Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

4. Trends in Natural Gas Transportation Rates  

U.S. Energy Information Administration (EIA)

Energy Information Administration 39 Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates 4. Trends in Natural Gas Transportation Rates

2

Transportation and Greenhouse Gas Mitigation  

E-Print Network (OSTI)

Summary of transportation greenhouse gas mitigation optionsof alternative fuels. Low greenhouse gas fuels Mixing ofreplacement. Greenhouse gas budgets for households and

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

3

EIA - Natural Gas Pipeline Network - Natural Gas Transportation...  

Gasoline and Diesel Fuel Update (EIA)

Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates...

4

Natural Gas Regulation - Other Gas-Related Information Sources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Regulation - Other Gas-Related Information Sources Natural Gas Regulation - Other Gas-Related Information Sources Natural Gas Regulation - Other Gas-Related Information Sources The single largest source of energy information available is the Department of Energy's Energy Information Administration (EIA). The EIA publishes extensive reports on natural gas and other energy sources. Domestic natural gas markets are regulated in part by the Federal Energy Regulatory Commission. The commission's chief area of concern is the interstate natural gas market. Natural gas moves for the most part by pipeline in the United States. The safety of those pipelines is the concern of the Department of Transportation's Office of Pipeline Safety. In Canada the regulation of interprovincial and international natural gas is the responsibility of the National Energy Board. Their areas of

5

Boulder Area Directions and Transportation Information  

Science Conference Proceedings (OSTI)

Boulder Area Directions and Transportation Information. NIST Boulder Visitor Check-In & Parking. Transportation. ...

2013-02-27T23:59:59.000Z

6

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

7

High power gas transport laser  

SciTech Connect

Continuous wave output power from a gas transport laser is substantially increased by disposing a plurality of parallel cylindrically tubular cathodes in the main stream transversely of the direction of gas flow and spaced above a coextensive segmented anode in the opposite wall of the channel. Ballast resistors are connected between the cathodes, respectively, and the power supply to optimize the uniform arcless distribution of current passing between each cathode and the anode. Continuous output power greater than 3 kW is achieved with this electrode configuration.

Fahlen, T.S.; Kirk, R.F.

1978-02-28T23:59:59.000Z

8

Energy Information Administration - Transportation Energy ...  

U.S. Energy Information Administration (EIA)

Survey forms used by the U.S. Department of Energy (DOE) to collect energy information (e.g., gasoline prices, oil and gas reserves, coal production, etc.).

9

Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu to 31.8 quadrillion Btu), slower than the 1.2 percent average rate from 1975 to 2009. The slower growth is a result of changing demographics, increased LDV fuel economy, and saturation of personal travel demand.[1] References [1] ↑ 1.0 1.1 AEO2011 Transportation Sector Retrieved from "http://en.openei.org/w/index.php?title=Transportation&oldid=378906" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

10

Transportation Routing Analysis Geographic Information System (TRAGIS)  

E-Print Network (OSTI)

Transportation Routing Analysis Geographic Information System (TRAGIS) Model and Network Databases The Transportation Routing Analysis Geographic Information System (TRAGIS) model is a geographic information system tool for modeling transportation routing. TRAGIS offers numerous options for route calculation

11

EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Transportation Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow patterns. 5 major routes extend from the producing areas of the Southwest 4 routes enter the United States from Canada 2 originate in the Rocky Mountain area. A summary of the major corridors and links to details about each corridor are provided below. Corridors from the Southwest Region

12

Transportation and Greenhouse Gas Mitigation  

E-Print Network (OSTI)

fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

13

Materials for Oil and Gas Transport  

Science Conference Proceedings (OSTI)

Jun 18, 2008 ... The demand on materials for transporting oil, natural gas, and other fluids, including hydrogen, ethanol, etc. is severe in terms of material...

14

Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Sampling Details Activities (7) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Gas composition and source of fluids. Thermal: Anomalous flux is associated with active hydrothermal activity. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Gas Sampling: Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system.

15

Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market  

U.S. Energy Information Administration (EIA) Indexed Site

Processing: The Crucial Link Between Natural Gas Production Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e., cleaned, before it can be safely delivered to the high-pressure, long-distance pipelines that transport the product to the consuming public. Natural gas that is not within certain specific gravities, pressures, Btu content range, or water content levels will

16

Oil and Gas Exploration, Drilling, Transportation, and Production...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) Eligibility...

17

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines Transporting natural gas. Learn how natural gas is transported by the pipeline network. Features Natural Gas Monthly. Released July ...

18

Natural Gas Supply Conference - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Supply Conference. William Trapmann Energy Information Administration. American Public Gas Association January 30 & 31, 2001

19

Natural Gas as a Transportation Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation fuel. About one third of the natural gas used in the United States goes to residential and commercial uses, one third to industrial uses, and one third to electric power production.

20

The role of natural gas as a vehicle transportation fuel.  

E-Print Network (OSTI)

??This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis (more)

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Merton C. Flemings Symposium: Transportation Information - TMS  

Science Conference Proceedings (OSTI)

The Merton C. Flemings Symposium: Transportation Information. June 28-30, 2000 MERTON C. FLEMINGS SYMPOSIUM Cambridge, Massachusetts.

22

Transportation fuels from synthetic gas  

DOE Green Energy (OSTI)

Twenty-five experimental Fischer-Tropsch synthesis runs were made with 14 different catalysts or combinations of catalysts using a Berty reactor system. Two catalysts showed increased selectivity to transportation fuels compared to typical Fischer-Tropsch catalysts. With a catalyst consisting of 5 wt % ruthenium impregnated on a Y zeolite (run number 24), 63 to 70 wt % of the hydrocarbon product was in the gasoline boiling range. Using a 0.5 wt % ruthenium on alumina catalyst (run number 22), 64 to 78 wt % of the hydrocarbon product was in the diesel fuel boiling range. Not enough sample was produced to determine the octane number of the gasoline from run number 24, but it is probably somewhat better than typical Fischer-Tropsch gasoline (approx. 50) and less than unleaded gasoline (approx. 88). The diesel fuel produced in run number 22 consisted of mostly straight chained paraffins and should be an excellent transportation fuel without further refining. The yield of transportation fuels from biomass via gasification and the Fischer-Tropsch synthesis with the ruthenium catalysts identified in the previous paragraph is somewhat less, on a Btu basis, than methanol (via gasification) and wood oil (PERC and LBL processes) yields from biomass. However, the products of the F-T synthesis are higher quality transportation fuels. The yield of transportation fuels via the F-T synthesis is similar to the yield of gasoline via methanol synthesis and the Mobil MTG process.

Baker, E.G.; Cuello, R.

1981-08-01T23:59:59.000Z

23

Method of pipeline transportation of natural gas  

SciTech Connect

A USSR-developed method for transporting natural gas in the form of hydrates increases pipeline transmission capacity by at least 3-4 times as compared to a conventional pipeline and reduces the specific capital investment since thin-walled carbon-steel pipes can be used instead of cryogenic-resistant ones. In the approach, natural gas in hydrate form is loaded into wheeled containers or capsules which are then propelled through a pipeline by compressed and cooled natural gas. The physical state of the gas hydrates is preserved during their transport by keeping the pressure between 715 and 285 psi (50 and 20 kg/sq cm) and the temperature between -40/sup 0/ and +14/sup 0/F (-40/sup 0/ and -10/sup 0/C).

Chersky, N.V.; Klimenko, A.P.; Bokserman, J.I.; Kalina, A.I.; Karimov, F.A.

1975-06-10T23:59:59.000Z

24

Sector Transportation | Open Energy Information  

Open Energy Info (EERE)

Results 1- 20 Next (20 | 50 | 100 | 250 | 500) 2011 APTA Public Transportation Fact Book + A Municipal Official's Guide to Diesel Idling Reduction + APEC-Alternative Transport...

25

Natural Gas 1995 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration Natural Gas 1995: Issues and Trends iii Preface Natural Gas 1995: Issues and T rends has been prepared by the

26

Transportation Routing Analysis Geographic Information System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Routing Analysis Geographic Information System (TRAGIS) to Spent Fuel Routing Analysis P. E. Johnson R.R. Rawl Oak Ridge National Laboratory TRAGIS is being used by...

27

Energy Basics: Natural Gas as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Natural Gas as a Transportation Fuel Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation...

28

Session 2A Water and Gas Transport Through Cementitious Materials  

Water and Gas Transport Through Cementitious Materials State of the art ... Novel methods for liquid permeability measurement of saturated ...

29

Airport, Transport & Hotel Information | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Airport Information SHARE Airport Information Information related to the Knoxville Airport is listed below. You can find individual airlines' websites by following the "Airlines"...

30

Transport coefficients of a massive pion gas  

E-Print Network (OSTI)

We review or main results concerning the transport coefficients of a light meson gas, in particular we focus on the case of a massive pion gas. Leading order results according to the chiral power-counting are presented for the DC electrical conductivity, thermal conductivity, shear viscosity, and bulk viscosity. We also comment on the possible correlation between the bulk viscosity and the trace anomaly in QCD, as well as the relation between unitarity and a minimum of the quotient $\\eta/s$ near the phase transition.

D. Fernandez-Fraile; A. Gomez Nicola

2009-12-20T23:59:59.000Z

31

ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS  

E-Print Network (OSTI)

ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS EMISSIONS IN CANADA by Rose: Analysis of Measures for Reducing Transportation Sector Greenhouse Gas Emissions in Canada Project Number the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions

32

Transport properties of a meson gas  

E-Print Network (OSTI)

We present recent results on a systematic method to calculate transport coefficients for a meson gas (in particular, we analyze a pion gas) at low temperatures in the context of Chiral Perturbation Theory. Our method is based on the study of Feynman diagrams with a power counting which takes into account collisions in the plasma by means of a non-zero particle width. In this way, we obtain results compatible with analysis of Kinetic Theory with just the leading order diagram. We show the behavior with temperature of electrical and thermal conductivities and shear and bulk viscosities, and we discuss the fundamental role played by unitarity. We obtain that bulk viscosity is negligible against shear viscosity near the chiral phase transition. Relations between the different transport coefficients and bounds on them based on different theoretical approximations are also discussed. We also comment on some applications to heavy-ion collisions.

D. Fernandez-Fraile; A. Gomez Nicola

2007-06-25T23:59:59.000Z

33

Natural Gas Monthly (NGM) - Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration - EIA ... nuclear reactors, ... Selected National Average Natural Gas Prices, 2008-2013: XLS: PDF:

34

Energy Information Administration - Natural Gas Glossary  

U.S. Energy Information Administration (EIA)

Energy Information Administration Deliverability on the Interstate Natural Gas Pipeline System 143 Glossary Abandonment: Regulatory permission to ...

35

Energy Basics: Natural Gas as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Natural Gas as a Transportation Fuel Only about one tenth of one percent of all of the natural gas in the United States is...

36

The role of natural gas as a vehicle transportation fuel  

E-Print Network (OSTI)

This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

37

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173"...

38

Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Flux Sampling Details Activities (26) Areas (20) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Thermal: Anomalous flux is associated with active hydrothermal activity. Dictionary.png Gas Flux Sampling: Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares it to average background emissions. Anomalously high gas flux can be an indication of hydrothermal activity.

39

The Future of Transportation Finance: Gas Tax Plus and Beyond  

E-Print Network (OSTI)

The Future of Transportation Finance: Gas Tax Plus and Beyond The Future of Transportation Finance ON TRANSPORTATION POLICY AND TECHNOLOGY 2005 JAMES L. OBERSTAR FORUM ON TRANSPORTATION POLICY AND TECHNOLOGY #12;This report summarizes the fourth James L. Oberstar Forum on Transportation Policy and Technology. Over

Minnesota, University of

40

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

Urban Transportation Emission Calculator Urban Transportation Emission Calculator Jump to: navigation, search Tool Summary Name: Urban Transportation Emission Calculator Agency/Company /Organization: Transport Canada Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Website Website: wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng Cost: Free References: http://wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng The Urban Transportation Emissions Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and criteria air contaminant (CAC) emissions from the operation of vehicles. It also estimates upstream GHG emissions from the production, refining and

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Gas Sampling Surface Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Gas Sampling Details Activities (12) Areas (10) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Gas composition and source of fluids. Thermal: Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Surface Gas Sampling: Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system. Other definitions:Wikipedia Reegle Introduction

42

Transportation of Natural Gas and Petroleum (Nebraska) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation of Natural Gas and Petroleum (Nebraska) Transportation of Natural Gas and Petroleum (Nebraska) Transportation of Natural Gas and Petroleum (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Oil and Gas Conservation Commission This statute enables and regulates the exercise of eminent domain by persons, companies, corporations, or associations transporting crude oil,

43

The World Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

The World Bank - Transport The World Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The World Bank - Transport Agency/Company /Organization: The World Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: go.worldbank.org/0SYYVJWB40 This website provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes international publications and toolkits classified by type of transport and/or region/country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

44

Victoria Transport Policy Institute | Open Energy Information  

Open Energy Info (EERE)

Transport Policy Institute Transport Policy Institute Jump to: navigation, search Name Victoria Transport Policy Institute Address 1250 Rudlin Street, Place Victoria, British Columbia Website http://www.vtpi.org/ References http://www.vtpi.org/ No information has been entered for this organization. Add Organization "The Victoria Transport Policy Institute is an independent research organization dedicated to developing innovative and practical solutions to transportation problems. We provide a variety of resources available free at this website to help improve transportation planning and policy analysis. We are funded primarily through consulting and project grants. Our research is among the most current available and has been widely applied." References Retrieved from "http://en.openei.org/w/index.php?title=Victoria_Transport_Policy_Institute&oldid=375887"

45

Asian Development Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

Asian Development Bank - Transport Asian Development Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Asian Development Bank - Transport Agency/Company /Organization: Asian Development Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: www.adb.org/sectors/transport/main This website provides relevant information about transport, focusing on the Sustainable Transport Initiative-Operational Plan (STI-OP). The website includes publications, current approved projects in Asia and toolkits classified by type of transport and/or country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

46

Optimizing the Norwegian Natural Gas Production and Transport  

Science Conference Proceedings (OSTI)

The network for transport of natural gas on the Norwegian Continental Shelf, with 7,800 km of subsea pipelines, is the world's largest offshore pipeline network. The gas flowing through this network represents approximately 15 percent of European consumption, ... Keywords: decision support system, energy, mixed-integer programming, natural gas, network transportation

Frode Rmo; Asgeir Tomasgard; Lars Hellemo; Marte Fodstad; Bjrgulf Haukelidster Eidesen; Birger Pedersen

2009-01-01T23:59:59.000Z

47

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network (OSTI)

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

48

Gas Geothermometry | Open Energy Information  

Open Energy Info (EERE)

Gas Geothermometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Geothermometry Details Activities (0) Areas (0) Regions (0) NEPA(0)...

49

Transportation Technical Environmental Information Center index  

SciTech Connect

In an effort to determine the environmental intensities to which energy materials in transit may be exposed, a Data Center of technical environmental information has been established by Sandia National Laboratories, Division 5523, for the DOE Office of Transportation Fuel Storage. This document is an index which can be used to request data of interest. Access to the information held is not limited to Sandia personnel. The purpose of the Transportation Technical Environmental Information Center is to collect, analyze, store, and make available descriptions of the environment of transportation expressed in engineering terms. The data stored in the Center are expected to be useful in a variety of transportation related analyses. Formulations of environmental criteria for shipment of cargo, risk assessments, and detailed structural analyses of shipping containers are examples where these data have been applied. For purposes of indexing and data retrieval, the data are catalogued under two major headings: Normal and Abnormal Environments.

Davidson, C. A.; Foley, J. T.

1980-10-01T23:59:59.000Z

50

Greenhouse Gas Emissions from Aviation and Marine Transportation:  

Open Energy Info (EERE)

Greenhouse Gas Emissions from Aviation and Marine Transportation: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Jump to: navigation, search Tool Summary Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Agency/Company /Organization: Pew Center on Global Climate Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org/docUploads/aviation-and-marine-report-2009.pdf Cost: Free References: Greenhouse Gas emissions from aviation and marine transportation: mitigation potential and policies[1] "This paper provides an overview of greenhouse gas (GHG) emissions from aviation and marine transportation and the various mitigation options to

51

Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Gas Sampling Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Gas Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Identify concealed faults that act as conduits for hydrothermal fluids. Hydrological: Identify hydrothermal gases of magmatic origin. Thermal: Differentiate between amagmatic or magmatic sources heat. Dictionary.png Soil Gas Sampling: Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases

52

Definition: Liquid natural gas | Open Energy Information  

Open Energy Info (EERE)

Liquid natural gas Liquid natural gas Jump to: navigation, search Dictionary.png Liquid natural gas Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure.[1] View on Wikipedia Wikipedia Definition Liquefied natural gas or LNG is natural gas that has been converted to liquid form for ease of storage or transport. Liquefied natural gas takes up about 1/600th the volume of natural gas in the gaseous state. It is odorless, colorless, non-toxic and non-corrosive. Hazards include flammability after vaporization into a gaseous state, freezing and asphyxia. The liquefaction process involves removal of certain components, such as dust, acid gases, helium, water, and heavy hydrocarbons, which could cause difficulty downstream. The natural gas is then condensed into a

53

New Mexico Natural Gas Number of Residential Consumers - Transported...  

U.S. Energy Information Administration (EIA) Indexed Site

Transported (Number of Elements) New Mexico Natural Gas Number of Residential Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

54

New Mexico Natural Gas Number of Commercial Consumers - Transported...  

U.S. Energy Information Administration (EIA) Indexed Site

Transported (Number of Elements) New Mexico Natural Gas Number of Commercial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

55

New Mexico Natural Gas Number of Industrial Consumers - Transported...  

U.S. Energy Information Administration (EIA) Indexed Site

Transported (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

56

Natural Gas Storage - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Update: EIA NARUC Winter Meeting February 23, 2003 Barbara Mariner-Volpe, Barbara.MarinerVolpe@eia.doe.gov Energy Information Administration

57

Natural Gas Production Data - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration, Office of Oil and Gas, ... for elemental sulfur and carbon dioxide can be used for enhanced oil recovery. Inert gases such as

58

Gas transport, sorption, and mechanical response of fractured coal.  

E-Print Network (OSTI)

??Fractured coal exhibits strong and dynamic coupling between fluid transport and mechanical response especially when the pore fluid is a sorbing gas. This complex interaction (more)

Wang, Shugang

2012-01-01T23:59:59.000Z

59

New pipeline project could lower natural gas transportation costs ...  

U.S. Energy Information Administration (EIA)

... natural gas transportation costs to New York City could be reduced with the expansion of the existing Texas Eastern Transmission pipeline from Linden, New ...

60

The efficient use of natural gas in transportation  

DOE Green Energy (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The efficient use of natural gas in transportation  

DOE Green Energy (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-04-01T23:59:59.000Z

62

Tracer Gas Transport under Mixed Convection Conditions in an Experimental  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracer Gas Transport under Mixed Convection Conditions in an Experimental Tracer Gas Transport under Mixed Convection Conditions in an Experimental Atrium: Comparison Between Experiments and CFD Predictions Title Tracer Gas Transport under Mixed Convection Conditions in an Experimental Atrium: Comparison Between Experiments and CFD Predictions Publication Type Journal Article Year of Publication 2006 Authors Jayaraman, Buvaneswari, Elizabeth U. Finlayson, Michael D. Sohn, Tracy L. Thatcher, Phillip N. Price, Emily E. Wood, Richard G. Sextro, and Ashok J. Gadgil Journal Atmospheric Environment Volume 40 Start Page Chapter Pagination 5236-5250 Keywords airflow and pollutant transport group, atria, indoor airflow and pollutant transport, indoor environment department, indoor pollutant dispersion, mixed convection, turbulence model

63

Transportation Fuel Basics - Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Natural Gas Transportation Fuel Basics - Natural Gas Transportation Fuel Basics - Natural Gas July 30, 2013 - 4:40pm Addthis Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation fuel. About one third of the natural gas used in the United States goes to residential and commercial uses, one third to industrial uses, and one third to electric power production. Natural gas has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic, non-corrosive, and non-carcinogenic. It presents no threat to soil, surface water, or groundwater. Natural gas is a mixture of hydrocarbons, predominantly methane (CH4). As delivered through the nation's pipeline system, it also contains

64

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or  

Open Energy Info (EERE)

Transport or Transport or Mobil Sources Jump to: navigation, search Tool Summary Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Transportation, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free The Greenhouse Gas Protocol tool for mobile combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically from mobile combustion sources, including vehicles under the direct control

65

CTS Councils provide a forum for transportation professionals and researchers to exchange information on current transportation  

E-Print Network (OSTI)

CTS Councils provide a forum for transportation professionals and researchers to exchange information on current transportation issues and trends. They bring together University faculty and staff on the following multidisciplinary topic areas: Transportation and the Economy; Transportation Infrastructure

Minnesota, University of

66

EIA - Natural Gas Pipeline Network - Transportation Process & Flow  

U.S. Energy Information Administration (EIA) Indexed Site

Process and Flow Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas producing well or field. Once the gas leaves the producing well, a pipeline gathering system directs the flow either to a natural gas processing plant or directly to the mainline transmission grid, depending upon the initial quality of the wellhead product.

