment program lithium bromide absorption chiller: Field gas conditioning project, Grayson County, Texas. Topical report, May 1991-December 1994  

SciTech Connect (OSTI)

The primary objective of the project was to determine the applicability of using commercial absorption air conditioning technology in an oil and gas field environment to condition natural gas to meet contractual limitations. Operational and maintenance requirements were documented throughout the test period of 1992 through 1994.

Lane, M.J.; Kilbourn, R.A.; Huey, M.A.

1995-12-01T23:59:59.000Z

359

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO MACK TRUCKS, INC. UNDER  

Broader source: Energy.gov (indexed) [DOE]

4 2006 14:16 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 4 2006 14:16 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 * 0 STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO MACK TRUCKS, INC. UNDER NREL SUBCONTRACT NO. ZCI-4-32049-01, UNDER DOE PRIME CONTRACT NO. DE-AC36-98GO10337 FOR DEVELOPMENT OF THE NEXT GENERATION NATURAL GAS VEHICLE, PHASE II; CH-1185; W(A)-04-016 Mack Trucks, Inc. (Mack) has petitioned for an advance waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. NREL-ZC:-4-32049-01. This advance waiver is intended to apply to all subject inventions of Mack's employees and those of its subcontractors, regardless of tier except subcontractors eligible to obtain title pursuant to P.L. 96-517 as amended, and National Laboratories.

360

SuperTruck Making Leaps in Fuel Efficiency  

Broader source: Energy.gov [DOE]

The recent SuperTruck demonstration at the Energy Department's headquarters in Washington, D.C., showed off a new Class 8 tractor-trailer that achieves a 20% increase in engine efficiency and a 70% increase in freight efficiency, reaching over 10

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

RESULTSRESULTS Assisted in selection of APU mounting configuration on truck  

E-Print Network [OSTI]

subcomponents, using actual frame-rail data as vibration input from truck · Enabled measurement location Motion Fuel Cell Auxiliary Power Unit (APU): Dynamic ModelingFuel Cell Auxiliary Power Unit (APU@coe.eng.ua.edu OBJECTIVESOBJECTIVES ·Develop a computer model to predict the vibratory response of the fuel cell APU components ·Use

Carver, Jeffrey C.

362

Integrated Rankine bottoming cycle for diesel truck engines  

SciTech Connect (OSTI)

This study assessed the feasibility of incorporating a Rankine bottoming cycle into a diesel truck engine. An organic Rankine bottoming cycle (ORBC) previously demonstrated by the US Department of Energy in a heavy-duty, long-haul truck reduced the truck's fuel consumption by about 12%. However, that system was considered too complex and costly to be commercialized. The integrated Rankine bottoming cycle (IRBC) described here is expected to be simpler and less costly than the ORBC. In the IRBC, one cylinder of a six-cylinder diesel truck engine will be used for power recovery, instead of the turbine and reduction gears of the ORBC; engine coolant will serve as the working fluid; and the engine radiator will also serve as the condenser. Toluene and steam were considered as working fluids in this assessment, and we concluded that steam (at 1000 psi, partially vaporized to about 33% saturation in the cylinder head, and superheated in an evaporator) would be the more practical of the two. Both heat exchangers are smaller than those of the ORBC system, but may pose a challenge in an under-the-hood installation. Overall, the concept appears feasible. 13 refs., 9 figs., 7 tabs.

Sekar, R.; Cole, R.L.

1987-09-01T23:59:59.000Z

363

Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: Walker Ridge 313 LWD Operations and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cook Cook 1 , Gilles Guerin 1 , Stefan Mrozewski 1 , Timothy Collett 2 , & Ray Boswell 3 Walker Ridge 313 LWD Operations and Results Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: 1 Borehole Research Group Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964 E-mail: Cook: acook@ldeo.columbia.edu Guerin: guerin@ldeo.columbia.edu Mrozewski: stefan@ldeo.columbia.edu 3 National Energy Technology Laboratory U.S. Department of Energy P.O. Box 880 Morgantown, WV 26507 E-mail: ray.boswell@netl.doe.gov 2 US Geological Survey Denver Federal Center, MS-939 Box 25046 Denver, CO 80225 E-mail:

364

Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of the  

E-Print Network [OSTI]

- covered foothills in the background. (Photograph by Benjamin M. Sleeter.) #12;Baseline and Projected LaPoint, Patrick Miles, Ronald Piva, Jeffery Turner, and Brad Smith of the USDA Forest Service

Fleskes, Joe

365

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Are non-marine organic-rich shales suitable exploration targets?  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Are non-marine organic-rich shales suitable exploration targets? (EARTH-15-SR2) Host institution: University of Oxford Supervisor 1: Stuart Robinson Supervisor 2: Steve Hesselbo (University of Exeter) Project description: Shales

Henderson, Gideon

366

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills Host institution: Heriot-Watt University Gatliff (BGS), Jeffrey Polton (NOC), Alejandro Gallego and Eileen Bresnan (MSS). Project description: Oil

Henderson, Gideon

367

Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: May 18, 2009 1: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation to someone by E-mail Share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Facebook Tweet about Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Twitter Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Google Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Delicious Rank Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Digg Find More places to share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on

368

Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid and Zero Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on AddThis.com...

369

Oak Ridge Leadership Computing Facility User Update: SmartTruck Systems |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory (hi-res image)

370

Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: April 2, 2012 1: April 2, 2012 Heavy Trucks Move Freight Efficiently to someone by E-mail Share Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Facebook Tweet about Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Twitter Bookmark Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Google Bookmark Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Delicious Rank Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Digg Find More places to share Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on AddThis.com...

371

Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Saving Fuel in the Saving Fuel in the Garden State with Truck Stop Electrification to someone by E-mail Share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Facebook Tweet about Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Twitter Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Google Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Delicious Rank Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Digg Find More places to share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on AddThis.com...

372

Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power  

SciTech Connect (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

2010-03-31T23:59:59.000Z

373

New Project To Improve Characterization of U.S. Gas Hydrate Resources  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy today announced the selection of a multi-year, field-based research project designed to gain further insight into the nature, formation, occurrence and physical properties of methane hydrate?bearing sediments for the purpose of methane hydrate resource appraisal.

374

Understanding and managing leakage in forest–based greenhouse–gas–mitigation projects  

Science Journals Connector (OSTI)

...Sectors: fossil fuel or biomass Leakage can occur in...emissions from some form of biomass (veg- etation, forests...g. vegetable oil, wood pulp, cacao, rice...discuss projects that use biomass to substitute for fossil-fuel-intensive...sector, while biomass plantations as a source of supply...

2002-01-01T23:59:59.000Z

375

Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy’s National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory partners with industry and academia through cost-sharing agreements to develop scientific knowledge and advance technologies that can improve the environmental performance of unconventional resource development. Once the resulting technologies are deployed for commercial use, our nation stands to reap huge benefits.

376

Effect of short-term material balances on the projected uranium measurement uncertainties for the gas centrifuge enrichment plant  

SciTech Connect (OSTI)

A program is under way to design an effective International Atomic Energy Agency (IAEA) safeguards system that could be applied to the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). This system would integrate nuclear material accountability with containment and surveillance. Uncertainties in material balances due to errors in the measurements of the declared uranium streams have been projected on a yearly basis for GCEP under such a system in a previous study. Because of the large uranium flows, the projected balance uncertainties were, in some cases, greater than the IAEA goal quantity of 75 kg of U-235 contained in low-enriched uranium. Therefore, it was decided to investigate the benefits of material balance periods of less than a year in order to improve the sensitivity and timeliness of the nuclear material accountability system. An analysis has been made of projected uranium measurement uncertainties for various short-term material balance periods. To simplify this analysis, only a material balance around the process area is considered and only the major UF/sub 6/ stream measurements are included. That is, storage areas are not considered and uranium waste streams are ignored. It is also assumed that variations in the cascade inventory are negligible compared to other terms in the balance so that the results obtained in this study are independent of the absolute cascade inventory. This study is intended to provide information that will serve as the basis for the future design of a dynamic materials accounting component of the IAEA safeguards system for GCEP.

Younkin, J.M.; Rushton, J.E.

1980-02-05T23:59:59.000Z

377

Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993  

SciTech Connect (OSTI)

The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

Levey, R.A.; Finley, R.J.; Hardage, B.A.

