Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Transportation and its Infrastructure  

E-Print Network [OSTI]

Transport and its infrastructure Chapter 5 Hybrid vehiclesincluding hybrid- Transport and its infrastructure Chapter 5infrastructure Gt CO 2 -eq 1 - Diesels (LDVs) 2 - Hybrids (

2007-01-01T23:59:59.000Z

2

Transportation Infrastructure  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Infrastructure New Technologies * Potential need for dual-use casks * DOE should look toward industry & international communities for innovations * Industry unclear about delivery & receipt locations * Advances in physical & tracking technologies need to be factored in * Cost-benefit analysis of new technology Training & Dry Runs * Begin as soon as possible * Suggested order: #1-demonstrations, #2-training, #3-dry-runs * Don't re-invent the wheel- look at international programs * Allows DOE to test POC info/training * Standardization of training & materials * DOE should consider centralized training center * Use real equipment in dry- runs * Need for regionalized dry runs Packages * Full-scale Testing - Funds requested in 2003, potential use of

3

Public Works Transportation Infrastructure Study  

E-Print Network [OSTI]

and Alleys · Street Lights · Traffic Signals #12;Public Works Transportation Infrastructure Study Minneapolis Infrastructure Study Minneapolis City of Lakes Infrastructure Included in Analysis: · Bridges · Streets Infrastructure Study Minneapolis City of Lakes Existing Inventory & Current Conditions Street Pavement Before

Minnesota, University of

4

Forecourt and Gas Infrastructure Optimization  

Broader source: Energy.gov (indexed) [DOE]

Forecourt and Gas Infrastructure Optimization Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland 2 Analysis of Market Demand and Supply...

5

Natural Gas and Hydrogen Infrastructure Opportunities Workshop...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen...

6

Natural Gas and Hydrogen Infrastructure Opportunities: Markets...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth...

7

Transportation and its Infrastructure  

E-Print Network [OSTI]

cost to mitigate transports GHG emissions. There are alsoenergy consumption and GHG mitigation, especially inParis, 2005. ECON, 2003: GHG Emissions from International

2007-01-01T23:59:59.000Z

8

Transportation and its Infrastructure  

E-Print Network [OSTI]

2007). Natural Gas (CNG / LNG / GTL) Natural gas, which iscompressed (CNG) or liquefied (LNG) form Chapter 5 Transportthe hydrogen section. CNG and LNG combustion characteristics

2007-01-01T23:59:59.000Z

9

Transportation and its Infrastructure  

E-Print Network [OSTI]

alternative means. In general, collective modes of transport use less energy and generate less GHGs than private cars.

2007-01-01T23:59:59.000Z

10

Transportation and its Infrastructure  

E-Print Network [OSTI]

Developing Countries: Greenhouse Gas Scenarios for Shanghai. China, Pew Center on Global Climate Change,Developing Countries: Greenhouse Gas Scenarios for Chile. Pew Center on Global Climate Change,Developing Countries: Greenhouse Gas Scenarios for South Africa. Pew Center on Global Climate Change,

2007-01-01T23:59:59.000Z

11

Natural Gas Infrastructure Modernization  

Broader source: Energy.gov [DOE]

In order to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions through common-sense standards, smart investments, and innovative research to advance the state of the art in natural gas system performance, the Department of Energy has launched several new initiatives and enhanced existing programs.

12

Delaware Transportation Infrastructure Forum Problem Identification Statements  

E-Print Network [OSTI]

2013 Delaware Transportation Infrastructure Forum Problem Identification Statements Sponsored by The Delaware Center for Transportation and the Delaware Department of Transportation Delaware Center for Transportation Your main resource for transportation education and research Identifying Important Issues Related

Firestone, Jeremy

13

The Electricity and Transportation Infrastructure Convergence  

E-Print Network [OSTI]

The Electricity and Transportation Infrastructure Convergence Using Electrical Vehicles Final Project Report Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;#12;The Electricity and Transportation Infrastructure Convergence Using Electrical

14

Africa's Transport Infrastructure Mainstreaming Maintenance and  

Open Energy Info (EERE)

Africa's Transport Infrastructure Mainstreaming Maintenance and Africa's Transport Infrastructure Mainstreaming Maintenance and Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa's Transport Infrastructure Mainstreaming Maintenance and Management Agency/Company /Organization: World Bank Complexity/Ease of Use: Not Available Website: www.infrastructureafrica.org/system/files/Africa%27s%20Transport%20Inf Transport Toolkit Region(s): Africa & Middle East Related Tools The BEST Experiences with Bioethanol Buses The Sourcebook on Sustainable Urban Transport Alternative Fuels and Advanced Vehicles Data Center ... further results Find Another Tool FIND TRANSPORTATION TOOLS Transport infrastructure is a key requirement for economic growth. In Africa today, networks are sparse, conditions poor, transit slow and

15

Natural Gas and Hydrogen Infrastructure Opportunities Workshop  

Broader source: Energy.gov [DOE]

Argonne National Laboratory held a Natural Gas and Hydrogen Infrastructure Opportunities Workshop October 18-19, 2011, in Lemont, Illinois. The workshop objectives were to convene industry and...

16

Natural Gas and Hydrogen Infrastructure Opportunities Workshop...  

Broader source: Energy.gov (indexed) [DOE]

* Convene industry and other stakeholders to share current statusstate-of-the art for natural gas and hydrogen infrastructure. * Identify key challenges (both technical and...

17

Forecourt and Gas Infrastructure Optimization | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Optimization Forecourt and Gas Infrastructure Optimization Presentation by Bruce Kelly of Nexant at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9,...

18

NETL: Oil & Natural Gas - Energy Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil and Natural Gas Supply Oil and Natural Gas Supply Energy Infrastructure NETL's Energy Infrastructure and Security Research Group (EISRG) has a key supporting role in emergency preparedness and response. The EISRG develops high-level analytical visualizations that are used to study critical U.S. energy infrastructures and their inter-relationships during natural and manmade emergencies. By deploying resources and providing vital information in a timely manner, EISRG improves the ability of government agencies and the energy sector to prevent, prepare for, and respond to hazards, emergencies, natural disasters, or any other threat to the nation's energy supply. NETL coordinated and provided information on an ongoing basis during every major landfall event of the 2005 hurricane season , including Hurricanes Katrina and Rita, as well as during Hurricanes Charley, Frances, and Ivan in 2004. NETL also has participated in exercises to prepare for events with varying degrees of impact, such as pipeline disruptions, local power outages, and transportation interruptions, such as the 2005 Powder River Basin rail service suspension, which resulted in curtailment of coal deliveries to major customers over a six-month period.

19

Natural Gas and Hydrogen Infrastructure Opportunities: Markets...  

Broader source: Energy.gov (indexed) [DOE]

h presentation slides: Natural Gas and hydrogen Infrastructure opportunities: markets and Barriers to Growth Matt Most, Encana Natural Gas 1 OctOber 2011 | ArgOnne nAtiOnAl...

20

Transportation Infrastructure and Sustainable Development  

E-Print Network [OSTI]

A Better Forecasting Tool for Transportation Decision-making, Mineta Transportation Institute, San Jose Stateat the 2008 meeting of the Transportation Research Board and

Boarnet, Marlon G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dispersion of agglomeration through transport infrastructure  

E-Print Network [OSTI]

My dissertation aims to assess transport infrastructure's influence on the productivity, scale and distribution of urban economic activities through changing intercity accessibility. Standard project-level cost-benefit ...

Fang, Wanli, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

22

SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY...  

Broader source: Energy.gov (indexed) [DOE]

SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY Based on the finding of a growing potential...

23

Alternative Fuels Data Center: Natural Gas Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development

24

Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas and Natural Gas and Hydrogen Infrastructure Opportunities Workshop to someone by E-mail Share Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Facebook Tweet about Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Twitter Bookmark Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Google Bookmark Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Delicious Rank Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Digg Find More places to share Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on AddThis.com...

25

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Vehicle Natural Gas Vehicle (NGV) and Infrastructure Initiative to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Initiative on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Initiative on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Initiative on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Initiative on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Initiative on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Initiative on AddThis.com... More in this section... Federal

26

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

(NGV) and Infrastructure Rebate - Oklahoma Natural Gas to someone by E-mail (NGV) and Infrastructure Rebate - Oklahoma Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Rebate - Oklahoma Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Rebate - Oklahoma Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Rebate - Oklahoma Natural Gas on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Rebate - Oklahoma Natural Gas on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Infrastructure Rebate - Oklahoma Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Natural Gas

27

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

national laboratory of the U.S. Department of Energy national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720� Hydrogen as a Vehicle Fuel into September 2005 � the Existing Natural Gas Vehicle � Fueling Infrastructure of the � Interstate Clean Transportation � Corridor Project � April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates � Santa Monica, California � NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation

28

Impact of Natural Gas Infrastructure on Electric Power Systems  

E-Print Network [OSTI]

Impact of Natural Gas Infrastructure on Electric Power Systems MOHAMMAD SHAHIDEHPOUR, FELLOW, IEEE of electricity has introduced new risks associated with the security of natural gas infrastructure on a sig the essence of the natural gas infrastructure for sup- plying the ever-increasing number of gas-powered units

Fu, Yong

29

Alternative Fuels Data Center: Natural Gas Infrastructure Loans  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Gas Gas Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Natural Gas Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Natural Gas Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Infrastructure Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Infrastructure Loans Effective July 1, 2013, the Wyoming Partnership Challenge (Challenge) may issue loans to businesses for the cost of the engineering, design, real

30

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

31

Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure to Accommodate  

E-Print Network [OSTI]

Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure Project Natural gas is often touted as a `bridge' to low carbon fuels in the heavy duty transportation sector, and the number of natural gas-fueled medium and heavy-duty fleets is growing rapidly. Research

California at Davis, University of

32

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Energy Savers [EERE]

November 12-13, 2014 DOE's Natural Gas Modernization Initiative Christopher Freitas, Program Manager, Natural Gas Midstream Infrastructure R&D, Office of Oil and Natural Gas, U.S....

33

Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure- EAC 2011  

Broader source: Energy.gov [DOE]

Recommendations from the Electricity Advisory Committee on actions to be taken by the Department of Energy given the interdependence of the Nations electric infrastructure and natural gas...

34

Benefit/Cost Analysis for Transportation Infrastructure: A Practitioner's  

E-Print Network [OSTI]

Benefit/Cost Analysis for Transportation Infrastructure: A Practitioner's Workshop May 17, 2010 an introduction to benefit/cost analysis for transportation infra- structure. There is growing emphasis on the use of benefit/cost analysis for evaluating transportation projects funded by discretionary federal

35

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure  

E-Print Network [OSTI]

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure Technologies Program Review was produced from water in a linked cyanobacterial- hydrogenase hybrid system Isolated mutants and cloned 2

36

Evaluating the Safety of a Natural Gas Home Refueling Appliance (HRA); Natural Gas Infrastructure Evaluation (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and infrastructure R&D through its FreedomCAR and Vehicle Technologies Program to help the United States reduce its dependence on imported petroleum and to pave the way to a future transportation network based on hydrogen. Natural gas vehicles can also reduce emissions of regulated pollutants compared with vehicles powered by conventional fuels such as gasoline and diesel.

37

Question & Answers Natural Gas Fueling Infrastructure Solicitation  

E-Print Network [OSTI]

Equivalent conversion factors. Greenhouse gas reductions will be calculated by Energy Commission staff

38

Africa's Transport Infrastructure Mainstreaming Maintenance and...  

Open Energy Info (EERE)

Ease of Use: Not Available Website: www.infrastructureafrica.orgsystemfilesAfrica%27s%20Transport%20Inf Web Application Link: infrastructureafrica.orgsystemfiles...

39

Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WORKSHOP OBJECTIVES: * Convene industry and other stakeholders to share current status/state-of-the art for natural gas and hydrogen infrastructure. * Identify key challenges (both technical and non-technical, such as permitting, installation, codes and standards) preventing or delaying the widespread deployment of natural gas and hydrogen infrastructure. Identify synergies between natural gas and hydrogen fuels. * Identify and prioritize opportunities to address the challenges reported above, and determine roles and opportunities for both government and industry stakeholders. TUESDAY, OCTOBER 18, 2011 9:00-10:00 AM Registration and Continental Breakfast 10:00-10:15 AM Welcome n Dr. Peter Littlewood, Argonne Associate Laboratory Director for

40

Public acceptance of natural gas infrastructure development in the UK  

E-Print Network [OSTI]

i Public acceptance of natural gas infrastructure development in the UK (2000-2011) Final case........................................................................................................5 2.2.1 Underground Natural Gas Storage ......................................................5 2 in the Technology Strategy Board's Knowledge Transfer Network (KTN) for Energy Generation and Supply

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Energy Savers [EERE]

and transportation efficiency. Due to economic efficiency Interstate Natural Gas Pipelines typically do not operate at their optimum design condition. So, most...

42

Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure  

SciTech Connect (OSTI)

This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

Smith, M.; Gonzales, J.

2014-09-01T23:59:59.000Z

43

Natural Gas and Hydrogen Infrastructure Opportunities Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANL-12/8 ANL-12/8 summAry report Natural Gas and Hydrogen I n f r a s t r u c t u r e O p p O r t u n I t I e s WorksHop October 18-19, 2011 Argonne National Laboratory | Argonne, IL compiled by romesh Kumar & shabbir ahmed february 21, 2012 AckNoWLedGemeNts Active participation by the Workshop attendees is gratefully acknowledged. Special thanks to the plenary speakers for their insightful comments and their help in leading the discussions as panel session moderators, including: Steve Chalk (DOe/ee), Bill Liss (Gas Technology Institute), Brian Bonner (Air Products and Chemicals, Inc.), and

44

infrastructure  

National Nuclear Security Administration (NNSA)

for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies.

...

45

Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth  

Broader source: Energy.gov [DOE]

Presentation by Matt Most, Encana Natural Gas, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois.

46

Impacts of Transportation Infrastructure on the U.S. Cotton Industry  

E-Print Network [OSTI]

Impacts of Transportation Infrastructure on the U.S. Cotton Industry Parr Rosson, Flynn Adcock of Transportation Infrastructure on the U.S. Cotton Industry Introduction The U.S. transportation system, including recovery," (Miller Center of Public Affairs). The U.S. cotton industry operates within these constraints

47

Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector  

Broader source: Energy.gov [DOE]

This report examines the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased electric power sector natural gas use.

48

Interdependence of Electricity System Infrastructure and Natural...  

Broader source: Energy.gov (indexed) [DOE]

Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure -...

49

Assessing the Changes In Safety Risk Arising From the Use of Natural Gas Infrastructure For Mixtures of Hydrogen and Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6/02/2005 6/02/2005 Assessing the changes in safety risk arising from the use of natural gas infrastructures for mixtures of hydrogen and natural gas NATURALHY G. Hankinson Loughborough University, UK 2 16/02/2005 Naturalhy project safety work package NATURALHY 3 16/02/2005 Outline NATURALHY To identify and quantify the major factors influencing safety in the transportation, distribution, and delivery of hydrogen/natural gas mixtures by means of existing natural gas infrastructures. 4 16/02/2005 Purpose NATURALHY To provide information to allow risk assessments to be performed to assist decisions concerning: * The amount of hydrogen that can be introduced into natural gas systems * The conditions under which such systems should be operated, and * The identification of vulnerable locations where

50

Saskatchewan Centre of Excellence of Transportation and Infrastructure 57 Campus Drive, Saskatoon, SK, Canada, S7N 5A9  

E-Print Network [OSTI]

Saskatchewan Centre of Excellence of Transportation and Infrastructure 57 Campus Drive, Saskatoon, SK, Canada, S7N 5A9 The Saskatchewan Centre of Excellence for Transportation and Infrastructure parking) Regina About SCETI The Saskatchewan Centre of Excellence for Transportation and Infrastructure

Saskatchewan, University of

51

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

52

Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure under Decision-Dependent Uncertainty  

Science Journals Connector (OSTI)

Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure under Decision-Dependent Uncertainty ... The planning of offshore oil or gas field infrastructure under uncertainty is addressed in this article. ... An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure ...

Bora Tarhan; Ignacio E. Grossmann; Vikas Goel

2009-02-23T23:59:59.000Z

53

Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Vehicle and Infrastructure Codes and Standards Citations Natural Gas Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find natural gas vehicle and infrastructure codes and standards in these categories: * Fire Code Requirements * General CNG Requirements and Equipment Qualifications * CNG Engine Fuel Systems * CNG Compression, Gas Processing, Storage, and Dispensing Systems

54

Natural Gas and Hydrogen Infrastructure Opportunities Workshop, October 18-19, 2011, Argonne National Laboratory, Argonne, IL : Summary Report.  

SciTech Connect (OSTI)

The overall objective of the Workshop was to identify opportunities for accelerating the use of both natural gas (NG) and hydrogen (H{sub 2}) as motor fuels and in stationary power applications. Specific objectives of the Workshop were to: (1) Convene industry and other stakeholders to share current status/state-of-the-art of NG and H{sub 2} infrastructure; (2) Identify key challenges (including non-technical challenges, such as permitting, installation, codes, and standards) preventing or delaying the widespread deployment of NG and H{sub 2} infrastructure. Identify synergies between NG and H{sub 2} fuels; and (3) Identify and prioritize opportunities for addressing the challenges identified above, and determine roles and opportunities for both the government and industry stakeholders. Plenary speakers and panel discussions summarized the current status of the NG and H{sub 2} infrastructure, technology for their use in transportation and stationary applications, and some of the major challenges and opportunities to more widespread use of these fuels. Two break-out sessions of three groups each addressed focus questions on: (1) infrastructure development needs; (2) deployment synergies; (3) natural gas and fuel cell vehicles (NGVs, FCVs), specialty vehicles, and heavy-duty trucks; (4) CHP (combined heat and power), CHHP (combined hydrogen, heat, and power), and synergistic approaches; and (5) alternative uses of natural gas.

Kumar, R. comp.; Ahmed, S. comp. (Chemical Sciences and Engineering Division)

2012-02-21T23:59:59.000Z

55

Long-Term Natural Gas Infrastructure Needs U.S. Department of...  

Energy Savers [EERE]

Long-Term Natural Gas Infrastructure Needs U.S. Department of Energy Quadrennial Energy Review, Public Meeting 7 July 28, 2014 Denver, Colorado Arne Olson, Partner 2 2 Western...

56

A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure  

E-Print Network [OSTI]

1 A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field, Houston, TX 77098 Abstract The planning of offshore oil or gas field infrastructure under uncertainty is addressed in this paper. The main uncertainties considered are in the initial maximum oil or gas flowrate

Grossmann, Ignacio E.

57

Greater focus needed on methane leakage from natural gas infrastructure  

Science Journals Connector (OSTI)

...benefits of natural gas fuel-technology pathways. Significant progress appears possible given...leakage in the natural gas system (EPA reports a range of-19% to...factor for stationary gas turbines of 110 lbMMBtu [AP-42...

Ramn A. Alvarez; Stephen W. Pacala; James J. Winebrake; William L. Chameides; Steven P. Hamburg

2012-01-01T23:59:59.000Z

58

ECONOMIC ENHANCEMENT THROUGH INFRASTRUCTURE STEWARDSHIP A Mobile Intelligent Transportation  

E-Print Network [OSTI]

(ITS) PLatform OTCES10.2-02 Oklahoma Transportation Center Phone: 405.732.6580 2601 Liberty Parkway AND ADDRESS Oklahoma Transportation Center (Fiscal) 201 ATRC Stillwater, OK 74078 (Technical) 2601 Liberty. ABSTRACT In this project we developed and purchased new Mobile Intelligent Transportation (M- ITS) assets

Atiquzzaman, Mohammed

59

EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Transportation Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow patterns. 5 major routes extend from the producing areas of the Southwest 4 routes enter the United States from Canada 2 originate in the Rocky Mountain area. A summary of the major corridors and links to details about each corridor are provided below. Corridors from the Southwest Region

60

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network [OSTI]

South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Integrated Energy/Transportation Continent-wide Infrastructure Design  

E-Print Network [OSTI]

to fracking impact: water/earthquake 2. GHG-induced climate change occurs rapidly re- quiring gas use

McCalley, James D.

62

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

SciTech Connect (OSTI)

Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

Gladstein, Neandross and Associates

2005-09-01T23:59:59.000Z

63

Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy  

SciTech Connect (OSTI)

This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

Brown, E.

2008-08-01T23:59:59.000Z

64

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Office of Environmental Management (EM)

Transport Data, Information, and Decisions Data Identification and Collection Automation and Knowledge Development Optimized Decision Making and Grid Interconnectivity Nat....

65

Greater focus needed on methane leakage from natural gas infrastructure  

Science Journals Connector (OSTI)

...Fort Worth Natural Gas Air Quality Study...Fort Worth Natural Gas Air Quality Study...of SO2 from coal-fired power plants in the United...the U.S. natural gas industry. Chemosphere...SNG for Electricity Generation. Environ Sci Technol...

Ramn A. Alvarez; Stephen W. Pacala; James J. Winebrake; William L. Chameides; Steven P. Hamburg

2012-01-01T23:59:59.000Z

66

Transportation and the Environment: Essays on Technology, Infrastructure, and Policy  

E-Print Network [OSTI]

Most locomotives used in the U.S. are diesel-electric.They use a diesel engine to power electric motors that driveElectric Transportation Systems and Electro-Motive Diesel (

Sangkapichai, Mana

2009-01-01T23:59:59.000Z

67

Transportation Science and the Dynamics of Critical Infrastructure Networks with  

E-Print Network [OSTI]

Network Satellite and Undersea Cable Networks British Electricity Grid Transportation, Communication Automobiles, Trains, and Planes, Manufacturing and logistics Workstations, Distribution Points Processing Cables Radio Links Voice, Data, Video Energy Pumping Stations, Plants Pipelines, Transmission Lines Water

Nagurney, Anna

68

An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure  

Science Journals Connector (OSTI)

An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure ... Offshore oil and gas field development represents a very complex problem and involves multibillion dollar investments and profits (Babusiaux et al.(1)). ... This paper focuses on a nonconvex MINLP model for the strategic/tactical planning of the offshore oil and gas fields, which includes sufficient details to make it useful for realistic oilfield development projects, as well as for extensions to include fiscal and uncertainty considerations. ...

Vijay Gupta; Ignacio E. Grossmann

2012-04-07T23:59:59.000Z

69

Weaving together the threads of transportation infrastructure : an intermodal transportation station for the proposed MBTA urban ring, Sullivan Square Station, Boston .  

E-Print Network [OSTI]

??Transportation infrastructure in all its manifestations represents a huge capital investment expended during the evolution of a city and is perhaps the most visible character (more)

Hekel, Frank John

1997-01-01T23:59:59.000Z

70

Au-del de lconomie gographique : les nouvelles politiques dinfrastructure de transport au Gabon.  

E-Print Network [OSTI]

??Cette thse analyse lorigine des disparits en matire de politiques de transport et dorganisation de lactivit conomique au Gabon. Depuis toujours, les infrastructures de transport (more)

Ada Allogo, Rassa

2011-01-01T23:59:59.000Z

71

A Framework to Predict the Impacts of Shale Gas Infrastructures on the Forest Fragmentation of an Agroforest Region  

Science Journals Connector (OSTI)

We propose a framework to facilitate the evaluation of the impacts of shale gas infrastructures (well pads, roads, and pipelines ... an already fragmented forest cover and a high gas potential. The scenario with ...

Alexandre Racicot; Vronique Babin-Roussel

2014-05-01T23:59:59.000Z

72

Fact Sheet: DOE/National Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership  

Broader source: Energy.gov [DOE]

In one of a series of actions to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions, DOE will work with the National Association of Regulatory Utility Commissioners (NARUC) to encourage investments in infrastructure modernization to enhance pipeline safety, efficiency and deliverability.

