Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Biomass IBR Fact Sheet: Gas Technology Institute  

Broader source: Energy.gov [DOE]

Gas Technology Institute will conduct research and development on hydropyrolysis and hydroconversion processes to make gasoline and diesel.

2

Gas Technology Institute (Partnership for Advanced Residential Retrofit) |  

Open Energy Info (EERE)

Technology Institute (Partnership for Advanced Residential Retrofit) Technology Institute (Partnership for Advanced Residential Retrofit) Jump to: navigation, search Name Gas Technology Institute Place Des Plaines, IL Website http://www.gastechnology.org/ Coordinates 42.0333623°, -87.8833991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0333623,"lon":-87.8833991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

California Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California Institute of Technology o Ivan Celanovic, Principal Research Scientist, Massachusetts Institute of Technology o Geoffrey Kinsey, Director, Photovoltaic...

4

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

5

Flexible CHP System with Low NOx, CO, and VOC Emissions- Presentation by the Gas Technology Institute (GTI), June 2011  

Broader source: Energy.gov [DOE]

Presentation on Flexible CHP System with Low NOx, CO, and VOC Emissions, given by David Cygan of the Gas Technology Institute, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

6

Massachusetts Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

132011 Teppei Katori, MIT 1 Teppei Katori for MiniBooNE collaboration Massachusetts Institute of Technology Short baseline neutrino workshop, Fermilab, Batavia, IL, May 13, 2011...

7

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

8

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

9

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

10

Tokyo Institute of Technology Tokyo Institute of Technology  

E-Print Network [OSTI]

Tokyo Institute of Technology 2004 #12; Tokyo Institute of Technology k O(n-k/2) (Efron et al 1996) 2O(B) (Shimodaira 2002, 2004) O(B) #12; Tokyo Institute of Technology of Technology 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 23 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 23 4 5 1 2 3 4 5

Shimodaira, Hidetoshi

11

The Institutes of Technology [as amended by Institutes of Technology,] (Amendment, Act, 1963.  

E-Print Network [OSTI]

The Institutes of Technology Act, 1961 [as amended by Institutes of Technology,] (Amendment, Act, 1963.] Indian Institute of Technology, Powai, Bombay ­ 400 076 #12;THE INSTITUTES OF TECHNOLOGY ACT. THE SCHEDULE #12;THE INSTITUTES OF TECHNOLOGY, ACT, 1961 No. 59 of 1961 [as amended by Institutes of Technology

Sivalingam, Krishna M.

12

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

13

Small gas turbine technology  

Science Journals Connector (OSTI)

Small Gas Turbine Technology: Small gas turbine, in the power range up to 500 kW, requires a recuperated thermodynamic cycle to achieve an electrical efficiency of about 30%. This efficiency is the optimum, which is possible for a cycle pressure ratio of about 41. The cycle airflow is function of the power requirement. To increase the efficiency, in view to reduce the CO2 emission, it is mandatory to develop a more efficient thermodynamic cycle. Different thermodynamic cycles were examined and the final choice was made for an Intercooled, Recuperated cycle. The advantage of this cycle, for the same final electrical efficiency of about 35%, is the smaller cycle airflow, which is the most dimensional parameter for the important components as the heat exchanger recuperator and the combustion chamber. In parallel with the thermodynamic cycle it is necessary to develop the High Speed Alternator technology, integrated on the same shaft that the gas turbine rotating components, to achieve the constant efficiency at part loads, from 50% up to 100%, by the capacity to adjust the engine speed at the required load. To satisfy the stringent requirement in pollutant emissions of \\{NOx\\} and CO, the catalytic combustion system is the most efficient and this advance technology has to be proven. The major constraints for the small gas turbine technology development are the production cost and the maintenance cost of the unit. In the power range of 0500 kW the gas turbine technology is in competition with small reciprocating engines, which are produced in large quantity for automotive industry, at a very low production cost.

Andre Romier

2004-01-01T23:59:59.000Z

14

Landfill Gas Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector.

15

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

16

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

17

Institute of Technology Swiss Federal  

E-Print Network [OSTI]

Zurich Institute of Technology Swiss Federal Mathematics Applied Seminar for High Order Finite#12;nement near vertices Numerical Example: Energy Convergence for " = 10 3 and " = 10 6 eps3.eps 60. error in energy degrees of fredom Energy convergence on L-shaped domain:, s = 0.5, e = 0.001 L=0 L=2 L=4

Arnold, Anton

18

Utilization Technology Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Name Utilization Technology Institute Place Des Plaines, IL References Utilization Technology Institute[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Utilization Technology Institute is a company located in Des Plaines, IL. References ↑ "Utilization Technology Institute" Retrieved from "http://en.openei.org/w/index.php?title=Utilization_Technology_Institute&oldid=381738" Categories: Clean Energy Organizations Companies Organizations What links here Related changes

19

DOE Solar Decathlon: New York Institute of Technology: Instituting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New York Institute of Technology's solar house in its permanent location at the U.S. Merchant Marine Academy. New York Institute of Technology's solar house in its permanent location at the U.S. Merchant Marine Academy. Enlarge image Green Machine/Blue Space relies on a hydrogen fuel cell to convert and store energy collected by the house's photovoltaic system. (Courtesy of Kevin Rodgers/U.S. Merchant Marine Academy) Who: New York Institute of Technology What: Green Machine/ Blue Space Where: U.S. Merchant Marine Academy 300 Steamboat Road Kings Point, NY 11024 Map This House Public tours: Not available Solar Decathlon 2005 New York Institute of Technology: Instituting Technology New York Institute of Technology partnered with the U.S. Merchant Marine Academy to develop a solar-powered house for the U.S. Department of Energy Solar Decathlon 2005. The house, called Green Machine/Blue Space, was

20

STEVENS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING  

E-Print Network [OSTI]

, communications etc. I will present my work on the development of a new type of MEMS -power MEMS including micro-gas quarter-sized micro-gas-turbine-engine and rocket engine. In 2005, Dr. Sun joined the DepartmentSTEVENS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING Wednesday, May 17, 2006

Fisher, Frank

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Oil & Gas Technology Center | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Research Oil & Gas Technology Center GE Global Research Oil & Gas Technology Center Mark Little, SVP and chief technology officer for GE, and Eric Gebhardt, vice president...

22

Institute for Software Technology SWP Prdikatausdrcke  

E-Print Network [OSTI]

? TAFEL!! ACHTUNG: Für alle ` I(`,(x)¬eq(plus(x,1),y) )=T ist FALSCH!! 8Institute for Software Technology

23

Teppei Katori Massachusetts Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

092011 Teppei Katori, MIT 1 Teppei Katori Massachusetts Institute of Technology Phenomenology 2011 symposium (Pheno11), Madison, WI, May 9, 2011 Test of Lorentz and CPT violation...

24

Muroran Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

Institute of Technology Address: 27 1 Mizumoto cho Place: Muroran Zip: 050-8585 Region: Japan Sector: Marine and Hydrokinetic Phone Number: 81 143 46 5200 Website: http:...

25

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY TENDER DOCUMENT  

E-Print Network [OSTI]

, Indian Institute of Technology, Powai, Mumbai 400 076, for the following works at Solar Energy Centre, 191 INDIAN INSTITUTE OF TECHNOLOGY BOMBAY TENDER DOCUMENT TENDER REF. NO. 09MNRE001/WO ­ 03 For Supply, Fabrication, Erection and Commissioning of Piping for Solar Thermal Power Plant at Gwalpahari

Narayanan, H.

26

Illinois Institute of Technology International Center  

E-Print Network [OSTI]

: Transferring from the Illinois Institute of Technology to: Program Number of New School (ask InternationalIllinois Institute of Technology International Center 3201 S. State St. MTCC Room 203 Chicago, IL). Meet with an International Advisor at the International Center to discuss your intent to transfer

Heller, Barbara

27

National Institute of Standards and Technology  

E-Print Network [OSTI]

National Institute of Standards and Technology NIST Campus Gaithersburg, MD NET ZERO ENERGY Campus Gaithersburg, MD NET ZERO ENERGY RESIDENTIAL TEST FACILITY PROJECT: CONSULTANT: SHEET TITLE: SCALE Institute of Standards and Technology NIST Campus Gaithersburg, MD NET ZERO ENERGY RESIDENTIAL TEST FACILITY

28

Vehicle Technologies Office: Natural Gas Research | Department...  

Energy Savers [EERE]

Natural Gas Research Vehicle Technologies Office: Natural Gas Research Natural gas offers tremendous opportunities for reducing the use of petroleum in transportation. Medium and...

29

Gas to Liquid Technologies  

Science Journals Connector (OSTI)

The liquefaction energy required in a LNG plant typically has been reported as 912% of the heat energy in the natural gas, and 910% energy shrinkage is ... energy. LNG projects have a very high capital cost, in...

Marianna Asaro; Ronald M. Smith

2013-01-01T23:59:59.000Z

30

Indian Institute of Technology Kanpur Director's Office  

E-Print Network [OSTI]

Indian Institute of Technology Kanpur Director's Office Inauguration of "Autodesk Inc - IIT Kanpur, Government of India Date & Venue : October 12, 2007, 1600 Hrs, at Outreach Building Autodesk partners IIT at the Institute Kanpur, October 12, 2007: Autodesk Inc. (NASDAQ: ADSK), the world's leading design software

Srivastava, Kumar Vaibhav

31

Institute of Photo Electronic Thin Film Devices and Technology...  

Open Energy Info (EERE)

Institute of Photo Electronic Thin Film Devices and Technology of Nankai University Jump to: navigation, search Name: Institute of Photo-Electronic Thin Film Devices and Technology...

32

Green Technology Institute at UCLA | Open Energy Information  

Open Energy Info (EERE)

California-based institute to reduce America's dependence on foreign oil and developing energy efficient technologies. References: Green Technology Institute at UCLA1 This...

33

Lithium bromide chiller technology in gas processing  

SciTech Connect (OSTI)

Lithium Bromide (LiBr) Absorption Chillers have been in use for more than half a century, mainly in the commercial air conditioning industry. The Gas Research Institute and EnMark Natural Gas Company co-funded a field test to determine the viability of this commercial air conditioning technology in the gas industry. In 1991, a 10 MMCFC natural gas conditioning plant was constructed in Sherman, Texas. The plant was designed to use a standard, off-the-shelf chiller from Trane with a modified control scheme to maintain tight operating temperature parameters. The main objective was to obtain a 40 F dewpoint natural gas stream to meet pipeline sales specifications. Various testing performed over the past three years has proven that the chiller can be operated economically and on a continuous basis in an oilfield environment with minimal operation and maintenance costs. This paper will discuss how a LiBr absorption chiller operates, how the conditioning plant performed during testing, and what potential applications are available for LiBr chiller technology.

Huey, M.A.; Leppin, D.

1995-12-31T23:59:59.000Z

34

Southern California Smart Grid Symposium California Institute of TechnologyCalifornia Institute of Technology  

E-Print Network [OSTI]

Southern California Smart Grid Symposium California Institute of TechnologyCalifornia Institute Service in a Smart Grid World Hung po ChaoHung-po Chao Director, Market Strategy and Analysis October 13 of Technology Competitive Electricity Markets with Consumer Subscription Service in a SmartConsumer Subscription

35

Building Technologies Office: National Institute for Standards and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Institute for National Institute for Standards and Technology and Low-Global Warming Potential Refrigerants Research Project to someone by E-mail Share Building Technologies Office: National Institute for Standards and Technology and Low-Global Warming Potential Refrigerants Research Project on Facebook Tweet about Building Technologies Office: National Institute for Standards and Technology and Low-Global Warming Potential Refrigerants Research Project on Twitter Bookmark Building Technologies Office: National Institute for Standards and Technology and Low-Global Warming Potential Refrigerants Research Project on Google Bookmark Building Technologies Office: National Institute for Standards and Technology and Low-Global Warming Potential Refrigerants Research Project on Delicious

36

DOE Solar Decathlon: Stevens Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stevens Institute of Technology Stevens Institute of Technology Ecohabit www.stevens.edu/sd2013/ Ecohabit, the U.S. Department of Energy Solar Decathlon 2013 entry from Stevens Institute of Technology, addresses sustainability in all facets-from form, through construction, to the dynamics of its use. The house adapts to its occupants' needs and provides them with feedback on ways to reduce energy use to live more sustainably. Its L shape maximizes views of, and access to, the generous outdoor living space. Design Philosophy Ecohabit aims to redefine the relationship between a house and its occupants. Intelligent energy systems monitor the house, its occupants' behaviors, and regional climate information. In doing so, Ecohabit "cohabits" with its occupants-enabling house and user to learn from each

37

Stevens Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

Institute of Technology Institute of Technology Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Stevens Institute of Technology Address Davidson Laboratory, 711 Hudson Street Place Hoboken, New Jersey Zip 07030 Sector Hydro Phone number (201) 216-5290 Website http://www.stevens.edu/ses/cms Coordinates 40.7446881°, -74.0275829° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7446881,"lon":-74.0275829,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Massachusetts Institute of Technology Hydrodynamics | Open Energy  

Open Energy Info (EERE)

Massachusetts Institute of Technology Hydrodynamics Massachusetts Institute of Technology Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Massachusetts Institute of Technology Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Sector Hydro Phone number (617) 254-4348 Website http://web.mit.edu/towtank/www Coordinates 42.3597807°, -71.0936091° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3597807,"lon":-71.0936091,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

Advanced Natural Gas Engine Technology for Heavy Duty Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Natural gas engine technology has evolved to meet the...

40

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

Technology Research Institute Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name Industrial Technology Research Institute Address Rm. 112, Bldg. 24, 195, Sec. 4, Chung Hsing Rd., Place Chutung, Hsinchu Zip 31040 Country Taiwan Sector Marine and Hydrokinetic Company Type Non Profit Technology Point absorber Project ITRI WEC Phone number +886-3-5918579 Website http://www.itri.org.tw Coordinates 24.776467696266°, 121.04182720184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.776467696266,"lon":121.04182720184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas-Fired Distributed Energy Resource Technology Characterizations  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

2003-11-01T23:59:59.000Z

42

Illinois Institute of Technology Housing & Residential Services  

E-Print Network [OSTI]

Illinois Institute of Technology Housing & Residential Services Student Guide to 20102011 & assemble beds, etc); · Remove posters, paper, tape, sticky tack, etc from all surfaces; · Wipe clean all walls and furniture; · If living in an apartment, wipe clean the kitchen appliances, cabinets

Heller, Barbara

43

ILLINOIS INSTITUTE OF TECHNOLOGY MATH 119 -01  

E-Print Network [OSTI]

ILLINOIS INSTITUTE OF TECHNOLOGY FALL 2012 MATH 119 - 01 GEOMETRY FOR ARCHITECTS INSTRUCTOR Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 ­ 8.5 Circles, Spheres, 3-Dimensional Coordinate Systems & Solar Geometry: Radian Measure, Arc distances between points on a sphere, the angle at which solar radiation reaches the surface of the Earth

Heller, Barbara

44

ILLINOIS INSTITUTE OF TECHNOLOGY SAFETY COMMITTEE  

E-Print Network [OSTI]

or that is inconsistent with generally accepted safe work practices. 3.5. Notice of Non-Compliance (Safety) - A written or other generally accepted safe work practice. 3.6. Pre-Construction Safety Meeting ChecklistILLINOIS INSTITUTE OF TECHNOLOGY SAFETY COMMITTEE Contractor Safety Approved October 10, 2005

Heller, Barbara

45

ILLINOIS INSTITUTE OF TECHNOLOGY COLLEGE OF ARCHITECTURE  

E-Print Network [OSTI]

ILLINOIS INSTITUTE OF TECHNOLOGY COLLEGE OF ARCHITECTURE ARCH 423: ARCHITECTURAL PROGRAMMING assignments and their due dates will be announced.. They will be graded down if turned in late. 6 No computers Research material on Architectural Programming is on reserve in the Graham Resource Center. A listing

Heller, Barbara

46

Articulated Swimming Creatures Georgia Institute of Technology  

E-Print Network [OSTI]

to swim straight and stay within a given energy budget. Our creatures can perform path following by firstArticulated Swimming Creatures Jie Tan Georgia Institute of Technology Yuting Gu Greg Turk Georgia to creating realistic swimming be- havior for a given articulated creature body. The two main com- ponents

Turk, Greg

47

Massachusetts Institute of Technology Department of Nuclear Engineering  

E-Print Network [OSTI]

Massachusetts Institute of Technology Department of Nuclear Engineering Advanced Reactor Technology of Technology Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-2 Student Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-3 Project Objective

48

Greenhouse Gas Management Institute (GHGMI) | Open Energy Information  

Open Energy Info (EERE)

Institute (GHGMI) Institute (GHGMI) Jump to: navigation, search Logo: Greenhouse Gas Management Institute (GHGMI) Name Greenhouse Gas Management Institute (GHGMI) Address Washington, D.C. Place Washington, District of Columbia Phone number 1-888-778-1972 Website http://ghginstitute.org/housek References http://ghginstitute.org/housekeeping/contact-us/ No information has been entered for this organization. Add Organization The Greenhouse Gas Management Institute (GHGMI) was founded in response to the growing demand for qualified greenhouse gas (GHG) professionals. Just as engineering and financial accounting rely on certified professionals, GHG emissions management requires a highly competent and ethical professional class to undertake measurement, reporting, auditing, and

49

VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology  

E-Print Network [OSTI]

VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology FY 2006 Annual Report U.S. Department of Commerce Technology Administration National Institute of Standards and Technology #12;VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology

50

Energy Technologies Institute ETI | Open Energy Information  

Open Energy Info (EERE)

Energy Technologies Institute ETI Energy Technologies Institute ETI Jump to: navigation, search Name Energy Technologies Institute (ETI) Place London, Greater London, United Kingdom Zip Sw1H 0ET Sector Efficiency, Renewable Energy Product A public-private JV (50:50), R&D partnership that will focus on research into renewable energies, energy security and energy efficiency. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Sandia National Laboratories: oil and gas technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industriell og teknisk forskning) will now tackle energy challenges such as renewable-energy integration, grid modernization, gas technologies, and algae-based biofuels. SINTEF is...

52

Oregon Institute of Technology Snowmelt Low Temperature Geothermal...  

Open Energy Info (EERE)

of Technology Snowmelt Low Temperature Geothermal Facility Facility Oregon Institute of Technology Sector Geothermal energy Type Snowmelt Location Klamath Falls, Oregon...

53

NANOTECHNOLOGY GRADUATE PROGRAM SEMINAR SERIES STEVENS INSTITUTE OF TECHNOLOGY  

E-Print Network [OSTI]

NANOTECHNOLOGY GRADUATE PROGRAM SEMINAR SERIES STEVENS INSTITUTE OF TECHNOLOGY NANOTECHNOLOGY and Engineering Drexel University Nanofiber technology is a branch of nanotechnology that concerns the processing

Fisher, Frank

54

Massachusetts Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Name Massachusetts Institute of Technology Place Cambridge, Massachusetts Region Greater Boston Area Coordinates 42.3726399°, -71.1096528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3726399,"lon":-71.1096528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

AT ILLINOIS INSTITUTE OF TECHNOLOGY WHAT IS THE  

E-Print Network [OSTI]

IIT BOEING SCHOLARS ACADEMY AT ILLINOIS INSTITUTE OF TECHNOLOGY WHAT IS THE ILLINOIS INSTITUTE OF TECHNOLOGY (IIT) BOEING SCHOLARS ACADEMY? The Illinois Institute of Technology (IIT) Boeing Scholars Academy; and leadership skills training and student grant competitions. Founded in 2011, the IIT Boeing Scholars Academy

Saniie, Jafar

56

Novel Surface Architecture Synthesis for Gas Separation and Fuel-Cell Catalyst Applications James Guthrie, Georgia Institute of Technology, SURF 2010 Fellow  

E-Print Network [OSTI]

Novel Surface Architecture Synthesis for Gas Separation and Fuel-Cell Catalyst Applications James-shell nanoparticle, Pt was deposited onto a flat surface substrate. Three separate substrates were used, Au(111 not significantly change over different voltages [3]. STM work was done using electrochemically etched tungsten tips

Li, Mo

57

Princeton Plasma Physics Lab - Massachusetts Institute of Technology (MIT)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

massachusetts-institute-technology-mit massachusetts-institute-technology-mit Massachusetts Institute of Technology (MIT) en Applying physics, teamwork to fusion energy science http://www.pppl.gov/node/1410

American Fusion News Category: 
58

Clean Cities: Natural Gas Vehicle Technology Forum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forum Forum Natural Gas Vehicle Technology Form (NGVTF) logo The Natural Gas Vehicle Technology Forum (NGVTF) supports development and deployment of commercially competitive natural gas engines, vehicles, and infrastructure. Learn about NGVTF's purpose, activities, meetings, stakeholders, steering committee, and webinars. Purpose Led by the National Renewable Energy Laboratory in partnership with the U.S. Department of Energy and the California Energy Commission, NGVTF unites a diverse group of stakeholders to: Share information and resources Identify natural gas engine, vehicle, and infrastructure technology targets Facilitate government-industry research, development, demonstration, and deployment (RDD&D) to achieve targets Communicate high-priority needs of natural gas vehicle end users to natural gas equipment and vehicle manufacturers

59

Natural gas pipeline technology overview.  

SciTech Connect (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

60

GEORGIA INSTITUTE OF TECHNOLOGY ENVIRONMENTAL HEALTH AND SAFETY POLICY  

E-Print Network [OSTI]

and safety hazards, and encourage the reporting of hazards and safety-related incidents; work cooperativelyGEORGIA INSTITUTE OF TECHNOLOGY ENVIRONMENTAL HEALTH AND SAFETY POLICY Ratified by the Institute Council on Environmental Health and Safety August 2008 POLICY Georgia Institute of Technology (Georgia

Das, Suman

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY POWAI, MUMBAI 400 076  

E-Print Network [OSTI]

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY POWAI, MUMBAI ­ 400 076 Advertisement No. G-28/2011-12 Indian Institute of Technology, Bombay, an Institute of National importance, is looking for suitable person and requisite experience in one or more of the following areas : Accounting, Auditing and financial procedures

Narayanan, H.

62

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY POWAI, MUMBAI 400 076  

E-Print Network [OSTI]

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY POWAI, MUMBAI ­ 400 076 Advertisement No. H-12/2012-13 Indian Institute of Technology, Bombay, an Institute of National importance, is looking for suitable persons of the following areas : Accounting, Auditing and financial procedures OR Administrative matters including legal

Narayanan, H.

63

Vehicle Technologies Office: Natural Gas Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Research Natural Gas Research Natural gas offers tremendous opportunities for reducing the use of petroleum in transportation. Medium and heavy-duty fleets, which have significant potential to use natural gas, currently consume more than a third of the petroleum in transportation in the U.S. Natural gas is an excellent fit for a wide range of heavy-duty applications, especially transit buses, refuse haulers, and Class 8 long-haul or delivery trucks. In addition, natural gas can be a very good choice for light-duty vehicle fleets with central refueling. See the Alternative Fuels Data Center for a description of the uses and benefits of natural gas vehicles or its Laws and Incentives database for information on tax incentives. The Vehicle Technologies Office (VTO) supports the development of natural gas engines and research into renewable natural gas production.

64

Federal Energy Management Program: Landfill Gas Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Landfill Gas Landfill Gas Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Landfill Gas Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Landfill Gas Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Google Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Delicious Rank Federal Energy Management Program: Landfill Gas Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Landfill Gas Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

65

IS C O N SIN FUSION TECHNOLOGY INSTITUTE  

E-Print Network [OSTI]

W IS C O N SIN · FUSION·T E CHNOLOGY · INSTITUTE FUSION TECHNOLOGY INSTITUTE UNIVERSITY at the 6th International Symposium on Fusion Nuclear Technology, 7­12 April 2002, San Diego CA #12 Wall Chamber L.A. El-Guebaly, D.L. Henderson, P.P.H. Wilson, A.E. Abdou, ARIES Team Fusion Technology

66

Technological Institute of Renewable Energy ITER | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy ITER Renewable Energy ITER Jump to: navigation, search Name Technological Institute of Renewable Energy (ITER) Place Santa Cruz de Tenerife, Spain Zip 38611 Sector Solar, Wind energy Product Spain-based, technological research and development institute focused on the solar and wind sectors. References Technological Institute of Renewable Energy (ITER)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Technological Institute of Renewable Energy (ITER) is a company located in Santa Cruz de Tenerife, Spain . References ↑ "Technological Institute of Renewable Energy (ITER)" Retrieved from "http://en.openei.org/w/index.php?title=Technological_Institute_of_Renewable_Energy_ITER&oldid=352069

67

Natural Gas Vehicle Webinar: Technology, Best Strategies, and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Vehicle Webinar: Technology, Best Strategies, and Lessons Learned Natural Gas Vehicle Webinar: Technology, Best Strategies, and Lessons Learned November 20, 2014...

68

DOE Announces Webinars on Natural Gas for Biomass Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas for Biomass Technologies, Additive Manufacturing for Fuel Cells, and More DOE Announces Webinars on Natural Gas for Biomass Technologies, Additive Manufacturing for...

69

VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology  

E-Print Network [OSTI]

VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology 2007 Annual Report Visiting Committee on Advanced Technology of the National Institute of Standards and Technology U.S. Department of Commerce March 3, 2008 #12;VISITING COMMITTEE ON ADVANCED TECHNOLOGY National

70

Oregon Institute of Technology District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility...

71

New Jersey Institute of Technology Center for Building Knowledge...  

Open Energy Info (EERE)

Building Knowledge Jump to: navigation, search Name: New Jersey Institute of Technology Center for Building Knowledge Place: University Heights Newark, NJ Information About...

72

Workplace Charging Challenge Partner: Georgia Institute of Technology...  

Broader source: Energy.gov (indexed) [DOE]

Institute of Technology is a leader in innovation and is committed to practicing sustainability. Georgia Tech's Parking and Transportation Services office is renowned for its...

73

INDIAN INSTITUTE OF TECHNOLOGY HAUZ KHAS, NEW DELHI-110016.  

E-Print Network [OSTI]

INDIAN INSTITUTE OF TECHNOLOGY HAUZ KHAS, NEW DELHI-110016. APPLICATION FOR LTC ADVANCE 1. Name or pending Settlement date of settlement of the Previous case. 11. Place of visit (farthest point) #12. Head of Dept./Centers/Units Asstt. Registrar, E-I, E-II, E-III #12;INDIAN INSTITUTE OF TECHNOLOGY

Kumar, M. Jagadesh

74

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY POWAI, MUMBAI 400 076  

E-Print Network [OSTI]

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY POWAI, MUMBAI ­ 400 076 ADVT. NO. G-11/11-12 IIT Bombay) ------------------------------------------------------------------------------------------------------------------------------------------------- #12;INDIAN INSTITUTE OF TECHNOLOGY BOMBAY SEGMENT ­ 1 (separate envelope) FIXED RATES FOR DROPPING: (Starting Point: IIT Bombay) No. To Drop at Rates for (AC) Vehicles in ` Indica Indigo Logan Scorpio Tavera

Narayanan, H.

75

Institute for Software Technology Model-Based Testing  

E-Print Network [OSTI]

t Institute for Software Technology Model-Based Testing Ausgewählte Kapitel Softwaretechnologie 2 2013/14 B.K. Aichernig Model-Based Testing 1 / 38 #12;t Institute for Software Technology Testing Testing: checking or measuring some quality characteristics of an executing system by performing

76

Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas and Natural Gas and Hydrogen Infrastructure Opportunities Workshop to someone by E-mail Share Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Facebook Tweet about Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Twitter Bookmark Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Google Bookmark Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Delicious Rank Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Digg Find More places to share Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on AddThis.com...

77

Indian Institute of Technology IIT Madras | Open Energy Information  

Open Energy Info (EERE)

IIT Madras IIT Madras Jump to: navigation, search Name Indian Institute of Technology(IIT Madras) Place Chennai, Tamil Nadu, India Zip 600 036 Sector Biomass, Renewable Energy, Solar Product The mechanical engineering department is heavily focused on the different types of renewable energy, such as fuel cells, biomass and solar power. References Indian Institute of Technology(IIT Madras)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Indian Institute of Technology(IIT Madras) is a company located in Chennai, Tamil Nadu, India . References ↑ "Indian Institute of Technology(IIT Madras)" Retrieved from "http://en.openei.org/w/index.php?title=Indian_Institute_of_Technology_IIT_Madras&oldid=346853

78

Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technology Forum Vehicle Technology Forum Leadership Committee Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership

79

Natural Gas Technologies Center | Open Energy Information  

Open Energy Info (EERE)

Technologies Center Technologies Center Jump to: navigation, search Logo: Natural Gas Technologies Center Name Natural Gas Technologies Center Address 1350, Nobel, Boucherville, Quebec, Canada Place Montreal, Quebec Zip J4B 5H3 Number of employees 11-50 Year founded 1992 Phone number 1.450.449.4774 Coordinates 45.5678623°, -73.4186892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5678623,"lon":-73.4186892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

80

Institute for Software Technology Compilerbau (1 KU)  

E-Print Network [OSTI]

Aufgabenblätter · Abgabeboxg · 5 Bonuspunkte für das Vorrechnen an der Tafel · Deckblatt: 3 Compilerbau KU 2012 #12;Institute

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Oil & Natural Gas Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May -October, 2009 May -October, 2009 Submitted by: Rice University, University of Texas, and Oklahoma State University George J. Hirasaki and Walter Chapman, Chemical and Biomolecular Engineering Gerald R. Dickens, Colin A. Zelt, and Brandon E. Dugan, Earth Science Kishore K. Mohanty, University of Texas Priyank Jaiswal, Oklahoma State University November, 2009 DOE Award No.: DE-FC26-06NT42960 John Terneus, Program Officer Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory Office of Fossil Energy 2 Table of Contents Disclaimer .......................................................................................................... 3

82

INDIAN INSTITUTE OF TECHNOLOGY, INDORE INFORMATION SHEET  

E-Print Network [OSTI]

is the custodian of records, the common seal and funds of the Institute. The Registrar is the ex-officio Secretary will be reimbursed air fare by Economy class (By Air India only) to the Institute and back by the shortest route

Narayanan, H.

83

PROGRAM OPPORTUNITY NOTICE Building Natural Gas Technology (BNGT) Grant  

E-Print Network [OSTI]

PROGRAM OPPORTUNITY NOTICE Building Natural Gas Technology (BNGT) Grant Program PON-13-503 http ............................................................................................................................5 PIER NATURAL GAS RESEARCH PROGRAM

84

DOE - Office of Legacy Management -- California Institute of Technology -  

Office of Legacy Management (LM)

California Institute of Technology California Institute of Technology - CA 04 FUSRAP Considered Sites Site: California Institute of Technology (CA.04 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Pasadena , California CA.04-1 Evaluation Year: 1989 CA.04-1 Site Operations: Research and development. CA.04-3 Site Disposition: Eliminated - NRC licensed facility CA.04-1 CA.04-3 Radioactive Materials Handled: None indicated Primary Radioactive Materials Handled: No Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to California Institute of Technology CA.04-1 - DOE Letter; Wallo to Carwell; Subject: List of California Sites; May 17, 1989 CA.04-3 - Aerospace Letter; Young to Wallo; Subject: Elimination

85

INDIAN INSTITUTE OF TECHNOLOGY MADRAS CHENNAI-600 036, INDIA  

E-Print Network [OSTI]

1/2 Acad10 INDIAN INSTITUTE OF TECHNOLOGY MADRAS CHENNAI-600 036, INDIA ACADEMIC SECTION B of the first semester (Grade point Average) [excluding the CY103 Chemistry Lab. Course] will be the basis

Sivalingam, Krishna M.

86

EcoCAR Challenge Georgia Institute of Technology  

E-Print Network [OSTI]

EcoCAR Challenge Georgia Institute of Technology Outreach Report Date: 11/09/2010 #12;11/9/2010 2 plan on leveraging our media contacts, GM sponsors, and Atlanta Clean Cities sponsors to potentially

Houston, Paul L.

87

Eidgenssische Technische Hochschule Zrich Swiss Federal Institute of Technology Zurich  

E-Print Network [OSTI]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Institut und -optimierungen an Werkzeugmaschinen Methods and tools for energy consumption and environmental Werkzeugmaschinen und Fertigungseinrichtungen Leitung: Prof. K. Wegener, IWF, ETH Dr. R. Züst, Züst Engineering AG

Daraio, Chiara

88

SETS, March 2006Institute of Electrical Engineering and Information Technology  

E-Print Network [OSTI]

Motivation Shrinking feature size Aging effects · Electron/thermal migration · Dielectric breakdownSETS, March 2006Institute of Electrical Engineering and Information Technology Alg. & Tools Ibers, Marc Hunger, Michael Schnittger Alg. & Tools for Test & Diagnosis 2 Institute of Electrical

Hellebrand, Sybille

89

Danish Technological Institute | Open Energy Information  

Open Energy Info (EERE)

Product: DTI develops, applies and disseminates research- and technologically-based knowledge for the Danish and International business sector. It also we carries out consultancy...

90

Asian Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

world-class learning through its three degree-granting units, namely the School of Engineering and Technology (SET), the School of Environment, Resources & Development, and...

91

TECHNOLOGY INNOVATION PROGRAM National Institute of Standards and Technology  

E-Print Network [OSTI]

Sensing Technologies and Advanced Repair Materials for the Infrastructure: Water Systems, Dams, Levees, Bridges, Roads, and Highways". The expanded scope included new technologies for repair and retrofit of bridges, buildings, pipelines and other major infrastructure components. [2008] · Distributed Sensor

Magee, Joseph W.