67

Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation  

E-Print Network (OSTI)

Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation Oak Ridge sector is believed to be responsible for 28.4% of our greenhouse gas emissions (see figure), including 33% of the carbon dioxide we produce. As such it is a leading candidate for greenhouse gas ((GHG) (CO2, NH4, HFCs

68

Natural Gas - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

The process of separating interstate pipeline gas sales from transportation service has been completed and has resulted in greater gas procurement options for LDCs.

69

Natural Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 86. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 13. Natural Gas Supply, Disposition, and Prices Table 14. Oil and Gas Supply Table 21. Carbon Dioxide Emissions by Sector and Source - New England Table 22. Carbon Dioxide Emissions by Sector and Source- Middle Atlantic Table 23. Carbon Dioxide Emissions by Sector and Source - East North Central Table 24. Carbon Dioxide Emissions by Sector and Source - West North Central Table 25. Carbon Dioxide Emissions by Sector and Source - South Atlantic Table 26. Carbon Dioxide Emissions by Sector and Source - East South Central Table 27. Carbon Dioxide Emissions by Sector and Source - West South

70

EIA - Natural Gas Pipeline Network - Transporting Natural Gas in ...  

U.S. Energy Information Administration (EIA)

8 LNG (liquefied natural gas) import facilities and 100 LNG peaking facilities (see map). Learn more about the natural gas pipeline network:

71

Natural Gas Compression Technology Improves Transport and Efficiencies,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Compression Technology Improves Transport and Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs May 10, 2012 - 1:00pm Addthis Washington, DC - An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy (DOE). OsComp Systems designed and tested the novel compressor design with funding from the DOE-supported Stripper Well Consortium, an industry-driven organization whose members include natural gas and petroleum producers,

72

Oil and Gas Exploration, Drilling, Transportation, and Production (South  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploration, Drilling, Transportation, and Production Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) < Back Eligibility Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Buying & Making Electricity Program Info State South Carolina Program Type Environmental Regulations Siting and Permitting Provider South Carolina Department of Health and Environmental Control This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to prevent the waste of oil and gas, promote environmental stewardship, and regulate the exploration,

73

Feed gas contaminant removal in ion transport membrane systems  

DOE Patents (OSTI)

An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

2012-04-03T23:59:59.000Z

74

The Transportation Greenhouse Gas Inventory: A First Step Toward City-Driven Emissions Rationalization  

E-Print Network (OSTI)

and Criteria Pollutnat Inventories of Automobiles, Buses,Transportation Greenhouse Gas Inventory: A First Step TowardTransportation Greenhouse Gas Inventory: A First Step toward

Ganson, Chris

2008-01-01T23:59:59.000Z

75

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

76

Transportation Fuel Basics - Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Natural Gas Transportation Fuel Basics - Natural Gas July 30, 2013 - 4:40pm Addthis Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation fuel. About one third of the natural gas used in the United States goes to residential and commercial uses, one third to industrial uses, and one third to electric power production. Natural gas has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic, non-corrosive, and non-carcinogenic. It presents no threat to soil, surface water, or groundwater. Natural gas is a mixture of hydrocarbons, predominantly methane (CH4). As delivered through the nation's pipeline system, it also contains hydrocarbons such as ethane and propane and other gases such as nitrogen,

77

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

78

Texas Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Texas Department of Transportation Jump to: navigation, search Logo: Texas Department of Transportation Name Texas Department of Transportation Short Name TxDOT Place Austin, Texas...

79

VTPI-Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

VTPI-Transportation Statistics Jump to: navigation, search Name VTPI-Transportation Statistics AgencyCompany Organization Victoria Transportation Policy Institute Focus Area...

80

Transportation and Handling of Medium Btu Gas in Pipelines  

Science Conference Proceedings (OSTI)

Coal-derived medium btu gas can be safely transported by pipeline over moderate distances, according to this survey of current industrial pipeline practices. Although pipeline design criteria will be more stringent than for natural gas pipelines, the necessary technology is readily available.

1984-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Linking Oil Prices, Gas Prices, Economy, Transport, and Land Use  

E-Print Network (OSTI)

Linking Oil Prices, Gas Prices, Economy, Transport, and Land Use A Review of Empirical Findings Hongwei Dong, Ph.D. Candidate John D. Hunt, Professor John Gliebe, Assistant Professor #12;Framework Oil-run Short and Long-run #12;Topics covered by this presentation: Oil price and macro-economy Gas price

Bertini, Robert L.

82

International Transport Forum | Open Energy Information  

Open Energy Info (EERE)

Forum Jump to: navigation, search Logo: International Transport Forum Name International Transport Forum Address 2 rue Andr Pascal, F-75775 Place Paris, France Website http:...

83

Access and Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAccessandTransportation&oldid647797" Category: NEPA Resources...

84

Measurement of gas transport properties for chemical vapor infiltration  

Science Conference Proceedings (OSTI)

In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

1996-12-01T23:59:59.000Z

85

Natural Gas - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Report on hurricane impacts on the U.S. oil and natural gas markets . Analysis of Price Volatility in Natural Gas Markets.

86

Natural Gas - U.S. Energy Information Administration (EIA) - U ...  

U.S. Energy Information Administration (EIA)

In the News: EIA projects lower natural gas use this winter. The U.S. Energy Information Administration (EIA) forecasts that reduced natural gas consumption from ...

87

Hot-Gas Filter Testing with a Transport Reactor Gasifier  

Science Conference Proceedings (OSTI)

Today, coal supplies over 55% of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being developed for advanced electric power generation is an integrated gasification combined cycle (IGCC) system that converts coal to a combustible gas, cleans the gas of pollutants, and combusts the gas in a gas turbine to generate electricity. The hot exhaust from the gas turbine is used to produce steam to generate more electricity from a steam turbine cycle. The utilization of advanced hot-gas particulate and sulfur control technologies together with the combined power generation cycles make IGCC one of the cleanest and most efficient ways available to generate electric power from coal. One of the strategic objectives for U.S. Department of Energy (DOE) IGCC research and development program is to develop and demonstrate advanced gasifiers and second-generation IGCC systems. Another objective is to develop advanced hot-gas cleanup and trace contaminant control technologies. One of the more recent gasification concepts to be investigated is that of the transport reactor gasifier, which functions as a circulating fluid-bed gasifier while operating in the pneumatic transport regime of solid particle flow. This gasifier concept provides excellent solid-gas contacting of relatively small particles to promote high gasification rates and also provides the highest coal throughput per unit cross-sectional area of any other gasifier, thereby reducing capital cost of the gasification island.

Swanson, M.L.; Hajicek, D.R.

2002-09-18T23:59:59.000Z

88

The Northeast Natural Gas Market in 2030 - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Source: Energy Information Administration, GasTran Gas Transportation System. = Underground Natural Gas Storage Facilities = LNG Facilities

89

Widget:GasMap | Open Energy Information  

Open Energy Info (EERE)

Widget:GasMap Jump to: navigation, search Gas map widget: The Gas Map displays real-time gas prices for the United States Example Output Gas map widget: Denver Gas Prices provided...

90

Information-Sharing Protocol for the Transportation of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Draft for Review Only Information-Sharing for Transportation of Radioactive Waste to Yucca Mountain Office of Logistics Management Office of Civilian Radioactive Waste...

91

Greenhouse gas action plan for the transportation sector in Iowa  

SciTech Connect

The purpose of this research has been to identify ways in which the state of Iowa can do its part in reducing greenhouse gas emissions in its transportation sector. A variety of strategies and policy actions for reducing greenhouse gas emissions in Iowa are explored in this report. Some of these actions would be relatively easy to implement, while others would require significant changes in how people live and travel. The authors` work on this research effort has been conducted in tandem with a larger study to develop a greenhouse gas action plan for Iowa.

Ney, R.A.; Schnoor, J.L.; Foster, N.S.J.; Forkenbrock, D.J.

1997-12-31T23:59:59.000Z

92

Transportation of RCRA hazardous wastes. RCRA Information Brief  

Science Conference Proceedings (OSTI)

The Resource Conservation and Recovery Act (RCRA) and the Hazardous Materials Transportation Act (HMTA) regulate the transport of hazardous wastes. Under these statutes, specific pretransport regulatory requirements must be met by DOE before the shipment of hazardous wastes, including radioactive mixed wastes. The pretransport requirements are designed to help reduce the risk of loss, leakage, or exposure during shipment of hazardous materials and to communicate information on potential hazards posed by the hazardous material in transport. These goals are accomplished through the tracking of shipments, correctly packaging and labeling containers, and communicating potential hazards. Specific requirements include manifesting, packaging, marking and labeling waste packages; placarding transport vehicles; choosing appropriate waste transporters and shipment destinations; and record keeping and reporting. This information Brief focuses primarily on the transporter requirements both for transportation within a DOE facility and using a commercial transporter to transport RCRA hazardous wastes off-site.

Not Available

1994-04-01T23:59:59.000Z

93

Electromagnetic fields and transport coefficients in a hot pion gas  

E-Print Network (OSTI)

We present recent results on finite temperature electromagnetic form factors and the electrical conductivity in a pion gas. The standard Chiral Perturbation Theory power counting needs to be modified for transport coefficients. We pay special attention to unitarity and to possible applications for dilepton and photon production.

A. Gomez Nicola; D. Fernandez-Fraile

2006-08-24T23:59:59.000Z

94

Gas transport model for chemical vapor infiltration  

Science Conference Proceedings (OSTI)

A node-bond percolation model is presented for the gas permeability and pore surface area of the coarse porosity in woven fiber structures during densification by chemical vapor infiltration (CVI). Model parameters include the number of nodes per unit volume and their spatial distribution, and the node and bond radii and their variability. These parameters relate directly to structural features of the weave. Some uncertainty exists in the proper partition of the porosity between ``node`` and ``bond`` and between intra-tow and inter-tow, although the total is constrained by the known fiber loading in the structure. Applied to cloth layup preforms the model gives good agreement with the limited number of available measurements.

Starr, T.L. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)

1995-09-01T23:59:59.000Z

95

LEDSGP/Transportation Toolkit/Tools | Open Energy Information  

Open Energy Info (EERE)

Tools Tools < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Tools for Low-Emission Development Strategies in Transportation Use one of the search methods below to find tools for building sustainable, low-emission development strategies (LEDS) for your country's transportation system. These resources focus on strategies to limit air pollutants and greenhouse gas emissions. Learn more in the report on LEDS for transportation. Search Method: Category Keyword Choose one or more items from the following categories. Key Actions Implement & Monitor Evaluate System Create Baseline Assess Opportunities Develop Alternatives Prioritize & plan Strategies Resource Types Topics Regions Powered by OpenEI

96

Natural Gas - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, ...

97

LP-Gas transport safety claims confirmed  

SciTech Connect

According to data compiled by the National LPG Association and the National Fire Protection Association (NFPA), the majority of accidents involving LPG transport are not caused by the LPG or by malfunction of the container. In a 34 yr period, only 14 incidents occurred in which permanent storage tanks larger than 500 gal were ruptured. Fewer than 600 of the 44,432 railroad derailments between 1969 and 1975 involved uninsulated pressure-tank cars (generally but not entirely cars containing LPG), and of these derailed cars, only 170 lost some or all of their lading. Over 70% of the derailments were caused by track or equipment problems. LPG trucks in the last five years were involved in only 192 highway and bulk plant incidents; of these, 50 involved tank trucks with leakage which was controlled, and 32 involved fire or container rupture. Most fire or rupture accidents occurred in bulk plant facilities during loading operations, but the installation of new emergency shutoff valves, required by NFPA 58, should diminish this type of accident.

1979-08-01T23:59:59.000Z

98

EC-LEDS Transport | Open Energy Information  

Open Energy Info (EERE)

EC-LEDS Transport EC-LEDS Transport Jump to: navigation, search Name EC-LEDS Transport Agency/Company /Organization United States Department of State Partner National Renewable Energy Laboratory Sector Climate Focus Area Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program Start 2011 Country Global References Transportation Assessment Toolkit[1] "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the growth of greenhouse

99

Transport Research Laboratory | Open Energy Information  

Open Energy Info (EERE)

Transport Research Laboratory Transport Research Laboratory Jump to: navigation, search Tool Summary Name: Transport Research Laboratory Agency/Company /Organization: Transport Research Laboratory Focus Area: Governance - Planning - Decision-Making Structure Topics: Potentials & Scenarios Resource Type: Website Website: www.trl.co.uk/ The UK's Transport Research Laboratory is an internationally recognised centre of excellence providing world-class research, consultancy, testing and certification for all aspects of transport. The website provides publications, news, software and many other products and services related to transport How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

100

TransportToolkit Prototype | Open Energy Information  

Open Energy Info (EERE)

TransportToolkit Prototype TransportToolkit Prototype Jump to: navigation, search Tool Summary Name: TransportToolkit Prototype Agency/Company /Organization: Nick Langle Complexity/Ease of Use: Not Available Cost: Free Related Tools Journal of Public Transportation Handbook for Handling, Storing, and Dispensing E85 Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks ... further results Find Another Tool FIND TRANSPORTATION TOOLS This is a test tool to set values needed for Exhibit search results When to Use This Tool While building a low emission strategy for your country's transportation system, this tool is most useful during these key phases of the process: Evaluate System - Assessing the current transportation situation Create Baseline - Developing a business-as-usual scenario

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sustainable Transport Systems STS | Open Energy Information  

Open Energy Info (EERE)

Transport Systems STS Transport Systems STS Jump to: navigation, search Name Sustainable Transport Systems (STS) Place Santa Cruz, California Zip 95062 Sector Carbon, Efficiency Product California-based company providing assistance to firms looking to cut their carbon footprint through advice about how they can improve efficiency. References Sustainable Transport Systems (STS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sustainable Transport Systems (STS) is a company located in Santa Cruz, California . References ↑ "Sustainable Transport Systems (STS)" Retrieved from "http://en.openei.org/w/index.php?title=Sustainable_Transport_Systems_STS&oldid=351924"

102

Historical Information on the Transportation External Coordination Working  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historical Information on the Transportation External Coordination Historical Information on the Transportation External Coordination Working Group (TEC) Historical Information on the Transportation External Coordination Working Group (TEC) Historical Information on the Transportation External Coordination Working Group (TEC) TEC was formed in 1992 to improve coordination between the U.S. Department of Energy (DOE) and external groups interested in the Department's transportation activities. TEC was co-chaired by DOE's Office of Civilian Radioactive Waste Management and the Office of Environmental Management. Going the Distance "Going the Distance? The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States" available for free download from the National Academic Press Resources

103

Category:Transportation Toolkits | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Transportation Toolkits Jump to: navigation, search Add a new Transportation Toolkit Pages in category "Transportation Toolkits" The following 86 pages are in this category, out of 86 total. A A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 A Review of HOV Lane Performance and Policy Options in the United States - Final Report A Roadmap to Funding Infrastructure Development Adapting Urban Transport to Climate Change- Module 5f - Sustainable transport: a sourcebook for policy-makers in developing cities Africa's Transport Infrastructure Mainstreaming Maintenance and Management

104

LEDSGP/Transportation Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit < LEDSGP(Redirected from Transportation Toolkit) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Developing Strategies for Clean, Efficient Transportation The Transportation LEDS Toolkit supports development planners, technical experts, and decision makers at national and local levels to plan and implement low emission transportation systems that support economic growth. This toolkit website helps users navigate a variety of resources in order to identify the most effective tools necessary to build and implement low

105

LEDSGP/Transportation Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit < LEDSGP Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Developing Strategies for Clean, Efficient Transportation The Transportation Toolkit supports development planners, technical experts, and decision makers at national and local levels to plan and implement low-emission transportation systems that support economic growth. This toolkit helps users navigate a variety of resources to identify the most effective tools to build and implement low emission development strategies (LEDS) for the transport sector. Learn more in the report on

106

Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search The Department of Transportation is a federal agency in the United States. Retrieved from "http:en.openei.orgwindex.php?titleDepartmentofTranspo...

107

Renewable Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Renewable Transportation Fuels Jump to: navigation, search TODO: Add description List of...

108

Lattice gas automata for flow and transport in geochemical systems  

Science Conference Proceedings (OSTI)

Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

1992-01-01T23:59:59.000Z

109

Lattice gas automata for flow and transport in geochemical systems  

Science Conference Proceedings (OSTI)

Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

1992-05-01T23:59:59.000Z

110

LEDSGP/Transportation Toolkit/Tools | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Tools < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Tools) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Tools for Low Emission Development Strategies in Transportation Use one of the search methods below to find tools for building sustainable, low emission development strategies (LEDS) for your country's transportation system. These resources focus on strategies to limit air pollutants and greenhouse gas emissions. Learn more in the report on LEDS for transportation. If you are aware of a relevant technical resource not

111

UNEP-Low Carbon Transport in India | Open Energy Information  

Open Energy Info (EERE)

in India in India Jump to: navigation, search Name UNEP-Low Carbon Transport in India Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate, Energy Focus Area Transportation Topics Low emission development planning Website http://www.unep.org/transport/ Program Start 2010 Program End 2013 Country India Southern Asia References Low Carbon Transport in India[1] UNEP-Low Carbon Transport in India Screenshot "India is currently the fourth largest greenhouse gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. The sector also provokes road congestion, local air pollution, noise and accidents, particularly in urban areas. Opportunities exist to make India's transport growth more sustainable by

112

Definition: Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Jump to: navigation, search Dictionary.png Gas Flux Sampling Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares...

113

Natural Gas Weekly Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

This Week in Petroleum Weekly Petroleum Status Report Weekly Natural Gas Storage Report Natural Gas Weekly Update ...

114

Transportation Assessment Toolkit/Home | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transportation Assessment Toolkit/Home < Transportation Assessment Toolkit Jump to: navigation, search Home Transport Topics Ask an Expert Training Contact us What are the key actions necessary to implementing a transportation system LEDS? Action 1: Evaluate the existing transport system Action 2: Develop BAU scenario Action 3: Assess opportunities Avoid-Shift-Improve framework of strategies Action 4: Develop alternative scenarios Action 5: Prioritize and plan Action 6: Implement and monitor Transportation Assessment Toolkit Train licensed.png Transportation Assessment Toolkit Information licensed.png Transportation Assessment Toolkit Learning licensed.png

115

Oregon Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Department of Transportation Department of Transportation Jump to: navigation, search Logo: Oregon Department of Transportation Name Oregon Department of Transportation Address 355 Capitol Street NE Place Salem, Oregon Zip 97301-3871 Year founded 1969 Phone number 888-275-6368 Website http://www.oregon.gov/ODOT/Pag Coordinates 44.940436°, -123.028211° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.940436,"lon":-123.028211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Utah Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Logo: Utah Department of Transportation Name Utah Department of Transportation Address 4501 South 2700 West Place Salt Lake City, Utah Zip 84114 Phone number 801.965.4000 Website http://www.udot.utah.gov/main/ Coordinates 40.6724141°, -111.9579795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6724141,"lon":-111.9579795,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Nevada Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Nevada Department of Transportation Nevada Department of Transportation Jump to: navigation, search Logo: Nevada Department of Transportation Name Nevada Department of Transportation Address 1263 S. Stewart St. Place Carson City, Nevada Zip 89712 Phone number 775-888-7000 Website http://www.nevadadot.com/defau Coordinates 39.157202°, -119.764694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.157202,"lon":-119.764694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Montana Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Logo: Montana Department of Transportation Name Montana Department of Transportation Address 2701 Prospect Avenue P.O. Box 201001 Place Helena, Montana Zip 59620 Website http://www.mdt.mt.gov/ Coordinates 46.589151°, -111.992175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.589151,"lon":-111.992175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Idaho Transportation Department | Open Energy Information  

Open Energy Info (EERE)

Idaho Transportation Department Idaho Transportation Department Jump to: navigation, search Logo: Idaho Transportation Department Name Idaho Transportation Department Address 3311 W. State St. PO Box 7129 Place Boise, Idaho Zip 83707-1129 Phone number 208-334-8000 Website http://itd.idaho.gov/ Coordinates 43.635205°, -116.230588° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.635205,"lon":-116.230588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Issues and Trends: Natural Gas - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Issues and Trends: Natural Gas Issues and Trends: Natural Gas Updated: November 25, 2013 For prior report data see Natural Gas Year-in-Review archives EIA's Natural Gas Issues and Trends highlights timely information and analyses on natural gas markets. Natural gas prices reflect decreasing seasonality. Today in Energy, November 20, 2013 Increased Northeast natural gas production reduces net inflow of supply from other areas. Today in Energy, November 19, 2013 Gas pipeline expansions reduce Marcellus backup, New York gas prices. Natural Gas Weekly Update, November 13, 2013 EIA projects lower natural gas use this winter. Natural Gas Weekly Update, October 31, 2013 Northeast net imports from Canada plummet, driven by export growth at Niagara Falls. Natural Gas Weekly Update, October 10, 2013

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Institute for Transportation & Development Policy | Open Energy Information  

Open Energy Info (EERE)

Institute for Transportation & Development Policy Institute for Transportation & Development Policy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Institute for Transportation & Development Policy Agency/Company /Organization: Institute for Transportation & Development Policy Focus Area: Multi-sector Impact Evaluation Topics: Best Practices Website: www.itdp.org/ The Institute for Transportation and Development Policy (ITDP) works with cities worldwide to bring about sustainable transport solutions that cut greenhouse gas emissions, reduce poverty, and improve the quality of urban life. The ITDP website provides summaries of the organization's work in the areas of bus rapid transit, bike sharing, and others. How to Use This Tool This tool is most helpful when using these strategies:

122

Natural Gas Monthly (NGM) - Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

figure data. Natural Gas. Monthly dry gas production for July 2013 was 2,077 billion cubic feet (Bcf) or 67.0 Bcf/day, a slight increase from the revised dry gas ...