73

Greater focus needed on methane leakage from natural gas infrastructure  

Science Journals Connector (OSTI)

...Protection Agencys Clean Air Markets Web page (http...gas vehicles from gasoline or diesel vehicles...for the comparison of CNG and diesel for heavy-duty...Emissions for Heavy-Duty CNG and Diesel Fuel Cycles. As summarized...

Ramn A. Alvarez; Stephen W. Pacala; James J. Winebrake; William L. Chameides; Steven P. Hamburg

2012-01-01T23:59:59.000Z

74

Transport coefficients of a hot pion gas  

Science Journals Connector (OSTI)

General expressions for transport coefficients of a single-component gas (namely, thermal conductivity and shear and bulk viscosities) of bosons are derived from a Boltzmann-Uehling-Uhlenbeck transport equation by means of the Chapman-Enskog method to first order. These expressions are then used for the calculation of the associated transport relaxation times and applied to the pion gas produced in ultrarelativistic heavy-ion collisions. The influence of Bose enhancement factors on transport properties can be seen by comparison with previous calculations. 1996 The American Physical Society.

D. Davesne

1996-06-01T23:59:59.000Z

75

Cascading of Fluctuations in Interdependent Energy Infrastructures: Gas-Grid Coupling  

E-Print Network [OSTI]

The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipeli...

Chertkov, Michael; Backhaus, Scott

2014-01-01T23:59:59.000Z

76

Improving the Accuracy of Vehicle Emissions Profiles for Urban Transportation Greenhouse Gas and Air Pollution Inventories  

Science Journals Connector (OSTI)

Improving the Accuracy of Vehicle Emissions Profiles for Urban Transportation Greenhouse Gas and Air Pollution Inventories ... Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. ... Older vehicles tend to have higher levels of CAP not only because of less-advanced pollution control technology, but also because of the deterioration of aging control systems. ...

Janet L. Reyna; Mikhail V. Chester; Soyoung Ahn; Andrew M. Fraser

2014-12-01T23:59:59.000Z

77

Sandia National Laboratories: energy for transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for transportation Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for Transportation On August 28, 2013, in Center for Infrastructure Research and...

78

Transportation fuels from synthetic gas  

SciTech Connect (OSTI)

Twenty-five experimental Fischer-Tropsch synthesis runs were made with 14 different catalysts or combinations of catalysts using a Berty reactor system. Two catalysts showed increased selectivity to transportation fuels compared to typical Fischer-Tropsch catalysts. With a catalyst consisting of 5 wt % ruthenium impregnated on a Y zeolite (run number 24), 63 to 70 wt % of the hydrocarbon product was in the gasoline boiling range. Using a 0.5 wt % ruthenium on alumina catalyst (run number 22), 64 to 78 wt % of the hydrocarbon product was in the diesel fuel boiling range. Not enough sample was produced to determine the octane number of the gasoline from run number 24, but it is probably somewhat better than typical Fischer-Tropsch gasoline (approx. 50) and less than unleaded gasoline (approx. 88). The diesel fuel produced in run number 22 consisted of mostly straight chained paraffins and should be an excellent transportation fuel without further refining. The yield of transportation fuels from biomass via gasification and the Fischer-Tropsch synthesis with the ruthenium catalysts identified in the previous paragraph is somewhat less, on a Btu basis, than methanol (via gasification) and wood oil (PERC and LBL processes) yields from biomass. However, the products of the F-T synthesis are higher quality transportation fuels. The yield of transportation fuels via the F-T synthesis is similar to the yield of gasoline via methanol synthesis and the Mobil MTG process.

Baker, E.G.; Cuello, R.

1981-08-01T23:59:59.000Z

79

Pipelines and Underground Gas Storage (Iowa)  

Broader source: Energy.gov [DOE]

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

80

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop  

Broader source: Energy.gov [DOE]

The Advanced Manufacturing Office (AMO) at the U.S. Department of Energy (DOE)s Office of Energy Efficiency and Renewable Energy and the Office of Fossil Energy (FE) hosted a workshop, November 12-13, 2014, in Coraopolis, Pennsylvania, as a follow-up to the Presidents Climate Action Plan and the DOE meeting series on reducing methane emissions from natural gas pipeline systems. The workshop is part of the larger Administration Strategy to Reduce Methane Emissions associated with natural gas transmission and distribution infrastructure.

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

After the gas station : redevelopment opportunities from rethinking America's vehicle refueling infrastructure  

E-Print Network [OSTI]

Gas stations are found throughout the US, but their ubiquity causes them to go largely unnoticed. Because their purpose - refueling vehicles - is so uniform and so integral to the existing automotive transportation system, ...

Turco, Andrew

2014-01-01T23:59:59.000Z

82

Transport coefficients of a unitarized pion gas  

E-Print Network [OSTI]

The latest experimental results in relativistic heavy-ion collisions show that the matter there produced requires transport coefficients because of the important collective properties found. We review the theoretical calculation of these transport coefficients in the hadron side at low temperatures by computing them in a gas composed of low energy pions. The interaction of these pions is taken from an effective chiral theory and further requiring scattering unitarity. The propagation of D and D* mesons in the thermalized pion gas is also studied in order to extract the heavy quark diffusion coefficients in the system.

Juan M. Torres-Rincon

2011-11-16T23:59:59.000Z

83

Infrastructure investments and resource adequacy in the restructured US natural gas market : is supply security at risk?  

E-Print Network [OSTI]

The objective of this paper is to analyze the development of US natural gas infrastructure over the last two decades and to discuss its perspectives. In particular, we focus on the relationship between the regulatory ...

Hirschhausen, Christian von

2006-01-01T23:59:59.000Z

84

Weaving together the threads of transportation infrastructure : an intermodal transportation station for the proposed MBTA urban ring, Sullivan Square Station, Boston  

E-Print Network [OSTI]

Transportation infrastructure in all its manifestations represents a huge capital investment expended during the evolution of a city and is perhaps the most visible character defining weave of any urban fabric. This weave, ...

Hekel, Frank John

1997-01-01T23:59:59.000Z

85

Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service  

Broader source: Energy.gov [DOE]

Objectives: To assist DOE-EE in evaluating the feasibility of using the existing natural gas transmission and distribution piping network for hydrogen/mixed gas delivery

86

Survivable Systems Analysis of the North American Power Grid Communications Infrastructure 1,2  

E-Print Network [OSTI]

-time control infrastructures such as transportation systems, natural gas distribution, and oil pipeline generation, transmission, distribution, control equipment and sensors that is a keystone critical

Krings, Axel W.

87

Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.  

SciTech Connect (OSTI)

Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.

Roach, Dennis Patrick; Jauregui, David Villegas (New Mexico State University, Las Cruces, NM); Daumueller, Andrew Nicholas (New Mexico State University, Las Cruces, NM)

2012-02-01T23:59:59.000Z

88

Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Vehicle and Infrastructure Codes and Standards Chart Natural Gas Vehicle and Infrastructure Codes and Standards Chart Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas. Vehicle Safety: Vehicle Fuel Systems: Vehicle Containers: Vehicle Fuel System Components: Dispensing Component Standards: Dispensing Operations: Dispensing Vehicle Interface: Storage Containers: Storage Pressure Relief Devices: Storage System Siting: Storage and Production: Building and Fire Code Requirements: Organization Name Standards Development Areas AGA American Gas Association Materials testing standards API American Petroleum Institute

89

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7951 7951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

90

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

951 951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

91

Transport coefficients of a massive pion gas  

E-Print Network [OSTI]

We review or main results concerning the transport coefficients of a light meson gas, in particular we focus on the case of a massive pion gas. Leading order results according to the chiral power-counting are presented for the DC electrical conductivity, thermal conductivity, shear viscosity, and bulk viscosity. We also comment on the possible correlation between the bulk viscosity and the trace anomaly in QCD, as well as the relation between unitarity and a minimum of the quotient $\\eta/s$ near the phase transition.

D. Fernandez-Fraile; A. Gomez Nicola

2009-12-20T23:59:59.000Z

92

Transport properties of a meson gas  

E-Print Network [OSTI]

We present recent results on a systematic method to calculate transport coefficients for a meson gas (in particular, we analyze a pion gas) at low temperatures in the context of Chiral Perturbation Theory. Our method is based on the study of Feynman diagrams with a power counting which takes into account collisions in the plasma by means of a non-zero particle width. In this way, we obtain results compatible with analysis of Kinetic Theory with just the leading order diagram. We show the behavior with temperature of electrical and thermal conductivities and shear and bulk viscosities, and we discuss the fundamental role played by unitarity. We obtain that bulk viscosity is negligible against shear viscosity near the chiral phase transition. Relations between the different transport coefficients and bounds on them based on different theoretical approximations are also discussed. We also comment on some applications to heavy-ion collisions.

D. Fernandez-Fraile; A. Gomez Nicola

2007-07-09T23:59:59.000Z

93

The role of natural gas as a vehicle transportation fuel  

E-Print Network [OSTI]

This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

94

Social infrastructure  

E-Print Network [OSTI]

Current urbanization patterns and aging transportation infrastructures have marginalized millions of US citizens. The result is that 4 .5 million US residents live within 100 meters of a four-lane highway' and have become ...

Kurlbaum, Ryan E. (Ryan Edward)

2013-01-01T23:59:59.000Z

95

Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems  

Science Journals Connector (OSTI)

The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The \\{LCAs\\} of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

Jamie Ally; Trevor Pryor

2007-01-01T23:59:59.000Z

96

The Future of Transportation Finance: Gas Tax Plus and Beyond  

E-Print Network [OSTI]

The Future of Transportation Finance: Gas Tax Plus and Beyond The Future of Transportation Finance ON TRANSPORTATION POLICY AND TECHNOLOGY 2005 JAMES L. OBERSTAR FORUM ON TRANSPORTATION POLICY AND TECHNOLOGY #12;This report summarizes the fourth James L. Oberstar Forum on Transportation Policy and Technology. Over

Minnesota, University of

97

A Robust Infrastructure Design for Gas Centrifuge Enrichment Plant Unattended Online Enrichment Monitoring  

SciTech Connect (OSTI)

An online enrichment monitor (OLEM) is being developed to continuously measure the relative isotopic composition of UF6 in the unit header pipes of a gas centrifuge enrichment plant (GCEP). From a safeguards perspective, OLEM will provide early detection of a facility being misused for production of highly enriched uranium. OLEM may also reduce the number of samples collected for destructive assay and if coupled with load cell monitoring can provide isotope mass balance verification. The OLEM design includes power and network connections for continuous monitoring of the UF6 enrichment and state of health of the instrument. Monitoring the enrichment on all header pipes at a typical GCEP could require OLEM detectors on each of the product, tails, and feed header pipes. If there are eight process units, up to 24 detectors may be required at a modern GCEP. Distant locations, harsh industrial environments, and safeguards continuity of knowledge requirements all place certain demands on the network robustness and power reliability. This paper describes the infrastructure and architecture of an OLEM system based on OLEM collection nodes on the unit header pipes and power and network support nodes for groupings of the collection nodes. A redundant, self-healing communications network, distributed backup power, and a secure communications methodology. Two candidate technologies being considered for secure communications are the Object Linking and Embedding for Process Control Unified Architecture cross-platform, service-oriented architecture model for process control communications and the emerging IAEA Real-time And INtegrated STream-Oriented Remote Monitoring (RAINSTORM) framework to provide the common secure communication infrastructure for remote, unattended monitoring systems. The proposed infrastructure design offers modular, commercial components, plug-and-play extensibility for GCEP deployments, and is intended to meet the guidelines and requirements for unattended and remotely monitored safeguards systems.

Younkin, James R [ORNL; Rowe, Nathan C [ORNL; Garner, James R [ORNL

2012-01-01T23:59:59.000Z

98

TITIM GIS-tool: A GIS-based decision support system for measuring the territorial impact of transport infrastructures  

Science Journals Connector (OSTI)

Abstract To achieve sustainability in the area of transport we need to view the decision-making process as a whole and consider all the most important socio-economic and environmental aspects involved. Improvements in transport infrastructures have a positive impact on regional development and significant repercussions on the economy, as well as affecting a large number of ecological processes. This article presents a DSS to assess the territorial effects of new linear transport infrastructures based on the use of GIS. The TITIM Transport Infrastructure Territorial Impact Measurement GIS tool allows these effects to be calculated by evaluating the improvement in accessibility, loss of landscape connectivity, and the impact on other local territorial variables such as landscape quality, biodiversity and land-use quality. The TITIM GIS tool assesses these variables automatically, simply by entering the required inputs, and thus avoiding the manual reiteration and execution of these multiple processes. TITIM allows researchers to use their own GIS databases as inputs, in contrast with other tools that use official or predefined maps. The TITIM GIS-tool is tested by application to six HSR projects in the Spanish Strategic Transport and Infrastructure Plan 20052020 (PEIT). The tool creates all 65 possible combinations of these projects, which will be the real test scenarios. For each one, the tool calculates the accessibility improvement, the landscape connectivity loss, and the impact on the landscape, biodiversity and land-use quality. The results reveal which of the HSR projects causes the greatest benefit to the transport system, any potential synergies that exist, and help define a priority for implementing the infrastructures in the plan.

Emilio Ortega; Isabel Otero; Santiago Mancebo

2014-01-01T23:59:59.000Z

99

Matrix Heterogeneity Effects on Gas Transport and Adsorption in Coalbed and Shale Gas Reservoirs  

Science Journals Connector (OSTI)

In coalbeds and shales, gas transport and storage are important for accurate ... rates and for the consideration of subsurface greenhouse gas sequestration. They involve coupled fluid phenomena in ... transport, ...

Ebrahim Fathi; I. Ycel Akkutlu

2009-11-01T23:59:59.000Z

100

Hydrogen Fueling Systems and Infrastructure  

E-Print Network [OSTI]

Infrastructure Development TIAX Sunline LAX, Praxair · Fuels Choice · Renewable Energy Transportation System

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Transportation of Natural Gas and Petroleum (Nebraska) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Transportation of Natural Gas and Petroleum (Nebraska) Transportation of Natural Gas and Petroleum (Nebraska) Transportation of Natural Gas and Petroleum (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Oil and Gas Conservation Commission This statute enables and regulates the exercise of eminent domain by persons, companies, corporations, or associations transporting crude oil,

102

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network [OSTI]

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

103

Greenhouse Gas Emissions from Aviation and Marine Transportation:  

Open Energy Info (EERE)

Greenhouse Gas Emissions from Aviation and Marine Transportation: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Jump to: navigation, search Tool Summary Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Agency/Company /Organization: Pew Center on Global Climate Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org/docUploads/aviation-and-marine-report-2009.pdf Cost: Free References: Greenhouse Gas emissions from aviation and marine transportation: mitigation potential and policies[1] "This paper provides an overview of greenhouse gas (GHG) emissions from aviation and marine transportation and the various mitigation options to

104

Optimal threshold-based network-level transportation infrastructure life-cycle management with heterogeneous maintenance actions  

Science Journals Connector (OSTI)

Transportation infrastructure life-cycle management deals with maintenance decision making of transportation facilities such as pavement, bridges, and railways under budget constraints. In practice, transportation agencies adopt threshold-based rules for maintenance planning because they are intuitive and easy to implement. However, the thresholds are often determined based on engineering judgment without any systematic approach. Therefore, maintenance budgets cannot be used effectively and facility conditions are not optimized. This research uses hybrid dynamic models to represent threshold-based maintenance for transportation infrastructure in a realistic manner. Hybrid dynamic models combine continuous states such as pavement roughness and age with discrete states such as maintenance history. These models are also capable of considering multiple maintenance actions with heterogeneous effects. Based on facility conditions and maintenance thresholds, corresponding maintenance actions are selected automatically and the facility switches between deterioration modes to reflect the effects of the chosen action. Furthermore, to consider users reactions to maintenance actions and accurately predict deterioration for a network of facilities, threshold-based maintenance is formulated as an upper-level problem, and user response is incorporated as a lower-level problem. This leads to a bi-level programming problem where maintenance thresholds are decision variables, which is solved with a modified tabu search algorithm. The proposed methodology is validated with the road network of an urban area and the generated maintenance thresholds are reasonable and robust, which shows that the methodology has great potential to support transportation infrastructure life-cycle management in practice.

James C. Chu; Yin-Jay Chen

2012-01-01T23:59:59.000Z

105

Possible Pathways for Increasing Natural Gas Use for Transportation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

emissions reduction. * NG use can provide a pathway for future bio-based fuels (e.g., biogas and gas + biomass-to-liquids GBTL). Natural Gas Use in Transportation Offers...

106

Greenhouse Gas Emissions from Aviation and Marine Transportation...  

Open Energy Info (EERE)

Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org...

107

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...  

Open Energy Info (EERE)

search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources AgencyCompany Organization: World Resources...

108

Tracer Gas Transport under Mixed Convection Conditions in an Experimental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tracer Gas Transport under Mixed Convection Conditions in an Experimental Tracer Gas Transport under Mixed Convection Conditions in an Experimental Atrium: Comparison Between Experiments and CFD Predictions Title Tracer Gas Transport under Mixed Convection Conditions in an Experimental Atrium: Comparison Between Experiments and CFD Predictions Publication Type Journal Article Year of Publication 2006 Authors Jayaraman, Buvaneswari, Elizabeth U. Finlayson, Michael D. Sohn, Tracy L. Thatcher, Phillip N. Price, Emily E. Wood, Richard G. Sextro, and Ashok J. Gadgil Journal Atmospheric Environment Volume 40 Start Page Chapter Pagination 5236-5250 Keywords airflow and pollutant transport group, atria, indoor airflow and pollutant transport, indoor environment department, indoor pollutant dispersion, mixed convection, turbulence model

109

Impact of energy supply infrastructure in life cycle analysis of hydrogen and electric systems applied to the Portuguese transportation sector  

Science Journals Connector (OSTI)

Hydrogen and electric vehicle technologies are being considered as possible solutions to mitigate environmental burdens and fossil fuel dependency. Life cycle analysis (LCA) of energy use and emissions has been used with alternative vehicle technologies to assess the Well-to-Wheel (WTW) fuel cycle or the Cradle-to-Grave (CTG) cycle of a vehicle's materials. Fuel infrastructures, however, have thus far been neglected. This study presents an approach to evaluate energy use and CO2 emissions associated with the construction, maintenance and decommissioning of energy supply infrastructures using the Portuguese transportation system as a case study. Five light-duty vehicle technologies are considered: conventional gasoline and diesel (ICE), pure electric (EV), fuel cell hybrid (FCHEV) and fuel cell plug-in hybrid (FC-PHEV). With regard to hydrogen supply, two pathways are analysed: centralised steam methane reforming (SMR) and on-site electrolysis conversion. Fast, normal and home options are considered for electric chargers. We conclude that energy supply infrastructures for FC vehicles are the most intensive with 0.030.53MJeq/MJ emitting 0.727.3g CO2eq/MJ of final fuel. While fossil fuel infrastructures may be considered negligible (presenting values below 2.5%), alternative technologies are not negligible when their overall LCA contribution is considered. EV and FCHEV using electrolysis report the highest infrastructure impact from emissions with approximately 8.4% and 8.3%, respectively. Overall contributions including uncertainty do not go beyond 12%.

Alexandre Lucas; Rui Costa Neto; Carla Alexandra Silva

2012-01-01T23:59:59.000Z

110

Transportation Fuel Basics - Natural Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Fuel Basics - Natural Gas Transportation Fuel Basics - Natural Gas Transportation Fuel Basics - Natural Gas July 30, 2013 - 4:40pm Addthis Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation fuel. About one third of the natural gas used in the United States goes to residential and commercial uses, one third to industrial uses, and one third to electric power production. Natural gas has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic, non-corrosive, and non-carcinogenic. It presents no threat to soil, surface water, or groundwater. Natural gas is a mixture of hydrocarbons, predominantly methane (CH4). As delivered through the nation's pipeline system, it also contains

111

Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation  

E-Print Network [OSTI]

% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCs.S. CO2 emissions sources. U.S. CO2 transportation emissions sources by mode. #12;CenterTransportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge

112

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or  

Open Energy Info (EERE)

Transport or Transport or Mobil Sources Jump to: navigation, search Tool Summary Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Transportation, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free The Greenhouse Gas Protocol tool for mobile combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically from mobile combustion sources, including vehicles under the direct control

113

EIA - Natural Gas Pipeline Network - Transportation Process & Flow  

U.S. Energy Information Administration (EIA) Indexed Site

Process and Flow Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas producing well or field. Once the gas leaves the producing well, a pipeline gathering system directs the flow either to a natural gas processing plant or directly to the mainline transmission grid, depending upon the initial quality of the wellhead product.

114

Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors  

E-Print Network [OSTI]

. In this paper, using the example of the thermal processing of ceramic gas sensors, an integrated compu- tationalSimulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors Yunzhi Wang in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method

Ciobanu, Cristian

115

Natural Gas Compression Technology Improves Transport and Efficiencies,  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Compression Technology Improves Transport and Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs May 10, 2012 - 1:00pm Addthis Washington, DC - An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy (DOE). OsComp Systems designed and tested the novel compressor design with funding from the DOE-supported Stripper Well Consortium, an industry-driven organization whose members include natural gas and petroleum producers,

116

Feed gas contaminant removal in ion transport membrane systems  

SciTech Connect (OSTI)

An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

2012-04-03T23:59:59.000Z

117

Oil and Gas Exploration, Drilling, Transportation, and Production (South  

Broader source: Energy.gov (indexed) [DOE]

Exploration, Drilling, Transportation, and Production Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) < Back Eligibility Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Buying & Making Electricity Program Info State South Carolina Program Type Environmental Regulations Siting and Permitting Provider South Carolina Department of Health and Environmental Control This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to prevent the waste of oil and gas, promote environmental stewardship, and regulate the exploration,

118

Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market  

U.S. Energy Information Administration (EIA) Indexed Site

Processing: The Crucial Link Between Natural Gas Production Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e., cleaned, before it can be safely delivered to the high-pressure, long-distance pipelines that transport the product to the consuming public. Natural gas that is not within certain specific gravities, pressures, Btu content range, or water content levels will

119

Transportation Fuel Basics - Natural Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Natural Gas Transportation Fuel Basics - Natural Gas July 30, 2013 - 4:40pm Addthis Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation fuel. About one third of the natural gas used in the United States goes to residential and commercial uses, one third to industrial uses, and one third to electric power production. Natural gas has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic, non-corrosive, and non-carcinogenic. It presents no threat to soil, surface water, or groundwater. Natural gas is a mixture of hydrocarbons, predominantly methane (CH4). As delivered through the nation's pipeline system, it also contains hydrocarbons such as ethane and propane and other gases such as nitrogen,

120

Linking Oil Prices, Gas Prices, Economy, Transport, and Land Use  

E-Print Network [OSTI]

Linking Oil Prices, Gas Prices, Economy, Transport, and Land Use A Review of Empirical Findings Hongwei Dong, Ph.D. Candidate John D. Hunt, Professor John Gliebe, Assistant Professor #12;Framework Oil-run Short and Long-run #12;Topics covered by this presentation: Oil price and macro-economy Gas price

Bertini, Robert L.