92

NETL: Oil and Natural Gas: Deepwater Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deepwater Technology Deepwater Technology Research Project Summaries Reference Shelf O&G Document Archive Deepwater (and Ultra-Deepwater, 5000 feet of water depth and beyond) is recognized as one of the last remaining areas of the world were oil and natural gas resources remain to be discovered and produced. The architecture of the systems employed to cost-effectively develop these resources in an environmentally safe manner, reflect some of industry’s most advanced engineering accomplishments. NETL is funding research to catalyze further advances that can help Gulf of Mexico discoveries progress to production quickly and safely, and that can help maximize oil and gas recovery from fields that are currently at the edge of industry capabilities. Many of these efforts are focused on subsea production

93

Gas Reactor Technology R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy to Invest U.S. Department of Energy to Invest up to $7.3 Million for "Deep-Burn" Gas-Reactor Technology R&D Artist's rendering of Nuclear Plant An artist's rendering of the Next Generation Nuclear Plant concept. The U.S. Department of Energy today announced a Funding Opportunity Announcement (FOA) valued at $7.3 million for universities, commercial entities, National Laboratories with expertise in the concept of nuclear fuel "Deep-Burn" in which plutonium and higher transuranics recycled from spent nuclear fuel are destroyed. The funding opportunity seeks to establish the technological foundations that will support the role of the very-high-temperature, gas-cooled reactor (VHTR) in the nuclear fuel cycle -- which is one of the prototype reactors being researched/developed under

94

MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY  

E-Print Network [OSTI]

. Additional support is provided by: AT&T, Central Research Institute of Electric Power In­ dustry, Eastman Understanding how biological visual systems perform object recognition is one of the ultimate goals, 2000 This report describes research done within the Center for Biological and Computational Learning

Poggio, Tomaso

95

MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY  

E-Print Network [OSTI]

. Additional support is provided by: AT&T, Central Research Institute of Electric Power In- dustry, Eastman Understanding how biological visual systems perform object recognition is one of the ultimate goals This report describes research done within the Center for Biological and Computational Learning

Poggio, Tomaso

96

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

97

West Virginia University Institute of Technology Curriculum Matrix  

E-Print Network [OSTI]

on Title Below Contents College of Business, Humanities, and Social Sciences Leonard C. Nelson College of Engineering and Sciences Minors List Certificates List #12;West Virginia University Institute of Technology ET01 inactive effective Summer 2014. Information Technology ET02 Bachelor of Applied Science BAS 24

Mohaghegh, Shahab

98

Promising technology for recovery and use of liquefied natural gas  

Science Journals Connector (OSTI)

Use of liquefied natural gas is proposed as an alternative to motor fuel. Technology for recovering liquid natural gas based on the principle of internal gas cooling in a turbo-expander, and the equipment require...

E. B. Fedorova; V. V. Fedorov; A. D. Shakhov

2009-03-01T23:59:59.000Z

99

Indian Institute of Technology, Faculty Members -Profiles  

E-Print Network [OSTI]

and Combustion Optical Flow Diagnostics AEROSPACE PROPULTION: Rocket Propulsion and Solid Propellant Combustion://www.ae.iitm.ac.in/people/faculty/chakravarthy.html Combustion instability in gas turbines/ramjets/rockets: experiments & computations, laminar and turbulent-aluminium production and combustion, solid propellant combustion, solid rocket combustion instability Coordinator

Krishnapura, Nagendra

100

Prediction of Combustion Stability and Flashback in Turbines with High-Hydrogen Fuel - Georgia Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prediction of Combustion Stability Prediction of Combustion Stability and Flashback in Turbines with High- Hydrogen Fuel-Georgia Institute of Technology Background Georgia Institute of Technology (Georgia Tech), in collaboration with Pennsylvania State University and gas turbine manufacturers, is conducting research to improve the state-of-the-art in understanding and modeling combustion instabilities, one of the most critical problems associated with burning high-hydrogen content (HHC) fuels in

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Oil & Natural Gas Technology DOE Award No.: DE-NT0005227 Final Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-NT0005227 Final Report Membrane Technology for Produced Water in Lea County Submitted by: Lea County Government 100 N. Main Lovington, NM 88260 And New Mexico Institute of Mining and Technology 801 Leroy Place Socorro, NM 87801 Report Authors: Cecilia E. Nelson, Principal Investigator Lea County Government and Ashok Kumar Ghosh, Ph.D., P.E. Principal Researcher, New Mexico Institute of Mining and Technology Prepared for: United States Department of Energy National Energy Technology Laboratory Office of Fossil Energy Report Date: September 20, 2011 Reporting Period: October 1, 2008 - June 30, 2011 2 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

102

Carnegie Mellon University CARNEGIE INSTITUTE OF TECHNOLOGY  

E-Print Network [OSTI]

horizons, the technical constraints within the system and the environmental impacts of each technology of process level data, Economic Input-Output Life Cycle Assessment (EIOLCA) and the Integrated Environmental Control Model (IECM) quantify a range of potential impacts for new power plants. This method provides

103

INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION  

E-Print Network [OSTI]

LABORATORY C. Housiadas Dynamic Reliability of Complex System & Decision Analysis I.A. Papazoglou Laboratory: Research, Development and Services *reports to the Director of the Centre REACTOR SAFETY RADIATION PROTECTION HEALTH & PHYSICS OF THE REACTOR F.Tzika SUPPORT TO GAEC A.G. Youtsos TECHNOLOGICAL

104

Carnegie Mellon University CARNEGIE INSTITUTE OF TECHNOLOGY  

E-Print Network [OSTI]

supported by the U.S. Department of Energy's National Energy Technology Laboratory. For their advice and Energy Decision Making (CEDM) center, created through a cooperative agreement between the National and helpful conversations over the course of my research I would like to thank my fellow students, including

105

massachusetts institute of technology your Door to  

E-Print Network [OSTI]

,200 | 1.5 ceus Overview of principles and technologies of continuous synthesis and purification of small and Purification of Pharmaceuticals and Fine Chemicals lead instructors: T. Jamison, K. Jensen July 8-10, 2013 | $2 between continuous or batch methods for a particular problem, automation, and scale-up strategies

Jackson, Daniel

106

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compressed Natural Gas Compressed Natural Gas and Hydrogen Fuels Workshop to someone by E-mail Share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Facebook Tweet about Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Twitter Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Google Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Delicious Rank Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Digg Find More places to share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications

107

Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Meeting to someone by E-mail 1 Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

108

Oil & Natural Gas Projects Exploration and Production Technologies | Open  

Open Energy Info (EERE)

Oil & Natural Gas Projects Exploration and Production Technologies Oil & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration and Production Technologies Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Oil & Natural Gas Projects Exploration and Production Technologies Citation U.S. Department of Energy. Oil & Natural Gas Projects Exploration and Production Technologies [Internet]. [cited 2013/10/15]. Available from: http://www.netl.doe.gov/technologies/oil-gas/Petroleum/projects/EP/Explor_Tech/P225.htm Retrieved from "http://en.openei.org/w/index.php?title=Oil_%26_Natural_Gas_Projects_Exploration_and_Production_Technologies&oldid=688583

109

Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Meeting to someone by E-mail 2 Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

110

Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Printable Version Share this resource Send a link to Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program

111

Bob Jaffe, Massachusetts Institute of Technology, Insights from the Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bob Jaffe, Massachusetts Institute of Technology, Insights from the Bob Jaffe, Massachusetts Institute of Technology, Insights from the Energy Critical Elements Policy Study by the American Physical Society and Material Research Society Bob Jaffe, Massachusetts Institute of Technology, Insights from the Energy Critical Elements Policy Study by the American Physical Society and Material Research Society Session_A5_Jaffe_MIT.pdf More Documents & Publications Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Steve Duclos, Chief Scientist, GE Global Research, Research Priorities for More Efficient Use of Critical Materials from a U.S. Corporate Perspective Michael Heine, SGL Group - The Carbon Company, Carbon Fibers in Lightweight Systems for Wind Energy and Automotive Applications: Availability and

112

Secretary Chu's Remarks at the California Institute of Technology  

Broader source: Energy.gov (indexed) [DOE]

the California Institute of Technology the California Institute of Technology Commencement - As Prepared for Delivery Secretary Chu's Remarks at the California Institute of Technology Commencement - As Prepared for Delivery June 12, 2009 - 12:00am Addthis Before I begin, I want to offer my deepest condolences to the family and friends of Brian Go and Jackson Wang and to the entire Caltech community. Tragedies like this touch us all. President Chameau, trustees, faculty, friends, family, and especially the new graduates, I am deeply honored to be your commencement speaker. To the Class of 2009, let me congratulate you on your achievement. You should be proud of the fact that you survived many shocks and are here today. The first shock might have been the discovery your freshman year that you are not alone: child prodigies are everywhere. Take pride in the

113

Sarah E. Reisman Division of Chemistry and Chemical Engineering California Institute of Technology  

E-Print Network [OSTI]

Sarah E. Reisman Division of Chemistry and Chemical Engineering · California Institute of Chemistry & Chemical Engineering California Institute of Technology, Pasadena, CA. 2008-2014 Assistant Professor of Chemistry Division of Chemistry & Chemical Engineering California Institute of Technology

Stoltz, Brian M.

114

Institutional  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

institutional Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology & Innovation...

115

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY  

E-Print Network [OSTI]

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES · UNIVERSITY THURSDAY SATURDAYFRIDAYWEDNESDAYTUESDAY TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES's to another year of working safer and smarter. Laura Melendy Director, Technology Transfer Program #12;AUGUST

California at Berkeley, University of

116

Kumasi Institute of Technology and Environment (KITE) | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Kumasi Institute of Technology and Environment (KITE) (Redirected from Kumasi Institute of Technology and Environment) Jump to: navigation, search Logo: Kumasi Institute of Technology Energy and Environment Name Kumasi Institute of Technology Energy and Environment Address P. O. Box AT 720, Achimota, Accra, Ghana. Place Ghana Number of employees 11-50 Year founded 1996 Phone number +233-302-256800-01 Coordinates 5.555717°, -0.196306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":5.555717,"lon":-0.196306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

COST SHARING ON SPONSORED PROJECTS California Institute of Technology  

E-Print Network [OSTI]

COST SHARING ON SPONSORED PROJECTS California Institute of Technology Pasadena, California 1 of 4 7/14/2004 Issuing Authority: Office of Financial Services Effective Date: October 1, 2003 Definitions: Cost sharing is that portion of the total cost of a research or other externally funded project that is not funded

Goddard III, William A.

118

COST TRANSFERS TO FEDERALLY FUNDED AWARDS California Institute of Technology  

E-Print Network [OSTI]

COST TRANSFERS TO FEDERALLY FUNDED AWARDS California Institute of Technology Pasadena, California 7: A cost transfer is an after-the-fact transfer of costs (labor or non-labor) from a sponsored or non- sponsored award to a federally funded award. Ideally, all costs should be charged to the appropriate federal

119

Indian Institute of Technology Madras Department of Engineering Design  

E-Print Network [OSTI]

Indian Institute of Technology Madras Department of Engineering Design ED 4030 ­ FE methods using Finite Differencing approach and compare it with the actual solution for atleast 5 points. 2) Strain at a point is such that xx = yy = 0, zz = 0.001, xy = 0.006, and xz = yz = 0. (a) Show that n1 = i

Ramu, Palaniappan

120

Updated October 24, 2011 Illinois Institute of Technology  

E-Print Network [OSTI]

Updated October 24, 2011 Illinois Institute of Technology Housing & Residential Services Student posters, paper, tape, sticky tack, etc from all surfaces; · Wipe clean all walls and furniture; · If living in an apartment, wipe clean the kitchen appliances, cabinets, and floor; and clean the bathroom

Heller, Barbara

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Updated March 12, 2012 Illinois Institute of Technology  

E-Print Network [OSTI]

Updated March 12, 2012 Illinois Institute of Technology Housing & Residential Services Student posters, paper, tape, sticky tack, etc from all surfaces; · Wipe clean all walls and furniture; · If living in an apartment, wipe clean the kitchen appliances, cabinets, and floor; and clean the bathroom

Heller, Barbara

122

Updated September 26, 2013 Illinois Institute of Technology  

E-Print Network [OSTI]

Updated September 26, 2013 Illinois Institute of Technology Housing & Residential Services Student beds, etc); · Remove posters, paper, tape, sticky tack, etc from all surfaces; · Wipe clean all walls and furniture; · If living in an apartment, wipe clean the kitchen appliances, cabinets, and floor; and clean

Heller, Barbara

123

Illinois Institute of Technology 3300 S. Federal St.  

E-Print Network [OSTI]

IIT Press Illinois Institute of Technology 3300 S. Federal St. Main Building 301 Chicago, IL 60616 Dissertation Printing Form Student's Signature Date Advisor's Signature Date Graduate College Approval Date r Dissertation to be printed exactly as approved by the thesis committee and the thesis defense examiner. r

Heller, Barbara

124

ACCELERATED LAW PROGRAM Stevens Institute of Technology offers a  

E-Print Network [OSTI]

ACCELERATED LAW PROGRAM Stevens Institute of Technology offers a six-year combined Bachelor's/J.D. degree program for students interested in pursuing the accelerated law option. After three years of study they attended. ADMISSION REQUIREMENTS In order to be considered for the Accelerated Law Program, students must

Yang, Eui-Hyeok

125

STEVENS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING  

E-Print Network [OSTI]

STEVENS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING Thursday December 9, 2010 Carnegie Room 315, Time 12:30pm Nanoscale Hydrodynamics and "Smart" Fluids: Manipulating Nanotubes/Nanowires in Fluid Flows with Electric Fields Professor Jerry Wei-Jen Shan Rutgers - The State University of New

Fisher, Frank

126

Shenzhen Institute of Nano Materials and Technology | Open Energy  

Open Energy Info (EERE)

Institute of Nano Materials and Technology Institute of Nano Materials and Technology Jump to: navigation, search Name Shenzhen Institute of Nano Materials and Technology Place Shenzhen, Guangdong Province, China Zip 518057 Sector Solar Product An institute of nano technology, which could be applied in DLC film coated solar cells (diamond solar cells). Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

DOE - Office of Legacy Management -- Massachusetts Institute of Technology  

Office of Legacy Management (LM)

Massachusetts Institute of Massachusetts Institute of Technology Hood Building - MA 01 FUSRAP Considered Sites Site: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, HOOD BUILDING (MA.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cambridge , Massachusetts MA.01-1 Evaluation Year: 1986 MA.01-2 Site Operations: Facility was acquired by the AEC and engaged in research and development activities involving research quantities of uranium, thorium and beryllium and other rare metals. Operations ceased by 1958, and the Hood Building decontaminated and demolished by August 1963. MA.01-2 MA.01-1 Site Disposition: Eliminated - Potential for contamination considered remote due to limited scope of activities and results of previous decontamination efforts MA.01-3

128

Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2005 Meeting and Presentations to someone by E-mail 2005 Meeting and Presentations to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative

129

Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 Meeting and Presentations to someone by E-mail 10 Meeting and Presentations to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative

130

TECHNION Israel Institute of Technology Faculty of Mechanical Engineering  

E-Print Network [OSTI]

of adiabatic calorimetry and IR spectroscopy methods for studying `cage' hydrocarbons will be described techniques for calculation of the heat capacity of mixing in the ideal gas state for organic compounds technology to decrease the temperature of the products of fuel combustion. Efforts in standardization

Rimon, Elon

131

Edwin R. Fuller, Jr., National Institute of Standards and Technology  

E-Print Network [OSTI]

and lifing of gas turbine parts Optimization of k during TBC material development Design of lower k TBC.S. Department of Energy, Office of Industrial Technologies, Project Officer, Patricia Hoffman, Advanced Turbine materials development used sparingly by turbine part designers typically not included in production

Fuller, Edwin R.

132

CENTRE FOR TECHNOLOGY ALTERNATIVES FOR RURAL AREAS INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY  

E-Print Network [OSTI]

water distribution system for a target region spanning 120 sq. km and covering 70 villages in rural grids for transporting water from the water source to one point in each village in multiple stages. From1 CENTRE FOR TECHNOLOGY ALTERNATIVES FOR RURAL AREAS INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY Piped

Sohoni, Milind

133

Institute of Energy Technolog y Section for Fluidmechanics and Combustion Technology  

E-Print Network [OSTI]

of generalized model for grate-combustion of biomass final repo rt #12;PS02002-4730 Development of generalized model for grate-combustion of biomass final repo rt Contents 1 Project overviewInstitute of Energy Technolog y Section for Fluidmechanics and Combustion Technology &.G UNIV~ ~ PS

134

Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site |  

Broader source: Energy.gov (indexed) [DOE]

Remote Gas Well Monitoring Technology Applied to Marcellus Shale Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site February 10, 2012 - 12:00pm Addthis Washington, DC - A technology to remotely monitor conditions at energy-rich Marcellus Shale gas wells to help insure compliance with environmental requirements has been developed through a research partnership funded by the U.S. Department of Energy (DOE). NETL-RUA researcher Dr. Michael McCawley hasdeveloped a technology to remotely monitor theenvironment around energy-rich Marcellus Shale gas wells. Photo courtesy of West Virginia University.The technology - which involves three wireless monitoring modules to measure volatile organic compounds, dust, light and sound - is currently being tested at a Marcellus

135

Greenhouse Gas Return on Investment: A New Metric for Energy Technology  

E-Print Network [OSTI]

Gas INTRODUCTION Alternative energy technologies such asmotivations of alternative energy technologies: mitigatingaddresses the goal of alternative energy technology

Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

136

Oregon Institute of Technology District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility Oregon Institute of Technology Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

137

California Institute of Technology Caltech | Open Energy Information  

Open Energy Info (EERE)

Caltech Caltech Jump to: navigation, search Name California Institute of Technology (Caltech) Place Pasadena, California Zip 91225 Product An institute of higher learning tha investigates the most challenging, fundamental problems in science and technology. Coordinates 29.690847°, -95.196308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.690847,"lon":-95.196308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Kumasi Institute of Technology and Environment (KITE) | Open Energy  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Logo: Kumasi Institute of Technology Energy and Environment Name Kumasi Institute of Technology Energy and Environment Address P. O. Box AT 720, Achimota, Accra, Ghana. Place Ghana Number of employees 11-50 Year founded 1996 Phone number +233-302-256800-01 Coordinates 5.555717°, -0.196306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":5.555717,"lon":-0.196306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Stevens Institute of Technology Solar Decathlon 2011 Menu and Recipes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A taste of our home Hoboken, New Jersey 2 Stevens Institute of Technology Ecohabit Dinner Party Welcome WElcoME To oUR hoME The team from Stevens Institute of Technology in Hoboken, NJ, is delighted to share both our home and our favorite foods as a part of the U.S. Department of Energy Solar Decathlon 2013 competition. In 2012, our state endured the severe devastation to both our shores and local communities from Hurricane Sandy. In an effort to celebrate the seasonal treasures of our state's cuisine, and revive the "down the shore" tradition, our two menus feature the best of New Jersey produce, local delights, and historic boardwalk treats. Each of our menu items presents a unique blend of local, seasonal ingredients infused with

140

NETL: News Release - Massachusetts Institute of Technology Professor is  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 5, 2003 December 5, 2003 Massachusetts Institute of Technology Professor is 2003 Lowry Award Winner Abraham Cites Janós Beér's Contributions To Combustion Science In Announcing $25,000 Award Dr. Janós Miklós Beér Dr. Janós Miklós Beér WASHINGTON, DC - Secretary of Energy Spencer Abraham today announced that the Department of Energy's 2003 Homer H. Lowry Award will go to a Massachusetts Institute of Technology professor emeritus whose research in combustion science continues to be critical to the design and commercialization of high efficiency, low NOx, combustion systems widely used in the fossil fuel power industry. Dr. Janós Miklós Beér, who has made a broad range of contributions to combustion science, will receive the 2003 award, the highest honor given by

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Oregon Institute of Technology Snowmelt Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Snowmelt Low Temperature Geothermal Facility Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology Snowmelt Low Temperature Geothermal Facility Facility Oregon Institute of Technology Sector Geothermal energy Type Snowmelt Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

142

The Costs of Greenhouse Gas Mitigation with Induced Technological Change  

E-Print Network [OSTI]

The Costs of Greenhouse Gas Mitigation with Induced Technological Change: A Meta of Greenhouse Gas Mitigation with Induced Technological Change: A Meta-Analysis of Estimates in the Literature and overlapping choices of assumptions. The purpose of the study is to use regression and related analyses

Watson, Andrew

143

48th Research Institute of China Electronics Technology Group Corporation |  

Open Energy Info (EERE)

Research Institute of China Electronics Technology Group Corporation Research Institute of China Electronics Technology Group Corporation Jump to: navigation, search Name 48th Research Institute of China Electronics Technology Group Corporation Place Changsha, Hunan Province, China Zip 410111 Sector Solar Product A microelectronic equipment producer and also a solar cell and equipment manufacturer. Coordinates 28.1975°, 112.968307° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.1975,"lon":112.968307,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Landfill Gas Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies October 7, 2013 - 9:27am Addthis Photo of a bulldozer on top of a large trash mound in a landfill with a cloudy sky in the backdrop. Methane and other gases produced from landfill decomposition can be leveraged for energy. This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector. Overview Landfill gases are a viable energy resource created during waste decomposition. Landfills are present in most communities. These resources can be tapped to generate heat and electricity. As organic waste decomposes, bio-gas is produced made up of roughly half methane, half carbon dioxide, and small amounts of non-methane organic

145

Natural Gas Pipeline Research: Best Practices in Monitoring Technology  

E-Print Network [OSTI]

Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research/index.html January 2012 The Issue California is the secondlargest natural gas consuming state in the United States, just behind Texas. About 85% of the natural gas consumed in California is delivered on interstate

146

Bericht des Instituts f ur Aerodynamik und Str omungstechnik Report of the Institute of Aerodynamics and Flow Technology  

E-Print Network [OSTI]

of Aerodynamics and Flow Technology IB 124-2008/1 Discontinuous Galerkin Methods for inviscid low Mach number of Alessandra Nigro at the Institute of Aerodynamics and Flow Technology at the DLR, Braunschweig. This work has

Hartmann, Ralf

147

2014 Race to Zero Student Design Competition: Georgia Institute of Technology Profile  

Broader source: Energy.gov [DOE]

2014 Race to Zero Student Design Competition: Georgia Institute of Technology Profile, from the U.S. Department of Energy.

148

Massachusetts Institute of Technology MIT | Open Energy Information  

Open Energy Info (EERE)

Technology MIT Technology MIT Jump to: navigation, search Name Massachusetts Institute of Technology (MIT) Place Cambridge, Massachusetts Zip 02139 4307 Product Private research university located in Cambridge, Massachusetts. Coordinates 43.003745°, -89.017499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Georgia Institute of Technology, 2005Georgia Institute of Technology, 2005 Pareto Points in SRAM Design  

E-Print Network [OSTI]

nm and 90nm Technologies," IEEE International Solid-State Circuits Conference, Vol. 1, pp. 68 as well high-performance computers Limited operation (battery life) Heat Operation cost Power = dynamic transistor Loses state during sleep mode Drowsy cache [Flautner02] Scaling Vdd dynamically Smaller leakage

Mooney, Vincent

150

Institute for Astronomy The Royal Observatory Edinburgh comprises the UK Astronomy Technology Centre of the Science and Technology  

E-Print Network [OSTI]

Institute for Astronomy The Royal Observatory Edinburgh comprises the UK Astronomy Technology Centre of the Science and Technology Facilities Council, the Institute for Astronomy of the University of Edinburgh and the ROE Visitor Centre. Undergraduate study at the IfA The Institute for Astronomy (If

Tittley, Eric

151

Successful Oil and Gas Technology Transfer Program Extended to 2015 |  

Broader source: Energy.gov (indexed) [DOE]

Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 June 23, 2010 - 1:00pm Addthis Washington, D.C. - The Stripper Well Consortium (SWC) - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy (DOE). An industry-driven consortium initiated in 2000, SWC's goal is to keep "stripper wells" productive in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. The consortium is managed and administered by The Pennsylvania State University on behalf of DOE; the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL)

152

NETL: Oil & Natural Gas Technologies Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL Oil & Natural Gas Technologies Reference Shelf NETL Oil & Natural Gas Technologies Reference Shelf E&P Focus Newsletter Banner The oil and gas exploration and production R&D newsletter, E&P Focus, highlights the latest developments in R&D being carried out by NETL. E&P Focus promotes the widespread dissemination of research results among all types of oil and gas industry stakeholders: producers, researchers, educators, regulators, and policymakers. Each issue provides up-to-date information regarding extramural projects managed under the Strategic Center for Natural Gas and Oil’s traditional oil and gas program, the EPAct Section 999 Program administered by the Research Partnership to Secure Energy for America (RPSEA), and in-house oil and gas research carried out by NETL’s Office of Research and Development.

153

Technology Transfer The Institute could not accomplish its goals without shar-  

E-Print Network [OSTI]

Technology Transfer The Institute could not accomplish its goals without shar- ing its expertise. Technology transfer also communicates to the world who we are--raising the profile of the Institute and its report highlights some of our technology transfer activities over the past year. Technology Transfer

Minnesota, University of

154

NETL: Oil & Natural Gas Technologies Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf Reference Shelf NETL Oil & Natural Gas Technologies Reference Shelf Solicitations Project Summaries Publications News Releases Software/Databases CDs/DVDs EOR Illustrations Welcome to the NETL Oil & Natural Gas Technologies Reference Shelf. Recently released and in-demand reference materials are available directly from this page using the links below. Online Database of Oil and Natural Gas Research Results Now Available The Knowledge Management Database (KMD) provides easy access to the results of nearly four decades of research supported by the Office of Fossil Energy’s Oil and Natural Gas Program. The database portal provides access to content from dozens of CDs and DVDs related to oil and natural gas research that FE's National Energy Technology Laboratory has published over the years. It

155

Natural Gas Compression Technology Improves Transport and Efficiencies,  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Compression Technology Improves Transport and Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs May 10, 2012 - 1:00pm Addthis Washington, DC - An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy (DOE). OsComp Systems designed and tested the novel compressor design with funding from the DOE-supported Stripper Well Consortium, an industry-driven organization whose members include natural gas and petroleum producers,

156

DOE's Early Investment in Shale Gas Technology Producing Results Today  

Broader source: Energy.gov [DOE]

A $92 million research investment in the 1970s by the U.S. Department of Energy is today being credited with technological contributions that have stimulated development of domestic natural gas from shales.

157

Oil and Natural Gas Program Commericialized Technologies and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Technology Laboratory (NETL) works to ensure that domestic natural gas and oil can remain part of the U.S. energy portfolio for decades to come. Research focused on...

158

Southern California Institute of Architecture and California Institute of Technology Solar Decathlon 2011 Construction Drawings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 WWW.SOLARDECATHLON.GOV SOUTHERN CALIFORNIA INSTITUTE OF ARCHITECTURE scical2013@gmail.com www.scical2013.com SCI-ARC / CALTECH #101 DATE: 08.22.2013 SUBMISSIONS: CALIFORNIA INSTITUTE OF TECHNOLOGY TEAM SCI-ARC / CALTECH 960 EAST 3RD STREET LOS ANGELES, CA 90013 1200 EAST CALIFORNIA BOULEVARD PASADENA, CA 91125 STRUCTURAL ENGINEERS BURO HAPPOLD CONSULTING ENGINEERS, INC. 9601 JEFFERSON BLVD. STE B CULVER CITY, CA 90232. TEL: 310.945.4800 BUILDING CONSTRUCTION RJC BUILDERS, INC. 3509 W 6TH ST. LOS ANGELES, CA 90020 TEL: 213.388.9327 REVISIONS: DESIGN DOCUMENTATION SET 10/11/2012 Dynamic Augmented Living Environment SHEET TITLE A B C D E 1 2 3 4 5 6 7 CONSTRUCTION DOCUMENTATION SET 02/14/2013 AS-BUILT SET 08/22/2013 8/22/2013 3:35:22 PM G-000 COVER DANIEL LEE SCI-ARC/CALTECH SOLAR DECATHLON 2013

159

Offshore oil and gas: global resource knowledge and technological change  

Science Journals Connector (OSTI)

It is argued that the contribution of technological change to the offshore oil and gas industry's progress is under-researched. As a prelude this theme, the changing geography of known offshore oil and gas resources is reviewed. Significant, and largely technologically dependent, developments are identified in terms of the industry's global spread, its extension into deep and ultradeep waters and its ability to enhance output from well-established oil and gas provinces. Three sections (on the evolution of exploration and production rigs, drilling techniques and the application of IT to improve resource knowledge and access) then examine the relationships between technological change and the offshore industry's progress. It is concluded that new technologies improve knowledge of, and access to, resources via four distinctive routes, but that the full impact of R & D is frequently related to the inter-dependence of technologies. Opportunities for further research are identified.

David Pinder

2001-01-01T23:59:59.000Z

160

An overview of current and future sustainable gas turbine technologies  

Science Journals Connector (OSTI)

In this work an overview of current and future sustainable gas turbine technologies is presented. In particular, the various gas turbine technologies are described and compared. Emphasis has been given to the various advance cycles involving heat recovery from the gas turbine exhaust, such as, the gas to gas recuperation cycle, the combined cycle, the chemical recuperation cycle, the Cheng cycle, the humid air turbine cycle, etc. The thermodynamic characteristics of the various cycles are considered in order to establish their relative importance to future power generation markets. The combined cycle technology is now well established and offers superior to any of the competing gas turbine based systems, which are likely to be available in the medium term for large-scale power generation applications. In small-scale generation, less than 50MWe, it is more cost effective to install a less complex power plant, due to the adverse effect of the economics of scale. Combined cycle plants in this power output range normally have higher specific investment costs and lower electrical efficiencies but also offer robust and reliable performance. Mixed air steam turbines (MAST) technologies are among the possible ways to improve the performance of gas turbine based power plants at feasible costs (e.g. peak load gas turbine plants).

Andreas Poullikkas

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

IllInoIs InstItute of technology's WInd energy research consortIum  

E-Print Network [OSTI]

IllInoIs InstItute of technology's WInd energy research consortIum Wanger Institute for Sustainable Energy Research (WISER) Illinois Institute of Technology On-campus wind turbine [OVER] The U.S. Department of Energy has invested $8 Million in the IIT-led Wind Energy Consortium to improve wind generation

Heller, Barbara

162

Institute for Nuclear and Energy Technologies 1 L. Stoppel, Th. Wetzel  

E-Print Network [OSTI]

facilities · Developing and testing of new measuring techniques May 2 - 6, 2011 #12;Institute for NuclearInstitute for Nuclear and Energy Technologies 1 L. Stoppel, Th. Wetzel FAIR and IFMIF liquid metal Power Targetry Workshop, May 3, 2011 #12;Institute for Nuclear and Energy Technologies 2 L. Stoppel, Th

McDonald, Kirk

163

IFP --Oil & Gas Science and Technology --(Script : 1er specimen) --1 --Oil & Gas Science and Technology --rev. IFP, Vol. xx (2009), No X, pp. 00-00  

E-Print Network [OSTI]

IFP -- Oil & Gas Science and Technology -- (Script : 1er specimen) -- 1 -- Oil & Gas Science2010 Author manuscript, published in "Oil & Gas Science and Technology - Rev. IFP, 65, 3 (2010) 435-444" DOI : 10.2516/ogst/2010007 #12;IFP -- Oil & Gas Science and Technology -- (Script : 1er specimen) -- 2

Boyer, Edmond

164

NETL: News Release - DOE's Early Investment in Shale Gas Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2, 2011 2, 2011 DOE's Early Investment in Shale Gas Technology Producing Results Today Washington, DC - A $92 million research investment in the 1970s by the U.S. Department of Energy (DOE) is today being credited with technological contributions that have stimulated development of domestic natural gas from shales. The result: more U.S. jobs, increased energy security, and higher revenues for states and the Federal Government. Spurred by the technological advancements resulting from this investment, U.S. shale gas production continues to grow, amounting to more than 8 billion cubic feet per day, or about 14 percent of the total volume of dry natural gas produced in the United States. DOE's Energy Information Administration (EIA) projects that the shale gas share of U.S. natural gas production will reach 45 percent by 2035. The EIA also projects that 827 trillion cubic feet of natural gas is now recoverable from U.S. shales using currently available technology-an increase of nearly 500 trillion cubic feet over earlier estimates.

165

American Institute of Aeronautics and Astronautics Modeling the motion of pyrolysis gas through charring  

E-Print Network [OSTI]

1 American Institute of Aeronautics and Astronautics Modeling the motion of pyrolysis gas through problem with gas motion through the porous media employing finite element based Galerkin and Discontinuous t = time Subscripts c = char g = pyrolysis gas r = resin I. Introduction pace vehicles enter earth's (or

Roy, Subrata

166

Oil and Gas Innovation call June 2014 Reference PI Institution Title Impact  

E-Print Network [OSTI]

Oil and Gas Innovation call June 2014 Reference PI Institution Title Impact Score Fit score Rank NE oil and gas industries offshore. 7 4 9 NE/M007286/1 Professor Kevin Taylor The University to petrophysical models for shale gas reservoirs based on sensitivity analysis of key variables 7 5 2 NE/M007235

167

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Broader source: Energy.gov (indexed) [DOE]

Membrane Technology and Membrane Technology and Research, Inc. (MTR), based in Menlo Park, CA, is a privately- owned developer, manufacturer, and supplier of customized membrane process solutions. Currently, the company's principal membrane products are * VaporSep® systems to remove organic vapors from air and nitrogen * NitroSep TM and fuel gas conditioning systems for natural gas treatment * Hydrogen recovery systems for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology Boosts Efficiency in Industrial Gas Processes Challenge Membrane technology was first commercialized in the 1960s and 1970s for well-known applications such as water filtration

168

DOE Joint Genome Institute: Next Gen Sequencing Technology Pinpoint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 12, 2009 February 12, 2009 Next Gen Sequencing Technology Pinpoint "On-Off Switches" in Genomes WALNUT CREEK, CA-Scientists from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, and the University of California, San Diego have developed a set of molecular tools that provide important insight into the complex genomes of multicellular organisms. The strategy promises to clarify the longstanding mystery of the role played by vast stretches of DNA sequence that do not code for the functional units-genes-that nevertheless may have a powerful regulatory influence. The research is described in the 12 February edition of the journal Nature. DOE bioenergy researchers have an interest in identifying these regulatory

169

Electric Power Esearch Institute: Environmental Control Technology Center  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved the EPRI Integrated SO{sub x}/NO{sub x} removal process, the DOE PRDA testing of the B&W/Condensing Heat Exchanger (CHX), and support for the Semi-Continuous On-line Mercury Analyzer. The test configuration utilized in the EPRI Integrated SO{sub x}/NO{sub x} removal process included the 4.0 MW Spray Dryer Absorber (SDA), the Pulse-jet Fabric Filter (PJFF), and a new Selective Catalytic Reduction (SCR) reactor installed at the ECTC. During this testing, O&M support was also required to conclude the test efforts under the EPRI Hazardous Air Pollutant (HAP) test block. This included the on-site development efforts for the Semi-Continuous On-line Mercury Analyzer. In the DOE PRDA project with the B&W/Condensing Heat Exchanger (CHX), the effects of the increased particulate loading to the unit were monitored throughout the month. Also, the 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly.