123

4. Natural Gas Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

4. Natural Gas Statistics Dry Natural Gas Proved Reserves The United States had 192,513 billion cubic feet of dry natural gas reserves as of December 31, 2004, a 2

124

Journal of Public Transportation | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Journal of Public Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Journal of Public Transportation Agency/Company /Organization: National Center for Transit Research Focus Area: Public Transit & Infrastructure Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.nctr.usf.edu/jpt/pdf/JPT13-1.pdf This document have like principal topics: Evaluating the Congestion Relief Impacts of Public Transport in Monetary Terms, The Operating Characteristics of Intercity Public Van Service in Lampung, Indonesia,

125

Colorado Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Department of Transportation Department of Transportation Name Colorado Department of Transportation Address 4201 E Arkansas Ave Place Denver, Colorado Zip 80222 Year founded 1917 Phone number 303-757-9011 Coordinates 39.6911535°, -104.9384066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6911535,"lon":-104.9384066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Natural Gas Annual Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

127

Natural Gas Exports Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

128

Natural Gas Imports (Summary) - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

129

Natural Gas Exports (Summary) - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

130

Global Gas Markets - Energy Information Administration  

U.S. Energy Information Administration (EIA)

BSA 28 years of gas and energy advisory services. Economics, pipeline tariffs, contracting, price risks. Research & training Negotiation of gas contracts

131

Washington Gas Energy Services | Open Energy Information  

Open Energy Info (EERE)

Washington Gas Energy Services (Redirected from WGES) Jump to: navigation, search Name Washington Gas Energy Services Place Virginia Utility Id 20659 Utility Location Yes Ownership...

132

Definition: Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

search Dictionary.png Surface Gas Sampling Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system....

133

Madison Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Madison Gas & Electric Co (Redirected from MGE) Jump to: navigation, search Name Madison Gas & Electric Co Place Madison, Wisconsin Utility Id 11479 Utility Location Yes Ownership...

134

Madison Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Madison Gas & Electric Co Jump to: navigation, search Name Madison Gas & Electric Co Place Madison, Wisconsin Utility Id 11479 Utility Location Yes Ownership I NERC Location RFC...

135

Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Oil and Gas Jump to: navigation, search Oil and gas represents a non-renewable energy...

136

Natural Gas Monthly (NGM) - Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, ... Spot Prices of Natural Gas and Natural Gas Plant Liquids in the United States, ...

137

Natural Gas Annual 2010 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Form EIA-910, Monthly Natural Gas Marketer Survey, for natural gas prices paid by residential and/or commercial end-use customers in the States of ...

138

Natural Gas Monthly - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Office of Oil, Gas, and Coal Supply Statistics www.eia.gov Natural Gas Monthly September 2013 U.S. Department of Energy

139

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Water-Gas Sampling (Redirected from Water-Gas Samples) Redirect page Jump to: navigation,...

140

Natural Gas Monthly (NGM) - Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Natural Gas Storage Report; Natural Gas Weekly Update; Thank You. We welcome your comments or suggestions (optional). EIA - 1000 Independence Avenue, SW, Washington ...

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Water-Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water-Gas Sampling edit Details Activities (21) Areas (18) Regions (1)...

142

The Impact of Information Technologies on Air Transportation  

E-Print Network (OSTI)

The Air Transportation System and several key subsystems including the Aircraft, Airline, and Air Traffic Management are modeled as interacting control loops. The impact of Information Technologies on each of these subsystems ...

Hansman, R. John

143

Thailand: Petroleum and natural gas industry profile. Export trade information  

SciTech Connect

The report profiles the petroleum, natural gas, and petrochemical industries in Thailand. It covers: exploration production, consumption, trade, pipelines, industry structure, national energy policy, product marketing, refining, conservation/environmental issues, alternative energy sources, prices, transportation, and commercial opportunities.

1992-06-11T23:59:59.000Z

144

Natural Gas - U.S. Energy Information Administration (EIA) -...  

Annual Energy Outlook 2012 (EIA)

St. John, New Brunswick, Canada, began planned maintenance on May 1. Most of the natural gas delivered from the terminal is transported to the United States via pipeline. The...

145

Transportation Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Transportation Energy Data Book Transportation Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Energy Data Book Agency/Company /Organization: United States Department of Energy, Oak Ridge National Laboratory Sector: Energy Focus Area: Other, Transportation Topics: Potentials & Scenarios, Technology characterizations Resource Type: Dataset Website: cta.ornl.gov/data/ Country: United States Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

International Natural Gas Information - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

147

Historical Natural Gas Annual - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Historical Natural Gas Annual. 1996: Published October 1997: 1997: Published October 1998: 1998: Published October 1999

148

Gas Flux Sampling (Evans, Et Al., 2001) | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling (Evans, Et Al., 2001) Gas Flux Sampling (Evans, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling (Evans, Et Al., 2001) Exploration Activity Details Location Unspecified Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Laboratory experiments aimed at evaluating gas flux sampling methods The value of using the noble gas suite in transport studies is made obvious by the eight-fold enrichment in 4Her132Xe observed in the 80% CO sample (Table 2 1), relative to abundancies in air. Our results at least show that gas samples collected by either sudden pre-evacuated container or gradual gas pump. Removal of tens of cm3 of gas through an access pipe appear to reflect steady-state values. On-site measurements other than CO2 flux could

149

Energy Information Administration - Transportation Energy Consumption...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply...

150

Natural Gas Residential Choice Programs - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Status of Natural Gas Residential Choice Programs by State as of December 2006 (Click on a State or its abbreviation for more information about that State.

151

gas in (million cubic feet) - Energy Information Administration  

U.S. Energy Information Administration (EIA)

September 2013 U.S. Energy Information Administration | Natural Gas Monthly 19 Table 6 Created on: 9/27/2013 9:37:38 AM Table 6.

152

Louisville Gas and Electric Company | Open Energy Information  

Open Energy Info (EERE)

and Electric Company Jump to: navigation, search Name Louisville Gas and Electric Company Place Kentucky Utility Id 11249 References Energy Information Administration.1 LinkedIn...

153

Energy Information Administration / Natural Gas Annual 2007 74  

Annual Energy Outlook 2012 (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2007 75 Table 31. Summary...

154

Energy Information Administration / Natural Gas Annual 2008 74  

Gasoline and Diesel Fuel Update (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2008 75 Table 31. Summary...

155

Natural Gas Residential Choice Programs - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Status of Natural Gas Residential Choice Programs by State as of December 2009 (Click on a State or its abbreviation for more information about that State.

156

EIA provides new information on planned natural gas ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook Annual ... Search EIA.gov. A-Z ... These data provide information on natural gas storage facilities that are expected to e ...

157

Energy Information Administration / Natural Gas Annual 2005 124  

Gasoline and Diesel Fuel Update (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2005 125 Table 57. Summary...

158

Energy Information Administration / Natural Gas Annual 2006 124  

Gasoline and Diesel Fuel Update (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2006 125 Table 57. Summary...

159

Energy Information Administration / Natural Gas Annual 2009 29  

Annual Energy Outlook 2012 (EIA)

Exports To Net a See footnotes at end of table. Movements and Storage - Table 12 Energy Information Administration Natural Gas Annual 2009 30 Table 12. Interstate...

160

Energy Information Administration / Natural Gas Annual 2007 128  

Annual Energy Outlook 2012 (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2007 129 Table 58. Summary...

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Information Administration / Natural Gas Annual 2008 128  

Annual Energy Outlook 2012 (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2008 129 Table 58. Summary...

162

California Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Place Sacramento, California Coordinates 38.5815719°, -121.4943996° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5815719,"lon":-121.4943996,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Category:Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search This category includes companies and information related to oil (petroleum) or natural gas. Pages in category "Oil and Gas" The following 114 pages are in this category, out of 114 total. A Abu Dhabi National Oil Company Abu Dhabi Supreme Petroleum Council Al Furat Petroleum Company Alabama Oil and Gas Board Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Algeria Ministry of Energy and Mining Archaeological Resource Protection Act Archaeological Resources Protection Act Arizona Oil and Gas Commission Arkansas Oil and Gas Commission B Bahrain National Gas and Oil Authority Bald and Golden Eagle Protection Act C California Division of Oil, Gas, and Geothermal Resources California Environmental Quality Act

164

Bio Gas Technologies LTd | Open Energy Information  

Open Energy Info (EERE)

is involved in designing, constructing, owning and operating Gas-to-Energy and Cogeneration systems. Bio-Gas currently has 8.5 MW of new renewable power in commercial...

165

4. Natural Gas Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

gas fields, i.e., tight sands, shales, and coalbeds. Consideringthegrowingcontributionofthisgastothe National total, the term unconventional is ...

166

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

EIA's latest Short-Term Energy Outlook for natural gas › image chart of U.S. Natural Gas Production and Imports projections as described in linked Short-Term Energy Outlook Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. Natural gas price volatility and uncertainty › Natural gas historical and implied volatility Source: U.S. Energy Information Administration, Short-Term Energy Outlook, Market Prices and Uncertainty Report. Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. North America leads the world in production of shale gas

167

Glossary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration 137 Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates Glossary Affiliated ...

168

Oil and Gas Gateway | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Gateway Oil and Gas Gateway Jump to: navigation, search Oil and Gas Companies The oil and gas industry is the largest energy industry in the world, with companies spanning the globe. The map below depicts the top oil companies. Anyone can add another company to this list. Add a new Oil and Gas Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

169

Definition: Natural gas | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Natural gas Jump to: navigation, search Dictionary.png Natural gas A hydrocarbon gas obtained from underground sources, often in association with petroleum and coal deposits.[1] View on Wikipedia Wikipedia Definition Natural gas is a naturally occurring hydrocarbon gas mixture consisting primarily of methane, but commonly includes varying amounts of other higher alkanes and even a lesser percentage of carbon dioxide, nitrogen, and hydrogen sulfide. Natural gas is an energy source often used for heating, cooking, and electricity generation. It is also used as fuel for vehicles and as a chemical feedstock in the manufacture of plastics and other commercially important organic chemicals. Natural gas is found in

170

Prices for Natural Gas | Open Energy Information  

Open Energy Info (EERE)

Prices for Natural Gas Prices for Natural Gas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Prices for Natural Gas Agency/Company /Organization: Google Sector: Energy Focus Area: Economic Development Resource Type: Software/modeling tools User Interface: Website Website: www.google.com/publicdata/explore?ds=m49d2j928087j_ Country: United States Web Application Link: www.google.com/publicdata/explore?ds=m49d2j928087j_ Cost: Free Northern America Prices for Natural Gas Screenshot References: Public Data Explorer[1] EIA[2] Logo: Prices for Natural Gas Prices for Natural Gas Dollars per Thousand Cubic Feet and Percent in U.S. Total Represented by the Price. Overview A graphing tool that displays prices for natural gas dollars per thousand cubic feet and percent in U.S. Total represented by the price, using data

171

Transportation Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transportation Assessment Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country

172

Methanol production from biomass and natural gas as transportation fuel  

Science Conference Proceedings (OSTI)

Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (1) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the US, (2) minimizes emissions of criteria pollutants, (3) reduces greenhouse gas emissions from production and use, (4) is cost-competitive with petroleum fuel, and (5) is compatible with the emerging vehicle technologies, especially those powdered by fuel cells. The methanol yield, production cost, and potential for reduction of overall fuel-cycle CO{sub 2} emissions were evaluated and compared to those of reformulated gasoline. The results show that a process utilizing natural gas and biomass as cofeedstocks can meet the five requirements more effectively than individual processes utilizing those feedstocks separately. When end-use efficiencies are accounted for, the cost per vehicle mile traveled would be less than that of gasoline used in current vehicles. CO{sub 2} emissions from the vehicle fleet would be reduced 66% by methanol used in fuel cell vehicles and 8--36% in flexible-fuel or dedicated-methanol vehicles during the transition period. Methanol produced from natural gas and biomass, together in one process, and used in fuel cell vehicles would leverage petroleum displacement by a factor of about 5 and achieve twice the overall CO{sub 2} emission reduction obtainable from the use of biomass alone.

Borgwardt, R.H. [Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.

1998-09-01T23:59:59.000Z

173

LEDSGP/Transportation Toolkit/Contact Us | Open Energy Information  

Open Energy Info (EERE)

Contact Us Contact Us < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Contacts for the LEDS GP Transport Working Group If you have questions or comments about the Transportation Toolkit, . Powered by OpenEI ledsgp.org is built on the same platform as the popular Wikipedia site. Like Wikipedia, it is a "wiki" or website developed collaboratively by a community of users. Thanks to our unique relationship with OpenEI.org, you can add or edit most content on ledsgp.org. For more information about this unique collaboration, contact us. View or edit this page on OpenEI.org. Retrieved from "http://en.openei.org/w/index.php?title=LEDSGP/Transportation_Toolkit/Contact_Us&oldid=690462

174

Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks  

E-Print Network (OSTI)

Approximately 136,000 refuse trucks were in operation in the United States in 2007. These trucks burn approximately 1.2 billion gallons of diesel fuel a year, releasing almost 27 billion pounds of greenhouse gases. In addition to contributing to global climate change, diesel-fueled refuse trucks are one of the most concentrated sources of health-threatening air pollution in most cities. The landfills that they ultimately place their waste in are the second largest source of human-related methane emissions in the United States, accounting for approximately 23 percent of these emissions in 2007. At the same time, methane emissions from landfills represent a lost opportunity to capture and use a significant energy resource. Many landfill-gas-to-energy (LFGTE) projects are underway in an attempt to curb emissions and make better use of this energy. The methane that is extracted from these landfills can be converted into a transportation fuel, sold as a pipeline-quality natural gas, operate turbines for electricity, or be flared. The unique relationship that occurs between refuse trucks' constant visits to the landfill and the ability of the landfill itself to produce a transportation fuel creates an ability to accomplish emissions reduction in two sectors with the implementation of using landfill gas to fuel refuse trucks. Landfill owners and operators are very reluctant to invest in large capital LFGTE projects without knowing their long-term feasibility. The costs and benefits associated with each LFGTE project have been presented in such a way that owners/operators can make informed decisions based on economics while also implementing clean energy technology. Owners/operators benefit from larger economic returns, and the citizens of the surrounding cities benefit from better air quality. This research focused on six scenarios: converting landfill gas (LFG) to liquefied natural gas (LNG) for use as a transportation fuel, converting LFG to compressed natural gas (CNG) for use as a transportation fuel, converting LFG to pipeline-quality natural gas, converting LFG to electricity, flaring LFG, and doing nothing. For the test case of a 280-acre landfill, the option of converting LFG to CNG for use as a transportation fuel provided the best benefit-cost ratio at 5.63. Other significant benefit-cost findings involved the LFG-to-LNG option, providing a 5.51 benefit-cost ratio. Currently, the most commonly used LFGTE option of converting LFG to electricity provides only a 1.35 benefit-cost ratio while flaring which is the most common mitigation strategy provides a 1.21, further providing evidence that converting LFG to LNG/CNG for use as a transportation fuel provides greater economic benefits than the most common LFGTE option or mitigation strategy.

Sprague, Stephen M.

2009-12-01T23:59:59.000Z

175

A Study on the Planetary Wave Transport of Ozone during the Late February 1979 Stratospheric Warming Using the SAGE Ozone Observation and Meteorological Information  

Science Conference Proceedings (OSTI)

Ozone data from the Stratospheric Aerosol and Gas Experiment (SAGE) have been used in conjunction with meteorological information to study the ozone transport near 55N due to planetary waves during the late February 1979 stratospheric warming. ...

Pi-Huan Wang; M. P. McCormick; W. P. Chu

1983-10-01T23:59:59.000Z

176

Modeling Gas Transport in the Shallow Subsurface During the ZERT CO2 Release Test  

E-Print Network (OSTI)

Research Forum (PERF) Dense Gas Dispersion Modeling Project,Atmospheric dispersion of dense gases, Ann. Rev. Fluidgas (LNG) terminals and transport, and emphasize atmospheric dispersion

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

177

Natural Gas as a Transportation Fuel: Benefits, Challenges, and Implementation (Presentation)  

Science Conference Proceedings (OSTI)

Presentation for the Clean Cities Website highlighting the benefits, challenges, and implementation considerations when utilizing natural gas as a transportation fuel.

Not Available

2007-07-01T23:59:59.000Z

178

Steel Plate Processing for Line Pipes in Oil and Gas Transport  

Science Conference Proceedings (OSTI)

This has further helped in reducing the specific steel consumption in oil and gas transportation. The current focus on less wall thickness at increased strength...

179

Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates  

Reports and Publications (EIA)

This report, summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns.

Information Center

1995-10-01T23:59:59.000Z

180

Quantifying Greenhouse Gas Emissions from Transit | Open Energy Information  

Open Energy Info (EERE)

Quantifying Greenhouse Gas Emissions from Transit Quantifying Greenhouse Gas Emissions from Transit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Quantifying Greenhouse Gas Emissions from Transit Agency/Company /Organization: American Public Transportation Association Focus Area: GHG Inventory Development Topics: Analysis Tools Resource Type: Reports, Journal Articles, & Tools Website: www.aptastandards.com/Portals/0/SUDS/SUDSPublished/APTA_Climate_Change This Recommended Practice provides guidance to transit agencies for quantifying their greenhouse gas emissions, including both emissions generated by transit and the potential reduction of emissions through efficiency and displacement How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural Gas 1998 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

operations on the environment. Trapmann (202/586-6408). Unless otherwise stated, historical data on natural gas The overall scope and content of the report was supervised

182

Natural Gas Monthly (NGM) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Methodology for Most Recent Monthly Natural Gas Supply and Disposition Data of Tables 1 and 2 : PDF: B: ... The electric power volume delivered to ...

183

Category:Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Category Edit History Facebook icon Twitter icon Category:Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

184

Alabama Natural Gas Summary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

History; Prices (Dollars per Thousand ... Prices are in nominal ... Gas volumes delivered for use as vehicle fuel are included in the State annual ...

185

Natural Gas Wellhead Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated electric ... Gas volumes delivered for vehicle fuel are included in the State monthly totals from January 2011 ...

186

Nevada Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) Area: ... electric power price data are for regulated electric utilities only; ...

187

Pennsylvania Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) Area: ... electric power price data are for regulated electric utilities only; ...

188

Delaware Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) Area: ... electric power price data are for regulated electric utilities only; ...

189

Washington Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) Area: ... electric power price data are for regulated electric utilities only; ...

190

Ohio Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) Area: ... electric power price data are for regulated electric utilities only; ...

191

Shale Gas Proved Reserves - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Shale Gas Proved Reserves (Billion Cubic Feet) Period: Annual : Download Series History: Definitions, Sources & Notes 2007 2008 View History; U.S. ...

192

Energy Information Administration International Natural Gas Price  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas ... imports and exports, production, prices, sales ... Europe ...

193

Alaska Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Gas volumes delivered for use as vehicle fuel are included in the State annual totals through 2009 but not in the State monthly components.

194

Natural Gas Exports Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natura ...