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production  

E-Print Network [OSTI]

50% of daily production H 2 gas storage costs (separate fromNatural gas is currently the lowest cost hydrogen productioncosts are calculated for each station. On-site natural gas steam reformers The hydrogen production

Yang, Christopher; Ogden, Joan M

2005-01-01T23:59:59.000Z

122

Use of Composite Pipe Materials in the Transportation of Natural Gas (INEEL/EXT-02-00992)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

992 992 Use of Composite Pipe Materials in the Transportation of Natural Gas Patrick Laney July 2002 Idaho National Engineering and Environmental Laboratory Bechtel BWXT Idaho, LLC INEEL/EXT-02-00992 Use of Composite Pipe Materials in the Transportation of Natural Gas Sponsored by Natural Gas Pipeline Infrastructure Reliability Program National Energy Technology Laboratory INEEL Field Work Proposal # 4340-70 Prepared by: Patrick Laney Idaho National Engineering and Environmental Laboratory Idaho Falls, Idaho With Contributions From: Ian Kopp Kenway Corporation Augusta, Maine July 2002 Idaho National Engineering and Environmental Laboratory Fossil Energy Technologies Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

123

Geographically-Based Infrastructure Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Analysis Margo Melendez & Keith Parks January 26, 2006 Geographically-Based Infrastructure Analysis (GIA) Utilizes GIS, geographically segregated data, and transition expertise to add the spatial component to infrastructure analysis NREL Core Competencies * Geographic data, tools, and expertise * Flexibility to address a wide array of transition issues NREL Capability Diagram Geographically-based Infrastructure Analysis GIS Transportation Technologies & Systems Electric & Hydrogen Technologies Energy Analysis Office GIA Activities Previous and Ongoing * HYDS ME - Evaluates best infrastructure options * Interstate Infrastructure Analysis - Minimal infrastructure to facilitate interstate travel during transition New Analyses * Quantifying transitional hydrogen demand

124

Feed gas contaminant control in ion transport membrane systems  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

Carolan, Michael Francis (Allentown, PA); Minford, Eric (Laurys Station, PA); Waldron, William Emil (Whitehall, PA)

2009-07-07T23:59:59.000Z

125

Hot-Gas Filter Testing with a Transport Reactor Gasifier  

SciTech Connect (OSTI)

Today, coal supplies over 55% of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being developed for advanced electric power generation is an integrated gasification combined cycle (IGCC) system that converts coal to a combustible gas, cleans the gas of pollutants, and combusts the gas in a gas turbine to generate electricity. The hot exhaust from the gas turbine is used to produce steam to generate more electricity from a steam turbine cycle. The utilization of advanced hot-gas particulate and sulfur control technologies together with the combined power generation cycles make IGCC one of the cleanest and most efficient ways available to generate electric power from coal. One of the strategic objectives for U.S. Department of Energy (DOE) IGCC research and development program is to develop and demonstrate advanced gasifiers and second-generation IGCC systems. Another objective is to develop advanced hot-gas cleanup and trace contaminant control technologies. One of the more recent gasification concepts to be investigated is that of the transport reactor gasifier, which functions as a circulating fluid-bed gasifier while operating in the pneumatic transport regime of solid particle flow. This gasifier concept provides excellent solid-gas contacting of relatively small particles to promote high gasification rates and also provides the highest coal throughput per unit cross-sectional area of any other gasifier, thereby reducing capital cost of the gasification island.

Swanson, M.L.; Hajicek, D.R.

2002-09-18T23:59:59.000Z

126

Determining Air Quality and Greenhouse Gas Impacts of Hydrogen Infrastructure and Fuel Cell Vehicles  

Science Journals Connector (OSTI)

The projection accounts for the gradual retirement of old vehicles and introduction of new vehicles compliant with the Low Emission Vehicle II (LEV II) Standards, including a higher penetration of gasoline hybrids, adopted by the California Air Resources Board through the year 2010 (16). ... Findings suggest that, compared to projections of remarkably improved ICE and hybrid ICE vehicles, hydrogen infrastructure and HFCV deployment will substantially improve air quality in an urban airshed and reduce GHG emissions from passenger vehicles, even when fossil fuels are a significant source of hydrogen. ...

Shane Stephens-Romero; Marc Carreras-Sospedra; Jacob Brouwer; Donald Dabdub; Scott Samuelsen

2009-11-04T23:59:59.000Z

127

Electromagnetic fields and transport coefficients in a hot pion gas  

E-Print Network [OSTI]

We present recent results on finite temperature electromagnetic form factors and the electrical conductivity in a pion gas. The standard Chiral Perturbation Theory power counting needs to be modified for transport coefficients. We pay special attention to unitarity and to possible applications for dilepton and photon production.

A. Gomez Nicola; D. Fernandez-Fraile

2006-08-24T23:59:59.000Z

128

Modeling Gas-Phase Transport in Polymer-Electrolyte Fuel Cells  

E-Print Network [OSTI]

Energy, Office of Hydrogen, Fuel Cell, and InfrastructureIN POLYMER-ELECTROLYTE FUEL CELLS A. Z. Weber and J. Newmandiffusion of gases in a fuel-cell gas-diffusion layer are

Weber, A.Z.; Newman, J.

2006-01-01T23:59:59.000Z

129

Department of Energy Announces Steps to Help Modernize Natural Gas Infrastructure  

Broader source: Energy.gov [DOE]

Building on the Presidents Climate Action Plan, today the White House and the Department of Energy hosted the fifth in a series of meetings on reducing methane emissions from natural gas systems.

130

Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic Natural Gas  

Broader source: Energy.gov [DOE]

Natural gas provides numerous benefits to millions of Americans daily, whether its being used to heat or air condition homes and businesses, cook meals, or power vehicles. But most people who take advantage of this versatile and important energy resource probably dont think about the intricate and vital system that exists to bring natural gas from where it is produced to the marketplace where it can be used.

131

Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis  

SciTech Connect (OSTI)

Todays society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulations agents.

May Permann

2007-03-01T23:59:59.000Z

132

Gas production and transport in artificial sludge depots  

Science Journals Connector (OSTI)

This paper presents a study to determine the impact of gas production in dredging sludge on the storage capacity of artificial sludge depots. Gas is produced as a result of the decomposition of organic material present in dredging spoil. This process, in which methane and carbon dioxide are formed, may lead to expansion of sludge layers, partly or even completely counterbalancing consolidation. The study shows that, even with a very conservative estimation of the rate of gas production, accumulation of gas occurs as convective and diffusive transport proceed very slowly. Nucleation of gas bubbles occurs already at a limited oversaturation of pore water. During their growth, bubbles push aside the surrounding grain matrix. Resulting stresses may initiate cracks around bubbles. If these cracks join, they may form channels stretching out to the depot surface and along which gas may escape. However, channels are only stable to a limited depth below which bubble accumulation may continue. The gas content at which sufficient cracks and channels are formed to balance the rate of gas production with the rate of outflow strongly depends on the constitutive properties of the dredging sludge considered. In sludge with a high shear strength (>10 kPa), stable channels are created already at low deformations. However, a large expansion may occur in sludge with a low strength. The present study shows that accumulation of gas may continue until a bulk density less than that of water is attained. This is equivalent to a gas fraction of about 2537%, depending on the initial water content of the sludge. Only then can gas escape as a result of instabilities in the sediment matrix. This should be well taken into account during the design and management of artificial depots.

T. van Kessel; W.G.M. van Kesteren

2002-01-01T23:59:59.000Z

133

Mechanism model for shale gas transport considering diffusion, adsorption/desorption and Darcy flow  

Science Journals Connector (OSTI)

To improve the understanding of the transport mechanism in shale gas reservoirs and build a theoretical basic for ... on productivity evaluation and efficient exploitation, various gas transport mechanisms within...

Ming-qiang Wei ???; Yong-gang Duan ???

2013-07-01T23:59:59.000Z

134

Factsheet: An Initiative to Help Modernize Natural Gas Transmission and Distribution Infrastructure  

Broader source: Energy.gov [DOE]

Today, the White House and the Department of Energy are hosting a Capstone Methane Stakeholder Roundtable. In addition, DOE is announcing a series of actions, partnerships, and stakeholder commitments to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions.

135

Developing the Sandia National Laboratories transportation infrastructure for isotope products and wastes  

SciTech Connect (OSTI)

The US Department of Energy (DOE) plans to establish a medical isotope project that would ensure a reliable domestic supply of molybdenum-99 ({sup 99}Mo) and related medical isotopes (Iodine-125, Iodine-131, and Xenon-133). The Department`s plan for production will modify the Annular Core Research Reactor (ACRR) and associated hot cell facility at Sandia National Laboratories (SNL)/New Mexico and the Chemistry and Metallurgy Research facility at Los Alamos National Laboratory (LANL). Transportation activities associated with such production is discussed.

Trennel, A.J.

1997-11-01T23:59:59.000Z

136

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network [OSTI]

Renewable Energy Sources in Aviation, Imperial College London. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

137

Shale-Gas Permeability and Diffusivity Inferred by Improved Formulation of Relevant Retention and Transport Mechanisms  

Science Journals Connector (OSTI)

A theoretically improved model incorporating the relevant mechanisms of gas retention and transport in gas-bearing shale formations is presented for determination of intrinsic gas permeability and diffusivity. Th...

Faruk Civan; Chandra S. Rai; Carl H. Sondergeld

2011-02-01T23:59:59.000Z

138

Infrastructure Assurance Center  

E-Print Network [OSTI]

, the United States relied on natural gas to meet about 22% of its energy needs. Therefore, assuring efficient, natural gas processing plants, and other industrial customers, along with the changes in the utilizationInfrastructure Assurance Center NGReal-time: processing and analysis tool for natural gas delivery

139

Hydrogen Vehicles and Fueling Infrastructure in China  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Vehicles and Fueling Infrastructure in China Hydrogen Vehicles and Fueling Infrastructure in China Prof. Jinyang Zheng Director of IPE, Zhejiang University Director of Engineering Research Center for High Pressure Process Equipment and Safety, Ministry of Education Vice Director of China National Safety Committee of Pressure Vessels Vice President of CMES-P.R. China China Representative of ISO/TC197 and ISO/TC58 U.S. Department of Transportation and U. S. Department of Energy Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Development of Vehicles,Dec.10-11,2009, Washington Safety and Regulatory Structure for CNG,CNG-H2,H2 Vehicles and Fuels in China Content Hydrogen Production CNG Refueling Station Hydrogen Refueling Station Shanxi HCNG Project U.S. Department of Transportation and U. S. Department of Energy Workshop: Compressed Natural Gas and

140

Sandia National Laboratories: Infrastructure Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

More California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says On July 29, 2014, in Center for Infrastructure Research and Innovation (CIRI), CRF,...

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Greenhouse Gas Emissions Driven by the Transportation of Goods Associated with French Consumption  

Science Journals Connector (OSTI)

By product, transport of coal and coke and intermediate goods make the largest contribution to overall freight transport emissions associated with French household consumption. ... Finally, improving rail and inland water transportation infrastructure between northern European countries and France also serves the purpose of improving trade-relations and economic efficiency within Europe. ... per capita footprints were 1 ton CO2 equiv./yr in African countries to ?30ton CO2 equiv./yr in Luxembourg and the USA. ...

Troy R. Hawkins; Sbastien M. R. Dente

2010-10-01T23:59:59.000Z

142

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost  

E-Print Network [OSTI]

Optimal design and allocation of electrified vehicles and dedicated charging infrastructure infrastructure in US fleet. c Under US grid mix, PEVs provide minor GHG reductions and work chargers do little. c vehicles Plug-in hybrid electric vehicles Hybrid electric vehicles a b s t r a c t Electrified vehicles can

Michalek, Jeremy J.

143

Transportation and its Infrastructure  

E-Print Network [OSTI]

world is nearing a peak in conventional oil production thatconventional oil production will peak, with many arguing

2007-01-01T23:59:59.000Z

144

Transportation and its Infrastructure  

E-Print Network [OSTI]

Evaluation of Hybrid Diesel-Electric Transit Buses - Finalof braking energy in diesel-electric vehicles (see the webCNG buses, hybrid diesel-electric buses and taxi renovation)

2007-01-01T23:59:59.000Z

145

Transportation and its Infrastructure  

E-Print Network [OSTI]

because corn farming and processing are energy intensive.and corn stalks and leaves, as well as dedicated energyenergy use is far less, resulting in much greater GHG reductions than with corn

2007-01-01T23:59:59.000Z

146

Transportation and its Infrastructure  

E-Print Network [OSTI]

Biodiesel (esters) Bio oil Diesel (CxHy) carbon emissions.August (2006), 40:H-Bio, The Clean Diesel. eq. based onsynthetic diesel, biodiesel and bio oil. In addition, there

2007-01-01T23:59:59.000Z

147

Transportation Infrastructure Requirement Resources  

Broader source: Energy.gov [DOE]

Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum...

148

Transportation and its Infrastructure  

E-Print Network [OSTI]

and S.N. Pandis, 1999: Effects of ship emission on sulphurclouds (ship-tracks), which has a negative RF effect. The

2007-01-01T23:59:59.000Z

149

Transportation and its Infrastructure  

E-Print Network [OSTI]

example, although hybrid electric drive trains have made agreater use of electric-drive technologies, includingthe discussion of hybrid electric drive trains). The use of

2007-01-01T23:59:59.000Z

150

Transportation and its Infrastructure  

E-Print Network [OSTI]

engine is estimated to attain 18% reduced fuel consumption,engine manufacturers pursue technological developments to reduce fuel consumptionfuel consumption for most vehicles, but variations in engine

2007-01-01T23:59:59.000Z

151

Transportation and its Infrastructure  

E-Print Network [OSTI]

conventional oil production will peak, with many arguingworld is nearing a peak in conventional oil production that

2007-01-01T23:59:59.000Z

152

Transportation and its Infrastructure  

E-Print Network [OSTI]

Hydrothermal liquefaction Hydrolysis Sugar/starch crops Oil plants Animal fat Milling and hydrolysis Processing

2007-01-01T23:59:59.000Z

153

Transportation and its Infrastructure  

E-Print Network [OSTI]

Prospects for Hydrogen and Fuel Cells. International Energyamongst others, for hydrogen fuel cell, advanced biofueltC/TJ) (IPCC, 1996). Hydrogen / Fuel Cells During the last

2007-01-01T23:59:59.000Z

154

An economic theory perspective on optimal design of government of regional infrastructure in Australia: the case of national transport  

E-Print Network [OSTI]

1 An economic theory perspective on optimal design of government of regional infrastructure Professor of Economics University of Canberra Faculty of Business, Government and Law Cameron in the coming decades to deal with growing population, shifting economic and demographic patterns

155

Reactive Transport Modeling of Acid Gas Generation and Condensation  

SciTech Connect (OSTI)

Pulvirenti et al. (2004) recently conducted a laboratory evaporation/condensation experiment on a synthetic solution of primarily calcium chloride. This solution represents one potential type of evaporated pore water at Yucca Mountain, Nevada, a site proposed for geologic storage of high-level nuclear waste. These authors reported that boiling this solution to near dryness (a concentration factor >75,000 relative to actual pore waters) leads to the generation of acid condensate (pH 4.5) presumably due to volatilization of HCl (and minor HF and/or HNO{sub 3}). To investigate the various processes taking place, including boiling, gas transport, and condensation, their experiment was simulated by modifying an existing multicomponent and multiphase reactive transport code (TOUGHREACT). This code was extended with a Pitzer ion-interaction model to deal with high ionic strength. The model of the experiment was set-up to capture the observed increase in boiling temperature (143 C at {approx}1 bar) resulting from high concentrations of dissolved salts (up to 8 m CaCl{sub 2}). The computed HCI fugacity ({approx} 10{sup -4} bars) generated by boiling under these conditions is not sufficient to lower the pH of the condensate (cooled to 80 and 25 C) down to observed values unless the H{sub 2}O mass fraction in gas is reduced below {approx}10%. This is because the condensate becomes progressively diluted by H{sub 2}O gas condensation. However, when the system is modeled to remove water vapor, the computed pH of instantaneous condensates decreases to {approx}1.7, consistent with the experiment (Figure 1). The results also show that the HCl fugacity increases, and calcite, gypsum, sylvite, halite, MgCl{sub 2}4H{sub 2}O and CaCl{sub 2} precipitate sequentially with increasing concentration factors.

G. Zhahg; N. Spycher; E. Sonnenthal; C. Steefel

2005-01-25T23:59:59.000Z

156

Natural Gas as a Transportation Fuel: Benefits, Challenges, and Implementation (Presentation)  

SciTech Connect (OSTI)

Presentation for the Clean Cities Website highlighting the benefits, challenges, and implementation considerations when utilizing natural gas as a transportation fuel.

Not Available

2007-07-01T23:59:59.000Z

157

Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles  

Broader source: Energy.gov [DOE]

Agenda for the Transitioning the Transportation Sector--Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles workshop held September 9, 2014.

158

Application of PV panels into electricity generation system of compression stations in gas transporting systems.  

E-Print Network [OSTI]

?? This thesis deals with problems of electricity generation and saving at compression stations of magistral gas transporting pipelines in Russia. Russia is a biggest (more)

Belyaev, Alexey

2013-01-01T23:59:59.000Z

159

Midstream Infrastructure Improvements Key to Realizing Full Potential...  

Office of Environmental Management (EM)

Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic Natural Gas Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic...

160

Infrastructure Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to enhance the nation's security and prosperity through sustainable, transformative approaches to our most challenging energy, climate, and infrastructure problems. vision...

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE Hydrogen Analysis Repository: Analysis of Energy Infrastructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Energy Infrastructures Analysis of Energy Infrastructures Project Summary Full Title: Analysis of Energy Infrastructures and Potential Impacts from an Emergent Hydrogen Fueling Infrastructure Project ID: 250 Principal Investigator: David Reichmuth Brief Description: Sandia National Laboratories is using a system dynamics approach to simulate the interaction of vehicle adoption and infrastructure for hydrogen, electricity, natural gas, and gasoline. Purpose It is envisioned that the transition to hydrogen vehicles will begin by taking advantage of the existing infrastructure for natural gas. This project will study the impact of hydrogen vehicles on demand for natural gas, electricity, and gasoline. The impact of existing energy infrastructures on hydrogen infrastructure growth will also be considered.

162

Criteria for selection of components for surrogates of natural gas and transportation fuels q  

E-Print Network [OSTI]

Criteria for selection of components for surrogates of natural gas and transportation fuels q reserved. Keywords: Kerosene reaction mechanism; Gasoline reaction mechanism; Natural gas reaction found in minor amounts in natural gas [4]. The widely studied heptane reaction set [5,6] is often used a

Utah, University of

163

Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-11-01T23:59:59.000Z

164

Natural gas: Marine transportation. (Latest citations from Oeanic abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-02-01T23:59:59.000Z

165

Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-04-01T23:59:59.000Z

166

NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11 Natural Gas For Transportation or Electricity? Climate Change Implications  

E-Print Network [OSTI]

Projections of increased domestic supply, low prices, reduced reliance on foreign oil, and low environmental impacts are supporting the increased use of natural gas in the transportation and electricity sectors. For instance, a tax credit bill (H.R. 1380) introduced in the House earlier this year encourages natural gas use for transportation and anticipates reductions in greenhouse gases (GHGs) when it displaces gasoline and diesel. However, in reality, the amount of GHG emissions that can be reduced with natural gas is uncertain and depends on the end use. If natural gas displaces coal for electricity generation, GHG emissions are reduced by at least 45 % per kWh. But when natural gas is used as a transportation fuel there is up to a 35 % chance that emissions will increase and only a 3 % chance that it will even meet the emissions reductions mandated by the Energy Independence and Security Act (EISA) for corn ethanol. Given that future natural gas supply is limited, despite forecasts of increased domestic production, if one wants to be certain of reducing GHG emissions, then using natural gas to replace coalfired electricity is the best approach. Investigators at Carnegie Mellon University have conducted an analysis in the attached study (1) that highlights the following important findings. 1. High risk of policy failure: The use of compressed natural gas (CNG) instead of gasoline in cars and instead of diesel in buses does not lower GHG emissions significantly. In fact there is a 10-

Aranya Venkatesh; Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

167

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...  

Broader source: Energy.gov (indexed) [DOE]

the AFV Experience Moderator: Dan Sperling, Institute of Transportation Studies at UC Davis, Director Lessons and Challenges for Early Hydrogen Refueling Infrastructure (PDF 1.2...

168

LOGISTICS INFRASTRUCTURE  

Science Journals Connector (OSTI)

exist at the national and company levels. The national consists of a nation's air, motor, rail, and shipping systems. This infrastructure consists of miles of improved highways, miles of railroad tracks, ...

2000-01-01T23:59:59.000Z

169

Ion transport membrane module and vessel system with directed internal gas flow  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

2010-02-09T23:59:59.000Z

170

Landfill Gas Generation and Transport In Bioreactor Landfill  

Science Journals Connector (OSTI)

The activation gas and water flow each other in Bioreactor Landfill. Based on the porous media seepage and ... of water and waste components decomposition for describing landfill gas flow have been developed, and...

Qi-Lin Feng; Lei Liu; Qiang Xue; Ying Zhao

2010-01-01T23:59:59.000Z

171

Green Infrastructure  

E-Print Network [OSTI]

SWM, Green Buildings, Energy Forum, Texas Smartscape) ? Deteriorating Roadways ? ASCE Report Card on Texas Infrastructure for 2008 identified roads as the #1 infrastructure concern ? Congestion ? DFW congestion is growing over 45% faster than... the national average (TTI) ? Crowded existing ROW ? utilities, pavement, sidewalk, parkway, etc. - with little room for widening Sustainable Public Rights of Way Subcommittee ? Subcommittee reports to the PWC ? Consists of PWC and other major interests...

Tildwell, J.

2011-01-01T23:59:59.000Z

172

Briefing Memo: Enhancing Resilience in Energy Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two...

173

A Monte Carlo code describing the neutral gas transport in pipe configurations with attenuating media  

Science Journals Connector (OSTI)

A three-dimensional Monte Carlo description of the neutral gas transport in pipe configurations with almost arbitrary torsion and curvature is presented. To avoid quadratic or even transcendental expressions describing the pipe surfaces confining and ...

A. Nicolai

1993-06-01T23:59:59.000Z

174

Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010  

Broader source: Energy.gov [DOE]

The map below shows the amount of petroleum and natural gas consumed in the transportation sector by state for 2010. The pie charts for each state are scaled based on total consumption of petroleum...

175

Greenhouse Gas Emissions of Biomethane for Transport: Uncertainties and Allocation Methods  

Science Journals Connector (OSTI)

Employing a life-cycle assessment approach, this paper studies greenhouse gas (GHG) emissions resulting from biomethane used as transportation fuel. It focuses on both GHG allocation methodologies and uncertainties regarding GHG emissions from biomethane. ...

V. Uusitalo; J. Havukainen; V. Kapustina; R. Soukka; M. Horttanainen

2014-02-17T23:59:59.000Z

176

Study on gas hydrates for the solid transportation of natural gas  

Science Journals Connector (OSTI)

Natural gas hydrate typically contains 85 wt.% water and 15 wt.% natural gas, and commonly belongs to cubic structure I...3 solid hydrate contains up to 200 m3 of natural gas depending on pressure and temperature...

Nam-Jin Kim; Chong-Bo Kim

2004-04-01T23:59:59.000Z

177

Feed gas contaminant removal in ion transport membrane systems  

DOE Patents [OSTI]

Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

2008-09-16T23:59:59.000Z

178

Biomass and Natural Gas to Liquid Transportation Fuels  

Broader source: Energy.gov [DOE]

Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Josephine Elia, Graduate Student, Princeton University

179

The modelling of biochemical-thermal coupling effect on gas generation and transport in MSW landfill  

Science Journals Connector (OSTI)

The landfill gas generation was investigated based on the theories of the thermodynamics, microbial dynamics and chemical dynamics. The coupling model was developed for describing the gas transport and heat release. And the relationship between the gas generation rate and the temperature was proposed. The parameters in the gas generation model were obtained by bioreactor test in order to evaluate the volume of gas production of the Erfeishan landfill in China. The simulation results shown that the operating life of the landfill will be overestimated if the model does not consider the thermal effect during degradation of the solid substrate.

Liu Lei; Liang Bing; Xue Qiang; Zhao Ying; Yang Chun

2011-01-01T23:59:59.000Z

180

Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives -  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Infrastructure Propane Infrastructure and Fuel Incentives - SchagrinGAS to someone by E-mail Share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Facebook Tweet about Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Twitter Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Google Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Delicious Rank Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Digg Find More places to share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on AddThis.com... More in this section...

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural gas: Marine transportation. (Latest citations from Oceanic abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-02-01T23:59:59.000Z

182

Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-01-01T23:59:59.000Z

183

Macroscopic transport models for rarefied gas flows: a brief review  

Science Journals Connector (OSTI)

......which has a non-negative production. For space reasons...considered to describe the gas on the macroscopic level...description of rarefied gas flows with Knudsen numbers...fraction of the numerical cost of microscopic solvers...available only for monatomic gases. Since most gases of......