1994-06-01T23:59:59.000Z

378

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Broader source: Energy.gov (indexed) [DOE]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

379

Which idling reduction system is most economical for truck owners?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Which idling reduction system is Which idling reduction system is most economical for truck owners? Linda Gaines Center for Transportation Research Argonne National Laboratory Commercial Vehicle Engineering Congress and Exposition Rosemont, Il October 7-9, 2008 The price of diesel is high *Idling a Class 8 truck uses 0.6-1.2 gallons per hour *That can total over $50 a night! *So even without regulations, there's an incentive to reduce idling *Even if the price goes down more, idling reduction makes sense 2 Why do sleepers idle overnight? For services to resting driver and friend y Heating, ventilation, and air conditioning (HVAC) y Power for appliances 8TV, microwave, refrigerator, computer, hair drier To keep fuel and engine warm To mask out noises and smells Because other drivers do it

380

ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions  

SciTech Connect (OSTI)

Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

Boysen, Dane; Loukus, Josh; Hansen, Rita

2014-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions  

ScienceCinema (OSTI)

Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

Boysen, Dane; Loukus, Josh; Hansen, Rita

2014-03-13T23:59:59.000Z

382

Landfill-Gas-to-Energy Projects:? Analysis of Net Private and Social Benefits  

Science Journals Connector (OSTI)

Under these standards, large landfills (that is, those with the potential to emit more than 50 Mg/year of nonmethane volatile organic compounds) have to collect and combust the landfill gas. ... Since the 1996 enact ment of the New Source Performance Standard and Emission Guidelines for Municipal Solid Waste Landfills, the Landfill Methane Outreach Program has become a tool to help landfills meet the new regulations. ... The costs of a collection system depend on different site factors, such as landfill depth, number of wells required, etc. Table 1 provides average collection system costs for landfills of three different sizes. ...

Paulina Jaramillo; H. Scott Matthews

2005-08-27T23:59:59.000Z

383

Transient chassis cycles for heavy duty trucks and tractors  

Science Journals Connector (OSTI)

The objective of this paper is to present a method for developing a chassis test for a specific and typical class of vehicles which will mirror the Federal Test Procedure (FT) as closely as possible for purposes of emissions measurement. Emphasis will be placed on development of a preliminary heavy duty chassis cycle for specific over-the-road class 8 trucks which will reflect the FTP currently imposed on heavy duty diesel engines.

Nigel Clark; David McKain

1995-01-01T23:59:59.000Z

384

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)  

E-Print Network [OSTI]

of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford in extracting gas from these low-permeability rocks is hydraulic fracture. This involves injecting large of water and gas during hydraulic fracturing and subsequent gas recovery. This is essential in order

Henderson, Gideon

385

Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

386

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers ProMIS/Project No.: DE-NT0005648  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edward Levy Edward Levy Principal Investigator Director, Lehigh University Energy Research Center RecoveRy of WateR fRom BoileR flue Gas usinG condensinG Heat excHanGeRs PRomis/PRoject no.: de-nt0005648 Background As the United States' population grows and demand for electricity and water increases, power plants located in some parts of the country will find it increasingly difficult to obtain the large quantities of water needed to maintain operations. Most of the water used in a thermoelectric power plant is used for cooling, and the U.S. Department of Energy (DOE) has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. Many coal-fired power plants operate with stack temperatures in the 300 °F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to

387

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in  

Broader source: Energy.gov (indexed) [DOE]

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test March 19, 2009 - 1:00pm Addthis Washington, DC --In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. In testing at Peterbilt Motors Company Texas head-quarters, a Delphi

388

Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What are the key facts? Fuel Cell Lift Trucks can operate twice as long as their battery powered counterparts. They also avoid deep discharges, which effectively extends their

389

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities |  

Broader source: Energy.gov (indexed) [DOE]

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities August 18, 2010 - 2:22pm Addthis Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Joshua DeLung Hydraulics in vehicles - best known for bouncing cars and kneeling buses - are getting a serious look in Ann Arbor, Mich. The reasons - saving fuel and increasing the life of heavy-use vehicles. With the support of a $120,000 Recovery Act grant, Ann Arbor, Mich., deployed four recycling trucks with hydraulic hybrid power systems

390

NETL: News Release - Solid Oxide Fuel Cell Successfully Powers Truck Cab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, 2009 9, 2009 Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test DOE, Delphi, Peterbilt Join to Test Auxiliary Power Unit for Commercial Trucks Washington, DC -In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test

391

Shielding and criticality analyses of phase I reference truck and rail cask designs for spent nuclear fuel  

SciTech Connect (OSTI)

Results are presented herein to determine the adequacy with respect to shielding regulations of reference designs for a truck cask containing 2 PWR or 5 BWR assemblies of standard burnup (45 GWd/MTU for PWR, 40 GWd/MTU for BWR) and 1 PWR assembly with extended burnup (55 GWd/MTU). The study also includes reference and modified rail cask designs with projected payloads of 8, 10, or 12 PWR assemblies. The burnup/age trends are analyzed in one dimension for both Pb and depleted uranium (DU) gamma-ray shields. The results of the two-dimensional shielding analysis uphold the one-dimensional results as being an appropriate means of studying the burnup/age trends for the truck cask. These results show that the reference design for the Pb-shield truck cask is inadequate for all cases considered, while the DU-shield truck cask is capable of carrying the desired payloads. The one-dimensional shielding analysis results for the reference Pb and DU rail casks indicate substantial margins exist in the side doses for reasonable burnup/age combinations. For a Pb-cask configuration, margins exist primarily for long-cooled (15 years) fuel. For the modified Pb and DU rail casks, the 2-m dose rates offer substantial margins below the regulatory limits for all burnup values considered provided the spent fuel has cooled for {>=}10 years. The modified Pb and DU casks yield essentially identical results and, hence, could be considered equivalent from a shielding perspective. The criticality analyses that were performed indicate that a truck basket can be designed to provide an adequate subcritical margin for 2 PWR assemblies enriched to 5 wt%. While the 10- and 12- assembly rail cask designs are very close to the regulatory limit of 0.95 for k{sub eff}, after accounting for a 0.01 {Delta}k bias and 2 standard deviations, the limit is exceeded by about 3%. It is believed that a combination of decreased enrichments and/or increased water gaps should allow these baskets to be acceptable.

Broadhead, B.L.; Childs, R.L.; Parks, C.V.

1996-03-01T23:59:59.000Z

392

NETL: Oil & Natural Gas Projects: Next Generation Surfactants for Improved  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12/15/2012 Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12/15/2012 DE-FE0003537 Goal The principle objective of the project is to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focusing on reservoirs in Pennsylvanian age (Penn) sands. Performer Oklahoma University Enhanced Oil Recovery Design Center, Norman, OK Background Primary and secondary methods have produced approximately one-third of the 401 billion barrels of original-oil-in-place in the United States. Enhanced oil recovery (EOR) methods have shown potential to recover a fraction of the remaining oil. Surfactant EOR has seen an increase in activity in recent years due to increased energy demand and higher oil prices. In

393

Technology Cooperation Agreement Pilot Project development-friendly greenhouse gas reduction, May 1999 update  

SciTech Connect (OSTI)

The Technology Cooperation Agreement Pilot Project (TCAPP) was launched by several U.S. Government agencies (USAID, EPA and DOE) in August 1997 to establish a model for climate change technology cooperation with developing and transition countries. TCAPP is currently facilitating voluntary partnerships between the governments of Brazil, China, Kazakhstan, Korea, Mexico, and the Philippines, the private sector, and the donor community on a common set of actions that will advance implementation of clean energy technologies. The six participating countries have been actively engaged in shaping this initiative along with international donors and the private sector. This program helps fulfill the US obligation to support technology transfer to developing countries under Article 4.5 of the United Nations Framework Convention on Climate Change. TCAPP also provides a mechanism to focus resources across international donor programs on the technology cooperation needs of developing and transition countries.

Benioff, R.

1999-05-11T23:59:59.000Z

394

Home Away from Home: The Evolution and Meaning of American Truck Stops  

E-Print Network [OSTI]

rest areas places to stretch sore muscles. Commercial truck stops, however, offer the most complete amenities. In this thesis, I study these oases in order to understand the driver’s relationship to the truck stop and what the truck-stop industry... Virginia, Kentucky, Tennessee, Alabama, Mississippi, Arkansas, Missouri, Kansas, Nebraska, Iowa, Virginia, Maryland, New Jersey, Pennsylvania, and Ohio. This allowed for a broad initial sampling since my father has no fixed routes. Although I did...

Day, Stephanie L.