195

Climate VISION: Private Sector Initiatives: Oil and Gas: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Prior to developing the API Compendium of GHG Emissions Methodologies for the Oil and Gas Industry (PDF 14.6 MB), API reviewed a wide range of government estimates of greenhouse gas emissions from the oil and gas industry as well as existing and widely used methodologies for estimating emissions from our industry's operations. This review made it quite clear that while existing data and methods may be adequate for national-level estimates of greenhouse gas emissions, they were inadequate for developing reliable facility- and company-specific estimates of greenhouse gas emissions from oil and gas operations. Download Acrobat Reader The Compendium is used by industry to assess its greenhouse gas emissions. Working with a number of other international associations as well as

196

U.S. Energy Information Administration | Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration | Natural Gas Annual U.S. Energy Information Administration | Natural Gas Annual Office of Oil, Gas, and Coal Supply Statistics www.eia.gov Natural Gas Annual 2012 U.S. Department of Energy Washington, DC 20585 2012 U.S. Energy Information Administration | Natural Gas Monthly ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

197

Definition: Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Soil Gas Sampling Jump to: navigation, search Dictionary.png Soil Gas Sampling Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases in the near-surface environment. Identification of high concentrations of hydrothermal gas species may indicates the presence of enhanced permeability (faults) and high temperature hydrothermal activity at depth. Soil gas data may also be used to study other important aspects of the geothermal system, such as distinguishing between magmatic and amagmatic sources of heat. The technique may also be used for ongoing monitoring of the geothermal system during resource development and production.

198

New pipeline project could lower natural gas transportation costs ...  

U.S. Energy Information Administration (EIA)

The spread between the price of natural gas at a supply ... Bottlenecks exist moving Marcellus natural gas out of Pennsylvania and delivering natural gas into ...

199

Risk assessment of storage and transport of liquefied natural gas and LP-gas. Final report  

SciTech Connect

A method for assessing the societal risk of transporting liquefied petroleum gas (LPG) and liquefied natural gas (LNG) is described, and is illustrated by application to the transport of LPG by tank truck and LNG by tanker ship in the U.S. Data on past experience and projected future handling of these liquefied gases are used with analysis of flammable plume formation and ignition, and population distributions, to estimate the risks of fatalities from tank truck and tanker ship accidents. From an estimated 52 significant accidents per year with LPG tank trucks at the present truck-associated transportation rate of 20 billion gallons of LPG per year, a fatality rate of 1.2 per year is calculated. For the projected 1980 importation of 33 billion gallons by tanker ship, a fatality rate of 0.4 per year is calculated, using a conservatively high one chance in 20,000 of a significant accident per trip. Comparison with fires and explosions from all causes in the U.S. and Canada leading to 10 or more fatalities shows that these are 100 times more frequent than the predicted frequency of comparable LPG and LNG accidents. Tabulations of experience with spills of flammable volatile liquids are included. (GRA)

Simmons, J.A.

1974-11-25T23:59:59.000Z

200

Natural Gas Processing Plants in the United States: 2010 ...  

U.S. Energy Information Administration (EIA)

Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration, GasTran Natural Gas Transportation ...

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternatives to Traditional Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels Alternatives to Traditional Transportation Fuels Jump to: navigation, search Tool Summary Name: Alternatives to Traditional Transportation Fuels Agency/Company /Organization: U.S. Energy Information Administration Focus Area: Fuels & Efficiency Topics: Analysis Tools, Policy Impacts Website: www.eia.gov/renewable/afv/index.cfm This report provides annual data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

202

Definition: Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Gas Sampling Jump to: navigation, search Dictionary.png Gas Sampling Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system. Various methods are applied to obtain samples used for determination of the composition of gases present in soils or hydrothermal discharges. The flux of volatile gases emitted from a hydrothermal system can also be determined by measuring the flow of gases at specific locations and comparing it to average background emissions. Anomalously high gas flux can provide an indication of hydrothermal activity at depth that is otherwise not apparent. Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

203

Iran Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Iran Oil and Gas Iran Oil and Gas Jump to: navigation, search Logo: Iran Oil and Gas Country Iran Name Iran Oil and Gas Address Unit #16, 3rd Fl., Bldg. No. 2, 9th Narenjestan St., North Pasdaran Ave. City Tehran, Iran Website http://www.iranoilgas.com/news Coordinates 35.6961111°, 51.4230556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6961111,"lon":51.4230556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

California Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) ... History; Citygate Price: 4.58: 4.57: 4.65: 4.20: 3.94: 3.73: 1989-2013: ...

205

Mississippi Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) ... History; Wellhead Price: 6.70: 8.80: 3.73: 4.17 : 1967-2010: Imports Pric ...

206

Alabama Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) ... History; Wellhead Price: 7.44: 9.65: 4.32: 4.46 : 1967-2010: Pipeline and ...

207

Mississippi Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) Area: ... History; Citygate Price: 4.73: 4.83: 4.82: 4.34: 4.19: NA: ...

208

Tennessee Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) Area: ... History; Citygate Price: 4.93: 5.23: 5.39: 5.32: 4.80: 4.90: ...

209

Illinois Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) ... History; Citygate Price: 4.11: 4.14: 4.42: 5.23: 4.70: 4.82: 1989-2013: Residential Price ...

210

Natural Gas Wellhead Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Wellhead Value and Marketed Production ... Pennsylvania: NA: NA: NA: NA : 1967-2010: South Dakota: 7.22: 7.94: NA: NA : 1979-2010: Tennessee: 6.63: 8.85 ...

211

Planning roadside infrastructure for information dissemination in intelligent transportation systems  

Science Conference Proceedings (OSTI)

We consider an intelligent transportation system where a given number of infrastructured nodes (called Dissemination Points, DPs) have to be deployed for disseminating information to vehicles in an urban area. We formulate our problem as a Maximum Coverage ... Keywords: Maximum coverage, Network deployment, Vehicular networks

O. Trullols; M. Fiore; C. Casetti; C. F. Chiasserini; J. M. Barcelo Ordinas

2010-03-01T23:59:59.000Z

212

Natural Gas Annual 2011 (NGA) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... storage, imports and exports, production, prices, sales.

213

Liquid water transport in fuel cell gas diffusion layers Aimy Ming Jii Bazylak  

E-Print Network (OSTI)

Liquid water transport in fuel cell gas diffusion layers by Aimy Ming Jii Bazylak Bachelor means, without the permission of the author. #12;ii Liquid water transport in fuel cell gas diffusion State University) Abstract Liquid water management has a major impact on the performance and durability

Victoria, University of

214

Greenhouse gas emissions and the surface transport of freight in Canada  

E-Print Network (OSTI)

Greenhouse gas emissions and the surface transport of freight in Canada Paul Steenhof a,*, Clarence committed to reducing its greenhouse gas (GHG) emissions to 6% below 1990 levels between 2008 and 2012 annual reduction of greenhouse gases of 6% below 1990 levels between 2008 and 2012. The transportation

215

Natural Gas - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... almost every region consumed less gas for power generation, ... History Table; Working Gas in Underground Storage;

216

Oil and Gas Field Code Index - Energy Information Administration  

U.S. Energy Information Administration (EIA)

000174 LA Fox Lake 000175 MT Gilford North 000210 NM Springs 000213 NM Dog Town Draw ... Energy Information Administration/Oil and Gas Field Code Master List 1998 343

217

State Oil and Gas Boards | Open Energy Information  

Open Energy Info (EERE)

Boards Boards Jump to: navigation, search State Oil and Gas Board and Commission sites are related to oil and gas production, well sites, and any other relevant data and information. The Interstate Oil and Gas Compact Commission is a multi-state government agency that promotes the quality of life for all Americans. This list is where information for OpenEI pages is held, and also, in most cases, where oil and gas data can be derived, open to the public. In many cases, EIA may hold the data related to Oil and Gas. Also, some datasets may only contain a state report pdf, in which case the data would need to be pulled out of the pdf and put into an excel or xml. Here are the states: State link Information Contact info Alabama Alabama Oil and Gas Board The State Oil and Gas Board of Alabama is a regulatory agency of the State of Alabama with the statutory charge of preventing waste and promoting the conservation of oil and gas while ensuring the protection of both the environment and the correlative rights of owners. The Board is granted broad authority in Alabama oil and gas conservation statutes to promulgate and enforce rules and regulations to ensure the conservation and proper development of Alabama's petroleum resources. 420 Hackberry Lane Tuscaloosa, AL 35401 205.349.2852

218

Natural Gas Data Sources - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Overview. The data are taken from survey reports authorized by the U.S. Department of Energy (DOE), Energy Information Administration (EIA) and by the Federal Energy ...

219

Public Service Electric & Gas | Open Energy Information  

Open Energy Info (EERE)

NJ Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

220

Natural Gas Industrial Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices ... History; U.S. 4.97: 5.03: 4.91: 4.50: 4.34: 4.39: 2001-2013: Alabama: 5.38: 5.25: 5.25: 4.82: 4.52: 4.48: 2001-2013: Alaska: ...

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Greenhouse Gas Management Institute (GHGMI) | Open Energy Information  

Open Energy Info (EERE)

Institute (GHGMI) Institute (GHGMI) Jump to: navigation, search Logo: Greenhouse Gas Management Institute (GHGMI) Name Greenhouse Gas Management Institute (GHGMI) Address Washington, D.C. Place Washington, District of Columbia Phone number 1-888-778-1972 Website http://ghginstitute.org/housek References http://ghginstitute.org/housekeeping/contact-us/ No information has been entered for this organization. Add Organization The Greenhouse Gas Management Institute (GHGMI) was founded in response to the growing demand for qualified greenhouse gas (GHG) professionals. Just as engineering and financial accounting rely on certified professionals, GHG emissions management requires a highly competent and ethical professional class to undertake measurement, reporting, auditing, and

222

Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-11-01T23:59:59.000Z

223

Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-04-01T23:59:59.000Z

224

NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11  

E-Print Network (OSTI)

ethanol. Given that future natural gas supply is limited, despite forecasts of increased domestic. If the objective of a policy were the reduction of GHG emissions using a limited supply of natural gas, the bestNATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11 Natural

225

Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation  

E-Print Network (OSTI)

is as a result of the more expensive fuel storage tank required to store natural gas safely and effectively). Because of the relative density of natural gas and size of CNG storage containers, CNG vehicles typically1 Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation

226

Mass transport characterization of a novel gas sparged ...  

Science Conference Proceedings (OSTI)

nitrogen gas through the reactor increased the mass transfer coefficient by an ... demonstrated that the gasliquid transfer coefficient was greater than that for the

227

Empire Natural Gas Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Corporation Jump to: navigation, search Name Empire Natural Gas Corporation Place New York Utility Id 5703 Utility Location Yes Ownership R NERC Location RFC NERC RFC Yes ISO NY Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0673/kWh Industrial: $0.0665/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Empire_Natural_Gas_Corporation&oldid=410652" Categories: EIA Utility Companies and Aliases

228

Natural Gas Technologies Center | Open Energy Information  

Open Energy Info (EERE)

Technologies Center Technologies Center Jump to: navigation, search Logo: Natural Gas Technologies Center Name Natural Gas Technologies Center Address 1350, Nobel, Boucherville, Quebec, Canada Place Montreal, Quebec Zip J4B 5H3 Number of employees 11-50 Year founded 1992 Phone number 1.450.449.4774 Coordinates 45.5678623°, -73.4186892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5678623,"lon":-73.4186892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Thermal Green's functions of the energy-momentum tensor and transport coefficients of the SU(3) Yang-Mills gas  

E-Print Network (OSTI)

Thermal Green's functions of the energy-momentum tensor and transport coefficients of the SU(3) Yang-Mills gas

Karsch, Frithjof

1987-01-01T23:59:59.000Z

230

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

231

Application of Information Theory in Nuclear Liquid Gas Phase Transition  

E-Print Network (OSTI)

Information entropy and Zipf's law in the field of information theory have been used for studying the disassembly of nuclei in the framework of the isospin dependent lattice gas model and molecular dynamical model. We found that the information entropy in the event space is maximum at the phase transition point and the mass of the cluster show exactly inversely to its rank, i.e. Zipf's law appears. Both novel criteria are useful in searching the nuclear liquid gas phase transition experimentally and theoretically.

Yu-Gang Ma

2001-02-09T23:59:59.000Z

232

Transportation Routing Analysis Geographic Information System (TRAGIS) User's Manual  

Science Conference Proceedings (OSTI)

The Transportation Routing Analysis Geographic Information System (TRAGIS) model is used to calculate highway, rail, or waterway routes within the United States. TRAGIS is a client-server application with the user interface and map data files residing on the user's personal computer and the routing engine and network data files on a network server. The user's manual provides documentation on installation and the use of the many features of the model.

Johnson, PE

2003-09-18T23:59:59.000Z

233

Streamlining Transportation Corridor Planning Processess: Freight and Traffic Information  

SciTech Connect

The traffic investigation is one of the most important parts of an Environmental Impact Statement of projects involving the construction of new roadway facilities and/or the improvement of existing ones. The focus of the traffic analysis is on the determination of anticipated traffic flow characteristics of the proposed project, by the application of analytical methods that can be grouped under the umbrella of capacity analysis methodologies. In general, the main traffic parameter used in EISs to describe the quality of traffic flow is the Level of Service (LOS). The current state of the practice in terms of the traffic investigations for EISs has two main shortcomings. The first one is related to the information that is necessary to conduct the traffic analysis, and specifically to the lack of integration among the different transportation models and the sources of information that, in general, reside in GIS databases. A discussion of the benefits of integrating CRS&SI technologies and the transportation models used in the EIS traffic investigation is included. The second shortcoming is in the presentation of the results, both in terms of the appearance and formatting, as well as content. The presentation of traffic results (current and proposed) is discussed. This chapter also addresses the need of additional data, in terms of content and coverage. Regarding the former, other traffic parameters (e.g., delays) that are more meaningful to non-transportation experts than LOS, as well as additional information (e.g., freight flows) that can impact traffic conditions and safety are discussed. Spatial information technologies can decrease the negative effects of, and even eliminate, these shortcomings by making the relevant information that is input to the models more complete and readily available, and by providing the means to communicate the results in a more clear and efficient manner. The benefits that the application and use of CRS&SI technologies can provide to improve and expedite the traffic investigation part of the EIS process are presented.

Franzese, Oscar [ORNL

2010-08-01T23:59:59.000Z

234

Rochester Gas and Electric | Open Energy Information  

Open Energy Info (EERE)

and Electric and Electric Jump to: navigation, search Name Rochester Gas and Electric Address 89 East Avenue Place Rochester, New York Zip 14649 Sector Services Product Green Power Marketer Website http://www.rge.com/ Coordinates 43.156495°, -77.602118° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.156495,"lon":-77.602118,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Information about the Greenhouse Gas Emission Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources and Assumptions for the Electric and Plug-in Hybrid Vehicle Sources and Assumptions for the Electric and Plug-in Hybrid Vehicle Greenhouse Gas Emissions Calculator To estimate your CO2 emissions rates and generate the bar graph, we used the following sources and assumptions. Your CO2 Emissions Rates Tailpipe (grams CO2/mile) This is the tailpipe CO2 emissions rate for combined city and highway driving that is shown on the fuel economy and environment label for the vehicle model you selected. It is the same regardless of where you live. Total (grams CO2/mile) This includes the vehicle's tailpipe emissions and emissions associated with the production of electricity used to charge the vehicle. For plug-in hybrid electric vehicles, it also includes emissions associated with the production of gasoline. It is estimated using the sources and assumptions below, and will vary based on where you live.

236

Digital Gas Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Digital Gas Inc Place Dallas, Texas Sector Solar Product Company with a number of subsidiaries involved in mining, solar power, waste burning, energy saving, farming and electronics. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Ion transport membrane module and vessel system with directed internal gas flow  

DOE Patents (OSTI)

An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

2010-02-09T23:59:59.000Z

238

File:EIA-Williston-NE-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

Williston-NE-Gas.pdf Williston-NE-Gas.pdf Jump to: navigation, search File File history File usage Williston Basin, Northeast Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 5.95 MB, MIME type: application/pdf) Description Williston Basin, Northeast Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Montana, North Dakota, South Dakota File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

239

File:EIA-conventional-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

conventional-gas.pdf conventional-gas.pdf Jump to: navigation, search File File history File usage Natural Gas Production in Conventional Fields, Lower 48 States Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 3.25 MB, MIME type: application/pdf) Description Natural Gas Production in Conventional Fields, Lower 48 States Sources Energy Information Administration Related Technologies Natural Gas Creation Date 2009-04-08 Extent National Countries United States UN Region Northern America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:54, 20 December 2010 Thumbnail for version as of 17:54, 20 December 2010 1,650 × 1,275 (3.25 MB) MapBot (Talk | contribs) Automated bot upload

240

File:EIA-PSJ-SE-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

PSJ-SE-GAS.pdf PSJ-SE-GAS.pdf Jump to: navigation, search File File history File usage Paradox-San Juan Basin, Southeast Part By 2001 Gas Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 13.13 MB, MIME type: application/pdf) Description Paradox-San Juan Basin, Southeast Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Utah, Colorado, New Mexico, Arizona File history Click on a date/time to view the file as it appeared at that time.

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

File:EIA-shale-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

shale-gas.pdf shale-gas.pdf Jump to: navigation, search File File history File usage Shale Gas Plays, Lower 48 States Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 377 KB, MIME type: application/pdf) Description Shale Gas Plays, Lower 48 States Sources Energy Information Administration Related Technologies Natural Gas Creation Date 2010-03-10 Extent National Countries United States UN Region Northern America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:38, 20 December 2010 Thumbnail for version as of 18:38, 20 December 2010 1,650 × 1,275 (377 KB) MapBot (Talk | contribs) Automated bot upload You cannot overwrite this file. Edit this file using an external application (See the setup

242

File:EIA-tight-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

tight-gas.pdf tight-gas.pdf Jump to: navigation, search File File history File usage Major Tight Gas Plays, Lower 48 States Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 2.04 MB, MIME type: application/pdf) Description Major Tight Gas Plays, Lower 48 States Sources U.S. Energy Information Administration Related Technologies Natural Gas Creation Date 2010-06-06 Extent National Countries United States UN Region Northern America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:44, 20 December 2010 Thumbnail for version as of 18:44, 20 December 2010 1,650 × 1,275 (2.04 MB) MapBot (Talk | contribs) Automated bot upload You cannot overwrite this file.

243

File:EIA-offshore-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

offshore-gas.pdf offshore-gas.pdf Jump to: navigation, search File File history File usage Natural Gas Production in Offshore Fields, Lower 48 States Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 467 KB, MIME type: application/pdf) Description Natural Gas Production in Offshore Fields, Lower 48 States Sources Energy Information Administration Related Technologies Natural Gas Creation Date 2009-04-08 Extent National Countries United States UN Region Northern America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:32, 20 December 2010 Thumbnail for version as of 18:32, 20 December 2010 1,650 × 1,275 (467 KB) MapBot (Talk | contribs) Automated bot upload

244

U.S. Energy Information Administration | Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 13.0 11.7 10.8 8.0 5.9 0 2 4 6 8 10 12 14 16 2008 2009 2010 2011 2012 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-64A, "Annual Report of the Origin of Natural Gas Liquids Production"; Office of Fossil Energy, U.S. Department of Energy, Natural Gas Imports and Exports; Form EIA-895, "Annual Quantity and Value of Natural Gas Production Report"; Form EIA-914, "Monthly Natural Gas Production Report"; Form EIA-906, "Power Plant Report"; Form EIA-920, "Combined Heat and Power Plant Report"; Form EIA- 923, "Power Plant Operations Report"; Form EIA-886, "Annual Survey of Alternative Fueled Vehicles"; state agencies; and EIA estimates based on historical data.

245

File:EIA-Williston-S-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

Gas.pdf Gas.pdf Jump to: navigation, search File File history File usage Williston Basin, South Part By 2001 Gas Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 6.71 MB, MIME type: application/pdf) Description Williston Basin, South Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Montana, North Dakota, South Dakota File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

246

The Northeast Natural Gas Market in 2030 - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Natural Gas Analysis Team Leader Energy Information Administration (EIA) william.trapmann@eia.doe.gov

247

Pipelines to Power Lines: Gas Transportation for Electricity Generation  

Science Conference Proceedings (OSTI)

Gas-fired power generation represents a major growth market for the natural gas industry; but the large, high pressure, highly variable loads required for individual power generators can be difficult to serve. This report, cosponsored by the Gas Research Institute and EPRI, is a design stage assessment of the engineering and costs of the pipelines needed to handle these types of loads.

1995-03-10T23:59:59.000Z

248

Energy Policy Act Transportation Study: Interim Report on ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration iii Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates Preface This report, ...