NONE

1996-11-01T23:59:59.000Z

170

Efficiency of Gas-to-Liquids Technology with Different Synthesis Gas Production Methods  

Science Journals Connector (OSTI)

The design and optimization of a gas-to-liquids technology (GTL) is considered, mostly from the view of an optimal choice of a synthesis gas (syngas) production method. ... If the tail gas is not enough, an additional portion of the natural gas is burned. ... The temperature of the flue gases passing from the radiation chamber of the tubular furnace to the convection chamber is taken as equal to 1150 C, which allows proper calculation of required amount of gas supplied to the burner. ...

Ilya S. Ermolaev; Vadim S. Ermolaev; Vladimir Z. Mordkovich

2014-02-05T23:59:59.000Z

171

Technology on In-Situ Gas Generation to Recover Residual Oil Reserves  

SciTech Connect (OSTI)

This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency of the in-situ generated CO{sub 2} gas. A set of core flood experiments were conducted to define effect of surfactant on recovery efficiency. The results demonstrated obvious advantages of the foamy system over the brine solution in order to achieve higher sweep efficiency and recovery coefficient. It is shown that a slug injection is not an efficient method for mixing GY and GF solutions and it can't generate considerable gas inside the slim-tube.

Sayavur Bakhtiyarov

2008-02-29T23:59:59.000Z

172

Exhaust Gas Energy Recovery Technology Applications  

SciTech Connect (OSTI)

Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

Wagner, Robert M [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

173

Technology Key to Harnessing Natural Gas Potential | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Key to Harnessing Natural Gas Potential Technology Key to Harnessing Natural Gas Potential Technology Key to Harnessing Natural Gas Potential July 18, 2012 - 3:52pm Addthis Deputy Secretary Daniel Poneman tours Proinlosa Energy Corp. in Houston, Texas. Proinlosa is a company in the wind turbine manufacturing supply chain that develops tower parts and has benefitted from the Production Tax Credit (PTC). | Photo courtesy of Keri Fulton. Deputy Secretary Daniel Poneman tours Proinlosa Energy Corp. in Houston, Texas. Proinlosa is a company in the wind turbine manufacturing supply chain that develops tower parts and has benefitted from the Production Tax Credit (PTC). | Photo courtesy of Keri Fulton. Daniel B. Poneman Daniel B. Poneman Deputy Secretary of Energy What does this project do? Builds on President Obama's call for a new era for American energy

174

Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forum 2014 Meeting Forum 2014 Meeting Natural Gas Vehicle Technology Form (NGVTF) logo The Natural Gas Vehicle Technology Forum (NGVTF) will hold a meeting for stakeholders on Jan. 14-15, 2014, at Brookhaven National Laboratory in Upton, New York. Meeting Details Date: Jan. 14-15, 2014 | Icon of a calendar. Add to my calendar Location: Brookhaven National Laboratory 33 Lewis Rd. Upton, NY 11961 The National Renewable Energy Laboratory is hosting this meeting in partnership with the U.S. Department of Energy and the California Energy Commission to support the development and deployment of commercially competitive natural gas engines, vehicles, and infrastructure. NGVTF is free and open to stakeholders, so join the conversation about natural gas engines, vehicles, infrastructure, and codes and standards.

175

Externally fired gas turbine technology: A review  

Science Journals Connector (OSTI)

Abstract Externally fired heat engines were used widely since helium the industrial revolution using dirty solid fuels for example coal, due to the lack of refined fuels. However, with the availability of clean fuels, external firing mode was abandoned, except for steam power plants. Lately, with the global trend moving towards green power production, the idea of the external fired system has captured the attention again especially externally fired gas turbine (EFGT) due to its wider range of power generation and the potential of using environment friendly renewable energy sources like biomass. In this paper, a wide range of thermal power sources utilizing EFGT such as concentrated solar power (CSP), fossil, nuclear and biomass fuels are reviewed. Gas turbine as the main component of EFGT is investigated from micro scale below 1MWe to the large scale central power generation. Moreover, the different high temperature heat exchanger (HTHE) materials and designs are reviewed. Finally, the methods of improving cycle efficiency such as the externally fired combined cycle (EFCC), humidified air turbine (HAT), EFGT with fuel cells and other cycles are reviewed thoroughly.

K.A. Al-attab; Z.A. Zainal

2015-01-01T23:59:59.000Z

176

Institute for Critical Technology and Applied Science Seminar Series Polymer Membranes for Energy and  

E-Print Network [OSTI]

Institute for Critical Technology and Applied Science Seminar Series Polymer Membranes for Energyst century for reliable, sustainable, efficient access to clean energy and clean water for Excellence in Industrial Gases Technology (2008), and the Strategic Environmental Research and Development

Crawford, T. Daniel

177

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry Title Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry Publication Type Report Year of Publication 2012 Authors Kong, Lingbo, Ali Hasanbeigi, and Lynn K. Price Date Published 12/2012 Publisher Lawrence Berkeley National Laboratory Keywords emerging technologies, energy efficiency, ghg, Low Emission & Efficient Industry, pulp and paper Abstract The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2)emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry's absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry's mid- and long-term climate change mitigation strategies. This report describes the industry's processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry's energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.

178

Institute of Photo Electronic Thin Film Devices and Technology of Nankai  

Open Energy Info (EERE)

Electronic Thin Film Devices and Technology of Nankai Electronic Thin Film Devices and Technology of Nankai University Jump to: navigation, search Name Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University Place Tianjin Municipality, China Zip 300071 Sector Solar Product A thin-film solar cell research institute in China. References Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University is a company located in Tianjin Municipality, China . References ↑ "Institute of Photo-Electronic Thin Film Devices and Technology of Nankai University"

179

NEW JERSEY INSTITUTE OF TECHNOLOGY Instructions to Complete the International Student Financial Statement Form  

E-Print Network [OSTI]

Institute of Technology. This information must be submitted before a Certificate of Visa Eligibility (Form I-term annuities or certificates of deposit · New Jersey Institute of Technology reserves the right to require _______________________________________________________________ Family/Last Name First/Given Name Middle 2. Date of Birth ____________________ Month Day Year 3. Country

Gary, Dale E.

180

Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras  

E-Print Network [OSTI]

. S. Sivakumar Indian Institute of Technology Madras Introduction 2.1 stress at a point Figure 2Strength of Materials Prof. M. S. Sivakumar Indian Institute of Technology Madras Stresses Stress at a point Stress Tensor Equations of Equilibrium Different states of stress Transformation of plane stress

Ramu, Palaniappan

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Intel / Charles E. Young Endowed Chair in Nanotechnology Director of the Nanoscience Institute for Medical and Engineering Technology  

E-Print Network [OSTI]

Intel / Charles E. Young Endowed Chair in Nanotechnology Director of the Nanoscience Institute of the Nanoscience Institute for Medical and Engineering Technology. The Intel Foundation established this endowment

Slatton, Clint

182

Dynamic gas bearing turbine technology in hydrogen plants  

Science Journals Connector (OSTI)

Dynamic Gas Bearing Turbines - although applied for helium refrigerators and liquefiers for decades - experienced limitations for hydrogen applications due to restrictions in axial bearing capacity. With a new design concept for gas bearing turbines developed in 2004 axial bearing capacity was significantly improved enabling the transfer of this technology to hydrogen liquefiers. Prior to roll-out of the technology to industrial plants the turbine bearing technology passed numerous tests in R&D test benches and subsequently proved industrial scale demonstration at Linde Gas' hydrogen liquefier in Leuna Germany. Since its installation this turbine has gathered more than 16 000 successful operating hours and has outperformed its oil bearing brother in terms of performance maintainability as well as reliability. The present paper is based on Linde Kryotechnik AG's paper published in the proceedings of the CEC 2009 concerning the application of Dynamic Gas Bearing Turbines in hydrogen applications. In contrast to the former paper this publication focuses on the steps towards final market launch and more specifically on the financial benefits of this turbine technology both in terms of capital investment as well as operating expenses.

Klaus Ohlig; Stefan Bischoff

2012-01-01T23:59:59.000Z

183

Are distributed energy technologies a viable alternative for institutional settings? : lessons from MIT Cogeneration Plant  

E-Print Network [OSTI]

During the last decades, distributed energy (DE) resources received considerable attention and support because of the confluence of technology development - particularly gas turbines - and deregulation - which would allow ...

Tapia-Ahumada, Karen de los Angeles

2005-01-01T23:59:59.000Z

184

Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Details Activities (7) Areas (6) Regions (0) Abstract: To increase our knowledge of gaseous species in geothermal systems by fluid inclusion analysis in order to facilitate the use of gas analysis in geothermal exploration. The knowledge of gained by this program can be applied to geothermal exploration, which may expand geothermal

185

IntegratedEnergySysteminHotel (GasTechnologyInstitute)  

E-Print Network [OSTI]

-effect absorption chiller with a rated capacity of 229 kW net electricity and 161 tons of chilled water. Partners

Oak Ridge National Laboratory

186

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Authors: Maša Prodanovic (speaker), Javad Behseresht, Yao Peng, Steven L. Bryant, Antone K. Jain and Ruben Juanes Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 ( http://www.spe.org and http://www.smenet.org [external sites] ) Abstract: A spectrum of behavior is encountered in methane hydrate provinces, especially ocean sediments, ranging from essentially static accumulations where the pore space is filled with hydrate and brine, to active seeps where hydrate and methane gas phase co-exist in the hydrate stability zone (HSZ). The grain-scale models of drainage and fracturing presented demonstrate key processes involved in pressure-driven gas phase invasion of a sediment. A novel extension of invasion percolation to infinite-acting, physically representative networks is used to evaluate the connectivity of water in a gas-drained sediment. A novel implementation of the level set method (LSM) is used to determine the capillarity-controlled displacement of brine by gas from sediment and from fractures within the sediment. The discrete element method (DEM) is extended to model the coupling between the pore fluids and the solid, and thereby predict the onset of sediment fracturing by gas phase pressure under in situ loading conditions. The DEM grain mechanics model accounts for the different pressure of brine and methane gas in a “membrane” two-fluid model. The fluid-fluid configuration from LSM can be mapped directly to the pore space in DEM, thereby coupling the drainage and mechanics models. The type of behavior that can emerge from the coupled processes is illustrated with an extended LSM model. The extension computes grain displacement by the gas phase with a simple kinematic rule.

187

Edwin R. Fuller, Jr., National Institute of Standards and Technology  

E-Print Network [OSTI]

Steam CoolingAdvanced Air Cooling alloy development Heavy Duty Gas Turbine Evolution bucket material for Gas Turbines -- Steven Fishman Symposium Indianapolis, IN -- April 20, 2004 #12;Ceramics Division and substrate alloy capability increases Temperature 1960 1970 1980 1990 2000 Gas Turbine Firing Temperature

Fuller, Edwin R.

188

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

economics of black liquor gasifier/gas turbine cogenerationblack liquor and biomass gasifier/gas turbine technology".entrained flow booster gasifier in New Bern, North Carolina;

Kong, Lingbo

2014-01-01T23:59:59.000Z

189

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Decreasing Air Emission Impacts From Oil and Gas Development Decreasing Air Emission Impacts From Oil and Gas Development Decreasing Air Emission Impacts From Oil and Gas Development Authors: Charles B. McComas, PE; J. Daniel Arthur, PE; Gerry Baker; G. Lee Moody; and David B. Cornue, PG, CHMM Venue: American Chemical Society (53rd Pentasectional Meeting) – Halliburton Energy Services Technology Center, Duncan, OK, March 8, 2008 (http://www.acs.org [external site]) Abstract: Research funded by the United States Department of Energy’s National Energy Technology Laboratory and conducted under the direction of the Interstate Oil and Gas Compact Commission has examined concerns related to air emissions resulting from domestic onshore oil and gas exploration and production operations. Current air issues such as ambient air quality standards and non-attainment areas, regulatory compliance and regional inconsistencies, as well as global climate change and carbon sequestration are a few of the subjects perceived to represent potential barriers to energy development. The topic of air quality and how it relates to onshore oil and gas exploration and production activities is examined from the position of environmental sustainability. These concerns can be addressed through reasonable and prudent practices that industry may implement in order to avoid, minimize, or mitigate air emissions. Additionally, air emissions parameters that are not currently regulated (e.g.: CH4 and CO2) may become the subject of increased concern in the future and, therefore, add to the list of issues facing oil and gas exploration and production. Suggestions for further research opportunities with the potential to benefit responsible energy resource development are also presented.

190

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Authors: Mark White and Pete McGrail Venue: The 9th International Conference on Greenhouse Gas Technologies will be held November 16-20, 2008 at The Omni Shoreham Hotel in Washington, DC. The Conference will be organized by MIT in collaboration with the IEA Greenhouse Gas R&D Programme (IEA GHG), with major sponsorship from the US Department of Energy. http://mit.edu/ghgt9/ . Abstract: Under high pressure and low temperature conditions small nonpolar molecules (typically gases) can combine with water to form crystalline structures known as clathrate hydrates. Methane (CH4) and carbon dioxide (CO2) form nearly identical clathrate structures (sI), with the CO2 hydrate being thermodynamically favored. Vast accumulations of methane hydrates have been found in suboceanic deposits and beneath the arctic permafrost. Because of the large volumetric storage densities, clathrate hydrates on the deep ocean floor have been suggested as a sequestration option for CO2. Alternatively, CO2 hydrates can be formed in the geologic settings of naturally occurring accumulations of methane hydrates. Global assessments of natural gas resources have shown that gas hydrate resources exceed those of conventional resources, which is indicative of the potential for clathrate hydrate sequestration of CO2. Recovery of natural gas from hydrate-bearing geologic deposits has the potential for being economically viable, but there remain significant technical challenges in converting these natural accumulations into a useable resource. Currently, conventional methods for producing methane hydrates from geologic settings include depressurization, thermal stimulation, and inhibitor injection. Although CO2 clathrates generally are not naturally as abundant as those of CH4, their occurrence forms the foundation of an unconventional approach for producing natural gas hydrates that involves the exchange of CO2 with CH4 in the hydrate structure. This unconventional concept has several distinct benefits over the conventional methods: 1) the heat of formation of CO2 hydrate is greater than the heat of dissociation of CH4 hydrate, providing a low-grade heat source to support additional methane hydrate dissociation, 2) exchanging CO2 with CH4 will maintain the mechanical stability of the geologic formation, and 3) the process is environmentally friendly, providing a sequestration mechanism for the injected CO2. The exchange production technology would not be feasible without the favorable thermodynamics of CO2 hydrates over CH4 hydrates. This situation yields challenges for the technology to avoid secondary hydrate formation and clogging of the geologic repository. Laboratory-scale experiments have demonstrated the feasibility of producing natural gas and sequestering CO2 using the direct exchange technology in geologic media. These experiments have duplicated numerically using the STOMP-HYD simulator, which solves the nonisothermal multifluid flow and transport equations for mixed hydrate systems in geologic media. This paper describes the design (via numerical simulation) of a pilot-scale demonstration test of the CO2 exchange production and sequestration technology for a geologic setting beneath the arctic permafrost, involving a gas-hydrate interval overlying a free-gas interval (i.e., Class 1 Hydrate Accumulation).

191

Postdoctoral position in microfluidics for life and medical sciences at Technion -Israel Institute of Technology  

E-Print Network [OSTI]

Postdoctoral position in microfluidics for life and medical sciences at Technion - Israel Institute of Technology The Microfluidic Technologies Laboratory at Technion, led by Prof. Moran Bercovici, is seeking of novel bio-microfluidic tools and assays. The Microfluidic Technologies Laboratory (microfluidics

Rimon, Elon

192

Catalyst optimization in gas-to-liquid technology : an operations view / Israel Olalekan Jolaolu.  

E-Print Network [OSTI]

??Gas to Liquids (GTL) technology is a general term used for a group of technologies that has the capability to create liquid hydrocarbon fuels from (more)

Jolaolu, Israel Olalekan

2008-01-01T23:59:59.000Z

193

TORE SUPRA : Physics, Technology and ...Strategy - Andre GROSMAN - Deputy Head of Magnetic Fusion Research Institute (CEA/DSM/IRFM)  

E-Print Network [OSTI]

TORE SUPRA : Physics, Technology and ...Strategy - Andre GROSMAN - Deputy Head of Magnetic Fusion Research Institute (CEA/DSM/IRFM)

CERN. Geneva

2011-01-01T23:59:59.000Z

194

Sizzling Qatar boom sparked by foreign money, technology, and gas  

SciTech Connect (OSTI)

International oil companies have collected advanced upstream and downstream technology and focused it on the small Persian Gulf emirate of Qatar, a roughly 110 mile long by 50 mile wide, thumb-like peninsula that juts out from Saudi Arabia. The emirate, in a burst of enlightened self interest, has opened its doors to international companies and is now riding a wave of foreign investment and new technology to major increases in oil, natural gas, and petrochemical production. The largest natural gas reserve in the world is under Qatari waters and is the driver for the activity that includes two LNG plants. Qatar has proven that you don`t need crude oil in the Persian Gulf to be important. Activities are discussed.

Aalund, L.R.

1998-04-27T23:59:59.000Z

195

Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines  

Science Journals Connector (OSTI)

Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor or other heat source to electrical power using a closed?loop cycle. The operating fluid in the closed?loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed and the effects of very high ambient pressure start?up torque and misalignment have been observed and are reported here.

Samuel A. Howard; Robert J. Bruckner; Christopher DellaCorte; Kevin C. Radil

2007-01-01T23:59:59.000Z

196

STEVENS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING  

E-Print Network [OSTI]

Carnegie Bldg, Room 315, Time TBD Development of Microactuator Technologies for Space Applications Dr. Eui. ------------------------------------------------------------------------------------------------------------------------------ Dr. Eui-Hyeok Yang is currently the task manager for several MEMS technology development projects

Fisher, Frank

197

Webinar on the Potential for Natural Gas to Enhance Biomass Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Webinar on the Potential for Natural Gas to Enhance Biomass Technologies Webinar on the Potential for Natural Gas to Enhance Biomass Technologies January 22, 2014 - 12:00am Addthis...

198

Assisting Transit Agencies with Natural Gas Bus Technologies; Natural Gas Trasit Users Group (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and and infrastructure research, development, and deployment through its FreedomCAR and Vehicle Technologies Program to help the United States reduce its dependence on imported petro- leum and to pave the way to a future transportation network based on hydrogen. Natural gas vehicles can also reduce emissions of regulated pollutants compared with vehicles powered by conventional fuels such as gasoline

199

Bio-Gas Technologies, LLC | Open Energy Information  

Open Energy Info (EERE)

Bio-Gas Technologies, LLC Bio-Gas Technologies, LLC Jump to: navigation, search Name Bio-Gas Technologies, LLC Address 2025 George St. Place Sandusky, Ohio Zip 44870 Sector Biomass, Renewable Energy, Wind energy Product Agriculture;Business and legal services;Consulting; Energy provider: power production;Energy provider: wholesale;Engineering/architectural/design;Installation;Investment/finances;Maintenance and repair;Manufacturing Phone number 419-663-8000 Website http://www.biogastech.com Coordinates 41.4369°, -82.747133° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4369,"lon":-82.747133,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Options for Gas-to-Liquids Technology in Alaska  

SciTech Connect (OSTI)

The purposes of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10 percent. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinquish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

Robertson, Eric Partridge

1999-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Options for gas-to-liquids technology in Alaska  

SciTech Connect (OSTI)

The purpose of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10%. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinguish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

Robertson, E.P.

1999-12-01T23:59:59.000Z

202

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

203

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01T23:59:59.000Z

204

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrate Energy resource Studies in the United States Hydrate Energy resource Studies in the United States Gas Hydrate Energy resource Studies in the United States Authors: T.Collett (USGS), R. Boswell (DOE), K. Rose (DOE), W. Agena (USGS), and R. Baker (DOE) Venue: American Chemical Society Meeting, March 22-26, 2009, Salt Lake City, Utah http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_MEETINGS&node_id=86&use_sec=false&__uuid=614acbfd-ce1c-4a0b-98de-348a14738f4e [external site] Abstract: In 1982, scientists onboard the Research Vessel Glomar Challenger retrieved a meter-long sample of massive gas hydrate off the coast of Guatemala. This sample became the impetus for the first United States national research and development program dedicated to gas hydrates. By the mid 1990s, it was widely accepted that gas hydrates represented a vast storehouse of gas. Recognizing the importance of gas hydrate research and the need for coordinated efforts, Congress and the President of the United States enacted Public Law 106-193, the Methane Hydrate Research and Development Act of 2000. Authorization for this program was extended to 2010 as part of the Energy Policy Act of 2005. Many of the current gas hydrate projects in the United States are conducted within this program, which is administered by the U. S. Department of Energy in collaboration with six other U.S. federal agencies, and conducted in partnership with private industry, academic institutions, and DOE’s National Laboratories. In addition, other U.S. federal agencies conduct significant self-directed gas hydrate research; most notably the gas hydrate resource assessment activities conducted by U.S. Department of Interior agencies (the U.S. Geological Survey and the Minerals Management Service).

205

Exploring the Optimum Role of Natural Gas in Biofuels Production  

Broader source: Energy.gov [DOE]

Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Vann Bush, Managing Director, Energy Conversion, Gas Technology Institute

206

History of Chemical Engineering at the New Jersey Institute of Technology 18811988  

Science Journals Connector (OSTI)

New Jersey Institute of Technology is an outgrowth of the Newark Technical School which was founded in 1881, by an Act of the New Jersey General Assembly, to meet the demands of the industrialization of northe...

Deran Hanesian; Angelo Perna; Joseph Joffe

1989-01-01T23:59:59.000Z

207

GEORGIA INSTITUTE OF TECHNOLOGY COLLEGE OF ENGINEERING 1 College of Engineering  

E-Print Network [OSTI]

Electrical and Computer Engineering Industrial and Systems Engineering Materials Science and Engineering and Biomolecular Engineering Civil and Environmental Engineering Electrical and Computer Engineering IndustrialGEORGIA INSTITUTE OF TECHNOLOGY · COLLEGE OF ENGINEERING 1 College of Engineering Aerospace

Li, Mo

208

New generation enrichment monitoring technology for gas centrifuge enrichment plants  

SciTech Connect (OSTI)

The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

Ianakiev, Kiril D [Los Alamos National Laboratory; Alexandrov, Boian, S. [Los Alamos National Laboratory; Boyer, Brian, D. [Los Alamos National Laboratory; Hill, Thomas, R. [Los Alamos National Laboratory; Macarthur, Duncan, W. [Los Alamos National Laboratory; Marks, Thomas [Los Alamos National Laboratory; Moss, Calvin, E. [Los Alamos National Laboratory; Sheppard, Gregory, A. [Los Alamos National Laboratory; Swinhoe, Martyn, T. [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

209

Massachusetts Institute of Technology International Students Office 77 Massachusetts Avenue, Building 5-133  

E-Print Network [OSTI]

at an institution of higher education in the US (other than MIT) or abroad and who have been invited by an MIT be submitted online (https://imit.mit.edu/) by applicants for Visiting Student status: 1. PASSPORT INFORMATION Institute of Technology International Students Office 77 Massachusetts Avenue, Building 5-133 Cambridge

Gabrieli, John

210

Norwegian Marine Technology Research Institute Partnership for the future  

E-Print Network [OSTI]

;Greener operations Offshore renewable energy Autonomous surveillance Oil & gas in deeper water involvement «Ulstein X-bow» Revolutionary ship design Ship Model Towing Tank (1939) Cavitation Tunnel (1965

Nørvåg, Kjetil

211

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Authors: Mohamed Toema (speaker), Sarah Nuss-Warren, and Kirby S. Chapman, Kansas State University National Gas Machinery Laboratory; James McCarthy and Thomas McGrath, Innovative Environmental Solutions Inc. Venue: ASME Internal Combustion Engine Division 2009 Spring Technical Conference, May 3–6, Milwaukee, WI. http://www.asmeconferences.org/ICES09/index.cfm [external site]. Abstract: The researchers are conducting a project to characterize pollutant emissions performance of field gas-fired four-stroke cycle rich burn engines equipped with non-selective catalytic reduction (NSCR) technology. Engine emissions and operating parameters are being monitored on three engines over an extended period. In addition, a mapping study was conducted on one engine. The NSCR was operated at various controlled air-to-fuel (AF) ratios while emission measurements were conducted and engine operating parameters monitored. NOx, CO, and oxygen were measured using both EPA reference method technology and the portable analyzer used in the long-term study. In the mapping study, ammonia, formaldehyde, CO, NOx, and speciated hydrocarbon emissions were recorded in real-time using an extractive FTIR system. This paper focuses on the engine mapping phase. The mapping tests demonstrated a trade-off between NOx emissions and CO, ammonia, and hydrocarbon emissions. Richer engine operation (lower AF) decreases NOx emissions at the expense of higher CO, ammonia, and hydrocarbons. Leaner operation has the opposite effect. The results to date of the semi-continuous monitoring are presented in a separate paper.

212

Gabriel Parent Language Technologies Institute, Carnegie Mellon University  

E-Print Network [OSTI]

.cs.cmu.edu/~gparent Education Master in Language Technology August 2009 ­ August 2011 Carnegie Mellon University, GPA 4TE Workshop on Speech and Language Technology in Education, Tokyo, Japan. Parent, G., Gagnon, M., & Muller, P Automatique des Langues Naturelles 2008, Avignon, France. Posters Parent, G. (2010). Acoustic converge

Eskenazi, Maxine

213

Natural Gas Technologies II Conference - Ingenuity & Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Technologies II Conference - Ingenuity & Innovation Natural Gas Technologies II Conference - Ingenuity & Innovation Session 10 - Gas Industry Forum February 8-11, 2004 Phoenix, Arizona Table of Contents Disclaimer Program [PDF-102KB] Biographies [PDF-107KB] Presentations Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

214

The California Institute of Technology Employees' Guide to Caltech  

E-Print Network [OSTI]

faculty--including several Nobel laureates--and such off-campus facilities as the Jet Propulsion Observatory, Owens Valley Radio Observatory, and Kerckhoff Marine Biological Laboratory, Caltech is one officers for the various operations of the Institute -- the academic program, the Jet Propulsion Laboratory

Faraon, Andrei

215

Eidgenssische Technische Hochschule Zrich Swiss Federal Institute of Technology Zurich  

E-Print Network [OSTI]

present examples of such models of EDM (Electro-discharge machining) and Laser Cutting machine tools für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing www for energy consumption and environmental impact modeling during the use phase of machine tools Prof. Paul

Daraio, Chiara

216

Government works with technology to boost gas output/usage  

SciTech Connect (OSTI)

Specially treated ethane gas from fields of the Moomba area in the Cooper basin of South Australia now flows freely through 870 mi of interstate gas pipeline to an end-user in Sydney, New South Wales. This unprecedented usage of ethane is the result of a long-term cooperative agreement. The producer sought to provide the end-user with ethane gas for usage as a petrochemical feedstock to manufacture ethylene and plastic goods. The end-user had strict specifications for a low-CO{sub 2}, very dry ethane product with a small percentage of methane. In order to meet these, the producer committed millions of dollars to construct a high-technology, state-of-the-art ethane treatment facility in the Moomba area, and lay an extensive pipeline. Santos also contracted with the amines supplier to provide a high-performance, deep CO{sub 2} removal solvent with good corrosion prevention characteristics. The paper discusses the Moomba field overflow, gas treatment, government cooperation, and project completion.

Nicoll, H. [Dow Chemical Co., Houston, TX (United States). GAS/SPEC Technology Group

1996-10-01T23:59:59.000Z

217

Proceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference  

E-Print Network [OSTI]

of design parameters. Three design cases are performed with a low-aspect-ratio steam turbine blade testedProceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference June 14-18, 2010 (Switzerland) Baden, Switzerland ABSTRACT For low-aspect-ratio turbine blades secondary loss reduc- tion

Liu, Feng

218

Proceedings of IGTI 2009 ASME 2009 International Gas Turbine Institute Conference  

E-Print Network [OSTI]

- istic of steam turbine blading in low pressure turbines. The re- sults demonstrate that the designProceedings of IGTI 2009 ASME 2009 International Gas Turbine Institute Conference June 8-12, 2009, Orlando,FL, USA GT2009-60115 THREE-DIMENSIONAL AERODYNAMIC DESIGN OPTIMIZATION OF A TURBINE BLADE BY USING

Liu, Feng

219

Quantitative analysis of factors affecting greenhouse gas emissions at institutions of higher education  

E-Print Network [OSTI]

States, emissions from buildings comprise 40% of energy consumption and carbon emissions, not including to have 10 times more effect on emissions per square meter than space such as classroom and office, while to the institution's own greenhouse gas emission reductions, energy and water conservation, and other sustainability

Illinois at Chicago, University of

220

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials Science, Nanotechnology  

E-Print Network [OSTI]

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials and spacious clean room laboratories for nanofabrication of devices. Interested candidates are urged to submit. of Micro/Nanometer Sci. & Technology 800 Dongchuan Road, Shanghai, China 200240 e-mail:

Alpay, S. Pamir

222

RESEARCH AT THE AUTOMATION AND CONTROL INSTITUTE OF TAMPERE UNIVERSITY OF TECHNOLOGY  

E-Print Network [OSTI]

22 5 RESEARCH AT THE AUTOMATION AND CONTROL INSTITUTE OF TAMPERE UNIVERSITY OF TECHNOLOGY should try to develop new solutions, methods and tools to improve the level of automation of the Finnish information technologies in automation. More than 50 % of the diploma theses (M.Sc. theses) are done

223

Electric Power Research Institute: Environmental Control Technology Center. Report to the Steering Committee, February 1996. Final technical report  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Carbon Injection System and the Trace Element Removal test blocks. With this testing, the mercury measurement (Method 29) studies also continued with impinger capture solutions. The 4.0 MW Spray Dryer Absorber System (Carbon Injection System) was utilized in the TER test configuration this month. The B&W/CHX Heat Exchanger unit is being installed utilizing the Mini Pilot Flue Gas System. The 1.0 MW Cold- Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode. Monthly inspections were conducted for all equipment in cold-standby, as well as for the fire safety systems, and will continue to be conducted by the ECTC Operations and Maintenance staff.

NONE

1996-02-01T23:59:59.000Z

224

NETL: Gasification Systems - Advanced Acid Gas Separation Technology for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feed Systems Feed Systems Advanced Acid Gas Separation Technology for the Utilization of Low-Rank Coals Project Number: DE-FE0007759 Refinery offgas PSA at Air Products' facility in Baytown, TX Refinery offgas PSA at Air Products' facility in Baytown, TX. Air Products, in collaboration with the University of North Dakota Energy and Environmental Research Center (EERC), is testing its Sour Pressure Swing Adsorption (Sour PSA) process that separates syngas into an hydrogen-rich stream and second stream comprising of sulfur compounds(primarily hydrogen sulfide)carbon dioxide (CO2), and other impurities. The adsorbent technology testing that has been performed to date utilized syngas streams derived from higher rank coals and petcoke. Using data from experiments based on petcoke-derived syngas, replacing the

225

Office of Fossil Energy Oil & Natural Gas Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Energy Fossil Energy Oil & Natural Gas Technology Detection and Production of Methane Hydrate End of Phase 2 Topical Report Reporting Period: June, 2007-June, 2008 Submitted by: Rice University and University of Houston George J. Hirasaki and Walter Chapman, Chemical and Biomolecular Engineering Gerald R. Dickens, Colin A. Zelt, and Brandon E. Dugan, Earth Science Kishore K. Mohanty, University of Houston June, 2008 DOE Award No.: DE-FC26-06NT42960 Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu University of Houston Department of Chemical Engineering 4800 Calhoun Street Houston, TX 77204-4004 Prepared for: United States Department of Energy National Energy Technology Laboratory

226

New Generating Technology to Reduce Greenhouse Gas Emissions  

U.S. Energy Information Administration (EIA) Indexed Site

Generating Technology to Generating Technology to Reduce Greenhouse Gas Emissions ENERGY INFORMATION ADMINISTRATION 30 TH BIRTHDAY CONFERENCE April 7, 2008 Linda G. Stuntz Stuntz, Davis & Staffier, P.C. Stuntz, Davis & Staffier, P.C. 2 The Target * Energy related emissions of CO2 will increase by about 16% in AEO 2008 Reference Case between 2006 and 2030 (5,890 MM metric tons to 6,859 MM metric tons). (#s from Caruso Senate Energy testimony of 3/4/08). * Last year, emissions from electricity generation were 40% of total energy-related GHG emissions. * Based on projected annual electricity demand growth of 1.1%. Stuntz, Davis & Staffier, P.C. 3 The Target Cont'd * 16.4 GW of new nuclear + 2.7 GW Uprates of existing plants less 4.5 GW of retirements. * Coal responsible for 54% of generation in 2030.

227

2 0 1 0 1 1 California Institute of Technology  

E-Print Network [OSTI]

and Technology 110 Environmental Science and Engineering 112 Geological and Planetary Sciences 114 History and Engineering 455 Film 455 Geological and Planetary Sciences 470 History 478 History and Philosophy of Science Biotechnology 94 Chemical Engineering 96 Chemistry 98 Civil Engineering 99 Computation and Neural Systems 100

Greer, Julia R.

228

Massachusetts Institute of Technology Case Study: Personal Transportation System  

E-Print Network [OSTI]

a personal aircraft (VTOL). 3 Image courtesy of Boeing Research & Technology #12;Motivation · However, flying Makes high-level decisions Plans path within risk bounds Stanford/Boeing Dialog Management #12;System-level decisions Plans path within risk bounds Stanford/Boeing Dialog Management #12;Generate Temporal Plan

Williams, Brian C.

229

January 2013 Teaching, Learning and Technology Faculty Institute  

E-Print Network [OSTI]

8:45-9 Coffee and Danishes and a Welcome: Welcoming remarks/introductions 9-9:45 How is Technology Moodle Question and Answer: This session will provide an opportunity for beginners and power users to ask and discuss solutions. Blake Haggerty and Jiyeon Lee Camtasia Relay: Relay allows users to create learning

Gary, Dale E.