Henning Struchtrup; Peyman Taheri

2011-10-01T23:59:59.000Z

184

Gas Balancing Rules Must Take into account the Trade-off between Offering Pipeline Transport and Pipeline Flexibility in Liberalized Gas Markets  

E-Print Network [OSTI]

This paper analyses the value and cost of line-pack flexibility in liberalized gas markets through the examination of the techno-economic characteristics of gas transport pipelines and the trade-offs between the different ...

Keyaerts, Nico

185

DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions  

Broader source: Energy.gov [DOE]

Following the White House and the Department of Energy Capstone Methane Stakeholder Roundtable on July 29th, DOE announced a series of actions, partnerships, and stakeholder commitments to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions. Through common-sense standards, smart investments, and innovative research, DOE seeks to advance the state of the art in natural gas system performance. DOEs effort is part of the larger Administrations Climate Action Plan Interagency Strategy to Reduce Methane Emissions.

186

Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network [OSTI]

. These challenges have impeded efficient economic development of shale resources. New fundamental insights and tools are needed to improve the state of shale gas development. Few attempts have been made to model the compositional behavior of fluids in shale gas...

Freeman, Craig Matthew

2013-11-25T23:59:59.000Z

187

NGNP Infrastructure Readiness Assessment: Consolidation Report  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

Brian K Castle

2011-02-01T23:59:59.000Z

188

Constructing a Model Transport Equation for a Massless Bose Gas and its Analytic Solution  

E-Print Network [OSTI]

A model kinetic equation is constructed for the transport of a massless Bose gas. This equation is applied to solution of the boundary value problem for the transport of radiation in the half-space occupied by a dispersive medium that is in local thermal equilibrium with the radiation. It is shown that the difference in temperature between the dispersive medium and the incident radiation depends substantially on the character of the scattering properties of the particles of the medium.

A. V. Latyshev; A. A. Yushkanov

2010-12-14T23:59:59.000Z

189

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect (OSTI)

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

190

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

191

Infrastructure Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for advanced reactors, small modular reactors, space reactors, concentrated solar power, gas turbines, and fossil energy. advanced Energy Conversion sCo2 compressor wheels to...

192

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

SciTech Connect (OSTI)

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. In this report, the reactivity of AHI-5 was examined. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 70 {micro}m particles are reacted with 9000-18000 ppm hydrogen sulfide at 350-500 C. The range of space time of reaction gas mixtures is 0.071-0.088 s. The range of reaction duration is 4-10800 s.

K.C. Kwon

2001-01-01T23:59:59.000Z

193

Rapid Ammonia Gas Transport Accounts for Futile Transmembrane Cycling under NH3/NH4  

E-Print Network [OSTI]

Rapid Ammonia Gas Transport Accounts for Futile Transmembrane Cycling under NH3/NH4 + Toxicity) seedlings is predominately of the gaseous NH3 species, rather than the NH4 + ion. Influx of 13 NH3/13 NH4 + , which exceeded 200 mmol g­1 h­1 , was not commensurate with membrane depolarization or increases in root

Britto, Dev T.

194

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network [OSTI]

and Propulsion Alternative Fuels and Power Notes MarineMarine diesel oil (MDO), Liquefied natural gas (LNG), Wind power (sails) Aviation Airframe Design and PropulsionMarine Transportation (Based on Authors Calculations Using Multiple Sources, see Text and Table 4) Operations Aircraft/Ship and Propulsion

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

195

Vehicle Technologies Office: Transitioning the Transportation Sector- Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles  

Broader source: Energy.gov [DOE]

The "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" workshop report by Sandia National Laboratory summarizes a workshop that discussed common opportunities and challenges in expanding the use of hydrogen (H2) and natural gas (CNG or LNG) as transportation fuels.

196

The investigation of fracture aperture effect on shale gas transport using discrete fracture model  

Science Journals Connector (OSTI)

Abstract Discrete fracture model (DFM) numerical simulation is used to investigate the shale gas transports in fractured porous media in this paper. A new seepage flow mathematic model, in which flow in fracture meets Cubic law and matrix meets non-Darcy law, is adopted and fracture aperture effect on the transport behavior is simulated by solving the nonlinear partial differential equations using finite element analysis (FEA). In this DFM, fluid flows into wellbore which is surrounded by impermeable rock matrix is merely through fractures that connect to it. The model is used to simulate a random generated fractures network to study the flow and transport characteristics in fractured porous media (FPM). Several cases with different fracture aperture in same natural fractured model are given. The preliminary simulation results show that both the natural and hydraulic fracture aperture have a significant impact on shale gas migration and production.

Lidong Mi; Hanqiao Jiang; Junjian Li; Tao Li; Ye Tian

2014-01-01T23:59:59.000Z

197

Economical production of transportation fuels from coal, natural gas, and other carbonaceous feedstocks  

SciTech Connect (OSTI)

The Nation`s economy and security will continue to be vitally linked to an efficient transportation system of air, rail, and highway vehicles that depend on a continuous supply of liquid fuels at a reasonable price and with characteristics that can help the vehicle manufacturers meet increasingly strict environmental regulations. However, an analysis of US oil production and demand shows that, between now and 2015, a significant increase in imported oil will be needed to meet transportation fuel requirements. One element of an overall Department of Energy`s (DOE) strategy to address this energy security issue while helping meet emissions requirements is to produce premium transportation fuels from non-petroleum feedstocks, such as coal, natural gas, and biomass, via Fischer-Tropsch (F-T) and other synthesis gas conversion technologies.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Winslow, J.C.; Venkataraman, V.K.; Driscoll, D.J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

1998-12-31T23:59:59.000Z

198

Growth Dynamics and Gas Transport Mechanism of Nanobubbles in Graphene Liquid Cells  

E-Print Network [OSTI]

Formation, evolution, and vanishing of bubbles are common phenomena in our nature, which can be easily observed in boiling or falling waters, carbonated drinks, gas-forming electrochemical reactions, etc. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in liquid phase. Here we demonstrate, for the first time, that the nanobubbles in water encapsulated by graphene membrane can be visualized by in situ ultrahigh vacuum transmission electron microscopy (UHV-TEM), showing the critical radius of nanobubbles determining its unusual long-term stability as well as two distinct growth mechanisms of merging nanobubbles (Ostwald ripening and coalescing) depending on their relative sizes. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensa...

Shin, Dongha; Kim, Yong-Jin; Kim, Sang Jin; Kang, Jin Hyoun; Lee, Bora; Cho, Sung-Pyo; Hong, Byung Hee; Novoselov, Konstantin S

2014-01-01T23:59:59.000Z

199

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per and lower energy usage was reviewed. This factor is contained in the adopted Green Building Code Section 9 for the May 5, 2010 California Energy Commission business meeting. Thank you. John LaTorra Building Inspection

200

Evaluation of Type B shipping packages used to transport potentially flammable gas mixtures  

SciTech Connect (OSTI)

Using Type B shipping packages to transport radioactive materials within a potentially flammable gas mixture is a bold proposal. The Nuclear Regulatory Commission (NRC) has essentially prohibited such shipments. Furthermore, the NRC requires extensive modeling and/or testing of selective contents (e.g., Transuranic Waste) which are prone to generate hydrogen gas to demonstrate that, in general, a flammable mixture inside the containment vessel will not occur during shipment. Contrary to the NRC position, this paper proposes a rigorous containment vessel evaluation methodology to justify shipment of Type B quantities of radioactive materials in the presence of potentially flammable gas mixtures. The Department of Energy (DOE) is currently reviewing the methodology as applied to the 9975 package for shipment of plutonium oxide which may generate significant quantities of hydrogen gas.

Hensel, S.J.

2000-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hybrid Life-Cycle Assessment of Natural Gas Based Fuel Chains for Transportation  

Science Journals Connector (OSTI)

The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. ... Then, trucks are used to transport the fuels to a fueling station in Geneva, Switzerland. ... In evaluating fuel/vehicle options with the potential to improve the greenness of cars [diesel (direct injection) and ethanol in internal combustion engines, battery-powered, gasoline hybrid elec., and hydrogen fuel cells], we find no option dominates the others on all dimensions. ...

Anders Hammer Strmman; Christian Solli; Edgar G. Hertwich

2006-03-17T23:59:59.000Z

202

An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives  

Science Journals Connector (OSTI)

...and PEVs require a new energy infrastructure to be deployed...because hydrogen is an energy carrier, like electricity, that...number of different primary energy resources. There are...accomplished by thermochemical conversion of hydrocarbon fuels...

2014-01-01T23:59:59.000Z

203

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

SciTech Connect (OSTI)

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle, May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

204

Monitoring Infrastructure Capacity Monitoring Infrastructure Capacity  

E-Print Network [OSTI]

Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban) task. Monitoring infrastructure capacity is at least as complex as monitoring urban land markets Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban

Levinson, David M.

205

VEHICLE-INFRASTRUCTURE INTEGRATION (VII) ENABLED PLUG-IN HYBRID ELECTRIC VEHICLES (PHEVS) FOR TRAFFIC AND ENERGY MANAGEMENT.  

E-Print Network [OSTI]

??Vehicle Infrastructure Integration (VII) program (also known as IntelliDrive) has proven the potential to improve transportation conditions by enabling the communication between vehicles and infrastructure, (more)

Kang, Xueying

2009-01-01T23:59:59.000Z

206

Infrastructure Institutional Change Principle  

Broader source: Energy.gov [DOE]

Research shows that changes in infrastructure prompt changes in behavior (for better or worse). Federal agencies can modify their infrastructure to promote sustainability-oriented behavior change,...

207

Vehicle and Infrastructure Cash-Flow Evaluation (VICE) | Open...  

Open Energy Info (EERE)

us, u.s., commercial vehicle, energy, infrastructure, investment, diesel, gasoline, petroleum, ghg Transport Toolkit Region(s): Australia & North America UN Region: Northern...

208

Safety Hazard and Risk Identification and Management In Infrastructure Management  

E-Print Network [OSTI]

Infrastructure such as transportation networks improves the condition of everyday lives by facilitating public services and systems necessary for economic activity and growth. However, constructing and maintaining ...

Campbell, Jennifer Mary

2008-01-01T23:59:59.000Z

209

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Report Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan National Renewable Energy Laboratory National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov The Joint Institute for Strategic Energy Analysis 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.jisea.org Technical Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan

210

Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I  

SciTech Connect (OSTI)

This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

NONE

1997-12-01T23:59:59.000Z

211

Pipeline transportation and underground storage are vital and complementary components of the U  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in U.S. Natural Gas Transportation Infrastructure in 2004 Changes in U.S. Natural Gas Transportation Infrastructure in 2004 Energy Information Administration, Office of Oil and Gas, June 2005 1 This report looks at the level of growth that occurred within the U.S. natural gas transportation network during 2004. In addition, it includes a discussion and an analysis of recent gas pipeline development activities and an examination of additional projects proposed for completion over the next several years. Questions or comments on the contents of this article should be directed to James Tobin at james.tobin@eia.doe.gov or (202) 586-4835. Expansion of the U.S. natural gas transmission network slowed in 2004, both in terms of added transportation capacity and new pipeline mileage. Only about 1,450 miles

212

Model simulation and experiments of flow and mass transport through a nano-material gas filter  

SciTech Connect (OSTI)

A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing with experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.

Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir; Eckels, Steve

2013-11-01T23:59:59.000Z

213

Mass transport in gas-diffusion electrodes: A diagnostic tool for fuel-cell cathodes  

SciTech Connect (OSTI)

Two mathematical models of gas-diffusion electrodes, one for liquid electrolytes and one for ion-exchange polymer electrolytes, are presented to investigate the effects of mass-transport limitations on the polarization characteristics of a reaction obeying Tafel kinetics. The focus is on low-temperature fuel-cell cathodes, and in particular, contrasting two limiting cases that may be encountered at high current densities: control by kinetics and dissolved oxygen mass transport vs. control by kinetics and ionic mass transport. It is shown that two distinct double Tafel slopes may arise from these two limiting cases. The former is first order, and the latter is half-order with respect to oxygen concentration. How the modeling results may be applied to diagnose the performance of fuel-cell cathodes is also presented. Since the ionic-mass-transport-limited case has generally been neglected in previous gas-diffusion electrode models, specific examples of fuel-cell cathode data from the literature which display the behavior predicted by the models in this case are given and briefly discussed.

Perry, M.L.; Newman, J.; Cairns, E.J. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.]|[Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

1998-01-01T23:59:59.000Z

214

Quadrennial Energy Review Public Meeting #13: Energy Infrastructure...  

Office of Environmental Management (EM)

Quadrennial Energy Review Public Meeting 13: Energy Infrastructure Finance Monday, October 6, 2014 Opening Remarks of Peter Carnavos Director of Gas Supply Consolidated Edison...

215

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dexin Wang Dexin Wang Principal Investigator Gas Technology Institute 1700 South Mount Prospect Rd Des Plaines, Il 60018 847-768-0533 dexin.wang@gastechnology.org TransporT MeMbrane Condenser for WaTer and energy reCovery froM poWer planT flue gas proMIs/projeCT no.: nT0005350 Background One area of the U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program's research is being performed to develop advanced technologies to reuse power plant cooling water and associated waste heat and to investigate methods to recover water from power plant flue gas. Considering the quantity of water withdrawn and consumed by power plants, any recovery or reuse of this water can significantly reduce the plant's water requirements. Coal occurs naturally with water present (3-60 weight %), and the combustion

216

NETL: Carbon Storage - Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

217

Energy Transmission and Infrastructure  

SciTech Connect (OSTI)

The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); analyze the potential within the district to utilize farm wastes to produce biofuels; enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; identify the policy, regulatory, and financial barriers impeding development of a new energy system; and improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the Colleges yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

Mathison, Jane

2012-12-31T23:59:59.000Z

218

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells...

219

Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal  

SciTech Connect (OSTI)

This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

Eric P. Robertson

2007-09-01T23:59:59.000Z

220

Assisting Transit Agencies with Natural Gas Bus Technologies; Natural Gas Trasit Users Group (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and and infrastructure research, development, and deployment through its FreedomCAR and Vehicle Technologies Program to help the United States reduce its dependence on imported petro- leum and to pave the way to a future transportation network based on hydrogen. Natural gas vehicles can also reduce emissions of regulated pollutants compared with vehicles powered by conventional fuels such as gasoline

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electron Transport in a Two-Dimensional Electron Gas at GaAs/AlGaAs Heterointerface  

E-Print Network [OSTI]

in condensed matters. Two-dimensional electron gas (2DEG) at the GaAs/AlGaAs hetero-interface o ersThesis Electron Transport in a Two-Dimensional Electron Gas at GaAs/AlGaAs Heterointerface under of the art samples, the mean free path of electrons exceeds 10;4 m at low temperature. The achievement

Katsumoto, Shingo

222

The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers  

E-Print Network [OSTI]

Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

2013-01-01T23:59:59.000Z

223

Lattice-gas model for active vesicle transport by molecular motors with opposite polarities  

E-Print Network [OSTI]

We introduce a multi-species lattice gas model for motor protein driven collective cargo transport on cellular filaments. We use this model to describe and analyze the collective motion of interacting vesicle cargoes being carried by oppositely directed molecular motors, moving on a single biofilament. Building on a totally asymmetric exclusion process (TASEP) to characterize the motion of the interacting cargoes, we allow for mass exchange with the environment, input and output at filament boundaries and focus on the role of interconversion rates and how they affect the directionality of the net cargo transport. We quantify the effect of the various different competing processes in terms of non-equilibrium phase diagrams. The interplay of interconversion rates, which allow for flux reversal and evaporation/deposition processes introduce qualitatively new features in the phase diagrams. We observe regimes of three-phase coexistence, the possibility of phase re-entrance and a significant flexibility in how the different phase boundaries shift in response to changes in control parameters. The moving steady state solutions of this model allows for different possibilities for the spatial distribution of cargo vesicles, ranging from homogeneous distribution of vesicles to polarized distributions, characterized by inhomogeneities or {\\it shocks}. Current reversals due to internal regulation emerge naturally within the framework of this model. We believe this minimal model will clarify the understanding of many features of collective vesicle transport, apart from serving as the basis for building more exact quantitative models for vesicle transport relevant to various {\\it in-vivo} situations.

Sudipto Muhuri; Ignacio Pagonabarraga

2010-09-09T23:59:59.000Z

224

Critical Infrastructure Interdependency Modeling: A Survey of U.S. and International Research  

SciTech Connect (OSTI)

The Nations health, wealth, and security rely on the production and distribution of certain goods and services. The array of physical assets, processes, and organizations across which these goods and services move are called "critical infrastructures".1 This statement is as true in the U.S. as in any country in the world. Recent world events such as the 9-11 terrorist attacks, London bombings, and gulf coast hurricanes have highlighted the importance of stable electric, gas and oil, water, transportation, banking and finance, and control and communication infrastructure systems. Be it through direct connectivity, policies and procedures, or geospatial proximity, most critical infrastructure systems interact. These interactions often create complex relationships, dependencies, and interdependencies that cross infrastructure boundaries. The modeling and analysis of interdependencies between critical infrastructure elements is a relatively new and very important field of study. The U.S. Technical Support Working Group (TSWG) has sponsored this survey to identify and describe this current area of research including the current activities in this field being conducted both in the U.S. and internationally. The main objective of this study is to develop a single source reference of critical infrastructure interdependency modeling tools (CIIMT) that could be applied to allow users to objectively assess the capabilities of CIIMT. This information will provide guidance for directing research and development to address the gaps in development. The results will inform researchers of the TSWG Infrastructure Protection Subgroup of research and development efforts and allow a more focused approach to addressing the needs of CIIMT end-user needs. This report first presents the field of infrastructure interdependency analysis, describes the survey methodology, and presents the leading research efforts in both a cumulative table and through individual datasheets. Data was collected from open source material and when possible through direct contact with the individuals leading the research.

Not Available

2006-08-01T23:59:59.000Z

225

National Environmental Information Infrastructure  

E-Print Network [OSTI]

National Environmental Information Infrastructure: Reference Architecture Contributing Information Infrastructure: Reference Architecture v1.1 Environmental Information Programme Publication Series: Reference Architecture, Environmental Information Programme Publication Series, document no. 4, Bureau

Greenslade, Diana

226

Hydrogen Regional Infrastructure Program in Pennsylvania  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REGIONAL REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhD Melissa Klingenberg, PhD Hydrogen Program Hydrogen Program Air Products and Chemicals, Inc. (APCI) Hydrogen Separation Hydrogen Sensors Resource Dynamics Corporation (RDC) Tradeoff/Sensitivity Analyses of Hydrogen Delivery Approaches EDO Fiber Science High Pressure/High Strength Composite Material Development and Prototyping CTC * Program Management * Hydrogen Delivery - CH 4 /H 2 co-transport - H 2 separation - Delivery approaches * Advanced Materials - Characterization - Testing/Analyses - Predictive Modeling * Sensors SRNL Pipeline Life Management Program Develop infrastructure technology for a H 2 economy Aims to serve as "go-to" organization to catalyze PA Hydrogen

227

Hole transport in the rare-gas solids Ne, Ar, Kr, and Xe  

Science Journals Connector (OSTI)

This paper reports an investigation of the drift mobility of excess holes in solid Ne, Ar, Kr, and Xe. Thin-crystal specimens (50-500 ?m thick) were grown from the liquid between parallel-plate electrodes in a chamber attached to a miniature cryostat after purification of the starting gas. As in previous work on the electron transport in rare-gas solids and liquids, an electron-beam technique was used to generate excess carriers near one of the electrodes. Holes were extracted by the applied field and their transit time was measured directly, leading to the drift mobility ?h. Close to the triple points, ?h values in the above crystals lie between 1 10-2 and 4 10-2 cm2 V-1 sec-1, several orders of magnitude lower than the corresponding electron mobilities. The form of the temperature dependence of ?h changes progressively from Xe(?h?T-1.6) to an essentially activated mobility in Ar and Ne. The experimental results have been analyzed in terms of small-polaron theory, using both the adiabatic and nonadiabatic approximations. The theory can account for the different forms of the temperature dependence and possible ranges of values for the predominant phonon energy, the polaron binding energy and the transfer energy for holes have been deduced in each case. These quantities, characterizing the hole hopping transport, vary systematically from Xe to Ne and their correlation is discussed in some detail.

P. G. Le Comber; R. J. Loveland; W. E. Spear

1975-04-15T23:59:59.000Z

228

Proposal for Qualification of Gas-Generating Radioactive Payloads for Transportation within a Type B Package  

SciTech Connect (OSTI)

Characterization data describing radioactive materials (RAM) in storage are likely those associated with the processes that produced the materials or with the mission for which they were produced. Along with impurity data, often absent or unknown as a result of post-processing storage environment is moisture content. Radiolysis of moisture may lead to a hydrogen flammability hazard within a closed volume such as a storage can or a transportation package. This paper offers a practical means of qualifying payloads of unknown moisture content for shipment within Type B packaging, while supporting the DOE program to maintain radworker dose as low as reasonable achievable (ALARA). Specifically, the paper discusses part of a qualification program carried out at the Savannah River Site for onsite shipment of legacy RAM within the DDF-1 package. The DDF-1 is an onsite-only prototype of the currently certified 9975 package. Measurement of storage-can lid bulge can provide an upper bound for pressure within a storage can. Subsequent belljar testing can measure the rate of gas leakage from a storage can. These actions are shown sufficient to ensure that the performance of the 9975 containment vessels can accommodate the deflagration energy from flammable gas mixtures within Normal Conditions of Transport, and, and the consequences of a detonation shock wave within Hypothetical Accident Conditions.

Houghtaling, T.K.

2002-06-07T23:59:59.000Z

229

Alternative Fuels Data Center: Biofuel Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Fueling Biofuel Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Biofuel Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Biofuel Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Fueling Infrastructure Grants The Tennessee Department of Transportation (TDOT) engages in public-private

230

California Hydrogen Infrastructure Project  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ???¢????????real-world???¢??????? retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation???¢????????s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products???¢???????? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user???¢????????s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

231

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas Compressed Natural Gas (CNG) Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on AddThis.com...

232

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas Compressed Natural Gas (CNG) Fueling Infrastructure Inspection to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on AddThis.com...

233

National Infrastructure Protection Plan  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Infrastructure Protection Plan 2006 Preface Preface i The ability to protect the critical infrastructure and key resources (CI/KR) of the United States is vital to our national security, public health and safety, economic vitality, and way of life. U.S. policy focuses on the importance of enhancing CI/KR protection to ensure that essential governmental missions, public services, and economic functions are maintained in the event of a

234

Benefits of green infrastructure Benefits of green infrastructure  

E-Print Network [OSTI]

Benefits of green infrastructure 1 #12;Benefits of green infrastructure 2 #12;Benefits of green infrastructure 3 Benefits of green infrastructure Report to Defra and CLG October 2010 Prepared by Land The report should be cited as: Forest Research (2010). Benefits of green infrastructure. Report to Defra

235

Consumer Acceptance and Public Policy Charging Infrastructure Group E Breakout Session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Group E Charging Infrastructure Breakout Session #1 - Brainstorm Consumer Acceptance Barriers and Infrastructure Scenarios * Infrastructure Scenarios * Domicile & Workplace Charging: Being available were vehicles spend a lot of time (Level 1/2) * Gas Station model * Fast charging * Battery Swap * Flow Batteries: Electrolyte swap for long distance traveling * Dynamic Wireless Charging * Strategically placed and visible * Widespread and visible Charging Infrastructure (Group E) July 30, 2012 Breakout Session #2 - Refine Consumer Acceptance Concepts and Infrastructure Scenarios * DOE Actions for Fast Charging Scenario: * R&D on power transfer rates for batteries * Energy storage research to minimize grid impacts and demand charges

236

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

237

California Low Carbon Fuels Infrastructure Investment Initiative...  