249

Energy Information Administration--Energy and Greenhouse Gas Analysis  

U.S. Energy Information Administration (EIA) Indexed Site

and Greenhouse Gas Analysis and Greenhouse Gas Analysis Energy and Greenhouse Gas Analysis Posted Date: October 1999 Page Last Modified: August 2007 This section contains analysis covering all sectors of the United States and issues related to the energy use, energy efficiency, and carbon emission indicators. New analysis will be added to the web site as they become available. All Sectors / Residential / Commercial / Manufacturing / Transportation All Sectors United States Energy Usage and Efficiency: Measuring Changes Over Time, increasing emphasis has been placed on energy efficiency as a vital component of the United States' energy strategy. This was evident with the passing of the Energy Policy Act of 1992 (EPACT) [1]. EPACT promotes energy-efficiency programs such as building energy-efficiency standards,

250

Gas Flux Sampling (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling (Laney, 2005) Gas Flux Sampling (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Design of Sampling Strategies to Detect CO2 Emissions From Hidden Geothermal Systems, Lewicki, Oldenburg and Kennedy. The objective of this project is to investigate geothermal CO2 monitoring in the near surface as a tool to discover hidden geothermal reservoirs. A primary goal of this project is to develop an approach that places emphasis on cost and time-efficient near-surface exploration methods and yields results to guide and focus more cost-intensive geophysical measurements, installation of deep wells, and geochemical analyses of deep fluids. To this end, we present (1) the physical properties of CO2 key to its transport in the

251

Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant  

DOE Patents (OSTI)

A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

1996-11-12T23:59:59.000Z

252

Changes in U.S. Natural Gas Transportation Infrastructure in 2004  

Reports and Publications (EIA)

This report looks at the level of growth that occurred within the U.S. natural gas transportation network during 2004. In addition, it includes discussion and an analysis of recent gas pipeline development activities and an examination of additional projects proposed for completion over the next several years.

Information Center

2005-06-01T23:59:59.000Z

253

Transportation in Developing Countries: Greenhouse Gas Scenarios for Delhi, India  

E-Print Network (OSTI)

hand, compressed natural gas (CNG) and liquefied petroleumcost of owning and operating CNG and LPG vehicles couldto store the fuels. Each CNG bus, for example, currently

2001-01-01T23:59:59.000Z

254

Baltimore Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Baltimore Gas and Electric Company) Baltimore Gas and Electric Company) Jump to: navigation, search Name Baltimore Gas & Electric Co Place Baltimore, Maryland Service Territory Maryland Website www.bge.com/Pages/default Green Button Committed Yes Utility Id 1167 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Baltimore Gas and Electric Company Smart Grid Project was awarded $200,000,000 Recovery Act Funding with a total project value of $451,814,234. Utility Rate Schedules Grid-background.png

255

San Diego Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Diego Gas & Electric Co Diego Gas & Electric Co (Redirected from San Diego Gas and Electric Company) Jump to: navigation, search Name San Diego Gas & Electric Co Place San Diego, California Service Territory California Website www.sdge.com Green Button Landing Page www.sdge.com/customer-ser Green Button Reference Page www.sdge.com/green-button Green Button Implemented Yes Utility Id 16609 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3]

256

File:EIA-PRB-N-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Basin, Northern Part By 2001 Gas Reserve Class Basin, Northern Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 13.87 MB, MIME type: application/pdf) Description Powder River Basin, Northern Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Montana, Wyoming File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:33, 20 December 2010 Thumbnail for version as of 18:33, 20 December 2010 6,600 × 5,100 (13.87 MB) MapBot (Talk | contribs) Automated bot upload

257

File:EIA-Williston-NW-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

File File Edit with form History Facebook icon Twitter icon » File:EIA-Williston-NW-Gas.pdf Jump to: navigation, search File File history File usage Williston Basin, Northwest Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 6.08 MB, MIME type: application/pdf) Description Williston Basin, Northwest Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Montana, North Dakota, South Dakota File history Click on a date/time to view the file as it appeared at that time.

258

File:EIA-UP-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Uinta-Piceance Basin By 2001 Gas Reserve Class Uinta-Piceance Basin By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 16.74 MB, MIME type: application/pdf) Description Uinta-Piceance Basin By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Utah, Colorado File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:45, 20 December 2010 Thumbnail for version as of 18:45, 20 December 2010 6,600 × 5,100 (16.74 MB) MapBot (Talk | contribs) Automated bot upload

259

Baltimore Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Baltimore Gas & Electric Co Baltimore Gas & Electric Co (Redirected from BGE) Jump to: navigation, search Name Baltimore Gas & Electric Co Place Baltimore, Maryland Service Territory Maryland Website www.bge.com/Pages/default Green Button Landing Page www.bge.com/Pages/default Green Button Reference Page www.businesswire.com/news Green Button Implemented Yes Utility Id 1167 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Baltimore Gas and Electric Company Smart Grid Project was awarded

260

File:EIA-PSJ-NW-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

File File Edit with form History Facebook icon Twitter icon » File:EIA-PSJ-NW-GAS.pdf Jump to: navigation, search File File history File usage Paradox-San Juan Basin, Northwest Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 11.69 MB, MIME type: application/pdf) Description Paradox-San Juan Basin, Northwest Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Utah, Colorado, New Mexico, Arizona File history Click on a date/time to view the file as it appeared at that time.

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

File:EIA-BlackWarrior-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Black Warrior Basin By 2001 Gas Reserve Class Black Warrior Basin By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 14.53 MB, MIME type: application/pdf) Description Black Warrior Basin By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alabama, Mississippi File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:52, 20 December 2010 Thumbnail for version as of 17:52, 20 December 2010 6,600 × 5,100 (14.53 MB) MapBot (Talk | contribs) Automated bot upload

262

Natural gas: Marine transportation. (Latest citations from Oceanic abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-02-01T23:59:59.000Z

263

Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-01-01T23:59:59.000Z

264

STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT  

DOE Green Energy (OSTI)

The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

CROWE RD; APTHORPE R; LEE SJ; PLYS MG

2010-04-29T23:59:59.000Z

265

Natural Gas Transportation - Infrastructure Issues and Operational Trends  

Reports and Publications (EIA)

This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

Information Center

2001-10-01T23:59:59.000Z

266

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through December 1999.

NONE

2000-01-01T23:59:59.000Z

267

Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through June 1998.

NONE

1998-07-01T23:59:59.000Z

268

Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

NONE

1998-05-01T23:59:59.000Z

269

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through January 2000.

NONE

2000-02-01T23:59:59.000Z

270

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through October 1999.

NONE

1999-11-01T23:59:59.000Z

271

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

NONE

1999-12-01T23:59:59.000Z

272

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through February 1999.

NONE

1999-03-01T23:59:59.000Z

273

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through September 1999.

NONE

1999-10-01T23:59:59.000Z

274

Gas Balancing Rules Must Take into account the Trade-off between Offering Pipeline Transport and Pipeline Flexibility in Liberalized Gas Markets  

E-Print Network (OSTI)

This paper analyses the value and cost of line-pack flexibility in liberalized gas markets through the examination of the techno-economic characteristics of gas transport pipelines and the trade-offs between the different ...

Keyaerts, Nico

275

Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels  

Science Conference Proceedings (OSTI)

An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

Air Products and Chemicals

2008-09-30T23:59:59.000Z

276

Field and numerical studies of tracer gas transport and surface gas tranfer in laterally uniform, partially stratified estuaries  

SciTech Connect

Techniques for determination of reaeration rates in natural waterbodies are reviewed. The tracer gas technique for reaeration rate determination offers many advantages over other existing methods and is widely used in rivers and streams. The tracer gas method seems to be the most promising of available techniques for estuarine reaeration rate determination. The two-dimensional late-rally averaged equations describing flow and transport in estuaries are derived and discussed. A laterally averaged numerical model of estaurine hydrodynamics and transport is modified so that tracer gas releases may be simulated. Field studies conducted as a part of the study are described. Two dye releases were made in the upper Houston Ship Channel; two dye tracer gas releases were later made in the same region. The data from these studies are presented and analyzed. Mechanical mixing by shipping traffic proved to be the predominant mixing mechanism and a hindrance to further studies at that site. An intensive field study was conducted in the Colorado River estuary. Field data included velocities, salinity profiles, water surface elevations, and dye concentration data from three dye releases. The data from this study are used to calibrate and test the numerical model of estuarine tracer gas transport.

Bales, J.D.

1986-01-01T23:59:59.000Z

277

Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors  

DOE Green Energy (OSTI)

Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

278

Energy Information Administration / Natural Gas Annual 2005 4  

Gasoline and Diesel Fuel Update (EIA)

Figure 2. Natural Gas Supply and Disposition in the United States, 2005 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Algeria Nigeria Qatar Malaysia Oman Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 23.5 0.7 0.1 3.7 3.700 0.439 0.097 0.008 0.003 0.002 0.009 0.305 0.358 0.065 18.1 0.9 3.1 3.1 1.7 4.8 3.1 6.7 0.02 5.9 Egypt 0.073 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Monthly and Annual

279

Transportation in Developing Countries: Greenhouse Gas Scenarios for Shanghai, China  

E-Print Network (OSTI)

engines are re-optimized for CNG and are calculated on amanufacturing the engine), then CNG would produce even moreChina natural gas (CNG). The taxi fleet is currently being

Zhou, Hongchang; Sperling, Daniel

2001-01-01T23:59:59.000Z

280

OpenEI/PageKeyword Transportation | Open Energy Information  

Open Energy Info (EERE)

Results 1- 20 Next (20 | 50 | 100 | 250 | 500) 2011 APTA Public Transportation Fact Book + A Municipal Official's Guide to Diesel Idling Reduction + APEC-Alternative Transport...

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

RITA-Bureau of Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

RITA-Bureau of Transportation Statistics Jump to: navigation, search Name RITA-Bureau of Transportation Statistics AgencyCompany Organization United States Department of...

282

Rail Coal Transportation Rates - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

In this latest release of Coal Transportation Rates to the Electric ... This report covers railroad transportation rates from 2001-2010 and barge and truck ...

283

Assessing the Benefits and Costs of Intelligent Transportation Systems: The Value of Advanced Traveler Information Systems  

E-Print Network (OSTI)

Navigation, Full Cost of Transportation, Social CostsThe Social Costs of Intercity Passenger Transportation: ATransportation, Advanced Traveler Information Systems Introduction Recent literature has extensively discussed the social costs

Levinson, David; Gillen, David; Chang, Elva

1999-01-01T23:59:59.000Z

284

5. Information Sources - Energy Information Administration  

U.S. Energy Information Administration (EIA)

66 Energy Information Administration Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates of purchasers. All general tariff items ...

285

Natural Gas - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

International Energy Outlook - Natural Gas Section. Released: July 25, 2013. International natural gas projections through 2040 . Natural Gas Imports ...

286

Public Service Elec & Gas Co | Open Energy Information  

Open Energy Info (EERE)

Elec & Gas Co Elec & Gas Co (Redirected from PSEG) Jump to: navigation, search Name Public Service Elec & Gas Co Place New Jersey Utility Id 15477 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 COBRA HEAD CUT OFF TYPE III HP Lighting 100 CORA HEAD H.P. Commercial 100 DELUXE ACORN H.P Lighting 100 FRANKIN PARK TYPE IV H.P Commercial 100 NEW XFORD BLACK TYPE III H.P Commercial

287

Rochester Gas & Electric Corp | Open Energy Information  

Open Energy Info (EERE)

Rochester Gas & Electric Corp Rochester Gas & Electric Corp Jump to: navigation, search Name Rochester Gas & Electric Corp Place New York Utility Id 16183 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SERVICE CLASSIFICATION NO. 1 - RESIDENTIAL SERVICE RSS (Non-Retail Access

288

File:EIA-coalbed-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

coalbed-gas.pdf coalbed-gas.pdf Jump to: navigation, search File File history File usage Coalbed Methane Fields, Lower 48 States Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 2.28 MB, MIME type: application/pdf) Description Coalbed Methane Fields, Lower 48 States Sources Energy Information Administration Related Technologies Natural Gas Creation Date 2009-04-08 Extent National Countries United States UN Region Northern America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:53, 20 December 2010 Thumbnail for version as of 17:53, 20 December 2010 1,650 × 1,275 (2.28 MB) MapBot (Talk | contribs) Automated bot upload You cannot overwrite this file.

289

South Carolina Electric&Gas Co | Open Energy Information  

Open Energy Info (EERE)

Electric&Gas Co Electric&Gas Co Jump to: navigation, search Name South Carolina Electric&Gas Co Place South Carolina Utility Id 17539 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 16 (General Service Time-Of-Use) Commercial

290

Fitchburg Gas and Electric Light Company | Open Energy Information  

Open Energy Info (EERE)

Fitchburg Gas and Electric Light Company Fitchburg Gas and Electric Light Company Place New Hampshire Utility Id 6374 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Fitchburg Gas and Electric Light Company (Massachusetts).

291

Baltimore Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Baltimore Gas & Electric Co Baltimore Gas & Electric Co Place Baltimore, Maryland Service Territory Maryland Website www.bge.com/Pages/default Green Button Committed Yes Utility Id 1167 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Baltimore Gas and Electric Company Smart Grid Project was awarded $200,000,000 Recovery Act Funding with a total project value of $451,814,234. Utility Rate Schedules Grid-background.png 100 watt Incandescent Lighting 100000 Lumen 1090 Watt MHR Lighting

292

Southern Indiana Gas & Elec Co | Open Energy Information  

Open Energy Info (EERE)

Gas & Elec Co Gas & Elec Co Jump to: navigation, search Name Southern Indiana Gas & Elec Co Place Indiana Utility Id 17633 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png AD - Area Development Commercial

293

Southern Indiana Gas & Elec Co | Open Energy Information  

Open Energy Info (EERE)

Gas & Elec Co Gas & Elec Co (Redirected from Vectren) Jump to: navigation, search Name Southern Indiana Gas & Elec Co Place Indiana Utility Id 17633 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png AD - Area Development Commercial

294

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Oklahoma Gas and Electric Company) Oklahoma Gas and Electric Company) Jump to: navigation, search Name Oklahoma Gas & Electric Co Place Oklahoma Utility Id 14063 Utility Location Yes Ownership I NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS-1 (General Service) Commercial GS-TOU (General Service Time-Of-Use) Commercial

295

Central Hudson Gas & Elec Corp | Open Energy Information  

Open Energy Info (EERE)

Hudson Gas & Elec Corp Hudson Gas & Elec Corp Jump to: navigation, search Name Central Hudson Gas & Elec Corp Place New York Utility Id 3249 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png DS-IN 85 Watt (acorn Decorative) Lighting DS-MH 175 Watt (acorn Decorative) Lighting

296

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Natural Gas Explained Factors affecting natural gas prices. Natural gas prices are a function of market supply and demand. Due to limited alternatives for natural gas ...

297

Energy policy act transportation study: Interim report on natural gas flows and rates  

Science Conference Proceedings (OSTI)

This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

NONE

1995-11-17T23:59:59.000Z

298

A pilot-scale Process Development Unit for transport and fluid-bed hot-gas desulfurization  

SciTech Connect

The Morgantown Energy Technology Center (METC) has designed and is currently constructing an on-site, hot gas desulfurization (HGD) Process Development Unit (PDU). The PDU is designed to use regenerable solid metal oxide sorbents that absorb hydrogen sulfide from high-temperature, high-pressure simulated coal-gasification fuel gas that is generated by a METC designed syngas generator. The simulated coal gas is a mixture of partially combusted natural gas, water, carbon dioxide, and hydrogen sulfide. PDU process conditions will be representative of anticipated commercial applications in terms of temperatures, pressures, compositions, velocities, and sorbent cycling. The PDU supports the Integrated Gasification Combined Cycle (IGCC) mission at METC by providing a test bed for development of IGCC cleanup systems that offer low capital cost, operating costs, and costs of electricity. METC intends to develop additional industrial involvement opportunities as the project progresses towards operations. The primary objectives of the PDU are to (1) fill the gap between small-scale testing and large-scale demonstration projects by providing a cost effective test site for transport and fluid-bed desulfurization reactor and sorbent development, (2) demonstrate sorbent suitability over a wide range of parameters, and (3) generate significant information on process control for transport and fluidized bed based desulfurization. PDU data is expected to be used to optimize process performance by expanding the experience for larger scale demonstration projects such as Sierra Pacific Power Company`s Clean Coal Technology project.

McMillian, M.H.; Bissett, L.A.

1996-09-01T23:59:59.000Z

299

Transportation and Greenhouse Gas Emissions: Measurement, Causation and Mitigation  

E-Print Network (OSTI)

(Consumption) Transport Modal Service Supply Chain ­ Fuel Parts Manufacture Vehicle Assembly Warehousing the upstream and downstream processes associated with alternative vehicle fuel infrastructure supply technologies, in addition to the end use or "tailpipe" emissions that are directly correlated with vehicle

300

UN-Glossary for Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

UN-Glossary for Transportation Statistics UN-Glossary for Transportation Statistics Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UN-Glossary for Transportation Statistics Agency/Company /Organization: United Nations Focus Area: Transportation Resource Type: Dataset, Publications Website: www.internationaltransportforum.org/Pub/pdf/GloStat3e.pdf Cost: Free UN-Glossary for Transportation Statistics Screenshot References: UN-Glossary for Transportation Statistics[1] Logo: UN-Glossary for Transportation Statistics "The Glossary for Transport Statistics was published for the first time in 1994 with the purpose of assisting member countries during the collection of data on transport made by the UNECE, ECMT and Eurostat through the Common Questionnaire." References ↑ "UN-Glossary for Transportation Statistics"

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

File:EIA-Denver-Mid-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Denver-Mid-GAS.pdf Denver-Mid-GAS.pdf Jump to: navigation, search File File history File usage Denver Basin, Middle Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.22 MB, MIME type: application/pdf) Description Denver Basin, Middle Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Colorado, Wyoming, Nebraska, Kansas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:55, 20 December 2010 Thumbnail for version as of 16:55, 20 December 2010 6,600 × 5,100 (10.22 MB) MapBot (Talk | contribs) Automated bot upload

302

File:EIA-Denver-S-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Denver-S-GAS.pdf Denver-S-GAS.pdf Jump to: navigation, search File File history File usage Denver Basin, South Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.64 MB, MIME type: application/pdf) Description Denver Basin, South Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Colorado, Wyoming, Nebraska, Kansas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:57, 20 December 2010 Thumbnail for version as of 17:57, 20 December 2010 6,600 × 5,100 (10.64 MB) MapBot (Talk | contribs) Automated bot upload

303

File:EIA-MTB-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

MTB-GAS.pdf MTB-GAS.pdf Jump to: navigation, search File File history File usage Montana Thrust Belt By 2001 Gas Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 15.99 MB, MIME type: application/pdf) Description Montana Thrust Belt By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Montana File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:32, 20 December 2010 Thumbnail for version as of 18:32, 20 December 2010 5,100 × 6,600 (15.99 MB) MapBot (Talk | contribs) Automated bot upload

304

File:EIA-Ventura-E-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

Ventura-E-gas.pdf Ventura-E-gas.pdf Jump to: navigation, search File File history File usage Ventura Basin, East Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 6.72 MB, MIME type: application/pdf) Description Ventura Basin, East Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States California File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:46, 20 December 2010 Thumbnail for version as of 18:46, 20 December 2010 6,600 × 5,100 (6.72 MB) MapBot (Talk | contribs) Automated bot upload

305

File:EIA-Denver-N-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

N-GAS.pdf N-GAS.pdf Jump to: navigation, search File File history File usage Denver Basin, Northern Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.49 MB, MIME type: application/pdf) Description Denver Basin, Northern Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Colorado, Wyoming, Nebraska, Kansas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:56, 20 December 2010 Thumbnail for version as of 17:56, 20 December 2010 6,600 × 5,100 (10.49 MB) MapBot (Talk | contribs) Automated bot upload

306

File:EIA-WTB-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

GAS.pdf GAS.pdf Jump to: navigation, search File File history File usage Wyoming Thrust Belt By 2001 Gas Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 15.04 MB, MIME type: application/pdf) Description Wyoming Thrust Belt By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Idaho, Utah, Wyoming File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 20:33, 20 December 2010 Thumbnail for version as of 20:33, 20 December 2010 5,100 × 6,600 (15.04 MB) MapBot (Talk | contribs) Automated bot upload

307

File:EIA-FL-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

GAS.pdf GAS.pdf Jump to: navigation, search File File history File usage South Florida Peninsula By 2001 Gas Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 3.57 MB, MIME type: application/pdf) Description South Florida Peninsula By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Florida File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:29, 20 December 2010 Thumbnail for version as of 18:29, 20 December 2010 5,100 × 6,600 (3.57 MB) MapBot (Talk | contribs) Automated bot upload

308

File:EIA-PRB-S-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

PRB-S-GAS.pdf PRB-S-GAS.pdf Jump to: navigation, search File File history File usage Powder River Basin, Southern Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 13.01 MB, MIME type: application/pdf) Description Powder River Basin, Southern Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Montana, Wyoming File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:35, 20 December 2010 Thumbnail for version as of 18:35, 20 December 2010 6,600 × 5,100 (13.01 MB) MapBot (Talk | contribs) Automated bot upload

309

Geochemistry, Fate, and Three-Dimensional Transport Modeling of Subsurface Cyanide Contamination at a Manufactured Gas Plant  

Science Conference Proceedings (OSTI)

This report documents the geochemistry, fate, and three-dimensional transport modeling of subsurface cyanide contamination at a manufactured gas plant.

2001-01-26T23:59:59.000Z

310

About U.S. Natural Gas Pipelines Transporting Natural Gas U.S ...  