2009-12-03T23:59:59.000Z

395

Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams  

Broader source: Energy.gov [DOE]

Fuel efficiency in heavy trucks depends on a number of factors associated with the truck and its components. The top figure shows the power use inventory for a basic Class 8 tractor-trailer combination, listing its balance of fuel input, engine output, and tractive power (losses from aerodynamics, rolling resistance, and inertia). The power use inventory in this diagram highlights areas in which research efforts can lead to major benefits in truck fuel efficiency, including engine efficiency, aerodynamics, and rolling resistance.

396

Eastern Gas Shales Project (EGSP) data files: a final report. Open-file report 81-598  

SciTech Connect (OSTI)

The United States Geological Survey and Petroleum Information Corporation (PI) of Denver have created two large computerized files of data for the Eastern Gas Shales Project (EGSP) as part of a large responsibility to the Department of Energy (DOE), Morgantown Energy Technology Center (METC), in Morgantown, West Virginia. Computer-compatible well, outdrop, and sample data from EGSP contractors are being stored on digital tape and delivered to METC for subsequent data-base management. This report has been written to: (1) discuss data-file background and development, (2) address specific problems and solutions for future project use, and (3) present a general summary of well- and sample-data file content by state, county, well, contractor, and subject coverage. When looking at the EGSP data-gathering task in retrospect, modifications to project management would have made the data-gathering process more successful. Many problems resulted from having contractors perform their own data encoding. Some EGSP contractors had little knowledge of computer- and data-encoding techniques, and they often delegated encoding responsibilities to subordinates who were not properly informed about procedures. The overall lack of uniformity in analytical procedures and methods resulted in an apparent over-abundance of card classes. Nearly 40% of the available card classes were never used, and about 30% of those used contain fewer than 100 data records. The most serious problem encountered during data-file development has been the long delay in arranging for an efficient retrieval and mapping system. Sample-and well-data file management are now coordinated through METC, and Petroleum Information Corporation maintains an effective in-house data management system for data retrieval and analysis. The present system would have been very useful to retrieve data for contractor needs two years earlier, even though the files were incomplete.

Dyman, T.S.

1981-01-01T23:59:59.000Z

397

Natural Gas - CNG & LNG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Natural Gas Natural gas pump Natural gas, a fossil fuel comprised mostly of methane, is one of the cleanest burning alternative fuels. It can be used in the form of compressed natural gas (CNG) or liquefied natural gas (LNG) to fuel cars and trucks. Dedicated natural gas vehicles are designed to run on natural gas only, while dual-fuel or bi-fuel vehicles can also run on gasoline or diesel. Dual-fuel vehicles allow users to take advantage of the wide-spread availability of gasoline or diesel but use a cleaner, more economical alternative when natural gas is available. Since natural gas is stored in high-pressure fuel tanks, dual-fuel vehicles require two separate fueling systems, which take up passenger/cargo space. Natural gas vehicles are not available on a large scale in the U.S.-only

398

State-of-the-Art and Emergin Truck Engine Technologies | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DaimlerChrysler Powersystems 2003deerschittler.pdf More Documents & Publications SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in...

399

DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Experiments DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

400

DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. vss14salari.pdf More Documents & Publications DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations Vehicle Technologies Office Merit...

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Experiments and Computations DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

402

Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration  

Broader source: Energy.gov [DOE]

Learn how a new clean diesel engine could improve the fuel economy of full-sized pickup trucks by 40 percent while meeting new emissions standards.

403

Roadmap and Technical White Papers for 21st Century Truck Partnership  

Broader source: Energy.gov [DOE]

Roadmap document for 21st Century Truck Partnership developed to pursue detailed goals for engine systems, heavy-duty hybrids, parasitic losses, idle reduction, and safety,

404

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks  

Broader source: Energy.gov [DOE]

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

405

Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks  

SciTech Connect (OSTI)

Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

1999-11-02T23:59:59.000Z

406

DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS  

SciTech Connect (OSTI)

The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

Balis, C; Middlemass, C; Shahed, SM

2003-08-24T23:59:59.000Z

407

Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding Natural Gas Operations  

Office of Energy Efficiency and Renewable Energy (EERE)

With support from the Energy Department's Clean Cities program, United Parcel Service plans to deploy 1,000 liquefied natural gas trucks, making it the biggest private fleet of its kind in the United States.

408

Microsoft Word - RUL_1Q2012_Gas_Samp_Results_8G1Iwells.doc  

Office of Legacy Management (LM)

water from gas wells (including the Battlement Mesa field) is trucked or piped to skim tanks located on the injection well pad. Water from the skim tank is piped to the pump skid....

409

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Cummins Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins SuperTruck...

410

International Truck & Bus Meeting & Exhibition, Fort Worth, TX, November 2003. 2003-01-3369  

E-Print Network [OSTI]

a "Direct Hybrid" powertrain system [1], which integrates an advanced diesel engine, an electric traction System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck Chan-Chiao Lin, Huei Peng for a medium-duty hybrid electric truck are reported in this paper. The design procedure adopted is a model

Peng, Huei

411

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck  

E-Print Network [OSTI]

diesel engine, an electric motor, a Lithium-Ion battery, and an Eaton automated manual transmission03TB-45 Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design

Grizzle, Jessy W.

412

IMPACT OF TIRE AND AERODYNAMIC AIDS ON TRUCK PERFORMANCE ALONG UPGRADE SECTIONS  

E-Print Network [OSTI]

IMPACT OF TIRE AND AERODYNAMIC AIDS ON TRUCK PERFORMANCE ALONG UPGRADE SECTIONS Hesham Rakha1 and aerodynamics aids on the truck acceleration behavior. The objectives of this paper are two-fold. First of vehicle tires, the vehicle's aerodynamic features, the percentage mass on the tractive axle

Rakha, Hesham A.

413

Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks  

E-Print Network [OSTI]

Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks Modeling and Control Mohammad and maintenance of the truck engine. While still in the research phase, Solid Oxide Fuel Cell (SOFC) based APUs are used to provide this power, rather than idling the engine, because they use less fuel and reduce wear

414

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

of the hybrid-electric diesel and LNG Class 8 trucks wereengine truck, diesel hybrid-electric, conventional LNGhybrid-electric vehicles with diesel and LNG engines, fuel

Zhao, Hengbing

2013-01-01T23:59:59.000Z

415

DOE Selects 3 Small-Scale Biorefinery Projects for up to $86...  

Energy Savers [EERE]

VA. "These projects will help pioneer the next generation of non-food based biofuels that will power our cars and trucks and help meet President Bush's goal to stop...

416

EM Awards Two Large Contracts to Small Businesses for Trucking Services |  

Broader source: Energy.gov (indexed) [DOE]

Awards Two Large Contracts to Small Businesses for Trucking Awards Two Large Contracts to Small Businesses for Trucking Services EM Awards Two Large Contracts to Small Businesses for Trucking Services June 1, 2012 - 12:00pm Addthis A Waste Isolation Pilot Plant (WIPP) truck approaches the WIPP facility near Carlsbad, N.M. Since opening in 1999, WIPP has established an impressive record. In addition to transporting more than 10,500 shipments safely, WIPP drivers have logged more than 12.6 million safe loaded miles — equivalent to 26 roundtrips to the moon — without a serious accident or injury. Their work has helped DOE clean up 22 transuranic waste sites around the nation. A Waste Isolation Pilot Plant (WIPP) truck approaches the WIPP facility near Carlsbad, N.M. Since opening in 1999, WIPP has established an

417

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO INTERNATIONAL TRUCK AND  

Broader source: Energy.gov (indexed) [DOE]

INTERNATIONAL TRUCK AND INTERNATIONAL TRUCK AND ENGINE CORPORATION (ITEC) UNDER DOE PRIME CONTRACT NO. DE-FC26- 06NT42791 FOR "NATIONAL HYBRID TRUCK MANUFACTURING PROGRAM"; CH-1412; W(A)-07-024 International Truck and Engine Corporation (ITEC) has petitioned for an advanced waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. DE-FC26-06NT42891. ITEC is a subcontractor of WESTSTART- CALSTART. This advanced waiver is intended to apply to all subject inventions of International Truck and Engine's employees and those of its subcontractors, regardless of tier, except subcontractors eligible to obtain title pursuant to P. L. 96-517 as amended, and National Laboratories. As brought out in its waiver petition, ITEC will research and develop electrical subsystems

418

Illinois: Ozinga Concrete Runs on Natural Gas and Opens Private Station  

Office of Energy Efficiency and Renewable Energy (EERE)

The trucks are part of a much larger Recovery Act project, which is expected to reduce 3.1 million GGE/year and 8,429 pounds of carbon dioxide per year.