230

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Variation in Long-Term Emissions Data from NSCR-Equipped Natural Gas-Fueled Engine Variation in Long-Term Emissions Data from NSCR-Equipped Natural Gas-Fueled Engine Variation in Long-Term Emissions Data from NSCR-Equipped Natural Gas-Fueled Engine Authors: Kirby S. Chapman (speaker), Mohamed Toema, and Sarah Nuss-Warren, Kansas State University National Gas Machinery Laboratory. Venue: ASME Internal Combustion Engine Division 2009 Spring Technical Conference, May 3–6, Milwaukee, WI. http://www.asmeconferences.org/ICES09/index.cfm [external site]. Abstract: This paper describes work on a project to characterize pollutant emissions performance of non-selective catalytic reduction (NSCR) technology, including a catalyst and air-to-fuel ratio controller (AFRC), applied to four-stroke cycle rich-burn engines. Emissions and engine data were collected semi-continuously with a portable emissions analyzer on three engines in the Four Corners area. In addition, periodic emissions measurements that included ammonia were conducted several times. Data collected from October 2007 through August 2008 show significant variation in emissions levels over hours, days, and longer periods of time, as well as seasonal variation. As a result of these variations, simultaneous control of NOx to below a few hundred parts per million (ppm) and CO to below 1,000 ppm volumetric concentration was not consistently achieved. Instead, the NSCR/AFRC systems were able to simultaneously control both species to these levels for only a fraction of the time the engines were monitored. Both semi-continuous emissions data and periodically collected emissions data support a NOx-CO trade-off and a NOx-ammonia tradeoff in NSCR-equipped engines.

231

Report on the Scientific Committee for the Evaluation of the Institute of Nuclear Technology and Radiation Protection (INTRP)  

E-Print Network [OSTI]

and radiobiology Radioecology Environmental pollution Reliability and risk analysis of industrial installations and evaluated the Institute of Nuclear Reactor Technology and Radiation Protection, following the instructions characterization for Fusion The Institute operates the Research Reactor with main activities

232

Vehicle Technologies Office: Fact #276: July 14, 2003 Natural Gas Reserves,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: July 14, 2003 6: July 14, 2003 Natural Gas Reserves, Production, and Consumption, 2000 to someone by E-mail Share Vehicle Technologies Office: Fact #276: July 14, 2003 Natural Gas Reserves, Production, and Consumption, 2000 on Facebook Tweet about Vehicle Technologies Office: Fact #276: July 14, 2003 Natural Gas Reserves, Production, and Consumption, 2000 on Twitter Bookmark Vehicle Technologies Office: Fact #276: July 14, 2003 Natural Gas Reserves, Production, and Consumption, 2000 on Google Bookmark Vehicle Technologies Office: Fact #276: July 14, 2003 Natural Gas Reserves, Production, and Consumption, 2000 on Delicious Rank Vehicle Technologies Office: Fact #276: July 14, 2003 Natural Gas Reserves, Production, and Consumption, 2000 on Digg Find More places to share Vehicle Technologies Office: Fact #276:

233

Institutional change in European natural gas markets and implications for energy security: Lessons from the German case  

Science Journals Connector (OSTI)

Abstract This article focuses on institutional change in the German gas market driven by EU internal market and climate policies. It argues that institutional change has functional externalities for energy security. The German gas market provides a useful case study, as Germany is the biggest continental gas market, a major hub and transport country which has largely privatised, unbundled and separated its natural gas undertakings. Transition is ongoing, tending towards an internal market. Inter/national natural gas economics is in flux. Institutional evolution has repercussions for corporate and market structures, the operating of the system and the realization of transactions. Changes in the institutional framework crucially affect energy security, which is often associated with institutional stability. On the basis of this case study, it is argued herein that the security of natural gas supplies should be reexamined in the context of the developments described above, since overall the institutional changes in natural gas security lag behind the EUs internal natural gas market development.

Kirsten Westphal

2014-01-01T23:59:59.000Z

234

Natural gas and efficient technologies: A response to global warming  

SciTech Connect (OSTI)

It has become recognized by the international scientific community that global warming due to fossil fuel energy buildup of greenhouse CO{sub 2} in the atmosphere is a real environmental problem. Worldwide agreement has also been reached to reduce CO{sub 2} emissions. A leading approach to reducing CO{sub 2} emissions is to utilize hydrogen-rich fuels and improve the efficiency of conversion in the power generation, transportation and heating sectors of the economy. In this report, natural gas, having the highest hydrogen content of all the fossil fuels, can have an important impact in reducing CO{sub 2} emissions. This paper explores natural gas and improved conversion systems for supplying energy to all three sectors of the economy. The improved technologies include combined cycle for power generation, the Carnol system for methanol production for the transportation sector and fuel cells for both power generation and transportation use. The reduction in CO{sub 2} from current emissions range from 13% when natural gas is substituted for gasoline in the transportation sector to 45% when substituting methanol produced by the Carnol systems (hydrogen from thermal decomposition of methane reacting with CO{sub 2} from coal-fired power plants) used in the transportation sector. CO{sub 2} reductions exceeding 60% can be achieved by using natural gas in combined cycle for power generation and Carnol methanol in the transportation sector and would, thus, stabilize CO{sub 2} concentration in the atmosphere predicted to avoid undue climate change effects. It is estimated that the total fossil fuel energy bill in the US can be reduced by over 40% from the current fuel bill. This also allows a doubling in the unit cost for natural gas if the current energy bill is maintained. Estimates of the total net incremental replacement capital cost for completing the new improved equipment is not more than that which will have to be spent to replace the existing equipment conducting business as usual.

Steinberg, M.

1998-02-01T23:59:59.000Z

235

Technology Solutions for Mitigating Environmental Impacts of Oil and Gas E&P Activity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Solutions for Mitigating Technology Solutions for Mitigating Environmental Impacts of Oil and Gas E&P Activity The mission of the Environmental Program is to promote a reliable, affordable, and secure supply of domestic oil and clean-burning natural gas, by providing cost-effective environmental regulatory compliance technologies, enhancing environmental protections during oil and gas E&P operations, and facilitating the development and use of scientific, risk-based environmental regulatory frameworks.

236

Kumasi Institute of Technology and Environment Feed | Open Energy  

Open Energy Info (EERE)

Feed Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP) Information for Development Program (infoDev)

237

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coupled Hydrological, Thermal and Geomechanical Analysis of Wellbore Stability in Hydrate-Bearing Sediments Coupled Hydrological, Thermal and Geomechanical Analysis of Wellbore Stability in Hydrate-Bearing Sediments Coupled Hydrological, Thermal and Geomechanical Analysis of Wellbore Stability in Hydrate-Bearing Sediments (OTC 19672) Authors: Jonny Rutqvist (speaker), George J. Moridis, and Tarun Grover Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 ( http://www.spe.org and http://www.smenet.org [external sites] ) Abstract: This study investigated coupled multiphase flow, themal, thermodynamic and geomechanical behavior of oceanic Hydrate Bearing Sediments (HBS), during depressurization-induced gas production in general, and potential wellbore in-stability and casing deformation in particular. The project investigated the geomechanical changes and wellbore stability for two alternative cases of production using a horizontal well in a Class 3 deposit and a vertical well in a Class 2 deposit. The research compared the geomechanical responses and the potential adverse geomechanical effects for the two different cases. Analysis shows that geomechanical responses during depressurization-induced gas production from oceanic hydrate deposits is driven by the reservoir-wide pressure decline (Delta P), which in turn is controlled by the induced pressure decline near the wellbore. Because any change quickly propagates within the entire reservoir, the reservoir wide geomechanical response can occur within a few days of production induced pressure decline.

238

Theory, Investigation, and Stability of Cathode Electro-catalytic Activity„Georgia Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Theory, Investigation, and Stability of Theory, Investigation, and Stability of Cathode Electro-catalytic Activity- Georgia Institute of Technology Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of solid oxide fuel cells (SOFCs) for

239

Review of technologies for oil and gas produced water treatment  

Science Journals Connector (OSTI)

Produced water is the largest waste stream generated in oil and gas industries. It is a mixture of different organic and inorganic compounds. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging produced water on the environment has lately become a significant issue of environmental concern. Produced water is conventionally treated through different physical, chemical, and biological methods. In offshore platforms because of space constraints, compact physical and chemical systems are used. However, current technologies cannot remove small-suspended oil particles and dissolved elements. Besides, many chemical treatments, whose initial and/or running cost are high and produce hazardous sludge. In onshore facilities, biological pretreatment of oily wastewater can be a cost-effective and environmental friendly method. As high salt concentration and variations of influent characteristics have direct influence on the turbidity of the effluent, it is appropriate to incorporate a physical treatment, e.g., membrane to refine the final effluent. For these reasons, major research efforts in the future could focus on the optimization of current technologies and use of combined physico-chemical and/or biological treatment of produced water in order to comply with reuse and discharge limits.

Ahmadun Fakhrul-Razi; Alireza Pendashteh; Luqman Chuah Abdullah; Dayang Radiah Awang Biak; Sayed Siavash Madaeni; Zurina Zainal Abidin

2009-01-01T23:59:59.000Z

240

Water management technologies used by Marcellus Shale Gas Producers.  

SciTech Connect (OSTI)

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wireless technology collects real-time information from oil and gas wells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wireless technology collects real-time information from oil and gas Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells already producing oil and gas and drilling operations for new wells. One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells

242

DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas  

Broader source: Energy.gov (indexed) [DOE]

DOE-Funded Primer Underscores Technology Advances, Challenges of DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas Development DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas Development April 14, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) announces the release of "Modern Shale Gas Development in the United States: A Primer." The Primer provides regulators, policy makers, and the public with an objective source of information on the technology advances and challenges that accompany deep shale gas development. Natural gas production from hydrocarbon rich deep shale formations, known as "shale gas," is one of the most quickly expanding trends in onshore domestic oil and gas exploration. The lower 48 states have a wide

243

Gas Detonation and its Application in Engineering and Technologies (Review)  

Science Journals Connector (OSTI)

The most relevant aspects of advanced experimental investigations of gas detonation and its mathematical simulation are presented. Examples of the engineering use of gas detonation are given.

Yu. A. Nikolaev; A. A. Vasil'ev

2003-07-01T23:59:59.000Z

244

Technology Key to Harnessing Natural Gas Potential | Department...  

Energy Savers [EERE]

- for a total of 30 million - that will pursue innovations in natural gas storage tanks and fueling stations, helping to harness our abundant supplies of domestic natural gas...

245

Electric Power Research Institute: Environmental Control Technology Center report to the Steering Committee. Final technical monthly report  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal (TER) test block as the Pilot was operated at baseline, forced oxidation, and inhibited oxidation conditions. As the NYSEG Kintigh Station conducted a test bum this month with Petroleum coke/coal fuel blends, a one-week trace element characterization test was performed across the Pilot unit testing this flue gas. Additionally, the mercury measurement (Method 29) studies continued this month as investigations into various activated carbons, metal amalgams, and impinger capture solutions were conducted. As a result of new directions received from EPRI, August was the last scheduled month for testing on the 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit at the ECTC. This month, the unit was isolated from the flue gas path and placed in a cold-standby mode for future test activities.

NONE

1995-09-01T23:59:59.000Z

246

2005 Joseph Sussman, Massachusetts Institute of Technology 1 WHERE TRANSPORTATION IS GOING  

E-Print Network [OSTI]

principles ­ Engineering & economic models · Policy system "sphere" ­ More qualitative in nature and often Professor of Civil & Environmental Engineering and Engineering Systems MIT #12;© 2005 Joseph Sussman, Massachusetts Institute of Technology 2 Engineering Science ENGINEERING SYSTEMS · Viewed as a distinct approach

Bertini, Robert L.

247

Illumination and Affine-Invariant Point Matching using an Ordinal Approach Indian Institute Of Technology Madras  

E-Print Network [OSTI]

Illumination and Affine- Invariant Point Matching using an Ordinal Approach Raj Gupta Indian://www.cs.iitm.ernet.in/~rgupta/ Anurag Mittal Indian Institute Of Technology Madras I.I.T Post Office Chennai-600 036 amittal- invariant point matching using ordinal features. Ordinal measures for matching only consider the order

Mittal, Anurag

248

This article was downloaded by:[Indian Institute of Technology Kanpur] On: 19 July 2008  

E-Print Network [OSTI]

This article was downloaded by:[Indian Institute of Technology Kanpur] On: 19 July 2008 Access directly or indirectly in connection with or arising out of the use of this material. #12;DownloadedBy:[Indian the following will be considered: (i) redesignating the sequence to point out an error in the paper by Chatto

Subramaniam, Anandh

249

Eawag: Swiss Federal Institute of Aquatic Science and Technology berlandstrasse 133  

E-Print Network [OSTI]

Eawag: Swiss Federal Institute of Aquatic Science and Technology Eawag ?berlandstrasse 133 P.O. Box in Sustainable Water Resources Management Pradeep Aggarwal International Atomic Energy Agency (IAEA), Vienna will discuss the IAEA's programme which develops and helps apply isotope techniques for used to build

Wehrli, Bernhard

250

Eawag: Swiss Federal Institute of Aquatic Science and Technology berlandstrasse 133  

E-Print Network [OSTI]

Eawag: Swiss Federal Institute of Aquatic Science and Technology Eawag ?berlandstrasse 133 P.O. Box, and derive carbon and energy from the plant photosynthate flux, and extract mineral elements from soil agents, driven by the carbon flux from their plant hosts. [1] Taylor L.L., Leake J.R., Quirk J., Hardy K

Wehrli, Bernhard

251

Andrew Cotton-Clay Massachusetts Institute of Technology E-mail: acotton@math.berkeley.edu  

E-Print Network [OSTI]

Andrew Cotton-Clay Massachusetts Institute of Technology E-mail: acotton: Gromov's Nonsqueezing Theorem · Advisor: Peter Kronheimer Publications · A. Cotton-Clay. A sharp bound on fixed points of area-preserving surface diffeo- morphisms. In preparation. · A. Cotton-Clay. Symplectic

Cotton-Clay, Andrew

252

Institute for Critical Technology and Applied Science Seminar Series Fish robotics: understanding the diversity  

E-Print Network [OSTI]

Institute for Critical Technology and Applied Science Seminar Series Fish robotics: understanding and hydrodynamic studies of fish locomotor function, and the implications for construction of robotic models-swimming fishes have led to the development of a variety of self-propelling robotic models. Data from

Crawford, T. Daniel

253

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJ EeT 1'1AC  

E-Print Network [OSTI]

Institute of Technology and Honeywell Information Systems Inc. All ri ghts reserved Page i i #12;PRE F ACE.t.T. Project MAC, the General Electric Company Computer Department (now Honeywell Information Systems Inc hardware base for Multtcs, Honeywell announced that it would market Multics as a commerctal product

Saltzer, Jerome H.

254

Massachusetts Institute of Technology Handout 4 6.857: Network and Computer Security March 11, 2013  

E-Print Network [OSTI]

Massachusetts Institute of Technology Handout 4 6.857: Network and Computer Security March 11, 2013 anonymously, please note this in your profile on the homework submission website. Problem 3-1. Side . . . 10000] (it might take a bit to load the triples for a large num). Also, feel free to query the server

Gummadi, Ramakrishna

255

A threat taxonomy for mHealth privacy Institute for Security, Technology, and Society  

E-Print Network [OSTI]

A threat taxonomy for mHealth privacy David Kotz Institute for Security, Technology, and Society and to manage medical conditions. In this paper, we examine the privacy-related threats to these so-called mHealth that could support privacy-sensitive mHealth systems. We conclude with a brief summary of research challenges

256

Oregon Institute of Technology Recognized for Increasing its Use of Geothermal and Solar Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

Today, the Department of Energy recognized the Oregon Institute of Technology (OIT) for boosting its use of clean energy at the first campus in America to be heated by geothermal energy, achieving a major milestone toward its goal of making all seven schools in the Oregon University System carbon-neutral by 2020.

257

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY Advertisement No. Rect/Admn-I/2013/7  

E-Print Network [OSTI]

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY Advertisement No. Rect/Admn-I/2013/7 Applications are invited processes and procedures for international clients. Job Profile: The incumbent shall be involved in all and handling communication, 7. preparing presentations and informational materials, 8. preparing grant

Narayanan, H.

258

New Researcher Orientation Checklist Page 1 of 2 California Institute of Technology  

E-Print Network [OSTI]

: The Emergency Procedures section applies to all researchers.) Every researcher must receive work Pathogens (working with human cells, blood, tissue and fluids) Chemical Handling Procedures ChemotherapyNew Researcher Orientation Checklist Page 1 of 2 2012_06_18 California Institute of Technology

Heaton, Thomas H.

259

Asian Institute of Technology (AIT), Klong Luang, Pathumthani, Thailand The Small Earth Nepal (SEN), Kathmandu, Nepal  

E-Print Network [OSTI]

Earth Nepal (SEN), Kathmandu, Nepal Center of Research for Environment Energy and Water (CREEW), Kathmandu, Nepal International Research Center for River Basin Environment-University of Yamanashi (ICRE). Kathmandu Valley Groundwater Outlook. Asian Institute of Technology (AIT), The Small Earth Nepal (SEN

Walter, M.Todd

260

School of Architecture College of Architecture Georgia Institute of Technology M.S. IN URBAN DESIGN  

E-Print Network [OSTI]

1 School of Architecture College of Architecture Georgia Institute of Technology M.S. IN URBAN and richly interdisciplinary experience, with required courses in urban design, architecture and city planning, with additional opportunities in civil and environmental engineering, real estate development

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Graz University of Technology Institute of High Voltage Engineering and System Performance  

E-Print Network [OSTI]

.hspt@tugraz.at u www.hspt.tugraz.at Institute of High Voltage Engineering and System Performance Test Laboratory systems Test of insulators, fittings and accessories Testing of high voltage equipment Impulse voltage and current tests On-site-test of medium voltage cables Electrical methods in environmental technology

262

NIST SP 1168 NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY NIST CENTER FOR NEUTRON RESEARCH  

E-Print Network [OSTI]

membrane as determined by neutron reflectometry. See the highlight article by Zan et al. on p.12. #12NIST SP 1168 #12;NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY ­ NIST CENTER FOR NEUTRON RESEARCH FOR NEUTRON RESEARCH DISCLAIMER Certain commercial entities, equipment, or materials may be identified

263

Petroleum and geothermal production technology in Russia: Summary of information obtained during informational meetings with several Russian Institutes  

SciTech Connect (OSTI)

Russian scientists and engineers have drilled the deepest holes in the world. It is recognized that this experience has given them an expertise in drilling superdeep holes, as well as other aspects of drilling, completions, and geophysics. More and more US oil and gas companies are vigorously expanding their exploration and development into Russia. It is important for them to identify and use Russian technology in drilling, completion, logging, and reservoir characterization to the extent possible, in order to both reduce drilling costs and help support the Russian economy. While these US companies are interested in becoming involved in and/or sponsoring research in Russia, they have been unsure as to which scientists and institutes are working on problems of interest. It was also important to determine in which areas Russian technology is farther advanced than in the West. Such technology could then be commercialized as part of the Industrial Partnering Program. In order to develop a clear understanding of these issues, two Sandia engineers with drilling and completions expertise and a geophysicist with expertise in reservoir analysis traveled to Russia to meet with Russian scientists and engineers to discuss their technologies and areas of interest. This report contains a summary of the information obtained during the visit.

Schafer, D.M.; Glowka, D.A.; Teufel, L.W.

1995-04-01T23:59:59.000Z

264

Low-Cost Gas Heat Pump For Building Space Heating | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Space Heating Lead Performer: Stone Mountain Technologies - Erwin, TN Partners: -- A.O. Smith - Milwaukee, WI -- Gas Technology Institute - Des Plaines, IL DOE Funding: 903,000...

265

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Evaluation of a Surfactant-Modified Zeolite System for Removal of Organics from Produced Water Field Evaluation of a Surfactant-Modified Zeolite System for Removal of Organics from Produced Water Field Evaluation of a Surfactant-Modified Zeolite System for Removal of Organics from Produced Water Authors: Robert S. Bowman, New Mexico Technological University, Socorro, NM; Enid J. Sullivan, Los Alamos National Laboratory, Los Alamos, NM; and Lynn E. Katz and Kerry A. Kinney, University of Texas, Austin, TX. Venue: 44th Annual Meeting of the Clay Minerals Society in Santa Fe, NM, June 3–7, 2007 (http://www.clays.org/home/HomeAnnualMeeting.html [external site]). Abstract: About 2.3 billion cubic meters (600 billion gallons) of wastewater (produced water) is generated each year as a byproduct of oil and gas operations in the continental United States. Disposal of this water represents about 10% of the cost of hydrocarbon production. Inexpensive treatment technologies can lower the cost of disposal and generate higher-quality water for other uses. Surfactant-modified zeolite (SMZ) has been shown to effectively sorb a variety of nonpolar organic compounds from water. SMZ was tested as a medium to remove benzene, toluene, ethylbenzene, and xylenes (BTEX) from produced water generated during extraction of coalbed natural gas. BTEX removal is necessary prior to surface discharge of produced waters or as a pretreatment for reverse osmosis. We demonstrated in laboratory column experiments that BTEX-saturated SMZ is readily regenerated by air sparging. There was no loss in BTEX sorption capacity, and a minor decrease in hydraulic conductivity, after 50 sorption/regeneration cycles. Based upon the laboratory results, a pilot-scale produced-water treatment system was designed and tested at a reinjection facility in the San Juan Basin of New Mexico. The SMZ-based system was designed to treat up to 110 liters (30 gallons) of produced water per hour on a continuous basis by running two SMZ columns in series. The system performed as predicted, based on laboratory results, over repeated feed and regeneration cycles during the month-long operation. The BTEX-laden sparge gases were treated with a vapor-phase bioreactor system, resulting in an emissions-free process

266

Oil & Gas Science and Technology --Rev. IFP Energies nouvelles Copyright 2010 IFPEN Energies nouvelles  

E-Print Network [OSTI]

Oil & Gas Science and Technology -- Rev. IFP Energies nouvelles Copyright © 2010 IFPEN Energies to an effective thermal management system and to maintain safety, perfor- #12;2 Oil & Gas Science and Technology of Michigan, Ann Arbor, Michigan, 48109 - USA 2 U.S. Army Tank Automotive Research, Development

Stefanopoulou, Anna

267

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Numerical Studies of Geomechanical Stability of Hydrate-Bearing Sediments Numerical Studies of Geomechanical Stability of Hydrate-Bearing Sediments Authors: George J. Moridis, Jonny Rutqvist, Lawrence Berkeley National Laboratory. Venue: 2007 Offshore Technology Conference, Houston, TX, April 30–May 1, 2007 (http://www.otcnet.org/ [external site]). Abstract: The thermal and mechanical loading of hydrate-bearing sediments (HBS) can result in hydrate dissociation and a significant pressure increase, with potentially adverse consequences on the integrity and stability of the wellbore assembly, the HBS, and the bounding formations. The perception of HBS instability, coupled with insufficient knowledge of their geomechanical behavior and the absence of predictive capabilities, has resulted in a strategy of avoidance of HBS when locating offshore production platforms. These factors can also impede the development of hydrate deposits as gas resources. For the analysis of the geomechanical stability of HBS, project researchers developed and used a numerical model that integrates a commercial geomechanical code into a simulator describing the coupled processes of fluid flow, heat transport, and thermodynamic behavior in geologic media. The geomechanical code includes elastoplastic models for quasi-static yield and failure analysis and viscoplastic models for time-dependent (creep) analysis. The hydrate simulator can model the non-isothermal hydration reactions (equilibrium or kinetic), phase behavior, and flow of fluids and heat in HBS, and can handle any combination of hydrate dissociation mechanisms. The simulations can account for the interdependence of changes in the hydraulic, thermodynamic, and geomechanical properties of the HBS, in addition to swelling/shrinkage, displacement (subsidence), and possible geomechanical failure. Researchers investigated in three cases the coupled hydraulic, thermodynamic, and geomechanical behavior of oceanic HBS systems. The first involves hydrate heating as warm fluids from deeper, conventional reservoirs ascend to the ocean floor through uninsulated pipes intersecting the HBS. The second case involves mechanical loading caused by the weight of structures placed on HBS at the ocean floor, and the third describes system response during gas production from a hydrate deposit. The results indicate that the stability of HBS in the vicinity of warm pipes may be significantly affected, especially near the ocean floor where the sediments are unconsolidated and more compressible. Conversely, the increased pressure caused by the weight of structures on the ocean floor increases the stability of hydrates, while gas production from oceanic deposits minimally affects the geomechanical stability of HBS under the conditions that are deemed desirable for production.

268

Volume 104, Number 1, JanuaryFebruary 1999 Journal of Research of the National Institute of Standards and Technology  

E-Print Network [OSTI]

of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 104, 59 (1999)] The NIST Quantitative Infrared. Lafferty National Institute of Standards and Technology, Gaithersburg, MD 20899-0001 With the recent in the 1990 U.S.EPA Clean Air Act amendment (CAAA) can be measured. The National Institute of Standards

Magee, Joseph W.

269

U.S. Natural Gas Markets and Perspectives | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U.S. Natural Gas Markets and Perspectives U.S. Natural Gas Markets and Perspectives Presentation by Bill Liss, Gas Technology Institute, at the Natural Gas and Hydrogen...

270

VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology  

E-Print Network [OSTI]

in the following areas: · NIST Safety Systems and Safety Culture · NIST Role in Advanced Manufacturing · NIST Role in the Public Safety Network · NIST Centers of Excellence · R&D Planning · NIST Budget The Committee reviews of the staff, institutional culture, and the efficacy of the facility infrastructure. Under the Committee

271

Rarefied gas dynamics and its applications to vacuum technology F. Sharipov  

E-Print Network [OSTI]

Rarefied gas dynamics and its applications to vacuum technology F. Sharipov Universidade Federal do Paraná, Curitiba, 81531-990, Brazil Abstract Basic concepts of rarefied gas dynamics are given in a concise form. Some problems of rarefied gas flows are considered, namely, calculations of velocity slip

Sharipov, Felix

272

Life Cycle Greenhouse Gas Emissions of Current Oil Sands Technologies: Surface Mining and In Situ Applications  

Science Journals Connector (OSTI)

Life Cycle Greenhouse Gas Emissions of Current Oil Sands Technologies: Surface Mining and In Situ Applications ... efficiency - gas turbine ?GT ... The studied uncertainties include, (1) uncertainty in emissions factors for petroleum substitutes, (2) uncertainties resulting from poor knowledge of the amt. of remaining conventional petroleum, and (3) uncertainties about the amt. of prodn. of petroleum substitutes from natural gas and coal feedstocks. ...

Joule A. Bergerson; Oyeshola Kofoworola; Alex D. Charpentier; Sylvia Sleep; Heather L. MacLean

2012-06-05T23:59:59.000Z

273

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming |  

Broader source: Energy.gov (indexed) [DOE]

Sponsored Technology Enhances Recovery of Natural Gas in Sponsored Technology Enhances Recovery of Natural Gas in Wyoming DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming March 26, 2009 - 1:00pm Addthis Washington, DC --Research sponsored by the U.S. Department of Energy (DOE) Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana. In a recently completed project, researchers at the University of Wyoming used the isotopic carbon-13 to carbon-12 ratio to address environmental issues associated with water co-produced with coalbed natural gas. The research resulted in a patent application for this unique use of the ratio.

274

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming |  

Broader source: Energy.gov (indexed) [DOE]

Technology Enhances Recovery of Natural Gas in Technology Enhances Recovery of Natural Gas in Wyoming DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming March 26, 2009 - 1:00pm Addthis Washington, DC --Research sponsored by the U.S. Department of Energy (DOE) Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana. In a recently completed project, researchers at the University of Wyoming used the isotopic carbon-13 to carbon-12 ratio to address environmental issues associated with water co-produced with coalbed natural gas. The research resulted in a patent application for this unique use of the ratio. An added benefit of the project, which was managed by the National Energy

275

NETL: News Release - DOE, Penn State To Establish Gas Storage Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 11, 2003 September 11, 2003 DOE, Penn State To Establish Gas Storage Technology Consortium Goal is to Improve Performance of the Nation's Underground Gas Storage Infrastructure Map of U.S. natural gas storage sites - click for larger image FOSSIL FACT: The nation's gas industry stores natural gas in more than 400 underground storage reservoirs and salt caverns throughout the country. Click here for larger image UNIVERSITY PARK , PA - The Pennsylvania State University has been selected by the U.S. Department of Energy to establish and operate an underground gas storage technology consortium. The agreement between Penn State and DOE's National Energy Technology Laboratory Strategic Center for Natural Gas will last four-and-a-half years at a total cost of $3 million. The first phase of the agreement will last

276

Advanced Acid Gas Separation Technology for Clean Power and Syngas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications Air Products and Chemicals, Inc. Project Number: FE0013363 Project Description In this project, Air Products will operate a two-bed mobile system at the National Carbon Capture Center (NCCC) facility. A slipstream of authentic, high-hydrogen syngas based on low-rank coal will be evaluated as the feedstock. Testing will be conducted for approximately eight weeks, thereby providing far longer adsorbent exposure data than demonstrated to date. By utilizing real-world, high- hydrogen syngas, information necessary to understand the utility of the system for methanol production will be made available. In addition, Air Products will also operate a multi-bed PSA process development unit (PDU), located at its Trexlertown, PA headquarters, to evaluate the impact of incorporating pressure equalization steps in the process cycle. This testing will be conducted utilizing a sulfur-free, synthetic syngas, and will improve the reliability of the prediction of the system's operating performance at commercial scale.

277

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Permeability of Laboratory-Formed Hydrate-Bearing Sand Permeability of Laboratory-Formed Hydrate-Bearing Sand Permeability of Laboratory-Formed Hydrate-Bearing Sand (OTC 19536) Authors: Timothy J. Kneafsey (speaker), Yongkoo Seol, Arvind Gupta, and Liviu Tomutsa Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 http://www.spe.org and http://www.smenet.org [external sites] Abstract: Methane hydrate was formed in moist sand under confining stress in a long, x-ray transparent pressure vessel. Three initial water saturations were used to form three different methane hydrate saturations. X-ray computed tomography (CT) was used to observe location-specific density changes, caused by hydrate formation and flowing water. Gas permeability was measured in each test for dry sand, moist sand, frozen sand, and hydrate-bearing sand. Results of these measurements are presented. Water was flowed through the hydrate-bearing sand, and the changes in water saturation were observed using CT scanning. Inverse modeling will be performed using these data to extend the relative permeability measurements

278

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of Nonequilibrium Sorption of Gasoline Components by Surfactant-Modified Zeolite Characterization of Nonequilibrium Sorption of Gasoline Components by Surfactant-Modified Zeolite Characterization of Nonequilibrium Sorption of Gasoline Components by Surfactant-Modified Zeolite Authors: Joshua A. Simpson and Robert S. Bowman, New Mexico Technological University, Socorro, NM Venue: 44th Annual Meeting of the Clay Minerals Society in Santa Fe, NM, June 3–7, 2007 (http://www.clays.org/home/HomeAnnualMeeting.html [external site]). Abstract: Surfactant-modified zeolite (SMZ) has been shown to effectively remove benzene, toluene, ethylbenzene, and xylene (BTEX) from water generated during oil and natural gas production (produced water). The BTEX sorption isotherms are linear and noncompetitive, suggesting that the removal mechanism is partitioning into the surfactant’s hydrophobic bilayer formed on SMZ. Even though BTEX sorption in batch systems is rapid, chemical equilibrium models do not accurately describe BTEX transport through packed beds of SMZ. Comparison with transport of a nonreactive tracer (tritium) suggests that two-site, diffusive nonequilibrium sorption-desorption controls BTEX transport. We conducted batch experiments with SMZ to determine the nonequilibrium sorption kinetics of each BTEX constituent. The kinetic measurements were used to parameterize a nonequilibrium transport model to predict BTEX removal under varying flow conditions. The accuracy of predictions is being tested using laboratory column experiments with produced water from the San Juan Basin of New Mexico

279

Assisting Transit Agencies with Natural Gas Bus Technologies  

SciTech Connect (OSTI)

A 2-page fact sheet summarizing the U.S. Department of Energy Natural Gas Transit Users Group, which provides assistance to transit agencies implementing natural gas vehicles into their fleets.

Not Available

2005-04-01T23:59:59.000Z

280

Current Status of High Resolution Column Technology for Gas Chromatography  

Science Journals Connector (OSTI)

......work in high-resolution gas-solid chromatography...developments in high- resolution gas chromatographic column...illary or high-resolution gas chromatography. Of these...column material is its high cost compared to glass columns...re sulting from column production, and requires deactivation......

Mary A. Kaiser; Matthew S. Klee

1986-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The efficiency of using gas turbine technologies in developing small oil-and-gas-condensate deposits  

Science Journals Connector (OSTI)

The paper considers the technical and economic features of using stream-gas and gas-turbine power generators in developing small oil-and-gas-condensate deposits in Irkutsk oblast under conditions of carrying o...

A. M. Karasevich; A. V. Fedyaev; G. G. Lachkov; O. N. Fedyaeva

2012-02-01T23:59:59.000Z

282

Semantic technology in the oil and gas drilling domain.  

E-Print Network [OSTI]

??Data integration and knowledge representation in the oil and gas drilling domain are two challenges much work is focused upon. They are important real-world challenges (more)

Over, Lars

2010-01-01T23:59:59.000Z

283

Natural Gas Vehicle Webinar: Technology, Best Strategies, and Lessons Learned  

Office of Energy Efficiency and Renewable Energy (EERE)

This Clean Cities program webinar elaborates first on successful past technology choices and then suggests future technological pathways that can be taken for the United States to expand its use of...

284

NATURAL GAS: Diversity for Profit  

Science Journals Connector (OSTI)

NATURAL GAS: Diversity for Profit ... "The current and future natural gas shortage may be a blessing in disguise. ... Getting involved will mean increased profitability by becoming an integrated total energy company and not just a marketer of natural gas, was the repeated message of the Institute of Gas Technology. ...