U.S. Energy Information Administration (EIA)

proposed development of several more over the next several years. ... Liquefied natural gas ... region through import terminals located in

311

Next Generation * Natural Gas (NG)2 Information Requirements--Executive Summary  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has initiated the Next Generation * Natural Gas (NG)2 project to design and implement a new and comprehensive information program for natural gas to meet customer requirements in the post-2000 time frame.

Information Center

2000-10-01T23:59:59.000Z

312

LEDSGP/Transportation Toolkit/Contact Us | Open Energy Information  

Open Energy Info (EERE)

LEDSGP/Transportation Toolkit/Contact Us LEDSGP/Transportation Toolkit/Contact Us < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Contact Us) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Contacts for the LEDS GP Transport Working Group The Transportation Toolkit is provided by the Transport Working Group as part of the Low Emission Development Strategies (LEDS) Global Partnership. If you have questions or comments about this toolkit, . Remote Expert Assistance on LEDS The LEDS Global Partnership provides timely, high-quality, no-fee technical assistance on transportation issues as part of the Remote Expert Assistance on LEDS (REAL) service. Experts from institutions around the world are available to provide objective advice, conduct reviews and brief

313

LEDSGP/Transportation Toolkit/Strategies/Avoid | Open Energy Information  

Open Energy Info (EERE)

LEDSGP/Transportation Toolkit/Strategies/Avoid LEDSGP/Transportation Toolkit/Strategies/Avoid < LEDSGP‎ | Transportation Toolkit‎ | Strategies(Redirected from Transportation Toolkit/Strategies/Avoid) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg Avoid trips taken and reduce travel demand by integrating land use planning, transport infrastructure planning, and transport demand

314

Weekly Natural Gas Storage Report Notice - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Weekly Natural Gas Storage Report Notice. Data and Analysis from the Energy Information Administration (U.S. Dept. of Energy)

315

Transportation and Greenhouse Gas Emissions Trading. Final Technical Report  

SciTech Connect

The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the road prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation-specific policies, they recommend (in addition to the land use policies mentioned above), that they combine an upstream trading system with a carbon efficiency standard similar to the current CAFE standard. Under this approach a fuel price signal would be complemented by incentives for manufacturers to produce more carbon efficient vehicles. To prevent vehicle manufacturers from being forced to pay more than other sectors for reducing GHG emissions, they recommend that the vehicle makers be allowed to pay a cash penalty equal to the market price of allowances in lieu of meeting carbon efficiency requirements.

Steve Winkelman; Tim Hargrave; Christine Vanderlan

1999-10-01T23:59:59.000Z

316

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

317

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

318

Kinetics of hot-gas desulfurization sorbents for transport reactors  

DOE Green Energy (OSTI)

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, to understand effects of space time of reaction gas mixtures on initial reaction kinetics of the sorbent-hydrogen sulfide system, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 sorbent and AHI-1 was examined. These sorbents were obtained from the Research Triangle Institute (RTI). The sorbents in the form of 70 {micro}m particles are reacted with 1,000--4,000 ppm hydrogen sulfide at 450--600 C. The range of space time of reaction gas mixtures is 0.03--0.09 s. The range of reaction duration is 4--14,400 s.

K.C. Kwon

2000-01-01T23:59:59.000Z

319

FRV SI Transport Solar LP | Open Energy Information  

Open Energy Info (EERE)

FRV SI Transport Solar LP Jump to: navigation, search Name FRV SI Transport Solar LP Place Arizona Utility Id 56827 References EIA Form EIA-861 Final Data File for 2010 -...

320

File:EIA-GGR-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Greater Green River Basin By 2001 Gas Reserve Class Greater Green River Basin By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 15.14 MB, MIME type: application/pdf) Description Greater Green River Basin By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Wyoming, Utah, Colorado File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:30, 20 December 2010 Thumbnail for version as of 18:30, 20 December 2010 6,600 × 5,100 (15.14 MB) MapBot (Talk | contribs) Automated bot upload

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Assessing the Potential of Using Hydrate Technology to Capture, Store and Transport Gas for the Caribbean Region  

E-Print Network (OSTI)

Monetizing gas has now become a high priority issue for many countries. Natural gas is a much cleaner fuel than oil and coal especially for electricity generation. Approximately 40 percent of the world's natural gas reserves remain unusable because of lack of economic technology. Gas produced with oil poses a challenge of being transported and is typically flared or re-injected into the reservoir. These are gas transportation issues we now face. Gas hydrate may be a viable means of capturing, storing and transporting stranded and associated gas. For example, stranded gas in Trinidad could be converted to gas hydrates and transported to the islands of the Caribbean. This study will seek to address some of the limitations from previous studies on transporting natural gas as a hydrate while focusing on small scale transportation of natural gas to the Caribbean Islands. This work proposes a workflow for capturing, storing and transporting gas in the hydrate form, particularly for Caribbean situations where there are infrastructural constraints such as lack of pipelines. The study shows the gas hydrate value chain for transportation of 5 MMscf/d of natural gas from Trinidad to Jamaica. The analysis evaluated the water required for hydrate formation, effect of composition on hydrate formation, the energy balance of the process, the time required for formation, transportation and dissociation and preliminary economics. The overall energy requirement of the process which involves heating, cooling and expansion is about 15-20 percent of the energy of the gas transported in hydrate form. The time estimated for the overall process is 2030 hrs. The estimated capital cost to capture and transport 5 MMscf/d from Trinidad to Jamaica is about US$ 30 million. The composition of the gas sample can affect the conditions of formation, heating value and the expansion process. In summary, there is great potential for transporting natural gas by gas hydrate on a small scale based on the proposed hydrate work flow. This study did not prove commerciality at this time, however, some of the limitations require further evaluations and these include detailed modeling of the formation time, dissociation time and heat transfer capabilities.

Rajnauth, Jerome Joel

2010-12-01T23:59:59.000Z

322

A practical model to predict gas hydrate formation, dissociation and transportability in oil and gas flowlines.  

E-Print Network (OSTI)

??The oil and gas industry is facing very challenging production issues with offshore explorations in deeper and colder waters. Longer subsea tiebacks will be required (more)

Zerpa, Luis Eduardo

2013-01-01T23:59:59.000Z

323

New York State Elec & Gas Corp | Open Energy Information  

Open Energy Info (EERE)

New York State Elec & Gas Corp New York State Elec & Gas Corp Place New York Utility Id 13511 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes NERC RFC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS-2 (Small General Service ESS) Industrial

324

Madison Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

& Electric Co & Electric Co (Redirected from Madison Gas and Electric Company) Jump to: navigation, search Name Madison Gas & Electric Co Place Madison, Wisconsin Utility Id 11479 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cg-3 Commercial Cg-5 Residential

325

LEDSGP/Transportation Toolkit/Strategies | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Strategies) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low emissions transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand

326

Transport Activity Measurement Toolkit (TAMT) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Transport Activity Measurement Toolkit (TAMT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transport Activity Measurement Toolkit (TAMT) Agency/Company /Organization: World Bank Sector: Energy Focus Area: Transportation Topics: GHG inventory, Low emission development planning Resource Type: Dataset, Maps, Software/modeling tools, Video, Training materials User Interface: Website, Desktop Application Website: code.google.com/p/tamt/ Cost: Free Transport Activity Measurement Toolkit (TAMT) Screenshot References: TAMT Presentation[1] TAMT Google Site Page[2] TAMT Demonstration Videos[3] "The World Bank Latin America and the Caribbean Region Sustainable Development Department Transport Cluster in conjunction with the World

327

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

Actions Actions < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport sector, choosing from relevant resources to achieve a comprehensive action

328

LEDSGP/Transportation Toolkit/Strategies/Improve | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies/Improve < LEDSGP‎ | Transportation Toolkit‎ | Strategies(Redirected from Transportation Toolkit/Strategies/Improve) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and

329

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Natural Gas Explained Factors affecting natural gas prices. Natural gas prices are a function of market supply and demand. Due to limited alternatives ...

330

dry natural gas production - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Dry natural gas production: The process of producing consumer-grade natural gas. Natural gas withdrawn from reservoirs is reduced by volumes used at the production ...

331

Energy Information Administration / Natural Gas Annual 2006 138  

Gasoline and Diesel Fuel Update (EIA)

8 Table 64. Summary Statistics for Natural Gas - Pennsylvania, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 40,830...

332

Energy Information Administration / Natural Gas Annual 2007 108  

Annual Energy Outlook 2012 (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

333

Energy Information Administration / Natural Gas Annual 2010 110  

Annual Energy Outlook 2012 (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

334

Energy Information Administration / Natural Gas Annual 2008 108  

Gasoline and Diesel Fuel Update (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

335

Energy Information Administration / Natural Gas Annual 2005 88  

Gasoline and Diesel Fuel Update (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA- 910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

336

Energy Information Administration / Natural Gas Annual 2006 82  

Gasoline and Diesel Fuel Update (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

337

Energy Information Administration / Natural Gas Annual 2010 144  

Annual Energy Outlook 2012 (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

338

Energy Information Administration / Natural Gas Annual 2007 126  

Gasoline and Diesel Fuel Update (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

339

Energy Information Administration / Natural Gas Annual 2006 126  

Annual Energy Outlook 2012 (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

340

Energy Information Administration / Natural Gas Annual 2010 138  

Gasoline and Diesel Fuel Update (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Information Administration / Natural Gas Annual 2005 80  

Annual Energy Outlook 2012 (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA- 910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

342

Energy Information Administration / Natural Gas Annual 2005 158  

Gasoline and Diesel Fuel Update (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

343

Energy Information Administration / Natural Gas Annual 2010 164  

Gasoline and Diesel Fuel Update (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

344

Energy Information Administration / Natural Gas Annual 2007 158  

Annual Energy Outlook 2012 (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

345

Energy Information Administration / Natural Gas Annual 2008 106  

Gasoline and Diesel Fuel Update (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

346

Energy Information Administration / Natural Gas Annual 2010 160  

Annual Energy Outlook 2012 (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

347

Energy Information Administration / Natural Gas Annual 2005 82  

Annual Energy Outlook 2012 (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA- 910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

348

Energy Information Administration / Natural Gas Annual 2007 82  

Gasoline and Diesel Fuel Update (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

349

Energy Information Administration / Natural Gas Annual 2006 102  

Gasoline and Diesel Fuel Update (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

350

Energy Information Administration / Natural Gas Annual 2008 84  

Annual Energy Outlook 2012 (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

351

Energy Information Administration / Natural Gas Annual 2006 104  

Gasoline and Diesel Fuel Update (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

352

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

What is shale gas and why is it important? Shale gas refers to natural gas that is trapped within shale formations.

353

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name Penrose Landfill Gas Conversion LLC Place Los Angeles, California Product Owner of landfill gas plant....

354

Energy Information Administration / Natural Gas Annual 2006 72  

Gasoline and Diesel Fuel Update (EIA)

2 Table 31. Summary Statistics for Natural Gas - Colorado, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 23,554...

355

Energy Information Administration / Natural Gas Annual 2005 72  

Annual Energy Outlook 2012 (EIA)

2 Table 31. Summary Statistics for Natural Gas - Colorado, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ... 22,117...

356

Natural Gas - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Today in Energy - Natural Gas. Short, timely articles with graphs about recent natural gas issues and trends : Monthly Reports : Monthly Energy Review - Natural Gas ...

357

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

SciTech Connect

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 130 mm particles are reacted with 18000-ppm hydrogen sulfide at 350-525 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

K.C. Kwon

2002-01-01T23:59:59.000Z

358

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

DOE Green Energy (OSTI)

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of EX-SO3 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 110 {micro}m particles are reacted with 18000-ppm hydrogen sulfide at 350-550 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

K.C. Kwon

2003-02-01T23:59:59.000Z

359

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

DOE Green Energy (OSTI)

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. In this report, the reactivity of AHI-5 was examined. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 70 {micro}m particles are reacted with 9000-18000 ppm hydrogen sulfide at 350-500 C. The range of space time of reaction gas mixtures is 0.071-0.088 s. The range of reaction duration is 4-10800 s.

K.C. Kwon

2001-01-01T23:59:59.000Z

360

Guidance on measuring and reporting Greenhouse Gas  

E-Print Network (OSTI)

Guidance on measuring and reporting Greenhouse Gas (GHG) emissions from freight transport This guidance provides clear instructions on calculating the greenhouse gas (GHG) emissions from freight and report your greenhouse gas emissions', by providing more specific information and examples relating

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Training < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Training) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Training for Low Emission Development Strategies in Transportation The LEDS GP Transport Working Group provides technical training and resources in the form of webinars, e-learning, live/recorded presentation videos, presentation files, and other knowledge exchange formats relevant to low emission development strategies in the transport sector. Below are

362

Gas transport model for chemical vapor infiltration. Topical report  

Science Conference Proceedings (OSTI)

A node-bond percolation model is presented for the gas permeability and pore surface area of the coarse porosity in woven fiber structures during densification by chemical vapor infiltration (CVI). Model parameters include the number of nodes per unit volume and their spatial distribution, and the node and bond radii and their variability. These parameters relate directly to structural features of the weave. Some uncertainty exists in the proper partition of the porosity between {open_quotes}node{close_quotes} and{open_quote}bond{close_quotes} and between intra-tow and inter-tow, although the total is constrained by the known fiber loading in the structure. Applied to cloth layup preforms the model gives good agreement with the limited number of available measurements.

Starr, T.L. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-05-01T23:59:59.000Z

363

LNG (liquefied natural gas) - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum Weekly Petroleum Status Report Weekly Natural Gas Storage Report Natural Gas Weekly Update ...

364

Natural Gas - Pub - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

This Week in Petroleum Weekly Petroleum Status Report Weekly Natural Gas Storage Report Natural Gas Weekly Update ...

365

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Training < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Training for Low Emission Development Strategies in Transportation The LEDS GP Transport Working Group provides technical training and resources in the form of webinars, e-learning, live/recorded presentation videos, presentation files, and other knowledge exchange formats relevant to low emission development strategies in the transport sector. Below are links to relevant online training/learning sites. To suggest additional

366

The Sourcebook on Sustainable Urban Transport | Open Energy Information  

Open Energy Info (EERE)

Sourcebook on Sustainable Urban Transport Sourcebook on Sustainable Urban Transport Jump to: navigation, search Tool Summary Name: The Sourcebook on Sustainable Urban Transport Agency/Company /Organization: GIZ Focus Area: Other Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.sutp.org/index.php?option=com_content&task=view&id=426&Itemid=189& The Sourcebook addresses the key areas of a sustainable transport policy framework for developing cities. It consists of more than twenty modules addressing the following themes: institutional and policy orientation; land use planning and demand management; transit, walking, and cycling; vehicles and fuels; environment and health; and social issues in transport. References Retrieved from "http://en.openei.org/w/index.php?title=The_Sourcebook_on_Sustainable_Urban_Transport&oldid=515034"

367

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Key Actions < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Key Actions) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a

368

Technology Roadmap - Biofuels for Transport | Open Energy Information  

Open Energy Info (EERE)

Technology Roadmap - Biofuels for Transport Technology Roadmap - Biofuels for Transport Jump to: navigation, search Tool Summary Name: Technology Roadmap - Biofuels for Transport Agency/Company /Organization: International Energy Agency Focus Area: Fuels & Efficiency Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf This roadmap identifies technology goals and defines key actions that stakeholders must undertake to expand biofuel production and use sustainably. It provides additional focus and urgency to international discussions about the importance of biofuels to a low CO2 future. References Retrieved from "http://en.openei.org/w/index.php?title=Technology_Roadmap_-_Biofuels_for_Transport&oldid=515032"

369

Pages that link to "Transportation" | Open Energy Information  

Open Energy Info (EERE)

( links) Israel-NREL Cooperation ( links) Transportation Energy Data Book ( links) OpenEI:Requested Pages ( links) User:TwongSandbox (...

370

File:PerspectiveHealthNatGas.pdf | Open Energy Information  

Open Energy Info (EERE)

PerspectiveHealthNatGas.pdf PerspectiveHealthNatGas.pdf Jump to: navigation, search File File history File usage File:PerspectiveHealthNatGas.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 157 KB, MIME type: application/pdf, 18 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:45, 6 February 2012 Thumbnail for version as of 15:45, 6 February 2012 1,275 × 1,650, 18 pages (157 KB) Graham7781 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

371

Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.  

DOE Green Energy (OSTI)

Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

Singh, M. K.; Moore, J. S.

2002-03-04T23:59:59.000Z

372

A computer model of gas generation and transport within TRU waste drums  

DOE Green Energy (OSTI)

A computer model has been developed to predict radiolytic gas generation and transport within Transuranic (TRU) waste drums and surrounding enclosures. Gas generation from the radiolytic decomposition of organic material contaminated with plutonium is modeled and the concentrations of gas throughout the waste drum and enclosures are determined using a diffusional transport model. The model accurately reproduces experimentally measured gas concentrations. With polyethylene waste in unvented drums, the model predicts that the concentration of hydrogen gas can exceed 4 mole percent (lower flammable limit) with only about 5 curies of plutonium. If the drum liner is punctured and an unrestricted 0.75-in. carbon composite filter vent is installed in the drum lid, the plutonium loading can be increased to 240 Ci without generating flammable gas mixtures. Larger diameter filters can be used to increase the curie loading. The model has been used to show that shipments of 1000 Ci of plutonium-238 contaminated waste from Savannah River to the WIPP site are feasible using the TRUPACT shipping container. 10 refs., 17 figs., 6 tabs.

Smith, F.G. III

1988-06-01T23:59:59.000Z

373

LEDSGP/Transportation Toolkit/Strategies/Improve | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies/Improve < LEDSGP‎ | Transportation Toolkit‎ | Strategies Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low emissions transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg

374

LEDSGP/Transportation Toolkit/Strategies | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg

375

EPA State and Local Transportation Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » EPA State and Local Transportation Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EPA State and Local Transportation Resources Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Transportation Phase: Evaluate Options, Develop Goals, Prepare a Plan Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/oms/stateresources/policy/pag_transp.htm Cost: Free References: Transportation-Related Documents[1] Provides a variety of resources discussing approaches to reducing transportation energy use. Overview This EPA website gathers together a number of guidance documents covering various approaches to reducing emissions and energy use in the

376

LEDSGP/Transportation Toolkit/Strategies/Avoid | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies/Avoid < LEDSGP‎ | Transportation Toolkit‎ | Strategies Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg

377

Property:TransportToolkit/Regions | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:TransportToolkit/Regions Jump to: navigation, search Property Name TransportToolkit/Regions Property Type String Description Transport Toolkit property to help filter pages Valid values are Africa & Middle East, Asia, Australia & North America, Europe, Latin America & Caribbean and Global Used in Form/Template Tool Allows Values Africa & Middle East;Asia;Australia & North America;Europe;Latin America & Caribbean;Global Pages using the property "TransportToolkit/Regions" Showing 6 pages using this property. A Africa's Transport Infrastructure Mainstreaming Maintenance and Management + Africa & Middle East + Assessment of the type of cycling infrastructure required to attract new cyclists + Australia & North America +

378

Transportation Toolkit/Strategies/Shift | Open Energy Information  

Open Energy Info (EERE)

petroleum fuels; alternative fuels (such as ethanol, biodiesel, natural gas, and propane; hydrogen fuel-cell systems; and electric rechargeable battery systems. System Level...

379

OpenEI:Projects/Improvements Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Improvements Oil and Gas Improvements Oil and Gas Jump to: navigation, search This page is used to coordinate plans for creating content for the Oil and Gas Gateway. Contents 1 Oil | Energy Basics 2 Oil | General Classification 3 Oil | Uses 3.1 Fuels 3.2 Derivatives 3.3 Agriculture 4 Natural Gas | Energy Basics 5 Natural Gas | General Classification 5.1 Biogas 6 Natural Gas | Uses 6.1 Power Generation 6.2 Domestic Use 6.3 Transportation 6.4 Fertilizers 6.5 Aviation 6.6 Creation of Hydrogen 6.7 Additional Uses 7 State Oil and Gas Boards, Commissions, etc. 8 Federal Statutes, Laws, Regulations related to Oil and Gas 9 International Oil and Gas Boards, Commissions, etc. 10 Private Datasets 11 Oil and Gas Companies 12 Other Notes 12.1 Definitely Helpful 12.2 Possibly Helpful 13 Project Participants Oil | Energy Basics

380

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report  

DOE Green Energy (OSTI)

This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

Sutton, W.H.

1997-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Form:Oil and Gas Company | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Company Jump to: navigation, search Oil and Gas Company This is the "Oil and Gas Company" form. To create a page with this form, enter the page name below; if a page...

382

Form:Federal Oil and Gas Regulation | Open Energy Information  

Open Energy Info (EERE)

Federal Oil and Gas Regulation Jump to: navigation, search Federal Oil and Gas Regulation This is the "Federal Oil and Gas Regulation" form. To create a page with this form, enter...