419

Analysis of major trends in U.S. commercial trucking, 1977-2002.  

SciTech Connect (OSTI)

This report focuses on various major long-range (1977-2002) and intermediate-range (1982-2002) U.S. commercial trucking trends. The primary sources of data for this period were the U.S. Bureau of the Census Vehicle Inventory and Use Survey and Truck Inventory and Use Survey. In addition, selected 1977-2002 data from the U.S. Department of Energy/Energy Information Administration and from the U.S. Department of Transportation/Federal Highway Administration's Highway Statistics were used. The report analyzes (1) overall gasoline and diesel fuel consumption patterns by passenger vehicles and trucks and (2) the population changes and fuels used by all commercial truck classes by selected truck type (single unit or combination), during specified time periods, with cargo-hauling commercial trucks given special emphasis. It also assesses trends in selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-mile traveled, as well as the effect of cargo tons per truck on fuel consumption. In addition, the report examines long-range trends for related factors (e.g., long-haul mileages driven by heavy trucks) and their impacts on reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes. It identifies the effects of these trends on U.S. petroleum consumption. The report also discusses basic engineering design and performance, national legislation on interstate highway construction, national demographic trends (e.g., suburbanization), and changes in U.S. corporate operations requirements, and it highlights their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry.

Bertram, K. M.; Santini, D .J.; Vyas, A. D.

2009-06-10T23:59:59.000Z

420

Meta-heuristics implementation for scheduling of trucks in a cross-docking system with temporary storage  

Science Journals Connector (OSTI)

Cross-docking is an approach in inventory management which can reduce inventories, lead times and customer response time. In this strategy, products and shipments are unloaded from inbound trucks, sorted and categorized based on their characteristics, ... Keywords: Cross-docking, Inbound trucks, Meta-heuristics, Outbound trucks, Scheduling

A. R. Boloori Arabani; S. M. T. Fatemi Ghomi; M. Zandieh

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The ATLAS 3D project - XVI. Physical parameters and spectral line energy distributions of the molecular gas in gas-rich early-type galaxies  

E-Print Network [OSTI]

[Abridged] We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS$ 3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated $^{12}$CO(1-0, 2-1), $^{13}$CO(1-0, 2-1), HCN(1-0) and HCO$^{+}$(1-0) observations and present new $^{12}$CO(3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H$_{2}$ volume density and column density of the emitting gas, this using a non-LTE theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO$^{+}$ lines, the two sets of lines are treated separately. We also compare for the first time the predicted CO spectral line energy distributions (SLEDs) and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation con...

Bayet, Estelle; Davis, Timothy A; Young, Lisa M; Crocker, Alison F; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Cappellari, Michele; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovi?, Davor; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

2012-01-01T23:59:59.000Z

422

Natural Gas Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Vehicle Basics Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads 'Natural Gas for Vehicles.' Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs). Dedicated NGVs are designed to run only on natural gas. Bi-fuel NGVs have two separate fueling systems that enable the vehicle to use either natural gas or a conventional fuel (gasoline or diesel). In general, dedicated natural gas vehicles demonstrate better performance and have lower emissions than bi-fuel vehicles because their engines are optimized to run on natural gas. In addition, the vehicle does not have to

423

Renewable Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Natural Gas JOHN DAVIS: The use of clean, domestic natural gas as highway fuel in place of imported oil is growing in popularity with fleets and trucking companies. While natural gas from underground deposits is arguably a limited resource, there is a renewable, eco-friendly resource that we have right here in the U.S.A. And we're here now to give you the straight poop! Every family, farm animal and food processing plant in America produces organic waste that creates a mix of methane, CO2 and other elements called bio gas when it decomposes. Rotten vegetables, moldy bread, last night's leftovers --- they all break down when our garbage gets to the land fill. Incredibly, for

424

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Indiana (2007-2009) Indiana (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Indiana (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

425

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Idaho (2007-2009) Idaho (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Idaho (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet

426

Microsoft Word - 2011sr10-fire truck donation.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monday, August 8, 2011 Monday, August 8, 2011 james-r.giusti@srs.gov Rick McLeod, SRSCRO, (803) 593-9954, Ext. 1411 rick.mcleod@srscro.org DOE's Excess Property Donation Protects Lives, Property and the Environment AIKEN, SC - The recent purchase of new fire engines at Savannah River Site resulted in the availability of two excess fire trucks under the SRS Community Reuse Organization's (SRS CRO) Asset Transition Program. The primary goal of the Department of Energy's (DOE) Asset Transition Program is to utilize excess personal property derived from the Savannah River Site to enhance economic development and job opportunities within a five-county region surrounding the Site. In addition to job creation, assets may also be used to improve the "quality

427

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hawaii (2007-2009) Hawaii (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Hawaii (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet

428

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Delaware (2007-2009) Delaware (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Delaware (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

429

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

District of Columbia (2007-2009) District of Columbia (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : District of Columbia (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility

430

Truck driver environmental and energy attitudes – an exploratory analysis  

Science Journals Connector (OSTI)

In recent years, US federal and state regulators have developed policies and programs designed to encourage tractor–trailer drivers to reduce engine idling as a way to cut down on diesel emissions and fuel consumption. It has proven difficult, however, to target education and outreach to truck drivers, partially because little is known about them. Based on a nationwide interview survey of over 350 drivers, the link between drivers’ environmental and energy attitudes and their adoption of idle-reduction measures is examined. Cluster analysis shows that truckers with some college and with college completion consistently expressed agreement with pro-environmental statements. A logit model indicates that concerns over fuel consumption, resource depletion, and cost are associated with an interest in idle-reduction alternatives among owner-operators, but not with purchases. Costs of technology and fuel are the driving considerations affecting the adoption of idle-reduction strategies.

Lisa Schweitzer; Christie-Joy Brodrick; Sue E. Spivey

2008-01-01T23:59:59.000Z

431

Stress analysis of jacks, frame and bearing connections, and drill rod for core sampler truck No. 2  

SciTech Connect (OSTI)

This analysis evaluates the structural design adequacy of several components and connections for the rotary mode core sampler truck (RMCST) No. 2. This analysis was requested by the Characterization Equipment Group (WHC 1994a). The components addressed in this report are listed below: front jack assembly and connection to the truck chassis; rear jack assembly and connection to the truck chassis; center outrigger jacks and connection to the truck chassis; lower frame assembly and connection to the truck chassis; bolt connections for bearing plate assembly (for path of maximum load); traverse slide brackets and mounting of the traverse jack cylinders; and drill rod (failure loads).

Ziada, H.H.

1995-02-28T23:59:59.000Z

432

Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks  

SciTech Connect (OSTI)

We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

Gao, Zhiming [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; LaClair, Tim J [ORNL; Smith, David E [ORNL

2014-01-01T23:59:59.000Z

433

EXTENDED PERFORMANCE HANDHELD AND MOBILE SENSORS FOR REMOTE DETECTION OF NATURAL GAS LEAKS  

SciTech Connect (OSTI)

This report summarizes work performed by Physical Sciences Inc. (PSI) to advance the state-of-the-art of surveying for leaks of natural gas from transmission and distribution pipelines. The principal project goal was to develop means of deploying on an automotive platform an improved version of the handheld laser-based standoff natural gas leak detector previously developed by PSI and known as the Remote Methane Leak Detector or RMLD. A laser beam which interrogates the air for methane is projected from a spinning turret mounted upon a van. As the van travels forward, the laser beam scans an arc to the front and sides of the van so as to survey across streets and to building walls from a moving vehicle. When excess methane is detected within the arc, an alarm is activated. In this project, we built and tested a prototype Mobile RMLD (MRMLD) intended to provide lateral coverage of 10 m and one lateral scan for every meter of forward motion at forward speeds up to 10 m/s. Using advanced detection algorithms developed as part of this project, the early prototype MRMLD, installed on the back of a truck, readily detected simulated gas leaks of 50 liters per hour. As a supplement to the originally planned project, PSI also participated in a DoE demonstration of several gas leak detection systems at the Rocky Mountain Oilfield Testing Center (RMOTC) during September 2004. Using a handheld RMLD upgraded with the advanced detection algorithms developed in this project, from within a moving vehicle we readily detected leaks created along the 7.4 mile route of a virtual gas transmission pipeline.