Broader source: Energy.gov (indexed) [DOE]

* Transform entire existing gas stations into clean transportation hubs, offering new fuel options to a broader customer base * Create cost-effective efficiencies for quick...

238

Disruptions in Interdependent Infrastructure Systems: A Network Flows Approach1  

E-Print Network [OSTI]

1 Disruptions in Interdependent Infrastructure Systems: A Network Flows Approach1 John E. Mitchell infrastructure systems, such as transportation, energy, telecommunications and water. Clearly, disruption of any in order to provide services, such as power delivery, voice and data transmission. Each system's components

Mitchell, John E.

239

An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives  

Science Journals Connector (OSTI)

...will have peak-power devices such as high-power batteries or...Fuel-cell passenger cars and sport utility...feedstocks (water, electricity...Comparing land, water, and materials...hybrid vehicles: power sources, models...using a motor car. Transport...

2014-01-01T23:59:59.000Z

240

ENERGY EFFICIENT INTERNET INFRASTRUCTURE  

E-Print Network [OSTI]

. D R A F T October 27, 2010, 11:34pm D R A F T #12;2 ENERGY EFFICIENT INTERNET INFRASTRUCTURE FigureCHAPTER 1 ENERGY EFFICIENT INTERNET INFRASTRUCTURE Weirong Jiang, Ph.D.1 , and Viktor K. Prasanna]. In other words, an IP address may match multiple prefixes, but only the longest D R A F T October 27, 2010

Prasanna, Viktor K.

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM  

E-Print Network [OSTI]

to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development #12;FundingHYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhDMelissa Klingenberg, PhD #12;Hydrogen ProgramHydrogen Program Air Products

242

NREL: Sustainable NREL - Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

station. NREL's growing alternative fuel infrastructure will include compressed natural gas, ethanol 85, and electric vehicle charging stations. NREL's highly replicable...

243

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

244

Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle  

Broader source: Energy.gov [DOE]

H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. Through...

245

Reliable Muddle: Transportation Scenarios for the 80% Greenhouse Gas Reduction Goal for 2050 (Presentation)  

SciTech Connect (OSTI)

Presentation describing transportation scenarios for meeting the 2050 DOE goal of reducing greenhouse gases by 80%.

Melaina, M.; Webster, K.

2009-10-28T23:59:59.000Z

246

Sustainable Transport in Canadian Cities: Cycling Trends and Policies  

E-Print Network [OSTI]

Transport, Montreal, Quebec. Canada. Alberta InfrastructureResearch Part A 33 (7/8): 625654. Quebec Ministry ofTransport (Transports Quebec). 2004. Provincial Assistance

Pucher, John; Buehler, Ralph

2006-01-01T23:59:59.000Z

247

Community Development Block Grant/Economic Development Infrastructure  

Broader source: Energy.gov (indexed) [DOE]

Community Development Block Grant/Economic Development Community Development Block Grant/Economic Development Infrastructure Financing (CDBG/EDIF) (Oklahoma) Community Development Block Grant/Economic Development Infrastructure Financing (CDBG/EDIF) (Oklahoma) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Systems Integrator Fuel Distributor Nonprofit Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Program Type Grant Program Loan Program Community Development Block Grant/Economic Development Infrastructure Financing (CDBG/EDIF) provides public infrastructure financing to help

248

Assessing Vulnerabilities, Risks, and Consequences of Damage to Critical Infrastructure  

SciTech Connect (OSTI)

Since the publication of 'Critical Foundations: Protecting America's Infrastructure,' there has been a keen understanding of the complexity, interdependencies, and shared responsibility required to protect the nation's most critical assets that are essential to our way of life. The original 5 sectors defined in 1997 have grown to 18 Critical Infrastructures and Key Resources (CIKR), which are discussed in the 2009 National Infrastructure Protection Plan (NIPP) and its supporting sector-specific plans. The NIPP provides the structure for a national program dedicated to enhanced protection and resiliency of the nation's infrastructure. Lawrence Livermore National Laboratory (LLNL) provides in-depth, multi-disciplinary assessments of threat, vulnerability, and consequence across all 18 sectors at scales ranging from specific facilities to infrastructures spanning multi-state regions, such as the Oil and Natural Gas (ONG) sector. Like many of the CIKR sectors, the ONG sector is comprised of production, processing, distribution, and storage of highly valuable and potentially dangerous commodities. Furthermore, there are significant interdependencies with other sectors, including transportation, communication, finance, and government. Understanding the potentially devastating consequences and collateral damage resulting from a terrorist attack or natural event is an important element of LLNL's infrastructure security programs. Our work began in the energy sector in the late 1990s and quickly expanded other critical infrastructure sectors. We have performed over 600 physical assessments with a particular emphasis on those sectors that utilize, store, or ship potentially hazardous materials and for whom cyber security is important. The success of our approach is based on building awareness of vulnerabilities and risks and working directly with industry partners to collectively advance infrastructure protection. This approach consists of three phases: The Pre-Assessment Phase brings together infrastructure owners and operators to identify critical assets and help the team create a structured information request. During this phase, we gain information about the critical assets from those who are most familiar with operations and interdependencies, making the time we spend on the ground conducting the assessment much more productive and enabling the team to make actionable recommendations. The Assessment Phase analyzes 10 areas: Threat environment, cyber architecture, cyber penetration, physical security, physical penetration, operations security, policies and procedures, interdependencies, consequence analysis, and risk characterization. Each of these individual tasks uses direct and indirect data collection, site inspections, and structured and facilitated workshops to gather data. Because of the importance of understanding the cyber threat, LLNL has built both fixed and mobile cyber penetration, wireless penetration and supporting tools that can be tailored to fit customer needs. The Post-Assessment Phase brings vulnerability and risk assessments to the customer in a format that facilitates implementation of mitigation options. Often the assessment findings and recommendations are briefed and discussed with several levels of management and, if appropriate, across jurisdictional boundaries. The end result is enhanced awareness and informed protective measures. Over the last 15 years, we have continued to refine our methodology and capture lessons learned and best practices. The resulting risk and decision framework thus takes into consideration real-world constraints, including regulatory, operational, and economic realities. In addition to 'on the ground' assessments focused on mitigating vulnerabilities, we have integrated our computational and atmospheric dispersion capability with easy-to-use geo-referenced visualization tools to support emergency planning and response operations. LLNL is home to the National Atmospheric Release Advisory Center (NARAC) and the Interagency Modeling and Atmospheric Assessment Center (IMAAC). NA

Suski, N; Wuest, C

2011-02-04T23:59:59.000Z

249

infrastructure | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Infrastructure Core Storage R&D Storage Infrastructure Strategic Program Support NATCARBAtlas Program Plan Project Portfolio Publications Carbon Storage Newsletter FAQs...

250

Innovations in Nuclear Infrastructure  

Broader source: Energy.gov (indexed) [DOE]

Innovations in Nuclear Infrastructure Innovations in Nuclear Infrastructure and Education (INIE) Innovations in Nuclear Infrastructure and Education (INIE) Presented to the Nuclear Energy Research Advisory Committee Crystal City, Virginia John Gutteridge Director, University Programs Office of Nuclear Energy, Science and Technology September 30 - October 1, 2002 Office of Nuclear Energy, Science and Technology Gutteridge/Sep-Oct_02 INIE-NERAC.ppt (2) INIE The Stimuli .... INIE The Stimuli .... 6 Declining number of operating university research/training reactors 6 Dwindling student population in nuclear engineering 6 Closing or loss of identity of university nuclear engineering programs 6 Looming shortage of nuclear engineering graduates 6 Threat of additional reactor closures -- Cornell, Michigan, MIT

251

Building Out Alternative Fuel Retail Infrastructure: Government Fleet Spillovers in E85  

E-Print Network [OSTI]

of Energy, 1996, Alternative Fuel Transportation Program:Lim, 2007, Location of Alternative Fuel Stations Using theWP 188 Building Out Alternative Fuel Retail Infrastructure:

Corts, Kenneth S.

2009-01-01T23:59:59.000Z

252

Technical Workshop: Resilience Metrics for Energy Transmission and Distribution Infrastructure  

Broader source: Energy.gov [DOE]

During this workshop, EPSA invited technical experts from industry, national laboratories, and NGOs to discuss the need for resilience metrics and how they vary by natural gas, liquid fuels and electric grid infrastructures.

253

Sustainable Buildings and Infrastructure | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Buildings and Infrastructure Sustainable Buildings and Infrastructure "A sustainable society is one which satisfies its needs without diminishing the prospects of future generations." - Lester R. Brown, Founder and President, Worldwatch Institute Department of Energy facilities managers have a significant role to play in achieving the goals of E.O. 13423, Strengthening Federal Environmental Energy and Transportation Management and E.O. 13514, Federal Leadership in Environmental, Energy, and Economic Performance. The expectation is that DOE will build, operate and maintain energy efficient, environmentally sensitive buildings that provide a comfortable and productive working environment. DOE Sustainable Environmental Stewardship will reduce the

254

BNL | Cloud Lifecycle Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Life Cycle Infrastructure Cloud Life Cycle Infrastructure An important component of any long-term atmospheric measurement program is the quality control and maintenance of the datastreams from instrument systems. Further, the raw measurements from atmospheric remote sensing instrumentation are not directly useable by the majority of the scientific community. These raw measurements must be interpreted and converted to geophysical quantities that can be more readily used by a greater number of scientists to address important questions regarding the Earth's climate system. The cloud life cycle infrastructure group at BNL is led by Dr. Michael Jensen and is responsible for the development and production of cloud-related value-added products (VAPs). The cloud life cycle infrastructure group also provides mentorships for the millimeter cloud

255

IPHE Infrastructure Workshop Proceedings  

Fuel Cell Technologies Publication and Product Library (EERE)

This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fuelin

256

Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling  

SciTech Connect (OSTI)

Todays society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS, examines the interrelationships between infrastructure networks. CIMS development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwins theory of evolution. A GA can be coupled with CIMS to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS and the preliminary results.

Not Available

2007-05-01T23:59:59.000Z

257

Building safeguards infrastructure  

SciTech Connect (OSTI)

Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

Stevens, Rebecca S [Los Alamos National Laboratory; Mcclelland - Kerr, John [NNSA/NA-242

2009-01-01T23:59:59.000Z

258

MFC Communications Infrastructure Study  

SciTech Connect (OSTI)

Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure. The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard. This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

2012-01-01T23:59:59.000Z

259

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

14, 2012 | Release Date: Mar. 15, 14, 2012 | Release Date: Mar. 15, 2012 | Next Release: Mar. 22, 2012 Previous Issues Week: 12/29/2013 (View Archive) JUMP TO: In The News | Overview | Prices | Storage In the News: Alternative Transportation Fuels Infrastructure Increases from Mid-2000s Levels. Natural gas vehicles can run on either compressed natural gas (CNG) or liquefied natural gas (LNG). LNG and CNG fueling infrastructure has grown over the past several years, and recently, companies in the private sector have announced plans to invest in infrastructure and new technology. Currently, the vast majority of vehicles that use natural gas are powered by CNG, and over 900 of these fueling stations exist in the United States, with more than 50 percent restricted to private access only. The state with

260

Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Economic implications of natural gas vehicle technology in U.S. private automobile transportation  

E-Print Network [OSTI]

Transportation represents almost 28 percent of the United States' energy demand. Approximately 95 percent of U.S. transportation utilizes petroleum, the majority of which is imported. With significant domestic conventional ...

Kragha, Oghenerume Christopher

2010-01-01T23:59:59.000Z

262

Use of high-temperature gas-tight electrochemical cells to measure electronic transport and thermodynamics in metal oxides  

SciTech Connect (OSTI)

By using a gas-tight electrochemical cell, the authors can perform high-temperature coulometric titration and measure electronic transport properties to determine the electronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilized zirconia (YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressures (pO{sub 2} = 10{sup {minus}35} to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria (Ca-CeO{sub 2} and CeO{sub 2}), copper oxides, and copper-oxide-based ceramic superconductors, transition metal oxides, SrFeCo{sub 0.5}O{sub x}, and BaTiO{sub 3}.

Park, J.H.; Ma, B.; Park, E.T. [Argonne National Lab., IL (United States). Energy Technology Div.

1997-10-01T23:59:59.000Z

263

Hydrogen Production Infrastructure Options Analysis  

Broader source: Energy.gov [DOE]

Presentation on hydrogen production and infrastructure options presented at the DOE Transition Workshop.

264

Geographically-Based Infrastructure Analysis for California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geographically-Based Infrastructure Geographically-Based Infrastructure Analysis for California Joan Ogden Institute of Transportation Studies University of California, Davis Presented at the USDOE Hydrogen Transition Analysis Meeting Washington, DC August 9-10, 2006 Acknowledgments UC Davis Researchers: Michael Nicholas Dr. Marc Melaina Dr. Marshall Miller Dr. Chris Yang USDOE: Dr. Sig Gronich Research support: USDOE; H2 Pathways Program sponsors at UC Davis * Refueling station siting and sizing are key aspects of designing H2 infrastructure during a transition * Initial H2 stations may be co-located with vehicle fleets * Wider consumer adoption of H2 vehicles depends on fuel availability and cost (which are related to station number, size and location), + other factors. * Decision when and where to deploy network

265

Securing Infrastructure from High Explosive Threats  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

2009-03-20T23:59:59.000Z

266

A Lagrangean Decomposition Heuristic for the Design and Planning of Offshore Hydrocarbon Field Infrastructures with Complex Economic Objectives  

Science Journals Connector (OSTI)

A Lagrangean Decomposition Heuristic for the Design and Planning of Offshore Hydrocarbon Field Infrastructures with Complex Economic Objectives ... An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure ... An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure ...

Susara A. van den Heever; Ignacio E. Grossmann; Sriram Vasantharajan; Krisanne Edwards

2001-06-02T23:59:59.000Z

267

The Integration of a Structural Water-Gas-Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 The InTegraTIon of a STrucTural WaTer- gaS-ShIfT caTalyST WITh a VanadIum alloy hydrogen TranSporT deVIce Description The purpose of this project is to produce a scalable device that simultaneously performs both water-gas-shift (WGS) and hydrogen separation from a coal-derived synthesis gas stream. The justification of such a system is the improved efficiency for the overall production of hydrogen. Removing hydrogen from the synthesis gas (syngas) stream allows the WGS reaction to convert more carbon monoxide (CO) to carbon dioxide (CO 2 ) and maximizes the total hydrogen produced. An additional benefit is the reduction in capital cost of plant construction due to the removal of one step in the process by integrating WGS with the membrane separation device.

268

Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities  

Broader source: Energy.gov [DOE]

Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy (DOE) Public Meeting on Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nations energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session. The meeting will be livestreamed at energy.gov/live

269

Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones  

E-Print Network [OSTI]

in previous studies. This dissertation systematically investigates their influence on the gas phase flow and transport of VOCs in soil and ground water remediation processes using analytically and numerically mathematical modeling. New semi...

You, Kehua

2013-04-19T23:59:59.000Z

270

Effective hardware for connection and repair of polyethylene pipelines using ultrasonic modification and heat shrinkage. Part 1. Aspects of connection and restoration of polymeric pipelines for gas transport  

Science Journals Connector (OSTI)

Aspects of the connection and restoration of polymeric pipelines for gas transport with the use of ... obtained, which can be used for the repair and restoration of polymeric pipelines, and to reduce the level of...

A. E. Kolosov; O. S. Sakharov; V. I. Sivetskii

2011-07-01T23:59:59.000Z

271

LNG infrastructure and equipment  

SciTech Connect (OSTI)

Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

Forgash, D.J.

1995-12-31T23:59:59.000Z

272

EV Charging Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charging Infrastructure Charging Infrastructure JOHN DAVIS: Virtually anywhere in the U.S. you can bring light to a room with the flick of a finger. We take it for granted, but creating the national electric grid to make that possible took decades to accomplish. Now, in just a few years, we've seen the birth of a new infrastructure that allows electric vehicles to quickly recharge their batteries at home, work, or wherever they may roam. But this rapid growth has come with a few growing pains. Starting with less than 500 in 2009, there are now over 19,000 public-access charging outlets available to electric vehicles owners at commuter lots, parking garages, airports, retail areas and thousands of

273

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network [OSTI]

of a lower estimate for the bunker inventory: Comment on Transport: Aviation and Marine (Bunker Fuels), see http://commonly referred to as bunker fuels to differentiate them

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

274

Hydrogen Production Infrastructure Options Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Production Infrastructure Options Analysis January 26, 2006 Brian D. James Julie Perez Peter Schmidt (703) 243 - 3383 Brian_James@DirectedTechnologies.com Directed Technologies, Inc. Page 1 of 39 26 January 2006 2006-1-26 DOE Transition Workshop Agenda 1. Project Description and Objective 2. Team Members 3. Approach 4. Model Theory, Structure and Assumptions 5. Model Description 1. Logic 2. Features 3. Cost Components (Production, Delivery & Dispensing) 6. Los Angeles Transitional Example 7. Model Flexibility Page 2 of 39 26 January 2006 2006-1-26 DOE Transition Workshop Team Members & Interactions Start: May 2005 (effective) End: Summer 2007 * Directed Technologies, Inc.- Prime * Sentech, Inc., Research Partner * Air Products, Industrial Gas Supplier * Advisory Board * Graham Moore, Chevron Technology Ventures

275

Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reduced Compressed Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL to someone by E-mail Share Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Facebook Tweet about Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Twitter Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Google Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Delicious Rank Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Digg Find More places to share Alternative Fuels Data Center: Reduced

276

Transportation  

Science Journals Connector (OSTI)

The romantic rides in Sandburgs eagle-car changed society. On the one hand, motor vehicle transportation is an integral thread of societys fabric. On the other hand, excess mobility fractures old neighborh...

David Hafemeister

2014-01-01T23:59:59.000Z

277

A Roadmap to Funding Infrastructure Development | Open Energy Information  

Open Energy Info (EERE)

Roadmap to Funding Infrastructure Development Roadmap to Funding Infrastructure Development Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Roadmap to Funding Infrastructure Development Agency/Company /Organization: OECD/ITF Complexity/Ease of Use: Not Available Website: www.internationaltransportforum.org/jtrc/DiscussionPapers/DP201209.pdf Related Tools European Green Cars Initiative Asian Development Bank - Transport TRANSfer - Towards climate-friendly transport technologies and measures ... further results Find Another Tool FIND TRANSPORTATION TOOLS This paper discusses the initiatives and procedures necessary for the successful development of large-scale transportation Public Private Partnership projects from a developer's point of view. The topics covered in this paper include: Project Procurement, Proper Risk Allocation, and

278

e-infrastructures  

Science Journals Connector (OSTI)

In the last decades, the Internet and the World Wide Web have evolved into a new infrastructure for science, business, and the public. Driven by the need to better cope with recent trends and developments caused by globalization, complexity, and the ...

Wolfgang Gentzsch

2007-09-01T23:59:59.000Z

279

Influence of the Gas-Water Interface on Transport of Microorganisms through Unsaturated Porous Media  

Science Journals Connector (OSTI)

...gray spots on the dark air-bubble surface (Fig. 2b shows a clean gas bubble and glass surface under the...lighting conditions). The ionic strength was 1.0 mM NaNO3 (pH 6...preferentially sorbed onto a trapped gas bubble relative to the nearby glass...

Jiamin Wan; John L. Wilson; Thomas L. Kieft

1994-02-01T23:59:59.000Z

280

Influence of the Gas-Water Interface on Transport of Microorganisms through Unsaturated Porous Media  

Science Journals Connector (OSTI)

...conditions. This difference was interface. The sorption appears to...sorption at the gas-water interface increases with in- Fhese...pore throats. (ii) The standard hypothesis with other strains...for the A static gas-water interface sorbs and retains microorganisms...

Jiamin Wan; John L. Wilson; Thomas L. Kieft

1994-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Development Infrastructure Grant Program (Mississippi) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Development Infrastructure Grant Program (Mississippi) Development Infrastructure Grant Program (Mississippi) The Development Infrastructure Grant Program (Mississippi) < Back Eligibility Construction Developer Local Government Municipal/Public Utility Schools Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate $150,000 Program Info State Mississippi Program Type Grant Program Provider Community Service Divison The Development Infrastructure Grant Program (DIP) is a grant program that is available to fund publicly owned infrastructure, including electricity generation and distribution. Funding from this program can be used by municipalities and counties to assist with the location or expansion of businesses. Usage of the funds must be directly related to the

282

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis  

Science Journals Connector (OSTI)

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis ... This paper, which is the first part of a series of papers, introduces a hybrid coal, biomass, and natural gas to liquids (CBGTL) process that can produce transportation fuels in ratios consistent with current U.S. transportation fuel demands. ... Steady-state process simulation results based on Aspen Plus are presented for the seven process alternatives with a detailed economic analysis performed using the Aspen Process Economic Analyzer and unit cost functions obtained from literature. ...

Richard C. Baliban; Josephine A. Elia; Christodoulos A. Floudas

2010-07-19T23:59:59.000Z

283

AN ASSESSMENT OF ENERGY AND ENVIRONMENTAL ISSUES RELATED TO THE USE OF GAS-TO-LIQUID FUELS IN TRANSPORTATION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

submitted manuscript has been submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE- AC05-96OR22464. Accordingly, the U.S. Government retains a non- exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes." ORNL/TM-1999/258 AN ASSESSMENT OF ENERGY AND ENVIRONMENTAL ISSUES RELATED TO THE USE OF GAS-TO-LIQUID FUELS IN TRANSPORTATION David L. Greene Center for Transportation Analysis Oak Ridge National Laboratory November 1999 Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U. S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464 iii TABLE OF CONTENTS LIST OF FIGURES . .

284

Transportation Energy Futures Series: Alternative Fuel Infrastructure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the U.S. Department of Energy by National Renewable Energy Laboratory, Golden, CO. DOEGO-102013-3710. 101 pp. vi REPORT CONTRIBUTORS AND ROLES National Renewable Energy...

285

Before the House Transportation and Infrastructure Subcommittee...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Emergency Management By: Drury Crawley, Office of Energy Efficiency and Renewable Energy Subject: Benefits of Green Buildings 7-16-09FinalTestimony(Crawley).pdf More...

286

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

287

Investigating the strategic impacts of natural gas on transportation fuel diversity and vehicle flexibility  

E-Print Network [OSTI]

The near-total dependence of the U.S. transportation system on oil has been attributed to exposing consumers to price volatility, increasing the trade imbalance, weakening U.S. foreign policy options, and raising climate ...

Chao, Alice K

2013-01-01T23:59:59.000Z

288

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network [OSTI]

and Multiple engines Marine diesel oil (MDO), Liquefiedmarine transport, larger ships, new combined cycle or diesel-electric engines,diesel-electric engines, and optimized hull and propeller designs could provide an additional 17 percent reduction in marine

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

289

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Vehicle Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service on Digg Find More places to share Alternative Fuels Data Center: Natural Gas

290

Public Power Infrastructure Protection Act (Nebraska) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Power Infrastructure Protection Act (Nebraska) Power Infrastructure Protection Act (Nebraska) Public Power Infrastructure Protection Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Safety and Operational Guidelines Provider Nebraska Public Power District This statute affirms the state's commitment to protecting electric

291

Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies  

E-Print Network [OSTI]

Liquefied natural gas (LNG), Wind power (sails) Aviationand Policies the use of LNG will result in a small 2 percentbe a much greater potential to use LNG aboard most ships if

McCollum, David L; Gould, Gregory; Greene, David L

2010-01-01T23:59:59.000Z

292

Energy market failure in road transport: Is there scope for no regrets greenhouse gas reduction?  

Science Journals Connector (OSTI)

The Australian Government policy on reduction of greenhouse gas emissions announced in 1990 includes exploring the scope for immediate, low cost reductions. Such measures can be taken as including no regrets...

Barry Naughten; Bruce Bowen; Tony Beck

1993-12-01T23:59:59.000Z

293

Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to tritium migration.