383

Energy Information Administration / Natural Gas Annual 2006 132  

Gasoline and Diesel Fuel Update (EIA)

2 Table 61. Summary Statistics for Natural Gas - Ohio, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 34,593 33,828...

384

Natural Gas - Analysis & Projections - U.S. Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

with graphs about recent natural gas issues and trends Monthly Reports Short-Term Energy Outlook - Natural Gas Section Released: August 6, 2013 Short-term forecasts of natural gas...

385

Form:Federal Oil and Gas Statute | Open Energy Information  

Open Energy Info (EERE)

Federal Oil and Gas Statute Jump to: navigation, search Federal Oil and Gas Statute This is the "Federal Oil and Gas Statute" form. To create a page with this form, enter the page...

386

Form:International Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

International Oil and Gas Board Jump to: navigation, search International Oil and Gas Board This is the "International Oil and Gas Board" form. To create a page with this form,...

387

Energy Information Administration / Natural Gas Annual 2006 106  

Annual Energy Outlook 2012 (EIA)

6 Table 48. Summary Statistics for Natural Gas - Michigan, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 7,700 8,600...

388

Natural Gas - U.S. Energy Information Administration (EIA) -...  

Gasoline and Diesel Fuel Update (EIA)

gas capacity, which is the sum of the highest observed working natural gas storage inventory level in each facility over the prior 5-year period; and working gas design...

389

Energy Information Administration / Natural Gas Annual 2006 152  

Annual Energy Outlook 2012 (EIA)

2 Table 71. Summary Statistics for Natural Gas - Vermont, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 0 0 0 0 0...

390

Transport Policy Note-Bangladesh | Open Energy Information  

Open Energy Info (EERE)

Note-Bangladesh Note-Bangladesh Jump to: navigation, search Name Transport Policy Note-Bangladesh Agency/Company /Organization Government of Bangladesh Sector Energy Focus Area Transportation Topics Implementation, GHG inventory, Policies/deployment programs, Background analysis Website http://siteresources.worldbank Program Start 2009 Country Bangladesh UN Region South-Eastern Asia References Bangladesh-Transportation[1] Abstract "This policy note provides an overview of the main characteristics of the transport sector in Bangladesh and the challenges going forward. It also provides guidance to the Bank in its dialogue with the Government of Bangladesh on the strategic priorities in the sector and the areas where the Bank can provide the most support consistent with the overall strategic

391

MIT- Center for Transportation and Logistics | Open Energy Information  

Open Energy Info (EERE)

MIT- Center for Transportation and Logistics MIT- Center for Transportation and Logistics Jump to: navigation, search Logo: MIT- Center for Transportation and Logistics Name MIT- Center for Transportation and Logistics Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Sector-Specific information infrastructure issues in the oil, gas, and petrochemical sector  

Science Conference Proceedings (OSTI)

In this chapter we have discussed vulnerabilities and mitigating actions to improve safety, security and continuity of the information and process infrastructure used in the oil, gas and petrochemical sector. An accident in the oil and gas industry can ...

Stig O. Johnsen; Andreas Aas; Ying Qian

2012-01-01T23:59:59.000Z

393

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

Science Conference Proceedings (OSTI)

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle, May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

394

AN ANALYTICAL MODEL FOR FISSION-PRODUCT TRANSPORT AND DEPOSITION FROM GAS STREAMS  

SciTech Connect

An important mechanism in the transport and deposition of very small particles from gas streams to the surfaces of a conduit is diffusion due to the Brownian movement of particles. The heat-mass analogy is used to describe the diffusion, and equations are derived for the deposition of fission products from a gas stream to wall surfaces as a function of the distance along the conduit. Effects of radioactive decay on the validity of the heat-mass analogy in applying standard heat transfer relations to predict material transfer to wall surfaces are discussed. (auth)

Ozisik, M. N.

1963-08-01T23:59:59.000Z

395

U.S. Natural Gas Imports & Exports 2012 - Energy Information ...  

U.S. Energy Information Administration (EIA)

This growth led to greater domestic natural gas supply and relatively low prices in the United States, thus reducing U.S. reliance on foreign natural gas.

396

Natural Gas Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

397

U.S. Natural Gas Imports & Exports 2012 - Energy Information ...  

U.S. Energy Information Administration (EIA)

In the face of unprecedented levels of domestic natural gas production, ... in New England that hinder natural gas flow from the Marcellus shale play and ...

398

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

399

Natural Gas - U.S. Energy Information Administration (EIA) - U ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

400

Gas Flux Sampling (Klein, 2007) | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling (Klein, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling (Klein, 2007) Exploration Activity Details...

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Pacific Gas and Electric Company | Open Energy Information  

Open Energy Info (EERE)

Pacific Gas and Electric Company Jump to: navigation, search Name Pacific Gas and Electric Company Address PO Box 770000 Place San Francisco Zip 94177 Sector Marine and...

402

Energy Information Administration / Natural Gas Annual 2009 120  

Annual Energy Outlook 2012 (EIA)

0 Table 54. Summary Statistics for Natural Gas - Nebraska, 2005-2009 Number of Producing Gas Wells at End of Year ... 114 114 186 322...

403

Energy Information Administration / Natural Gas Annual 2009 132  

Annual Energy Outlook 2012 (EIA)

2 Table 60. Summary Statistics for Natural Gas - North Carolina, 2005-2009 Number of Producing Gas Wells at End of Year ... 0 0 0 0 0...

404

Energy Information Administration / Natural Gas Annual 2009 160  

Annual Energy Outlook 2012 (EIA)

0 Table 74. Summary Statistics for Natural Gas - Washington, 2005-2009 Number of Producing Gas Wells at End of Year ... 0 0 0 0 0...

405

Energy Information Administration / Natural Gas Annual 2009 122  

Annual Energy Outlook 2012 (EIA)

2 Table 55. Summary Statistics for Natural Gas - Nevada, 2005-2009 Number of Producing Gas Wells at End of Year ... 4 4 4 R 0 0...

406

Category:Federal Oil and Gas Regulations | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Category Edit History Facebook icon Twitter icon Category:Federal Oil and Gas Regulations Jump to: navigation, search Add a new Federal Oil and Gas...

407

Opportunities in Liquefied Natural Gas - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Natural gas burns more cleanly than petroleum fuels or coal, and new gas-fired combined-cycle turbine power plants can turn heat into electricity more efficiently ...

408

Gas Natural Corporacion Eolica SL | Open Energy Information  

Open Energy Info (EERE)

Gas Natural Corporacion Eolica SL Jump to: navigation, search Name Gas Natural Corporacion Eolica SL Place Barcelona, Spain Zip 8002 Sector Wind energy Product Barcelona...

409

Natural Gas Futures Prices (NYMEX) - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The natural gas liquids (NGL) composite price is derived from daily Bloomberg spot price data for natural gas liquids at Mont Belvieu, Texas, ...

410

Energy Information Administration / Natural Gas Annual 2009 142  

Gasoline and Diesel Fuel Update (EIA)

2 Table 65. Summary Statistics for Natural Gas - Pennsylvania, 2005-2009 Number of Producing Gas Wells at End of Year ... 46,654 49,750...

411

Natural Gas - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Unconventional Dry Natural Gas Production Release Date: August 1, 2013. Coalbed Methane; Shale Gas :

412

Natural Gas Annual 2008 - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Average price of natural gas delivered to consumers by state and sector, 2012 (dollars ... and Form EIA?910, Monthly Natural Gas Marketer Survey. ...

413

Natural Gas Year-in-Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

12 'Demonstrated peak working gas capacity' is the sum of the highest storage inventory level of working gas observed in each facility over the prior 5-year period ...

414

Natural Gas Year-in-Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

This Week in Petroleum Weekly Petroleum Status Report Weekly Natural Gas Storage Report ... U.S. inventories of working natural gas in storage hit new records ...

415

Biomass Gas Electric LLC BG E | Open Energy Information  

Open Energy Info (EERE)

Biomass Gas Electric LLC BG E Jump to: navigation, search Name Biomass Gas & Electric LLC (BG&E) Place Norcross, Georgia Zip 30092 Sector Biomass Product Project developer...

416

Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling At Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Colrado Area (DOE GTP) Exploration...

417

Natural Gas - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Today in Energy - Natural Gas. Short, timely articles with graphs about recent natural gas issues and trends . Annual Energy Outlook. Released: ...

418

Public Service Elec & Gas Co | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Public Service Elec & Gas Co Place New Jersey Utility Id 15477 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 COBRA HEAD CUT OFF TYPE III HP Lighting 100 CORA HEAD H.P. Commercial 100 DELUXE ACORN H.P Lighting 100 FRANKIN PARK TYPE IV H.P Commercial 100 NEW XFORD BLACK TYPE III H.P Commercial 100 POST-TOP TOWN & COUNTRY Lighting

419

Oklahoma Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

OG&E) OG&E) Jump to: navigation, search Name Oklahoma Gas & Electric Co Place Oklahoma Utility Id 14063 Utility Location Yes Ownership I NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS-1 (General Service) Commercial GS-TOU (General Service Time-Of-Use) Commercial

420

San Diego Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

Electric Co Electric Co Jump to: navigation, search Name San Diego Gas & Electric Co Place San Diego, California Service Territory California Website www.sdge.com Green Button Landing Page www.sdge.com/customer-ser Green Button Reference Page www.sdge.com/green-button Green Button Implemented Yes Utility Id 16609 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

San Diego Gas & Electric Co | Open Energy Information  

Open Energy Info (EERE)

& Electric Co & Electric Co (Redirected from SDG&E) Jump to: navigation, search Name San Diego Gas & Electric Co Place San Diego, California Service Territory California Website www.sdge.com Green Button Landing Page www.sdge.com/customer-ser Green Button Reference Page www.sdge.com/green-button Green Button Implemented Yes Utility Id 16609 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections

422

Oklahoma Gas & Electric Co (Arkansas) | Open Energy Information  

Open Energy Info (EERE)

Arkansas) Arkansas) Jump to: navigation, search Name Oklahoma Gas & Electric Co Place Arkansas Utility Id 14063 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Time of Use (CS-TOU) Commercial General Service (GS) Commercial Power and Light (PL-1) Residential Service (R-1) Residential Residential Service TOU (R-TOU) Residential Average Rates Residential: $0.0752/kWh Commercial: $0.0654/kWh Industrial: $0.0509/kWh The following table contains monthly sales and revenue data for Oklahoma Gas & Electric Co (Arkansas). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

423

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan National Renewable Energy Laboratory National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov The Joint Institute for Strategic Energy Analysis 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.jisea.org Technical Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan

424

Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I  

DOE Green Energy (OSTI)

This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

NONE

1997-12-01T23:59:59.000Z

425

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

DOE Green Energy (OSTI)

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

426

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

SciTech Connect

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

427

2011 APTA Public Transportation Fact Book | Open Energy Information  

Open Energy Info (EERE)

2011 APTA Public Transportation Fact Book 2011 APTA Public Transportation Fact Book Jump to: navigation, search Tool Summary Name: 2011 APTA Public Transportation Fact Book Agency/Company /Organization: American Public Transportation Association Sector: Energy Focus Area: Transportation Resource Type: Publications Website: www.apta.com/resources/statistics/Documents/FactBook/APTA_2011_Fact_Bo Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Dept. of Energy/Dept. of Transportation Gas Turbine Transit Bus Demonstration Program: program plan  

SciTech Connect

This document is the program plan for a cooperative project of the Urban Mass Transportation Administration (UMTA) of the Department of Transportation and the Division of Transportation Energy Conservation (TEC) of the Department of Energy to test and evaluate the use of gas-turbine engines in transit buses. UMTA is responsible for furnishing buses from UMTA grantees, technical direction for bus/engine integration, and coordination of operational use of buses in selected cities. TEC is responsible for providing gas turbines, data acquisition/reduction services, and management for the complete project. The project will be carried out in three phases. In Phase I, prototype turbine engines will be used. One turbine-powered bus and diesel-powered bus will be tested at a test facility to obtain baseline data. Five turbine-powered buses will be evaluated in revenue service in one city. In Phase II, preproduction turbine engines will be used. One turbine-powered bus and diesel-powered bus will be baseline tested and ten turbine-powered buses will be evaluated in two cities. In Phase III, production gas turbine engines will be used. Only the turbine-powered bus will run baseline tests in this phase. Ten turbine-powered buses will be evaluated in two cities.

1978-04-01T23:59:59.000Z

429

Executive Summary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration ix ... Transportation tariffs for interstate pipeline companies are few years have increased the availability of some natural gas

430

Feasibility study of Northeast Thailand Gas Pipeline Project. Final report. Part 3. Gas transmission pipeline. Export trade information  

SciTech Connect

The volume is the third part of a three part report submitted to the Petroleum Authority of Thailand. Part III examines the feasibility of constructing a gas pipeline from the Nam Phong gas field in the northeast region to the existing natural gas pipeline network in the central region. It contains information concerning the system analysis, route investigation and selection, the order of magnitude cost estimate and the economic and financial analysis.

1989-09-01T23:59:59.000Z

431

Using Social Networks for Exchanging Valuable Real Time Public Transport Information among Travellers  

Science Conference Proceedings (OSTI)

Public transport users are increasingly connected in real time through mobile devices to social networks, such as Twitter and Facebook. This allows them both to access and to provide valuable operational and emotional information from and to fellow travellers. ... Keywords: mobile, transport, social network, service science, innovation, business model, serious game

Antonio A. Nunes; Teresa Galvao; Joao Falcao e Cunha; Jeremy V. Pitt

2011-09-01T23:59:59.000Z

432

International Air Transport Association (IATA) | Open Energy Information  

Open Energy Info (EERE)

Transport Association (IATA) Transport Association (IATA) Jump to: navigation, search Name International Air Transport Association (IATA) Address 800 Place Victoria PO Box 113 Place Montreal, Quebec Phone number 1 514 874 0202 Website http://www.iata.org/ Coordinates 45.5013735°, -73.5618633° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5013735,"lon":-73.5618633,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Transport Co-benefits Calculator | Open Energy Information  

Open Energy Info (EERE)

Transport Co-benefits Calculator Transport Co-benefits Calculator Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Transport Co-benefits Calculator Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Climate, Energy Complexity/Ease of Use: Moderate Website: www.iges.or.jp/en/archive/cp/activity20101108.html Cost: Free Related Tools Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool SimCLIM SEAGA Intermediate Level Handbook ... further results Characterizes co-benefits in terms of accidents, emissions, travel time, and vehicle operating costs. Approach A co-benefits approach capitalizes on synergies between current local

434

United States Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Name United States Department of Transportation Address 1200 New Jersey Ave, SE Place Washington, District of Columbia Zip 20590 Year founded 1966 Phone number 202-366-4000 Website http://www.dot.gov/ Coordinates 38.9054376°, -77.0148205° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9054376,"lon":-77.0148205,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Hot-gas filter testing with the transport reactor demonstration unit  

Science Conference Proceedings (OSTI)

The objectives of the hot-gas cleanup (HGC) work on the transport reactor demonstration unit (TRDU) located at the Energy & Environmental Research Center (EERC) is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 2-year project will be the testing of hot-gas filter element performance (particulate collection efficiency, filter pressure differential, filter cleanability, and durability) as a function of temperature and filter face velocity during short-term operation (100-200 hours). This filter vessel will be utilized in combination with the TRDU to evaluate the performance of selected hot-gas filter elements under gasification operating conditions. This work will directly support the power systems development facility (PSDF) utilizing the M.W. Kellogg transport reactor located at Wilsonville, Alabama and, indirectly, the Foster Wheeler advanced pressurized fluid-bed combustor, also located at Wilsonville.

Mann, M.D.; Swanson, M.L.; Ness, R.O.; Haley, J.S.

1995-11-01T23:59:59.000Z

436

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Dexin Wang Dexin Wang Principal Investigator Gas Technology Institute 1700 South Mount Prospect Rd Des Plaines, Il 60018 847-768-0533 dexin.wang@gastechnology.org TransporT MeMbrane Condenser for WaTer and energy reCovery froM poWer planT flue gas proMIs/projeCT no.: nT0005350 Background One area of the U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program's research is being performed to develop advanced technologies to reuse power plant cooling water and associated waste heat and to investigate methods to recover water from power plant flue gas. Considering the quantity of water withdrawn and consumed by power plants, any recovery or reuse of this water can significantly reduce the plant's water requirements. Coal occurs naturally with water present (3-60 weight %), and the combustion

437

Hot-Gas Filter Testing with a Transport Reactor Development Unit  

Science Conference Proceedings (OSTI)

The objective of the hot-gas cleanup (HGC) work on the transport reactor demonstration unit (TRDU) located at the Environmental Research Center is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 2-year project will be the testing of hot- gas filter elements as a function of particulate collection efficiency, filter pressure differential, filter cleanability, and durability during relatively short-term operation (100-200 hours). A filter vessel will be used in combination with the TRDU to evaluate the performance of selected hot- gas filter elements under gasification operating conditions. This work will directly support the Power Systems Development Facility utilizing the M.W. Kellogg transport reactor located at Wilsonville, Alabama and indirectly the Foster Wheeler advanced pressurized fluid-bed combustor, also located at Wilsonville and the Clean Coal IV Pinon Pine IGCC Power Project. This program has a phased approach involving modification and upgrades to the TRDU and the fabrication, assembly, and operation of a hot-gas filter vessel (HGFV) capable of operating at the outlet design conditions of the TRDU. Phase 1 upgraded the TRDU based upon past operating experiences. Additions included a nitrogen supply system upgrade, upgraded LASH auger and 1807 coal feed lines, the addition of a second pressurized coal feed hopper and a dipleg ash hopper, and modifications to spoil the performance of the primary cyclone. Phase 2 included the HGFV design, procurement, and installation. Phases 3 through 5 consist of 200-hour hot-gas filter tests under gasification conditions using the TRDU at temperatures of 540-650{degrees}C (1000-1200{degrees}F), 9.3 bar, and face velocities of 1.4, 2. and 3.8 cm/s, respectively. The increased face velocities are achieved by removing candles between each test.

Swanson, M.L.; Ness, R.O., Jr. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1996-12-31T23:59:59.000Z

438

Wireless technology collects real-time information from oil and gas wells  

NLE Websites -- All DOE Office Websites (Extended Search)

Wireless technology collects real-time information from oil and gas Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells already producing oil and gas and drilling operations for new wells. One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells

439

Illinois DNR oil and gas division | Open Energy Information  

Open Energy Info (EERE)

DNR oil and gas division DNR oil and gas division Jump to: navigation, search State Illinois Name Illinois DNR oil and gas division City, State Springfield, IL Website http://dnr.state.il.us/mines/d References Illinois DNR Oil and Gas[1] The Illinois DNR Oil and Gas division is located in Springfield, Illinois. About The Oil and Gas Division is one of four divisions within the Illinois Department of Natural Resources, Office of Mines and Minerals. Created in 1941, the Division of Oil & Gas is the regulatory authority in Illinois for permitting, drilling, operating, and plugging oil and gas production wells. The Division implements the Illinois Oil and Gas Act and enforces standards for the construction and operation of related production equipment and facilities. References

440

Natural Gas 2007 Year-In-Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Year-In-Review 2007 . This report provides an overview of the natural gas industry and markets in 2007 with special focus on the first complete set of ...

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas Monthly (NGM) - Energy Information Administration - November  

U.S. Energy Information Administration (EIA) Indexed Site

SEE CURRENT NATURAL GAS MONTHLY UPDATE SEE CURRENT NATURAL GAS MONTHLY UPDATE Natural Gas Monthly Data for September 2013 | Release Date: December 12, 2013 | Next Release: January 7, 2014 | full report  | Previous Issues Month: October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 September 2012 prior issues Go Table of Contentsall tables Tables 1 Summary of Natural Gas Supply and Disposition in the United States, 2008-2013 XLS PDF CSV 2 Natural Gas Consumption in the United States, 2008-2013 XLS PDF CSV 3 Selected National Average Natural Gas Prices, 2008-2013 XLS PDF CSV 4 U.S. Natural Gas Imports, 2011-2013 XLS PDF CSV 5 U.S. Natural Gas Exports, 2011-2013 XLS PDF CSV

442

Natural Gas - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Most Requested Most Requested Change category... Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports Filter by: All Data Analysis Projections Weekly Reports Natural Gas Storage Report Working Gas in Underground Storage for current week and week ago comparison. (archived versions) Archived Versions Natural Gas Storage Report - Archive Natural Gas Weekly Update Weekly average spot and futures prices of natural gas. (archived versions) Archived Versions Natural Gas Weekly Update - Archive Today in Energy - Natural Gas Short, timely articles with graphs about recent natural gas issues and trends Monthly Reports Drilling Productivity Report Released: January 13, 2014 EIA's new Drilling Productivity Report (DPR) takes a fresh look at oil

443

Natural Gas | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Thursday. Weekly Natural Gas Storage Report 10:30 a.m. EST. Natural Gas Weekly Update 2:00 - 2:30 p.m. EST *No releases: Monday, Tuesday, Wednesday or Friday.