1969-12-01T23:59:59.000Z

285

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical strength and seismic property measurements of hydrate-bearing sediments Mechanical strength and seismic property measurements of hydrate-bearing sediments Mechanical strength and seismic property measurements of hydrate-bearing sediments (HBS) during hydrate formation and loading tests (OTC 19559) Authors: Seiji Nakagawa (speaker), Timothy J. Kneafsey, and George J. Moridis Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 http://www.spe.org and http://www.smenet.org [external sites] Abstract: An on-going effort on conducting laboratory triaxial compression tests on synthetic methane hydrate-bearing sediment cores is presented. Methane hydrate is formed within a sand pack inside a test cell under controlled temperature and confining stress, and triaxial compression tests are performed while monitoring seismic properties. A unique aspect of the experiment is that the formation and dissociation of hydrate in a sediment core, and the failure of the sample during loading tests, can be monitored in real time using both seismic waves and x-ray CT imaging. For this purpose, a specially designed triaxial (geomechanical) test cell was built. This cell allows for conducting seismic wave measurements on a sediment core using compressional and shear (torsion) waves. Concurrently, CT images can be obtained through an x-ray-transparent cell wall. These are used to determine the porosity distribution within a sample owing to both original sand packing and formation of hydrate in the pore space. For interpreting the results from both seismic measurements and geomechanical tests, characterization of sample heterogeneity can be critically important. In this paper, the basic functions of the test cell are presented, with the results of preliminary experiments using non-hydrate bearing sandpack and sandstone core. These measurements confirmed that (1) clear x-ray images of gas-fluid boundaries within a sediment/rock core can be obtained through a thick aluminum test cell wall, (2) the test cell functions correctly during loading tests, and (3) both compressional and shear waves can be measured during a loading test. Further experiments using methane-hydrate-bearing samples will be presented at the conference

286

International Center 3201 South State Street, MTCC -Room 203 (312)-567-3680 icenter@iit.edu www.ic.iit.edu Illinois Institute of Technology  

E-Print Network [OSTI]

@iit.edu ­ www.ic.iit.edu Illinois Institute of Technology International Center 3201 S. State Street MTCC, Room Institute of Technology (IIT) in order to facilitate my transfer. Signature: _Date:_ SECTION B: THIS SECTION notified us of his/her intent to transfer to Illinois Institute of Technology. Please complete

Heller, Barbara

287

DOE Technology Successes - "Breakthrough" Gas Turbines | Department of  

Broader source: Energy.gov (indexed) [DOE]

DOE Technology Successes - "Breakthrough" Gas Turbines DOE Technology Successes - "Breakthrough" Gas Turbines DOE Technology Successes - "Breakthrough" Gas Turbines For years, gas turbine manufacturers faced a barrier that, for all practical purposes, capped power generating efficiencies for turbine-based power generating systems. The barrier was temperature. Above 2300 degrees F, available cooling technologies were insufficient to protect the turbine blades and other internal components from heat degradation. Since higher temperatures are the key to higher efficiencies, this effectively limited the generating efficiency at which a turbine power plant could convert the energy in the fuel into electricity. The Department of Energy's Office of Fossil Energy took on the challenge of turbine temperatures in 1992, and nine years later, its private sector

288

DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

Broader source: Energy.gov [DOE]

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of hydrogen production using low-cost natural gas.

289

The evaluation of waterfrac technology in low-permeability gas sands in the East Texas basin  

E-Print Network [OSTI]

fracture treatments. This study evaluates fracture stimulation technology in tight gas sands by using case histories found in the petroleum engineering literature and by using a comparison of the performance of wells stimulated with different treatment...

Tschirhart, Nicholas Ray

2005-11-01T23:59:59.000Z

290

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Warm Gas Multicontaminant Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Description Integrated Gasification Combined Cycle (IGCC) technology offers a means to utilize coal -the most abundant fuel in the United States-to produce a host of products, ranging from electricity to value-added chemicals like transportation fuels and hydrogen, in an efficient, environmentally friendly manner. However, the overall cost (capital, operating,

291

DOE/EA-1621: Oregon Institute of Technology Deep Geothermal Well and Power Plant Project (September 2008)  

Broader source: Energy.gov (indexed) [DOE]

Oregon Institute of Technology (OIT) Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center Oregon Institute of Technology (OIT) Klamath Falls, OR 97601 Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center

292

The Department of Quantum Nanoscience within the Kavli Institute of Nanoscience at Delft University of Technology opens positions of  

E-Print Network [OSTI]

The Department of Quantum Nanoscience within the Kavli Institute of Nanoscience at Delft University of Technology opens positions of PROFESSORS of experimental Quantum Nanoscience (assistant, associate or full) Job description The department of Quantum Nanoscience invites applications for two professors

293

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact sheet from Membrane Technology and Research, Inc. about its pilot-scale industrial membrane system that was funded by the SBIR program.

294

Gas Analysis Of Geothermal Fluid Inclusions- A New Technology...  

Open Energy Info (EERE)

inclusion gas analysis of drill chip cuttings in a similar fashion as used in the petroleum industry. Thus the results of this project may lower exploration costs both in the...

295

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pore-Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects Pore-Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects Pore-Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects Authors: Javad Behseresht, Masa Prodanovic, and Steven Bryant, University of Texas at Austin. Venue: American Geophysical Union fall meeting, San Francisco, CA, December 10-14, 2007 (http://www.agu.org/meetings/fm07/ [external site]). Abstract: A spectrum of behavior is encountered in ocean sediments bearing methane hydrates, ranging from essentially static accumulations where hydrate and brine co-exist, to active cold seeps where hydrate and a methane gas phase co-exist in the hydrate stability zone (HSZ). In this and a companion paper (Jain and Juanes), the researchers describe methods to test the following hypothesis: The coupling between drainage and fracturing, both induced by pore pressure, determines whether methane gas entering the HSZ is converted completely to hydrate. The researchers will describe a novel implementation of the level set method to determine the capillarity-controlled displacement of brine by gas from sediment and from fractures within the sediment. Predictions of fluid configurations in infinite-acting-model sediments indicate that the brine in drained sediment (after invasion by methane gas) is better connected than previously believed. This increases the availability of water and the rate of counter-diffusion of salinity ions, thus relaxing the limit on hydrate build-up within the gas-invaded grain matrix. Simulated drainage of a fracture in sediment shows that points of contact between fracture faces are crucial. They allow residual water saturation to remain within an otherwise gas-filled fracture. Simulations of imbibition—which can occur, for example, after drainage into surrounding sediment reduces gas phase pressure in the fracture—indicate that the gas/water interfaces at contact points significantly shift the threshold pressures for withdrawal of gas. During both drainage and imbibition, the contact points greatly increase water availability for hydrate formation within the fracture. The researchers will discuss coupling this capillarity-controlled displacement model with a discrete element model for grain-scale mechanics. The coupled model provides a basis for evaluating the macroscopic conditions (thickness of gas accumulation below the hydrate stability zone, average sediment grain size, principal earth stresses) favoring co-existence of methane gas and hydrate in the HSZ. Explaining the range of behavior is useful in assessing resource volumes and evaluating pore-to-core scale flow paths in production strategies

296

Gas-lift technology applied to dewatering of coalbed methane wells in the black warrior basin  

SciTech Connect (OSTI)

Coalbed methane (CBM) wells are usually dewatered with sucker rod or progressive cavity pumps to reduce wellbore water levels, although not without problems. This paper describes high-volume artificial-lift technology that incorporates specifically designed gas-lift methods to dewater Black Warrior CBM wells. Gas lift provides improved well maintenance and production optimization by the use of conventional wireline service methods.

Johnson, K.J.; Coats, A. (Otis Engineering Corp., Dallas, TX (United States)); Marinello, S.A. (Colorado School of Mines, Golden, CO (United States))

1992-11-01T23:59:59.000Z

297

Cap Gap Extensions This information is issued to F-1 International Students at the Illinois Institute of Technology as guidance.  

E-Print Network [OSTI]

of beneficiaries who will work at institutions of higher education or a related or affiliated nonprofit entityCap Gap Extensions This information is issued to F-1 International Students at the Illinois Institute of Technology as guidance. This guidance is not immigration regulation and is not intended

Heller, Barbara

298

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactive transport modeling of oceanic gas hydrate instability and dissociation in response to climate change Reactive transport modeling of oceanic gas hydrate instability and dissociation in response to climate change Reactive transport modeling of oceanic gas hydrate instability and dissociation in response to climate change Authors: Matthew T. Reagan and George J. Moridis Venue: 6th International Conference on Gas Hydrates 2008, Vancouver, British Columbia, July 9-12, 2008 (http://www.icgh.org [external site]) Abstract: Paleoceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating past global climate. The implication is that global oceanic deposits of methane gas hydrate is the main culprit for a sequence of rapid global warming affects that occurred during the late Quaternary period. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed coupled thermo-hydrological-chemical simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor, and assessed the potential for methane release into the ecosystem. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and the effects of benthic biogeochemical activity. The results show that while many deep hydrate deposits are indeed stable during periods of rapid ocean temperature changes, shallow deposits (such as those found in arctic regions or in the Gulf of Mexico) can undergo rapid dissociation and produce significant carbon fluxes over a period of decades. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane and the formation of carbonates) to sequester the released carbon. This model will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

299

Technology options and effective policies to reduce greenhouse gas  

E-Print Network [OSTI]

@ecn.nl, Energy research Centre of the Netherlands, Policy Studies department. Abstract A more sustainable energy.html. The following partners are involved in Part 2 of the CASCADE MINTS project: · Energy research Centre Economic Research GmbH (ZEW) (Germany); PACE model. · The Institute for Energy Economics and the Rational

300

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Strategies for Marine Hydrate Reservoirs Production Strategies for Marine Hydrate Reservoirs Production Strategies for Marine Hydrate Reservoirs Authors: J. Phirani. & K. K. Mohanty Venue: 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. http://www.ichg.org/showcontent.aspx?MenuID=287 [external site]. Abstract: Large quantities of natural gas hydrate are present in marine sediments. This research is aimed at assessing production of natural gas from these deposits. We had developed a multiphase, multicomponent, thermal, 3D simulator in the past, which can simulate production of hydrates both in equilibrium and kinetic modes. Four components (hydrate, methane, water and salt) and five phases (hydrate, gas, aqueous-phase, ice and salt precipitate) are considered in the simulator. The intrinsic kinetics of hydrate formation or dissociation is considered using the Kim–Bishnoi model. Water freezing and ice melting are tracked with primary variable switch method (PVSM) by assuming equilibrium phase transition. In this work, we simulate depressurization and warm water flooding for hydrate production in a hydrate reservoir underlain by a water layer. Water flooding has been studied as a function of well spacing, well orientation, and injection temperature. Results show that depressurization is limited by the supply of heat of hydrate formation. Warm water flooding can supply this heat of formation. Gas production rate is higher for the water flooding than depressurization. Optimum configuration for wells and water temperature are identified.

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas-hydrate concentration and uncertainty estimation from electrical resistivity logs: examples from Green Canyon, Gulf of Mexico Gas-hydrate concentration and uncertainty estimation from electrical resistivity logs: examples from Green Canyon, Gulf of Mexico Carbon isotope evidence (13C and 14C) for fossil methane-derived dissolved organic carbon from gas hydrate-bearing cold seeps Authors: Pohlman, J.W. (speaker), Coffin, R.B., and Osburn, C.L., U.S. Naval Research Laboratory, Washington, D.C.; Bauer, J.E., College of William & Mary, Williamsburg, VA; Venue: Goldschmidt 2007 Atoms to Planets conference in Cologne, Germany, August 19-24, 2007 http://www.the-conference.com/conferences/2007/gold2007/ [external site]. Abstract: No abstract available yet. Related NETL Project: The proposed research of the related NETL project DE-AI26-05NT42496, “Conducting Scientific Studies of Natural Gas Hydrates to Support the DOE Efforts to Evaluate and Understand Methane Hydrates,” is to conduct scientific studies of natural gas hydrates to support DOE efforts to evaluate and understand methane hydrates, their potential as an energy resource, and the hazard they may pose to ongoing drilling efforts. This project

302

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on December 10-11, 2009. Here you'll find information about the workshop's focus, agenda and notes, and presentations. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Focus of the Workshop The workshop aimed to: Compare fuel properties-including blends-industries, and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

303

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Authors: John and Deidre Boysen Venue: International Petroleum and Biofuels Environmental Conference, November 11-13, 2008, Albuquerque, NM cese@utulsa.edu Abstract: Economic and efficient produced water management is complex. Produced waters contain mixtures of organic and inorganic compounds, including heavy metals. Many of these constituents interfere with treatment processes that are selective for other constituents. Further, the concentrations of organic and inorganic constituents vary widely with location and producing formation. In addition, regulations related to discharge and beneficial uses vary from state to state, basin-to-basin and well location to well location.

304

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Authors: Robert Hunter (ASRC Energy), Scott Digert (BPXA), Tim Collett (USGS), Ray Boswell (USDOE) Venue: AAPG National Meeting Gas Hydrate session, Oral Presentation, San Antonio, TX, April 22, 2008 (http://www.AAPG.org [external site]) Abstract: This BP-DOE collaborative research project is helping determine whether or not gas hydrate can become a technically and economically recoverable gas resource. Reservoir characterization, development modeling, and associated studies indicate that 0-0.34 trillion cubic meters (TCM) gas may be technically recoverable from the estimated 0.92 TCM gas-in-place within the Eileen gas hydrate accumulation on the Alaska North Slope (ANS). Reservoir modeling indicates sufficient potential for technical recovery to justify proceeding into field operations to acquire basic reservoir and fluid data from the Mount Elbert gas hydrate prospect in the Milne Point Unit (MPU). Successful drilling and data acquisition in the Mount Elbert-01 stratigraphic test well was completed during February 3-19, 2007. Data was acquired from 131 meters of core (30.5 meters gas hydrate-bearing), extensive wireline logging, and wireline production testing operations using Modular Dynamics Testing (MDT). The stratigraphic test validated the 3D seismic interpretation of the MPU gas hydrate-bearing Mount Elbert prospect. Onsite core sub- sampling preserved samples for later analyses of interstitial water geochemistry, physical properties, thermal properties, organic geochemistry, petrophysics, and mechanical properties. MDT testing was accomplished within two gas hydrate-bearing intervals, and acquired during four long shut-in period tests. Four gas samples and one pre-gas hydrate dissociation formation water sample were collected. MDT analyses are helping to improve understanding of gas hydrate dissociation, gas production, formation cooling, and long-term production potential as well as help calibrate reservoir simulation models.

305

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physical properties of sediment from the 2006 National Gas Hydrate Program expedition offshore India Physical properties of sediment from the 2006 National Gas Hydrate Program expedition offshore India Physical properties of sediment from the 2006 National Gas Hydrate Program expedition offshore India Authors: Winters, W.J., (U.S. Geological Survey, speaker), Gomes, M., Giosan, L., Johnson, J., Kastner, M., Torres, M.E., Long, P.E., Schaef, H.T., Rose, K., and the NGHP-01 Shipboard Scientific Party. Venue: India’s Directorate General of Hydrocarbons’ International Conference on Gas Hydrates in Nodia (New Delhi), India, February 6–8, 2008 (http://www.dghindia.org/site/pdfattachments/upcomingevents/Updated_Programme_gAS[1].pdf [PDF-external site]). Abstract: The scientific goals of the NGHP Expedition 01 physical properties program are to a) constrain baseline index properties of host sediment; b) ground-truth well-log, seismic, and other shipboard data sets; c) relate textural characteristics to gas hydrate occurrence and small-scale porous media effects; and d) relate index properties and textural analyses to gas hydrate occurrence and regional sedimentologic interpretations. During the shipboard phase of NGHP-01, baseline bulk physical properties, such as water content, grain density, bulk density, and porosity, were determined on more than 1,800 sediment samples from 14 sites located in four study areas. Overall, physical properties change more significantly near the seafloor, then at a much more gradual rate with depth. The transition depth varies between sites but can range from about 12 to as deep as 200 meters beneath the seafloor. In addition, shear strength, electrical resistivity, magnetic susceptibility, thermal conductivity, and acoustic velocity measurements were conducted to further characterize the sediment. These measurements, when combined with sedimentologic and geochemical studies, delineate the role of the host sediment in hydrate formation and occurrence and are used in modeling the response of hydrate-bearing sediment to natural change or drilling operations. Strong correlation typically exists between physical properties determined from shipboard analyses and well-log studies. More than 500 shore-based grain-size analyses have been conducted that indicate that most sediment is characterized as clayey silt to silty clay with a median grain size that is near or slightly greater than the silt-clay boundary. Grain-size analyses are being conducted on samples identified by infrared imaging as having high concentrations of gas hydrate in recovered core samples. These analyses will be used to study porous-media effects and geologic controls on the occurrence of gas hydrate in situ.

306

Shale gas for the petrochemical industry: Incorporation of novel technologies  

Science Journals Connector (OSTI)

Abstract In this work, a new shale gas-based polygeneration system with essentially zero CO2 emissions is proposed that co-produces methanol, dimethyl ether (DME), olefins and power. The thermal and economic analysis of the proposed process is performed to determine the optimum product portfolio regarding current market prices. The optimization results show that production of methanol/DME and power can improve the performance of the olefin production section significantly. Therefore, the proposed plant can link the shale gas industry to the petrochemical sector efficiently and in an environmentally friendly way.

Yaser Khojasteh Salkuyeh; Thomas A. Adams II

2014-01-01T23:59:59.000Z

307

Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI?s) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. Also, several installation activities were initiated this month for the testing of a new EPRI/ADA Technologies sorbent sampling system in December. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

None

1997-11-01T23:59:59.000Z

308

Recent developments in gas turbine materials and technology and their implications for syngas firing  

Science Journals Connector (OSTI)

Gas turbine combined-cycle systems burning natural gas represent a reliable and efficient power generation technology that is widely used. A critical factor in their development was the rapid adaptation of aero-engine technology (single crystal airfoils, sophisticated cooling techniques, and thermal barrier coatings) in order to operate at the high rotor-inlet temperatures required for high efficiency generation. Early reliability problems have been largely overcome, so that this type of power generation system is now considered to be a mature technology capable of achieving high levels of availability. Current interest in replacing natural gas with gas derived from coal (syngas or hydrogen) in these gas turbine systems focuses attention on implications for the critical turbine components. In this paper, the development requirements for materials for critical hot gas-path parts in large gas turbines burning coal-derived syngas fuels are briefly considered in the context of the state-of-the-art in materials for engines burning natural gas. It is shown that, despite some difficult design issues, many of the materials used in current engines will be applicable to units burning syngas. However, there is the potential that the durability of some components may be prejudiced because of differences in the combustion environment (especially in terms of water vapor content, and possibly sulfur compounds and particulates). Consequently, effort to develop improved coatings to resist erosion and also attack by S-containing compounds may be necessary.

I.G. Wright; T.B. Gibbons

2007-01-01T23:59:59.000Z

309

Performance Engineering Research Institute SciDAC-2 Enabling Technologies Institute: Final Report for the University of North Carolina  

SciTech Connect (OSTI)

This is the final technical report for the University of North Carolina activities under SciDAC-2 Performance Engineering Research Institute.

Fowler, Robert J

2014-06-30T23:59:59.000Z

310

Climate VISION: PrivateSector Initiatives: Oil and Gas: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways The oil and gas industry is a very diverse and complex sector of the energy economy. It ranges from exploration to production, processing, transportation, and distribution. All of these segments are elements of the natural gas industry and the oil industry but are different for oil than for natural gas. An example of a technology pathway for the oil refining industry is the Petroleum Refining Vision and Roadmap, which was developed through a joint effort of government and industry. Other technology roadmaps of relevance to Climate VISION participants either are being developed or will be developed in the future. The oil refining example is provided initially. Others will be added as they become available. Petroleum refining is one of nine energy-intensive industries that is

311

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

II: Subsurface sequestration of methane-derived carbon in gas-hydrate-bearing marine sediments II: Subsurface sequestration of methane-derived carbon in gas-hydrate-bearing marine sediments HyFlux - Part II: Subsurface sequestration of methane-derived carbon in gas-hydrate-bearing marine sediments Authors: Naehr, T.H., Asper, V., Garcia, O., Kastner, M., Leifer, I., MacDonald, I.R., Solomon, E., Yvon-Lewis, S., and Zimmer, B. Venue: AGU Fall Meeting, San Francisco, CA, December 15-19 2008 -- Session OS25: Methane Flux from Naturally Occurring Marine Gas Hydrates http://www.agu.org Abstract: The recently funded DOE/NETL study "HyFlux: Remote sensing and sea-truth measurements of methane flux to the atmosphere" (see MacDonald et al.: HyFlux - Part I) will combine sea surface, water column and shallow subsurface observations to improve our estimates of methane flux from submarine seeps and associated gas hydrate deposits to the water column and atmosphere along the Gulf of Mexico continental margin and other selected areas world-wide. As methane-rich fluids rise towards the sediment-water interface, they will interact with sulfate-rich pore fluids derived from overlying bottom water, which results in the formation of an important biogeochemical redox boundary, the so-called sulfate-methane interface, or SMI. Both methane and sulfate are consumed within the SMI and dissolved inorganic carbon, mostly bicarbonate (HCO3-) and hydrogen sulfide are produced, stimulating authigenic carbonate precipitation at and immediately below the SMI. Accordingly, the formation of authigenic carbonates in methane- and gas-hydrate-rich sediments will sequester a portion of the methane-derived carbon. To date, however, little is known about the quantitative aspects of these reactions. Rates of DIC production are not well constrained, but recent biogeochemical models indicate that CaCO3 precipitation rates may be as high as 120 µmol cm-2a-1. Therefore, AOM-driven carbonate precipitation must be considered when assessing the impact of gas-hydrate-derived methane on the global carbon cycle.

312

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation of the system behavior of hydrate-bearing geologic media involves solving fully coupled mass and heat balance equations. The models need to simulate equilibrium or kinetic processes of hydrate formation and dissociation. TOUGH+HYDRATE is a widely used code for gas hydrate simulations. The code can model non-isothermal gas release, phase changes and flow of fluids and heat. It accounts for up to four mass components and four possible phases. Because hydrate simulations require intensive computational effort, many studies that involve serial processors are limited by problems of complexity and scale. With the growing availability of multi-core CPUs, Linux clusters, and super-computers, the use of parallel processing methods is a distinct advantage. This study develops a domain decomposition approach for large-scale gas hydrate simulations using parallel computation. The approach partitions the simulation domain into small sub-domains. The full simulation domain is simulated integrally by using multiple processes. Each process will be in charge of one portion of the simulation domain for updating thermophysical properties, assembling mass and energy balance equations, solving linear equation systems, and performing other local computations. The linear equation systems are solved in parallel by multiple processes with a parallel linear solver. The multiple processes are run in parallel on shared- or distributed memory multiple-CPU computers. A hybrid approach, running multiple processes in each CPU and using multiple CPUs, may achieve additional speedup. During calculations, communication between processes is needed to update sub-domain boundary parameters. An efficient inter-process communication scheme has been developed. The new approach was implemented into the TOUGH+HYDRATE code and demonstrates excellent speedup and very good scalability. For many large-scale problems, this method can obtain linear or super-linear speedup. This paper will show applications of the new approach to simulate three dimensional field-scale models for gas production from gas-hydrate

313

Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, 2014 115 Copyright 2014 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, 2014 115 Copyright © 2014 Inderscience fields in Saudi Arabia', Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, pp.115­131. Biographical economic recovery of oil and gas from a reservoir. The purpose of reservoir management is to control

Mohaghegh, Shahab

314

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The geomechanical response of Hydrate-Bearing Sediments (HBS) is a serious concern that needs to be addressed before the installation of facilities for hydrate deposits can proceed, and if gas production from hydrate deposits is to become reality. HBS are often unconsolidated, and are characterized by low shear strength. Heat from external sources, that cross the formation or depressurization-based production, can induce dissociation of hydrates (a strong cementing agent), and degradation of the structural stability of the HBS. Changes in pressure and temperature, phase changes, and the evolution of an expanding (and structurally weak) gas zone can significantly alter the distribution of loads in the sediments. The corresponding changes in the local stress and strain fields can result in substantial changes in the hydrologic, thermal and geomechanical properties of the system, displacement, and potentially failure.

315

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Fracturing and Sand Control Hydraulic Fracturing and Sand Control Hydraulic Fracturing and Sand Control Author: M. Sharma Venue: Industry Workshop, Austin, Texas, May 7, 2008 (http://www.cpge.utexas.edu) Abstract: The Hydraulic Fracturing and Sand Control project consists of a set of 9 projects (5 related to fracturing and 4 related to sand control) that are currently underway. The project began in 2006 and is planned to continue for at least 2 years (2008). Each member company contributes $50,000 per year as a grant to the University and in return receives all the research results from the projects underway. F1. Energized fractures in tight gas sands/ gas shales (Kyle Freihof, Mukul Sharma) F2. Refracturing and stress reorientation in sands / shales (Vasudev Singh, Nicolas Rousell, Mukul Sharma)

316

Technology Makes Solid State Multi-Gas Emission Monitoring Possible  

E-Print Network [OSTI]

single crystal thallium arsenic se1enide (TAS) on a production basis has made it possible to buLld an electronically controlled acousto ,-,ptie tunable filter (AOTF) capable of operating in the infrared. Such a filter with integral .11 t rasonic... trifnsduce r can be used in place of Inechanica1 filter wheels, spinning gas cells, moving mirrors, diffraction gratings and mechanical light choppers. The TAS AOTF produces an electronically controllable narrow banel infrared filter capable of being...

Nelson, R. L.

317

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic Framework of the 2005 Keathley Canyon Geologic Framework of the 2005 Keathley Canyon Gas Hydrate Research Well, Northern Gulf of Mexico Authors: D.R. Hutchinson, P.E. Hart, T.S. Collett, K.M. Edwards, and D.C. Twichell, U.S. Geological Survey, and F. Snyder, WesternGeco-Schlumberger. Venue: American Geophysical Union’s 2007 Joint Assembly, Acapulco, Mexico, May 22-25, 2007 (http://www.agu.org/meetings/ja07/ [external site]). Abstract: The project was located in the Casey Basin in the northern Gulf of Mexico at 1,335 m water depth. A grid of 2-D high-resolution multichannel seismic lines around the drill sites, targeted for imaging depths down to at least 1,000 m subbottom, reveals multiple disconformities that bound seven mappable seismic stratigraphic units. A major disconformity in the middle of the units stands out for its angular baselapping geometry. From the seismic and drilling data, three episodes of sedimentary deposition and deformation are inferred. The oldest episode consists of fine-grained muds deposited during a period of relative stability in the basin (Units E, F, and G). A second episode (Units C and D) consists of large vertical displacements associated with infilling and ponding of sediment. This second interval corresponds with intercalated fine and coarse-grained material in the drill hole, which sampled the thin edges of much thicker units. The final episode (Units A and B) occurred during much-subdued vertical displacement. Hemipelagic drape (Unit A) characterizes the modern seafloor deposits. The basin is mostly filled. Its sill is part of a subsiding graben that is only 10-20 m shallower than the deepest point in the basin, indicating that gravity-driven transport would mostly bypass the basin. Contemporary faulting along the basin margins has selectively reactivated an older group of faults. The intercalated sand and mud deposits of Units C and D are tentatively correlated with late Pleistocene deposition derived from the western shelf-edge delta/depocenter of the Mississippi River, which was probably most active from 320 ka to 70 ka (Winker and Booth, 2000). Gas hydrate occurs within near-vertical fractures in Units E and F of the oldest episode. The presence of sand within the gas hydrate stability zone is not sufficient to concentrate gas hydrate, even though dispersed gas hydrate occurs deeper in the fractured mud/clay-rich sections of Units E and F.

318

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Grain-Scale Coupled Model of Multiphase Fluid Flow and Sediment Mechanics A Grain-Scale Coupled Model of Multiphase Fluid Flow and Sediment Mechanics A Grain-Scale Coupled Model of Multiphase Fluid Flow and Sediment Mechanics – Application to Methane Hydrates in Natural Systems Authors: Antone K. Jain and Ruben Juanes Venue: American Geophysical Union Fall Meeting, San Francisco, CA, December 15-19, 2008 – Special Session H06: Particle Tracking Simulation of Fluid Flow and Mass Transport. http://www.agu.org/meetings/fm08/ Abstract: A discrete element model is presented for the simulation, at the grain scale, of gas migration in brine-saturated deformable media. The model rigorously accounts for the presence of two fluids in the pore space by incorporating grain forces due to pore fluid pressures, and surface tension between fluids. The coupled model permits investigating an essential process that takes place at the base of the hydrate stability zone: the upward migration of methane in its own free gas phase. The ways in which gas migration may take place were elucidated: (1) by capillary invasion in a rigid-like medium; and (2) by initiation and propagation of a fracture. Results indicate that the main factor controlling the mode of gas transport in the sediment is the grain size, and that coarse-grain sediments favor capillary invasion, whereas fracturing dominates in fine-grain media. The results have important implications for understanding hydrates in natural systems. The results predict that, in fine sediments, hydrate will likely form in veins that follow a fracture-network pattern, and the hydrate concentration in this type of accumulations will likely be quite low. In coarse sediments, the buoyant methane gas is likely to invade the pore space more uniformly, in a process akin to invasion percolation, and the overall pore occupancy is likely to be much higher than for a fracture-dominated regime. These implications are consistent with field observations of methane hydrates in natural

319

Electric Power Research Institute Environmental Control Technology Center: Report to the Steering Committee, June 1996  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the 4.0 MW Spray Dryer Absorber System (SDA) and Pulse Jet Fabric Filter (PJFF) - Carbon Injection System. Investigations also continued across the B&W/CHX Heat Exchanger unit, while the 1.0 MW Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode as monthly inspections were conducted. Pilot Testing Highlights Testing efforts in June were focused on the HAP test block and the Trace Elements Removal (TER) test block. Both programs were conducted on the 4.0 MW wet FGD pilot unit and PJFF unit. The HAP test block was temporarily concluded in June to further review the test data. This program began in March as part of the DOE Advanced Power Systems Program; the mission of this program is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The 1996 HAP test block focuses on three research areas, including: Catalytic oxidation of vapor-phase elemental mercury; Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and Enhanced mercury removal by addition of additives to FGD process liquor. The TER test block is part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions.

NONE

1996-06-01T23:59:59.000Z

320

The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity Title The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity Publication Type Journal Article Refereed Designation Unknown Year of Publication 2012 Authors Williams, James H., Andrew DeBenedictis, Rebecca Ghanadan, Amber Mahone, Jack Moore, William R. Morrow, Snuller Price, and Margaret S. Torn Journal Science Volume 335 Start Page 53 Issue 6064 Pagination 53-59 Date Published 01/2012 Abstract Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California's goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure stocks, resource constraints, and electricity system operability. We found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required. Decarbonized electricity would become the dominant form of energy supply, posing challenges and opportunities for economic growth and climate policy. This transformation demands technologies that are not yet commercialized, as well as coordination of investment, technology development, and infrastructure deployment.

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Chapter 10.2 - Heat-Resistant Coating Technology for Gas Turbines  

Science Journals Connector (OSTI)

The operating temperature of gas turbines in the 1990s and later has been notably high in order to achieve high-efficiency power-generating plants by combining these gas turbines and steam turbines. Such high operating temperatures has been made possible with the development of heat-resistant superalloys forming turbine hot parts, as well as advances made in heat-resistant coating technology and cooling technology. For 1500C-class gas turbines, the adoption of single-crystal Ni-based superalloy blades and ceramic thermal barrier coatings is indispensable, and additionally, steam-cooled technology should be employed. In particular, thermal barrier coating (TBC) technology is recognized as important. Therefore, this paper reviews the trend of development of heat-resistant coating technology for gas turbines by paying attention to coating processes and evaluation. The paper also reviews the trend of development and standardization of heat-resistance evaluation test methods for coatings, because such evaluation test methods are indispensable for the development of heat-resistant coating technology.

Yoshiyasu Ito

2013-01-01T23:59:59.000Z

322

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conditions under Which Gaseous Methane Will Fracture Ocean Sediments and Penetrate Through the Hydrate Stability Zone Conditions under Which Gaseous Methane Will Fracture Ocean Sediments and Penetrate Through the Hydrate Stability Zone Conditions under Which Gaseous Methane Will Fracture Ocean Sediments and Penetrate Through the Hydrate Stability Zone: Modeling Multiphase Flow and Sediment Mechanics at the Pore-Scale Authors: Antone K. Jain and Ruben Juanes Venue: American Geophysical Union Fall Meeting, San Francisco, CA, December 15-19, 2008 – Special Session H06: Particle Tracking Simulation of Fluid Flow and Mass Transport. http://www.agu.org/meetings/fm08/ Abstract: Two competing processes were simulated, capillary invasion and fracture opening, by which free methane gas penetrates the Hydrate Stability Zone (HSZ). In situ conditions were predicted in which the methane propagates fractures and flows all the way through the HSZ and into the ocean, bypassing hydrate formation. In the fully coupled model, the discrete element method was used to simulate the sediment mechanics, and pore fluid pressures and surface tension between the gas and brine were accounted for by incorporating additional sets of pressure forces and adhesion forces. Results indicate that given enough capillary pressure, the main factor controlling the mode of gas transport is the grain size, and show that coarse-grain sediments favor capillary invasion and widespread hydrate formation, whereas fracturing dominates in fine-grain sediments. The fracturing threshold was calculated as a function of grain size, capillary pressure, and seafloor depth, and place these results in the context of naturally-occurring hydrate

323

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capillarity-controlled displacements in sediments with moveable grains Capillarity-controlled displacements in sediments with moveable grains Capillarity-controlled displacements in sediments with moveable grains: Implications for growth of methane hydrates Authors: Maša Prodanovic (speaker), Steven L. Bryant Venue: SPE Annual Technical Conference and Exhibition, Denver, Colorado, 21-24 September, 2008. http://www.spe.org [external site]. Abstract: We consider immiscible displacements when fluid/fluid interfaces are controlled by capillary forces. The progressive quasistatic (PQS) algorithm based on the level set method readily determines the geometry of these interfaces at the pore level. Capillary pressure generally exerts a net force on grains supporting an interface. We extend PQS to implement a kinematic model of grain displacement in response to that force. We examine the changes in the drainage curve caused by this coupling. We compute the interfacial area associated with the bulk water phase, anticipating preferential growth of methane hydrate there. Gas invasion of sediments is one mechanism by which methane hydrates are believed to form. In unconsolidated ocean sediments the capillary pressure exerted by an accumulated gas phase below the hydrate stability zone can be large enough to move grains apart. This motion alters the pore throat sizes which control subsequent drainage of the sediment. A model for the dynamics of this process is useful for assessing the competition between drainage (controlled by capillary forces) and fracturing (controlled by pore pressure and earth stresses). This in turn provides insight into the possible growth habits within the hydrate stability zone. When grains can move in response to net force exerted by the gas phase, small variations in an otherwise uniform distribution of pore throat sizes quickly lead to self-reinforcing, focused channels of gas phase. In contrast to behavior in stationary grains, the drainage curve exhibits no clear percolation threshold. Displacements in materials with broad throat size distributions also exhibit self-reinforcing channels. Behind the leading edge of the displacement front, the net force exerted on the grains tends to push them together. This effectively seals off these regions from subsequent invasion. Thus hydrate growth tends to be localized along the channel of displaced grains. This is the first quantitative grain-scale study of the drainage behavior when grains can move in response to invasion events. The coupling leads to qualitatively different displacement patterns. The method presented for studying this behavior is applicable to any granular material and to other applications, such as sand production.