Michael B. Frish; B. David Green; Richard T. Wainner; Francesca Scire-Scappuzzo; Paul Cataldi; Matthew C. Laderer

2005-05-01T23:59:59.000Z

434

UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

36 36 UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA Stacy C. Davis November 2000 Prepared for the Energy Information Administration U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 Updating the FTSAM: 1997 VIUS Data iii TABLE OF CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 VIUS DATA PREPARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Share of Trucks by Fuel Type and Truck Size -

435

Electric Boosting System for Light Truck/SUV Application  

SciTech Connect (OSTI)

Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.

Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

2005-06-22T23:59:59.000Z

436

Project 5 -- Solution gas drive in heavy oil reservoirs: Gas and oil phase mobilities in cold production of heavy oils. Quarterly progress report, October 1--December 31, 1996  

SciTech Connect (OSTI)

In this report, the authors present the results of their first experiment on a heavy crude of about 35,000 cp. A new visual coreholder was designed and built to accommodate the use of unconsolidated sand. From this work, several clear conclusions can be drawn: (1) oil viscosity does not decrease with the evolution of gas, (2) the critical gas saturation is in the range of 4--5%, and (3) the endpoint oil relative permeability is around 0.6. However, the most important parameter, gas phase mobility, is still unresolved. Gas flows intermittently, and therefore the length effect becomes important. Under the conditions that the authors run the experiment, recovery is minimal, about 7.5%. This recovery is still much higher than the recovery of the C{sub 1}/C{sub 10} model system which was 3%. After a duplicate test, they plan to conduct the experiment in the horizontal core. The horizontal core is expected to provide a higher recovery.

Firoozabadi, A.; Pooladi-Darvish, M.

1996-12-31T23:59:59.000Z

437

DOE Hydrogen and Fuel Cells Program Record 9010: Benefits of Fuel Cell APU on Trucks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Date: November 3, 2009 0 Date: November 3, 2009 Title: Benefits of Fuel Cell APU on Trucks Originator: Tien D. Nguyen and Fred Joseck Approved by: Sunita Satyapal Date: November 25, 2009 Item: Approximately 700 million gallons of diesel can be saved annually through the use of fuel cell auxiliary power units (APUs) in the trucking industry, resulting in a reduction of 8.9 million metric tons of CO 2 per year. Data and Assumptions 1. Total number of trucks with sleeper berths is estimated to be 931,000 in 2030: The total number of heavy-duty freight trucks forecasted in EIA's Annual Energy Outlook 2009 is 5.21 millions in 2010, increasing to 6.93 millions in 2030. In a survey published in 2006, the American Transportation Research Institute (ATRI) received responses from

438

DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico  

Broader source: Energy.gov (indexed) [DOE]

Two Small Businesses to Truck Transuranic Waste to New Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant January 9, 2012 - 12:00pm Addthis Media Contact Bill Taylor 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy (DOE) today awarded two small-business contracts to CAST Specialty Transportation, Inc. and Visionary Solutions, LLC, to provide trucking services to transport transuranic (TRU) waste, from DOE and other defense-related TRU waste generator sites to the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The contracts are firmfixed-price with cost-reimbursable expenses over five years. CAST Specialty Transportation, Inc. of Henderson, Colorado, will begin

439

Secretary of Energy Bodman Remarks for 21st Century Truck Event |  

Broader source: Energy.gov (indexed) [DOE]

Secretary of Energy Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event May 10, 2005 - 12:46pm Addthis I am delighted to be here. The technologies on exhibit today represent one very promising avenue for meeting our growing energy needs while maintaining good stewardship of the environment. As many of you know, U.S. highway transportation is over 97 percent dependent on petroleum for its energy, with about one-quarter consumed by heavy-duty vehicles. Over half of our petroleum is imported, which impacts our security and balance of payments deficit. Without significant technology development, our Department is forecasting that heavy truck petroleum use will increase by 40 percent by 2020 and will double by 2050

440

Secretary of Energy Bodman Remarks for 21st Century Truck Event |  

Broader source: Energy.gov (indexed) [DOE]

Bodman Remarks for 21st Century Truck Event Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event May 10, 2005 - 12:46pm Addthis I am delighted to be here. The technologies on exhibit today represent one very promising avenue for meeting our growing energy needs while maintaining good stewardship of the environment. As many of you know, U.S. highway transportation is over 97 percent dependent on petroleum for its energy, with about one-quarter consumed by heavy-duty vehicles. Over half of our petroleum is imported, which impacts our security and balance of payments deficit. Without significant technology development, our Department is forecasting that heavy truck petroleum use will increase by 40 percent by 2020 and will double by 2050 relative to today.

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption  

Broader source: Energy.gov [DOE]

The U.S. Department of Transportation mandates that truckers rest for 10 hours after driving for 11 hours, during which time they often park at truck stops idling the engines to provide heating,...

442

Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...  

Broader source: Energy.gov (indexed) [DOE]

& Publications Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

443

Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions  

E-Print Network [OSTI]

Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions Nakul Sathaye, Arpad emissions, raising the question of whether increased vehicle weights may cause unintended environmental consequences. This paper presents scenarios with estimated emissions resulting from load consolidation

California at Berkeley, University of

444

Trucking country : food politics and the transformation of rural life in Postwar America  

E-Print Network [OSTI]

Trucking replaced railroads as the primary link between rural producers and urban consumers in the mid-twentieth century. With this technological change came a fundamental transformation of the defining features of rural ...

Hamilton, Shane, 1976-

2005-01-01T23:59:59.000Z

445

Vehicle Technologies Office Merit Review 2014: Modeling for Market Analysis: HTEB, TRUCK, and LVChoice  

Broader source: Energy.gov [DOE]

Presentation given by TA Engineering, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about HTEB, TRUCK, and...

446

Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine  

Broader source: Energy.gov [DOE]

Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace

447

Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine  

Broader source: Energy.gov [DOE]

Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace

448

Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008  

Broader source: Energy.gov [DOE]

The median age of cars and trucks in the U.S. continued to grow in 2008. Due to the economic climate and high gasoline prices that summer, consumers held onto their vehicles longer and delayed new...

449

Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars  

Broader source: Energy.gov [DOE]

From 2005 to 2009 light vehicle sales have gradually shifted toward cars over light trucks. The graph below shows this trend broken down by the major manufacturers. This trend is more evident among...

450

Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go?  

Broader source: Energy.gov [DOE]

As with light vehicles, heavy trucks also have significant energy losses. The losses shown below are for a typical combination tractor-trailer, but these losses will vary depending on the weight,...

451

Vehicle Technologies Office Merit Review 2014: Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement  

Broader source: Energy.gov [DOE]

Presentation given by Volvo at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck powertrain...

452

DaimlerChrysler builds a mine-duty Dodge Ram trucks  

SciTech Connect (OSTI)

Automotive and engine OEMS worked together with the mines to develop a diesel-powered underground pickup truck that meets emissions standards. The article relates how DaimlerChrysler and Cummins eventually managed to redesign the engine for the Dodge Ram truck to satisfy the new HD10 onroad Environmental Protection Agency regulations for diesel engines that come into force in January 2007. Classic Motors in Richfield, Utah modifies Dodge Ram pickups for use as mantrips and service vehicles. 4 photos.

Fiscor, S.

2006-10-15T23:59:59.000Z

453

Modelling the hypothetical methane-leakage in a shale-gas project and the impact on groundwater quality  

Science Journals Connector (OSTI)

The hypothetical leakage of methane gas caused by fracking a 1,000-m deep Cretaceous claystone ... In summary, the geological risks of a fracking operation are minor. The technical risks are ... when rising metha...

Michael O. Schwartz

2014-10-01T23:59:59.000Z

454

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at St. Bliss, Texas. Interim report, October 1992--May 1994  

SciTech Connect (OSTI)

Results are presented from a demonstration program conducted on the comparative evaluations of the combustion of compressed natural gas as an alternative fuel for gasoline. General Motors pick-up trucks were utilized in the study.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

455

LNG Project Development: Shipping and Terminal Considerations  

Science Journals Connector (OSTI)

Liquefied natural gas (LNG) projects require multibillion-dollar investments and multidisciplined ... of engineers, environmentalists, economists, and others. LNG projects can be divided into five major ... gas g...