444

Energy Information Administration / Natural Gas Annual 2009 158  

Gasoline and Diesel Fuel Update (EIA)

8 Table 73. Summary Statistics for Natural Gas - Virginia, 2005-2009 Number of Producing Gas Wells at End of Year ... 4,132 5,179 5,735...

445

Form:State Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Board Jump to: navigation, search State Oil and Gas Board This is the "State Oil and Gas Board" form. To create a page with this form, enter the page name below; if a page with...

446

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Well Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Oil and Gas Well Drilling Author Jeff Tester Published NA, 2011 DOI Not...

447

Energy Information Administration / Natural Gas Annual 2009 110  

Gasoline and Diesel Fuel Update (EIA)

0 Table 49. Summary Statistics for Natural Gas - Michigan, 2005-2009 Number of Producing Gas Wells at End of Year ... 8,900 9,200 9,712...

448

EIA INTERNATIONAL NATURAL GAS WORKSHOP - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

TOP OBLIGATIONS & PREPAID GAS CAP SPOT PRICE Source: SG Cross Asset Research, Platts, Reuters 0 10 20 30 40 50 60 70 80 90 100 ... European Natural Gas House of the Year

449

natural gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Natural Gas. Exploration and reserves, storage, imports and exports, ... The U.S. surpassed Russia as worlds leading producer of dry natural gas in 2009 and 2010.

450

ECOWAS Clean Energy Gateway-Transportation | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Transportation ECOWAS Clean Energy Gateway-Transportation Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Introduction→ Step 1 Step 2 Step 3 Step 4

451

Energy Information Administration / Natural Gas Annual 2005 66  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 28. Summary Statistics for Natural Gas - Arizona, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 8 7 9 6 6 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 305 300 443 331 233 From Oil Wells .................................................. 1 * * * * Total................................................................... 307 301 443 331 233 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared .............................................. * 0 0 0 0 Wet After Lease Separation................................ 307 301 443 331 233 Nonhydrocarbon Gases Removed......................

452

Natural Gas - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Released: January 26, 2009. ... Released: June 24, 2008. ... Natural Gas Industry Restructuring and EIA Data Collection. Released: June 1, 1996.

453

Water-Gas Samples (Klein, 2007) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples (Klein, 2007) Exploration Activity Details Location Unspecified...

454

International Association of Public Transport | Open Energy Information  

Open Energy Info (EERE)

Public Transport Public Transport Jump to: navigation, search Name International Association of Public Transport Address Rue Sainte-Marie 6 (Quai des Charbonnages) Place Brussels, Belgium Zip B-1080 Sector Vehicles Year founded 1885 Number of employees 11-50 Phone number +32 2 660 10 72 Website http://www.uitp.org/ Coordinates 50.853653°, 4.3410156° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.853653,"lon":4.3410156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Gas Flux Sampling (Lewicki & Oldenburg) | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling (Lewicki & Oldenburg) Gas Flux Sampling (Lewicki & Oldenburg) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling (Lewicki & Oldenburg) Exploration Activity Details Location Unspecified Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (Unknown) Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_(Lewicki_%26_Oldenburg)&oldid=508144" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

456

Facilitated transport ceramic membranes for high-temperature gas cleanup. Final report, February 1990--April 1994  

SciTech Connect

The objective of this program was to demonstrate the feasibility of developing high temperature, high pressure, facilitated transport ceramic membranes to control gaseous contaminants in Integrated Gasification Combined Cycle (IGCC) power generation systems. Meeting this objective requires that the contaminant gas H{sub 2}S be removed from an IGCC gas mixture without a substantial loss of the other gaseous components, specifically H{sub 2} and CH{sub 4}. As described above this requires consideration of other, nonconventional types of membranes. The solution evaluated in this program involved the use of facilitated transport membranes consisting of molten mixtures of alkali and alkaline earth carbonate salts immobilized in a microporous ceramic support. To accomplish this objective, Air Products and Chemicals, Inc., Golden Technologies Company Inc., and Research Triangle Institute worked together to develop and test high temperature facilitated membranes for the removal of H{sub 2}S from IGCC gas mixtures. Three basic experimental activities were pursued: (1) evaluation of the H{sub 2}S chemistry of a variety of alkali and alkaline earth carbonate salt mixtures; (2) development of microporous ceramic materials which were chemically and physically compatible with molten carbonate salt mixtures under IGCC conditions and which could function as a host to support a molten carbonate mixture and; (3) fabrication of molten carbonate/ceramic immobilized liquid membranes and evaluation of these membranes under conditions approximating those found in the intended application. Results of these activities are presented.

Quinn, R.; Minford, E.; Damle, A.S.; Gangwal, S.K.; Hart, B.A.

1994-04-01T23:59:59.000Z

457

Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal  

Science Conference Proceedings (OSTI)

This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

Eric P. Robertson

2007-09-01T23:59:59.000Z

458

Natural Gas Annual 2012 (NGA) - Energy Information Administration - With  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Glossary › FAQS › Overview Data Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Natural Gas Annual With Data for 2012 | Release Date: December 12, 2013 | Next Release: December 2014 | full report Previous Issues of Natural Gas Annual Year: 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 prior issues Go Data Tablesall tables Overview 1 Summary Statistics for Natural Gas in the United States, 2008-2012 PDF CSV 2 Natural Gas Production, Transmission, and Consumption by State, 2012 PDF CSV

459

Natural Gas Annual 2012 (NGA) - Energy Information Administration - With  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Glossary › FAQS › Overview Data Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Natural Gas Annual With Data for 2012 | Release Date: December 12, 2013 | Next Release: December 2014 | full report Previous Issues of Natural Gas Annual Year: 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 prior issues Go Data Tablesall tables Overview 1 Summary Statistics for Natural Gas in the United States, 2008-2012 PDF CSV 2 Natural Gas Production, Transmission, and Consumption by State, 2012 PDF CSV

460

Energy Information Administration/Natural Gas Monthly October 2000  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Monthly October 2000 Natural Gas Monthly October 2000 vii Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season During the summer and fall of 2000 natural gas prices reached record highs for a nonheating season period. The dramatic rise in prices resulted from an upsurge in natural gas demand, mainly from electric generation needs during a warmer-than-usual spring and summer. The increased demand has occurred while domestic production levels have continued to decrease over the past several years. 1 Low natural gas prices during 1998 and 1999 dampened exploration and development efforts and caused some lower producing wells to be shut in or abandoned. Natural gas pipeline capacity, on the other hand, has grown with end-use demand, and as sources of new supply have developed, new pipelines have been

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Colorado Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Conservation Commission Oil and Gas Conservation Commission Name Colorado Oil and Gas Conservation Commission Place Denver, Colorado References COGCC Website[1] This article is a stub. You can help OpenEI by expanding it. Colorado Oil and Gas Conservation Commission is an organization based in Denver, Colorado. The mission of the Colorado Oil and Gas Conservation Commission (COGCC) is to foster the responsible development of Colorado's oil and gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public health, safety and welfare The prevention of waste The protection of mineral owners' correlative rights The prevention and mitigation of adverse environmental impacts

462

A Computational Approach to the Real Option Management of Network Contracts for Natural Gas Pipeline Transport Capacity  

Science Conference Proceedings (OSTI)

Commodity merchants use real option models to manage their operations. A central element of such a model is its underlying operating policy. We focus on network contracts for the transport capacity of natural gas pipelines, specific energy conversion ... Keywords: Monte Carlo simulation, capacity valuation, commodity and energy conversion assets, energy-related operations, heuristics, math programming, natural gas pipelines, operations management practice, operations management/finance interface, petroleum/natural gas industries, real options, sensitivities, spread options

Nicola Secomandi; Mulan X. Wang

2012-07-01T23:59:59.000Z

463

Lattice-gas model for active vesicle transport by molecular motors with opposite polarities  

E-Print Network (OSTI)

We introduce a multi-species lattice gas model for motor protein driven collective cargo transport on cellular filaments. We use this model to describe and analyze the collective motion of interacting vesicle cargoes being carried by oppositely directed molecular motors, moving on a single biofilament. Building on a totally asymmetric exclusion process (TASEP) to characterize the motion of the interacting cargoes, we allow for mass exchange with the environment, input and output at filament boundaries and focus on the role of interconversion rates and how they affect the directionality of the net cargo transport. We quantify the effect of the various different competing processes in terms of non-equilibrium phase diagrams. The interplay of interconversion rates, which allow for flux reversal and evaporation/deposition processes introduce qualitatively new features in the phase diagrams. We observe regimes of three-phase coexistence, the possibility of phase re-entrance and a significant flexibility in how the different phase boundaries shift in response to changes in control parameters. The moving steady state solutions of this model allows for different possibilities for the spatial distribution of cargo vesicles, ranging from homogeneous distribution of vesicles to polarized distributions, characterized by inhomogeneities or {\\it shocks}. Current reversals due to internal regulation emerge naturally within the framework of this model. We believe this minimal model will clarify the understanding of many features of collective vesicle transport, apart from serving as the basis for building more exact quantitative models for vesicle transport relevant to various {\\it in-vivo} situations.

Sudipto Muhuri; Ignacio Pagonabarraga

2010-09-09T23:59:59.000Z

464

Economic implications of natural gas vehicle technology in U.S. private automobile transportation; Implications of natural gas vehicle technologies on household transportation in the U.S.  

E-Print Network (OSTI)

??Transportation represents almost 28 percent of the United States' energy demand. Approximately 95 percent of U.S. transportation utilizes petroleum, the majority of which is imported. (more)

Kragha, Oghenerume Christopher

2010-01-01T23:59:59.000Z

465

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Due to limited parking, all visitors are strongly encouraged to: Due to limited parking, all visitors are strongly encouraged to: 1) car-pool, 2) take the Lab's special conference shuttle service, or 3) take the regular off-site shuttle. If you choose to use the regular off-site shuttle bus, you will need an authorized bus pass, which can be obtained by contacting Eric Essman in advance. Transportation & Visitor Information Location and Directions to the Lab: Lawrence Berkeley National Laboratory is located in Berkeley, on the hillside directly above the campus of University of California at Berkeley. The address is One Cyclotron Road, Berkeley, California 94720. For comprehensive directions to the lab, please refer to: http://www.lbl.gov/Workplace/Transportation.html Maps and Parking Information: On Thursday and Friday, a limited number (15) of barricaded reserved parking spaces will be available for NON-LBNL Staff SNAP Collaboration Meeting participants in parking lot K1, in front of building 54 (cafeteria). On Saturday, plenty of parking spaces will be available everywhere, as it is a non-work day.

466

Greenhouse Gas Initiative Scenario Database | Open Energy Information  

Open Energy Info (EERE)

Greenhouse Gas Initiative Scenario Database Greenhouse Gas Initiative Scenario Database Jump to: navigation, search Tool Summary Name: Greenhouse Gas Initiative Scenario Database Agency/Company /Organization: Science for Global Insight Sector: Climate, Energy, Land Topics: Baseline projection, GHG inventory, Pathways analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: www.iiasa.ac.at/web-apps/ggi/GgiDb/dsd?Action=htmlpage&page=about Cost: Free References: Greenhouse Gas Initiative Scenario Database[1] The GGI (Greenhouse Gas Initiative) scenario database documents the results of a set of greenhouse gas emission scenarios that were created using the IIASA Integrated Assessment Modeling Framework and previously documented in a special issue of the Technological Forecasting and Social Change.

467

GasHighWay Best Practices | Open Energy Information  

Open Energy Info (EERE)

GasHighWay Best Practices GasHighWay Best Practices Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GasHighWay Best Practices Agency/Company /Organization: GasHighWay Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.gashighway.net/default.asp?sivuID=25922&component=/modules/bbsView This website provides a compilation of best practices and experiences in the use of natural gas vehicles, the production of biogas and natural gas, and the expansion of fueling infrastructure in countries including Sweden, Finland, Austria, Czech Republic, Poland, and Germany. How to Use This Tool This tool is most helpful when using these strategies: Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

468

Natural Gas Annual 2011 (NGA) - Energy Information Administration - With  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Natural Gas Annual With Data for 2011 | Release Date: January 7, 2013 | Next Release: December 12, 2013 | full report Re-Release Date: February 22, 2013 (correction) Previous Issues of Natural Gas Annual Year: 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 prior issues Go Data Tablesall tables Overview 1 Summary Statistics for Natural Gas in the United States, 2007-2011 PDF CSV 2 Natural Gas Production, Transmission, and Consumption by State, 2011 PDF CSV

469

Natural Gas Vehicle Incentive Program | Open Energy Information  

Open Energy Info (EERE)

Natural Gas Vehicle Incentive Program Natural Gas Vehicle Incentive Program Jump to: navigation, search Tool Summary Name: Natural Gas Vehicle Incentive Program Agency/Company /Organization: Natural Gas Vehicles for America Focus Area: Standards - Incentives - Policies - Regulations Topics: Best Practices Website: www.emisstar.com/docs_and_pdfs/070709_NGV_fullreport NGVAmerica engaged Emisstar LLC to develop a streamlined and efficient natural gas vehicle incentive program to promote and accelerate the replacement of older diesel trucks with new natural gas vehicles. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

470

Natural Gas - Pub - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

International Natural Gas Markets Workshop International Natural Gas Markets Workshop EIA's Office of Petroleum, Natural Gas, and Biofuels Analysis has scheduled an International Natural Gas Markets Workshop on Thursday, August 23, 2012, in our EIA offices. The workshop will focus on the international natural gas market as it exists today (with an emphasis on the European and Asian markets), and the outlook for the international natural gas market in the future. Confirmed expert speakers include: Jim Jensen, Jensen Associates; Ben Schlesinger, Benjamin Schlesinger and Associates; Thierry Bros, Societe Generale; Rob Smith, Facts Global Energy; Howard Rogers, Oxford Institute of Energy Studies, Edward Chow, Center for Strategic and International Studies (CSIS); Ken Medlock, Rice University; and Frank Graves or Phil Hanser, The Brattle Group.

471

WesternGovernorsAsociation Transportation Fuels for the Future Natural Gas and Propane WGA Hydrogen Team  

E-Print Network (OSTI)

1 The following report is based on the contributions of the individuals and organizations listed below. The Team members were chosen for their breadth of knowledge and industry or policy experience. The group was assembled with the goal of having a wide scope of interests including industry, academia and environmental analysis. The group also worked towards consensus viewpoints on the critical issues impacting the development of natural gas and propane as commercially available alternative fuels. This consensus model helped to achieve a balanced perspective on the challenges and potential solutions to further commercial development of this alternative transportation fuel.

Tom Brotherton Weststart/calstart; Curtis Donaldson; Cleanfuel Usa

2008-01-01T23:59:59.000Z

472

Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications  

Science Conference Proceedings (OSTI)

The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

Joule A. Bergerson; Lester B. Lave [Carnegie Mellon University, Pittsburgh, PA (US)

2005-08-15T23:59:59.000Z

473

Energy Information Administration / Natural Gas Annual 2009 150  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 69. Summary Statistics for Natural Gas - Tennessee, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 400 330 305 285 310 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 NA 4,700 5,478 From Oil Wells.............................................. 2,200 2,663 3,942 R 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 2,200 2,663 3,942 4,700 5,478 Repressuring .................................................. NA NA NA NA NA Vented and Flared..........................................

474

Energy Information Administration / Natural Gas Annual 2006 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 56. Summary Statistics for Natural Gas - New Jersey, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

475

Energy Information Administration / Natural Gas Annual 2005 78  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 34. Summary Statistics for Natural Gas - District of Columbia, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

476

Energy Information Administration / Natural Gas Annual 2005 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 38. Summary Statistics for Natural Gas - Idaho, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

477

Energy Information Administration / Natural Gas Annual 2010 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 34. Summary Statistics for Natural Gas - Connecticut, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

478

Energy Information Administration / Natural Gas Annual 2010 82  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 35. Summary Statistics for Natural Gas - Delaware, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

479

Energy Information Administration / Natural Gas Annual 2005 116  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 53. Summary Statistics for Natural Gas - Nebraska, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 96 106 109 111 114 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 886 904 1,187 1,229 943 From Oil Wells.................................................. 322 288 279 269 258 Total................................................................... 1,208 1,193 1,466 1,499 1,201 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 5 12 23 29 Wet After Lease Separation................................ 1,208 1,188 1,454 1,476 1,172

480

Energy Information Administration / Natural Gas Annual 2005 142  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 66. Summary Statistics for Natural Gas - South Carolina, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

Note: This page contains sample records for the topic "gas transportation information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Information Administration / Natural Gas Annual 2010 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 38. Summary Statistics for Natural Gas - Georgia, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

482

Energy Information Administration / Natural Gas Annual 2009 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 34. Summary Statistics for Natural Gas - Delaware, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

483

Energy Information Administration / Natural Gas Annual 2009 70  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 29. Summary Statistics for Natural Gas - Arizona, 2005-2009 Number of Producing Gas Wells at End of Year................................................ 6 7 7 6 6 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 233 611 654 523 711 From Oil Wells ............................................. * * * * * From Coalbed Wells .................................... 0 0 0 0 0 From Shale Gas Wells ................................. 0 0 0 0 0 Total.............................................................. 233 611 655 523 712 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed.................

484

Energy Information Administration / Natural Gas Annual 2009 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Idaho, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

485

Energy Information Administration / Natural Gas Annual 2009 108  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 48. Summary Statistics for Natural Gas - Massachusetts, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

486

Energy Information Administration / Natural Gas Annual 2009 82  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 35. Summary Statistics for Natural Gas - District of Columbia, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

487

Energy Information Administration / Natural Gas Annual 2005 74  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 32. Summary Statistics for Natural Gas - Connecticut, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

488

Energy Information Administration / Natural Gas Annual 2009 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 72. Summary Statistics for Natural Gas - Vermont, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

489

Energy Information Administration / Natural Gas Annual 2009 134  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 61. Summary Statistics for Natural Gas - North Dakota, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 148 200 200 194 196 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 14,554 16,435 16,416 13,738 11,263 From Oil Wells.............................................. 41,350 46,351 54,381 73,450 81,226 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 55,904 62,786 70,797 87,188 92,489 Repressuring .................................................. 0 0 0 0 0 Vented and Flared..........................................

490

Energy Information Administration / Natural Gas Annual 2010 96  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 42. Summary Statistics for Natural Gas - Indiana, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 2,336 2,350 525 563 620 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 2,921 3,606 4,701 4,927 6,802 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 NA From Shale Gas Wells.................................. 0 0 0 0 NA Total............................................................... 2,921 3,606 4,701 4,927 6,802 Repressuring .................................................. NA NA NA NA NA Vented and Flared..........................................

491

Energy Information Administration / Natural Gas Annual 2009 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 64. Summary Statistics for Natural Gas - Oregon, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 15 14 18 21 24 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 454 621 409 778 821 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 454 621 409 778 821 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

492

Energy Information Administration / Natural Gas Annual 2006 78  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 34. Summary Statistics for Natural Gas - District of Columbia, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

493

Energy Information Administration / Natural Gas Annual 2006 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 39. Summary Statistics for Natural Gas - Illinois, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 225 240 251 316 E 316 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 174 169 165 E 161 E 165 From Oil Wells.............................................. 5 5 5 E 5 E 5 Total............................................................... 180 174 170 E 166 E 170 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 180 174 170 166 170 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production

494

Energy Information Administration / Natural Gas Annual 2009 116  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 52. Summary Statistics for Natural Gas - Missouri, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

495

Energy Information Administration / Natural Gas Annual 2009 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 67. Summary Statistics for Natural Gas - South Carolina, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

496

Energy Information Administration / Natural Gas Annual 2009 126  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 57. Summary Statistics for Natural Gas - New Jersey, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

497

Energy Information Administration / Natural Gas Annual 2009 104  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 46. Summary Statistics for Natural Gas - Maine, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

498

Energy Information Administration / Natural Gas Annual 2009 78  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 33. Summary Statistics for Natural Gas - Connecticut, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

499

Energy Information Administration / Natural Gas Annual 2009 148  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 68. Summary Statistics for Natural Gas - South Dakota, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 69 69 71 71 89 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 446 455 422 0 0 From Oil Wells.............................................. 10,902 10,162 11,458 10,909 11,366 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. NA NA NA 1,098 1,561 Total............................................................... 11,349 10,616 11,880 12,007 12,927 Repressuring .................................................. 0 0 0 0 0 Vented and Flared..........................................

500

Energy Information Administration / Natural Gas Annual 2005 136  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 63. Summary Statistics for Natural Gas - Oregon, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 20 18 15 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,112 837 731 467 454 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,112 837 731 467 454 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,112 837 731 467 454 Nonhydrocarbon Gases Removed .....................