324

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

De-Watering of Hunton Reservoirs De-Watering of Hunton Reservoirs De-Watering of Hunton Reservoirs Author: Mohan Kelkar, University of Tulsa, Tulsa, OK. Venue: Tulsa Association of Petroleum Landmen meeting in Tulsa, OK, April 19, 2007 (http://www.landman.org [external site]). Abstract: The Hunton reservoir in Oklahoma represents one of the largest discoveries in Oklahoma in recent history. Since 1995, several Hunton reservoir fields have been exploited by various operators. The principle behind this exploitation remains the same: The wells produce large quantities of water, and along with it, significant quantities of natural gas and sometimes oil. Examination of various fields producing from the Hunton reservoir indicates that the economic success from these fields is not uniform. Some fields produce significant quantities of oil, whereas some fields only produce gas. In some fields, horizontal wells work best, whereas in some other fields, vertical wells do a good job. The water production from the fields ranges from as low as few hundred barrels per day to several thousand barrels per day. In this paper, we present the results from various fields to indicate the parameters needed in a Hunton field to make it economically successful. We restrict our evaluation to parameters that can be easily measured or are readily available. These include log data (gamma ray, resistivity, neutron, and density), initial potential data, production data (oil, gas, and water—if available) and well configuration (vertical or horizontal). By analyzing the recovery of oil and gas according to various reservoir parameters, we developed a methodology for predicting the future success of the field. For example, a clear relationship exists between porosity of the rock and initial hydrocarbon saturation: The higher the oil saturation, the better the recovery factor. Initial potential is critical in determining possible recovery. Horizontal wells cost 1.5 to 2 times more than vertical wells and may not provide the additional recovery to justify the costs. The Hunton formation is extensive in Oklahoma. If we want to extend the success of some of the fields to other areas, we need clear guidelines in terms of what is needed to exploit those fields. This paper provides some of those guidelines based on the examination of the currently producing fields.

325

Advanced combustion technologies for gas turbine power plants  

SciTech Connect (OSTI)

Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric coefficients were determined for Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} ceramics.

Vandsburger, U. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical Engineering; Roe, L.A. [Arkansas Univ., Fayetteville, AR (United States). Dept. of Mechanical Engineering; Desu, S.B. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

1995-12-31T23:59:59.000Z

326

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays Author: Thomas C. Chidsey, Petroleum Section Chief, Utah Geological Survey, Salt Lake City, UT. Venue: International Oil Scouts Association’s 84th annual meeting, Stein Eriksen Lodge, Park City, UT, June 17–20, 2007, (http://www.oilscouts.com/index-main.html [external site]). Abstract: Utah’s natural gas and oil exploration history extends back more than 100 years, fluctuating greatly due to discoveries, price trends, and changing exploration targets. During the boom period of the early 1980s, activity peaked at over 500 wells per year. After slowing in the 1990s, drilling activity has again increased, reaching an all-time peak of 1,058 wells spudded and over 2,000 APDs (application for permit to drill) filed in 2006. This increase in activity has been spurred by high prices for both natural gas and oil and by the perception that Utah is highly prospective and underexplored. In recent years, the proportion of new wells exploring for gas has increased greatly. Total cumulative natural gas production from Utah fields now exceeds 8 Tcf. Recent successful drilling has been expanding reserves by about 10 percent per year, one of the highest rates of gas reserves increase in the country. Although gas production from some fields declined during the late 1990s, two factors caused overall gas production to increase. The development of coalbed natural gas (CBNG) accumulations in the Cretaceous Ferron Sandstone play, in particular Drunkards Wash field in central Utah, has increased the State’s annual gas production by 20–30 percent. Also, deeper exploratory and development drilling in the eastern and southern Uinta Basin during the past 5 years has led to discoveries of substantial gas accumulations in tight-sand reservoirs of the Tertiary Wasatch Formation, Cretaceous Mesaverde Group, and Jurassic Entrada and Wingate Sandstones. Significant potential exists for other coalfields (Book Cliffs, Sego, and Wasatch Plateau) around the Uinta Basin to yield CBNG, and the extent of deeper conventional and tight-gas plays remains to be explored. In addition, shale gas reservoirs in the Mississippian Manning Canyon Shale, Pennsylvanian Hermosa Group, and Cretaceous Mancos Shale of central, southeastern, and northeastern Utah, respectively, have tremendous untapped potential. Utah oilfields have produced a cumulative total of 1.3 billion barrels (bbl) of oil. Although annual production decreased from a peak of 41 million bbl in 1985 to 13 million bbl in 2003, the trend has since reversed, and 2005 production reached nearly 17 million bbl. A component (about one-third of the increase) of this turnaround has been the 2004 discovery of Covenant field in the central Utah thrust belt, or "Hingeline." This new field has already produced 3 million bbl of Mississippian-sourced oil from the Jurassic Navajo Sandstone in a thrusted anticline formed during the Sevier orogeny. This new oil play is the focus of extensive leasing and exploration activity—comparable to the late 1970s and early 1980s in the Utah-Wyoming salient of the thrust belt to the north.

327

NETL: News Release - DOE Seeks "Small-Footprint" Oil and Gas Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 16, 2004 June 16, 2004 DOE Seeks "Small-Footprint" Oil and Gas Technologies Two-Inch "Microholes" Could Lessen Environmental Impacts, Costs The Department of Energy (DOE) today announced a major new research and development initiative to develop "microhole" technologies - those that use portable drilling rigs with a smaller footprint and lower environmental impact. The program is designed to bring about faster, cheaper and safer oil and gas projects. "This is a major new research and development initiative that is aimed at reducing the environmental footprint of oil and gas operations at the same time it reduces costs and increases America's oil and gas production," Secretary of Energy Spencer Abraham said. "It's clear this initiative will help meet President Bush's goals for energy and the environment."

328

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluid Flow through Heterogeneous Methane-Hydrate Bearing Sand Fluid Flow through Heterogeneous Methane-Hydrate Bearing Sand Fluid Flow through Heterogeneous Methane-Hydrate Bearing Sand: Observations Using X-Ray CT Scanning Authors: Yongkoo Seol and Timothy J. Kneafsey Venue: 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. http://www.icgh.org/ [external site] Abstract: The effects of porous medium heterogeneity on methane hydrate formation, water flow through the heterogeneous hydrate-bearing sand, and hydrate dissociation were observed in an experiment using a heterogeneous sand column with prescribed heterogeneities. X-ray computed tomography (CT) was used to monitor saturation changes in water, gas, and hydrate during hydrate formation, water flow, and hydrate dissociation. The sand column was packed in several segments having vertical and horizontal layers with two distinct grain-size sands. The CT images showed that as hydrate formed, the water and hydrate saturations were dynamically redistributed by variations in capillary strength of the medium (the tendency for a material to imbibe water), which changed with the presence and saturation of hydrate. Water preferentially flowed through fine sand near higher hydrate-saturation regions where the capillary strength was elevated relative to the lower hydrate saturation regions. Hydrate dissociation initiated by depressurization varied with different grain sizes and hydrate saturations.

329

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Saline Water Disposal in the Uinta Basin, Utah Saline Water Disposal in the Uinta Basin, Utah Saline Water Disposal in the Uinta Basin, Utah Authors: Michael D. Vanden Berg, Stephanie Carney, Michael D. Laine, Craig D. Morgan, Utah Geological Survey; and Paul B. Anderson, consulting geologist. Venue: Poster Session: Responsible Development, Sustainability, and Climate Science—Groundwater and Site Remediation, June 9, 2009, American Association of Petroleum Geologists annual meeting, Denver, CO, June 7 to 10, 2009. http://www.aapg.org/denver/ [external site] Abstract: Saline water disposal is the single most pressing issue with regard to increasing petroleum and natural gas production in the Uinta Basin of Utah. Conventional oil and gas fields in the basin provide 67% of Utah’s total crude oil production and 71% of Utah’s total natural gas, the latter of which has increased 175% in the last 10 years. As petroleum production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of fresh water sources. Many Uinta Basin operators claim that petroleum and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. Researchers have begun efforts to re-map the base of the moderately saline aquifer within the Uinta Basin using more robust data and more sophisticated GIS techniques than previous efforts. Below this base, they believe that saline water can be injected without damage to the overlying freshwater reservoirs. Water chemistry data are being collected from wells of operators and governmental agencies. These ground-truth data are supplemented with water chemistry information calculated from geophysical logs. In addition to the new GIS-based map, the researchers are constructing cross sections showing the stratigraphic position of the moderately saline to very saline transition and its relationship to potential seals and disposal zones in the Uinta Basin. A potentially suitable disposal zone for large volume saline water disposal is the fresh to slightly saline Bird’s-Nest aquifer. This aquifer is located in the oil shale zone of the Green River formation’s Parachute Creek member and is 200 to 300 ft above the kerogen-rich Mahogany zone. A significant concern is that saline water disposal into the Bird’s-Nest by conventional gas producers may hinder oil shale development by creating unforeseen economic and technical hurdles. With increased saline water disposal, the water quality in the Bird’s-Nest could degrade and create additional water disposal problems for oil shale development companies. Researchers have examined this aquifer in outcrop, core, and geophysical logs and have gained a better understanding of its areal extent, thickness, and zones of differing water chemistry

330

Advanced separation technology for flue gas cleanup. Topical report  

SciTech Connect (OSTI)

The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. The process will generate only marketable by-products. Our approach is to reduce the capital cost by using high-efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. Our novel chemistry for scrubbing NO{sub x} will consist of water-soluble phthalocyanine compounds invented by SRI as well as polymeric forms of Fe{sup ++} complexes similar to traditional NO{sub x} scrubbing media. The final novelty of our approach is the arrangement of the absorbers in cassette (stackable) form so that the NO{sub x} absorber can be on top of the SO{sub x} absorber. This arrangement is possible only because of the high efficiency of the hollow fiber scrubbing devices, as indicated by our preliminary laboratory data. This arrangement makes it possible for the SO{sub 2} and NO{sub x} scrubbing chambers to be separate without incurring the large ducting and gas pressure drop costs necessary if a second conventional absorber vessel were used. Because we have separate scrubbers, we will have separate liquor loops and simplify the chemical complexity of simultaneous SO{sub 2}/NO{sub x} scrubbing.

Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S. [and others

1995-01-01T23:59:59.000Z

331

[Gas cooled fuel cell systems technology development program  

SciTech Connect (OSTI)

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

332

Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993  

SciTech Connect (OSTI)

The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

Levey, R.A.; Finley, R.J.; Hardage, B.A.

1994-06-01T23:59:59.000Z

333

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

Unknown

2003-04-30T23:59:59.000Z

334

Environmental trends in Asia are accelerating the introduction of clean coal technologies and natural gas  

SciTech Connect (OSTI)

This paper examines the changing energy mix for Asia to 2020, and impacts of increased coal consumption on Asia`s share of world SO{sub 2} and CO{sub 2} emissions. Stricter SO{sub 2} emissions laws are summarized for eight Asian economies along with implications for fuel and technology choices. The paper compares the economics of different technologies for coal and natural gas in 1997 and in 2007. Trends toward introducing clean coal technologies and the use of natural gas will accelerate in response to tighter environmental standards by 2000. The most important coal conversion technology for Asia, particularly China, in the long term is likely to be integrated gasification combined-cycle (IGCC), but only under the assumption of multiple products.

Johnson, C.J.

1997-09-01T23:59:59.000Z

335

The Gas Turbine and Its Significance as a Prime Mover  

Science Journals Connector (OSTI)

...R. SODERBERG THE GAS TURBINE AND ITS SIGNIFICANCE...MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRDGE Read before...The emergence of the gas turbine as an accepted mem...implications of this development. This paper gives a...

C. Richard Soderberg

1948-01-01T23:59:59.000Z

336

Electric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University No. 5501 Rev.: 0  

E-Print Network [OSTI]

-licensed gas- or electric-powered utility-type vehicles) that are operated on the main campus in Blacksburg, VAElectric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University __________________________________________________________________________________ Subject: Electric/Gas Utility-type Vehicle

Beex, A. A. "Louis"

337

Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the Power-to-gas-to-gas-to-power Technology  

Science Journals Connector (OSTI)

Abstract Excess energy produced from renewables can be stored and reused via the power-to-gas-to-power (PGP) technology. We present an innovative idea which represents a decarbonised extension of PGP based on a closed carbon cycle. Our show case for the cities Potsdam and Brandenburg/Havel (Germany) outlines an overall efficiency for the entire process chain of 28% with total costs of electricity of 20 eurocents/kWh. If existing locations in Europe, where natural gas storage in porous formations is performed, were to be extended by CO2 storage sites, a significant quantity of wind and solar energy could be stored economically as methane.

Michael Khn; Martin Streibel; Natalie Nakaten; Thomas Kempka

2014-01-01T23:59:59.000Z

338

Delivery Reliability for Natural Gas--Inspection Technologies  

SciTech Connect (OSTI)

The Remote Field Eddy Current (RFEC) technique is ideal for inspecting unpiggable pipelines because all of its components can be made smaller than the diameter of the pipe to be inspected. For these reasons, RFEC was selected as a technology to be integrated with the Explorer II robotic platform for unpiggable pipeline inspections. The research work is a continuation of a prior DOE-NETL project but is now directed towards a seamless integration with the robot. The laboratory set-up has been improved and data collection is nearly autonomous. With the improved collections speeds, GTI has been able to test more variables. Tests have been run on 6-inch and 12-inch seamless and seam-welded pipes. Testing on the 6-inch pipes have included using five exciter coils, each of a different geometry. Two types of sensor coils have been tested. With a focus on preparing the technology for use on the Explorer II, improvements in power consumption have proved successful. Tests with metal components have been performed to check for interference with the electromagnetic field. The results of these tests indicate RFEC will produce quality inspections while on the robot. GTI has also been testing manufactured detection boards currently used for boiler tube inspections. These boards are appropriately compact for use on the Explorer II robot and are able to detect defects at the speed of robot travel. In addition to advanced sensor development, GTI has participated in sensor/platform definition and module design activities. Mechanical constraints, power requirements, limited control and communication protocols, and potential busses and connectors have been addressed. GTI has conducted a proper design process to produce a sound design for the RFEC components to fit into two modules. The remaining work to be performed in the design of the sensor module is packaging and strengthening.

Albert Teitsma; Julie Maupin

2005-10-01T23:59:59.000Z

339

NETL: Oil & Natural Gas Technologies Reference Shelf - Coalbed Methane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Author: John Wheaton, Montana Tech of the University of Montana, Butte, MT. Venue: The tour will be conducted starting in Gillette, WY, and extend along the northern Powder River Basin, on June 3, 2007, under the auspices of the American Society for Mining and Reclamation (http://ces.ca.uky.edu/asmr/ [external site]). Abstract: This field tour will emphasize successful reclamation in an alternative type of coal industry in the Powder River Basin: coalbed methane. The tour will leave Gillette, WY, at 7:30 a.m., Sunday, June 3, 2007, and travel to Sheridan, WY, and back, touring coalbed methane production areas. Stops will include active drilling and producing areas to learn about the footprint and approach to development of coalbed methane. Reclamation includes drilling pads and linear trenching for water and gas pipelines. Produced-water management is a major expense and concern. Among the water management options we plan to see are stock-watering facilities, infiltration ponds, irrigation sites, and water treatment facilities. A landowner will join us and be able to answer questions from the ranching perspective for part of the tour. Lunches are included in the price of the tour.

340

Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants  

SciTech Connect (OSTI)

The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

Kenneth A. Yackly

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Super-Cement for Annular Seal & Long-Term Integrity in Deep, Hot Wells Super-Cement for Annular Seal & Long-Term Integrity in Deep, Hot Wells Super-Cement for Annular Seal & Long-Term Integrity in Deep, Hot Wells Authors: Fred Sabins, Kevin Edgely, and Larry Watters, CSI Technologies, LLC, Houston, TX. Venue: 2007 Drilling Engineering Association Workshop, Moody Gardens Hotel, Galveston, TX, June 19-20, 2007 (http://www.dea-global.org) [external site]). Abstract: Successful laboratory and field testing of Ultra-Seal® R and Pre-Stressed Cement will be presented. The application of these materials can dramatically reduce the costs of re-establishing annular seal integrity in deep, hot wells, thereby significantly lowering life-cycle well costs. CSI Technologies chose two cement types for further field testing in the third phase of the project to develop a “supercement” for work in high-temperature/high-pressure (HT/HP) wells. HT/HP wells often encounter problems with isolation of production zones due to cement failures. This can result in expensive repair jobs and costly shut-ins of high-volume wells. CSI determined that resin and magnesium oxide cements showed very good mechanical properties and bonding characteristics and are controllable at HT/HP conditions. The resin cement has been used successfully in more than 50 field plugging jobs and in one HT/HP squeeze job. CSI developed a second supercement formulation that is Portland cement- based and functions by generating substantial expansion during the curing process. This material functions in the confined wellbore environment by developing significant cement matrix compressive stress during cure, resulting in a compressive pre-load. In practice, the compressive pre-load functions to elevate the effective tensile strength of the material because the compressive stress must be relieved before the material can experience tensile stress. Additionally, the pre-load functions to keep the material tightly bound to the wellbore tubulars, thereby reducing the tendency of repeated stress cycles to form a microannulus.

342

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Updated Results from Deep Trek High-Temperature Electronics Development Programs Updated Results from Deep Trek High-Temperature Electronics Development Programs Updated Results from Deep Trek High-Temperature Electronics Development Programs Author: Bruce W. Ohme, Honeywell Inc., Plymouth, MN. Venue: HITEN 2007 (High-Temperature Electronics Network conference), St. Catherine’s College, Oxford, U.K., September 17–19, 2007, (http://science24.com/event/hiten2007 [external site]). Abstract: Electronics are used in modern oil and gas exploration to collect, log, and/or process data such as heading and inclination, weight on the bit, vibration, seismic/acoustic response, temperature, pressure, radiation, and resistivity of the strata. High-temperature electronics are needed that can operate reliably in deep-well conditions (up to 250oC). Under its Deep Trek program, the U.S. Department of Energy has funded two projects led by Honeywell. The first project, launched in 2003 and being completed this year, established a production-level integrated circuit manufacturing process, components, and design tools specifically targeting high-temperature environments (up to 250oC). The second project, launched in 2006 and expected to be completed in 2008, will develop rugged packaging suitable for downhole shock and vibration levels that will be used to house and demonstrate components developed in the earlier project. This paper will describe updated results from both of these projects, including previously unreported results obtained from prototype testing of a high-resolution analog-to-digital converter (ADC); a high-temperature, single-poly, floating-gate EEPROM (electrically erasable programmable read-only memory); and a 12-bit, successive-approximation ADC. Also, a multi-chip module being developed as a complete downhole processing unit will be discussed

343

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Fracture Reorientation Due to Fluid Injection/Production Estimating Fracture Reorientation Due to Fluid Injection/Production Estimating Fracture Reorientation Due to Fluid Injection/Production Authors: Zongyu Zhai and Mukul M. Sharma, University of Texas at Austin. Venue: Society of Petroleum Engineers’ Production and Operations Symposium, Oklahoma City, OK, April 1–3, 2007 (http://www.spe.org/ [external site]). Abstract: The injection or production of large volumes of fluid into or from a reservoir can result in significant changes to the effective in-situ stress distributions. Field evidence of this has been provided in the past by mapping refracturing treatments in tight gas sands and microseismic monitoring of injection wells in waterflooded reservoirs. A poro-elastic model is presented to show how the extent of fracture reorientation can be estimated under different conditions of fluid injection and production. The extent of fracture reorientation is a function of the in-situ stresses, the mechanical properties of the rock, and the pore pressure gradients. In reservoirs where the pore pressure gradients are complicated due to multiple injection and production wells, fracture reorientation is sensitive to the net pore-pressure gradients. Fractures tend to reorient themselves towards the injection wells and away from production wells, if the pressure gradients are comparable to the in-situ stress contrast. While far-field principal stress orientations are impacted only by in-situ stresses and pore-pressure gradients, near-wellbore in-situ stress orientation is also impacted by the hoop stress and the wellbore pressure. These can have a significant effect on near-wellbore fracture reorientation. The results of our model are compared with field observations obtained from microseismic monitoring of water injection wells. The implications of the results to refracturing operations and candidate well selection are discussed.

344

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling Tests of an Active Vibration Damper Drilling Tests of an Active Vibration Damper Drilling Tests of an Active Vibration Damper Authors: Mark Wassell, Martin Cobern, Carl Perry, Jason Barbely, and Daniel Burgess, APS Technology, Inc. Venue: Drilling Engineering Association’s 2007 DEA Workshop in Galveston, TX, June 19-20, 2007 Abstract: Testing of an active drilling vibration damper (AVD) system at TerraTek Laboratory, under conditions designed to induce vibration, demonstrated that the use of the AVD reduced vibration, maintained more consistent weight-on-bit, and increased rate of penetration (ROP). These tests demonstrated that the AVD is likely to provide significant time and cost savings, particularly in deep wells. The results of these tests will be outlined. Related NETL Project: The goal of the related NETL project DE-FC26-02NT41664, “Drilling Vibration Monitoring and Control System,” is to improve ROP and reduce the incidence of premature equipment failures in deep hard rock drilling environments by reducing harmful drillstring vibration.

345

E-Print Network 3.0 - application systems gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute of Technology Collection: Engineering 39 Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using Summary:...

346

NETL: News Release - 3-D Seismic Technology Locates Natural Gas in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 10, 2005 January 10, 2005 3-D Seismic Technology Locates Natural Gas in Fractured Reservoirs DOE-Sponsored Project Taps New Supplies of "Tight" Gas RIO ARRIBA COUNTY, N.M. - Large volumes of natural gas are being tapped from the tight rocks of the San Juan Basin in New Mexico's Rio Arriba County using a new technology developed in a project sponsored by the U.S. Department of Energy (DOE). In this cost-shared project, GeoSpectrum, Inc., of Midland, Texas, uses 3-D seismic to locate fractures in the earth that provide access to millions of cubic feet of untapped natural gas in four new wells-including one well that is now producing up to 2 million cubic feet per day. "The key innovation in this project is the integration of technologies that map previously unseen fracture lineaments and perturbations in seismic data, and then target fracture "sweet spots" where multiple fractures intersect," said geophysicist Francis Toro, who manages the project for DOE's National Energy Technology Laboratory.

347

Development and Application of Gas Sensing Technologies to Enable Boiler Balancing  

E-Print Network [OSTI]

01/2004 Development and Application of Gas Sensing Technologies to Enable Boiler Balancing to monitor total NOx (0-1000 ppm), CO (0-1000 ppm) and O2 (1-15%) within the convective pass of the boiler of such sensor systems will dramatically alter how boilers are operated, since much of the emissions creation

Dutta, Prabir K.

348

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network [OSTI]

EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser. biogas fra anaerob udrådning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

349

ESTIMATING THE IMPACT OF DEMOGRAPHICS AND AUTOMOTIVE TECHNOLOGIES ON GREENHOUSE GAS  

E-Print Network [OSTI]

McNally, MASc Candidate Bruce Hellinga, PhD, PEng Department of Civil Engineering University of Transportation Engineers to be held May 12-15, 2002 in Ottawa Ontario #12;1 Estimating the Impact of Demographics and Automotive Technologies on Greenhouse Gas Emissions Ryan McNally, MASc Candidate Bruce Hellinga, PhD, PEng

Hellinga, Bruce

350

The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report, 1991--1992  

SciTech Connect (OSTI)

The member institutions of the Consortium continue to play a significant role in increasing the number of African Americans who enter the environmental professions through the implementation of the Consortium`s RETT Plan for Research, Education, and Technology Transfer. The four major program areas identified in the RETT Plan are as follows: (1) minority outreach and precollege education; (2) undergraduate education and postsecondary training; (3) graduate and postgraduate education and research; and (4) technology transfer.

NONE

1992-12-31T23:59:59.000Z

351

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fine-Scale Control of Microbial Communities in Deep Marine Sediments Fine-Scale Control of Microbial Communities in Deep Marine Sediments Fine-Scale Control of Microbial Communities in Deep Marine Sediments that Contain Hydrates and High Concentrations of Methane Authors: Colwell, F. (speaker, Oregon State University), Hangsterfer, A., Brodie, E., Daly, R., Holland, M., Briggs, B., Carini, P., Torres, M., Kastner, M., Long, P., Schaef, H., Delwiche, M., Winters, W., and Riedel, M. Venue: American Geophysical Union’s fall meeting in San Francisco, CA, December 10–14, 2007 (http://www.agu.org/meetings/fm07/ [external site]). Abstract: Deep subseafloor sediments with high concentrations of organic carbon and microbially generated methane contain microbial communities that play an important role in the biogeochemical cycling of carbon. However, there remains a limited understanding of the fine (centimeter)-scale sediment properties (e.g., grain size, presence/absence of hydrates) that determine key microbial attributes in deep marine sediments. This project’s objective is to determine the quantity, diversity, and distribution of microbial communities in the context of abiotic properties in gas-rich marine sediments. DNA was extracted from deep marine sediments cored from various continental shelf locations, including offshore India and the Cascadia Margin. Abiotic characterization of the same sediments included grain size analysis, chloride concentrations in sediment pore waters, and presence of hydrates in the sediments as determined by thermal anomalies. As in past studies of such systems, most of the samples yielded low levels of DNA (0.3-1.5 ng/g of sediment). Bacterial DNA appeared to be more easily amplified than archaeal DNA. Initial attempts to amplify DNA using primers specific for the methanogen functional gene, methyl-CoM-reductase, were unsuccessful. Infrequently, cores from relatively shallow sediments (e.g., 0.5 mbsf Leg 204, 1251B-1H) from central (Hydrate Ridge) and northern (offshore Vancouver Island) Cascadia and from India’s eastern margin contained macroscopically visible, pigmented biofilms. One of these biofilms was composed of high concentrations of cell clusters when viewed microscopically. The predominant cells in the Hydrate Ridge biofilm were large (ca. 10 um) cocci, and preliminary characterization of the 16S rDNA amplified and sequenced from this biofilm suggests the prevalence of a microbe with 97% similarity to mycobacteria. These discrete biofilm communities appear to be distinctive relative to the normally sparse distribution of cells in the sediments. By determining how the abiotic properties of deep marine sediments control the numbers and distribution of microbial communities that process organic matter, project researchers hope to provide better parameters for computational models that describe carbon cycling in these systems.

352

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Applications for Biogeophysics: Prospects for Detecting Key Subseafloor Geomicrobiological Processes or Habitats Novel Applications for Biogeophysics: Prospects for Detecting Key Subseafloor Geomicrobiological Processes or Habitats Novel Applications for Biogeophysics: Prospects for Detecting Key Subseafloor Geomicrobiological Processes or Habitats Authors: Rick Colwell, Oregon State University, and Dimitris Ntarlagiannis, Rutgers University. Venue: American Geophysical Union’s 2007 Joint Assembly, Acapulco Mexico, May 21-25, 2007 (http://www.agu.org/ [external site]). Abstract: The new subdiscipline of biogeophysics has focused mostly on the geophysical signatures of microbial processes in contaminated subsurface environments usually undergoing remediation. However, the use of biogeophysics to examine the biogeochemistry of marine sediments has not yet been well integrated into conceptual models that describe subseafloor processes. Current examples of geophysical measurements that have been used to detect geomicrobiological processes or infer their location in the seafloor include sound surveillance system (SOSUS)-derived data that detect seafloor eruptive events, deep and shallow cross-sectional seismic surveys that determine the presence of hydraulically conductive zones or gas-bearing sediments (e.g., bottom-simulating reflectors or bubble-rich strata), and thermal profiles. One possible area for innovative biogeophysical characterization of the seafloor involves determining the depth of the sulfate-methane interface (SMI) in locations where sulfate diffuses from the seawater and methane emanates from subsurface strata. The SMI demarcates a stratum where microbially driven anaerobic methane oxidation (AMO) is dependent upon methane as an electron donor and sulfate as an electron acceptor. AMO is carried out by a recently defined, unique consortium of microbes that metabolically temper the flux of methane into the overlying seawater. The depth of the SMI is, respectively, shallow or deep according to whether a high or low rate of methane flux occurs from the deep sediments. Presently, the SMI can only be determined by direct measurements of methane and sulfate concentrations in the interstitial waters or by molecular biological techniques that target the microbes responsible for creating the SMI. Both methods require collection and considerable analysis of sediment samples. Therefore, detection of the SMI by non-destructive methods would be advantageous. As a key biogeochemical threshold in marine sediments, the depth of the SMI defines methane charge in marine sediments, whether it is from dissolved methane or from methane hydrates. As such, a biogeophysical strategy for determining SMI depth would represent an important contribution to assessing methane charge with respect to climate change, sediment stability, or potential energy resources.

353

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network [OSTI]

coal mining, petroleum extraction and refining, coking, andCoal Mining and Dressing Petroleum and Natural Gas Extraction Petroleum Processing, Coking andCoal Mining and Dressing Petroleum and Natural Gas Extraction Petroleum Processing, Coking and

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

354

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multivariate Modeling of 3D9C Data for Constructing a Static Reservoir Model of Algal Mounds in the Paradox Basin, CO Multivariate Modeling of 3D9C Data for Constructing a Static Reservoir Model of Algal Mounds in the Paradox Basin, CO Multivariate Modeling of 3D9C Data for Constructing a Static Reservoir Model of Algal Mounds in the Paradox Basin, CO Authors: Paul La Pointe, FracMan Technology Group, Golder Associates Inc., Redmond, WA; Robert D. Benson, Colorado School of Mines, Golden, CO; and Claudia Rebne, Legacy Energy, Denver, CO. Venue: American Association of Petroleum Geologists/Rocky Mountain Section Annual Meeting in Snowbird, UT, October 7-9, 2007. Abstract: A 3D9C survey was carried out over a 6 square mile portion of the Roadrunner and Towaoc fields on the Ute Mountain Ute reservation in southwestern Colorado. This survey was jointly funded by DOE and the Southern Ute tribe’s Red Willow Corporation to promote development of Ismay algal mound plays in the Paradox Basin within Ute Mountain Tribal lands and elsewhere in the Paradox Basin. Multicomponent data were utilized to better delineate the external mound geometry as well as to estimate internal mound reservoir parameters such as matrix permeability, saturation, and porosity. Simple cross-plotting of various multicomponent attributes against reservoir properties did not provide the desired predictive accuracy, in part due to sub-optimal frequency content in components derived from the shear wave data. However, a multivariate statistical analysis greatly improved the predictive accuracy. These multivariate regressions were then used to prescribe reservoir properties for a static reservoir model, which in turn formed the basis for a dynamic reservoir simulation model of the project area to assess the usefulness of the multivariate relations developed. This poster presentation will illustrate the workflow used to carry out the multivariate modeling, key maps of the reservoir properties that were derived, the static model, and results from the dynamic simulation used to assess the usefulness of the approach. Results from wells drilled based on the seismic data also will be presented.

355

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Authors: Sean P. Trisch, Wayne D. Pennington, and Roger Turpening, Michigan Technological University, Houghton, MI. Venue: Seismological Society of America’s annual meeting in Waikaloa, Kona, HI., April 11–13, 2007 Abstract: Imaging of the Earth’s crust is increasingly being accomplished through the use of borehole-based sensors. Experience gained in recent crosswell seismic surveys may assist endeavors to image the near-borehole environment near plate boundaries or other places of scientific interest. A high-resolution crosswell seismic data set was collected over a Silurian (Niagaran) reef in Michigan’s Lower Peninsula. The survey was optimized for both reflection imaging purposes and the gathering of a wide range of incidence angles. The reflection image was intended to aid in interpretation of the reef structure at a level of detail never before possible with seismic methods. The survey was also conducted to maximize data available for study of the dependence of amplitudes with angle-of-incidence. Prestack angle data were processed to half-degree intervals and utilized for enhanced interpretation of the seismic image through partial stacks and through amplitude variation with angle (AVA) analyses. Frequencies as high as 3,000 Hz (the limit of the source sweep) were recorded, with a predominant signal at about 2,000 Hz; the well separation was 600 m, and the target reef is at 1,400–1,525 m depth. Many of the interfaces present within the area have small reflection amplitudes at narrow angles that increase substantially near the critical angle. Analyses were performed on various interfaces in the seismic section to compare with Zoeppritz-equation solutions, using rock data acquired through an extensive library of seismic and well logging data available for the area. These models were then compared with the actual AVA character acquired at the interface and matched as closely as possible. Through this analysis and match process, various rock property estimates were inferred or refined.