V. V. Staffa; D. K. Jhaveri

1980-01-01T23:59:59.000Z

456

NETL: 2013 Gasification Systems Project Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf > Project Portfolio Reference Shelf > Project Portfolio Gasification Systems 2013 Gasification Systems Project Portfolio Gasifier Optimization Gas Separation Gas Separation Gasifier Optimization Gasifier Optimization Gas Cleaning Gasifier Optimization Gas Cleaning Gas Separation U.S. Economic Competitiveness Gas Separation Gasifier Optimization U.S. Economic Competitiveness Gasifier Optimization U.S. Economic Competitiveness Gas Cleaning Gasifier Optimization Gas Cleaning Gasifier Optimization Gas Separation U.S. Economic Competitiveness Gas Separation U.S. Economic Competitiveness U.S. Economic Competitiveness Gas Cleaning Gas Cleaning Gas Separation Gas Cleaning Gas Separation Global Environmental Benefits Gas Separation Global Environmental Benefits Global Environmental Benefits Gas Cleaning Gas Separation Systems Analyses Global Environmental Benefits Gas Separation Systems Analyses Global Environmental Benefits Systems Analyses Global Environmental Benefits Gas Cleaning Systems Analyses Gas Cleaning Gas Separation Systems Analyses Systems Analyses Gas Cleaning Systems Analyses Systems Analyses Systems Analyses

457

Project Summary Report 0-4169-S PROJECTSUMMARYREPORT CENTER FOR TRANSPORTATION RESEARCH  

E-Print Network [OSTI]

Project Summary Report 0-4169-S ­ ­ PROJECTSUMMARYREPORT CENTER FOR TRANSPORTATION RESEARCH THE UNIVERSITY OF TEXAS AT AUSTIN Project Summary Report 0-469-S Project 0-469: Managing Rural Truck Traffic needs of the people and economy of rural Texas is not an easy mat- ter. Policies and procedures

Texas at Austin, University of

458

Anisotropic models to account for large borehole washouts to estimate gas hydrate saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Alaminos Canyon 21 B well  

Science Journals Connector (OSTI)

Through the use of 3-D seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon (AC) area of the Gulf of Mexico. Two locations were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (JIP Leg II) in May of 2009 and a comprehensive set of logging-while-drilling (LWD) logs were acquired at each well site. LWD logs indicated that resistivity in the range of ?2 ohm-m and P-wave velocity in the range of ?1.9 km/s were measured in the target sand interval between 515 and 645 feet below sea floor. These values were slightly elevated relative to those measured in the sediment above and below the target sand. However, the initial well log analysis was inconclusive regarding the presence of gas hydrate in the logged sand interval, mainly because large washouts caused by drilling in the target interval degraded confidence in the well log measurements. To assess gas hydrate saturations in the sedimentary section drilled in the Alaminos Canyon 21 B (AC21-B) well, a method of compensating for the effect of washouts on the resistivity and acoustic velocities was developed. The proposed method models the washed-out portion of the borehole as a vertical layer filled with sea water (drilling fluid) and the apparent anisotropic resistivity and velocities caused by a vertical layer are used to correct the measured log values. By incorporating the conventional marine seismic data into the well log analysis, the average gas hydrate saturation in the target sand section in the AC21-B well can be constrained to the range of 8–28%, with 20% being our best estimate.

M.W. Lee; T.S. Collett; K.A. Lewis

2012-01-01T23:59:59.000Z

459

The Birmingham-CfA cluster scaling project - I: gas fraction and the M-T relation  

E-Print Network [OSTI]

We have assembled a large sample of virialized systems, comprising 66 galaxy clusters, groups and elliptical galaxies with high quality X-ray data. To each system we have fitted analytical profiles describing the gas density and temperature variation with radius, corrected for the effects of central gas cooling. We present an analysis of the scaling properties of these systems and focus in this paper on the gas distribution and M-T relation. In addition to clusters and groups, our sample includes two early-type galaxies, carefully selected to avoid contamination from group or cluster X-ray emission. We compare the properties of these objects with those of more massive systems and find evidence for a systematic difference between galaxy-sized haloes and groups of a similar temperature. We derive a mean logarithmic slope of the M-T relation within R_200 of 1.84+/-0.06, although there is some evidence of a gradual steepening in the M-T relation, with decreasing mass. We recover a similar slope using two additional methods of calculating the mean temperature. Repeating the analysis with the assumption of isothermality, we find the slope changes only slightly, to 1.89+/-0.04, but the normalization is increased by 30%. Correspondingly, the mean gas fraction within R_200 changes from (0.13+/-0.01)h70^-1.5 to (0.11+/-0.01)h70^-1.5, for the isothermal case, with the smaller fractional change reflecting different behaviour between hot and cool systems. There is a strong correlation between the gas fraction within 0.3*R_200 and temperature. This reflects the strong (5.8 sigma) trend between the gas density slope parameter, beta, and temperature, which has been found in previous work. (abridged)

A. J. R. Sanderson; T. J. Ponman; A. Finoguenov; E. J. Lloyd-Davies; M. Markevitch

2003-01-03T23:59:59.000Z

460

Project 350  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrates Gas Hydrates CONTACTS Ray Boswell Acting Technology Manager Gas Technology Management Division 304-285-4541 ray.boswell@netl.doe.gov James Ammer Director Gas Technology Management Division 304-285-4383 james.ammer@netl.doe.gov Kelly Rose Project Manager Gas Technology Management Division 304-285-4157 kelly.rose@netl.doe.gov Joseph Wilder Research Group Leader Simulation, Analysis and Computational Science Division 304-285-0989 joseph.wilder@netl.doe.gov NETL - DIRECTING THE DEVELOPMENT OF WORLD-CLASS GAS HYDRATE RESERVOIR SIMULATORS Development of reliable simulators that accurately predict the behavior methane hydrates in nature is a critical component of NETL's program to appraise the gas supply potential of hydrates. NETL is leading the development of a suite of modeling tools that are providing

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and 74% of Freight by Value – Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #846: Trucks Move 70% of all Freight by Weight and 74% of Freight by Value

462

Portsmouth Herald Local News: Project54 innovations enhance public safety Archives Business Entertainment Health Living Maine News Online Only Public Records Sports Tourism Travel  

E-Print Network [OSTI]

Entertainment Health Living Maine News Online Only Public Records Sports Tourism Travel Click Here Shop Records Sports Tourism Travel emergency vehicles equipped with Project54, including a fire truck from

New Hampshire, University of

463

Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Scott Kliever Sysco Houston 10710 Greens Crossing Boulevard Houston, TX 77038 Phone: (713) 679-5574 Email: kliever.scott@hou.sysco.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463; Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000485 Subcontractors: * Plug Power Inc., Latham, NY * Air Products, Allentown, PA * Big-D Construction, Salt Lake City, UT Project Start Date: October 1, 2009 Project End Date: September 30, 2013 Objectives The objectives of this project are to: Convert a fleet of 79 class-3 electric lift trucks to *

464

Alternative Fuels in Trucking Volume 5, Number 4  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

N N atural gas costs less to pro- duce than gasoline and diesel fuel. However, it must be delivered to the market area and compressed or liquefied before being put into the vehicle fuel tank, steps that add significant cost. Whether the natural gas at the vehicle fuel tank retains a price advantage over gasoline or diesel fuel depends on many factors. A few of the most important are: * Distance from the wellhead to the market area * The gas volumes over which the costs of compression or liquefac- tion are spread * The numbers of vehicles being fueled at a given refueling site. Vehicles using natural gas also cost more than comparable gasoline and diesel vehicles because the fuel tanks are inherently more expensive, whether the gas is compressed (CNG) or liquefied (LNG). At this

465

Vehicle Technologies Office: Natural Gas Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Research Natural Gas Research Natural gas offers tremendous opportunities for reducing the use of petroleum in transportation. Medium and heavy-duty fleets, which have significant potential to use natural gas, currently consume more than a third of the petroleum in transportation in the U.S. Natural gas is an excellent fit for a wide range of heavy-duty applications, especially transit buses, refuse haulers, and Class 8 long-haul or delivery trucks. In addition, natural gas can be a very good choice for light-duty vehicle fleets with central refueling. See the Alternative Fuels Data Center for a description of the uses and benefits of natural gas vehicles or its Laws and Incentives database for information on tax incentives. The Vehicle Technologies Office (VTO) supports the development of natural gas engines and research into renewable natural gas production.