C. Cooper; M. Ye; J. Chapman

2008-04-01T23:59:59.000Z

294

Assessment of Future Vehicle Transportation Options and their Impact on the Electric Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Future Vehicle Transportation Future Vehicle Transportation Options and Their Impact on the Electric Grid January 10, 2010 New Analysis of Alternative Transportation Technologies 3 What's New? * Additional Alternative Transportation Vehicles - Compressed Air Vehicles (CAVs) * Use electricity from the grid to power air compressor that stores compressed air - Natural Gas Vehicles (NGVs) * Connection to grid is in competing demand for fuel * Still an internal combustion engine (ICE) - Hydrogen Vehicles * Use fuel cell technology, no connection to electricity grid 4 General Takeaways * CAVs - Unproven technology - Poor environmental performance - High cost * NGVs - Poor environmental performance - Lack of refueling infrastructure - Cheaper fuel cost than ICEs - No direct impact on electric power grid * Hydrogen - Unproven technology

295

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

296

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

What Consumers Should Know What Consumers Should Know An Assessment of Prices of Natural Gas Futures Contracts As A Predictor of Realized Spot Prices at the Henry Hub Overview of U.S. Legislation and Regulations Affecting Offshore Natural Gas and Oil Activity Changes in U.S. Natural Gas Transportation Infrastructure in 2004 Major Legislative and Regulatory Actions (1935 - 2004) U.S. Natural Gas Imports and Exports: Issues and Trends 2003 U.S. LNG Markets and Uses: June 2004 Natural Gas Restructuring Previous Issues of Natural Gas Weekly Update Natural Gas Homepage EIA's Natural Gas Division Survey Form Comments Overview: Thursday, December 1, 2005 (next release 2:00 p.m. on December 8) Colder-than-normal temperatures contributed to widespread price increases in natural gas spot markets since Wednesday, November 23 as heating demand increased. For the week (Wednesday to Wednesday), the spot price at the Henry Hub gained 59 cents per MMBtu, or about 5 percent, to trade at $11.73 per MMBtu yesterday (November 30). Similarly, at the NYMEX, the price for the futures contract for January delivery at the Henry Hub gained 54 cents since last Wednesday to close yesterday at $12.587 per MMBtu. Natural gas in storage as of Friday, November 25, decreased to 3,225 Bcf, which is 6.3 percent above the 5 year average. The spot price for West Texas Intermediate (WTI) crude oil dropped $1.02 per barrel, or about 2 percent, since last Wednesday to trade yesterday at $57.33 per barrel or $9.88 per MMBtu.

297

Upcoming Webinar December 16: International Hydrogen Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges...

298

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

299

International Hydrogen Infrastructure Challenges Workshop Summary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE...

300

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Due to limited parking, all visitors are strongly encouraged to: Due to limited parking, all visitors are strongly encouraged to: 1) car-pool, 2) take the Lab's special conference shuttle service, or 3) take the regular off-site shuttle. If you choose to use the regular off-site shuttle bus, you will need an authorized bus pass, which can be obtained by contacting Eric Essman in advance. Transportation & Visitor Information Location and Directions to the Lab: Lawrence Berkeley National Laboratory is located in Berkeley, on the hillside directly above the campus of University of California at Berkeley. The address is One Cyclotron Road, Berkeley, California 94720. For comprehensive directions to the lab, please refer to: http://www.lbl.gov/Workplace/Transportation.html Maps and Parking Information: On Thursday and Friday, a limited number (15) of barricaded reserved parking spaces will be available for NON-LBNL Staff SNAP Collaboration Meeting participants in parking lot K1, in front of building 54 (cafeteria). On Saturday, plenty of parking spaces will be available everywhere, as it is a non-work day.

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Pennsylvania Regional Infrastructure Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CTC Team CTC Team 1 Pennsylvania Regional Infrastructure Project Presentation by: The Concurrent Technologies Corporation (CTC) Team January 6, 2004 The CTC Team 2 Presentation Outline Introduction of CTC Team CTC Background Technical Approach - CTC Team Member Presentations Conclusions The CTC Team 3 The CTC Project Team Concurrent Technologies Corporation Program Management and Coordination Hydrogen Delivery and Storage Material Development Hydrogen Sensors Concurrent Technologies Corporation Program Management and Coordination Hydrogen Delivery and Storage Material Development Hydrogen Sensors Air Products and Chemicals, Inc. Hydrogen Separation Hydrogen Sensors Air Products and Chemicals, Inc. Hydrogen Separation Hydrogen Sensors Resource Dynamics Corp. Tradeoff Analyses of Hydrogen

302

Smarter Physical Infrastructure  

E-Print Network [OSTI]

Building Operations, Montreal, Quebec, October 8-11, 2013 Bending the Spoon ESL-IC-13-10-57 Proceedings of the 13th International Conference for Enhanced Building Operations, Montreal, Quebec, October 8-11, 2013 Data Points ESL-IC-13-10-57 Proceedings... of the 13th International Conference for Enhanced Building Operations, Montreal, Quebec, October 8-11, 2013 IT Enablers for Physical Infrastructure ?M2M ?IOT ?Big Data ?Mobility ?Cloud ESL-IC-13-10-57 Proceedings of the 13th International Conference...

Bartlett, D.

2013-01-01T23:59:59.000Z

303

Final Report - Hydrogen Delivery Infrastructure Options Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Power of Experience The Power of Experience Final Report Hydrogen Delivery Infrastructure Options Analysis DOE Award Number: DE-FG36-05GO15032 Project director/principal investigator: Tan-Ping Chen Consortium/teaming Partners: Air Liquide, Chevron Technology Venture, Gas Technology Institute, NREL, Tiax, ANL Hydrogen Delivery Infrastructure Options Analysis ii TABLE OF CONTENTS SECTION 1 EXECUTIVE SUMMARY ........................................................................... 1-1 1.1 HOW THE RESEARCH ADDS TO THE UNDERSTANDING OF THE AREA INVESTIGATED. 1-1 1.2 TECHNICAL EFFECTIVENESS AND ECONOMIC FEASIBILITY OF THE METHODS OR TECHNIQUES INVESTIGATED OR DEMONSTRATED .................................................... 1-1 1.3 HOW THE PROJECT IS OF BENEFIT TO THE PUBLIC..................................................... 1-1

304

Security Infrastructure for Dynamically Provisioned Cloud Infrastructure Services  

Science Journals Connector (OSTI)

This chapter discusses conceptual issues, basic requirements and practical suggestions for designing dynamically configured security infrastructure provisioned on demand as part of the cloud-based infrastructu...

Yuri Demchenko; Canh Ngo; Cees de Laat

2013-01-01T23:59:59.000Z

305

Assessment of the type of cycling infrastructure required to attract new  

Open Energy Info (EERE)

Assessment of the type of cycling infrastructure required to attract new Assessment of the type of cycling infrastructure required to attract new cyclists Jump to: navigation, search Tool Summary Name: Assessment of the type of cycling infrastructure required to attract new cyclists Agency/Company /Organization: New Zealand Transport Agency Focus Area: Non-Motorized Transport Topics: Analysis Tools Complexity/Ease of Use: Not Available Website: www.nzta.govt.nz/resources/research/reports/449/ Transport Toolkit Region(s): Australia/North America Related Tools Petroleum Reduction Planning Tool New Videos: Stories of Auto-Rickshaws in India Ethanol Usage in Urban Public Transportation - Presentation of Results ... further results Find Another Tool FIND TRANSPORTATION TOOLS Investigated what type of cycling infrastructure would encourage 'new

306

NREL: Energy Analysis: Transmission Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Infrastructure Transmission Infrastructure Grid expansion and planning to allow large scale deployment of renewable generation Large scale deployment of renewable electricity generation will require additional transmission to connect renewable resources, which are wide-spread across the US, but regionally-constrained, to load centers. Long-term transmission planning, based on potential future growth in electric loads and generation resource expansion options, is critical to maintaining the necessary flexibility required for a reliable and robust transmission system. NREL's analyses support transmission infrastructure planning and expansion to enable large-scale deployment of renewable energy in the future. NREL's transmission infrastructure expansion and planning analyses show

307

Sandia National Laboratories: Infrastructure Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Generator Modeling On June 26, 2014, in Computational Modeling & Simulation, Energy, Energy Surety, Grid Integration, Infrastructure Security, Modeling, Modeling & Analysis,...

308

millionImaging research infrastructure  

E-Print Network [OSTI]

Centre for Imaging Technology Commercialization, led by Aaron Fenster $34 million Hybrid imaging infrastructureimaging #12;IMAGING Investment $100 millionImaging research infrastructure Formation

Denham, Graham

309

Sandia National Laboratories: Infrastructure Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 31, 2014, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration, Infrastructure Security, News, News & Events, Photovoltaic, Renewable...

310

Fluxnet Synthesis Dataset Collaboration Infrastructure  

E-Print Network [OSTI]

Fluxnet Synthesis Dataset Collaboration Infrastructure DebUCB) The Fluxnet synthesis dataset originally compiled forhave been added and the dataset now contains over 920 site

Agarwal, Deborah A.

2009-01-01T23:59:59.000Z

311

Sandia National Laboratories: Energy Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power is essential to key infrastructure such as military installations. Economically, electricity outages presently cost our economy 150 billion annually. Energy Surety The...

312

Geographically-Based Infrastructure Analysis  

Broader source: Energy.gov [DOE]

Presentation on Geographically-Based Infrastructure Analysis given by Keith Parks of the National Renewable Energy Laboratory during the DOE Hydrogen Transition Analysis Workshop on January 26, 2006.

313

Sandia National Laboratories: Infrastructure Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Study Shows Large LNG Fires Hotter but Smaller Than Expected On December 6, 2011, in Analysis, Energy Assurance, Infrastructure Security, Modeling, Modeling & Analysis,...

314

GE, Clean Energy Fuels Partner to Expand Natural Gas Highway | OpenEI  

Open Energy Info (EERE)

GE, Clean Energy Fuels Partner to Expand Natural Gas Highway GE, Clean Energy Fuels Partner to Expand Natural Gas Highway Home > Groups > Clean and Renewable Energy Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 - 19:18 clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking GE, Clean Energy Fuels Partner to Expand 'Natural Gas Highway' GE and Clean Energy Fuels announced a collaboration to expand the infrastructure for natural gas transportation in the United States. The agreement supports Clean Energy's efforts in developing America's Natural Gas Highway, a fueling network that will enable trucks to operate on liquefied natural gas coast to coast and border to border. Clean Energy Fuels will initially purchase two ecomagination-qualified

315

Category:Smart Grid Projects - Advanced Metering Infrastructure | Open  

Open Energy Info (EERE)

Metering Infrastructure Metering Infrastructure Jump to: navigation, search Smart Grid Projects - Advanced Metering Infrastructure category Pages in category "Smart Grid Projects - Advanced Metering Infrastructure" The following 31 pages are in this category, out of 31 total. A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project B Baltimore Gas and Electric Company Smart Grid Project Black Hills Power, Inc. Smart Grid Project Black Hills/Colorado Electric Utility Co. Smart Grid Project C CenterPoint Energy Smart Grid Project Central Maine Power Company Smart Grid Project Cheyenne Light, Fuel and Power Company Smart Grid Project City of Fulton, Missouri Smart Grid Project City of Glendale Water and Power Smart Grid Project City of Quincy, FL Smart Grid Project City of Westerville, OH Smart Grid Project

316

The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation  

E-Print Network [OSTI]

The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in,e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAMR CFD tool for 0D to 3D simulations. Results for a 0D case show the impact of a He dispersed phase of na...

Fradera, Jorge

2013-01-01T23:59:59.000Z

317

Michigan E85 Infrastructure  

SciTech Connect (OSTI)

This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced regional GHG emissions by 375 tons in the first year of station deployment.

Sandstrom, Matthew M.

2012-03-30T23:59:59.000Z

318

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Vehicle Natural Gas Vehicle (NGV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Fueling Infrastructure Grants on AddThis.com...

319

Clean Cities: Electric Vehicle Infrastructure Training Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Infrastructure Electric Vehicle Infrastructure Training Program to someone by E-mail Share Clean Cities: Electric Vehicle Infrastructure Training Program on Facebook Tweet about Clean Cities: Electric Vehicle Infrastructure Training Program on Twitter Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Google Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Delicious Rank Clean Cities: Electric Vehicle Infrastructure Training Program on Digg Find More places to share Clean Cities: Electric Vehicle Infrastructure Training Program on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

320

Retail Infrastructure Costs Comparison for Hydrogen and Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and environmental benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle...

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

IMPACT OF 2008 HURRICANE IKE ON BRIDGE INFRASTRUCTURE IN THE HOUSTON/GALVESTON REGION  

E-Print Network [OSTI]

, it caused severe damage to the infrastructure of the Houston/Galveston region of Texas. A large number IN THE HOUSTON/GALVESTON REGION Matthew Stearns1 , Jamie E. Padgett2 * ABSTRACT The storm surge, wind and waves produced by Hurricane Ike in 2008 caused notable damage to the transportation infrastructure in the Houston/Galveston

Padgett, Jamie Ellen

322

On molecular transport effects in real gas laminar diffusion flames at large pressure  

Science Journals Connector (OSTI)

Direct numerical simulations are conducted of unsteady exothermic and one-dimensional laminar diffusionflames at large pressures. The simulations are used to assess the impact of molecular diffusion and real gas effects under high pressure conditions with simplified chemical kinetics. The formulation includes the fully compressible form of the governing equations real gas effects modeled by the cubic PengRobinson equation of state and a generalized form of the Soret and Dufour mass and heat diffusion vectors derived from nonequilibrium thermodynamics and fluctuation theory. The cross diffusion fluxes are derived for a ternary species system and include the effects of both heat and mass diffusion in the presence of temperature concentration and pressure gradients (i.e. Soret and Dufour diffusion). The ternary species formulation is applied to a simplified single step reaction elucidating molecular and thermodynamic effects apparent in general combustion. Realistic models for pressure temperature and species dependent heat capacities viscosities thermal conductivities and mass diffusivities are also included. Three different model reactions are simulated both including and neglecting Soret and Dufour cross diffusion. The simulation results show that Soret and Dufour effects are negligible for reactions comprised of species with equal or near equal molecular weights. However Soret diffusion effects are apparent when species with nonequal molecular weights are involved in the reaction and result in reductions of the peak flame temperature. In addition it is shown that neglect of cross diffusion leads to deviations in the predicted flame thicknesses with under predictions for a hydrogen-oxygen system and over predictions for a heavy hydrocarbon reaction. These effects are explained in detail through examinations of the individual heat and mass flux vectors as well as through associated thermodynamic properties. A parametric study addresses the effects of the ambient pressure the initial flame Reynolds number the Damkohler number and the heat release parameter.

Sridhar Palle; Christopher Nolan; Richard S. Miller

2005-01-01T23:59:59.000Z

323

Cyber and physical infrastructure interdependencies.  

SciTech Connect (OSTI)

The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

2008-09-01T23:59:59.000Z

324

Computational Infrastructure for Nuclear Astrophysics  

SciTech Connect (OSTI)

A Computational Infrastructure for Nuclear Astrophysics has been developed to streamline the inclusion of the latest nuclear physics data in astrophysics simulations. The infrastructure consists of a platform-independent suite of computer codes that is freely available online at nucastrodata.org. Features of, and future plans for, this software suite are given.

Smith, Michael S.; Hix, W. Raphael; Bardayan, Daniel W.; Blackmon, Jeffery C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6354 (United States); Lingerfelt, Eric J.; Scott, Jason P.; Nesaraja, Caroline D. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6354 (United States); Dept. Physics and Astronomy, Univ. of Tennessee, Knoxville, TN 37996-1200 (United States); Chae, Kyungyuk; Guidry, Michael W. [Dept. Physics and Astronomy, Univ. of Tennessee, Knoxville, TN 37996-1200 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6354 (United States); Koura, Hiroyuki [Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki 319-1195 (Japan); Meyer, Richard A. [RAME' Inc., Teaticket, MA, 02536 (United States)

2006-07-12T23:59:59.000Z

325

Critical Infrastructure and Internal Controls  

Science Journals Connector (OSTI)

Critical refers to infrastructure that provides an essential support for economic and social well-being, for public safety and for the functioning of key government responsibilities. According to Resolution of the National Security Strategy of the Republic ... Keywords: Risk management,Process control,Government,Standards,Security,Uncertainty,internal controls,critical infrastructure,risk,risk management

Iztok Podbregar; Mojca Ferjancic Podbregar

2012-08-01T23:59:59.000Z

326

A Knowledge Management Platform for Infrastructure Performance Modeling  

E-Print Network [OSTI]

Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability, utilization, evaluation and selection of performance models. Thus, the objective of the study is to build the capabilities of their own models. The platform advances infrastructure performance modeling because analysts

327

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &  

E-Print Network [OSTI]

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure)DescriptionMilestone #12;Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes & Standards #12;Hydrogen Codes & Standards: Goal & Objectives Goal

328

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor...  

Gasoline and Diesel Fuel Update (EIA)

Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Pipeline...

329

Towards Truly Ubiquitous and Opportunistic Trust Infrastructures: Position for Next Generation Cybersecurity Infrastructure Workshop  

E-Print Network [OSTI]

: Position for Next Generation Cybersecurity Infrastructure Workshop Stephen Nightingale Generation Cybersecurity Infrastructure workshop, we note that Federated Identities [1

Tennessee, University of

330

Optimal Planning and Scheduling of Offshore Oil Field Infrastructure Investment and Operations  

Science Journals Connector (OSTI)

Optimal Planning and Scheduling of Offshore Oil Field Infrastructure Investment and Operations ... A multiperiod mixed-integer linear programming (MILP) model formulation is presented for the planning and scheduling of investment and operation in offshore oil field facilities. ... An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure ...

R. R. Iyer; I. E. Grossmann; S. Vasantharajan; A. S. Cullick

1998-03-13T23:59:59.000Z

331

Natural Gas Reforming  

Broader source: Energy.gov [DOE]

Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This technology is an important pathway for near-term hydrogen production.

332

Innovative Financing for Green Infrastructure | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Innovative Financing for Green Infrastructure Innovative Financing for Green Infrastructure November 4, 2014 1:00PM to 2:30PM EST Topic Overview Financing green infrastructure is...

333

Advanced Metering Infrastructure  

SciTech Connect (OSTI)

The report provides an overview of the development of Advanced Metering Infrastructure (AMI). Metering has historically served as the cash register for the utility industry. It measured the amount of energy used and supported the billing of customers for that usage. However, utilities are starting to look at meters in a whole different way, viewing them as the point of contact with customers in supporting a number of operational imperatives. The combination of smart meters and advanced communications has opened up a variety of methods for utilities to reduce operating costs while offering new services to customers. A concise look is given at what's driving interest in AMI, the components of AMI, and the creation of a business case for AMI. Topics covered include: an overview of AMI including the history of metering and development of smart meters; a description of the key technologies involved in AMI; a description of key government initiatives to support AMI; an evaluation of the current market position of AMI; an analysis of business case development for AMI; and, profiles of 21 key AMI vendors.

NONE

2007-10-15T23:59:59.000Z

334

Frey, H.C., and P.Y. Kuo, "Potential Best Practices for Reducing Greenhouse Gas (GHG) Emissions in Freight Transportation," Paper No. 2007-AWMA-443, Proceedings, 100th  

E-Print Network [OSTI]

Frey, H.C., and P.Y. Kuo, "Potential Best Practices for Reducing Greenhouse Gas (GHG) Emissions Gas (GHG) Emissions in Freight Transportation Extended Abstract # 2007-A-443-AWMA H. Christopher Frey for approximately 9% of total greenhouse gas (GHG) emissions in the United States.1-2 The individual contributions

Frey, H. Christopher

335

Federal Energy Management Program: Infrastructure Institutional Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Institutional Change Principle to someone by E-mail Share Federal Energy Management Program: Infrastructure Institutional Change Principle on Facebook Tweet about Federal Energy Management Program: Infrastructure Institutional Change Principle on Twitter Bookmark Federal Energy Management Program: Infrastructure Institutional Change Principle on Google Bookmark Federal Energy Management Program: Infrastructure Institutional Change Principle on Delicious Rank Federal Energy Management Program: Infrastructure Institutional Change Principle on Digg Find More places to share Federal Energy Management Program: Infrastructure Institutional Change Principle on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases

336

The regulatory anticommons of green infrastructures  

Science Journals Connector (OSTI)

Development of green infrastructures (renewable energy plants and transmission networks) is urgently needed ... improve planning and siting procedures for cross-border green infrastructures. The literature on ant...

Giuseppe Bellantuono

2014-04-01T23:59:59.000Z

337

NREL: Energy Systems Integration Facility - Research Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure The foundation of the Energy Systems Integration Facility is its research infrastructure. In addition to extensive fixed equipment, the facility incorporates...

338

Electric Drive Vehicle Infrastructure Deployment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Infrastructure Deployment Electric Drive Vehicle Infrastructure Deployment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

339

California Low Carbon Fuels Infrastructure Investment Initiative...  

Broader source: Energy.gov (indexed) [DOE]

California Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and...

340

Department of Energy Cites Parsons Infrastructure & Technology...  

Office of Environmental Management (EM)

Parsons Infrastructure & Technology Group, Inc. for Worker Safety and Health Violations Department of Energy Cites Parsons Infrastructure & Technology Group, Inc. for Worker Safety...

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced Metering Infrastructure Security Considerations | Department...  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to...

342

Controlled Hydrogen Fleet & Infrastructure Analysis | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Infrastructure Analysis Controlled Hydrogen Fleet & Infrastructure Analysis 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

343

Hydrogen Vehicle and Infrastructure Demonstration and Validation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

344

California Hydrogen Infrastructure Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Infrastructure Project California Hydrogen Infrastructure Project 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

345

Hydrogen Fueling Infrastructure Research and Station Technology...  

Energy Savers [EERE]

Infrastructure Research and Station Technology Download presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure...

346

Hydrogen, Fuel Cells and Infrastructure Technologies Program...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

347

Webinar: International Hydrogen Infrastructure Challenges-NOW...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Hydrogen Infrastructure Challenges-NOW, DOE, and NEDO Webinar: International Hydrogen Infrastructure Challenges-NOW, DOE, and NEDO December 16, 2013 1:00PM EST...

348

Innovative Techniques of Multiphase Flow in Pipeline System for Oil?Gas Gathering and Transportation with Energy?Saving and Emission?Reduction  

Science Journals Connector (OSTI)

Multiphase flow measurement desanding dehumidification and heat furnace are critical techniques for the oil and gas gathering and transportation which influnce intensively the energy?saving and emission?reduction in the petroleum industry. Some innovative techniques were developed for the first time by the present research team including an online recognation instrument of multiphase flow regime a water fraction instrument for multuphase flow a coiled tube desanding separator with low pressure loss and high efficiency a supersonic swirling natural gas dehumifier and a vacuum phase?change boiler. With an integration of the above techniques a new oil gas gathering and transpotation system was proposed which reduced the establishment of one metering station and several transfer stations compared with the tranditional system. The oil and gas mixture transpotation in single pipes was realized. The improved techniques were applied in the oilfields in China and promoted the productivity of the oilfields by low energy consumption low emissions high efficiency and great security.

Bofeng Bai; Liejin Guo; Shaojun Zhang; Ximin Zhang; Hanyang Gu

2010-01-01T23:59:59.000Z

349

Optimization Models for Optimal Investment, Drilling, and Water Management in Shale Gas Supply Chains  

Science Journals Connector (OSTI)

Abstract This paper provides an overview of recent optimization models for shale gas production. We first describe a new mixed-integer optimization model for the design of shale gas infrastructures. It is aimed at optimizing the number of wells to drill, size and location of new gas processing plants, section and length of pipelines for gathering raw gas, delivering dry gas and natural gas liquids, power of gas compressors, and planning of freshwater consumption for well drilling and fracturing. We also describe a detailed operational mixed-integer linear model to optimize life cycle water use for well pads. The objective of the model is to determine the fracturing schedule that minimizes costs for freshwater consumption, transportation, treatment, storage, and disposal.