356

Oil & Natural Gas Technology DOE Award No.: DE-FE0000408 Final Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FE0000408 Final Report October 2009 - September 2012 Post Retort, Pre Hydro-treat Upgrading of Shale Oil Submitted by: Ceramatec Inc 2425 S. 900 W. Salt Lake City, UT 84119 Prepared by: John H. Gordon, PI Prepared for: United States Department of Energy National Energy Technology Laboratory January 25, 2013 Office of Fossil Energy Final Report: October 2009 - September 2012 Ceramatec Inc, 1 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their em- ployees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

357

Policies and Procedures Handbook Procedure No.: C.3 Illinois Institute of Technology Date of Issue: 02/14  

E-Print Network [OSTI]

Policies and Procedures Handbook Procedure No.: C.3 Illinois Institute of Technology Date of Issue: 02/14 Subject: No Smoking Policy Page 1 of 1 IIT is subject to the Illinois Clean Indoor Air Act and Chicago Clean Indoor Air Ordinance, which stipulates that smoking, including the use of e

Heller, Barbara

358

This article was downloaded by: [Rochester Institute of Technology] On: 26 March 2013, At: 11:38  

E-Print Network [OSTI]

This article was downloaded by: [Rochester Institute of Technology] On: 26 March 2013, At: 11 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Heat Transfer Engineering://www.tandfonline.com/loi/uhte20 Selected Papers from the Seventh International Conference on Nanochannels, Microchannels

Kandlikar, Satish

359

Policies and Procedures Handbook Procedure No.: Q.8 Illinois Institute of Technology Date of Issue: 9/12  

E-Print Network [OSTI]

Policies and Procedures Handbook Procedure No.: Q.8 Illinois Institute of Technology Date of Issue; or (ii) has IIT financial, physical or administrative involvement or oversight. University sponsored student travel does not include travel under the auspices of IIT's Department of Athletics or study abroad

Heller, Barbara

360

Policies and Procedures Handbook Procedure No.: S Illinois Institute of Technology Date of Issue: 05/06  

E-Print Network [OSTI]

Policies and Procedures Handbook Procedure No.: S Illinois Institute of Technology Date of Issue through departmental transfer, field collection and donation. The archives does not normally purchase, providing physical care and issuing deeds of gift as appropriate. VI. Access and Loans Access to collections

Heller, Barbara

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Dear Student and Family, At Illinois Institute of Technology (IIT), we encourage our students to pursue their education  

E-Print Network [OSTI]

Dear Student and Family, At Illinois Institute of Technology (IIT), we encourage our students will work with students on an F-1 Visa to ensure that immigration procedures are properly addressed in the world. They are able to handle any situation ­ academic, professional, and personal ­ that comes

Heller, Barbara

362

IEEE TRANSACTION ON CONTROL SYSTEM TECHNOLOGY, VOL. XX, NO. Y, MONTH 2003 1 Control of Natural Gas Catalytic Partial  

E-Print Network [OSTI]

IEEE TRANSACTION ON CONTROL SYSTEM TECHNOLOGY, VOL. XX, NO. Y, MONTH 2003 1 Control of Natural Gas that reforms natural gas to hydrogen-rich mixture to feed the anode field of fuel cell stack is considered partial oxidation of the methane in the natural gas. We present a model-based control analysis and design

Peng, Huei

363

Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands  

SciTech Connect (OSTI)

Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

1997-08-01T23:59:59.000Z

364

Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies  

SciTech Connect (OSTI)

The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

Abruna, H.D.; DiSalvo, Francis J.

2012-06-29T23:59:59.000Z

365

NETL: Shale Gas and Other Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Resources Natural Gas Resources Natural Gas Resources Shale Gas | Environmental | Other Natural Gas Related Resources | Completed NG Projects Project Number Project Name Primary Performer 10122-47 Predicting higher-than-average permeability zones in tight-gas sands, Piceance basin: An integrated structural and stratigraphic analysis Colorado School of Mines 10122-43 Diagnosis of Multi-Stage Fracturing in Horizontal Well by Downhole Temperature Measurement for Unconventional Oil and Gas Wells Texas A&M University 10122-42 A Geomechanical Analysis of Gas Shale Fracturing and Its Containment Texas A&M University 09122-02 Characterizing Stimulation Domains, for Improved Well Completions in Gas Shales Higgs-Palmer Technologies 09122-04 Marcellus Gas Shale Project Gas Technology Institute (GTI)

366

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY Advertisement No. Rect/Admn-I/2013/8  

E-Print Network [OSTI]

of records, the common seal and funds of the Institute. The Registrar is the ex-officio Secretary will be reimbursed air fare by economy class (by Air India only) to the Institute and back by the shortest route

Narayanan, H.

367

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

368

International Center 3201 South State Street, MTCC -Room 203 (312)-567-3680 icenter@iit.edu www.ic.iit.edu Illinois Institute of Technology  

E-Print Network [OSTI]

@iit.edu ­ www.ic.iit.edu Illinois Institute of Technology International Center 3201 S. State Street MTCC, Room with the transfer of the above named scholar from the Illinois Institute of Technology. Name of Supervisor SignatureInternational Center ­ 3201 South State Street, MTCC - Room 203 ­ (312)-567-3680 ­ icenter

Heller, Barbara

369

Massachusetts Institute of Technology (MIT) Cambridge, MA Ph.D. in AeroAstro, Jun 2013 Overall GPA: 4.8/5.0  

E-Print Network [OSTI]

EDUCATION Massachusetts Institute of Technology (MIT) Cambridge, MA Ph.D. in AeroAstro, Jun 2013 Massachusetts Institute of Technology (MIT) Cambridge, MA Production in the Innovation Economy (PIE): U method to U.S. marine and ground transportation network Strategic Solar Desalination Network (SSDN) Jun

de Weck, Olivier L.

370

Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors  

Science Journals Connector (OSTI)

Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors ... Also, the application of oxy-combustion technology into gas turbines is possible; however, the combustion temperature will be increased tremendously, which needs more control to make safe the turbine blades. ... technologies, a simplified model of a power plant with two forms of CO2 capture was developed. ...

Mohamed A. Habib; Medhat Nemitallah; Rached Ben-Mansour

2012-11-19T23:59:59.000Z

371

STATE OF THE ART AND FUTURE DEVELOPMENTS IN NATURAL GAS ENGINE TECHNOLOGIES  

SciTech Connect (OSTI)

Current, state of the art natural gas engines provide the lowest emission commercial technology for use in medium heavy duty vehicles. NOx emission levels are 25 to 50% lower than state of the art diesel engines and PM levels are 90% lower than non-filter equipped diesels. Yet, in common with diesel engines, natural gas engines are challenged to become even cleaner and more efficient to meet environmental and end-user demands. Cummins Westport is developing two streams of technologies to achieve these goals for medium-heavy and heavy-heavy duty applications. For medium-heavy duty applications, lowest possible emissions are sought on SI engines without significant increase in complexity and with improvements in efficiency and BMEP. The selected path builds on the capabilities of the CWI Plus technology and recent diesel engine advances in NOx controls, providing potential to reduce emissions to 2010 values in an accelerated manner and without the use of Selective Catalytic Reduction or NOx Storage and Reduction technology. For heavy-heavy duty applications where high torque and fuel economy are of prime concern, the Westport-Cycle{trademark} technology is in field trial. This technology incorporates High Pressure Direct Injection (HPDI{trademark}) of natural gas with a diesel pilot ignition source. Both fuels are delivered through a single, dual common rail injector. The operating cycle is entirely unthrottled and maintains the high compression ratio of a diesel engine. As a result of burning 95% natural gas rather than diesel fuel, NOx emissions are halved and PM is reduced by around 70%. High levels of EGR can be applied while maintaining high combustion efficiency, resulting in extremely low NOx potential. Some recent studies have indicated that DPF-equipped diesels emit less nanoparticles than some natural gas vehicles [1]. It must be understood that the ultrafine particles emitted from SI natural gas engines are generally accepted to consist predominantly of VOCs [2], and that lubricating oil is a major contributor. Fitting an oxidation catalyst to the natural gas engine leads to a reduction in nanoparticles emissions in comparison to engines without aftertreatment [2,3,4]. In 2001, the Cummins Westport Plus technology was introduced with the C Gas Plus engine, a popular choice for transit bus applications. This incorporates drive by wire, fully integrated, closed loop electronic controls and a standard oxidation catalyst for all applications. The B Gas Plus and the B Propane Plus engines, with application in shuttle and school buses were launched in 2002 and 2003. The gas-specific oxidation catalyst operates in concert with an optimized ring-pack and liner combination to reduce total particulate mass below 0.01g/bhphr, combat ultrafine particles and control VOC emissions.

Dunn, M

2003-08-24T23:59:59.000Z

372

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Donald Duttlinger

1999-12-01T23:59:59.000Z

373

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

Unknown

2000-05-01T23:59:59.000Z

374

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network [OSTI]

that support more load following and peaking generation withfor natural gas- fired load following and peaking generationneeded less load- following and peaking generation. Growth

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

375

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network [OSTI]

renewables, including large hydropower, by 2020. In 2009,coal mining and hydropower), iron and steel, machinery, andoil, and natural gas. Hydropower, nuclear, and wind energy

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

376

An Institutional Analysis of Oil and Gas Sector Development and Environmental Management in the Yukon Territory.  

E-Print Network [OSTI]

??This thesis investigates the ways in which oil and gas development priorities and concern for the environment are integrated within strategic planning and management frameworks, (more)

May, Jason C.

2007-01-01T23:59:59.000Z

377

The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report 1994--1995  

SciTech Connect (OSTI)

The HBCU/MI ET Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among its member institutions. This group of research oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MIs) agreed to work together to initiate or revise education programs, develop research partnerships with public and private sector organizations, and promote technology development to address the nation`s critical environmental contamination problems. The Consortium`s Research, Education and Technology Transfer (RETT) Plan became the working agenda. The Consortium is a resource for collaboration among the member institutions and with federal an state agencies, national and federal laboratories, industries, (including small businesses), majority universities, and two and four-year technical colleges. As a group of 17 institutions geographically located in the southern US, the Consortium is well positioned to reach a diverse group of women and minority populations of African Americans, Hispanics and American Indians. This Report provides a status update on activities and achievements in environmental curriculum development, outreach at the K--12 level, undergraduate and graduate education, research and development, and technology transfer.

NONE

1998-07-01T23:59:59.000Z

378

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

Unknown

2000-11-01T23:59:59.000Z

379

Oil & Natural Gas Technology DOE Award No.: DE-FC26-01NT41330  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 (October 2009 - March 2010) Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities Principal Author: John T. Balczewski Chevron Energy Technology Company 1400 Smith Street Houston, TX 77002 Prepared for: United States Department of Energy National Energy Technology Laboratory June 2010 Office of Fossil Energy i DISCLAIMER "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

380

Applying Learning Curves to Modeling Future Coal and Gas Power Generation Technologies  

Science Journals Connector (OSTI)

Other potential improvements to the model include an expansion to cover competing energy technologies not included in the current model such as nuclear, wind, and solar. ... Given the dominance of power plant emissions of greenhouse gases, and the growing worldwide interest in CO2 capture and storage (CCS) as a potential climate change mitigation option, the expected future cost of power plants with CO2 capture is of significant interest. ... Bergek, A.; Tell, F.; Berggren, C.; Watson, J.Technological Capabilities and Late Shakeouts: Industrial Dynamics in the Advanced Gas Turbine Industry, 19872002 Industrial and Corporate Change 2008, 17 ( 2) 335 392 ...

Chris Ordowich; John Chase; Daniel Steele; Ripudaman Malhotra; Michiaki Harada; Keiji Makino

2011-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Study on technology of electromagnetic radiation of sensitive index to forecast the coal and gas hazards  

Science Journals Connector (OSTI)

Hazard forecast of coal and gas outburst was an important step of comprehensive outburst-prevention measures. Aiming at the manifestation of disaster threatens such as the gas outburst to mine safety, this paper explained the forecasting principles of electromagnetic radiation to coal and gas outburst, by the electromagnetic radiation theory of coal rock damage; it studied the characteristics and rules of electromagnetic radiation during the deformation and fracture process of loaded coal rocks, and confirmed forecast sensitive indexes of electromagnetic radiation as well as its critical values by signals of electromagnetic radiation. By applying EMR monitoring technology in the field, outburst prediction and forecast tests to the characteristics of electromagnetic radiation during the driving process was taken, and figured out the hazard prediction values by using forecast methods of static and dynamic trend.

Yuliang Wu; Wen Li

2010-01-01T23:59:59.000Z

382

A Comparative Economical Analysis of Technologies for CO2 Removal from Offshore Natural Gas  

Science Journals Connector (OSTI)

Abstract In the scenario of the Brazilian Pre-Salt fields, where associated Natural Gas (NG) shows high concentration of CO2, gas conditioning comes out as one of the main challenges. Among the possible capture technologies available, three alternatives stand out for CO2 sequestration: (A) gas permeation through membranes, (B) absorption columns using aqueous blends of ethanolamines and (C) application of hybrid - membrane modules in series with amine absorption and regeneration columns. The main objective of this work is to investigate the technical and economical feasibility of applying these three separation processes on offshore platforms, given the stringent constraints on footprint and equipment weight, and for minimizing NG production and transportation costs. The methodology involves: (i) development of cases based on the Brazilian Pre-Salt gas composition. NG streams with CO2 molar concentrations ranging from 8 to 18% are applied; (ii) Simulations of three process flowsheets, corresponding to each one of chosen technologies - A, B and C; (iii) Equipment sizing; and (iv) Analysis of economic performance through calculation of capital (CAPEX) and operational (OPEX) costs.

Tatiana S. Gadelha; Aline R.S. Guimares; Andressa Nakao; Oflia de Q.F. Arajo; Jos Luiz de Medeiros

2012-01-01T23:59:59.000Z

383

Compressed natural gas measurement issues  

SciTech Connect (OSTI)

The Natural Gas Vehicle Coalition`s Measurement and Metering Task Group (MMTG) was established on July 1st, 1992 to develop suggested revisions to National Institute of Standards & Technology (NIST) Handbook 44-1992 (Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices) and NIST Handbook 130-1991 (Uniform Laws & Regulations). Specifically, the suggested revisions will address the sale and measurement of compressed natural gas when sold as a motor vehicle fuel. This paper briefly discusses the activities of the MMTG and its interaction with NIST. The paper also discusses the Institute of Gas Technology`s (IGT) support of the MMTG in the area of natural gas composition, their impact on metering technology applicable to high pressure fueling stations as well as conversion factors for the establishment of ``gallon gasoline equivalent`` of natural gas. The final portion of this paper discusses IGT`s meter research activities and its meter test facility.

Blazek, C.F.; Kinast, J.A.; Freeman, P.M.

1993-12-31T23:59:59.000Z

384

Development of new materials for solar cells in Nagoya Institute of Technology  

Science Journals Connector (OSTI)

Solar cells with high efficiency and low price have long been desired, however, the commercially available solar cells are still expensive and the efficiencies of them are not high enough yet. A tandem solar cell was fabricated to develop a high-efficiency solar cell, and amorphous carbon solar cells were fabricated to develop a low-price solar cell.An AlGaAs/Si tandem solar cell was successfully fabricated by heteroepitaxial growth of AlGaAs on Si substrate. At first, a pn junction was formed in Si substrate by the impurity diffusion method. Then, an AlGaAs pn junction was grown by MOCVD. Since the AlGaAs pn junction has a graded band gap emitter, the photo-excited minority carriers can be collected efficiently. The energy conversion efficiency of AlGaAs/Si tandem solar cell was 21.4% (AM0) in spite of large lattice mismatch and difference in thermal expansion coefficients between AlGaAs and Si.Solar cells were fabricated by using amorphous carbon films deposited by Ion Beam Sputtering and Pulse Laser Deposition (PLD). The highest efficiency of 1.82% (AM0) was attained with a-C(IBS)/p-C(pyrolysis)/p-Si structure. Solar cells using a-C:H were also fabricated by PLD and Plasma CVD, and the efficiencies of them were 2.1% (AM1.5) and 0.04% (AM0), respectively.Other research activities on solar cells in Nagoya Institute of Technology are briefly mentioned.

Takashi Jimbo; Tetsuo Soga; Yasuhiko Hayashi

2005-01-01T23:59:59.000Z

385

DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY INDIAN INSTITUTE OF TECHNOLOGY DELHI  

E-Print Network [OSTI]

collection with sampling vials should be provided. 17. SS condenser for exhaust gas outlet (SS-316L) should be supplied with one pH probe. The pH control range should be from 3 - 12, links to acid pump or CO2 gas. Automatic and manual gas mixing options with control via solenoid valves should be available. 13. The system

Kumar, M. Jagadesh

386

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken?  

Gasoline and Diesel Fuel Update (EIA)

Technology-Based Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken? Through the use of technology, U.S. oil and natural gas operators are converting previously uneconomic oil and natural gas resources into proved reserves and production. The Bakken Formation of the Williston Basin is a success story of horizontal drilling, fracturing, and completion technologies. The recent, highly productive oil field discoveries within the Bakken Formation did not come from venturing out into deep uncharted waters heretofore untapped by man, nor from blazing a trail into pristine environs never open to drilling before. Instead, success came from analysis of geologic data on a decades-old producing area, identification of uptapped resources, and application of the new drilling and completion technology necessary to exploit them. In short, it came from using technology

387

The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report draft, 1995--1996  

SciTech Connect (OSTI)

The HBCU/MI ET Consortium was established in January 1990, through a memorandum of Understanding (MOU) among its member institutions. This group of research-oriented Historically Black Colleges and Universities and Minority Institutions (HBCUs/MIs) agreed to work together to initiate or revise educational programs, develop research partnerships with public and private sector organizations, and promote technology development and transfer to address the nation`s critical environmental problems. While the Consortium`s Research, Education and Technology Transfer (RETT) Plan is the cornerstone of its overall program efforts, the initial programmatic activities of the Consortium focused on environmental education at all levels with the objective of addressing the underrepresentation of minorities in the environmental professions. This 1996 Annual Report provides an update on the activities of the Consortium with a focus on environmental curriculum development for the Technical Qualifications Program (TQP) and Education for Sustainability.

NONE

1998-07-01T23:59:59.000Z

388

2010 Seminar Series Richard E. Smalley Institute for Nanoscale Science and Technology  

E-Print Network [OSTI]

(Honeywell), defense (Honeywell), aerospace (EADS), surface technology (Wagner), aluminum (Rio Tinto Alcan

Mellor-Crummey, John

389

Greenhouse gas emissions reduction in China by cleaner coal technology towards 2020  

Science Journals Connector (OSTI)

Abstract The Chinese energy system, a major CO2 emitter, relies heavily on fossil fuels, especially coal. Coal will continue to play a major role in the new installed power generation capacity in the future, which will cause unavoidable environmental problems. Clean coal technologies (CCTs) are essential for emissions reduction in the power sector. In general, \\{CCTs\\} cover coal upgrading, efficiency improvements, advanced technologies and zero emissions technologies. Besides these, \\{CCTs\\} also include other emissions reduction technologies and comprehensive utilization technologies in China. This paper review the complete life cycle modeling of CCTs. The advanced technologies include super-critical (super-C), ultra super-critical (USC) and integrated gasification combined cycle (IGCC). The results show that the higher efficiency technologies have lower potential impacts. Compared with the average level of power generation technology, CO2 emissions reduction is 6.4% for super-C, 37.4% for USC and 61.5% for IGCC. Four coal power scenarios are developed based on the assumption of potential investment power for \\{CCTs\\} in 2020, which are super-C, USC, USC and old low efficiency generation substitution by USC, IGCC and carbon capture and storage (CCS). The CO2 emissions intensity is 1.93kg/kWh for super-C, 1.69kg/kWh for USC, 1.59kg/kWh for USC+replacement and 1.29kg/kWh for IGCC+CCS. The CO2 emissions intensity was 1.95kg/kWh in 2010, which had decreased 5.5% compared with the level in 2005. The energy structure is continuously being improved and optimized. The potential carbon reduction will be limited in the power system in 2020 by current commercial \\{CCTs\\} with the generation efficiency increase. The most impressive technology is IGCC with CCS which enables greenhouse gas reduction of 37.6% compared with the level in 2005.

Guangling Zhao; Sha Chen

2014-01-01T23:59:59.000Z

390

Oil & Natural Gas Technology DOE Award No.: DE-FE0001243 Topical Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FE0001243 FE0001243 Topical Report DEVELOPMENT OF CFD-BASED SIMULATION TOOLS FOR IN SITU THERMAL PROCESSING OF OIL SHALE/SANDS Submitted by: University of Utah Institute for Clean and Secure Energy 155 South 1452 East, Room 380 Salt Lake City, Utah 84112 Prepared for: United States Department of Energy National Energy Technology Laboratory February 2012 Office of Fossil Energy TOPICAL REPORT: DEVELOPMENT OF CFD_BASED SIMULATION TOOLS FOR IN SITU THERMAL PROCESSING OF OIL SHALE/SANDS Authors: Michal Hradisky and Philip J. Smith DOE Award No.: DE-FE0001243 Reporting Period: October 1, 2009 - September 30, 2011 Report Issued: February 2012 Submitted by: University of Utah Institute for Clean and Secure Energy 155 South 1452 East, Room 380

391

PHILIP J. HATCHER 1985 Ph.D. Computer Science Illinois Institute of Technology  

E-Print Network [OSTI]

for Parallel Computation," $121,547, National Science Foun- dation, grant funded May 1995 (with R.D. Bergeron Advanced Computing Institute and IBM Corporation, grant funded May 1992 (with M. Quinn). "An Extended to the Intel iPSC/2 and iPSC/860," $20,000, Oregon Advanced Computing Institute and Intel Corporation, grant

Hatcher, Phil

392

National Institute for Advanced Transportation Technology A N N U A L R E P O R T A U G U S T 2 0 0 2  

E-Print Network [OSTI]

for Clean Vehicle Technology relates to the area's environmental concerns of preserving national parks1 National Institute for Advanced Transportation Technology A N N U A L R E P O R T · A U G U S T 2;2 Theme: Advanced Transportation Technology M I S S I O N Our mission is to work with industry, government

Kyte, Michael

393

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network [OSTI]

a dramatic scaling up of alternative energy technologies inChinas original alternative energy goal was to achieve 15%near-term deployment of alternative energy sources in China.

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

394

Szczepanik, Z., Milne, D., Kostakis, K., Eberhardt, E. Long Term Laboratory Strength Tests in Hard Rock. ISRM 2003Technology roadmap for rock mechanics, South African Institute of Mining and Metallurgy, 2003.  

E-Print Network [OSTI]

in Hard Rock. ISRM 2003­Technology roadmap for rock mechanics, South African Institute of Mining, Saskatoon, Canada ** Technological Educational Institute of Pireaus, Athens, Greece *** Engineering Geology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland Abstract This paper presents

395

CRC handbook of laser science and technology. Volume 3. Gas lasers  

SciTech Connect (OSTI)

This book describes the fundamentals of gas lasers. It provides information and data on neutral gas lasers, ionized gas lasers, and molecular gas lasers. Concluding this volume is an extensive table of all gas laser wavelengths.

Weber, M.J.

1982-01-01T23:59:59.000Z

396

Safety management in the Dutch oil and gas industry: the effect on the technological regime  

Science Journals Connector (OSTI)

This paper deals with the recent trend in Europe, from the formulation of detailed instructions and specifications with respect to the safety of industrial installations by governments, towards regulation on the level of safety management systems and risk analyses. The development sketched is studied with respect to the offshore oil and gas industry in the Netherlands. The government inspectorate responsible for this industry, the Staatstoezicht op de Mijnen (SodM), has, since the early 1990s, changed its approach from hardware-based inspections to inspection at the level of management systems. To assess the effects of this change in approach on industry practice the concept of ''technological regime'' is employed.

I.R. van de Poel; A.R. Hale; L.H.J. Goossens

2002-01-01T23:59:59.000Z

397

Production of Middle Caloric Fuel Gas from Coal by Dual-Bed Gasification Technology  

Science Journals Connector (OSTI)

This work demonstrated the dual-bed gasification technology on a pilot plant (1000 tons of coal/a) mainly consisting of a fluidized-bed gasifier and a pneumatic combustor using the coal with a particle size of less than 20 mm. ... It can be seen in Table 1 that the mass fraction of the coal with sizes less than 2.0 mm was about 45 wt %. ... Coal was continuously fed in the gasifier, and meanwhile, air or gas mixture (air and steam) as the fluidizing medium and gasifying reagent was introduced from the bottom of the gasifier. ...

Yin Wang; Wen Dong; Li Dong; Junrong Yue; Shiqiu Gao; Toshiyuki Suda; Guangwen Xu

2010-04-23T23:59:59.000Z

398

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Journals Connector (OSTI)

Recently world has been confused by issues of energy resourcing including fossil fuel use global warming and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end?users particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN?IV reactors nuclear projects (HTGRs HTR VHTR) is also can produce hydrogen from the process. In the present study hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

2010-01-01T23:59:59.000Z

399

Oil & Natural Gas Technology DOE Award No.: DE-FC26-01NT41330  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R19 R19 (April 2010 - September 2010) Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities Principal Author: John T. Balczewski Chevron Energy Technology Company 6001 Bollinger Canyon Road, CHVPKD San Ramon, CA 94583 Prepared for: United States Department of Energy National Energy Technology Laboratory October 2010 Office of Fossil Energy i DISCLAIMER "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

400

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

Unknown

2001-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy technology expert elicitations: An application to natural gas turbine efficiencies  

Science Journals Connector (OSTI)

Abstract Expert elicitations are critical tools for characterizing technological uncertainty, since historical data on technical progress may not provide a sufficient basis for forecasting future advances. The objectives of this paper are to describe the protocol and results for an expert elicitation on the future performance of gas-turbine-based technologies in the electric power sector and to discuss how these insights relate to the current elicitation literature in energy modeling. Elicitation results suggest that prospective efficiency gains are likely to be slower than historical trends; however, the assessed values are still appreciably higher than the efficiencies used in many energy models. The results also indicate that conducting face-to-face elicitations may be important for minimizing overconfidence and for critically examining reported values, especially when assessing non-central probabilities in the tails of a distribution.

John E. Bistline

2014-01-01T23:59:59.000Z

402

Cap Gap Extensions INTERNATIONAL CENTER This information is issued to F-1 International Students at the Illinois Institute of Technology as guidance. This  

E-Print Network [OSTI]

at institutions of higher education or a related or affiliated nonprofit entity, or at a nonprofit researchCap Gap Extensions INTERNATIONAL CENTER This information is issued to F-1 International Students at the Illinois Institute of Technology as guidance. This guidance is not immigration regulation

Heller, Barbara

403

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Performance of Class 2 and Class 3 Hydrate Deposits during Co-Production with Conventional Gas the Performance of Class 2 and Class 3 Hydrate Deposits during Co-Production with Conventional Gas The Performance of Class 2 and Class 3 Hydrate Deposits during Co-Production with Conventional Gas (OTC 19435) Authors: George J. Moridis (speaker), Matthew T. Reagan, and Keni Zhang Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 ( http://www.spe.org and http://www.smenet.org [external sites] ) Abstract: Recent numerical studies have provided strong indications that it is possible to produce large volumes of gas from natural hydrate deposits at high rates (in excess of 10 MMSCFD) for long times by depressurization-induced dissociation of hydrates. Of the various factors that can adversely affect the production potential of hydrates, low temperatures have one of the strongest negative impacts. These can be caused by low initial temperatures, increasing stability of the hydrate (as defined by the deviation between the temperature of the deposit and the equilibrium temperature at the reservoir pressure), and by an advanced stage of dissociation (a strongly endothermic reaction) when substantial amounts of hydrates remain. The reasons for the production decline include a reduction in the rate of the hydrate dissociation at lower temperatures and the evolution of flow restrictions in the vicinity of the well caused by the formation of hydrate and/or ice in the vicinity of the wellbore. The latter is caused by continuous cooling, and is the reason why large amounts of gas that may have been released in the reservoir in the course of earlier dissociation cannot be easily recovered.

404

Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals  

SciTech Connect (OSTI)

Air Products has developed a potentially ground-breaking technology Sour Pressure Swing Adsorption (PSA) to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

Kloosterman, Jeff

2012-12-31T23:59:59.000Z

405

Emerging technologies for the management and utilization of landfill gas. Final report, August 1994-August 1997  

SciTech Connect (OSTI)

The report gives information on emerging technologies that are considered to be commercially available (Tier 1), currently undergoing research and development (Tier 2), or considered as potentially applicable (Tier 3), for the management of landfill gas (LFG) emissions or for the utilization of methane (CH4) and carbon dioxide (CO2) from LFG. The emerging technologies that are considered to be Tier 1 are: (1) phosphoric acid fuel cells, (2) processes for converting CH4 from LFG to compressed LFG for vehicle fuel or other fuel uses, and (3) use of LFG as a fuel source for leachate evaporation systems. The Tier 2 technologies covered in the report are: (1) operation of landfills as anaerobic bioreactors, (2) operation of landfills are aerobic bioreactors, (3) production of ethanol from LFG, (4) production of commercial CO2 from LFG, and (5) use of LFG to provide fuel for heat and CO2 enhancement in greenhouses. Tier 3 technologies, considered as potentially applicable for LFG. include Stirling and Organic Rankine Cycle engines.

Roe, S.; Reisman, J.; Strait, R.; Doorn, M.

1998-02-01T23:59:59.000Z

406

DOE-Supported Technology Passes Scale-Up Test Converting CO DOE-Sponsored Research Improves Gas Turbine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

into Valuable Materials into Valuable Materials Publications News Release Release Date: June 17, 2013 DOE-Sponsored Research Improves Gas Turbine Performance DOE Lab Receives Award for Work on Drilling Technology An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy. Photo courtesy of Mikro Systems, Inc. Washington, D.C. - An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy (DOE). The technology - which is expected to contribute to cleaner, more reliable and affordable domestic energy production as well as creating new

407

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network [OSTI]

Scheibel (1997) Current Gas Turbine Developments and Futurefor Heavy-Duty Gas Turbines, October 2000. Available onlineNext Evolution of the F Gas Turbine, April 2001. Available

Ishii, Jun

2004-01-01T23:59:59.000Z

408

Fiber Optic Sensing Technology for Detecting Gas Hydrate Formation and Decomposition  

SciTech Connect (OSTI)

A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 L) pressure vessel providing high spatial resolution, time resolved, 3-D measurement of hybrid temperature-strain (TS) values within experimental sediment gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data is visualized as a 'movie' of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Processing Simulator (SPS) at Oak Ridge National Laboratory show clear indications of hydrate formation and dissociation events at expected P-T conditions given the thermodynamics of the CH4-H2O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

Rawn, Claudia J [ORNL; Leeman, John R [University of Oklahoma, Norman; Ulrich, Shannon M [ORNL; Alford, Jonathan E [ORNL; Phelps, Tommy Joe [ORNL; Madden, Megan Elwood [University of Oklahoma, Norman

2011-01-01T23:59:59.000Z

409

Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit  

SciTech Connect (OSTI)

The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nations finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nations balance sheet, and stimulate job-creation and economic renewal.

Muro, Mark; Rothwell, Jonathan

2012-11-15T23:59:59.000Z

410

Oil and Gas Science and Technology, 2009, 64(5), 629-636, doi: 10.2516/ogst/2009042 DDDiiissscccuuussssssiiiooonnn ooofff aaagggggglllooommmeeerrraaatttiiiooonnn mmmeeeccchhhaaannniiisssmmmsss bbbeeetttwwweeeeeennn hhhyyydddrrraaattteee  

E-Print Network [OSTI]

Oil and Gas Science and Technology, 2009, 64(5), 629-636, doi: 10.2516/ogst/2009042 1. KKeeyywwoorrddss:: gas hydrate formation ; water/oil emulsions ; hydrate slurry ; agglomeration ; Population@emse.fr hal-00480033,version1-3May2010 Author manuscript, published in "Oil & Gas Science and Technology 64, 5

Paris-Sud XI, Université de

411

Bill Goodwine California Institute of Technology Motion Planning for Legged Robots  

E-Print Network [OSTI]

that the main point of this work is the development of a general theory. #12;Bill Goodwine California Institute the trajectory generation problem is not so easy. For the car, there are only two inputs, but four states that we] For stratified systems, because of the need to lift legs off of the ground, we choose to extend the approach

Goodwine, Bill

412

Materials and Process Simulation Center (M/C 139-74) California Institute of Technology  

E-Print Network [OSTI]

battery EDUCATION Ph. D., Materials Science and Engineering, 1997 Institute of Metal Research, Chinese and Physical Review B, and I have had 17 oral/poster presentations at domestic and international conferences. According to Science Citation Index (SCI) these papers have been cited more than 127 times. In particular

Goddard III, William A.

413

Annual Report 2011 Eawag: Swiss Federal Institute of Aquatic Science and Technology  

E-Print Network [OSTI]

­ a future leader in on-site wastewater treatment? 19 Drinking water teeming with bacteria 20 Producing important with climate change and other new challenges. Observations for better understanding Since the 1970) technician at the Lengg drinking water treatment plant (see p. 42). Eawag, the Swiss Federal Institute

Wehrli, Bernhard

414

Vehicle Technologies Office Merit Review 2014: Lake Michigan Corridor Alternative Fuel Implementation Initiative  

Broader source: Energy.gov [DOE]

Presentation given by Institute of Gas Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Lake Michigan...

415

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

Products Industry Technology Roadmap. Agenda 2020 Technology2011. "The IEA CCS Technology Roadmap: One Year On". Energy1287- Reitzer, R. 2007. Technology Roadmap - Applications of

Kong, Lingbo

2014-01-01T23:59:59.000Z

416

2012 SG Peer Review - The Perfect Power Prototype for the Illinois Institute of Technology - Mohmmad Shahidehpour, IIT  

Broader source: Energy.gov (indexed) [DOE]

Perfect Power Progress Report Perfect Power Progress Report Dr. Mohammad Shahidehpour DOE Peer Review | June 2012 Perfect Power @ IIT Perfect Power @ IIT Funded by the U.S. Department of Energy * $13.6M ($7.6M from DOE, $6M Cost Share) * 5 year project * Located at Illinois Institute of Technology (IIT) * Involves the entire campus * Partners: IIT, Exelon, S&C Electric, Schweitzer, IPS, Eaton Corporation, ZBB, CIYCOR, Continental Electric, Intelligent Generation This project aligns with the OE mission and the Smart Grid program goals to develop technologies to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supply. Leadership Mohammad Shahidehpour (Principal Investigator) Project Advisor ComEd/Exelon

417

Gas Research Institute improved fracturing. Unconventional natural gas program, eastern devonian shales diagnostic program: Black No. 1 well experiment results. Third quarterly report, October 1979-December 1979  

SciTech Connect (OSTI)

During the last quarter of 1979, Sandia National Laboratories participated in an experiment with Thurlow Weed and Associates and the Morgantown Energy Technology Center. This Devonian Shale gas stimulation experiment was conducted in an area north of Columbus, Ohio. One purpose of the experiment was to apply the diagnostic instrumentation that is available for fracture mapping and characterization to increase our understanding of the stimulation technique. The induced fracture apparently followed a pre-existing fracture vertically from the borehole with an orientation of the N 62/sup 0/ E and in the latter stages of the stimulation turned into a shallower horizontal fracture. This fracture behavior was confirmed by several diagnostic analyses and demonstrates the insight that can be gained by fully instrumented stimulation experiments.

Schuster, C.L. (ed.)

1980-02-01T23:59:59.000Z

418

New information technologies in public participation : a challenge to old decision-making institutional frameworks  

E-Print Network [OSTI]

Given the progress in information technology (IT) in the past 30 years, I hypothesized that new conditions exist for considerable improvements in public participation in decision-making. In order to test my hypothesis, I ...