466

Determination of accidental forklift truck impact forces on drive-in steel rack structures  

Science Journals Connector (OSTI)

The paper addresses the problem of determining the accidental forklift truck impact forces on steel storage racks. Based on first principles of mechanics, simple models of a loaded forklift truck and a drive-in racking structure are presented. Model masses, as well as stiffness and damping coefficients are calibrated against experimental results obtained from tests of a forklift truck and a drive-in racking structure. Comparisons between experimental results and solutions obtained from the simple mechanical models show that the simple models accurately reproduce the static and dynamic behaviours of their associated structures. Based on the drive-in rack impact test results presented in a companion paper (Gilbert and Rasmussen, submitted for publication) [1] and the simple mechanical models for drive-in racks, actual impact forces are calculated and presented. Finally, using the impact test results and the simple mechanical models, the actual motion of the forklift truck body is calculated. This motion, being a common characteristic to all drive-in racking impacts, allows impact forces to be obtained for various pallet loads, impact elevations and rack characteristics. Thus, the paper concludes with a general method for calculating forces generated under forklift truck impact.

Benoit P. Gilbert; Kim J.R. Rasmussen

2011-01-01T23:59:59.000Z

467

Estimating commercial truck VMT (vehicle miles of travel) of interstate motor carriers: Data evaluation  

SciTech Connect (OSTI)

This memorandum summarizes the evaluation results of six data sources in terms of their ability to estimate the number of commercial trucks operating in interstate commerce and their vehicle miles of travel (VMT) by carrier type and by state. The six data sources are: (1) Truck Inventory and Use Survey (TIUS) from the Bureau of the Census, (2) nationwide truck activity and commodity survey (NTACS) from the Bureau of the Census, (3) National Truck Trip Information Survey (NTTIS) from the University of Michigan Transportation Research Institute (UMTRI), (4) highway performance monitoring system (HPMS) from the Federal Highway Administration (FHWA), Department of Transportation, (5) state fuel tax reports from each individual state and the international fuel tax agreement (IFTA), and (6) International Registration Plan (IRP) of the American Association of Motor Vehicle Administrators (AAMVA). TIUS, NTACS, and NTTIS are designed to provide data on the physical and operational characteristics of the Nation's truck population (or sub-population); HPMS is implemented to collect information on the physical and usage characteristics of various highway systems; and state fuel tax reports and IRP are tax-oriented registrations. 16 figs., 13 tabs.

Hu, P.S.; Wright, T.; Miaou, Shaw-Pin; Beal, D.J.; Davis, S.C. (Oak Ridge National Lab., TN (USA); Tennessee Univ., Knoxville, TN (USA))

1989-11-01T23:59:59.000Z

468

Project Title: VIscosity Reduction Date:  

Broader source: Energy.gov (indexed) [DOE]

4t 3 4t 3 l I Project lnfonnatlon Project Title: VIscosity Reduction Date: 11-22-2010 DOE Code: 673()-()20-51141 Contractor Code: 8067-778 Project Lead: Frank Ingham Project Overview 1. The purpose of the project is to test a tool that temporarily reduces the viscosity of oil which allows it to be 1. Brief project description ~nclude pumped through pipelines easier. The test will require about 4 miles of line to pump the oil through after anything that could impact the treatment (hence the need to connect the 31oops together), a holding volume for recovery, then repeat. environmenJ] There will be tanks to hold the original volume, tanks to receive the volume after treatment and pumping 2. Legal location through the line, possible transfer between tanks, transport (trucking) of the oil to the site (by the COC) and

469

Preemptive Strike: Law in the Campaign for Clean Trucks  

E-Print Network [OSTI]

Gas & Elec. Co. v. State Energy Res. Conservation & Dev.Federal Preemption and Clean Energy Floors, 91 N.C. L. Ra fraction of the effort and energy doing it. ”). 112. B

Cummings, Scott

2015-01-01T23:59:59.000Z

470

Clean Cities Moving Fleets Forward with Liquefied Natural Gas | Department  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Moving Fleets Forward with Liquefied Natural Gas Clean Cities Moving Fleets Forward with Liquefied Natural Gas Clean Cities Moving Fleets Forward with Liquefied Natural Gas May 30, 2013 - 2:52pm Addthis Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help from the Energy Department's Clean Cities initiative. | Photo courtesy of New Haven Clean Cities Coalition. Waste hauler Enviro Express converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help from the Energy Department's Clean Cities initiative. | Photo courtesy of New Haven Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program

471

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

472

STATEMENT OF CONSIDERATIONS REQUEST BY OSHKOSH TRUCK CORPORATION FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

OSHKOSH TRUCK CORPORATION FOR AN ADVANCE OSHKOSH TRUCK CORPORATION FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER NREL SUBCONTRACT NO. ZCL-3-32060-03 UNDER CONTRACT NO. DE-AC36-98G010337; W(A)-04-007; CH-1178 The Petitioner, Oshkosh Truck Corporation (OTC), has requested a waiver of domestic and foreign patent rights for all subject inventions made by its employees under the above- identified subcontract entitled "Advanced Heavy Hybrid Propulsion Systems for Increased Fuel Efficiency and Decreased Emissions". OTC is leading a teaming arrangement including Rockwell Automation, Inc. (Rockwell), and the National Renewable Energy Laboratory (NREL) to develop heavy hybrid propulsion systems. Rockwell has petitioned separately for a waiver of patent rights for all subject inventions its employees may make under Rockwell's lower tier

473

Design Process for the Development of a New Truck Monitoring System - 13306  

SciTech Connect (OSTI)

Canberra Industries, Inc. has designed a new truck monitoring system for a facility in Japan. The customer desires to separately quantify the Cs-137 and Cs-134 content of truck cargo entering and leaving a Waste Consolidation Area. The content of the trucks will be some combination of sand, soil, and vegetation with densities ranging from 0.3 g/cc - 1.6 g/cc. The typical weight of the trucks will be approximately 10 tons, but can vary between 4 and 20 tons. The system must be sensitive enough to detect 100 Bq/kg in 10 seconds (with less than 10% relative standard deviation) but still have enough dynamic range to measure 1,000,000 Bq/kg material. The system will be operated in an outdoor environment. Starting from these requirements, Canberra explored all aspects of the counting system in order to provide the customer with the optimized solution. The desire to separately quantify Cs-137 and Cs-134 favors the use of a spectroscopic system as a solution. Using the In Situ Object Counting System (ISOCS) mathematical efficiency calculation tool, we explored various detector types, number, and physical arrangement for maximum performance. Given the choice of detector, the ISOCS software was used to investigate which geometric parameters (fill height, material density, etc.) caused the most fluctuations in the efficiency results. Furthermore, these variations were used to obtain quantitative estimates of the uncertainties associated with the possible physical variations in the truck size, detector positioning, and material composition, density, and fill height. Various shielding options were also explored to ensure that any measured Cs content would be from the truck and not from the surrounding area. The details of the various calculations along with the final design are given. (authors)

LeBlanc, P.J.; Bronson, Frazier [Canberra Industries Inc., 800 Research Parkway Meriden CT 06450 (United States)] [Canberra Industries Inc., 800 Research Parkway Meriden CT 06450 (United States)

2013-07-01T23:59:59.000Z

474

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

475

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01T23:59:59.000Z

476

U.S. DRIVE Highlights of Technical Accomplishments 2011: Super Duty Diesel Truck with NOx Aftertreatment  

Broader source: Energy.gov (indexed) [DOE]

2011 U.S. DRIVE Highlight Advanced Combustion and Emission Control 2011 Super Duty Diesel Truck with NO x Aftertreatment Diesel engine aftertreatment: Minimizing NO x emissions with SCR. Ford's 2011 Super Duty diesel truck-which utilizes aftertreatment technology jointly developed by Ford and the U.S. Department of Energy (DOE)-deliv- ered a multitude of firsts for the company. It was the first Ford diesel engine developed entirely in-house, the first to operate on B20 (a blend of 20% biofuel, 80% petroleum diesel), and the first to comply with

477

Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Accident Prevention Investigation Board was appointed to investigate a fire at the Waste Isolation Pilot Plant that occurred on February 5, 2014. An aged EIMCO 985-T15 salt haul truck (dump truck) caught fire in an underground mine.