Ignacio E. Grossmann; Diego C. Cafaro; Linlin Yang

2014-01-01T23:59:59.000Z

350

Hydrogen Delivery Infrastructure Options Analysis  

Fuel Cell Technologies Publication and Product Library (EERE)

This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

351

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

Vehicles on the US Power Grid." The 25th World Battery,infrastructure assignment and power grid impacts assessmentfrom the vehicle to the power grid and overcome its current

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

352

Intelligent Infrastructure for Energy Efficiency  

Science Journals Connector (OSTI)

...their faults. Intelligent infrastructure extends smart grid initiatives that seek to save energy by allowing utilities...4 National Institute of Standards and Technology , Smart Grid Interoperability Standards Project (http://nist...

Neil Gershenfeld; Stephen Samouhos; Bruce Nordman

2010-02-26T23:59:59.000Z

353

Hydrogen Infrastructure Market Readiness Workshop  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) hosted the Hydrogen Infrastructure Market Readiness Workshop February 1617, 2011, in Washington, D.C....

354

GIS-Based Infrastructure Modeling  

Broader source: Energy.gov [DOE]

Presentation by NREL's Keith Parks at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

355

INFRASTRUCTURE Engineering and Physical Sciences  

E-Print Network [OSTI]

infrastructure and its competitiveness was 12th, down from 5th in 2005. The Council for Science and Technology2Engineering Sensor Development CyberSecurity SustainableEnergy Networks EnergyStorag e #12;EPSRC investment supports

Berzins, M.

356

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop: Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 11, 2009 John Garbak, Todd Ramsden Keith Wipke, Sam Sprik, Jennifer Kurtz Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project National Renewable Energy Laboratory 2 Innovation for Our Energy Future Fuel Cell Vehicle Learning Demonstration Project Objectives and Targets * Objectives - Validate H 2 FC Vehicles and Infrastructure in Parallel - Identify Current Status and Evolution of the Technology - Objectively Assess Progress Toward Technology Readiness - Provide Feedback to H 2 Research and Development Photo: NREL Solar Electrolysis Station, Sacramento, CA Performance Measure

357

Perspectives on the Design and Planning of Oil Field Infrastructure  

Science Journals Connector (OSTI)

Abstract Drilling for oil and gas is a costly and risky endeavor. Existing literature has already recognized the role of modeling and simulation in aiding the development and management of an oil field and its infrastructure. The optimal design and planning of oil field infrastructure is a highly complex and challenging noncontinuous process design problem involving many continuous and discrete decisions over time. In this article, we describe its challenges and complexity, and review various contributions from the process systems and petroleum engineering communities. We classify the various design and planning issues based on the planning horizon, discuss progress trends, and highlight possible future work.

M. Sadegh Tavallali; Iftekhar A. Karimi

2014-01-01T23:59:59.000Z

358

DECISION TECHNOLOGIES FOR PROTECTION OF CRITICAL INFRASTRUCTURES  

E-Print Network [OSTI]

be used for system design, vulnerability analysis and restoration following a disruption. INTRODUCTION-built systems and processes. These systems include transportation, electric power, gas and liquid fuels. The reliance of any of these systems on power is obvious. Failures, by whatever cause, within

Mitchell, John E.

359

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Home Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Vehicle Natural Gas Vehicle (NGV) Home Fueling Infrastructure Incentive - South Coast to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Home Fueling Infrastructure Incentive - South Coast on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Home Fueling Infrastructure Incentive - South Coast on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Home Fueling Infrastructure Incentive - South Coast on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Home Fueling Infrastructure Incentive - South Coast on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Home Fueling Infrastructure Incentive - South Coast on Digg Find More places to share Alternative Fuels Data Center: Natural Gas

360

Hydrogen Regional Infrastructure Program in Pennsylvania  

Broader source: Energy.gov [DOE]

Hydrogen Regional Infrastructure Program in Pennsylvania. Objectives: Capture data pertinent to H2 delivery in PA

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CLOUD COMPUTING INFRASTRUCTURE AND OPERATIONS PROGRAM  

E-Print Network [OSTI]

CLOUD COMPUTING INFRASTRUCTURE AND OPERATIONS PROGRAM A six-week in-depth program in the architectures, infrastructure, and operations of Cloud Computing DePaul University's Cloud Computing Infrastructure and Operations Program provides specialized knowledge in Cloud infrastructure with emphasis

Schaefer, Marcus

362

2012 Annual Report Research Reactor Infrastructure Program  

SciTech Connect (OSTI)

The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

Douglas Morrell

2012-11-01T23:59:59.000Z

363

Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes controlled hydrogen fleet & infrastructure analysis undertaken for the DOE Fuel Cell Technologies Program.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-06-10T23:59:59.000Z

364

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

365

Infrastructure and Facilities Management | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Infrastructure and Facilities Management | National Nuclear Security Infrastructure and Facilities Management | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Infrastructure and Facilities Management Home > content > Infrastructure and Facilities Management Infrastructure and Facilities Management NNSA restores, rebuilds, and revitalizes the physical infrastructure of the

366

Alternative Fuels Data Center: Ethanol Infrastructure Funding  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Infrastructure Ethanol Infrastructure Funding to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Funding on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Funding on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Funding on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Funding on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Funding on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Funding The Ethanol Infrastructure Incentive Program provides funding to offset the cost of installing ethanol blender pumps at retail fueling stations

367

Agenda: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities  

Broader source: Energy.gov [DOE]

Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy (DOE) Public Meeting on Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nations energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session.

368

Temporal Changes in Microbial Ecology and Geochemistry in Produced Water from Hydraulically Fractured Marcellus Shale Gas Wells  

Science Journals Connector (OSTI)

These results provide insight into the temporal trajectory of subsurface microbial communities after fracking and have important implications for the enrichment of microbes potentially detrimental to well infrastructure and natural gas fouling during this process. ... Interpretative modeling shows that advective transport could require up to tens of thousands of years to move contaminants to the surface, but also that fracking the shale could reduce that transport time to tens or hundreds of years. ... reflecting the significant changes caused by fracking the shale, which could allow advective transport to aquifers in less than 10 years. ...

Maryam A. Cluff; Angela Hartsock; Jean D. MacRae; Kimberly Carter; Paula J. Mouser

2014-05-06T23:59:59.000Z

369

Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration  

Broader source: Energy.gov (indexed) [DOE]

Year-in-Review: 2010 Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of Energy August 2011 OE/ISER Report 8/31/11 i For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific questions about information in this report may be directed to Alice Lippert, Senior Technical Advisor (alice.lippert@hq.doe.gov). Contributors include Mindi Farber-DeAnda, Robert Laramey, Carleen Lewandowski, Max

370

Natural Gas Transportation Resiliency  

Energy Savers [EERE]

reliability and availability - Spare machines - Ability to rapidly repairreplace * Meter Stations - Capacity firm versus peak day - Redundancy - Reliability * Pipeline(s) -...

371

Surety applications in transportation  

SciTech Connect (OSTI)

Infrastructure surety can make a valuable contribution to the transportation engineering industry. The lessons learned at Sandia National Laboratories in developing surety principles and technologies for the nuclear weapons complex and the nuclear power industry hold direct applications to the safety, security, and reliability of the critical infrastructure. This presentation introduces the concepts of infrastructure surety, including identification of the normal, abnormal, and malevolent threats to the transportation infrastructure. National problems are identified and examples of failures and successes in response to environmental loads and other structural and systemic vulnerabilities are presented. The infrastructure surety principles developed at Sandia National Laboratories are described. Currently available technologies including (a) three-dimensional computer-assisted drawing packages interactively combined with virtual reality systems, (b) the complex calculational and computational modeling and code-coupling capabilities associated with the new generation of supercomputers, and (c) risk-management methodologies with application to solving the national problems associated with threats to the critical transportation infrastructure are discussed.

Matalucci, R.V.; Miyoshi, D.S.

1998-01-01T23:59:59.000Z

372

Canada Oil and Gas Operations Act (Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info Start Date 1985 Program Type Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines Siting and Permitting Provider Canada National Energy Board The purpose of this Act is to promote safety, the protection of the environment, the conservation of oil and gas resources, joint production arrangements, and economically efficient infrastructures.

373

Alternative Fuels Data Center: Ethanol Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Infrastructure Ethanol Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Grants The Kentucky Corn Growers' Association (KyCGA) offers grants of $5,000 per pump to retailers installing new E85 dispensers in Kentucky. For more

374

Alternative Fuels Data Center: Biofuels Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels Biofuels Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Biofuels Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Biofuels Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Biofuels Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Biofuels Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Biofuels Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Infrastructure Grants The Renewable Fuel Infrastructure Program provides financial assistance to qualified E85 and biodiesel retailers. Cost-share grants are available for

375

Alternative Fuels Data Center: Ethanol Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Infrastructure Ethanol Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Grants The Colorado Corn Blender Pump Pilot Program provides funding assistance for each qualified station dispensing mid-level ethanol blends. Projects

376

Alternative Fuels Data Center: Biofuel Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Infrastructure Biofuel Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuel Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Biofuel Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Biofuel Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Biofuel Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Biofuel Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Biofuel Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Infrastructure Grants The Arizona Biofuel Conversion Program distributes grants to encourage the use of biofuels in the state and to promote the development of fueling

377

Volcanic ash impacts on critical infrastructure  

Science Journals Connector (OSTI)

Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. Critical infrastructure includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layers resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern \\{WWTPs\\} can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using systems thinking. As modern society becomes increasingly complex and interdependent this

Thomas M. Wilson; Carol Stewart; Victoria Sword-Daniels; Graham S. Leonard; David M. Johnston; Jim W. Cole; Johnny Wardman; Grant Wilson; Scott T. Barnard

2012-01-01T23:59:59.000Z

378

A gas-jet transport and catcher technique for on-line production of radioactive ion beams using an electron cyclotron resonance ion-source  

SciTech Connect (OSTI)

Radioactive ion beams (RIB) have been produced on-line, using a gas-jet recoil transport coupled Electron Cyclotron Resonance (ECR) ion-source at the VECC-RIB facility. Radioactive atoms/molecules carried through the gas-jet were stopped in a catcher placed inside the ECR plasma chamber. A skimmer has been used to remove bulk of the carrier gas at the ECR entrance. The diffusion of atoms/molecules through the catcher has been verified off-line using stable isotopes and on-line through transmission of radioactive reaction products. Beams of {sup 14}O (71 s), {sup 42}K (12.4 h), {sup 43}K (22.2 h), and {sup 41}Ar (1.8 h) have been produced by bombarding nitrogen and argon gas targets with proton and alpha particle beams from the K130 cyclotron at VECC. Typical measured intensity of RIB at the separator focal plane is found to be a few times 10{sup 3} particles per second (pps). About 3.2 Multiplication-Sign 10{sup 3} pps of 1.4 MeV {sup 14}O RIB has been measured after acceleration through a radiofrequency quadrupole linac. The details of the gas-jet coupled ECR ion-source and RIB production experiments are presented along with the plans for the future.

Naik, V.; Chakrabarti, A.; Bhattacharjee, M.; Karmakar, P.; Bandyopadhyay, A.; Dechoudhury, S.; Mondal, M.; Pandey, H. K.; Lavanyakumar, D.; Mandi, T. K.; Dutta, D. P.; Kundu Roy, T.; Bhowmick, D.; Sanyal, D.; Srivastava, S. C. L.; Ray, A.; Ali, Md. S. [Variable Energy Cyclotron Centre (VECC), Sector-1, Block-AF, Bidhan Nagar, Kolkata 700064 (India); Bhattacharjee, S. [UGC-DAE CSR, Kolkata Centre, III/LB-8, Bidhan Nagar, Kolkata 700098 (India)

2013-03-15T23:59:59.000Z

379

Field NotesThe newsletter of the Infrastructure Technology Institute at Northwestern University  

E-Print Network [OSTI]

-based transportation fuel use; transportation emissions are projected to grow about 10% over next two decades. Can-threatening structural damage ­ isolating benign damage that can be ignored, thus avoiding unnecessary expenditures. Such errors waste money and time that could be spent on other infrastructure projects. The ITI team has

380

Sustainable Transport: A Sourcebook for Policy-makers in Developing...  

Open Energy Info (EERE)

infrastructure provision, economic instruments and raising public awareness about sustainable urban transport. LEDSGP green logo.png This tool is included in the...

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Intelligent Infrastructure for Energy Efficiency  

Science Journals Connector (OSTI)

...infrastructure extends smart grid initiatives that seek...demand (4). However, a grid cannot be smart if it is connected to...exhausts (17). The energy benefits in these I2E systems will...Standards and Technology , Smart Grid Interoperability Standards...

Neil Gershenfeld; Stephen Samouhos; Bruce Nordman

2010-02-26T23:59:59.000Z

382

Critical Infrastructure and Cyber Security  

E-Print Network [OSTI]

indicators vis-a-vis one another, which is especially important in the midst of the current budgetary uncertainty in Washington. In this study, we present our definitions of the three indicators; an overview of the eighteen sectors of critical infrastructure...

Doll, Abby; Pirrong, Renee; Jennings, Matthew; Stasny, George; Giblin, Andy; Shaffer, Steph; Anderson, Aimee

2011-01-01T23:59:59.000Z

383

Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository  

E-Print Network [OSTI]

We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

Alain Bourgeat; Mladen Jurak; Farid Sma

2008-02-29T23:59:59.000Z

384

Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository  

E-Print Network [OSTI]

We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

Bourgeat, Alain; Sma, Farid

2008-01-01T23:59:59.000Z

385

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network [OSTI]

Electricity (Natural Gas Combined Cycle) Electricity (Coal,efficiency enabled by combined cycle systems at stationarybut also using combined cycle and fuel cell-based power

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

386

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas  

SciTech Connect (OSTI)

As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

Not Available

1993-12-01T23:59:59.000Z

387

Participatory infrastructure monitoring : design factors and limitations of accountability technologies  

E-Print Network [OSTI]

This dissertation investigates practices of participatory infrastructure monitoring and their implications for the governance of urban infrastructure services. By introducing the concept of infrastructure legibility, the ...

Offenhuber, Dietmar

2014-01-01T23:59:59.000Z

388

H2FIRST: Hydrogen Fueling Infrastructure Research and Station...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FIRST: Hydrogen Fueling Infrastructure Research and Station Technology H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology Hydrogen Fueling Infrastructure...

389

"Mapping" Nonprofit Infrastructure Organizations in Texas  

E-Print Network [OSTI]

The stability of the nonprofit sector and its ability to meet our nations needs in an era of unprecedented challenges requires a solid nonprofit infrastructure (Brown, et al., 2008). These organizations that comprise this infrastructure system work...

Aho, Andrea; Harris, Amanda; Kessel, Kendall; Park, Jongsoo; Park, Jong Taek; Rios, Lisa; Swendig, Brett

2010-01-01T23:59:59.000Z

390

National Environmental Information Infrastructure Reference Architecture  

E-Print Network [OSTI]

National Environmental Information Infrastructure Reference Architecture Consultation Draft Environmental Information Infrastructure Reference Architecture: Consultation Draft Environmental Information Contributing to the Australian Government National Plan for Environmental Information initiative #12;National

Greenslade, Diana

391

Vehicle Technologies Office: Natural Gas Research | Department...  

Energy Savers [EERE]

Natural Gas Research Vehicle Technologies Office: Natural Gas Research Natural gas offers tremendous opportunities for reducing the use of petroleum in transportation. Medium and...

392

EIA - Natural Gas Pipeline System - Midwest Region  

Gasoline and Diesel Fuel Update (EIA)

Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Pipelines in the Midwest Region...

393

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Utilities Employers Develop long-range Plan Deployment area Vehicle penetration Infrastructure requirements Develop EV Micro-Climate Support...

394

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Utilities Employers Develop Long-Range Plan Deployment Area Vehicle Penetration Infrastructure Requirements Develop EV Micro-Climate Initial...

395

Controlled Hydrogen Fleet and Infrastructure Demonstration and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression, Storage, and Dispensing Workshop Refueling Infrastructure for...

396

Controlled Hydrogen Fleet and Infrastructure Demonstration and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS...

397

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

Chapter 2 Climate and Transportation Solutions Chapter 3:Gas Emissions in the Transportation Sector by John Conti,Chase, and John Maples Transportation is the single largest

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

398

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

399

EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Interstate Natural Gas...

400

The generative mechanisms of digital infrastructure evolution  

Science Journals Connector (OSTI)

The current literature on digital infrastructure offers powerful lenses for conceptualizing the increasingly interconnected information system collectives found in contemporary organizations. However, little attention has been paid to the generative ... Keywords: adoption, case study, case survey, configuration theory, critical realism, digital infrastructure, generative mechanism, information infrastructure, innovation, multimethod, scaling

Ola Henfridsson, Bendik Bygstad

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen Delivery Infrastructure Option Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Delivery Infrastructure Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop January 25, 2005 Washington DC This presentation does not contain any proprietary or confidential information Tan-Ping Chen Nexant Jim Campbell Bhadra Grover Air Liquide Stefan Unnasch TIAX Glyn Hazelden GTI Graham Moore Chevron Matt Ringer NREL Ray Hobbs Pinnacle West 2 Presentation Outline Project Background Knowledge Collected and Preliminary Results for Each Delivery Option Summary of Observations Next Step Project Background Project Background 4 Delivery Options Option 1* GH delivery by new pipelines Option 2 Converting NG/oil pipelines for GH delivery Option 3 Blending GH into NG pipelines Option 4* GH tube trailers

402

A scalable tools communication infrastructure.  

SciTech Connect (OSTI)

The Scalable Tools Communication Infrastructure (STCI) is an open source collaborative effort intended to provide high-performance, scalable, resilient, and portable communications and process control services for a wide variety of user and system tools. STCI is aimed specifically at tools for ultrascale computing and uses a component architecture to simplify tailoring the infrastructure to a wide range of scenarios. This paper describes STCI's design philosophy, the various components that will be used to provide an STCI implementation for a range of ultrascale platforms, and a range of tool types. These include tools supporting parallel run-time environments, such as MPI, parallel application correctness tools and performance analysis tools, as well as system monitoring and management tools.

Buntinas, D.; Bosilca, G.; Graham, R. L.; Vallee, G.; Watson, G. R.; Mathematics and Computer Science; Univ. of Tennessee; ORNL; IBM

2008-07-01T23:59:59.000Z

403

A Scalable Tools Communication Infrastructure  

SciTech Connect (OSTI)

The Scalable Tools Communication Infrastructure (STCI) is an open source collaborative effort intended to provide high-performance, scalable, resilient, and portable communications and process control services for a wide variety of user and system tools. STCI is aimed specifically at tools for ultrascale computing and uses a component architecture to simplify tailoring the infrastructure to a wide range of scenarios. This paper describes STCI's design philosophy, the various components that will be used to provide an STCI implementation for a range of ultrascale platforms, and a range of tool types. These include tools supporting parallel run-time environments, such as MPI, parallel application correctness tools and performance analysis tools, as well as system monitoring and management tools.

Buntinas, Darius [Argonne National Laboratory (ANL); Bosilca, George [University of Tennessee, Knoxville (UTK); Graham, Richard L [ORNL; Vallee, Geoffroy R [ORNL; Watson, Gregory R. [IBM T. J. Watson Research Center

2008-01-01T23:59:59.000Z

404

Market power, fuel substitution and infrastructure A large-scale equilibrium model of global energy markets  

Science Journals Connector (OSTI)

Abstract Assessing and quantifying the impacts of technological, economic, and policy shifts in the global energy system requirelarge-scale numerical models. We propose a dynamic multi-fuel market equilibrium model that combines endogenous fuel substitution within demand sectors and in power generation, detailed infrastructure capacity constraints and investment, as well as strategic behaviour and market power aspects by suppliers in a unified framework. This model is the first of its kind in which market power is exerted across several fuels. Using a data set based on the IEA (International Energy Agency) World Energy Outlook 2013 (New Policies scenario, time horizon 20102050, 30 regions, 10 fuels), we illustrate the functionality of the model in two scenarios: a reduction of shale gas availability in the US relative to current projections leads to an even stronger increase of power generation from natural gas in the European Union relative to the base case; this is due to a shift in global fossil fuel trade. In the second scenario, a tightening of the EU ETS emission cap by 80% in 2050 combined with a stronger biofuel mandate spawns a renaissance of nuclear power after 2030 and a strong electrification of the transportation sector. We observe carbon leakage rates from the unilateral mitigation effort of 6070%.

Daniel Huppmann; Ruud Egging

2014-01-01T23:59:59.000Z

405

Presented by Petascale System Infrastructure  

E-Print Network [OSTI]

National Center for Computational Sciences #12;2 Managed by UT-Battelle for the U.S. Department of Energy and analysis cluster #12;3 Managed by UT-Battelle for the U.S. Department of Energy Shipman_Infrastructure_SC10 Area Network ­ Over 3,000 InfiniBand ports ­ Over 3 miles of cables ­ Scales as computational

406

Momentum, energy and scalar transport in polydisperse gas-solid flows using particle-resolved direct numerical simulations.  

E-Print Network [OSTI]

??Gas-solid flows are commonly encountered in Nature and in several industrial applications. Emerging carbon-neutral or carbon negative technologies such as chemical looping combustion and CO2 (more)

Tenneti, Sudheer

2013-01-01T23:59:59.000Z

407

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

new solid and liquid phase systems new solid and liquid phase systems for the containment, transport and delivery of hydrogen By Guido P. Pez Hydrogen Energy Infrastructure for Fuel Cell Vehicle Transportation Scenario A: Distributed H 2 from a Large Scale Plant (150-230 tonne/day) Large Scale H 2 Plant (300-800 psi H 2 ) H 2 Buffer Storage Tube Trailer Liquid H 2 Truck H 2 Pipeline Multi-vehicle filling stations Feedstock: N. gas, Coal, Biomass Pet. Coke, Resids. Future: Carbon sequestration Storage: Underground well? Output: Depends on the vehicle's H 2 storage technology Currently H 2 up to >6000 psi for 5000 psi tanks Scenario B: Hydrogen by a small scale reforming of pipeline natural gas and compression Natural Gas Pipeline Reformer Liquid H 2 Backup Compressor H 2 (>6000 psig) H 2 Production: 100-400 kg/day; 4-5Kg H

408

Nationwide, Regional, and Statewide Energy Supply Chain Optimization for Natural Gas to Liquid Transportation Fuel (GTL) Systems  

Science Journals Connector (OSTI)

When data on the well-specific production are available, the figures are grouped on the basis of the county of the wells. ... The states that have major natural gas productions are Alabama, Arkansas, California, Colorado, Kansas, Kentucky, Louisiana, Michigan, Mississippi, Montana, New Mexico, Ohio, Oklahoma, Pennsylvania, Texas, Utah, Virginia, West Virginia, and Wyoming. ... State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources ...

Josephine A. Elia; Richard C. Baliban; Christodoulos A. Floudas

2013-09-05T23:59:59.000Z

409

Transportation Energy Data Book: Edition 28  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2009-06-01T23:59:59.000Z

410

Sandia National Laboratories: More California Gas Stations Can...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ECFacilitiesCenter for Infrastructure Research and Innovation (CIRI)More California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says More...