Ferraz de Abreu, Pedro Manuel Barbosa

2002-01-01T23:59:59.000Z

419

For more information, please contact Prof. David Dietz at David.Dietz@stevens.edu or 201-216-5450 STEVENS INSTITUTE OF TECHNOLOGY  

E-Print Network [OSTI]

and Clean Energy Programs. He also oversees the following units: Information Technology, Administration-216-5450 STEVENS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING Special topics in Energy seminar series Wednesday, April 11, 2007 Carnegie Room 315, 1:30 pm CLEAN ENERGY SUPPLY, GOVERNMENT POLICY

Fisher, Frank

420

Institutional project summary University of Redlands direct fired gas absorption chiller system  

SciTech Connect (OSTI)

The University of Redlands, located in the California Inland Empire City of Redlands supplies six campus building with chilled and hot water for cooling and space heating from a centrally located Mechanical Center. The University was interested in lowering chilled water production costs and eliminating Ozone depleting chloroflourocarbon (CFC) refrigerants in addition to adding chiller capacity for future building to be added to the central plant piping {open_quotes}loop{close_quotes}. After initially providing a feasibility study of chiller addition alternatives and annual hourly load models, GRT & Associates, Inc. (GRT) provided design engineering for the installation of a 500 Ton direct gas fired absorption chiller addition to the University of Redland`s mechanical center. Based on the feasibility study and energy consumption tests done after the new absorption chiller was added, the university estimates annual energy cost saving versus the existing electric chiller is approximately $65,000 per year. Using actual construction costs, the simple before tax payback period for the project is six years.

Tanner, G.R.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

StarWars Laser Technology Applied to Drilling and Completing Gas Wells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

u' m .,. . Society of Petroleum Engineers u I SPE 49259 StarWars Laser Technology Applied to Drilling and Completing Gas Wells R.M. Graves, SPE, Colorado School of Mines; and D.G. O'Brien, PE, SPE, Solutions Engineering Copyr@ht 1998, Scdety of Petroleum Engineers, Inc. This paper was prapared for presentation at the 1998 SPE Annual Technicar Conference and Exhibition bald in New Orteans, Lcuisiana, 27-30 September 1998, This paper waa selected for presentation by en SPE Program Commiftee folrowing review of information contained in an abstract submitted by the author(a). Contents of the paper, as prasented, have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The materiar, as presented, does not necessarily reflect any position of the .%ciety of Petroleum Engineers, its officers, or members. Papers prasented at SPE meetings

422

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY P.O. IIT Powai, Mumbai-400 076  

E-Print Network [OSTI]

. Desirable: a) Should be able to work on throwing wheel, ball mill and ceramic furnace. b) Knowledge in Printing Technology of three years duration. Desirable: Three years experience of entire operating system. of three years duration. Desirable: Experience in handling audio/video equipments, PA Systems, recording

Narayanan, H.

423

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY P.O. IIT Powai, Mumbai400 076  

E-Print Network [OSTI]

. The selected candidates may be considered for appointment on a permanent basis subject to an assessment. Sr. No · Knowledge of system administration in Linux and Windows operating systems. · Shell scripting experience new technologies/tools. Basic Electronics Lab: Desirable experience Experience in embedded

Narayanan, H.

424

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Rochester Institute of Technology  

E-Print Network [OSTI]

appears in the fuel cells not only from the water generated at the cathode catalyst layer but also cells is being pursued world- wide to develop hydrogen as a replacement fuel for the cur- rent petroleum in enabling hydrogen- based fuel cell technology. The role of effective water man- agement in proton exchange

Kandlikar, Satish

425

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

Biomass Gasification Technologies for Fuels, Chemicals andEnergy, National Energy Technology Laboratory. CO ? Solution01GO10621. Industrial Technologies Progarm (ITP). 2006e.

Kong, Lingbo

2014-01-01T23:59:59.000Z

426

Greenhouse Gas Return on Investment: A New Metric for Energy Technology  

E-Print Network [OSTI]

distinguish between a solar technology installed to replaceone installed to the grid; solar technology installed at thetheir concentrator solar energy technology. In this section,

Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

427

MHK Projects/Muroran Institute of Technology Pilot Project | Open Energy  

Open Energy Info (EERE)

Technology Pilot Project Technology Pilot Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.5197,"lon":136.319,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

428

Integrity, Reliability and Security: The Role of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

F. Lawson F. Lawson Director, Strategic Center for Natural Gas & Oil National Energy Technology Laboratory General session Natural Gas Technologies Conference 2005 Cosponsors: NETL/Gas Technology Institute Orlando, Florida January 31, 2005 Integrity, Reliability and Security: The Role of Technology Introduction Integrity, reliability, and security encompass all the attributes we want-indeed, need-from our natural gas industry. We need integrity in physical transportation and storage systems, reliability in operating systems, and security in supplies and delivery systems. This conference is the most comprehensive forum for addressing new and evolving technologies impacting all these needs. The conference scope runs the gamut: from finding and producing to storing,

429

National Institute of Standards and Technology - Texas instruments industrial collaboratory testbed.  

SciTech Connect (OSTI)

A portion of the mission of the NIST Manufacturing Engineering Laboratory (MEL) is to improve and advance length metrology in aid of U.S. Industry. This responsibility is found within the Precision Engineering Division (PED). The successful development of a ''Collaborator'' for TelePresence Microscopy provides an important new tool to promote technology transfer in the area of length metrology and measurement technology. NIST and Texas Instruments under the auspices of the National Automated Manufacturing Testbed (NAMT) and in collaboration with the University of Illinois are developing a microscopy collaborator testbed to demonstrate the value of telepresence microscopy within a large distributed manufacturing facility such as Texas Instruments and between organizations such as NET, Texas Instruments and Universities. Telepresence Microscopy is an application of the state-of-the-art Internet based technology to long-distance scientific endeavors. Long distance can refer to across the country or from one site within a company to another. Telepresence is currently being applied to electron microscopy in several locations where unique analytical facilities (such as those at NIST) can be utilized via Internet connection. Potentially this can provide tremendous savings to a company where asset sharing can now be rapidly and effectively accessed or remote unique facilities can be utilized without the requirement of expensive and time consuming travel. This methodology is not limited to electron microscopy, but its power is currently exemplified by its application to that form of microscopy.

Postek, M. T.

1998-10-29T23:59:59.000Z

430

Electric Power Research Institute: Environmental Technology Control Center, report to the Steering committee. Final technical report  

SciTech Connect (OSTI)

This report describes test for air pollution control of flue gas and mercury as a result of coal combustion. The NYSEG Kintigh Station provided flue gas to the Center 100% of the time during this performance period. As the Kintigh Station operated with a variety of coals, fluctuations in the Center`s inlet SO{sub 2} concentrations were experienced. Safety training for the month was conducted by the O&M Superintendent, Maintenance Supervisor and Shift Supervisors. {open_quotes}Personal Protective Equipment{close_quotes} was the topic of the month. Inspections of the ECTC Facility and safety equipment (SCR air-packs, fire extinguishers, etc.) were completed and recorded this month. All systems were found to be in good condition. By continuing to emphasize safe work habits at the Center, we have raised the total number of days without a lost time injury to 1426 as of 4/30/96. The monthly safety meeting with the NYSEG Kintigh Station was held on April 30, 1996 with both NYSEG and ECTC representatives. The topics of discussion included an overview of NYSEG`s upcoming alternate fuel burn, an update on plant staffing changes, and a discussion of future safety training activities.

NONE

1996-04-01T23:59:59.000Z

431

The Impact of New Technologies on Radiation Oncology Events and Trends in the Past Decade: An Institutional Experience  

SciTech Connect (OSTI)

Purpose: To review the type and frequency of patient events from external-beam radiotherapy over a time period sufficiently long to encompass significant technology changes. Methods and Materials: Ten years of quality assurance records from January 2001 through December 2010 were retrospectively reviewed to determine the frequency of events affecting patient treatment from four radiation oncology process steps: simulation, treatment planning, data entry/transfer, and treatment delivery. Patient events were obtained from manual records and, from May 2007 onward, from an institution-wide database and reporting system. Events were classified according to process step of origination and segregated according to the most frequently observed event types. Events from the institution-wide database were evaluated to determine time trends. Results: The overall event rate was 0.93% per course of treatment, with a downward trend over time led by a decrease in treatment delivery events. The frequency of certain event types, particularly in planning and treatment delivery, changed significantly over the course of the study, reflecting technologic and process changes. Treatments involving some form of manual intervention carried an event risk four times higher than those relying heavily on computer-aided design and delivery. Conclusions: Although the overall event rate was low, areas for improvement were identified, including manual calculations and data entry, late-day treatments, and staff overreliance on computer systems. Reducing the incidence of pretreatment events is of particular importance because these were more likely to occur several times before detection and were associated with larger dosimetric impact. Further improvements in quality assurance systems and reporting are imperative, given the advent of electronic charting, increasing reliance on computer systems, and the potentially severe consequences that can arise from mistakes involving complex intensity-modulated or image-guided treatments.

Hunt, Margie A., E-mail: huntm@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Pastrana, Gerri [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Amols, Howard I. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Killen, Aileen [Quality of Care Initiative, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Quality of Care Initiative, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Alektiar, Kaled [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

2012-11-15T23:59:59.000Z

432

Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright 2008 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright © 2008 Inderscience Enterprises Ltd. Building the foundation for Prudhoe Bay oil production optimisation using neural networks E-mail: siskd@Bp.com Abstract: Field data from the Prudhoe Bay oil field in Alaska was used

Mohaghegh, Shahab

433

2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright © 2009 Inderscience@yahoo.com Hafez Hafez ADCO-PDD, Abu Dhabi Company for Onshore Oil Operation (ADCO), P.O. Box 270, Abu Dhabi Dhabi Company for Onshore Oil Operation (ADCO), P.O. Box 270, Abu Dhabi, United Arab Emirates Email

Mohaghegh, Shahab

434

The adoption of cogeneration in the Japanese manufacturing sector: technological, economic and institutional determinants  

Science Journals Connector (OSTI)

Combined heat and power (CHP) has been identified by the Second and Third Assessment Report of the Intergovernmental Panel on Climate Change as a powerful carbon abating technology. In this paper, we review trends and overall changes in power generation technologies insofar as these affect industrial CHP in Japan; we also propose an empirical model for the analysis of CHP adoption based on time series cross-sectional (panel) data. This is followed by a discussion on current energy policy targets towards CHP and the changes in steam capacity (process heat) that have occurred during the period 1985-1998. Site information on 1500 CHP sites was gathered and combined with industrial statistics for a 14 year span during which Japanese power markets underwent deregulation. Based on the panel regression, we found that an increase in the probabilities of installing new CHP will be linked with a unit increase in purchased power, industrial production and consumption of self-generated power, while a unit increase in non-CHP boiler steam capacity will decrease the probability of adding CHP for the 7 industries. The fixed effects model showed that CHP faces increasing returns to scale over the period 1985-1998. Empirical work on CHP on cross sectional studies carried elsewhere confirms some of our findings. Additionally, it is found that adoptions of CHP are linked to the small to medium size industrial plants since the latter account for the mass of steam capacity retired.

David Bonilla; Atsushi Akisawa; Takao Kashiwagi

2002-01-01T23:59:59.000Z

435

High-temperature turbine technology program hot-gas path development test. Part II. Testing  

SciTech Connect (OSTI)

This topical report of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) Phase II program presents the results of testing full-scale water-cooled first-stage and second-stage turbine nozzles at design temperature and pressure to verify that the designs are adequate for operation in a full-scale turbine environment. Low-cycle fatigue life of the nozzles was demonstrated by subjecting cascade assemblies to several hundred simulated startup/shutdown turbine cycles. This testing was accomplished in the Hot-Gas Path Development Test Stand (HGPDTS), which is capable of evaluating full-scale combustion and turbine nozzle components. A three-throat cascade of the first-stage turbine nozzle was successfully tested at a nozzle inlet gas temperature of 2630/sup 0/F and a nozzle inlet pressure of 11.3 atmospheres. In addition to steady-state operation at the design firing temperature, the nozzle cascade was exposed to a simulated startup/shutdown turbine cycle by varying the firing temperature. A total of 42 h at the design point and 617 thermal cycles were accumulated during the test periods. First-stage nozzle test results show that measured metal and coolant temperatures correspond well to the predicted design values. This nozzle design has been shown to be fully satisfactory for the application (2600/sup 0/F), with growth capability to 3000/sup 0/F firing temperature. A post-test metallurgical examination of sectioned portions of the tested nozzles shows a totally bonded structure, confirming the test results and attesting to the successful performance of water-cooled composite nozzle hardware.

Horner, M.W.

1982-03-01T23:59:59.000Z

436

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

SciTech Connect (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology demonstration in an actual full-sized reciprocating natural-gas engine.

Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

2004-09-30T23:59:59.000Z

437

Existing and anticipated technology strategies for reducing greenhouse gas emissions in Koreas petrochemical and steel industries  

Science Journals Connector (OSTI)

This study examines the existing and anticipated technology strategies for reducing greenhouse gas (GHG) emissions in Koreas petrochemical and steel industries. The results of the cluster analysis identify three types of technology strategies employed by firms for reducing GHG emissions: wait-and-see in-process-focused, and all-round strategies. The in-process-focused strategy was the most widely used strategy, followed by the all-round strategy. However, firms in these industries are expected to change their technology strategies to treatment-reliance, inbound-substitution, and all-round strategies in 510 years by employing a wider range of technology options to respond more effectively to the issue of GHG emissions. The demand for new energy sources and raw material substitutes is expected to strengthen in the near future as related technologies advance rapidly and become more widely available.

Su-Yol Lee

2013-01-01T23:59:59.000Z

438

Novel Gas Isotope Interpretation Tools to Optimize Gas Shale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Final Report to Final Report to Report Number 08122.15.Final Novel Gas Isotope Interpretation Tools to Optimize Gas Shale Production Contract: 08122-15 Principal Investigator: William A. Goddard, III Title: Director, Materials and Process Simulation Center California Institute of Technology Wag@wag.caltech.edu Co-PIs: Yongchun Tang, Ph.D. Title: Director, Power Environmental Energy Research Institute Other Author(s) Sheng Wu, Ph.D Andrew Deev, Ph.D Qisheng Ma, Ph.D Gao Li, Ph.D. June 5, 2013 2 LEGAL NOTICE This report was prepared by California Institute of Technology as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA members of RPSEA, the National Energy Technology Laboratory, the U.S. Department of Energy, nor any person acting on behalf of

439

Advances of flue gas desulfurization technology for coal-fired boilers and strategies for sulfur dioxide pollution prevention in China  

SciTech Connect (OSTI)

Coal is one of the most important kinds of energy resources at the present time and in the immediate future in China. Sulfur dioxide resulting from combustion of coal is one of the principle pollutants in the air. Control of SO{sub 2} discharge is still a major challenge for environmental protection in developing China. In this paper, research, development and application of technology of flue gas desulfurization (FGD) for coal-fired boilers in China will be reviewed with emphasis on cost-effective technology, and the development trends of FGD technology, as well as the strategy for SO{sub 2} discharge control in China, will be analyzed. A practical technology for middle-small-sized boilers developed by the primary author and the field investigation results will also be presented. At present, there are four major kinds of FGD technologies that are practical to be applied in China for their cost-effectiveness and efficiency to middle-small-sized boilers. An important development trend of the FGD technology for middle-small-sized boilers for the next decade is improvement of the existing cost-effective wet-type FGD technology, and in the future it will be the development of dry-type FGD technology. For middle-sized generating boilers, the development direction of the FGD technology is the spraying and drying process. For large-sized generating boilers, the wet-type limestone-plaster process will still be applied in the immediate future, and dry-type FGD technologies, such as ammonia with electron beam irradiation, will be developed in the future. State strategies for the control of SO{sub 2} discharge will involve the development and popularization of efficient coal-fired devices, extension of gas coal and liquefied coal, spreading coal washing, and centralized heating systems.

Yang, C.; Zeng, G.; Li, G.; Qiu, J.

1999-07-01T23:59:59.000Z

440

Independent Validation and Verification of Process Design and Optimization Technology Diagnostic and Control of Natural Gas Fired Furnaces via Flame Image Analysis Technology  

SciTech Connect (OSTI)

The United States Department of Energy, Industrial Technologies Program has invested in emerging Process Design and Optimizations Technologies (PDOT) to encourage the development of new initiatives that might result in energy savings in industrial processes. Gas fired furnaces present a harsh environment, often making accurate determination of correct air/fuel ratios a challenge. Operation with the correct air/fuel ratio and especially with balanced burners in multi-burner combustion equipment can result in improved system efficiency, yielding lower operating costs and reduced emissions. Flame Image Analysis offers a way to improve individual burner performance by identifying and correcting fuel-rich burners. The anticipated benefit of this technology is improved furnace thermal efficiency, and lower NOx emissions. Independent validation and verification (V&V) testing of the FIA technology was performed at Missouri Forge, Inc., in Doniphan, Missouri by Environ International Corporation (V&V contractor) and Enterprise Energy and Research (EE&R), the developer of the technology. The test site was selected by the technology developer and accepted by Environ after a meeting held at Missouri Forge. As stated in the solicitation for the V&V contractor, 'The objective of this activity is to provide independent verification and validation of the performance of this new technology when demonstrated in industrial applications. A primary goal for the V&V process will be to independently evaluate if this technology, when demonstrated in an industrial application, can be utilized to save a significant amount of the operating energy cost. The Seller will also independently evaluate the other benefits of the demonstrated technology that were previously identified by the developer, including those related to product quality, productivity, environmental impact, etc'. A test plan was provided by the technology developer and is included as an appendix to the summary report submitted by Environ (Appendix A). That plan required the V&V contractor to: (1) Establish the as-found furnace operating conditions; (2) Tune the furnace using currently available technology to establish baseline conditions; (3) Tune the furnace using the FIA technology; and (4) Document the improved performance that resulted from application of the FIA technology. It is important to note that the testing was not designed to be a competition or comparison between two different methodologies that could be used for furnace tuning. Rather, the intent was to quantify improvements in furnace performance that could not be achieved with existing technology. Therefore, the measure of success is improvement beyond the furnace efficiency obtainable using existing furnace optimization methods rather than improvement from the as found condition.

Cox, Daryl [ORNL

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, October 1 - December 31, 1994  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Morgantown Energy Technology Center (METC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents which can reduce the sulfur in coal gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. This report summarizes the highlights and accomplishments of the October slipstream test run of the Zinc Titanate Fluid Bed Desulfurization/Direct Sulfur Recovery Process (ZTFBD/DSRP) Mobile Laboratory at the Department of Energy`s Morgantown Energy Technology Center. Although the run had to be shortened due to mechanical problems with METC`s gasifier, there was sufficient on-stream time to demonstrate highly successful operation of both the zinc titanate fluid bed desulfurization and the DSRP with actual coal gas.

NONE

1994-12-31T23:59:59.000Z

442

Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.  

SciTech Connect (OSTI)

Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A. (Energy Systems)

2011-05-01T23:59:59.000Z

443

INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 12 (2003) 821 PII: S0963-0252(03)55523-2  

E-Print Network [OSTI]

as multi-atmosphere thermal arcs, during their starting phase the lamps are moderate pressure glowINSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 12 (2003) 8­21 PII: S0963-0252(03)55523-2 Breakdown processes in metal halide lamps Brian Lay1

Kushner, Mark

444

International Center 3201 South State Street, MTCC -Room 203 (312)-567-3680 icenter@iit.edu www.ic.iit.edu Illinois Institute of Technology  

E-Print Network [OSTI]

International Center ­ 3201 South State Street, MTCC - Room 203 ­ (312)-567-3680 ­ icenter@iit.edu ­ www.ic.iit.edu Illinois Institute of Technology Chicago-Kent College of Law 565 West Adams Street CPT. · Transfer students may count any time spent as a full-time student at the previous school

Heller, Barbara

445

International Center 3201 South State Street, MTCC -Room 203 (312)-567-3680 icenter@iit.edu www.ic.iit.edu Illinois Institute of Technology  

E-Print Network [OSTI]

@iit.edu ­ www.ic.iit.edu Illinois Institute of Technology International Center 3201 S. State St. MTCC, Room 203 at the International Center to discuss your intent to transfer and to which school. Agree on a SEVIS release date your travel plans with the International Center. · If you decide not to transfer, you must inform

Heller, Barbara

446

INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 13 (2004) 309314 PII: S0963-0252(04)78552-7  

E-Print Network [OSTI]

pressure the removal rate decreases [1]. Atmospheric microwave-induced plasma sources have been studiedINSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol of microwave-induced reactive low-power plasma jets Thomas Arnold1 , Sergey Grabovski2 , Axel Schindler1

Greifswald, Ernst-Moritz-Arndt-Universität

447

INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 15 (2006) 817 doi:10.1088/0963-0252/15/1/002  

E-Print Network [OSTI]

and driven by ac voltage of frequency 10 kHz. The discharge gap was 2.2 mm and 5 mm, respectively at atmospheric pressure. Usually the DBD plasma consists of many tiny microdischarges (or filamentsINSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol

Greifswald, Ernst-Moritz-Arndt-Universität

448

Supplement to the Illinois Institute of Technology Faculty Handbook This Supplement is included with the Faculty Handbook for convenience, and it contains policies  

E-Print Network [OSTI]

Filing Procedure D. Equipment Losses E. Safety, Identification, Classification and Handling of Hazardous11/12 Supplement to the Illinois Institute of Technology Faculty Handbook This Supplement approval. It is a compilation of administrative polices that apply to IIT faculty members, staff

Heller, Barbara

449

A MAgAzIne for AluMnI And frIends of the InstItute of technology | WINTEr 2006 When it comes to  

E-Print Network [OSTI]

Tomorrow. E Printed on recycled paper 12 18 36 14 #12;Engineering a Better World · 12 Students form state From the Dean Why the Institute of Technology is one of the U's greatest assets, especially now · 2 Tech Digest U and top-tech rankings, IMA's record-setting grant, faculty honors, fishy chemistry, solar

Minnesota, University of

450

Recovery of gas from hydrate deposits using conventional production technology. [Salt-frac technique  

SciTech Connect (OSTI)

Methane hydrate gas could be a sizeable energy resource if methods can be devised to produce this gas economically. This paper examines two methods of producing gas from hydrate deposits by the injection of hot water or steam, and also examines the feasibility of hydraulic fracturing and pressure reduction as a hydrate gas production technique. A hydraulic fracturing technique suitable for hydrate reservoirs is also described.

McGuire, P.L.

1982-01-01T23:59:59.000Z

451

New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China  

Science Journals Connector (OSTI)

...of greenhouse gas (N 2 O and CO...Greenhouse gas emissions from...prospect of coal-fired power generation energy-saving...m-3 natural gas, and 0.08...electricity generation using coal, hydro, and nuclear power in China and...

Wei-feng Zhang; Zheng-xia Dou; Pan He; Xiao-Tang Ju; David Powlson; Dave Chadwick; David Norse; Yue-Lai Lu; Ying Zhang; Liang Wu; Xin-Ping Chen; Kenneth G. Cassman; Fu-Suo Zhang

2013-01-01T23:59:59.000Z

452

Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology  

E-Print Network [OSTI]

Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology Fujita LaboratoryTokyo Institute of Technology Tokyo Institute of Technology 231 #12;Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology 2 IT #12;Fujita LaboratoryTokyo Instituteof

453

Department of Engineering Technology Technology Education  

E-Print Network [OSTI]

Department of Engineering Technology Technology Education A Teacher Education Program New Jersey Institute of Technology #12;WHAT WILL YOU LEARN? Technology teachers teach problem-based learning utilizing math, science and technology principles. Technological studies involve students: · Designing

Bieber, Michael

454

INAL Office of Fossil Energy Oil & Natural Gas Technology DOE Award No.: DE-FE0010175  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INAL INAL Office of Fossil Energy Oil & Natural Gas Technology DOE Award No.: DE-FE0010175 Quarterly Research Performance Progress Report (Period ending 06/30/2013) PLANNING OF A MARINE METHANE HYDRATE PRESSURE CORING PROGRAM FOR THE WALKER RIDGE AND GREEN CANYON AREAS OF THE GULF OF MEXICO Project Period (10/1/2012 - 9/30/2013 (suggested 30 March 2014)) Submitted by: Gary D. Humphrey, Project PI Signature Fugro GeoConsulting, Inc DUNS #: 118972301 6100 Hillcroft Houston, TX 77081-1009 e-mail: GHumphrey@Fugro.com Phone number: (713) 369-5600 Prepared for: United States Department of Energy National Energy Technology Laboratory Submission Date: July 31, 2013 Executive Summary This research effort will focus on developing a site characterization program for naturally occurring gas

455

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

SciTech Connect (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

2005-09-30T23:59:59.000Z

456

Development of Brazing Technology for Use in High- Temperature Gas Separation Equipment  

SciTech Connect (OSTI)

The development of high-temperature electrochemical devices such as oxygen and hydrogen separators, fuel gas reformers, solid oxide fuel cells, and chemical sensors is part of a rapidly expanding segment of the solid state technology market. These devices employ an ionic conducting ceramic as the active membrane that establishes the electrochemical potential of the device, either under voltage (i.e. to carry out gas separation) or under chemical gradient (to develop an electrical potential and thereby generate electrical power). Because the device operates under an ionic gradient that develops across the electrolyte, hermiticity across this layer is paramount. That is, not only must this thin ceramic membrane be dense with no interconnected porosity, but it must be connected to the rest of the device, typically constructed from a heat resistant alloy, with a high-temperature, gas-tight seal. A significant engineering challenge in fabricating these devices is how to effectively join the thin electrochemically active membrane to the metallic body of the device such that the resulting seal is hermetic, rugged, and stable during continuous high temperature operation. Active metal brazing is the typical method of joining ceramic and metal engineering components. It employs a braze alloy that contains one or more reactive elements, often titanium, which will chemically reduce the ceramic faying surface and greatly improve its wetting behavior and adherence with the braze. However, recent studies of these brazes for potential use in fabricating high-temperature electrochemical devices revealed problems with interfacial oxidation and subsequent joint failure [1,2]. Specifically, it was found that the introduction of the ceramic electrolyte and/or heat resistant metal substrate dramatically affects the inherent oxidation behavior of the braze, often in a deleterious manner. These conclusions pointed to the need for an oxidation resistant, high-temperature ceramic-to-metal braze and consequently lead to the development of the novel reactive air brazing (RAB) concept. The goal in RAB is to reactively modify one or both oxide faying surfaces with an oxide compound dissolved in a molten noble metal alloy such that the newly formed surface is readily wetted by the remaining liquid filler material. In many respects, this concept is similar to active metal brazing, except that joining can be conducted in air and the final joint will be resistant to oxidation at high temperature. Potentially, there are a number of metal oxide-noble metal systems that can be considered for RAB, including Ag-CuO, Ag-V2O5, and Pt-Nb2O5. Our current interest is in determining whether the Ag-CuO system is suitable for air brazing functional ceramic-to-metal joints such as those needed in practical electrochemical devices. In a series of studies, the wetting behavior of the Ag-CuO braze was investigated with respect to a number of potential hydrogen separation, oxygen separation, and fuel cell electrolyte membrane materials and heat resistant metal systems, including: alumina, (La0.6Sr0.4)(Co0.2Fe0.8)O3, (La0.8Sr0.2)FeO3, YSZ, fecralloy, and Crofer-22APU. Selected findings from these studies as well as from our work on joint strength and durability during high-temperature exposure testing will be discussed.

Weil, K.S.; Hardy, J.S.; Kim, J.Y.

2003-04-23T23:59:59.000Z

457

Listing of Inspection Categories04/25/2012 Georgia Institute of Technology CHEM Violation Code Description Deficiency Value  

E-Print Network [OSTI]

present in lab are not in gas cabinet or in Dangerous Gas Monitoring System All toxic gases (NFPA Health and continuously monitored via dangerous gas monitoring equipment. Lecture bottles that can be kept in a fume hood are not in Dangerous Gas Monitoring System Flammable gases in a laboratory equipped with fire suppression sprinklers a

458

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

SciTech Connect (OSTI)

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750C and provides electricity and/or process heat at 700C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

459

Advanced industrial gas turbine technology readiness demonstration. Quarterly technical progress report No. 12, 1 December 1979-29 February 1980  

SciTech Connect (OSTI)

The component technology base required for improved industrial gas turbine conversion efficiency is discussed. Specific goals are to demonstrate the high-pressure compressor and turbine cooling technologies required to achieve industrial gas turbine efficiencies of 34 to 36% simple cycle and 45 to 48% in combined cycle operation while reducing the number of compressor and turbine parts 80% over state-of-the-art units. The approach involves combining some of the most advanced aircraft turbine cooling and high-pressure compressor technology with the simplicity and ruggedness required of industrial engines to achieve not only improved performance, but also increased durability and low initial cost. The program currently consists of two phases. Phase I, which has been completed, included the conceptual definition of an industrial gas turbine capable of meeting the above goals and the aerothermodynamic designs of compressor and turbine component test rigs. Phase II, which is in progress, consists of component validation testing of the high-pressure compressor and turbine cooling designs which evolved in Phase I. During this quarter, work continued on Phase II, Task III - Compressor Rig Assembly and Test. Assembly of the compressor rig has been completed and final preparation of the rig for transporting to the test facility is in progress.

none,

1980-03-20T23:59:59.000Z

460

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

efficiency with regard to carbon capture". Energy 31 (15):67 3.6. Emerging Carbon Capture Technologies for the Pulp2011. Technology Roadmaps: Carbon Capture and Storage in

Kong, Lingbo

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas technology institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

gasification with combined cycles biological oxygen demandsintegrated gasification combined cycle Intergovernmentalbe integrated with combined-cycle (CC) technology (BLGCC),

Kong, Lingbo

2014-01-01T23:59:59.000Z

462

Sandia National Laboratories: Japanese National Institute of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Japanese National Institute of Advanced Industrial Science and Technology Sandia-California Partners with Japanese National Institute of Advanced Industrial Science and Technology...

463

The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity  

Science Journals Connector (OSTI)

...economy). 24 Electric Power Research Institute, Assessment of achievable potential from energy efficiency and demand response programs in the U.S. (20102030) (Rep. No. 1016987, Palo Alto, CA, 2009). 25 California Public...

James H. Williams; Andrew DeBenedictis; Rebecca Ghanadan; Amber Mahone; Jack Moore; William R. Morrow III; Snuller Price; Margaret S. Torn

2012-01-06T23:59:59.000Z

464

Quantum Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantum Institute Quantum Institute Quantum Institute A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Contact Leader Malcolm Boshier (505) 665-8892 Email Two of LANL's most successful quantum technology initiatives: quantum cryptography and the race for quantum computer The area of quantum information, science, and technology is rapidly evolving, with important applications in the areas of quantum cryptography, quantum computing, quantum metrology, and advanced quantum-based sensors, some of which are directly relevant to the Laboratory's national security mission. Mission Foster a vigorous intellectual environment at LANL Define and develop strategic thrusts Target and pursue funding opportunities

465

Honeywell UOP technology is used to clean natural gas on FPSO vessels  

Science Journals Connector (OSTI)

Modec Inc, which supplies offshore production systems to the oil and gas industry, has commissioned a Separex membrane system from UOP Llc, a Honeywell company that is based in Des Plaines, Illinois, USA, for processing natural gas on board a new floating production, storage and offloading (FPSO) vessel.

2012-01-01T23:59:59.000Z

466

Coal combustion and cogeneration at New York Institute of Technology, Central Islip campus. Final report. [NYIT CI campus  

SciTech Connect (OSTI)

The purpose of this project is to study the technical and economic feasibility of conversion to coal with possible implementation of cogeneration at the central power plant of the New York Institute of Technology Central Islip (NYIT CI) campus. The existing facility contains five moderate pressure (155 psig) 60,000 pph boilers installed in 1953-1954 which were originally designed for coal firing. Among the several systems assessed, three potential projects were identified as having economic merit and conceptual designs for their implementation were developed. The final decision as to which should be pursued must await a final determination of environmental issues related to sulfur dioxide emissions and manufacturer recommendations on the ability to reconvert one of the existing boilers back to coal. The three projects, in order of economic merit, are as follows: (1) reconversion of one of the existing 60,000 pph stoker boilers back to firing coal; (2) installation of a new 60,000 pph stoker fired, high pressure coal boiler with a 2300 kW backpressure steam turbine, the turbine to provide some cogeneration capability. Compliance, low sulfur, coal is to be burned; (3) installation of a new 50,000 pph, low pressure, firetube, fluidized bed combustion (FBC), boiler burning high sulfur coal but including sulfur dioxide capture. The first two projects are predicated on the burning of a compliance, low sulfur, coal. This may be allowed under ''grandfather'' clauses in the regulations that permit such burning in boilers that once fired coal. If not permitted, the installation of the low pressure FBC boiler would be the only remaining viable coal conversion option. Though it has a smaller payback, it still provides significant savings to the college.

Not Available

1984-04-01T23:59:59.000Z

467

Research Institute for Cognition and Robotics (CoR-Lab), and the Cluster of Excellence (277) CITEC -Cognitive Interaction Technology.  

E-Print Network [OSTI]

- Cognitive Interaction Technology. Optimal conditions for successful studies Although completing your studies

Moeller, Ralf

468

Comments of the American Petroleum Institute | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the American Petroleum Institute the American Petroleum Institute Comments of the American Petroleum Institute Similar to the electric utility industry's implementation of smart grid, oil and natural gas companies are in the midst of transitioning to next generation communications technology that will provide significant benefits in terms of safety, incident response, effectiveness and efficiency that are critical to United States energy independence. At the same time, however, API's members find themselves increasingly constrained by the lack of exclusive, licensed spectrum available for higher-speed applications. Comments of the American Petroleum Institute More Documents & Publications NBP RFI: Communications Requirements NBP RFI: Communications Requirements - Reply Comments of Utilities Telecom

469

Comments of the American Petroleum Institute | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Petroleum Institute Petroleum Institute Comments of the American Petroleum Institute Similar to the electric utility industry's implementation of smart grid, oil and natural gas companies are in the midst of transitioning to next generation communications technology that will provide significant benefits in terms of safety, incident response, effectiveness and efficiency that are critical to United States energy independence. At the same time, however, API's members find themselves increasingly constrained by the lack of exclusive, licensed spectrum available for higher-speed applications. Comments of the American Petroleum Institute More Documents & Publications NBP RFI: Communications Requirements - Reply Comments of Utilities Telecom Council NBP RFI: Communications Requirements