478

Genetic algorithms for door-assigning and sequencing of trucks at distribution centers for the improvement of operational performance  

Science Journals Connector (OSTI)

In a supply chain, cross docking is one of the most innovative systems for improving the operational performance at distribution centers. By utilizing this cross docking system, products are delivered to the distribution center via inbound trucks and ... Keywords: Distribution center, Genetic algorithm, Supply chain, Truck scheduling

Kangbae Lee; Byung Soo Kim; Cheol Min Joo

2012-12-01T23:59:59.000Z

479

Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR? System for Retrofit of In-Use? Trucks  

Broader source: Energy.gov [DOE]

Reports on truck fleet emission test results obtained from retrofitting in-use? old class-8 trucks with IMETs GreenPower? DPF-Hydrated-EGR system

480

Project Startup: Evaluating the Performance of Frito Lay's Electric Delivery Trucks (Fact Sheet)  

SciTech Connect (OSTI)

The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of 10 medium-duty Smith Newton electric vehicles (EVs) and 10 comparable conventional diesel vehicles operated by Frito Lay North America in the Seattle, Washington, area. Launched in late 2013, the on-road portion of this 12-month evaluation focuses on collecting and analyzing vehicle performance data, such as fuel economy and maintenance costs, to better understand how to optimize the use of such vehicles in a large-scale commercial operation. In addition to the on-road portion of this evaluation, NREL is analyzing charging data to support total cost of ownership estimations and investigations into smart charging opportunities. NREL is also performing a battery life degradation analysis to quantify battery pack health, track battery performance over time, and determine how various drive cycles and battery charging protocols impact battery life.

Not Available

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas truck project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results- Phase 2  

Broader source: Energy.gov [DOE]

The following reports describe results of testing done on a 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale.

482

New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks  

Broader source: Energy.gov [DOE]

$300 million infusion reflects Obama Administration's broad, aggressive research and development strategy

483

U.S. Department of Energy Natural Gas Imports and Exports Form FE-746R  

Broader source: Energy.gov (indexed) [DOE]

Preparer of Report:__________________________ Telephone No.:______________________ FAX No.:__________________ Gas Sales Made Pursuant to DOE Opinion and Order No.________, under FE Docket No._______________. (1) (2) (3) (4) (5) (6) (7) (8) (9) Country of Destination Point of EXIT from U.S. U.S. Truck Loading Facility and Location Volume (Mcf at U.S. Border) Price at U.S. Border (US$/MMBtu) Supplier(s) LNG Truck Transporting Company Specific Purchaser / End User Estimated Duration of Supply Contract Send to: Office of Fossil Energy, Natural Gas Regulatory Activities, U.S. Dept. of Energy, FE-34, P.O. Box 44375 Washington, D.C. 20026-4375, Attention: Natural Gas Reports Telephone No. (202) 586-9478 Fax Number (202) 586-6050 E-Mail: ngreports@hq.doe.gov LNG Exports (Truck

484

New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars  

Broader source: Energy.gov (indexed) [DOE]

New Funding Boosts Carbon Capture, Solar Energy and High Gas New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 - 12:00am Addthis WASHINGTON D.C. --- U.S. Energy Secretary Steven Chu today announced more than $300 million worth of investments that will boost a range of clean energy technologies - including carbon capture from coal, solar power, and high efficiency cars and trucks. The move reflects the Obama Administration's commitment to a broad based strategy that will create millions of jobs while transforming the way we use and produce energy. "There's enormous potential for new jobs and reduced carbon pollution just by implementing existing technologies like energy efficiency and wind

485

The final LDRD report for the project entitled: {open_quotes}Enhanced analysis of complex gas mixtures by pattern recognition of microsensor array signals{close_quotes}  

SciTech Connect (OSTI)

Microsensors do not have the selectivity to chemical species available in large laboratory instruments. This project employed arrays of catalytically gated silicon microsensors with different catalysts to create data streams which can be analyzed by pattern recognition programs. One of the most significant accomplishments of the program was the demonstration of that mixtures of H{sub 2} with the oxidants NO{sub x} and O{sub 2} could distinguished from one another by the use of different catalytic metals on the Sandia Robust Hydrogen (SRH) sensors and the newly developed pattern recognition algorithm. This sensor system could be used to identify explosive gas mixtures and analyze exhaust streams for pollution control.

Hughes, R.C.; Osbourn, G.C.

1996-09-01T23:59:59.000Z

486

Texas A&M Veterinary Medical Diagnostic Laboratory Procedures 21.01.08.V0.03 Vehicle Use Reports: Automobiles/Trucks  

E-Print Network [OSTI]

: Automobiles/Trucks Approved: September 20, 2011 Revised: March 26, 2013 Next Scheduled Review: March 26, 2015: Automobiles/Trucks Page 1 of 2 PROCEDURE STATEMENT To comply with the provisions of the applicable civil Laboratory Procedures 21.01.08.V0.03 Vehicle Use Reports: Automobiles/Trucks Page 2 of 2 2.6 Record

487

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive  

Broader source: Energy.gov (indexed) [DOE]

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need November 26, 2013 - 12:00pm Addthis Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteer John Schelble helps unload a delivery truck at a food pantry. Volunteer John Schelble helps unload a delivery truck at a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry.

488

LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction  

E-Print Network [OSTI]

for Light Duty Vehicles Critical to the Pavley bill's goal to reduce greenhouse gas (GHG) emissions from symbols, and light trucks by large. Greenhouse Gas Emissions Intensity (kg/mi), urban driving cycleLowCostGHG ReductionCARB 3/03 1 Low-Cost and Near-Term Greenhouse Gas Emission Reduction Marc Ross

Edwards, Paul N.

489

Achieving greenhouse gas emission reductions in developing countries through energy efficient lighting projects in the Clean Development Mechanism (CDM)  

SciTech Connect (OSTI)

Energy efficiency can help address the challenge of increasing access to modern energy services, reduce the need for capital-intensive supply investments as well as mitigating climate change. Efficient lighting is a promising sector for improving the adequacy and reliability of power systems and reducing emissions in developing countries. However, these measures are hardly represented in the CDM portfolio. The COP/MOP decision to include programs of activities in the CDM could open the door to the implementation of a large number of energy efficiency projects in developing countries. Since GHG reductions are essentially the emission equivalent of energy savings, the CDM can benefit from long established energy efficiency methodologies for quantifying energy savings and fulfilling CDM methodological requirements. The integration of the CDM into energy efficiency programs could help spur a necessary transformation in the lighting market.

Figueres, C.; Bosi, M.

2006-11-15T23:59:59.000Z

490

Propane, Liquefied Petroleum Gas (LPG)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Propane: Liquefied Petroleum Gas (LPG) Propane: Liquefied Petroleum Gas (LPG) Ford F-150 (Dual-Fuel LPG) Propane or liquefied petroleum gas (LPG) is a clean-burning fossil fuel that can be used to power internal combustion engines. LPG-fueled vehicles can produce significantly lower amounts of some harmful emissions and the greenhouse gas carbon dioxide (CO2). LPG is usually less expensive than gasoline, it can be used without degrading vehicle performance, and most LPG used in U.S. comes from domestic sources. The availability of LPG-fueled light-duty passenger vehicles is currently limited. A few light-duty vehicles-mostly larger trucks and vans-can be ordered from a dealer with a prep-ready engine package and converted to use propane. Existing conventional vehicles can also be converted for LPG use.

491

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

SciTech Connect (OSTI)

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

492

A Hybrid Multiobjective Evolutionary Algorithm For Solving Truck And Trailer Vehicle Routing Problems  

E-Print Network [OSTI]

cost) so that the day- to-day operational cost could be kept at the minimum. 1.2 Background on VehicleA Hybrid Multiobjective Evolutionary Algorithm For Solving Truck And Trailer Vehicle Routing Problems K. C. Tan, T. H. Lee, Y. H. Chew Department of Electrical and Computer Engineering National

Coello, Carlos A. Coello

493

Field monitoring and modeling of pavement response and service life consumption due to overweight truck traffic  

E-Print Network [OSTI]

A number of pavement structures experience deterioration due to high traffic volume and growing weights. Recently, the Texas Legislatures passed bills allowing trucks of gross vehicle weight (GVW) up to 556 kN routinely to use a route in south Texas...

Oh, Jeong-Ho

2004-11-15T23:59:59.000Z

494

Technology in Motion Vehicle (TMV) To promote truck and bus safety programs and  

E-Print Network [OSTI]

Technology in Motion Vehicle (TMV) Goal To promote truck and bus safety programs and technologies messages at multiple venues Demonstrate proven and emerging safety technologies to state and motor carrier stakeholders Promote deployment of safety technologies by fleets and state MCSAP agencies Evaluate program

495

ORNL/TM-2011/455 Large Scale Duty Cycle (LSDC) Project  

E-Print Network [OSTI]

ORNL/TM-2011/455 Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations May 2011 Prepared by Tim LaClair #12;#12;ORNL/TM-2011/455 Energy and Transportation Science Division LARGE SCALE DUTY CYCLE (LSDC) PROJECT: TRACTIVE ENERGY

496