411

Infrastructure and Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Operations | National Nuclear Security Administration Operations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Infrastructure and Operations Home > About Us > Our Operations > Infrastructure and Operations Infrastructure and Operations NNSA's missions require a secure production and laboratory infrastructure meeting immediate and long term needs. The Associate Administrator for

412

NNSA Completes Successful Facilities and Infrastructure Recapitalization  

National Nuclear Security Administration (NNSA)

Completes Successful Facilities and Infrastructure Recapitalization Completes Successful Facilities and Infrastructure Recapitalization Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Completes Successful Facilities and Infrastructure Recapitalization Program Press Release NNSA Completes Successful Facilities and Infrastructure Recapitalization

413

Infrastructure Institutional Change Principle | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Institutional Change Principle Infrastructure Institutional Change Principle Infrastructure Institutional Change Principle October 8, 2013 - 11:09am Addthis Research shows that changes in infrastructure prompt changes in behavior (for better or worse). Federal agencies can modify their infrastructure to promote sustainability-oriented behavior change, ideally in ways that make new behaviors easier and more desirable to follow than existing patterns of behavior. The physical structures, technologies, systems, and processes that constitute the infrastructure of a workplace should be aligned with sustainability goals and desired behavioral changes. For example, a rule requiring double-sided printing necessitates the availability and access to functioning duplex printers. Methods Modifying infrastructure so that it promotes sustainable behavior change is

414

The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity Title The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity Publication Type Journal Article Refereed Designation Unknown Year of Publication 2012 Authors Williams, James H., Andrew DeBenedictis, Rebecca Ghanadan, Amber Mahone, Jack Moore, William R. Morrow, Snuller Price, and Margaret S. Torn Journal Science Volume 335 Start Page 53 Issue 6064 Pagination 53-59 Date Published 01/2012 Abstract Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California's goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure stocks, resource constraints, and electricity system operability. We found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required. Decarbonized electricity would become the dominant form of energy supply, posing challenges and opportunities for economic growth and climate policy. This transformation demands technologies that are not yet commercialized, as well as coordination of investment, technology development, and infrastructure deployment.

415

NREL: Transportation Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities A Vision for Sustainable Transportation Line graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas...

416

Field-Scale Sulfur Hexafluoride Tracer Experiment to Understand Long Distance Gas Transport in the Deep Unsaturated Zone  

Science Journals Connector (OSTI)

...transport from a LLRW disposal area, but no such...was supported by funding from the following...an arid site for disposal of low-level...tuffs from the Yucca Mountain area, Nye County...tritium in arid disposal sites. Water Resour...

Michelle A. Walvoord; Brian J. Andraski; Christopher T. Green; David A. Stonestrom; Robert G. Striegl

417

Transportation System Readiness and Resiliency Assessment Framework: Readiness and Assess Resiliency of  

E-Print Network [OSTI]

Transportation System Readiness and Resiliency Assessment Framework: Readiness and Assess Resiliency of Transportation Systems (Infrastructure, Systems, Organization and Services) to Deter, Detect Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle

418

NETL Publications: Carbon Storage Program Infrastructure Annual Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage Program Infrastructure Annual Review Meeting Carbon Storage Program Infrastructure Annual Review Meeting November 15-17, 2011 Table of Contents Disclaimer Presentations PRESENTATIONS Tuesday, November 15, 2011 Welcoming Remarks [PDF-2.18MB] Sean Plasynski, DOE/NETL Keynote Session 1 - Regulatory Issues Moderator: Traci Rodosta, DOE/NETL EPA's Greenhouse Gas Reporting Program: Geological Sequestration and Injection of Carbon Dioxide [PDF-604KB] Mark Defigueiredo, U.S. Environmental Protection Agency Update on Implementation of EPA's Class VI GS Program [PDF-420KB] Bruce Kobelski, U.S. Environmental Protection Agency CCS on the OCS: Sub-Seabed Geologic CO2 Sequestration Authorities and Ongoing Actions Covering the Outer Continental Shelf [PDF-MB] Melissa Batum, , U. S. Bureau of Ocean Energy Management, Regulation, and Enforcement

419

Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.  

SciTech Connect (OSTI)

Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(reg. sign) simulation for a corn-to-butanol production process, which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.

Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

2008-01-01T23:59:59.000Z

420

NISAC | National Infrastructure Simulation and Analysis Center | NISAC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Logo Logo National Infrastructure Simulation and Analysis Center Search Btn search this site... Overview Fact Sheets Capabilities Chemical Supply Chain Analysis Complex Adaptive Systems of Systems (CASoS) National Transportation Fuels Model Network Optimization Models (RNAS and ATOM) NISAC Agent-Based Laboratory for Economics (N-ABLE(tm)) Publications Contacts Home Featured Previous National Transportatio... National Transportation Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system represented by the network model (see figure) spans from oil fields to fuel distribution terminals. Different components of this system (e.g., crude oil import terminals, refineries,... Read More

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption...  

Broader source: Energy.gov (indexed) [DOE]

9: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010 Fact 749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by...

422

Agenda: Energy Infrastructure Finance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CAPITAL FOR ENERGY TRANSMISSION, STORAGE, AND DISTRIBUTION How do investors and capital markets view energy TS&D infrastructure as an asset class, especially compared to other...

423

Policy Option for Hydrogen Vehicles and Infrastructure  

Broader source: Energy.gov [DOE]

Presentation by Stefan Unnasch at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

424

Grant Helps Efficiently Rebuild Ohio Infrastructure | Department...  

Energy Savers [EERE]

ourselves to move forward with doing additional energy conservation and promoting renewables," Donna Winchester, environment manager for Dayton, says. "Our aging infrastructure...

425

Hydrogen Fueling Infrastructure Research and Station Technology  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry...

426

Final Report- Hydrogen Delivery Infrastructure Options Analysis  

Broader source: Energy.gov [DOE]

This report provides in-depth analysis of various hydrogen delivery options to determine the most cost effective infrastructure and R&D efforts for the long term.

427

EV Everywhere Consumer Acceptance and Charging Infrastructure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and...

428

Hydrogen Infrastructure Market Readiness: Opportunities and Potential...  

Broader source: Energy.gov (indexed) [DOE]

Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the...

429

Geographically Based Hydrogen Demand and Infrastructure Rollout...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

430

California Hydrogen Infrastructure Project | Open Energy Information  

Open Energy Info (EERE)

Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String representation "The CHIP progra ... s...

431

Alternative Ways of Financing Infrastructure Investment: Potential...  

Open Energy Info (EERE)

'Novel' Financing Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Ways of Financing Infrastructure Investment: Potential for 'Novel' Financing Models...

432

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina National Renewable Energy Laboratory S. McQueen and J. Brinch...

433

Africa Infrastructure Country Diagnostic Documents: ARCGIS Shape...  

Open Energy Info (EERE)

Shape File, all Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Infrastructure Country Diagnostic Documents: ARCGIS Shape File, all Countries Agency...

434

Africa Infrastructure Country Diagnostic Documents: Interactive...  

Open Energy Info (EERE)

MAP in PDF, all Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Infrastructure Country Diagnostic Documents: Interactive MAP in PDF, all Countries...

435

State Experience in Hydrogen Infrastructure in California  

Broader source: Energy.gov [DOE]

Presentation by Gerhard Achtelik, California Air Resources Board, at the Hydrogen Infrastructure Market Readiness Workshop, February 17, 2011, in Washington, DC.

436

The Gas/Electric Partnership  

E-Print Network [OSTI]

The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

437

Vapor phase transport at a hillside landfill  

Science Journals Connector (OSTI)

...ambient density gradients. Post-landfill gas input reverses the direction of...landfill may explain observations of landfill gas found at depth. Post-landfill...of gas generation. Transport of landfill gas is shown to be dominated by diffusion...

P. H. Stauffer; N. D. Rosenberg

438

Distribution Infrastructure and End Use  

Broader source: Energy.gov [DOE]

The expanded Renewable Fuel Standard (RFS2) created under the Energy Independence and Security Act (EISA) of 2007 requires 36 billion gallons of biofuels to be blended into transportation fuel by...

439

Hydrogen Distribution and Delivery Infrastructure  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

440

A GIS-based assessment of coal-based hydrogen infrastructure deployment in the state of Ohio  

Science Journals Connector (OSTI)

Hydrogen infrastructure costs will vary by region as geographic characteristics and feedstocks differ. This paper proposes a method for optimizing regional hydrogen infrastructure deployment by combining detailed spatial data in a geographic information system (GIS) with a technoeconomic model of hydrogen infrastructure components. The method is applied to a case study in Ohio in which coal-based hydrogen infrastructure with carbon capture and storage (CCS) is modeled for two distribution modes at several steady-state hydrogen vehicle market penetration levels. The paper identifies the optimal infrastructure design at each market penetration as well as the costs, CO2 emissions, and energy useassociated with each infrastructure pathway. The results indicate that aggregating infrastructure at the regional-scale yields lower levelized costs of hydrogen than at the city-level at a given market penetration level, and centralized production with pipeline distribution is the favored pathway even at low market penetration. Based upon the hydrogen infrastructure designs evaluated in this paper, coal-based hydrogen production with CCS can significantly reduce transportation-related CO2 emissions at a relatively low infrastructure cost and levelized fuel cost.

Nils Johnson; Christopher Yang; Joan Ogden

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

17 - Hydrogen as a fuel in transportation  

Science Journals Connector (OSTI)

Abstract: Hydrogen has attracted fresh attention in recent decades as an alternative renewable and sustainable transportation fuel. Hydrogen can fuel conventional or hybridized power trains, through highly efficient and low emission hydrogen-fueled internal combustion engines (H2ICE) and proton exchange membrane fuel cells (PEMFC). High capacity and cost-effective onboard vehicle hydrogen storage remains a major challenge, along with the affordability of building out a distributed hydrogen production, distribution, and fueling infrastructure. Current practice is to store hydrogen onboard vehicles as a compressed gas, cryogenic liquid, or in chemical form for conversion on demand. Recent hydrogen demonstrations and field trials have advanced the technology, lowered costs, and improved public perception.

J.R. Anstrom

2014-01-01T23:59:59.000Z

442

Sustainable transport better infrastructure -The Danish Government's vision for green infrastructure  

E-Print Network [OSTI]

vehicular traffic Fundamental restructuring of the taxation of cars It will be cheaper to buy a energy-efficient car Intelligent traffic systems Information on alternative routes and speed limit control will evenand be a viable alternative to cars Reduction in travel times The hour plan Extensive network of routes Trains

Prevedouros, Panos D.

443

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995  

SciTech Connect (OSTI)

This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-12-31T23:59:59.000Z

444

Automatic Library Tracking Database Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Libraries » ALTD Libraries » ALTD ALTD Automatic Library Tracking Database Infrastructure To track and monitor library usage and better serve your software needs, we have enabled the Automatic Library Tracking Database (ALTD) on our prodcution systems, Hopper and Edison. ALTD is also availailable on Carver, but has not enabled for all users by default yet. ALTD, developed by National Institute for Computational Sciences, automatically and transparently tracks all libraries linked into an application at compile time, as well as the libraries used at run time, by intercepting the linker (ld) and the job launcher (aprun, or mpirun). It is a light-weight tool, and should not change your experience with compilation and execution of codes on the machine. However, if you encounter any problems due to ALTD,

445

Statistical Modeling of Corrosion Failures in Natural Gas Transmission Pipelines  

E-Print Network [OSTI]

Natural gas pipelines are a critical component of the U.S. energy infrastructure. The safety of these pipelines plays a key role for the gas industry. Therefore, the understanding of failure characteristics and their consequences are very important...

Cobanoglu, Mustafa Murat

2014-03-28T23:59:59.000Z

446

Alternative Fuels Data Center: Propane Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Infrastructure Development to someone by E-mail Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

447

Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Infrastructure Development to someone by E-mail Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

448

Ris Energy Report 8 The intelligent energy system infrastructure for the future  

E-Print Network [OSTI]

Risø Energy Report 8 The intelligent energy system infrastructure for the future Dansk oversættelse Sønderberg Petersen #12;Risø Energy Report 5 Renewable energy for power and transport Den globale Report 5, som sætter fokus på status og tendenser inden for vedvarende energi. Rapporten giver et

449

Questions and Answers for March 8, 2012 PON11609: Hydrogen Fuel Infrastructure  

E-Print Network [OSTI]

1 Questions and Answers for March 8, 2012 PON11609: Hydrogen Fuel Infrastructure Renewable hydrogen, proof of origin of fuel or feedstock, production process, how it will be transported Hydrogen 1. What if a proposal meets (or exceeds) the renewable hydrogen content requirement through

450

Estimating Use of Non-Motorized Infrastructure: Models of Bicycle and  

E-Print Network [OSTI]

Estimating Use of Non-Motorized Infrastructure: Models of Bicycle and Pedestrian Traffic · Transportation managers lack data about use of bicycle and pedestrian facilities. · Federal, state, & local of Day Bicycle: Loop Detector Bicycle: Manual Count Pedestrian: Manual Count #12;Scaling factors

Minnesota, University of

451

Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report  

SciTech Connect (OSTI)

Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

2007-09-01T23:59:59.000Z

452

Site Support Program Plan Infrastructure Program  

SciTech Connect (OSTI)

The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site`s infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford`s infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition.

NONE

1995-09-26T23:59:59.000Z

453

Transitioning the Transportation Sector: Exploring the Intersection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection...

454

Reinventing Infrastructure: The 101 Freeway and the Revisioning of Downtown Los Angeles  

E-Print Network [OSTI]

hybrid of architecture, landscape, and infrastructure andforms of infrastructure/architecture hybrids, these projectsa hybrid: landscape becomes plinth, infrastructure becomes

Samuels, Linda C.

2012-01-01T23:59:59.000Z

455

Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint  

SciTech Connect (OSTI)

Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

Melaina, M.; Sun, Y.; Bush, B.

2014-08-01T23:59:59.000Z

456

E-Print Network 3.0 - air transportation facilities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis) CEMM 580 (Infrastructure Management) CEMM 507 (Transportation Energy and Air Quality... Engineering and Design) ... Source: Illinois at Chicago, University of - Urban...

457

Status of advanced light-duty transportation technologies in the US  

Science Journals Connector (OSTI)

The need to reduce oil consumption and greenhouse gases is driving a fundamental change toward more efficient, advanced vehicles, and fuels in the transportation sector. The paper reviews the current status of light duty vehicles in the US and discusses policies to improve fuel efficiency, advanced electric drives, and sustainable cellulosic biofuels. The paper describes the cost, technical, infrastructure, and market barriers for alternative technologies, i.e., advanced biofuels and light-duty vehicles, including diesel vehicles, natural-gas vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and fuel-cell electric vehicles. The paper also presents R&D targets and technology validation programs of the US government.

David Andress; Sujit Das; Fred Joseck; T. Dean Nguyen

2012-01-01T23:59:59.000Z

458

Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan  

SciTech Connect (OSTI)

Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

2007-07-01T23:59:59.000Z

459

Transportation and the Environment: Essays on Technology, Infrastructure, and Policy  

E-Print Network [OSTI]

and Health. 2003, Health Effects Institute. Boston, MA. May.Special Report, Health Effects Institute, Cambridge, MA,

Sangkapichai, Mana

2009-01-01T23:59:59.000Z

460

Transportation and the Environment: Essays on Technology, Infrastructure, and Policy  

E-Print Network [OSTI]

1. How about allowing more oil drilling off the CaliforniaHow about allowing new oil drilling in federally-protectedfinding more oil, either by drilling in federally protected

Sangkapichai, Mana

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Transportation and the Environment: Essays on Technology, Infrastructure, and Policy  

E-Print Network [OSTI]

Series Studies of Air Pollution and Health. 2003, Health5. Ballester, F. Air Pollution and Health: An Overview With2=Good idea). F4 (Air pollution and health concerns) 1. Is

Sangkapichai, Mana

2009-01-01T23:59:59.000Z

462

Transportation and the Environment: Essays on Technology, Infrastructure, and Policy  

E-Print Network [OSTI]

factors specific to King County, by far the largest county70% are located in King County (1,212 worksites); moreover,modes (although only in King County is the percentage of bus

Sangkapichai, Mana

2009-01-01T23:59:59.000Z

463

Transport Infrastructure and the Environment: Sustainable Mobility and Urbanism  

E-Print Network [OSTI]

sectors share of global oil demand grew from 33 percent indrive the growth in oil demand (IEA, 2011). World reservesand thus increasing demands for oil, many observe believe it

Cervero, Robert

2013-01-01T23:59:59.000Z

464

Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Smith Dairy Deploys Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest to someone by E-mail Share Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Facebook Tweet about Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Twitter Bookmark Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Google Bookmark Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Delicious Rank Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Digg

465

TRITIUM PERMEATION AND TRANSPORT IN THE GASOLINE PRODUCTION SYSTEM COUPLED WITH HIGH TEMPERATURE GAS-COOLED REACTORS (HTGRS)  

SciTech Connect (OSTI)

This paper describes scoping analyses on tritium behaviors in the HTGR-integrated gasoline production system, which is based on a methanol-to-gasoline (MTG) plant. In this system, the HTGR transfers heat and electricity to the MTG system. This system was analyzed using the TPAC code, which was recently developed by Idaho National Laboratory. The global sensitivity analyses were performed to understand and characterize tritium behaviors in the coupled HTGR/MTG system. This Monte Carlo based random sampling method was used to evaluate maximum 17,408 numbers of samples with different input values. According to the analyses, the average tritium concentration in the product gasoline is about 3.0510-3 Bq/cm3, and 62 % cases are within the tritium effluent limit (= 3.7x10-3 Bq/cm3[STP]). About 0.19% of released tritium is finally transported from the core to the gasoline product through permeations. This study also identified that the following four parameters are important concerning tritium behaviors in the HTGR/MTG system: (1) tritium source, (2) wall thickness of process heat exchanger, (3) operating temperature, and (4) tritium permeation coefficient of process heat exchanger. These four parameters contribute about 95 % of the total output uncertainties. This study strongly recommends focusing our future research on these four parameters to improve modeling accuracy and to mitigate tritium permeation into the gasol ine product. If the permeation barrier is included in the future study, the tritium concentration will be significantly reduced.

Chang H. Oh; Eung S. Kim; Mike Patterson

2011-05-01T23:59:59.000Z

466

Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fueling Alternative Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Grants

467

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

468

Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Fueling Biofuel Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Fueling Infrastructure Tax Credit

469

Antioch University and EPA Webinar: Green Infrastructure and...  

Office of Environmental Management (EM)

Antioch University and EPA Webinar: Green Infrastructure and Flood Resiliency Webinar Antioch University and EPA Webinar: Green Infrastructure and Flood Resiliency Webinar January...

470

FY 2014 Scientific Infrastructure Support for Consolidated Innovative...  

Office of Environmental Management (EM)

4 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA FY 2014 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA The...

471

CHP: Enabling Resilient Energy Infrastructure for Critical Facilities...  

Energy Savers [EERE]

CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March...

472

2011 Biomass Program Platform Peer Review: Infrastructure | Department...  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure 2011 Biomass Program Platform Peer Review: Infrastructure This document summarizes the recommendations and evaluations provided by an independent external panel of...

473

taking charge : optimizing urban charging infrastructure for shared electric vehicles  

E-Print Network [OSTI]

This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

Subramani, Praveen

2012-01-01T23:59:59.000Z

474

Infrastructure Analysis Tools: A Focus on Cash Flow Analysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrogen infrastructure: 1. Infrastructure costs 2. Realistic market growth scenarios 3. Return on investment expectations 4. Policy support options * NREL has been developing...

475

H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report H2A Hydrogen Delivery Infrastructure Analysis Models and...

476

HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's...

477

Connecticut Company to Advance Hydrogen Infrastructure and Fueling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies July...

478

Webinar: An Overview of the Hydrogen Fueling Infrastructure Research...  

Office of Environmental Management (EM)

An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and...

479

FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

480

Green Infrastructure and Flood Resiliency-Land Use Management...  

Office of Environmental Management (EM)

Green Infrastructure and Flood Resiliency-Land Use Management as an Adaptation Strategy in the Built Environment Green Infrastructure and Flood Resiliency-Land Use Management as an...

Note: This page contains sample records for the topic "gas transportation infrastructure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Webinar: Creating a Green Infrastructure Plan to Transform Your...  

Broader source: Energy.gov (indexed) [DOE]

Webinar: Creating a Green Infrastructure Plan to Transform Your Community Webinar: Creating a Green Infrastructure Plan to Transform Your Community November 18, 2014 3:00PM to...

482

EPA Webcast - Creating a Green Infrastructure Plan to Transform...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EPA Webcast - Creating a Green Infrastructure Plan to Transform Your Community EPA Webcast - Creating a Green Infrastructure Plan to Transform Your Community November 18, 2014...

483

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick...

484

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fueling Alternative Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

485

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

486

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options

487

Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Infrastructure Tax Credit

488

Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives -  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Infrastructure Propane Infrastructure and Fuel Incentives - Boulden Propane to someone by E-mail Share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Facebook Tweet about Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Twitter Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Google Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Delicious Rank Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Digg Find More places to share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on AddThis.com...

489

Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

490

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fueling Ethanol Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fueling Infrastructure Grants The Minnesota Corn Research & Promotion Council and the Minnesota

491

Alternative Fuels Data Center: Biofuels Distribution Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Distribution Distribution Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuels Distribution Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuels Distribution Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuels Distribution Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuels Distribution Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuels Distribution Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuels Distribution Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Distribution Infrastructure Tax Credit

492

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

493

Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Infrastructure Grant Program to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Infrastructure Grant Program

494

Computerization and Competitiveness: National Information Infrastructure in the USA  

E-Print Network [OSTI]

stay 'fairly intense,' USA Today, August 1994. Clinton,INFRASTRUCTURE IN THE USA Kenneth L. Kraemer Professor ofINFRASTRUCTURE IN THE USA INTRODUCTION The production and

Kraemer, Kenneth L.

1994-01-01T23:59:59.000Z

495

SLT Power Infrastructure Projects Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

SLT Power Infrastructure Projects Pvt Ltd Jump to: navigation, search Name: SLT Power & Infrastructure Projects Pvt Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500044 Sector:...

496

Deadline Extended for RFI Regarding Hydrogen Infrastructure and...  

Energy Savers [EERE]

Regarding Hydrogen Infrastructure and FCEVs Deadline Extended for RFI Regarding Hydrogen Infrastructure and FCEVs February 4, 2014 - 12:00am Addthis DOE has extended the submission...

497

Fermilab | Recovery Act | General Infrastructure Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Infrastructure Projects General Infrastructure Projects High Availability Computing Center The Computing Division provides administrative, technical and physical support of central computing, storage and networking equipment critical to the success of the lab’s scientific mission. Before the renovation, Feynman Computing Center housed the only high availability computing center on the Fermilab campus, which operated at its electrical capacity. The requirements for a high availability computing center include backup infrastructure support for computing equipment that operates continuously, such as networking, web and email services, experiment databases and file serving. Electrical service must be backed up by both an uninterrupted power supply system and a standby electrical generator.

498

Transforming the U.S. Energy Infrastructure  

SciTech Connect (OSTI)

The U.S. energy infrastructure is among the most reliable, accessible and economic in the world. On the other hand, the U.S. energy infrastructure is excessively reliant on foreign sources of energy, experiences high volatility in energy prices, does not practice good stewardship of finite indigenous energy resources and emits significant quantities of greenhouse gases (GHG). This report presents a Technology Based Strategy to achieve a full transformation of the U.S. energy infrastructure that corrects these negative factors while retaining the positives.

Larry Demick

2010-07-01T23:59:59.000Z

499

2H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

H2A Hydrogen Delivery Infrastructure Analysis Models and H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results DE-FG36-05GO15032 Interim Report Nexant, Inc., Air Liquide, Argonne National Laboratory, Chevron Technology Venture, Gas Technology Institute, National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and TIAX LLC May 2008 Contents Section Page Executive Summary ................................................................................................................... 1-9 Delivery Options ...................................................................................................................... 1-9 Evaluation of Options 2 and 3 ................................................................................................. 1-9

500

GAO-07-1036, CRITICAL INFRASTRUCTURE PROTECTION: Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain  

Broader source: Energy.gov (indexed) [DOE]

Congressional Requesters Congressional Requesters CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain September 2007 GAO-07-1036 What GAO Found United States Government Accountability Office Why GAO Did This Study Highlights Accountability Integrity Reliability September 2007 CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain Highlights of GAO-07-1036, a report to congressional requesters Control systems-computer-based systems that monitor and control sensitive processes and physical functions-perform vital functions in many of our nation's critical infrastructures, including electric power, oil and gas, water treatment, and chemical production. The disruption of